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Interval-valued Soft Constraint Problems
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E-mail:{mgelain,mpini,frossi,kvenable}@math.unipd.it

2 Cork Constraint Computation Centre, University College Cork, Ireland, Email:
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Abstract. Constraints and quantitative preferences, or costs, are very useful for
modelling many real-life problems. However, in many settings, it is difficult to
specify precise preference values, and it is much more reasonable to allow for
preference intervals. We define several notions of optimal solutions for such prob-
lems, providing algorithms to find optimal solutions and also to test whether a
solution is optimal. Most of the time these algorithms just require the solution
of soft constraint problems, which suggests that it may be possible to handle this
form of uncertainty in soft constraints without significantly increasing the com-
putational effort needed to reason with such problems. Thisis supported also by
experimental results. We also identify classes of problemswhere the same results
hold if users are allowed to use multiple disjoint intervalsrather than a single one.

1 Introduction

Constraints [11] are useful to model real-life problems when it is clear what should be
accepted and what should be forbidden. Soft constraints [9]extend the constraint notion
by allowing several levels of acceptance. This allows to express preferences and/or costs
rather than just strict requirements.

In soft constraints, each instantiation of the variables ofa constraint must be associ-
ated to a precise preference or cost value. Sometimes it is not possible for a user to know
exactly all these values. For example, a user may have a vagueidea of the preference
value, or may not be willing to reveal his preference, for example for privacy reasons.

In this paper we consider these forms of imprecision, and we handle them by ex-
tending soft constraints to allow users to state an intervalof preference values for each
instantiation of the variables of a constraint. This interval can contain a single element
(in this case we have usual soft constraints), or the whole range of preference values
(when there is complete ignorance about the preference value), or it may contain more
than one element but a strict subset of the set of preference values. We call such prob-
lemsinterval-valuedsoft CSPs (or also IVSCSPs).

In an elicitation procedure there will typically be some degree of imprecision, so
attributing an interval rather than a precise preference degree can be a more reliable
model of the information elicited. Also, linguistic descriptions of degrees of preference
(such as ”quite high” or ”low” or ”undesirable”) may be more naturally mapped to pref-
erence intervals, especially if the preferences are being elicited from different experts,
as they may mean somewhat different things by these terms.



Two examples of real world application domains where preference intervals can
be useful or necessary are energy trading and network trafficanalysis [15], where the
data information is usually incomplete or erroneous. In energy trading, costs may be
imprecise because they may evolve due to market changes; in network traffic analysis,
the overwhelming amount of information and measurement difficulties force the use
of partial or imprecise information. Many other application domains that are usually
modelled via hard or soft constraints could benefit by increased expressed power of
preference intervals. To give a concrete example in this paper we consider the meeting
scheduling problem, that is a typical benchmark for CSPs, and we allow the specifica-
tion of preference intervals. This benchmark will be used both to clarify notions related
to IVCSPs and to run experimental tests.

Given an IVSCSP, we consider several notions of optimal solutions. We first start
with general notions of optimality, which apply whenever wehave several scenarios to
consider. For example, as done in [7], we considernecessarily optimalsolutions, which
are optimal in all scenarios, orpossibly optimalsolutions, which are optimal in at least
one scenario. We then pass tointerval-based optimality notions, that define optimality
in terms of the upper and lower bounds of the intervals associated to the solution by the
constraints.

Since IVSCSPs generalize soft constraint problems, the problem of finding an opti-
mal solution in an IVSCP (according to any of the considered optimality notions) is at
least as difficult as finding an optimal solution in a soft constraint problem ans thus it is
NP-hard.

We provide algorithms to find solutions according to all the notions defined, and
also to test whether a given solution is optimal. In most of the cases, finding or test-
ing an optimal solution amounts to solving a soft constraintproblem. Thus, even if our
formalism significantly extends soft constraints, and gives users much more power in
modelling their knowledge of the real world, in the end the work needed to find an op-
timal solution (or to test if it is optimal) is not more than that needed to find an optimal
solution in a soft constraint problem. This claim is supported by the experimental re-
sults we present, obtained by extensive tests over instances of the meeting scheduling
problem.

We also show that for some classes of IVSCSPs the optimality notions considered
in this paper would not produce different results if users were allowed to usemultiple
disjoint intervalsrather than a single one. This means that a level of precisiongreater
than a single interval does not add any useful information when looking for an optimal
solution.

Previous approaches to uncertainty in soft constraint problems assumed either a
complete knowledge of the preference value, or a complete ignorance. In other words,
a preference value in a domain or a constraint was either present or not [4, 6, 8, 14].
Then, the solver was trying to find optimal solutions with theinformation given by the
user or via some form of elicitation of additional preference values. Here instead we
consider a more general setting where the user may specify preference intervals. Also,
we assume that the user has given us all the information he hasabout the problem, so we
do not resort to preference elicitation (or the elicitationphase is over with the user being
unable or unwilling to give us more precise information). Moreover, previous work
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looks only for necessarily optimal solutions, and uses preference elicitation, if needed,
to find them. Here instead we consider many other notions of optimal solutions, with
the aim of returning interesting solutions without resorting to preference elicitation.

Another work that analyzes the impact of the uncertainty in soft constraint problems
is shown in [10]. However, while we assume to have only preference intervals, in [10]
it is assumed that all the preferences are given and some of them are tagged as possibly
unstable and are provided with a range, of possible variations, around their value.

Other papers consider preference intervals, such as the work in [3]. However, these
lines of work focus on specific preference aggregation mechanisms (such as the Cho-
quet integral) and of modelling issues without addressing the algorithmic questions
related to finding optimal solutions according to differentrisk attitudes. We are instead
interested in providing efficient algorithms to find optimalsolutions according to differ-
ent risk attitudes (called pessimistic and optimistic in the paper), besides the modelling
concerns.

The paper is structured as follows. In Section 2 we recall themain definitions for
soft constraints and in Section 3 we introduce interval-valued soft constraint problems.
In Section 4 we give general notions of optimal solutions, which apply whenever we
have several scenarios to consider, while in Section 5 we introduce interval-based op-
timality notions. In Sections 6 and 7 we present algorithms to find solutions according
to optimality notions defined. Then, in Section 8 we introduce notions of dominance
between solutions, we show how they are related to the notions of optimality, and we
describe how to test dominance. In Section 9 we analyze the impact of having multiple
preference intervals. In Section 10 we present an experimental study of the algorithms
to find optimal solutions. Finally, in Section 11 we give somefinal considerations and
we propose some hints for future work.

2 Background: soft constraints

In the literature there are many formalizations of the concept of soft constraints [5, 12].
Here we refer to the one described in [1, 5], which however canbe shown to generalize
and express many others [2].

A soft constraint [1] is just a classical constraint where each instantiation of its vari-
ables has an associated value from a (totally or partially ordered) set, which is called
a c-semiring. More precisely, a c-semiring is a tuple〈A, +,×,0,1〉 such that:A is
a set, called the carrier of the c-semiring, and0,1 ∈ A; + is commutative, associa-
tive, idempotent,0 is its unit element, and1 is its absorbing element;× is associative,
commutative, distributes over+, 1 is its unit element and0 is its absorbing element.
Consider the relation≤S over A such thata ≤S b iff a+ b = b.≤S is a partial order;+
and× are monotone on≤S; 0 is its minimum and1 its maximum;〈A,≤S〉 is a lattice
and, for alla, b ∈ A, a + b = lub(a, b). Moreover, if× is idempotent, then〈A,≤S〉
is a distributive lattice and× is its glb. The relation≤S gives us a way to compare
preference values: whena ≤S b, we say thatb is better than a. Element0 is the worst
value and1 is the best one.

A c-semiring〈A, +,×,0,1〉 is said to beidempotentwhen the combination oper-
ator× is idempotent, while it is said to bestrictly monotonicwhen the combination

3



operator× is strictly monotonic. If a c-semiring is totally ordered, i.e., if ≤S is a to-
tal order, then the+ operation is just max with respect to≤S. If the c-semiring is also
idempotent, then× is equal to min, and the c-semiring is of the kind used for fuzzy con-
straints (see below). Notice that there are also c-semirings that are neither idempotent
nor strictly monotonic.

Given a c-semiringS = 〈A, +,×,0,1〉, a finite setD (the domain of the variables),
and an ordered set of variablesV , a soft constraint is a pair〈def, con〉 wherecon ⊆ V
anddef : D|con| → A. Therefore, a soft constraint specifies a set of variables (the
ones incon), and assigns to each tuple of values ofD of these variables an element of
the c-semiring setA, which will be seen as itspreference. A soft constraint satisfaction
problem (SCSP) is just a set of soft constraints over a set of variables.

A classical CSP is just an SCSP where the chosen c-semiring isSCSP = 〈{false,
true},∨,∧, false, true〉. Fuzzy CSPs are instead modeled by choosing the idempotent
c-semiringSFCSP = 〈[0, 1], max, min, 0, 1〉: we want to maximize the minimum
preference. For weighted CSPs, the strictly monotonic c-semiring is SWCSP = 〈ℜ+,
min, +, +∞, 0〉: preferences are interpreted as costs from0 to +∞, and we want to
minimize the sum of costs.

Given an assignments to all the variables of an SCSPQ, that is, a solution ofQ,
its preference, writtenpref(Q, s), is obtained by combining the preferences associated
by each constraint to the subtuples ofs referring to the variables of the constraint:
pref(Q, s) = Π〈idef,con〉∈C def(s↓con), whereΠ refers to the× operation of the c-
semiring ands↓con is the projection of tuples on the variables incon. For example, in
fuzzy CSPs, the preference of a complete assignment is the minimum preference given
by the constraints. In weighted constraints, it is instead the sum of the costs given by
the constraints. An optimal solution of an SCSPQ is then a complete assignments
such that there is no other complete assignments′′ with pref(Q, s) <S pref(Q, s′′).
We denote withOpt(Q) the set of all optimal solutions of an SCSPQ and withSol(Q)
the set of all the solutions of an SCSPQ.

