
Title Mobile cloud contextual awareness with the cloud personal
assistant

Authors O'Sullivan, Michael J.;Grigoras, Dan

Publication date 2014-08

Original Citation O'SULLIVAN, M. J. & GRIGORAS, D. (2014) 'Mobile Cloud
Contextual Awareness with the Cloud Personal Assistant'.
International Conference on Future Internet of Things and Cloud
(FiCloud). Barcelona, 27-29 Aug. 2014. IEEE. pp.82-89. doi:
10.1109/FiCloud.2014.23

Type of publication Conference item

Link to publisher's
version

10.1109/FiCloud.2014.23

Rights © 2014 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-05-27 12:03:59

Item downloaded
from

https://hdl.handle.net/10468/1954

https://hdl.handle.net/10468/1954

Mobile Cloud Contextual Awareness with the
Cloud Personal Assistant

Michael J. O’Sullivan, Dan Grigoras

Department of Computer Science
University College Cork, Cork, Ireland

{m.osullivan, grigoras}@cs.ucc.ie

Abstract – This paper presents our efforts to bridge the gap
between mobile context awareness, and mobile cloud services,
using the Cloud Personal Assistant (CPA). The CPA is a part of
the Context Aware Mobile Cloud Services (CAMCS)
middleware, which we continue to develop. Specifically, we
discuss the development and evaluation of the Context Processor
component of this middleware. This component collects context
data from the mobile devices of users, which is then provided to
the CPA of each user, for use with mobile cloud services. We
discuss the architecture and implementation of the Context
Processor, followed by the evaluation. We introduce context
profiles for the CPA, which influence its operation by using
different context types. As part of the evaluation, we present two
experimental context-aware mobile cloud services to illustrate
how the CPA works with user context, and related context
profiles, to complete tasks for the user.

Keywords: mobile cloud, applications, services, user
experience, context awareness

I. INTRODUCTION

With the introduction of the mobile cloud paradigm, new

application models and services can be offered to mobile
devices from the cloud. These may require computation
resources that are scarcely available on mobile devices.
Specifically, our research interest lies in providing an
integrated user experience of mobile cloud applications to the
user. To achieve this, in our previous work [1], we introduced
Context Aware Mobile Cloud Services (CAMCS). This is a
cloud-based middleware that can tackle mobility factors that
result in a detrimental impact on the user experience, such as
network disconnection, variable bandwidth, and low energy
supply from the battery.

In our previous work, we outlined several requirements we
believe to be essential to providing this user experience. One
of these calls for the need for contextual awareness, to play a
part. This will enable a personalised user experience of the
mobile cloud applications. Context awareness provides
information about both the users themselves, such as their
current activity, along with location, time of day, week, and
year. It also provides information about the state of the mobile

device, such as the remaining battery level, and presence of a
network connection along with its quality.

To avail of the services provided by CAMCS, each user
has to register an account using their email address, which can
be done using a thin client running on the mobile device. Each
user is then assigned his/her own Cloud Personal Assistant
(CPA) [2]. The core motivation behind the CPA is that a user
offloads demanding tasks they wish to complete to their CPA
in the cloud. The CPA then discovers the appropriate cloud
services to fulfil those tasks. Once a task is complete, the CPA
will store the result until the mobile device is ready to receive
it. This implies that the mobile device can become
disconnected from the cloud after the task has been offloaded;
a continuous connection is not required. The user provides
task information using the mobile thin client application. In
this work, the thin client application is responsible for
collecting the context information from the user, which is then
sent to, and stored with the CPA of the user in the cloud.

The CPA can then use contextual information in multiple
ways, such as to aid in discovering a suitable cloud service for
completing a task, depending on the user’s preferences. Or the
context data can be provided as input to the services if it can
be of use in executing the offloaded task and getting the result.
This is aided with the introduction of Context Profiles in this
work. Context profiles can model daily situations of the user,
such as a home profile, and a work profile. Different context
profiles can be active for the CPA of a user. Based on the
active profiles, the CPA can undertake different work, and it
can influence its operation, such as in its choice of cloud
services to complete given tasks. Additionally, a history of
gathered context is stored with the CPA of the user, so that if
the mobile device is currently disconnected, new context can
be inferred from historical context. This enables additional
functionality. The context can be used such that the CPA can
intelligently work under its own direction, rather than the user
having to explicitly request that it carry out some work.
Taking these scenarios into account, by using the contextual
data, service execution in the cloud is personalised and catered
to the situation of the user and the current task.

