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Sorted-Pareto Dominance and Qualitative
Notions of Optimality

Conor O’Mahony and Nic Wilson

Cork Constraint Computation Centre,
University College Cork, Ireland.
{c.omahony,n.wilson}@4c.ucc.ie

Abstract. Pareto dominance is often used in decision making to com-
pare decisions that have multiple preference values – however it can pro-
duce an unmanageably large number of Pareto optimal decisions. When
preference value scales can be made commensurate, then the Sorted-
Pareto relation produces a smaller, more manageable set of decisions
that are still Pareto optimal. Sorted-Pareto relies only on qualitative or
ordinal preference information, which can be easier to obtain than quan-
titative information. This leads to a partial order on the decisions, and
in such partially-ordered settings, there can be many different natural
notions of optimality. In this paper, we look at these natural notions of
optimality, applied to the Sorted-Pareto and min-sum of weights case; the
Sorted-Pareto ordering has a semantics in decision making under uncer-
tainty, being consistent with any possible order-preserving function that
maps an ordinal scale to a numerical one. We show that these optimality
classes and the relationships between them provide a meaningful way to
categorise optimal decisions for presenting to a decision maker.

1 Introduction

In a decision-making task, it is often the case that the basis for comparing
decisions involves more than one preference value (e.g., evaluations of multiple
criteria in multi-criteria decision making, evaluations by more than one agent
in multi-agent decision making, or considerations of different states in decision
making under uncertainty), and therefore we have a preference vector for each
decision. In these cases, Pareto dominance is an often used preference relation,
where a decision Pareto dominates another if it is at least as good as the other
in every component (comparing the preference vectors component-wise), and a
decision is Pareto optimal if it is not Pareto dominated by any other [18, Ch. 2].
For example, for minimising costs, where costs are on an ordered scale T =
(low ,med , hi), and we have three decisions with preference vectors: a = (low , hi),
b = (med , low) and c = (med , hi), we can see that both a and b Pareto dominate
c, and also, since a and b do not Pareto dominate each other, they are both
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Pareto optimal. This relation is not very discerning though, and often the set of
Pareto optimal decisions is very large. However, if the preference scales used in
each component are commensurate (or can be normalised as such), then we can
compare decisions by sorting the preference vectors first and then performing
the component-wise comparison – which leads to a more discerning relation.
For example, if a and b are sorted in non-descending order, i.e., (low , hi) and
(low ,med) respectively, the second vector now dominates the first, and therefore
we now have only one undominated decision w.r.t. this new relation, which we
call the Sorted-Pareto relation. This leads to a smaller, more manageable set of
Sorted-Pareto optimal solutions, that are still Pareto optimal, as shown in [13].

If the scale T is quantitative, or we have information that gives a quantitative
mapping for T , e.g., we have a mapping f : T → IR+, then the decisions could be
compared by summing the preference vector values and seeing which decisions
have the smallest sum of costs, i.e., the min-sum of weights. However, often the
preference information available is only of an ordinal or qualitative nature, as
it can be easier to obtain such information, e.g., there may be uncertainty over
exact values, or it may be easier to elicit qualitative preference information from
a decision maker [12]. Sorted-Pareto relies only on ordinal or qualitative informa-
tion, and therefore can be used in these qualitative decision making situations.
In addition, for any mapping f : T → IR+, where f is order-preserving w.r.t.
scale T , we show that Sorted-Pareto is compatible with any such mapping.

In a partially ordered setting, such as in the situation just described, there
can be different natural notions of optimality. The framework in [21] describes
some of these notions, for qualitative decision making under uncertainty, where
there are different possible scenarios in a given problem. This gives us classes of
decisions that are not dominated by any other decision, decisions that are pos-
sibly optimal or possibly strictly optimal, (i.e., optimal in some scenario), and
decisions that are optimal in all scenarios. Sorted-Pareto connects to Weighted
Constraints Satisfaction Problems (WCSP) [17, Ch. 9] and Bayesian Networks
[15] where we only have ordinal information, and in these frameworks the possi-
bly optimal decisions are those that are min-sum optimal for some compatible
WCSP, or are the complete assignments that are most probable in some com-
patible Bayesian Network. In this paper, we look at the relationship between
Sorted-Pareto and min-sum of weights in Section 3, and in Section 4 we then
examine these different natural notions of optimality from [21] and apply them
to the Sorted-Pareto and min-sum of weights case. In Section 5, we show how to
generate these optimality classes for Sorted-Pareto, and in Section 6 we present
some experimental results.