Given an SCSPQ defined over an idempotent c-semiring, and a preferenceα, we
will denote ascutα(Q) (resp.,scutα(Q)) the CSP obtained fromQ allowing only tuples
with preference greater than or equal toα (resp., strictly greater thanα). It is known
that the set of solutions ofQ with preference greater than or equal toα(resp., strictly
greater thanα) coincides with the set of solutions ofcutα(Q) (resp.,scutα(Q)).

3 Interval-valued soft constraints

Soft constraint problems require users to specify a preference value for each tuple in
each constraint. Sometimes this is not reasonable, becausea user may have a vague
idea of what preferences to associate to some tuples. In [6] afirst generalization allowed
users to specify either a fixed preference (as in usual soft constraints) or the complete
[0,1] interval. Thus an assumption of complete ignorance was madewhen the user was
not able to specify a fixed preference. Here we generalize further by allowing users to
state any interval over the preference set.

Definition 1 (interval-valued soft constraint). Given a set of variablesV with finite
domainD and a totally-orderedc-semiringS = 〈A, +,×,0,1〉, an interval-valued
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soft constraint is a pair〈int, con〉 wherecon ⊆ V is the scope of the constraint and
int: D|con| −→ A×A specifies an interval overA by giving its lower and upper bound.
If int(x) = (a, b), it must bea ≤S b.

In the following we will denote withl(int(x)) (resp.,u(int(x))) the first (resp.,
second) component ofint(x), representing the lower and the upper bound of the pref-
erence interval.

Definition 2 (IVSCSP). An interval-valued soft constraint problem (IVSCSP) is a 4-
tuple 〈V, D, C, S〉, whereC is a set of interval-valued soft constraints overS defined
on the variables inV with domainD.

Figure 1 shows an IVSCSPP defined over the fuzzy c-semiring〈[0, 1], max, min,
0, 1〉, that contains three variablesX1, X2, andX3, with domain{a, b}, and five con-
straints: a unary constraint on each variable, and two binary constraints on(x1, x2) and
(x2, x3).

Fig. 1.An IVSCSP over fuzzy semiring.

In an IVSCSP, a complete assignment of values to all the variables can be associated
to an interval as well. The lower bound (resp., the upper bound) of such an interval is
obtained by combining all the lower bounds (resp., the upperbounds) of the preference
intervals of the appropriate subtuples of this assignment in the various constraints.

Definition 3 (preference interval). Given an IVSCSPP = 〈V, D, C, S〉 and an as-
signments to all its variables overD, the preference interval ofs in P is [L(s), U(s)],
whereL(s) = Π<int,con>∈Cl(int( s↓con)) andU(s) = Π<int,con>∈Cu(int(s↓con)),
andΠ is the combination operator of the c-semiringS.

Figure 2 shows all the complete assignments of the IVSCSP in Figure 1, together
with their preference interval and the computation detailsfor s1.

Fig. 2. Solutions of the IVSCSP shown in Figure 1.
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Once we have an IVSCSP, it is useful to consider specific scenarios arising from
choosing a preference value from each interval.

Definition 4 (scenario).Given an IVSCSPP , a scenario ofP is an SCSPP ′ ob-
tained fromP as follows: given any constraintc = 〈int, con〉 of P , we insert inP ′

the constraintc′ = 〈def, con〉, wheredef(t) ∈ [l(int(t)), u(int(t))] for every tuple
t ∈ D|con|.

We will denote withSc(P ) the set of all possible scenarios ofP .

Definition 5 (best and worst scenario).Given an IVSCSPP , the best scenario (bs(P ))
(resp., the worst scenario (ws(P ))) of P is the scenario obtained by replacing every
interval with its upper (resp., lower) bound.

We will denote withlopt anduopt the optimal preferences of the worst and best scenario.
The preference interval of a complete assignment is a good way of representing the

quality of the solution in all scenarios, as stated by the following theorem.

Theorem 1. Consider an IVSCSPP over a c-semiringS and a complete assignment
s of its variables. Then, for allQ ∈ Sc(P ), pref(Q, s) ∈ [L(s), U(s)]. Also, forp ∈
{L(s), U(s)}, there exists aQ ∈ Sc(P ) such thatp = pref(Q, s). If the c-semiring
S is idempotent, then for allp ∈ [L(s), U(s)], there exists aQ ∈ Sc(P ) such that
p = pref(Q, s).

Proof: pref(Q, s) ∈ [L(s), U(s)] follows by monotonicity. Ifp = L(s) (resp.,p =
U(s)), it is possible to build a scenario wherep = pref(Q, s), by fixing all the tuples
of s to their lower bound (resp., to their upper bound). If the c-semiring is idempotent,
since we are considering totally ordered c-semirings, the operator× is minimum (with
respect to the total order), so there exists some interval-valued constraint〈int, con〉 in
P such thatl(int(s↓con)) = L(s). We must also haveu(int(s↓con)) ≥ U(s). Let p be
an element of[L(s), U(s)]. Define a scenarioQ by replacing this interval-valued con-
straint with any soft constraint which assigns the tuples↓con the preference valuep, and
replacing any of the other elements ofP with soft constraints which assign preference
valueU(s) to the appropriate projection ofs. We then havep = pref(Q, s). 2

This means that, in general, the upper and lower bounds of thesolution preference
interval always model preferences of solutions in some scenarios. In the idempotent
case we have more: the whole interval, and not just the bounds, represents all and only
the preferences coming from the scenarios. Intuitively, if× is idempotent (let us con-
sider min for simplicity): given an assignments, for every elementx in [L(s), U(s)],
we can construct a scenario wheres has preferencex by fixing preferencex on at least
one tuple (that hasx in its interval) and by fixing all other preferences of tuplesin s to
their upper bound.

4 Necessary and possible optimality

We will now consider general notions of optimality, that areapplicable to any setting
where the lack of precision gives rise to several possible scenarios. First we define op-
timal solutions that guarantee optimality in some or all scenarios (i.e., the possibly and
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the necessarily optimal solutions [6]), and then we will define solutions that guarantee
a certain level of preference in some or all scenarios.

Definition 6 (necessarily optimal).Given an IVSCSPP = 〈V, D, C, S〉 and an as-
signments to the variables inV , s is necessarily optimal iff it is optimal in all scenar-
ios.

Given an IVSCSPP , the set of its necessarily optimal solutions will be denoted
by NO(P ). Necessarily optimal solutions are very attractive because they are very
robust: they are optimal independently of the uncertainty of the problem. Unfortunately,
NO(P ) may be empty, as in the IVSCSPP of Figure 1.

Definition 7 (possibly optimal).Given an IVSCSPP = 〈V, D, C, S〉 and an assign-
ments to the variables inV , s is possibly optimal iff it is optimal in some scenario.

Given an IVSCSPP , the set of possibly optimal solutions ofP will be denoted by
PO(P ). In the IVSCSPP of Figure 1 we havePO(P ) = {s1, s2, s3, s4, s6}. PO(P )
is never empty. However, the possibly optimal solutions areless attractive than the nec-
essarily optimal ones, in fact they guarantee optimality only for a specific completion
of the uncertainty.

We assume now to want to guarantee a certain level of preference in some or all the
scenarios.

Definition 8 (necessarily of at least preferenceα). Given an IVSCSPP = 〈V, D, C, S〉
and an assignments to the variables inV , s is necessarily of at least preferenceα iff,
for all scenarios, its preference is at leastα.

The set of all solutions of an IVSCSPP with this feature will be denoted by
Nec(P, α). In our running example, if we considerα = 0.5, we haveNec(P, 0.5) =
{s1, s2, s4, s6}. If α is a satisfactory preference level, elements inNec(P, α) are ideal,
because they guarantee such a preference level independently of the uncertainty of the
problem.

Definition 9 (possibly of at least preferenceα). Given an IVSCSPP = 〈V, D, C, S〉
and an assignments to the variables inV , s is possibly of at least preferenceα iff, for
some scenario, its preference is at leastα.

The set of all solutions of an IVSCSPP with this feature will be denoted by
Pos(P, α). In the IVSCSPP of Figure 1, if we takeα = 0.3, we havePos(P, 0.3) =
{s1, s2, s3, s4, s6, s7}.

5 Interval-based optimality notions

In an IVSCSP, uncertainty is specified via the preference intervals. Depending on how
one decides to deal with this form of uncertainty, differentnotions of optimality can be
given. Here we will consider interval-based optimality notions, and we will relate them
to the necessarily and possibly optimal solutions.
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5.1 Interval-dominant assignments

In the attempt to characterize the necessarily optimal solutions, we can consider the
following notion.

Definition 10 (interval-dominant). Given an IVSCSPP = 〈V, D, C, S〉 and an as-
signments to the variables inV , s is interval-dominant iff, for every other complete
assignments′, L(s) ≥ U(s′).

Interval-dominant assignments are better than or equal to all others in all scenarios,
and thus are very robust w.r.t. uncertainty. We denote withID(P ) the set of the interval
dominant assignments ofP . The IVSCSPP of Figure 1 hasID(P ) = ∅.

Proposition 1. If ID(P ) 6= ∅, eitherID(P ) contains a single solution, orall the so-
lutions in ID(P ) have their lower bound equal to their upper bound, and all these
bounds are equal to the same value.Given an IVSCSPP , ID(P ) may be empty.

Proof: ID(P ) may be empty as in the IVSCSPP of Figure 1.
We now show, by contradiction, that ifID(P ) 6= ∅, eitherID(P ) contains a single

solution, or several solutions all with the lower bound equal to the upper bound, and all
equal to the same value. IfID(P ) contains two solutions, says1 ands2, with different
values of lower and upper bounds, thenL(s1) < U(s1) andL(s2) < U(s2). Sinces1 ∈
ID(P ), then for any other solutions′, L(s1) ≥ U(s′) and thus alsoL(s1) ≥ U(s2).
Similarly, sinces2 ∈ ID(P ), then for any other solutions′, L(s2) ≥ U(s′) and thus
L(s2) ≥ U(s1). Therefore,L(s1) ≥ U(s2) > L(s2) ≥ U(s1) and soL(s1) > U(s1),
that is a contradiction. 2

It is possible to show that the interval-dominant optimality notion is stronger than
the necessary optimality notion. More precisely:

Proposition 2. Given an IVSCSPP , we have thatID(P ) ⊆ NO(P ). Also, ifID(P ) 6=
∅, thenID(P ) = NO(P ).