In our previous CAMCS work, we described the structure
of the system. One of the components of this system, is the
Context Processor, which gathers the contextual data from the

mobile devices, stores it, and provides it where required to
tasks. It also uses a context Inference Engine to derive new
context from the stored historical context. This paper describes
our current implementation of the Context Processor
component of the CAMCS middleware. In addition, we
present an example of two experimental mobile cloud services
that the CPA can use, along with the gathered context. They
demonstrate how the CPA can use gathered context to operate
with such services, to complete tasks. These services are based
on two context profiles, a tourist context profile, which makes
use of the Foursquare API, and a car context profile, which
makes use of the Twitter API.

Many different approaches have been taken to collect
context information from the mobile device, along with use of
this context with mobile applications in related work. Projects
usually consist of middleware approaches that collect the
context, perform processing, feature-extraction, and inference,
before finally providing the context to some example
applications. Some works do utilise the cloud for these
collective aspects of context collection, other works solely use
a mobile middleware approach. Most works focus on the
middleware collection and processing itself, rather than how it
can be provided and consumed in a generic manor. The
contributions of this paper are that we focus not only on how
we handle the context data in our CAMCS middleware, but
how it can be provided to the CPA to be used with mobile
cloud services, how it can be used in different ways, and how
it can influence the operation of the CPA to cater to a more
personalised and situation-relevant experience for the user,
with the help of context profiles. This is extendable for other
software developers.

The remainder of this paper is organised as follows.
Section 2 describes the design and architecture of the Context
Processor within the CAMCS middleware. Section 3 describes
our current implementation and features. Section 4 details our
evaluation of the Context Processor with the experimental
mobile cloud services. Section 5 contains the related work.
Finally, we conclude and describe future work in Section 6.

II. CONTEXT PROCESSOR DESIGN AND
ARCHITECTURE

The Context Processor is the central component of the

CAMCS middleware that collects and stores context from the
mobile devices of users, and provides context to context-
consumers (user CPAs) when requested. We considered two
context representations for the middleware, Ontology based
with the OWL API [3], and an Object Oriented approach using
the Java Context Awareness Framework (JCAF) [4]. We
ultimately chose the OWL API approach; this can persistently
store context as Ontologies in XML files, and provides an
Inference Engine for context reasoning. These aspects are
crucial for the disconnected nature of the middleware. JCAF
does not provide an inference engine, or a form of persistent
storage. Fig. 1 shows the Context Processor components.

Fig. 1 The Context Processor within the CAMCS middleware. It
features an interface for the CPA of a user to request and store
context. The Context Manager handles the different context
operations. The Ontology Manager reads and writes context to the
Current and Historical context Ontology files on the cloud storage.

Each CPA has a Current Context, and a Historical Context.
Each of these is stored as an Ontology in two respective XML
files; these files are stored in the cloud file system of the
deployment platform, and are identifiable only by the
randomly generated user ID from the CAMCS registration
process. A CPA cannot access the context data of another
user, as the user ID is cross-checked with the context data
being requested. A future approach we are considering is to
store these files on the user’s personal account with a cloud
storage provider, such as Dropbox. A database approach
would make it difficult to structure context, along with the
relationships denoted by axioms. The Context Manager
handles different context read/write operations and logic. The
Ontology manager parses and writes to the XML files.

 The current context always stores the most recent data for
a given context. The context history will store previous
context for a time-period, such as a week, or a month. We are
currently experimenting with how long context history should
be stored for. A user can also purge some/all collected context
data anytime they choose. When a context update is received,
the old current context is moved into the context history, and
the new context information from the update replaces it as the
new current context. Different types of context can be updated
at different times.

Context updates occur through the CPA of a user. When
the mobile device sends a context update, this is first sent to
the user’s CPA. The CPA then contacts the context processor
to store the context. Whenever the CPA needs context for a
task, it sends a Context Request to the Context Processor,
which in turn will consult the current context. If the required
context is available, this will be returned to the CPA. If the
particular context is not available, or is found to be stale, the
context history is consulted and queried. The results will be
forwarded to the CPA. Architecturally, the Context Processor
exposes a standard interface for both storing and requesting
context, within the Context Processor. The design of the
Context Processor provides an interface for interested Context
Consumers (in the case of the CAMCS middleware, the
consumers are the CPAs). This way, in the case that further
down the line, another approach is taken to model context, the
CPAs will not need to change the way they request and use
context. This approach also assisted in the evaluation of the

OWL API against JCAF, as we were able to switch between
both approaches quickly, although ultimately JCAF quickly
fell short of the requirements.

One of our goals is to provide a public API for the
middleware; this will allow developers to issue requests for
tasks to be completed in the cloud by the CPA of a user. This
API will also allow developers to create cloud services usable
by CPAs. The Context Processor is designed to be extendable,
so that developers can create their own contexts if required.
This also assists us in quickly adding new contexts into the
middleware for new services and experimentation.