2 Preliminaries

We assume a minimising context, where lower preference values are preferred.
A preference relation � on a set A is a binary relation that gives an ordering
over A, i.e., given any α, β ∈ A, if α � β, then α is preferred to β according
to �. Relation � is a preorder, if it is reflexive (α � α, for all α ∈ A) and



transitive (i.e., if α � β and β � γ, then α � γ). Relation � is a total preorder,
if it is complete (i.e., either α � β, or β � α, or both, for all α, β ∈ A) and
transitive. For a preorder � on A, we have a corresponding strict relation ≺,
and a corresponding equivalence relation ≡, defined respectively as: α ≺ β if and
only if α � β and β 6� α; and α ≡ β if and only if α � β and β � α.

We consider situations where the following preference information is available
for some finite set of decisions A. Let S = {1, . . . ,m} be a finite set, where each
i ∈ S labels some aspect of the decisions in A for which a preference can be
expressed. Let T be a scale, totally ordered by relation ≤. Let αi ∈ T represent
a preference value for decision α ∈ A in aspect i. Let α = (α1, . . . , αm) be the
preference vector of m preference values (to ease notation, we interchangeably
use “α” as meaning a decision α ∈ A, or as meaning the evaluation vector
α = (α1, . . . , αm)). Let α↑ = (α(1), . . . , α(m)) be the sorted preference vector
such that α(1) ≤ . . . ≤ α(m), i.e., the values are ordered w.r.t. the scale T .
For any two preference vectors α and β: α ≤ β if and only if αi ≤ βi for all
i ∈ {1, . . . ,m}; and α < β if and only if αi ≤ βi for all i ∈ {1, . . . ,m}, and there
exists j ∈ {i, . . . ,m} such that αj < βj .

3 Sorted-Pareto and Min-Sum of Weights

In this section, we recall definitions for Sorted-Pareto dominance from [13], and
show how this ordering relates to min-sum of weights. For all α, β ∈ A, decision
α Weak Sorted-Pareto dominates β, written as α 4sp β, if and only if α↑ ≤ β↑.
Decision α Sorted-Pareto dominates β, written as α ≺sp β, if and only if α↑ < β↑,
or in terms of 4sp, if and only if α 4sp β and β 64sp α. Decision α is Sorted-
Pareto equivalent to β, written as α ≡sp β, if and only if α↑ = β↑, or in terms
of 4sp, if and only if α 4sp β and β 4sp α. Let [α]sp denote the sp-equivalence
class of α ∈ A, where [α]sp = {β ∈ A : α ≡sp β} Decision α is Sorted-Pareto
optimal (or undominated) if and only if there is no β ∈ A such that β ≺sp α.

Min-Sum of Weights. We consider situations in which there is additional
quantitative preference information available, i.e., we have a function f : T →
IR+. In such cases, we can order the set of decisions by using the min-sum of
weights, defined as follows.

For some f : T → IR+, for all α, β ∈ A, decision α is min-sum preferred to
β, written as α ≤f β, if and only if

∑m
i=1 f(αi) ≤

∑m
i=1 f(βi). Decision α is

strictly min-sum preferred to β, written as α <f β, if and only if
∑m
i=1 f(αi) <∑m

i=1 f(βi). Decision α is min-sum equivalent to β, written as α ≡f β, if and
only if

∑m
i=1 f(αi) =

∑m
i=1 f(βi). The relation ≤f forms a total preorder on a

set of decisions A. Decision α is min-sum-optimal for f if and only if for all
β ∈ A, α ≤f β.

3.1 Relating Sorted-Pareto and Min-Sum of Weights.

Let F be the set of all possible weight functions f : T → R+ such that f ∈ F if
and only if f is monotonic w.r.t. T , i.e., u ≤ v ⇔ f(u) ≤ f(v) for all u, v ∈ T .