Proof: We first show thatID(P ) ⊆ NO(P ). If a solution is inID(P ), its preference
is always greater than or equal to the upper bounds of all the other solutions, hence it is
optimal in all the scenarios.

We now prove that, ifID(P ) 6= ∅, thenID(P ) = NO(P ). We have already shown
thatID(P ) ⊆ NO(P ). It remains to prove thatNO(P ) ⊆ ID(P ). Let us denote with
s∗ a solution ofID(P ). If a solutions of P is not inID(P ) andID(P ) 6= ∅, thens is
not inNO(P ). In fact, if L(s∗) 6= U(s∗), thenU(s∗) > L(s∗) ≥ U(s), and sos is not
optimal in the best scenario. IfL(s∗) = U(s∗), sinces 6∈ ID(P ), L(s) < L(s∗) and
sos is not optimal in the worst scenario. 2

5.2 Weakly-interval-dominant assignments

A more relaxed interval-based optimality notion is the following one.
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Definition 11 (weakly-interval-dominant). Given an IVSCSPP = 〈V, D, C, S〉 and
an assignments to the variables inV , s is weakly-interval-dominant iff, for every other
complete assignments′, L(s) ≥ L(s′) andU(s) ≥ U(s′).

Weakly-interval-dominant assignments are better than or equal to all others in both
the worst and the best scenario. We denote withWID(P ) the set of the weakly interval
dominant assignments ofP . The IVSCSPP of Figure 1 hasWID(P ) = {s1}.

Proposition 3. Given an IVSCSPP , WID(P ) may be empty. Moreover,ID(P ) ⊆
WID(P ).

Proof: WID(P ) may be empty.For example, one can construct an IVSCSPover
fuzzy c-semiring with only three solutions, says1, s2, ands3, with the following lower
and upper bounds:L(s1) = 0.2, U(s1) = 0.6, L(s2) = 0.3, U(s2) = 0.8, L(s3) = 0.4,
andU(s3) = 0.7.

We now show thatID(P ) ⊆ WID(P ). If s ∈ ID(P ), thenL(s) ≥ U(s′) for
every others′. Hence, sinceU(s) ≥ L(s) andU(s′) ≥ L(s′) for every others′, we
haveU(s) ≥ L(s) ≥ U(s′) ≥ L(s′) for every others′, that is,U(s) ≥ U(s′) and
L(s) ≥ L(s′) for every others′, hences ∈ WID(P ). 2

The weakly-interval-dominant optimality notion is weakerthan the necessary opti-
mality notion. In fact,NO(P ) ⊆ WID(P ) and for some IVSCSPP (for example, the
IVSCSP of Figure 1) this inclusion is strict. More precisely:

Proposition 4. Given an IVSCSPP , we have thatID(P ) ⊆ NO(P ) ⊆ WID(P ).

Proof: By Proposition 2, we know thatID(P ) ⊆ NO(P ).
We now show thatNO(P ) ⊆ WID(P ). If s ∈ NO(P ), thens must be optimal in

every scenario and so also in the best and in the worst scenario. Given thats is optimal
in the worst scenario, thenL(s) ≥ L(s′) for every other solutions′. Moreover, ass is
optimal in the best scenario, thenU(s) ≥ U(s′) for every other solutions′. Therefore,
L(s) ≥ L(s′) andU(s) ≥ U(s′) for every other solutions′. This allows us to conclude
thats ∈ WID(P ). 2

SinceID(P ) ⊆ NO(P ) ⊆ WID(P ), ID(P ) andWID(P ) can be seen as lower
and upper approximations ofNO(P ).

5.3 Lower and upper optimal assignments

Until now we have considered how to characterize, via interval-based optimality no-
tions, the necessarily optimal solutions. In particular, we have found lower and upper
approximations of these optimal solutions. We now move to consider possibly optimal
solutions via new interval-based optimality notions.

Definition 12 (lower and upper optimal). Given an IVSCSPP = 〈V, D, C, S〉 and
an assignments to the variables inV , s is lower-optimal (resp., upper-optimal) iff, for
every other complete assignments′, L(s) ≥ L(s′) (resp.,U(s) ≥ U(s′)).
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A lower-optimal (resp., an upper-optimal) assignment is better than or equal to all
other complete assignments in the worst scenario (resp., inthe best scenario). Lower-
optimal (resp., upper-optimal) assignments are useful in pessimistic (resp., optimistic)
approaches to uncertainty, because they outperform the other assignments in the worst
(resp., in the best) case. We denote withLO(P ) (resp.,UO(P )) the set of the lower
(resp., upper) optimal assignments ofP . The IVSCSPP of Figure 1 hasLO(P ) =
{s1, s4} andUO(P ) = {s1, s2}.

Lower and upper optimal solutions are never empty. Moreover, they are related to
weakly-interval-dominant and interval-dominant solutions as follows.

Proposition 5. Given an IVSCSPP , and the optimal preferencelopt (resp.,uopt) of
ws(P ) (resp.,bs(P )),

– LO(P ) andUO(P ) are never empty;
– UO(P ) ∩ LO(P ) = WID(P );
– if lopt = uopt, thenID(P ) = LO(P );
– if lopt < uopt, and|UO(P )| ≥ 2, thenID(P ) = ∅;
– if |UO(P )| = 1, let us calls this single solution. IfL(s) 6= lopt thenID(P ) = ∅.

Proof: LO(P ) is never empty because it is always possible to find the solutions with
the lower bound greater than or equal to all the other solutions. A similar argument
shows thatUO(P ) is never empty.

We now show thatUO(P ) ∩ LO(P ) = WID(P ). We first show thatUO(P ) ∩
LO(P ) ⊆ WID(P ). If s ∈ UO(P ) ∩ LO(P ), then, by definition ofUO(P ), U(s) ≥
U(s′) for every others′ and, by definition ofLO(P ), L(s) ≥ L(s′) for every other
s′, therefores ∈ WID(P ). We now show thatWID(P ) ⊆ UO(P ) ∩ LO(P ). If
s ∈ WID(P ), by definition ofWID(P ), U(s) ≥ U(s′) andL(s) ≥ L(s′) for every
others′, hence boths ∈ LO(P ) ands ∈ UO(P ), therefores ∈ LO(P ) ∩ UO(P ).

To show that, iflopt = uopt, thenID(P ) = LO(P ), it is sufficient to show that
lopt = uopt impliesLO(P ) ⊆ ID(P ), asID(P ) ⊆ LO(P ) follows from Theorem 2.
In fact, if s ∈ ID(P ), thens ∈ Opt(ws(P )) and thus, by Theorem 2,s ∈ LO(P ).
If s ∈ LO(P ) thenL(s) = lopt. Moreover, sincelopt = uopt, L(s) = uopt, and so
L(s) ≥ U(s′), for every other solutions′, that iss ∈ ID(P ).

We now prove, by contradiction, that, iflopt < uopt and |UO(P )| ≥ 2, then
ID(P ) = ∅. SupposeID(P ) 6= ∅. Let us denote withs one of the solutions of
ID(P ). Then, by definition ofID(P ), L(s) ≥ U(s′), for every other solutions′. Since
|UO(P )| ≥ 2, we are sure that there is a solutions′′ 6= s such thatU(s′′) = uopt.
Hence,L(s) ≥ U(s′′) = uopt > lopt, and soL(s) > lopt, that is a contradiction, be-
cause, by the definition oflopt, lopt is greater than or equal to the lower bound of every
solution.

Assume that|UO(P )| = 1 and let us calls this single solution. We now show, by
contradiction, that, ifL(s) 6= lopt, thenID(P ) = ∅. Let us denote withs1 one of the
solutions withL(s1) = lopt. Suppose thatID(P ) 6= ∅, and lets′ be an element of
ID(P ). If s′ 6= s thenU(s′) ≥ L(s′) ≥ U(s), which implies thats′ ∈ UO(P ), a
contradiction. Hences′ = s. But thens′ 6= s1, soL(s′) ≥ U(s1) ≥ L(s1) = lopt,
which contradictsL(s) 6= lopt. 2
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As every lower (resp., upper) optimal solution is optimal inthe worst (resp. best)
scenario, thenLO(P ) ⊆ PO(P ), UO(P ) ⊆ PO(P ), and these inclusions may be
strict, because there may be solutions that are optimal onlyin scenarios that are different
from the best and the worst scenario.

Proposition 6. Given an IVSCSPP , we have thatLO(P ) ∪ UO(P ) ⊆ PO(P ).

Proof: Let s be a complete assignment to the variables ofP .
LO(P ) ⊆ PO(P ). In fact, if s ∈ LO(P ), thens is optimal in the worst scenario

and sos ∈ PO(P ).
UO(P ) ⊆ PO(P ). In fact, if s ∈ UO(P ), thens is optimal in the best scenario

and sos ∈ PO(P ).
Therefore,LO(P ) ∪ UO(P ) ⊆ PO(P ). 2

Therefore, the lower and upper optimality notions are stronger than the possible
optimality notion.

The lower and upper optimal assignments are also related to the necessarily and
possibly of at least preferenceα assignments as follows.

Proposition 7. Given an IVSCSPP and the optimal preferencelopt of ws(P ),

– Nec(P, α) 6= ∅ iff α ≤ lopt;
– if α ≤ lopt, LO(P ) ⊆ Nec(P, α);
– let α∗ be the maximumα such that there exists a solution inNec(P, α), thenα∗ =

lopt andNec(P, α∗) = LO(P ), and soNec(P, α∗) ⊆ PO(P ).