Following, the process by which context data is sent to the
Context Processor is described, to give an overview of the
relevant architecture and components. Then, the process of
how context is requested and used by a CPA is described, for
the same purpose.

A. Sending User Context to the Context Processor with
the Context Wrapper

The thin client running on the mobile device can gather

context from various sources, such as the sensors,
accelerometers, the gyroscope, and the clock. This context is
collected at intervals specified by the user in the Settings of
the thin client. Of course, the user can choose to turn off all
context collection in the settings, if they do not wish to use
any context-driven services. No context is collected which can
individually identify the user, or the exact mobile device used
(such as IMEI and phone numbers). Assuming context
collection is enabled, these contexts are wrapped up into a
Context Wrapper. This is a generic descriptive class that takes
each context, and sends it to the CPA of the user. The
communication between the mobile device and the CAMCS
middleware follows a RESTful architecture. Once the
CAMCS middleware has been contacted, the contextual data
in the wrapper is forwarded to the CPA of the user. The
contexts are unwrapped into their various classes. In our
architecture, we have a simple Context class. Each context
extends this class. The architecture also features a
ContextUpdate class. All context update requests are
represented as classes, which extend the ContextUpdate class.
The CPA prepares a ContextUpdate object containing the
context update data from the wrapper. The CPA then contacts
the Context Processor, providing the ContextUpdate object,
through the standard, simple, interface. The Context Processor
determines each type of ContextUpdate (for example, location
context, user activity context). The Context Processor then
writes the new context data into the Ontology in the XML file
- see Fig. 2. With this design, whenever a new context is
required, the developers need only provide their own
extensions to the base classes.

B. Consuming Stored Context from the Context
Processor with the CPA

Whenever the CPA needs to carry out some task with a

cloud service that can benefit from knowing a particular

Fig 2. The Context Processor receives a Location Context Update
(LCU), from the user's mobile device, via the CPA of that user. The
context update is written to the current context Ontology of the user.
The old location context is moved to the historical context.

context, it simply sends a ContextRequest to the Context
Processor interface. There are several subclasses of
ContextRequest, for the different types of Context. When the
Context Processor receives the request, it uses the inference
engine to gather the requested context from the Ontologies
within the XML documents (current and history) as required.
The specific context is returned as an object that extends the
Context class. See Fig. 3 in Section 4 for a graphical example,
related to the use-case example given in that section.

C. Discussion

Pending further discussion in Section 4, it is clear that we

have taken an object-oriented approach, similar to other
works. One can easily see why originally, using JCAF would
have been our first choice, as another object-oriented approach
to context representation, but as described, it did not meet the
requirements for inference and storage. While context is
represented within our Context Processor as extendable Java
objects, the representation, storage, and inference takes place
in the Ontology XML files. The object-oriented abstraction in
our code makes it easier to handle at the programming level.
One may argue that asking developers to extend these classes
and create their own contexts is putting much burden on their
time. Our opinion is that context can only be exploited when
meaningfully described as a compound context; that is a
context made up of several smaller, simpler contexts, already
provided by our middleware (e.g. location, time). This way,
contexts can be personally adapted accurately to the situation.
Our aim is that the Context Processor will hide away all the
Ontology and XML details of the contexts, so the developer
need only work with high-level objects. Once the required
classes have been created which describe the properties of the
context, the developer need only work with the Context
Processor through the interface.

III. IMPLEMENTATION

Following, the implementation of the system is discussed.

The CAMCS middleware is being developed as a Java project,
which can be deployed on cloud servers, such as Amazon
EC2. Our cloud server for experimentation is located within
our University; the server has a 1.7Ghz CPU, and 2GB RAM.

A. Contexts Utilised

Currently, we are trying to use as few contexts as possible

to reduce the amount of data to be sent between the mobile
device and cloud. Ideally, the Context Processor will use the
minimal context to infer new context without having to
request it from the mobile device. For example, if the mobile
device sends the latitude and longitude of the mobile device
location, geocoding can take place at the CAMCS
middleware, rather than at the mobile device. If we know the
users location, the middleware can determine the appropriate
timezone and time of the day. Such data can be used in its
work, such as when deciding to intelligently work at a specific
time without an explicit request from the user.

Our mobile device platform for development is the
Android OS. We currently use the contexts provided by
Google Play Services in this work, namely, location, and user
activity recognition. Using Google Play Services is a choice
that considers our project user experience goal. Google Play
Services can adapt to the current power levels/settings of the
device to determine what means it uses to collect context, and
how accurate it should be (for example, if the battery level is
high, it may use the power-hungry GPS to determine location;
if the battery is low, it may use cellular tower or Wi-Fi
coordination).