Define the order relation ≤F on A as, for all α, β ∈ A, α ≤F β ⇔ α ≤f β, for
all f monotonic w.r.t. T . From Theorem 1 in [13], we have that ≤F = 4sp.

Now, let F ′ be the set of all possible weight functions such that f ∈ F ′ if
and only if f is strictly monotonic w.r.t. T , i.e., u < v ⇔ f(u) < f(v) for all
u, v ∈ T . Define the order relation ≤F ′ as, for all α, β ∈ A, α ≤F ′ β ⇔ α ≤f β,
for all f strictly monotonic w.r.t. T . Define <∩F ′ as the intersection of all <f
such that f ∈ F ′, i.e., <∩F ′ =

⋂
f∈F ′ <f so for all α, β ∈ A, α <∩F ′ β if and

only if for all f ∈ F ′, α <f β. We have the following results (proofs are in an
extended version of the paper [14]).

Theorem 1. 4sp = ≤F = ≤F ′

Corollary 1. ≺sp = <∩F ′

4 Qualitative Notions of Optimality

In this section, we look at the different notions of optimality from the qualitative
decision making framework in [21], which we use to describe the relationship
between Sorted-Pareto and min-sum of weights. A Multiple Ordering Decision
Structure (MODS) is a tuple G = 〈A,P, {4p : p ∈ P}〉, where A is a set of
decisions, P is a set of possible scenarios, and for each p ∈ P, relation 4p is a
total preorder on A, with corresponding strict and equivalence relations ≺p and
≡p respectively.

For any instance of this framework, we have the following relations that
always hold in general. Decision α necessarily dominates β, written α 4N β, if
and only if α 4p β, for all p ∈ P. Relation 4N is the intersection of 4p over
all p ∈ P. Relation 4N has corresponding strict and equivalence relations ≺N
and ≡N respectively. Let [α]N denote the N -equivalence class of α ∈ A, where
[α]N = {β ∈ A : α ≡N β}. Decision α necessarily strictly dominates β, written
α ≺NS β, if and only if α ≺p β for all p ∈ P. Relation ≺NS is the intersection of
≺p over all p ∈ P.

Optimality Classes. We now look at different notions of optimality for the
general case. Decision α is necessarily optimal if and only if α 4N β for all β ∈ A.
The set of these decisions is denoted by NO(G). Decision α is necessarily strictly
optimal if and only if α ≺NS β for all β ∈ A \ [α]N. The set of these decisions
is denoted by NSO(G). Decision α is possibly optimal if and only if there exists
p ∈ P such that α 4p β for all β ∈ A. The set of these decisions is denoted by
PO(G). Decision α is possibly strictly optimal if and only if there exists p ∈ P
such that α ≺p β for all β ∈ A \ [α]N. The set of these decisions is denoted by
PSO(G). A decision α is in CD(G), if and only if for all β ∈ A, there exists p ∈ P
such that α 4p β. CD(G) are the decisions that are undominated w.r.t. ≺NS. A
decision α is in CSD(G) if and only if for all β ∈ A \ [α]N, there exists p ∈ P
such that α ≺p β. CSD(G) are the decisions that are undominated w.r.t. ≺N.
We also have the following optimality classes, which are intersections between



existing classes. NOPSO(G) is the intersection of NO(G) and PSO(G). PO′(G)
is the intersection of PO(G) and CSD(G).

Figure 1 shows precisely the subclass relationships between these optimality
classes that always hold in the general case, as given by Theorem 1 in [21].
[21] also gives an example of strict subclass relationships between each of the
optimality classes.

Fig. 1. Subclass relationships (⊆) between classes that always hold in general.

4.1 Sorted-Pareto MODS

Recall from Section 3, where we define F be the set of all possible weight func-
tions f : T → IR+ such that f is monotonic w.r.t. T . We also have that for all
α, β,∈ A, α 4sp β ⇔ α ≤f β for all f ∈ F , i.e., α Weak Sorted-Pareto domi-
nates β if and only if α is min-sum-preferred to β for all f ∈ F . This gives us
the Sorted Pareto MODS S = 〈A, F, {≤f : f ∈ F}〉, where the set of scenarios
is the set F of possible order-preserving weight functions f : T → IR+, and the
set of possible orderings is that given by the min-sum of weights orderings for
all possible weight functions, i.e., the set {≤f : f ∈ F}.