Proof: Let us show the first item of the theorem. To show thatNec(P, α) 6= ∅ iff
α ≤ lopt, we first prove that, ifNec(P, α) 6= ∅, thenα ≤ lopt. If Nec(P, α) 6= ∅, then
there is a solution, says, such thatpref(Qi, s) ≥ α for every scenarioQi of P and so
also for the worst scenario. Hence,lopt ≥ pref(ws(P ), s) ≥ α. Therefore,lopt ≥ α.
We now show that, ifα ≤ lopt, thenNec(P, α) 6= ∅. If Nec(P, α) = ∅, then for every
solutions we have thatpref(Qi, s) < α for some scenarioQi. This holds also forany
solution, says∗, such thatpref(ws(P ), s∗) = lopt, and solopt = pref(ws(P ), s∗) < α.

We now show the second item of the theorem: givenα ≤ lopt, LO(P ) ⊆ Nec(P, α).
If LO(P ) 6⊆ Nec(P, α), then there is a solution, says, such thats ∈ LO(P ) \
Nec(P, α). Sinces ∈ LO(P ), pref(ws(P ), s) = lopt. Sinces 6∈ Nec(P, α), then
pref(Qi, s) < α for some scenarioQi, and so, asws(P ) is the worst scenario,lopt =
pref(ws(P ), s) ≤ pref(Qi, s) < α. Therefore,lopt < α.

We now show, by contradiction, thatα∗ = lopt. If α∗ > lopt, then, by the previous
part of the proof,Nec(P, α∗) = ∅, that is a contradiction becauseα∗ is the maximum
α such thatNec(P, α) 6= ∅. If α∗ < lopt, thenα∗ is not the maximumα such that
Nec(P, α) 6= ∅, since such a value islopt, and so we have a contradiction.

We now prove that, ifα∗ = lopt, thenNec(P, α∗) = LO(P ). Let s be a com-
plete assignment to the variables ofP . If s ∈ Nec(P, lopt), then for every scenarioQ,
pref(Q, s) ≥ lopt and so also for the worst scenario. Therefore, aslopt is the optimal
preference of the worst scenario,s ∈ LO(P ). If s ∈ LO(P ), thenpref(ws(P ), s) =
lopt. Since for every scenarioQ, pref(Q, s) ≥ pref(ws(P ), s) = lopt, then s ∈
Nec(P, lopt).
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SinceNec(P, α∗) = LO(P ) and since, by Proposition 6,LO(P ) ⊆ PO(P ), then
Nec(P, α∗) ⊆ PO(P ). 2

Thus, in general,Nec(P, α) is not empty only ifα is at most the optimal preference
of the worst scenario, and in such a case every lower-optimalsolution is inNec(P, α).
Moreover, if we consider a particular value ofα, also the converse holds. Therefore, in
this case the necessarily of at least preferenceα solutions are lower-optimal solutions
and thus they are possibly optimal solutions.

Moreover, a solution is inPos(P, α) only if α is at most the optimal preference
of the best scenario, and in such a case, for a particular value of α, the possibly of at
least preferenceα solutions coincide with the upper optimal solutions, and thus they
are possibly optimal solutions.

Proposition 8. Given an IVSCSPP and an assignments to the variables ofP ,

– s is in Pos(P, α) if and only ifα ≤ U(s);
– let α∗ be the maximumα such thatPos(P, α) is not empty, thenPos(P, α∗) =

UO(P ), and soPos(P, α∗) ⊆ PO(P ).

Proof: We first show thats is in Pos(P, α) if and only if α ≤ U(s). If s ∈ Pos(P, α),
then there is a scenario wherepref(Q, s) ≥ α. By Theorem 1, we know thatU(s) is
the highest preference associated tos in any scenario, thenU(s) ≥ pref(Q, s) and so
U(s) ≥ α. If α ≤ U(s), then, by Theorem 1, there is a scenarioQ, wherepref(Q, s) =
U(s). SinceU(s) ≥ α, thens ∈ Pos(P, α).

We now show thatPos(P, α∗) = UO(P ). If s ∈ Pos(P, α∗), then there is a sce-
narioQ wherepref(Q, s) ≥ α∗. Sinceα∗ is the maximumα such thatPos(P, α) 6= ∅,
then,α∗ = uopt, whereuopt is the optimal preference in the best scenario. Hence,
s ∈ UO(P ). If s ∈ UO(P ), thenpref(Q, s) = uopt, hence in the best scenario
pref(bs(P ), s) = uopt and thuss ∈ Pos(P, α∗), whereα∗ = uopt.

Since by Proposition 6,UO(P ) ⊆ PO(P ), thenPos(P, α∗) ⊆ PO(P ). 2

5.4 Lower and upper lexicographically-optimal assignments

We now introduce two optimality notions that refine the lowerand upper optimal no-
tions.

Definition 13 (Lower and upper lexicographically-optimal).Given an IVSCSPP =
〈V, D, C, S〉 and an assignments to the variables inV , s is lower (resp., upper)
lexicographically-optimal iff, for every other complete assignments′, either L(s) >
L(s′) (resp.,U(s) > U(s′)), or L(s) = L(s′) andU(s) ≥ U(s′) (resp.,U(s) = U(s′)
andL(s) ≥ L(s′)).

Lower (resp., upper) lexicographically-optimal assignments are those optimal as-
signments of the worst scenario (resp., best scenario) thatare the best ones in the best
scenario (resp., in the worst scenario). We denote withLLO(P ) (resp.,ULO(P )) the
set of the lower (resp., upper) lexicographically-optimalassignments ofP . The IVSCSP
P of Figure 1 hasLLO(P ) = ULO(P ) = {s1}.
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Proposition 9. Given an IVSCSPP ,

– LLO(P ) ⊆ LO(P ) and soLLO(P ) is never empty;
– ULO(P ) ⊆ UO(P ) and soULO(P ) is never empty;
– ID(P ) ⊆ (LLO(P ) ∩ ULO(P )) = WID(P ).

Proof: We show thatLLO(P ) ⊆ LO(P ). The relationULO(P ) ⊆ UO(P ) can be
shown similarly. Ifs ∈ LLO(P ), then, by definition ofLLO(P ), L(s) > L(s′) or
(L(s) = L(s′) andU(s) ≥ U(s′)) for every others′, henceL(s) ≥ L(s′) for every
others′ and sos ∈ LO(P ).

SinceLLO(P ) is contained inLO(P ) and, by Proposition 5,LO(P ) is never
empty, thenLLO(P ) is never empty. Similarly, it is possible to show thatULO(P )
is never empty.

We now prove that(LLO(P )∩ULO(P )) = WID(P ). We first show that(LLO(P )
∩ULO(P )) ⊆ WID(P ). If s ∈ (LLO(P )∩ULO(P )), then, by definition ofLLO(P ),
L(s) ≥ L(s′) for every others′ and, by definition ofULO(P ), U(s) ≥ U(s′) for every
others′, hences ∈ WID(P ). We now show thatWID(P ) ⊆ (LLO(P )∩ULO(P )).
If s ∈ WID(P ), then, by definition ofWID(P ), L(s) ≥ L(s′) andU(s) ≥ U(s′)
for every others′. It could happen that (L(s) > L(s′) andU(s) > U(s′)) or (L(s) >
L(s′) andU(s) = U(s′)) or (L(s) = L(s′) andU(s) > U(s′)) or (L(s) = L(s′)
andU(s) = U(s′)) for every others′. If L(s) > L(s′) andU(s) > U(s′) for ev-
ery others′, then s ∈ LLO(P ) ∩ ULO(P ) by the first part of the definitions of
LLO(P ) andULO(P ). If L(s) > L(s′) andU(s) = U(s′) for every others′ , then
s ∈ LLO(P ) ∩ ULO(P ) by the first part of the definition ofLLO(P ) and by the
second part of the definition ofULO(P ). If L(s) = L(s′) andU(s) > U(s′) for every
others′, thens ∈ LLO(P )∩ULO(P ) by the second part of the definition ofLLO(P )
and by the first part of the definition ofULO(P ). If L(s) = L(s′) andU(s) = U(s′)
for every others′, thens ∈ LLO(P ) ∩ ULO(P ) by the second part of the definitions
of LLO(P ) andULO(P ). 2

Since lower and upper lexicographically-optimal solutions are refinements of lower
and upper optimal solutions, they are possibly optimal solutions as well. However, the
converse does not hold in general.

Proposition 10. Given an IVSCSPP , (LLO(P ) ∪ ULO(P )) ⊆ PO(P ).

Proof: We know, by Proposition 9, thatLLO(P ) ⊆ LO(P ) andULO(P ) ⊆ UO(P ).
Since, by Proposition 6,LO(P ) andUO(P ) are containedPO(P ), then alsoLLO(P )
andULO(P ) are contained inPO(P ). 2

5.5 Interval-optimal assignments

Until now we have considered optimality notions that are stronger than the possibly
optimal notion. In the attempt to fully characterize possibly optimal solutions, we now
consider an interval-based optimality notion that is weaker than the lower and upper
optimality notions.
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Definition 14 (interval-optimal). Given an IVSCSPP = 〈V, D, C, S〉 and an assign-
ments to the variables inV , s is defined to be interval-optimal iff, for every other
complete assignments′, L(s) ≥ L(s′) or U(s) ≥ U(s′).

An interval-optimal assignment is a complete assignment with either a higher or
equal lower bound, or a higher or equal upper bound, w.r.t. all other assignments. This
means that, for every other complete assignment, it must be better than, or equal to it
in either the worst or the best scenario. We denote withIO(P ) the set of the interval
optimal assignments ofP . The IVSCSPP of Figure 1 hasIO(P ) = {s1, s2, s4}.

Proposition 11. Given an IVSCSPP , (UO(P ) ∪ LO(P )) ⊆ IO(P ) and soIO(P ) is
never empty.