B. Ontology Implementation

The basis of the context representation as Ontologies in

our middleware is based on the SPICE mobile ontology [5].
This Ontology has been used in several projects and is already
well developed to model and represent many contexts
associated with mobile devices and users.

We have created our own Ontology, which imports and
extends the SPICE Ontology, specifically its existing classes
and properties. We use a NamedIndividual to represent each
user. A NamedIndividual can be thought of an instantiation of
a class. Specifically, we have an axiom specifying that these
NamedIndividuals are subclasses of the User class in the
SPICE ontology. The NamedIndividuals use properties from
the SPICE Ontology, such as hasLocation, to describe the
location of the user. In our Ontology, we created our own
Place class, which subclasses Location from the SPICE
ontology, to represent a user location. The benefit of taking
this subclass approach is that we can add our own required
properties and data to the Ontology, while using the existing
Ontology entities and axioms. For example, our Place class
contains a latitude/longitude, and timestamp properties.

C. Mobile Thin Client

The thin client running on the mobile device, as previously

described, is used to communicate with the CPA of the user.
In this work, it is responsible for collecting the context
information using Google Play Services, which must be
installed on the mobile device from the Google Play Store.
The thin client currently features two Android services (one

each for location and activity), which communicate to Google
Play Services to collect the context, and send it to the CPA.

Services start up on the mobile device at boot-time if the
user allows, and they register their interest for the context
update with Google Play Services. Google Play Services calls
back the thin client services with the context updates, which
are then placed into the Context Wrapper. Our mobile device
uses the Spring Android framework [6], to send a HTTP(S)
PUT request to the CAMCS middleware. Authentication takes
place, and the context data is given to the CPA of the user.

The user can specify how often the context updates should
be sent to the server. These values are used with Google Play
Services to determine how often the thin client should receive
the context update events.

D. Context Profiles

Our implementation is based on the use of context profiles.

The profiles correspond to the daily activities or status of the
user. Presently, we have a profile for home, work, and for our
evaluation with cloud services in the next section, a tourist and
car profile. The home, work, and car profiles can
automatically activate based on the time, day of the week, and
activity. Depending on which context profile is activated, the
CPA will provide related functionality and services. During
weekdays, in the morning, it can switch into work and car
profiles, and fetch traffic information for the best route to
work. During the weekend, this mode will not activate.

The user manually activates the tourist profile with the thin
client, which informs the CPA to switch on this profile. Based
on the different cloud services that can be used with the CPA,
the developer of a profile can specify tasks and behaviours
that can run while active. Required work that should take
place for an active context profile occurs whenever the CPA
receives a relevant context update.

Using context profiles can bring large advances to the
middleware, and the CPAs of users, in terms of operation.
Depending on the active profile(s), the CPA can operate
differently, or choose different courses of action in executing a
user task. The active profile can determine the choice and
selection of cloud services that the CPA chooses from. For
example, if the work profile is active, the CPA may only select
from enterprise private cloud services that it knows about,
when looking for a service to complete a task. If the home
profile is active on a weekend morning, when the work profile
would normally be active, the CPA would choose not to
remind the user of their daily work schedule, or provide the
business user with the latest stock market information
gathered. If the current context is stale, and new context
cannot be gathered, the context history for that user will be
used instead to determine the course of action for the CPA for
an active context profile.

E. Context Results

The result of a task that utilises context, like any task, is

sent back to the mobile device when requested by the user.

Our thin client and the CAMCS middleware use Google Cloud
Messaging (GCM) for this purpose.

When a task is complete, the CPA sends a message to
GCM, which pushes a notification to the mobile device, to
inform the user that the task is complete. The thin client then
fetches the result of that task from the CPA. The CPA
currently stores the task result as a HTML web page. This
page is generated by the CPA when a task is complete. The
HTML is then written into our MongoDB NoSQL database,
which we use for storing user, CPA, and task data. This is a
somewhat bloated approach. We are considering storing the
HTML result file in personal cloud storage owned by the user,
such as Dropbox.

When the user contacts the CPA with a HTTP(S) GET
request for the result, the HTML result for the task is sent
back, encoded in JSON. The HTML is then displayed to the
user in an Android WebView.

Ideally, we had considered implementing our own Push
service to send the result back to the user. Rather than the user
having to receive the Push notification, and then request the
result, a Push service could simply push the whole result back
to the user, when the mobile device was available. We cannot
implement this with GCM, as it has a message payload limit
of 4KB. Our result pages often contain a lot of data, going
over this limit. Google does not recommend implementing
such a custom Push service, and for each developer to use
GCM, as opening many sockets for this purpose would have a
detrimental impact on battery life, contradicting our positive
user experience aim. Despite the need for the user to explicitly
request to fetch the result of a task from the CPA, we adhered
to Google’s recommendation to conserve battery life.