For the Sorted-Pareto MODS S, we have the following relations. Decision α
necessarily dominates β if and only if α ≤f β for all f ∈ F . Since α ≤f β, for
all f ∈ F ⇔ α 4sp β, this gives us the result in Proposition 1.

Proposition 1. For MODS S, 4N = 4sp

Since we have that α ≺sp β if and only if α 4sp β and β 64sp α, then we also
have that ≺N = ≺sp. Decision α necessarily strictly dominates β if and only if
α <f β for all f ∈ F . Since from Corollary 1, <∩F ′ = ≺sp, and <∩F ′ is defined
as the intersection of all <f such that f ∈ F ′ (and F ′ ⊆ F ), then we have the
result in Proposition 2.

Proposition 2. For MODS S, ≺NS = ≺N = ≺sp

We have an equivalence relation for each f ∈ F , i.e., α ≡f β if and only if∑m
i=1 f(αi) =

∑m
i=1 f(βi). We also have an equivalence relation ≡F , which is

the intersection of ≡f over all f ∈ F , i.e., ≡F is equal to
⋂
f∈F ≡f , so α ≡F β if

and only if they are equivalent over all possible choice of f . Let [α]F denote the
F -equivalence class of α ∈ A, where [α]F = {β ∈ A : α ≡F β}. Since we have
from Theorem 1 in [13] that ≤F is equal to 4sp, i.e., 4sp =

⋂
f∈F ≤f , then we

have that ≡F is equal to ≡sp, i.e., ≡sp is the intersection of ≡f over all f ∈ F ,
which gives us the result in Proposition 3.

Proposition 3. For MODS S, ≡N = ≡sp



Sorted-Pareto Optimality classes. We now look at the notions of optimality
that are applicable for the Sorted-Pareto MODS S. Decision α is in NO(S) if
and only if for all β ∈ A, for all f ∈ F , α ≤f β, i.e., if and only if α 4sp β for all
β ∈ A. Decision α is in NSO(S) if and only if for all β ∈ A \ [α]F , for all f ∈ F ,
α <f β, i.e., if and only if α ≺sp β for all β ∈ A \ [α]sp.

These definitions and Proposition 2 give us the result in Proposition 4.

Proposition 4. For MODS S, NSO(S) = NOPSO = NO(S)

Decision α is in CD(S) if and only if for all β ∈ A, there exists f ∈ F such
that α ≤f β. Decision α is in CSD(S) if and only if for all β ∈ A \ [α]F , there
exists f ∈ F such that α <f β.

Since in the general case CD(G) are the decisions that are undominated w.r.t.
≺NS and CSD(G) are the decisions that are undominated w.r.t.≺N, and also from
Proposition 1 we have ≺NS = ≺N, then this gives us the result in Proposition 5.

Proposition 5. For MODS S, CSD(S) = CD(S)

Decision α is in PO(S) if and only if there exists f ∈ F such that for all
β ∈ A, α ≤f β. Decision α is in PSO(S) if and only if there exists f ∈ F
such that for all β ∈ A \ [α], α ≤f β. Let PO′(S) = PO(S) ∩ CSD(S) and
NOPSO(S) = NO(S) ∩ PSO(S).

Since in the general case PO(G) ⊆ CD(G), and since we have from Proposition
5 that CSD(S) = CD(S), this gives us the result in Proposition 6.

Proposition 6. For MODS S, PO(S) ⊆ CSD(S).

Given these results, we now look at the subclass relationship between the op-
timality classes for the Sorted-Pareto instance of the MODS framework. Propo-
sitions 1-6 and definitions give us that (NSO(S) = NOPSO(S) = NO(S)) ⊆
PSO(S) ⊆ (PO(S) = PO′(S)) ⊆ (CSD(S) = CD(S)), as shown in Figure 2.

Fig. 2. Subclass relationships (⊆) between classes for MODS S.

Now we consider the case where there exists a decision that is necessarily
optimal, i.e., when NO(S) 6= ∅. Proposition 5 in [21] gives us that if NO(S) 6= ∅,
then we have NO(S) = CSD(S), and therefore we have a single sp-equivalence
class, where the decisions are all equivalent. This gives us the result in Proposi-
tion 7.