Proof: Lets be a complete assignment to the variables ofP . Suppose thats ∈ UO(P )∪
LO(P ). There are two cases, (i)s ∈ UO(P ), and (ii)s ∈ LO(P ). Suppose (i) thats ∈
UO(P ). ThenU(s) ≥ U(s′) for every other complete assignments′ and sos ∈ IO(P ).
Similarly, (ii) if s ∈ LO(P ) thenL(s) ≥ L(s′) for every others′, hences ∈ IO(P ).

Since(UO(P )∪LO(P )) ⊆ IO(P ) and, by Proposition 5,LO(P ) andUO(P ) are
never empty, thenIO(P ) is never empty. 2

The interval-optimal solutions are possibly optimal solutions, but the converse does
not hold in general, as shown in the following proposition. Therefore, also the interval-
optimality notion is stronger than the possible optimalitynotion.

Proposition 12. Given an IVSCSPP , if the c-semiring is strictly monotonic or idem-
potent, thenIO(P ) ⊆ PO(P ). Moreover,PO(P ) 6⊆ IO(P ).

Proof: Let s be a complete assignment to the variables ofP .
Let us consider a strictly monotonic c-semiring. We know, byTheorem 10, that

s ∈ PO(P ) iff s ∈ Opt(Qs), whereQs is the scenario where all the preferences of
tuples ins are set to their upper bound and all other tuples are associated to the lower
bound of their preferences. We now show that, ifs ∈ IO, thens ∈ Opt(Qs) and so, by
Theorem 10,s ∈ PO(P ). Assume thats 6∈ Opt(Qs), we will show thats 6∈ IO(P ). If
s 6∈ Opt(Qs), then there is a solutions′ such thatpref(Qs, s′) > pref(Qs, s).

– If s has no tuples in common withs′, then, by construction ofQs, pref(Qs, s′) =
L(s′) andpref(Qs, s) = U(s). Sincepref(Qs, s′) > pref(Qs, s), and for every
solution its lower bound is lower than or equal to its upper bound, thenU(s′) ≥
L(s′) > U(s) ≥ L(s) and soU(s′) > U(s) andL(s′) > L(s), that implies that
s 6∈ IO(P ).

– If s has some tuple in common withs′, then,pref(Qs, s′) = λ×u, andpref(Qs, s) =
µ × u, whereλ (resp.,µ) is the combination of the preferences of the tuples that
are ins′ but not ins (resp., ins but not ins′), andu is the combination of the
preferences of the tuples that are both ins and ins′. By hypothesis,pref(Qs, s′) >
pref(Qs, s), i.e., λ × u > µ × u. By construction ofQs, U(s′) ≥ λ × u >
µ × u = U(s), and soU(s′) > U(s). Moreover, since the combination opera-
tor is monotonic, ifλ × u > µ × u, thenλ > µ. In fact, if λ ≤ µ, by mono-
tonicity, λ × u ≤ µ × u. Let us denote withu′ (resp.,µ′) the combination of
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the lower bounds of the preferences of the tuples that are both in s and in s′

(resp., ins but not ins′). Then, by strict monotonicity and by construction ofQs,
L(s′) = λ × u′ > µ × u′ ≥ µ′ × u′ = L(s), and soL(s′) > L(s). Therefore, if
s has some tuple in common withs′, thenU(s′) > U(s) andL(s′) > L(s), i.e.,
s 6∈ IO(P ).

Let us now consider an idempotent c-semiring. We want to showthat if s ∈ IO(P ),
thens ∈ PO(P ). We will show that, ifs ∈ IO(P ), thens ∈ Opt(Q∗), whereQ∗

is the scenario such that all the preferences of the tuples ofs are set toU(s), if U(s)
is contained in their preference interval, and to their upper bound, ifU(s) is not con-
tained in their preference interval, and all other tuples are associated to the lower bound
of their preferences. First, we show thatpref(Q∗, s) = U(s). Then, we show that
pref(Q∗, s) ≥ pref(Q∗, s′), for every other solutions′ that has no tuples in common
with s and for every solutions′ that has some tuple in common withs.

– pref(Q∗, s) = U(s), by construction ofQ∗, by Theorem 1 and by idempotency. In
fact, by Theorem 1,pref(Q∗, s) ≤ U(s). Moreover,pref(Q∗, s) 6< U(s). In fact,
we now show thatpref(Q∗, s) is given by the combination of the preferences that
are all greater than or equal toU(s). By construction ofQ∗ we have two results.
(1) Every tuple ofs in Q∗ with preference interval that containsU(s) is assigned
to U(s) and, by definition ofU(s) and by idempotency, there must be at least one
of these preferences. (2) Every tuple with preference interval that does not contain
U(s) is assigned to its upper bound that must be a value greater thanU(s), since, by
definition ofU(s), the upper bound of every tuple ofs must be greater than or equal
to U(s), otherwise the upper bound ofs is notU(s) but a value lower thanU(s),
that is a contradiction. Therefore,pref(Q∗, s) 6< U(s) and sopref(Q∗, s) = U(s).

– If s has no tuples in common withs′, then, by construction ofQ∗, pref(Q∗, s′) =
L(s′) andpref(Q∗, s) = U(s). Sinces ∈ IO(P ), thenL(s) ≥ L(s′) or U(s) ≥
U(s′). If L(s) ≥ L(s′), thenpref(Q∗, s) = U(s) ≥ L(s) ≥ L(s′) = pref(Q∗, s′).
If U(s) ≥ U(s′), thenpref(Q∗, s) = U(s) ≥ U(s′) ≥ L(s′) = pref(Q∗, s′).

– If s has some tuple in common withs′, then, by construction ofQ∗ pref(Q∗, s′) ≤
U(s) = pref(Q∗, s).

Therefore, for every solutions′, pref(Q∗, s′) ≤ U(s) = pref(Q∗, s). Hence,s is
optimal inQ∗ and sos ∈ PO(P ).

PO(P ) 6⊆ IO(P ). In fact, assume to have an IVSCSP over a fuzzy c-semiring,
where there is only one variablex with three values in its domain, sayx1, x2, andx3,
with preference intervals respectively[0.4, 0.6], [0.5, 0.7], and [0.5, 0.8]. Then,x1 6∈
IO(P ), becauseL(x1) < L(x2) andU(x1) < U(x2). However,x1 ∈ PO(P ), because
x1 is optimal in the scenario where we associate tox1 the value0.6 and tox2 andx3

the value0.5.

2
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5.6 Summary of the various notions of optimality and of theirrelations

The various notions of optimality defined above are summarized in Table 1. For each
notion, we refer to a solutions and we describe compactly whens belongs to each of
the optimality sets.

Table 1.Optimality notions.

Optimality notions Definition

NO(P ) s ∈ Opt(Q), ∀Q ∈ Sc(P )
PO(P ) s ∈ Opt(Q), ∃Q ∈ Sc(P )

Nec(P, α) pref(Q, s) ≥ α, ∀Q ∈ Sc(P )
Pos(P, α) pref(Q, s) ≥ α, ∃Q ∈ Sc(P )

ID(P ) L(s) ≥ U(s′), ∀s′ ∈ Sol(P )
WID(P ) L(s) ≥ L(s′) andU(s) ≥ U(s′), ∀s′ ∈ Sol(P )
LO(P ) L(s) ≥ L(s′), ∀s′ ∈ Sol(P )
UO(P ) U(s) ≥ U(s′), ∀s′ ∈ Sol(P )
LLO(P ) L(s) > L(s′) or (L(s) = L(s′) andU(s) ≥ U(s′)), ∀s′ ∈ Sol(P )
ULO(P ) U(s) > U(s′) or (U(s) = U(s′) andL(s) ≥ L(s′)), ∀s′ ∈ Sol(P )
IO(P ) L(s) ≥ L(s′) or U(s) ≥ U(s′), ∀s′ ∈ Sol(P )

The set-based relations between the various optimality notions are described in Fig-
ure 3.

Fig. 3. Relation among optimality sets.

5.7 An example: meeting scheduling problems

To better explain how to use the various optimality notions introduced in the previous
sections, we consider an example of a class of problems, related to meeting scheduling.
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The meeting scheduling problem is a benchmark for CSPs [13],and we have adapted it
to allow also for preference intervals.

A meeting scheduling problem (MSP) is informally the problem of scheduling some
meetings by allowing the participants to attend all the meetings they are involved in.
More formally, a MSP can be described by

– a set of agents;
– a set of meetings, each with a location and a duration;
– a set of time slots where meetings can take place;
– for each meeting, a subset of agents that are supposed to attend such a meeting;
– for each pair of locations, the time to go from one location tothe other one.

Typical simplifying assumptions concern having the same duration for all meetings
(one time slot), and the same number of meeting for each agent. To solve a MSP, we
need to allocate each meeting in a time slot in a way that each agent can participate
in his meetings. The only way that an agent cannot participate has to do with the time
needed to go from the location of a meeting to the location of his next meeting.

The MSP can be easily seen as a CSP: variables represent meetings and variable
domains represent all time slots. Each constraint between two meetings model the fact
that one or more agents must participate in both meetings, and it is satisfied by all pairs
of time slots that allow the participation to both meetings according to the time needed
to pass between the corresponding locations. For this reason, it is often used as a typical
benchmark for CSPs.

For our purposes, we consider a generalization of the MSP, called IVMSP, where
there is a chair, who is in charge of the meeting scheduling, and who declares his pref-
erences over the variable domains and over the compatible pairs of time slots in the
binary constraints. The preferences over the variable domains can model the fact that
the chair prefers some time slots to others for a certain meeting. On the other hand, the
preferences in the binary constraints can model a preference for certain feasible pairs
of time slots, over others, for the two meetings involved in the constraint.

Such preferences can be exact values when the chair works with complete informa-
tion. However, at the time the meeting scheduling has to be done, it may be that some
information, useful for deciding the preferences, is stillmissing. For example, the chair
could have invited agents to meetings, but he does not yet know who will accept his in-
vitations. As other examples, weather considerations or the presence of other events in
the same time slots may affect the preferences. Because of this uncertainty, some pref-
erences may be expressed by using an interval of values, which includes all preference
values that are associated to all possible outcomes of the uncertain events.