IV. EVALUATION

We now turn our attention to use-cases for evaluating the

operation of the Context Processor. The aim and novelty of
this work, is how context collected by the CPA, can be used
with mobile cloud services. For this purpose, we have
implemented two experimental mobile cloud services with
related context profiles. The first is a simple tourism-based
location information service, which is similar to other
contextual service work in the literature. This work is based
around the Foursquare API. The second is a traffic
information service that uses the Twitter API to find traffic
information for the user while they are in a car. We also
discuss the benefits and limitations of this work.

A. Tourism Mobile Cloud Service

1) Location Services with Foursquare

Foursquare [7] provides an API for developers to gather

information about locations, using either its Venue or Explore
API. A developer can send a HTTP request to a URL
endpoint, providing attributes, such as either a place name, or
latitude and longitude coordinates. The API will then return

information about this location. It comes in the form of a list,
marked up in JSON, which can be parsed to extract
information about different venues and attractions near that
location. For each venue, it provides a name, description,
location, and contact information, along with reviews provided
by Foursquare users. To evaluate this system, we hooked into
this API to gather information about a location context that
has been stored by the CPA of a user, which can operate either
by sending the coordinates received from the mobile device,
or the geocoded name of a place, given by the coordinates.

2) Tourism Service Implementation

To implement this tourism service, we developed a cloud-

based service that can be used by a CPA. For the purposes of
this work, this service project is simply a dependency of the
CAMCS middleware. As a result, the CPA is aware of the
existence of this service already, and does not need to discover
it.

Whenever the tourist context profile is active at the CPA,
the CPA assumes that the user is on some form of holiday or
trip, and the user is interested in receiving information
regarding places of interest around the user as they move
around. Additionally, when a location update is received by
the CPA from the mobile device, it will check the context
history to determine if the location has been visited recently
(for example, in the past week). If not, the tourist service
contacts Foursquare with the coordinates to gather information
about the area. When the service receives the response, it
parses the JSON and extracts the location information. This
information is then used to generate a HTML page, containing
a list of the venue information returned from Foursquare. The
service then notifies the CPA of the user that the location
information gathering task has completed, and a notification is
sent to the mobile device using GCM. When the user opens
the notification, the HTML web page result is converted to
JSON, and sent back to the user’s mobile device for viewing
in an Android WebView - see Fig. 3, which shows the series
of steps involved. Fig. 4 presents a screenshot from the mobile
device, displaying the location information result sent back by
the CPA.

B. Traffic Mobile Cloud Service

1) Traffic Services with Twitter

Many services such as Google Now provide traffic

information, such as journey time estimates on Android.
Google Maps provides graphical maps depicting traffic build-
ups along various roads. For this work, we tried a different
approach. Several agencies, such as the AA in the UK and
Ireland, provide traffic information through their Twitter [8]
accounts. The Twitter accounts of local radio stations in cities
also often publish Tweets containing traffic updates based on
reports from station listeners in their cars. Also, users who
encounter traffic-hold ups, queues, and accidents, often Tweet
this information themselves while stopped, that a radio station
or agency may not have information on at the specific time.

To demonstrate the Context Processor, the CPA will use
user activity and location context to gather Tweets containing
traffic information for the user. In many countries, it is illegal
for a driver to use their mobile device while driving. For this
purpose, once traffic information has been pushed to the
mobile device from the CPA, it is automatically read out.

2) Traffic Services Implementation

To implement this service, a “car” context profile was

created. Whenever the CPA of the user switches to this profile
for the first time, the CPA will use the traffic service to fetch
the traffic information for the area where the user is located.
The switch into this profile is taken from the activity context
of the user; one of the activities provided by Google Play
Services is “in_vehicle”. When the CPA receives this context
update from the thin client, the current context is checked; if
the previous activity was different, and the previous location
was home (e.g. not a train station for example, suggesting the
vehicle is a train), the CPA then calls the traffic service.

As discussed in a previous work [9], the CPA integrates
with external service providers such as Facebook and
Dropbox. Twitter is one of these providers. The thin client
authenticates with the Twitter account of the user, and the
authentication details, from the OAuth protocol, are sent to the
CPA and stored there. For this project, the CPA will use these
stored authentication details, to query the Twitter search API.
This is simply a query with search keywords for the user
location given from the Context Processor, along with the
“traffic” keyword. The Tweets can be filtered by recent or
popularity, and from the Tweet location also being in the area
of interest. The Tweets are returned to the CPA, which stores
them with HTML markup in our MongoDB NoSQL database.