Proposition 7. For MODS S, if NO(S) 6= ∅, then NSO(S) = NO(S) =
PSO(S) = PO(S) = CSD(S) = CD(S) ⊆ A



5 Computing Optimality classes for MODS S

In this section, we look at methods for generating the different optimality classes
for Sorted-Pareto MODS S. Here we assume that there is some procedure to
generate CSD(S), i.e., that calculates the preference vectors for each decision
and compares them using Sorted-Pareto dominance to generate the set of deci-
sions that are non-dominated. For example, the branch and bound search algo-
rithms detailed in [13] do exactly this; however other search procedures can be
used. From CSD(S), NO(S) can be calculated by comparing all the solutions
in CSD(S) with one another to see if any Sorted-Pareto dominate all others. In
our experimental results in Section 6, we use the procedure outlined in [13] to
calculate CSD(S), where the algorithm has been modified to maintain the set
of currently non-dominated preference vectors, each preference vector mapping
to the corresponding equivalence class of decisions. This leads to a substantial
improvement in computation times as it results in a reduction in the number of
dominance checks performed by the algorithm.

Calculating PO(S) and PSO(S). We want to determine if some decision
α in CSD(S) is possibly optimal, i.e., there exists some weight function f ∈ F
such that α ≤f β for all β ∈ CSD(S). We can formulate this problem as a linear
program P , as follows. Only certain elements on the scale T appear in any of
the preference vectors for the decisions in CSD(S); let T ′ denote this set, i.e.,
T ′ = {i ∈ β : β ∈ CSD(S)}. For each of these elements i ∈ T ′ we have a linear
program variable wi, representing an unknown weight. Since the scale T is totally
ordered, then on these weights we have constraints of the form wi < wj , where
i < j. For all β ∈ CSD(S), we have a linear expression ω(β) as a sum in terms
of the unknown weight variables, i.e., ω(β) =

∑
i∈β wi. For α to be possibly

optimal, we require, for each β ∈ CSD(S), that ω(α) ≤ ω(β). Therefore we have
a set P of linear inequalities, which consists of, (i) wi < wj , for all i, j ∈ T ′,
where i < j, and (ii) ω(α) ≤ ω(β), for all β ∈ CSD(S). If P has a feasible
solution, then there exists some weights that make α ≤ β for all β ∈ CSD(S),
i.e., α is possibly optimal.

In order to check this using a standard linear program solver, we need to con-
vert to an equivalent problem which only has non-strict inequalities. Therefore,
we create a linear program P ′ as follows, where c > 0 is some arbitrary strictly
positive real number, for example, let us choose c = 1. Then, for any constraint
in P of the form wi < wj , we have a constraint in P ′ with the form wj −wi ≥ c,
and for any constraint in P of the form ω(α) ≤ ω(β), we have a constraint of
the form ω(β)− ω(α) ≥ 0. We then solve the linear program P ′, and this has a
solution if and only if P has a solution, and α is possibly optimal.

We can also determine if some solution is possibly strictly optimal, i.e., there
exists f such that for all β ∈ CSD(S) \ [α], α <f β. We have a set Q of linear
inequalities for this problem, which consists of, (i) wi < wj , for all i, j ∈ T ′, where
i < j and, (ii) ω(α) < ω(β), for all β ∈ CSD(S). We again create a modified
linear program Q′ as follows: for any constraint in Q of the form wi < wj , we



have a constraint in Q′ with the form wj−wi ≥ c, and for any constraint in Q of
the form ω(α) < ω(β), we have a constraint in Q′ of the form ω(β)− ω(α) ≥ c.
We then solve the linear program Q′, and this has a solution if and only if Q
has a solution, and α is possibly strictly optimal.

Proposition 8. The set of linear inequalities P has a solution if and only if
linear program P ′ has a solution. The set of linear inequalities Q has a solution
if and only if linear program Q′ has a solution.