Since MSPs can be expressed as CSPs, it is thus clear that IVMSPs can be expressed
as IVSCSPs. The problem of solving an IVMSP concerns finding time slots for the
meetings such that all agents can participate and, among allpossible solutions, to choose
an optimal one according to some optimality criteria. We will now consider several of
the optimality notions defined above and describe their use in this class of problems.

In this context, given an IVMSPP , necessarily optimal solutions (i.e., solutions
in NO(P )) are meeting schedulings that are optimal no matter how the uncertainty is
resolved. Thus, if there is at least one of such solutions, this is certainly preferred to any
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other. By working with the optimality notions defined over intervals, to find a solution
in NO(P ), we may try to find a solution inID(P ), given that solutions inID(P ), if
any, coincide with solutions inNO(P ). Otherwise, ifID(P ) is empty, and given that
NO(P ) is included inWID(P ), we may look for a solution inWID(P ). We recall
that solutions inID(P ) are meeting schedulings where the preference interval of the
optimal solution is above the preference intervals of all other solutions, while solutions
in WID(P ) have the upper bound of their preference interval above the upper bounds
of the preference intervals of all other solutions, and the same for the lower bound.

Solutions inNec(P, α∗) are also attractive, because they guarantee a preference
level ofα∗ in all scenarios. SinceLO = Nec(P, α∗), we may find a solution inLO(P ),
that is, a solution which is optimal in the worst scenario. This solution will guarantee
the chair against the uncertainty of the problem by assuringa certain level of overall
preference. This notion can be useful if the chair is pessimistic, because such solutions
provide a preference guarantee over all scenarios. However, such a guaranteed prefer-
ence level may be very low.

If instead the chair is optimistic, he may ask for a solution in Pos(P, α∗), that
is, a solution with the highest preference level in some scenario. SinceUO(P ) =
Pos(P, α∗), we may find a solution inUO(P ), that is, a solution which is optimal
in the best scenario.

When looking for solutions inLO(P ) andUO(P ), we may want to be as close as
possible to solutions inNO(P ), asNO(P ) is included inLO(P ) andUO(P ). To do
this, we can try to find solutions inLLO(P ) or ULO(P ), respectively. For example,
solutions inLLO(P ) are solutions inLO(P ) that have the highest upper bound of their
preference interval. This means that, depending on how the uncertainty is resolved, they
give more hope of achieving a higher level of preference.

6 Finding and testing interval-based optimal assignments

In this section we analyze how to determine if a complete assignment is one of the
different kinds of optimal assignments previously defined in Section 5, and how to find
such optimal assignments. These results will be useful to find and test possibly and
necessarily optimal solutions.

6.1 Lower and upper optimal assignments

It is easy to show that, by following directly the definitionsof lower and upper opti-
mal assignments, the lower (resp., upper) optimal solutions coincide with the optimal
elements of the worst (resp., best) scenario.

Theorem 2. Given an IVSCSPP , LO(P ) = Opt(ws(P )) andUO(P ) = Opt(bs(P )).

Proof: We show thatLO(P ) = Opt(ws(P )). Let s be a solution ofP . If s ∈ LO(P ),
thenL(s) ≥ L(s′) for every other solutions′, hence if we considerws(P ), i.e., the
worst scenario ofP , that is the scenario where we fix all the preference intervals to their
lower bound, thenpref(ws(P ), s) = L(s) and sopref(ws(P ), s) ≥ pref(ws(P ), s′)
for every other solutions′, hences ∈ Opt(ws(P )). If s ∈ Opt(ws(P )), thenpref(ws(P ),
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s) ≥ pref(ws(P ), s′) for every other solutions′ of P , that is, by definition of worst
scenario,L(s) ≥ L(s′) for everys′ and sos ∈ LO(P ). Similarly, it is possible to show
thatUO(P ) = Opt(bs(P )). 2

A lower-optimal solution is a complete assignment whose lower bound is greater
than or equal to the lower bound of every other complete assignment. Thus, it is a
complete assignment that is better than or equal to all otherassignments in the scenario
obtained by replacing every interval with its lower bound, i.e., the worst scenario.

Thus, finding a lower-optimal (resp. upper-optimal) solution is as complex as solv-
ing an SCSP. This holds also for testing if an assignments is in LO(P ) (resp. in
UO(P )), since it is enough to solve the SCSP representing the worstor the best sce-
nario and to check if the preference of the optimal solution coincides withL(s) (resp.
U(s)).

6.2 Interval optimal assignments

To find an interval optimal assignment, it is sufficient to finda lower-optimal solution or
an upper-optimal solution, because(UO(P ) ∪LO(P )) ⊆ IO(P ), and neitherUO(P )
nor LO(P ) can be empty. Thus, finding assignments ofIO(P ) can be achieved by
solving an SCSP.

To test if a solution is interval optimal, if the c-semiring is idempotent, we can
exploit the preference levels of the best and worst scenarios, as stated by the following
theorem.

Theorem 3. Given an IVSCSPP defined over an idempotent c-semiring, and an as-
signments, we haves ∈ IO(P ) iff the CSP obtained by joining1 scutL(s)(ws(P )) and
scutU(s)(bs(P )) has no solution.

Proof: Let us denote withQ the CSP defined in the theorem. We first show that, ifQ has
no solution, thens ∈ IO(P ). Suppose thats /∈ IO(P ). Then there exists some com-
plete assignments′ with L(s′) > L(s) andU(s′) > U(s). Thenpref(ws(P ), s′) =
L(s′) > L(s) andpref(bs(P ), s′) = U(s′) > U(s), sos′ is a solution ofQ. We now
show that, ifs ∈ IO(P ), thenQ has no solution. IfQ has a solution, says∗, then, by
definition ofQ, L(s∗) > L(s) andU(s∗) > U(s), and sos 6∈ IO(P ). 2

In fact, all and only the solutions of such a CSP strictly dominates with respect
to both the lower and the upper bound. Thus, testing membership in IO(P ) when the
semiring is idempotent amounts to solving a CSP.

More generally (that is, even if the combination operator isnot idempotent), we
can test interval optimality by checking if a suitably defined SCSP has solutions with
preference above certain threshold.

Theorem 4. Given an IVSCSPP and an assignments, let lopt and uopt be the op-
timal preferences of the worst and best scenario. Then,s ∈ IO(P ) iff at least one

1 The join of two CSPsP1 andP2 is the CSP whose set of variables (resp., constraints) is given
by the union of the sets of variables (resp., constraints) ofP1 andP2.
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of the following conditions holds: (1)L(s) = lopt; (2) U(s) = uopt; (3) the SCSP
Q with the same variables, domains, and constraint topology as P , defined on the c-
semiring〈(A × A), (+, +), (×,×), (0,0), (1,1)〉, where the preference of each tuple
in each constraint is set to the pair containing the lower andupper bound of its inter-
val in P , has no solutions′ with preference pair(L(s′), U(s′)) pointwise greater than
(L(s), U(s)), i.e., such thatL(s′) > L(s) andU(s′) > U(s).

Proof: We first show that ifL(s) = lopt, U(s) = uopt, or Q hasno solution with
preference greater than(L(s), U(s)), thens ∈ IO(P ). If L(s) = lopt (resp.,U(s) =
uopt), thenL(s) ≥ L(s′) (resp.,U(s) > U(s′)) for every other solutions′, hence
s ∈ LO(P ) (resp.,s ∈ UO(P )) and so, sinceLO(P )∪UO(P ) ⊆ IO(P ), s ∈ IO(P ).
If Q has no solution with preference greater than(L(s), U(s)), thens ∈ IO(P ). In
fact, if s 6∈ IO(P ), then there is a solution, says∗, such thatL(s∗) > L(s) and
U(s∗) > U(s), and soQ has a solution with preference greater than(L(s), U(s)).

We now show, that ifs ∈ IO(P ), thenL(s) = lopt, U(s) = uopt, or Q hasno
solution with preference greater than(L(s), U(s)). If L(s) 6= lopt, U(s) 6= uopt and
Q has a solutions∗ with preference greater than(L(s), U(s)), then, by definition ofQ,
the preference of(L(s∗), U(s∗)) is greater than the preference of(L(s), U(s)), hence
L(s∗) > L(s) andU(s∗) > U(s) and sos 6∈ IO(P ). 2

The first two conditions simply check ifs is either lower or upper optimal. The
second condition is satisfied when there is no solution better thans on both bounds.
Notice that this can be checked for example by running branchand bound onQ with a
strict bound equal to(L(s), U(s)). Therefore, testing membership inIO(P ) with any
c-semiring can be achieved by solving at most three SCSPs.

6.3 Lower and upper lexicographically optimal assignments

To find the lower-lexicographically optimal solutions of anIVSCSPP we consider the
optimal solutions of a suitable SCSP, as described by the following theorem.

Theorem 5. Given an IVSCSPP over a strictly monotonic c-semiringS, let us con-
sider the SCSPQ with the same variables, domains, and constraint topology asP , and
defined over the c-semiring〈A × A, maxlex, (×,×), (0,0), (1,1)〉. The binary oper-
ation maxlex is defined to be the maximum with respect to the ordering�lex defined
as follows: for each(a, a′), (b, b′) ∈ (A × A), (a, a′) �lex (b, b′) iff a >S b or a = b
anda′ ≥S b′. For each tuple in each constraint ofQ, its preference is set to the pair
containing the lower and upper bound of its interval inP . Then,LLO(P ) = Opt(Q).

Proof: We first show thatLLO(P ) ⊆ Opt(Q). If s ∈ LLO(P ), thens ∈ Opt(Q).
In fact, if s 6∈ Opt(Q), then, there is a solution, says′, of Q such thatpref(Q, s′) >
pref(Q, s), that is, by definition of preference given in the theorem,(L(s′), U(s′)) ≻lex

(L(s), U(s)), that is, by definition of≻lex, eitherL(s′) > L(s) or (L(s′) = L(s) and
U(s′) > U(s)), and sos 6∈ LLO(P ).