Google GCM is used once again to send a notification to
the user, to inform him/her that the traffic details are available.
However, a flag is also sent with this notification, indicating
that this result should be read out using the Google Text-To-
Speech engine. Upon receiving the GCM message with this
flag set, the thin client will fetch the traffic information result
from the CPA, without the user having to tap and open the
notification. When the HTML traffic result is returned, the
tags are stripped out of the result, and the Android Text-To-
Speech engine reads out the Tweets - see Fig. 5. Note that use
of Android Text-To-Speech requires a speech engine on the
device. The Samsung Galaxy S3 device used in the project has
such an engine.

Of course, such an approach is open to abuse, as some
Tweets may not be directly related to current traffic
conditions, or there may be un-trustworthy users tweeting
invalid information. Many Tweets returned contained
advertisements, and profanities uttered by frustrated drivers.
The functionality can be extended to allow users to select
trusted sources on Twitter for such information. Tweets also
tended to contain other useful transport information not related
to drivers, such as information about trains, subways, and
buses.

Fig. 3 With the Tourist Profile active, the CPA is running a Location
Information Task (LIT). It sends a Location Context Request (LCR)
to the Context Processor, which reads the users Location Context
(LC) from their Current Context Ontology. The CPA contacts
Foursquare with this information, which responds with Location
Information (LI). This is returned to the device.

C. Discussion

The complexity and potential is in the ability to create

services that the CPA can use with the gathered context. These
services can exist in the mobile cloud, and can work with
existing cloud and web-based services to complete work, or
provide information, to the user, through their CPA. This can
happen as the result of a user requested task, or, as in the case
of the tourist service, the CPA can undertake this work
automatically without user intervention. Developers can build
their own Context Profiles to define events or tasks that should
occur automatically, using gathered contextual data.

The use of web and cloud-based services is difficult, but
there is great potential here when compared with other mobile
cloud approaches. Existing services do not accept visits from
the CPA, nor do they readily support the functionality. We
therefore need to build wrappers around these existing
services, for the purposes of contacting and utilising them.

Fig. 4 Screenshot of Foursquare location results from the CPA,
displayed on the Android thin client.

Fig. 5 Screenshot of traffic information provided by Tweets for Cork
City, Ireland, displayed on the thin client.

This is exactly what we are doing with our example services.
They serve as wrappers for the developer to specify how the
CPA should work with an existing cloud-based service.
Currently, this must be done for any existing services. While it
may seem like a disadvantage, it does allow the developer to
implement custom functionality using the existing services, in
the form of a mash-up.

We feel the time commitment for developers is
worthwhile, as this will deliver a high level of personalisation,
benefitting the user experience aim of the middleware.

V. RELATED WORK

Context awareness is widely studied in relation to context

consumption and dissemination on mobile devices. We are
unaware of any related works that utilise context data for
providing services to the mobile user through a cloud based
user representative, such as the CPA.

Hofer et al [10] developed the Hydrogen approach for
context-awareness on mobile devices; this is a three-tier
framework for capturing, storing, and providing contexts to
consumers, from a mobile device. It does provide the ability to
share context with neighbouring devices in an ad-hoc fashion.
Lowe et al [11] developed the Context Directory, which is a
directory that stores context as key-value pairs. This does use
a server for processing and representing the directory. Raento
et al [12] developed ContextPhone, a context-awareness
framework that allows development of context-aware
applications. For example, it can share the context of a user
with others who have that user in their contacts.

In terms of context representation and modelling, we use
the SPICE mobile ontology in this paper by Villalonga et al
[5]. This is a standardised Ontology, which can be used to
represent elements of mobile context. We use the OWL API
by Horridge and Bechhofer [3], which is a Java API for

working with OWL Ontologies. However, this is not the only
Ontology-based approach to context representation. Korpipää
and Mäntyjärvi [13] have developed a mobile Ontology for
representing context information gathered from the mobile
device sensors. Naturally, Ontologies are not the only way to
represent context data. The survey work by Strang &
Linnhoff-Popien [14] looked at the advantages and
disadvantages of several different approaches to context
representation. This paper mentions the other approach we
evaluated for this work, an Object-Oriented approach, the Java
Context Awareness Framework (JCAF) by Bardram [4]. Other
approaches include a model driven approach, such as the
approach taken by Sheng and Benatallah [15], which uses
UML-based modelling to represent context.

In regards to using context data with web services, Truong
and Dustdar [16] survey existing approaches to how context
can be used with web services. Several context frameworks
were evaluated in terms of their compatibility with web
services under different criteria. An example of one of these
approaches is a middleware system by Gu et al [17]. This
middleware provides context information to SOA
architectures. In regards to mobile cloud and context
awareness, we are aware of a work by Han et al [18], which
uses a client-server proxy approach to adapt the context of the
mobile device, to the fetching of web service based resources,
based on the state of the mobile network connection, in an
implementation called AnyServer. In addition, a work by La
and Kim [19] provides a framework, which detects gaps in
mobile context resulting from the changing state of the user,
so that missing context, can be provided to services, which
require context that may be continuously changing.