6 Experimental Results

In this section, we calculate the optimality classes CSD(S), PO(S), PSO(S),
and NO(S) for some randomly generated and benchmark instances (details of
the generation process are in the extended version of the paper [14]). As de-
tailed in Section 5, we use the branch and bound algorithm from [13] to gen-
erate CSD(S) and NO(S), and we solve linear programs to generate PO(S)
and PSO(S). The instances used are Weighted Constraint Satisfaction problems
(WCSP) [17, Ch.9], where, for a set of problem variables, each variable can be
assigned a value from its domain, and a complete assignment to all of the vari-
ables is a solution to the problem (which corresponds to a decision). There is
also a set of weighted constraints which associate weights to these assignments,
and these correspond to the preference levels of the solutions.

Table 1. Average size of optimality sets over 50 random instances, n denotes problem
size, sc denotes size of preference vector (increasing), |T | denotes size of scale.

CSD(S) PO(S)

n sc |T | = 3 |T | = 5 |T | = 7 |T | = 3 |T | = 5 |T | = 7

20 48 9.12 (2.90) 9.48 (6.78) 21.68 (19.28) 7.60 (2.62) 8.22 (5.88) 17.44 (15.70)
24 69 9.94 (3.70) 11.76 (10.18) 55.18 (51.30) 8.90 (3.46) 9.72 (8.36) 36.88 (34.50)
28 95 10.12 (4.52) 15.96 (14.04) 67.54 (63.88) 8.32 (3.86) 11.54 (10.32) 40.30 (38.44)
32 124 9.56 (5.00) 21.44 (19.28) 114.58 (110.96) 6.76 (3.86) 13.44 (12.42) 58.38 (56.82)
36 158 10.60 (5.68) 30.42 (27.04) 145.36 (143.02) 8.22 (4.64) 18.24 (16.58) 68.16 (67.06)
40 195 10.20 (5.38) 24.12 (23.00) 135.14 (134.44) 8.50 (4.62) 15.94 (15.38) 63.96 (63.84)

PSO(S) NO(S)

n sc |T | = 3 |T | = 5 |T | = 7 |T | = 3 |T | = 5 |T | = 7

20 48 6.52 (2.30) 8.02 (5.78) 17.42 (15.68) 0.20 (0.10) 0.00 (0.00) 0.00 (0.00)
24 69 6.58 (2.92) 9.44 (8.18) 36.80 (34.46) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
28 95 6.14 (3.24) 11.36 (10.14) 40.24 (38.40) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
32 124 5.60 (3.36) 13.12 (12.16) 58.14 (56.68) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
36 158 5.44 (3.72) 17.88 (16.26) 67.96 (66.92) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
40 195 6.18 (3.78) 15.32 (14.92) 63.86 (63.76) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Random Instances. For these random instances: n denotes problem size, i.e.,
the number of variables; sc denotes the size of the preference vector for each
solution, i.e., the number of weighted constraints; and |T | denotes the size of the



ordinal scale used. Each set of problems was generated with 3 different scales,
with |T | = 3, 5 and 7.

Table 1 shows the average size of the optimality classes (and the average
number of equivalence classes in parentheses) for 50 random instances for prob-
lem size n = 20, 24, . . . , 40. The size of the preference vector sc (i.e., the number
of weighted constraints) is varied as a parameter of the problem size. It can
be observed that PO(S) is usually smaller than CSD(S), with PSO(S) smaller
again, and in nearly all cases NO(S) is empty.

Table 2 shows the average size of the optimality classes (and the average
number of equivalence classes in parentheses) for 50 random instances for prob-
lem size n = 20, 24, . . . , 40. The size of the preference vector sc is fixed at 10 for
all instances. In these problems, the size of the CSD(S) sets are much larger than
in Table 1, and often the same size as the PO(S) set. However the equivalence
classes are much smaller, indicating that for these problems there are a large
number of equivalent optimal solutions in each optimality class. Often NO(S) is
non-empty, indicating a single equivalence class of necessarily optimal solutions,
and in these cases we have CSD(S) = PO(S) = PSO(S) = NO(S).

Table 2. Average size of optimality sets over 50 random instances, n denotes problem
size, sc denotes size of preference vector (fixed), |T | denotes size of scale.