We now show thatOpt(Q) ⊆ LLO(P ). If s ∈ Opt(Q), then pref(Q, s′) ≥
pref(Q, s), for everys′, that is,(L(s′), U(s′)) �lex (L(s), U(s)), for every others′,
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that is, for every others′, eitherL(s′) > L(s) or (L(s′) = L(s) andU(s′) ≥ U(s)),
and sos ∈ LLO(P ).

Note that the assumption of strict monotonicity ofS guarantees that the structure
defined in the theorem〈A × A, maxlex, (×,×), (0,0), (1,1)〉 is a c-semiring. If we
don’t make this assumption, then distributivity property does not hold and so the struc-
ture above is not a c-semiring. 2

In words, the first component of the pairs in the semiring of Theorem 5 is the most
important, and the second one is used to break ties. To find theupper-lexicographically
optimal solutions, it is sufficient to consider the same SCSPas defined above except
for the ordering which considers the second component as themost important. Thus,
finding assignments inLLO(P ) andULO(P ) can be achieved by solving one SCSP.

To test if a solutions is in LLO(P ), it is enough to find the preference pair, say
(p1, p2), of an optimal solution of the SCSP defined above and to check if (L(s), U(s)) =
(p1, p2). Similarly to test if a solution is inULO(P ).

6.4 Weakly interval dominant assignments

We know thatWID(P ) = LO(P ) ∩ UO(P ). Thus a straightforward, but costly, way
to find a solution inWID(P ) is to compute all the optimal solutions of the best and
the worst scenario and to check if there is a solution in the intersection of the two
sets. However, if the c-semiring is idempotent, this is not necessary, as shown by the
following theorem.

Theorem 6. Given an IVSCSPP defined over an idempotent c-semiring, andlopt and
uopt as defined above, an assignments is in WID(P ) iff it is a solution of the CSP
obtained by joiningcutlopt

(ws(P )) andcutuopt
(bs(P )).

Proof: Let us denote withQ the CSP described in the theorem. We first show that, ifs
is a solution ofQ, thens ∈ WID(P ). If s is a solution ofQ, then, by definition ofQ, s
is a solution of the CSPcutlopt

(ws(P )) obtained from the worst scenario by allowing
only the tuples with preference greater than or equal tolopt, hence, by definition of
lopt, L(s) ≥ L(s′) for every other solutions′. Moreover, by definition ofQ, s is also
a solution of the CSPcutuopt

(bs(P )) obtained from the best scenario by allowing only
the tuples with preferences greater than or equal touopt. Hence, by the definition of
uopt, U(s) ≥ U(s′), for every others′. Therefore, ifs is a solution ofQ, thenL(s) ≥
L(s′) andU(s) ≥ U(s′) for every others′, and sos ∈ WID(P ).

We now show that, ifs ∈ WID(P ), thens is a solution ofQ. If s is not a solution
of Q, thenL(s) < lopt or U(s) < uopt. If L(s) < lopt (resp.,U(s) < uopt), then
L(s) < L(s′) (resp.,U(s) < U(s′)) for anysolutions′ such thatpref(ws(P ), s′) =
lopt (resp.,pref(bs(P ), s′) = uopt). Therefore,s 6∈ WID(P ). 2

In words, any solution of the join CSP is optimal both in the worst and in the best
scenario and this implies that it is undominated on both bounds. Thus, if the c-semiring
is idempotent, finding a weakly interval dominant solution amounts to solving two SC-
SPs and one CSP. Moreover, to test whether a solutions is in WID(P ), it is sufficient
to check ifL(s) = lopt andU(s) = uopt, which amounts to solving two SCSPs.
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6.5 Interval dominant assignments

To find an assignment inID(P ), we can use Proposition 5. Thus, iflopt = uopt, then it
is sufficient to find a lower-optimal solution. If insteadlopt < uopt then, if |UO(P )| ≥
2, then we know thatID(P ) = ∅. Moreover, if|UO(P )| = 1 (let us calls this single
solution), ifL(s) 6= lopt then we know thatID(P ) = ∅.

If the c-semiring is idempotent, cuts can be exploited in thesame style as above,
to build a suitably defined CSP, leading to a sound and complete procedure to find an
assignment, if any, inID(P ).

Theorem 7. Given an IVSCSPP over an idempotent c-semiring, andlopt as defined
above, ifscutlopt

(bs(P )) has no solution, thenID(P ) = LO(P ). If scutlopt
(bs(P ))

has one solution, says, andL(s) = lopt, then this solution is the only one inID(P ).
Otherwise,ID(P ) = ∅.

Proof: Let us denote withQ the CSPscutlopt
(bs(P )). We first show that ifQ has

no solution, thenID(P ) = LO(P ). If Q has no solution, then, sinceQ is the CSP
obtained by the best scenario by allowing only tuples with preference greater thanlopt,
there is no solution with upper bound greater thanlopt, that is, for all the solutions
s′ of P , lopt ≥ U(s′). To show thatID(P ) = LO(P ) it is sufficient to show that
LO(P ) ⊆ ID(P ), since Theorem 2 implies thatID(P ) ⊆ LO(P ). Let s be a solution
of P . If s ∈ LO(P ), thenL(s) = lopt and thus, by the reasoning above,L(s) ≥ U(s′)
for every others′, hences ∈ ID(P ).

If Q has a solution, says, thenU(s) > lopt ≥ L(s′) for all solutionss′, and so
ID(P ) is either empty or equal to{s}. Therefore ifQ has more than one solution
thenID(P ) is empty. Suppose thatQ has exactly one solution,s. If L(s) < lopt then
L(s) < L(s′) for any solutions′ with L(s′) = lopt, and soL(s) < U(s′), which im-
plies thats /∈ ID(P ) and soID(P ) = ∅. If L(s) = lopt then for any other solution
s′ we haveU(s′) ≤ lopt (sinceQ has only one solution), and soL(s) ≥ U(s′) which
implies thats ∈ ID(P ) and soID(P ) = {s}. 2

Performing a strict cut of the best scenario at the optimal level of the worst sce-
nario means isolating solutions that have an upper bound higher thanlopt. If there is no
such solution, then the upper bound of the lower-optimal solutions must coincide with
their lower bound (lopt). Thus, lower-optimal solutions coincide with interval dominant
solutions. If, instead, such a CSP has only one solution, allother solutions must have
an upper bound which is at mostlopt. This means that, if this solution is also lower-
optimal, then it is the only interval dominant solution. Finally, if there is more than one
solution with an upper bound abovelopt, then there cannot be any solution whose lower
bound dominates the upper bound of all others and, thus,ID(P ) is empty.

Summarizing, when the c-semiring is idempotent, to find a solution in ID(P ) we
need to solve an SCSP and then one CSP. Proposition 5 and Theorem 7 can also be used
to test if a solution is interval dominant.
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7 Finding and testing necessarily optimal and possibly optimal
assignments

We will now show how to test if an assignment is possibly or necessarily optimal (or
of at least preferenceα) and how to find these kinds of assignments. To do that, we
will exploit the relation between possibly and necessarilyoptimal assignments and the
various kinds of interval-based optimal assignments, shown in Section 5.

7.1 Necessarily optimal solutions

To find a necessarily optimal solution, we exploit the results shown in Propositions
2 and 4 (i.e., ifID(P ) 6= ∅ then NO(P ) = ID(P ), and ID(P ) ⊆ NO(P ) ⊆
WID(P )), and thus we perform the following steps:

1. If ID(P ) 6= ∅, then returns ∈ ID(P );
2. If WID(P ) = ∅, thenNO(P ) = ∅;
3. Otherwise, return the first solution inWID(P ) that is necessarily optimal. If none,

NO(P ) = ∅

Testing if a solution is necessarily optimal whenID(P ) 6= ∅ coincides with testing
if it is in ID(P ). Otherwise, we need to test if it is an optimal solution of some suitably
defined SCSPs, as shown by the following theorem.

Theorem 8. Consider an IVSCSPP and an assignmentss. LetQs (resp.,Qs) be the
scenario where every preference associated to a tuple ofs is set to its lower bound
(resp., upper bound) and the preferences of all other tuplesare set to their upper bound
(resp., lower bound). The following results hold:

– If s ∈ NO(P ), thens ∈ Opt(Qs). Moreover, if the c-semiring is strictly mono-
tonic, the converse holds as well:s ∈ NO(P ) ⇐⇒ s ∈ Opt(Qs).

– If s ∈ NO(P ) then, for everys′, s ∈ Opt(Qs′

). If the c-semiring is idempotent,
the converse holds as well:s ∈ NO(P ) ⇐⇒ for everys′, s ∈ Opt(Qs′

).

Proof: We first show that, ifs ∈ NO(P ), thens ∈ Opt(Qs). If s ∈ NO(P ), then it is
optimal in all scenarios and so also inQs.

We now show that, if the c-semiring is strictly monotonic andif s ∈ Opt(Qs), then
s ∈ NO(P ). If s ∈ Opt(Qs), thenpref(Qs, s) ≥ pref(Qs, s

′) for every other solution
s′. For every others′, let λ (resp.,µ) be the combination of the preference values of
tuples associated tos but not tos′ (resp., associated tos′ but not tos) in Qs, and let
u be the combination of the preference values of tuples associated to boths ands′ in
Qs. Since, for everys′, pref(Qs, s) ≥ pref(Qs, s

′), then for everys′, λ × u ≥ µ × u
that implies thatλ ≥ µ. In fact, if λ < µ, then, by strict monotonicity of×, then
λ×u < µ×u. For every scenarioQi, for everys′, letλi (resp.,µi) be the combination
of the preference values of tuples associated tos′ but not tos (resp., associated tos′

but not tos) in Qi and letui be the combination of the preference values of tuples
associated to boths ands′ in Qi. SinceQs is the least favorable scenario fors, then for
every scenarioQi, λi ×u ≥ λ×u that impliesλi ≥ λ. In fact, if λi < λ, then, by strict
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monotonicity,λi × u < λ × u. SinceQs is the most favorable scenario for the tuples
in s′ but not ins, thenµ ≥ µi for every scenarioQi. Therefore, for every scenario
Qi, for everys′, we have thatλ ≥ µ, λi ≥ λ andµ ≥ µi, hence, by monotonicity,
pref(Qi, s) = λi ×ui ≥ λ×ui ≥ µ×ui ≥ µi ×ui = pref(Qi, s

′), hences is optimal
in every scenario and sos ∈ NO(P ).