There are many sources of context. The idea of using a
context history for inferring missing context comes from the
work by Hong et al [20]. New context can be inferred from
context history, so that if new context is missing, or if we want
to save energy on the mobile device by not collecting new
context, the context engine will not encounter any problems.
In the work by Beach et al [21], they implement a framework
for fusing context data from the mobile, its sensors, and social
networking sources such as Facebook, to develop a full
context profile of the user.

There are existing mobile cloud applications and
middleware systems which make use of context. The tourism
service in this paper is inspired by a work from Abowd et al
[22], called Cyberguide, which uses the location and location
history of a user to replicate functionality and services offered
by a real tour guide. A mobile cloud middleware by Wang and
Deters [23] utilises context for providing web service mash-
ups to users, along with experimental applications they
developed for testing.

VI. CONCLUSIONS

In this paper, we have introduced our development efforts

in building the Context Processor component of our Context
Aware Mobile Cloud Services (CAMCS) middleware. This

component will personalise the use of mobile cloud services
with the context of the user, bridging the gap between them.
As a result, service execution can vary with the user’s
situation. This occurs through the Cloud Personal Assistant
(CPA), the main representation of each user in the
middleware. When the CPA wishes to complete a task for the
user, it can query the Context Processor to get the context of
the user, which may personalise the task execution to his/her
situation. This is aided by the use of Context Profiles, which
can influence how the CPA operates with cloud services based
on an active context profile and situation. It also allows the
CPA to undertake work for the user without his/her
intervention, based on the Context History, which is stored
with the CPA.

We took an Ontology based approach because of its
storage capability, and the ability to use a reasoner for context
inference. This is useful when the mobile device is
disconnected from the cloud and we cannot gather new
context. We presented the architecture of the Context
Processor, along with our experimental implementation.
Mobile context is collected by our Android thin client, based
on Google Play Services, and is sent to the CPA to be stored
by the Context Processor. We provided examples of its use
with two mobile cloud services; a tourism service, which
works with Foursquare to provide tourism context services
based on location, when the tourist context profile is active at
the CPA, and a traffic information service, which uses a car
context profile, activated by the activity context, which pulls
tweets from Twitter containing traffic information for the user
location. This is read out to the user at the thin client using the
Android Text-To-Speech engine. We evaluated the advantages
and disadvantages of our approaches.

In our future work, we will be developing additional
services to be used for evaluation as part of the overall
development goal of the middleware. Future work on service
discovery with the CAMCS middleware will assist this goal.
We will also be looking at adding other sources of context,
such as from social networks, as proposed in the related work.
Ultimately, as with the entire CAMCS system, we hope to
publish it as an API to help other developers so that they can
introduce their own context-based services.

ACKNOWLEDGMENT

The PhD research of Michael J. O’Sullivan is funded by

the Embark Initiative of the Irish Research Council. We would
like to extend our thanks to the reviewers of this paper for
their helpful comments and suggestions for improvement.

REFERENCES

[1] M. J. O’Sullivan, D. Grigoras. User Experience of Mobile Cloud
Applications – Current State and Future Directions, Proceedings of the 12th
International Symposium on Parallel and Distributed Computing, Bucharest,
Romania, 27-30 June, 2013, pp. 85-92.