CSD(S) PO(S)

n sc |T | = 3 |T | = 5 |T | = 7 |T | = 3 |T | = 5 |T | = 7

20 10 190.16 (1.44) 121.38 (2.12) 116.84 (3.56) 190.16 (1.44) 118.50 (2.06) 115.12 (3.42)
24 10 330.88 (1.66) 191.08 (2.36) 242.48 (3.98) 330.88 (1.66) 190.84 (2.32) 227.26 (3.78)
28 10 379.14 (1.52) 196.32 (1.96) 201.68 (3.14) 373.86 (1.50) 186.06 (1.86) 191.22 (3.00)
32 10 642.56 (1.62) 393.72 (2.32) 354.36 (3.72) 642.56 (1.62) 393.72 (2.32) 344.16 (3.54)
36 10 925.92 (1.48) 709.56 (2.08) 663.32 (3.20) 925.92 (1.48) 697.56 (2.02) 652.30 (3.14)
40 10 1177.10 (1.54) 904.24 (2.18) 779.72 (3.06) 1177.10 (1.54) 904.24 (2.18) 779.72 (3.06)

PSO(S) NO(S)

n sc |T | = 3 |T | = 5 |T | = 7 |T | = 3 |T | = 5 |T | = 7

20 10 167.54 (1.38) 118.50 (2.06) 114.02 (3.40) 86.94 (0.62) 36.40 (0.38) 15.36 (0.14)
24 10 275.30 (1.58) 190.84 (2.32) 227.26 (3.78) 96.10 (0.44) 15.50 (0.22) 3.88 (0.12)
28 10 373.06 (1.48) 186.06 (1.86) 191.22 (3.00) 164.94 (0.52) 80.56 (0.38) 18.14 (0.22)
32 10 638.78 (1.60) 392.76 (2.30) 344.04 (3.52) 183.22 (0.42) 11.42 (0.18) 5.92 (0.08)
36 10 925.92 (1.48) 697.56 (2.02) 652.30 (3.14) 150.98 (0.52) 78.00 (0.32) 18.32 (0.12)
40 10 1166.54 (1.52) 904.24 (2.18) 779.72 (3.06) 383.24 (0.50) 265.18 (0.32) 96.92 (0.14)

Benchmark Instances. Table 3 shows the size of the optimality classes (and
the number of equivalence classes in parentheses), when applied to some modi-
fied WCSP instances from the Celar Radio-Link Frequency Assignment problem
benchmark, where again problem size is denoted by n, sc denotes the size of the
preference vector, and T denotes the size of the scale. These instances have been
modified by adding random binary hard constraints to the problem, to limit the
expected number of solutions to around 10, 000. PO(S) is usually smaller than
CSD(S), but PSO(S) is only very seldom smaller than PO(S). In all of these
instances, NO(S) is empty.



Table 3. Size of optimality sets for modified CELAR benchmark instances, n denotes
problem size, sc denotes size of preference vector, |T | denotes size of scale.

Instance n sc |T | CSD(S) PO(S) PSO(S) NO(S)

CELAR6-SUB0* 16 207 5 17 (16) 12 (11) 12 (11) 0 (0)

CELAR6-SUB1* 14 300 5 24 (20) 13 (11) 11 (9) 0 (0)

CELAR6-SUB2* 16 353 5 20 (12) 19 (11) 19 (11) 0 (0)

CELAR6-SUB3* 18 421 5 4 (3) 4 (3) 4 (3) 0 (0)

CELAR6-SUB4* 22 477 5 6 (6) 6 (6) 6 (6) 0 (0)

CELAR7-SUB0* 16 188 5 10 (10) 8 (8) 8 (8) 0 (0)

CELAR7-SUB1* 14 300 5 15 (11) 14 (10) 14 (10) 0 (0)

CELAR7-SUB2* 16 353 5 10 (8) 7 (5) 7 (5) 0 (0)

CELAR7-SUB3* 18 421 5 19 (15) 13 (9) 13 (9) 0 (0)

CELAR7-SUB4* 22 477 5 8 (8) 5 (5) 5 (5) 0 (0)

Discussion. One possible approach to choosing which decisions to present to
a decision maker is to calculate CSD(S) first, and from this set, NO(S) can be
easily derived. If NO(S) is not empty, then there are one or more equivalent
decisions which are preferred to all other decisions for any choice of f , and these
are prime candidates for presenting to a decisions maker. However, if NO(S)
is empty, then PO(S) or PSO(S) can be computed and presented, these sets
are often much smaller than CSD(S). PO(S) is the set of decisions that are
min-sum optimal for some possible f , and thus are good candidates to present
to a decision maker. If the PO(S) set is large, and there is a small number of
equivalence classes, then a representative solution for each equivalence class could
be chosen to present to a decision maker, since this would give a decision maker
a choice between non-equivalent solutions that are possibly min-sum-optimal.