[2] M. J. O’Sullivan, D. Grigoras. The Cloud Personal Assistant for Providing
Services to Mobile Clients, IEEE MobileCloud, Redwood City, San Francisco
Bay, USA, 2013, pp. 477-484.
[3] M. Horridge, S. Bechhofer. The OWL API: A Java API for OWL
Ontologies, Semantic Web Journal, Special Issue on Semantic Web Tools and
Systems, Vol. 2, No. 1, 2011, pp. 11-21.
[4] J. E. Bardram. The Java Context Awareness Framework (JCAF) - A
Service Infrastructure and Programming Framework for Context-Aware
Applications. Proceedings of the 3rd International Conference on Pervasive
Computing (Pervasive 2005), Lecture Notes in Computer Science, Springer
Verlag, Munich, Germany, May 2005.
[5] C. Villalonga, M. Strohbach, N. Snoeck, M. Sutterer, M. Belaunde, E.
Kovacs et al. Mobile Ontology: Towards a Standardized Semantic Model for
the Mobile Domain, Service-Oriented Computing-ICSOC 2007 Workshops,
Springer Berlin Heidelberg, pp. 248-257.
[6] Spring Android Framework. http:// http://projects.spring.io/spring-android
[7] Foursquare API. https://developer.foursquare.com/
[8] Twitter Developers. https://dev.twitter.com/
[9] M. J. O’Sullivan, D. Grigoras. Application Models Facilitated by the CPA.
Proceedings of the 6th International Conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications (MOBILWARE),
Bologna, Italy, 11-12 November, 2013
[10] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. Altmann, W.
Retschitzegger. Context-awareness on mobile devices - the hydrogen
approach, Proceedings of the 36th Annual Hawaii International Conference on
System Sciences, Hawaii, USA, 6-9 January, 2003.
[11] R. Lowe, P. Mandl, M. Weber. Context Directory: A context-aware
service for mobile context-aware computing applications by the example of
Google Android, Proceedings of the IEEE Pervasive Computing and
Communications Workshops (PERCOM Workshops), Lugano, Switzerland,
19-23 March, 2012, pp. 76-81.
[12] M. Raento, A. Oulasvirta, R. Petit, H. Toivonen. ContextPhone: a
prototyping platform for context-aware mobile applications, IEEE Pervasive
Computing, 2005, Vol. 4, No. 2, pp. 51-59.
[13] P. Korpipää, J. Mäntyjärvi. An Ontology for Mobile Device Sensor-
Based Context Awareness, Modeling and Using Context: Proceedings of 4th
Int’l and Interdisciplinary Conf. (Context 2003), LNCS 2680, Springer-
Verlag, 2003, pp. 451–458.
[14] T. Strang, C. Linnhoff-Popien. A Context Modeling Survey, Proceedings
of First International Workshop on Advanced Context Modelling, Reasoning
And Management at UbiComp 2004, Nottingham, England, September 7,
2004, 2004-09-07.
[15] Q. Z. Sheng, B. Benatallah. ContextUML: a UML-based modeling
language for model-driven development of context-aware Web services,
International Conference on Mobile Business (ICMB), 11-13 July, 2005, pp.
206-212.
[16] H.-L. Truong, S. Dustdar. A survey on context-aware web service
systems, International Journal of Web Information Systems, vol. 5 no. 1,
2005, pp.5 – 31.
[17] T. Gu, H. K. Pung, D. Q. Zhang. A service‐oriented middleware for
building context‐aware services, Journal of Network and Computer
Applications, Vol. 28, No. 1, 2005, pp. 1-18.
[18] B. Han, W. Jia, J. Shen, M-C. Yuen. Context-Awareness in Mobile Web
Services, Parallel and Distributed Processing and Applications, Springer-
Verlag, Heidelberg, 2005, pp. 519-28.
[19] H. J. La, S. D. Kim. A Conceptual Framework for Provisioning Context-
aware Mobile Cloud Services, IEEE 3rd International Conference on Cloud
Computing (CLOUD), Miami, Florida, USA, 5-10 July, 2010, pp. 466-473.
[20] J. Hong, E.-H. Suh, J. Kim, S. Kim, Context-aware system for proactive
personalized service based on context history, Expert Systems with
Applications, vol. 36, no. 4, 2009, pp. 7448-7457.
[21] A. Beach, M. Gartrell, X. Xing, R. Han, Q. Lv, S. Mishra, K. Seada.
Fusing mobile, sensor, and social data to fully enable context-aware
computing, Proceedings of the Eleventh Workshop on Mobile Computing
Systems & Applications (HotMobile), Annapolis, Maryland, USA, 22-23
February, 2010, pp. 60-65.
[22] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, M. Pinkerton.
Cyberguide: A mobile context-aware tour guide, Wireless Networks, vol. 3,
no. 5, October, 1997, pp 421-433.
[23] Q. Wang, R. Deters. SOA's Last Mile-Connecting Smartphones to the
Service Cloud. Proceedings of the IEEE International Conference on Cloud
Computing (CLOUD), Bangalore, India, 21-25 September, 2009, pp. 80-87.

	I. INTRODUCTION
	II. CONTEXT PROCESSOR DESIGN AND ARCHITECTURE
	A. Sending User Context to the Context Processor with the Context Wrapper
	B. Consuming Stored Context from the Context Processor with the CPA
	C. Discussion

	III. IMPLEMENTATION
	A. Contexts Utilised
	B. Ontology Implementation
	C. Mobile Thin Client
	D. Context Profiles
	E. Context Results

	IV. EVALUATION
	A. Tourism Mobile Cloud Service
	1) Location Services with Foursquare
	2) Tourism Service Implementation

	B. Traffic Mobile Cloud Service
	1) Traffic Services with Twitter
	2) Traffic Services Implementation

	C. Discussion

	V. RELATED WORK
	VI. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