7 Related Work

As well as our own work [13,21], on which this work builds, Larichev and
Moshkovich [11] use Sorted-Pareto in the context of normalising different cri-
teria scales, and Kaci and Prade [10] use it in preference handling using pos-
sibilistic logic. Both Perny and Spanjaard [16] and Bossong and Schweigert [4]
look at preference based search for generating sets of optimal solutions for short-
est path problems, which is related to Sorted-Pareto as previously outlined in
[13]. The Sorted Pareto relation extends the Pareto dominance relation [18], and
computing the Sorted-Pareto optimal set is viable when preference level scales
are commensurate, since calculating the Pareto optimal set can be prohibitive.
Some works that approximate the Pareto optimal set in constraints problems
include Torrens and Faltings [20], however this requires quantitative informa-
tion as it performs a sum of weights on the preference vector, and Gavanelli
[8] uses a branch and bound algorithm similar to what is used in [13]. Sorted-
Pareto is reminiscent of Lorenz dominance [19], and is extended by preference
relations that perform a lexicographic comparison on reordered vectors of pref-
erence levels, such as Lexicographic Min-Max [7] in multicriteria optimisation,
and Leximin [6]. These lexicographic orderings place excessive emphasis on the



worse preference values, since they ignore better values when comparing two de-
cisions, whereas Sorted-Pareto compares over all values. Bouveret and Lemâıtre
[5] looks at depth first branch and bound algorithms for the computation of Lex-
imin optimal solutions. The notions of optimality in the MODS framework are
partly inspired by Gelain et al. [9], who investigate optimality for interval-valued
constraints, however we assume only qualitative or ordinal information. Also,
the MODS framework relates to decision making under complete uncertainty
or ignorance (such as in Arrow [1]), since there is no quantitative information
assumed on the importance or likelihood of scenarios.

8 Conclusion

In this paper, we looked at Sorted-Pareto dominance, a preference relation that
assumes only qualitative information, and based on the correspondence between
Sorted-Pareto and decision making under uncertainty, we argue that there are
other natural notions of optimal decision. Specifically, we look at decisions that
are undominated, i.e, CSD(S), the solutions that are optimal and strictly opti-
mal in one (or more) scenarios, i.e., PO(S) and PSO(S) respectively, and the
solutions that are optimal in all scenarios, i.e., NO(S). We explore the relations
between these notions of optimality and show how to compute them for the
Sorted-Pareto ordering and the min-sum of weights case. The experimental re-
sults show, that in some cases, NO(S) is non-empty, and these are the decisions
that would be of most interest to a decision maker. However, in other cases,
no such decisions exist, and then PO(S) and PSO(S) are of interest to a deci-
sion maker since these are the decisions that are optimal or strictly optimal in
some scenario. The Sorted-Pareto ordering connects with Weighted Constraint
Satisfaction problems (WCSP) [17, Ch. 9] (or similarly, with Generalised Addi-
tive Independence decompositions [2]), where a problem has only weights on an
ordinal scale T ; each such problem has a set of compatible proper weighted con-
straints problems, based on mapping the ordinal scale T → IR+. Sorted-Pareto
is also connected to Bayesian Networks [15], where in a given network we only
have ordinal probabilistic information and therefore we have an associated set
of compatible Bayesian Networks. In a Weighted CSP with ordinal weights, the
decisions that are possibly optimal are those that are min-sum optimal in some
compatible weighted constraints problem, and in a Bayesian Network with ordi-
nal probabilities, the possibly optimal decisions are those assignments that are
most probable in some compatible Bayesian Network. In the context of decision
making under uncertainty, we argue that these decisions would certainly be of
interest to a decision maker.
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