If s ∈ NO(P ), thens is optimal in all the scenarios and so, for everys′, s is op-
timal in Qs′

. If the c-semiring is idempotent and, for everys′, s ∈ Opt(Qs′

), then
s ∈ NO(P ). In fact, assume thats 6∈ NO(P ), then there is a scenarioQ, wheres is
not optimal, i.e., there iss′ such thatpref(Q, s) < pref(Q, s′). We want to show that
this holds also in the scenarioQs′

. If we consider the scenarioQ1 obtained fromQ by
putting the preference value of any tuple that is ins but not ins′ to its lower bound, then,
the preference ofs decreases or remains the same, by monotonicity, and the preference
of s′ does not change. Hence,pref(Q1, s) ≤ pref(Q, s) < pref(Q, s′) = pref(Q1, s

′),
and sopref(Q1, s) < pref(Q1, s

′). If we consider the scenarioQ2 obtained fromQ1

by setting the preference value of any tuple that is ins′ but not ins to its upper bound,
then the preference ofs′ increases or remains the same, by monotonicity, and the pref-
erence ofs does not change. Hence,pref(Q2, s) = pref(Q1, s) < pref(Q1, s

′) ≤
pref(Q2, s

′) and sopref(Q2, s) < pref(Q2, s
′). If we consider the scenario obtained

from Q2 by setting the preference value of the tuples that are ins ands′ to their up-
per bound, then we have the scenarioQs′

. The preferences of the tuples that are ins
ands′ does not modifypref(Q2, s) andpref(Q2, s

′). In fact, since the c-semiring is
idempotent, thenpref(Q2, s) (resp.,pref(Q2, s

′)) is given by the tuple with the worst
preference ofs (resp.,s′), and, sincepref(Q2, s) < pref(Q2, s

′), pref(Q2, s) and
pref(Q2, s

′) must be given by different tuples, otherwisepref(Q2, s) = pref(Q2, s
′).

Hence,pref(Qs′

, s) = pref(Q2, s) < pref(Q2, s
′) = pref(Qs′

, s). Therefore, there is
a solutions′ suchs′ 6∈ Opt(Qs′

). 2

The intuition behind this theorem is that, in order for a solution to be necessarily
optimal, it must be optimal also in its least favorable scenario, when the c-semiring is
strictly monotonic, and it must be optimal in the most favorable scenario of every other
solution, when the c-semiring is idempotent.

7.2 Necessarily of at least preferenceα solutions

By Proposition 7, we know thats ∈ Nec(P, α) if and only if α ≤ L(s). Thus, testing
whether a solutions is inNec(P, α) amounts at checking this condition that takes linear
time.

To find a solution inNec(P, α), we know, by Proposition 7, thatNec(P, α) is not
empty only ifα is at most the optimal preference of the worst scenario, and in such a
case any lower-optimal solution is inNec(P, α). This amounts to solving one SCSP.
However, if the c-semiring is idempotent, it is sufficient tosolve one CSP, as shown by
the following theorem.

Theorem 9. Given an IVSCSPP , if the c-semiring is idempotent, thenNec(P, α) co-
incides with the set of solutions ofcutα(ws(P )).
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Proof: Let us denote withSL the set of the solutions ofcutα(ws(P )). We first show
that Nec(P, α) ⊇ SL and then we show thatNec(P, α) ⊆ SL. Let bes a solu-
tion of P . If s ∈ SL, then, sincecutα(ws(P )) is the CSP obtained from the worst
scenario ofP by allowing only tuples with preference greater than or equal to α,
pref(ws(P ), s) ≥ α, by idempotence. Sincews(P ) is the worst scenario ofP , then
pref(Qi, s) ≥ pref(ws(P ), s) ≥ α for every scenarioQi and sos ∈ Nec(P, α).
Therefore,Nec(P, α) ⊇ SL. If s ∈ Nec(P, α), thenpref(Qi, s) ≥ α for every sce-
nario Qi and so also for the worst scenario. Hence,pref(ws(P ), s) ≥ α and so, by
definition ofcutα(ws(P )), s ∈ SL. Therefore,Nec(P, α) ⊆ SL. 2

By Proposition 7, we know thatNec(P, α∗) = LO(P ). Therefore, to find a solution
in Nec(P, α∗), it is sufficient to find a solution of the worst scenario, and thus to solve
one SCSP.

7.3 Possibly optimal solutions

To find a solution inPO(P ), we can observe thatLO(P ), UO(P ), LLO(P ), and
ULO(P ) are all contained inPO(P ) (Propositions 6 and 10) and they are never empty
(Propositions 5 and 9).

To test if a solution is inPO(P ), it is sufficient to test ifs is optimal in one of the
two scenarios defined in the following theorem. This amountsto solving an SCSP.

Theorem 10. Given an IVSCSPP and an assignments to the variables ofP , letQs be
the scenario where all the preferences of tuples ins are set to their upper bound and all
other tuples are associated to the lower bound of their preferences, and letQ∗ be the
scenario where all the preferences of the tuples ofs are set toU(s), if U(s) is contained
in their preference interval, and to their upper bound otherwise, and all other tuples are
associated to the lower bound of their preferences. Then,

– if the c-semiring is strictly monotonic,s ∈ PO(P ) ⇐⇒ s ∈ Opt(Qs);
– if the c-semiring is idempotent,s ∈ PO(P ) ⇐⇒ s ∈ Opt(Q∗).

Proof: We first show that, ifs ∈ Opt(Qs), thens ∈ PO(P ). If s ∈ Opt(Qs), thens
is optimal in the scenarioQs, and sos ∈ PO(P ). We now show that, ifs ∈ PO(P )
thens ∈ Opt(Qs). If s ∈ PO(P ), then there is a scenario, sayQi, wheres is optimal,
that is,pref(Qi, s) ≥ pref(Qi, s

′), for every other solutions′. Assume to use the same
notations used in the proof of Theorem 8. Using these notations, sincepref(Qi, s) ≥
pref(Qi, s

′), for every other solutions′, then, for every other s’,λi × ui ≥ µi × ui

in the scenarioQi. This implies that, for every other s’,λi ≥ µi. In fact, if λi <
µi, then, by strict monotonicity,λi × ui < µi × ui. SinceQs is the most favorable
scenario fors, then for every scenario and so also for the scenarioQi, by monotonicity,
λ × u ≥ λ × ui ≥ λi × ui, that impliesλ ≥ λi. In fact, if λ < λi, then, by strict
monotonicity,λ × ui < λi × u. SinceQs is the least favorable scenario for the tuples
in s′ but not in s, thenµi ≥ µ for every scenario and so also forQi. Hence, since
for every s′, λ ≥ λi, λi ≥ µi, andµi ≥ µ, then, by monotonicity, for everys′,
pref(Qs, s) = λ × u ≥ λi × u ≥ µi × u ≥ µ × u = pref(Qs, s′), hences is optimal
in the scenarioQs.
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If s ∈ Opt(Q∗), then s ∈ PO(P ). We now show that, ifs ∈ PO(P ), then
s ∈ Opt(Q∗). If s 6∈ Opt(Q∗), then there is a solutions′ such thatpref(Q∗, s′) >
pref(Q∗, s). By construction ofQ∗, by Theorem 1 and by idempotency, we have that
pref(Q∗, s) = U(s). In fact, by Theorem 1,pref(Q∗, s) ≤ U(s). Moreover,pref(Q∗, s)
6< U(s). In fact, we now show thatpref(Q∗, s) is given by the combination of the pref-
erences that are all greater than or equal toU(s). By construction ofQ∗ we have two
results. (1) Every tuple ofs in Q∗ with preference interval that containsU(s) is as-
signed toU(s) and, by definition ofU(s) and by idempotency, there must be at least
one of these preferences. (2) Every tuple with preference interval that does not contain
U(s) is assigned to its upper bound that must be a value greater than U(s), since, by
definition ofU(s), the upper bound of every tuple ofs must be greater than or equal
to U(s), otherwise the upper bound ofs is not U(s) but a value lower thanU(s),
that is a contradiction. Therefore,pref(Q∗, s) 6< U(s) and sopref(Q∗, s) = U(s).
If s and s′ have tuples in common, by construction ofQ∗, pref(Q∗, s′) ≤ U(s).
In such a case, since we have shown above thatpref(Q∗, s) = U(s), and since we
are assuming that there is a solutions′ such thatpref(Q∗, s′) > pref(Q∗, s), then
U(s) ≥ pref(Q∗, s′) > pref(Q∗, s) = U(s), and so we have a contradiction. Ifs
ands′ have no tuples in common, then, for every scenarioQ, pref(Q, s′) ≥ L(s′) =
pref(Q∗, s′) > pref(Q∗, s) = U(s) ≥ pref(Q, s), and sos 6∈ PO(P ). 2

In Theorem 10 we have characterized possibly optimal solutions for IVSCSPs with
idempotent c-semiring and for IVCSPs with strictly monotonic c-semiring. The char-
acterization of possibly optimal solutions for IVSCSPs with a c-semiring that is neither
idempotent nor strictly monotonic is an open question.

7.4 Possibly of at least preferenceα solutions

We know, by Proposition 8, that, given an IVSCSPP and an assignments, s is in
Pos(P, α) if and only if α ≤ U(s). Thus, to test whether a solution is inPos(P, α), it
is enough to check this condition, that takes linear time.

If the c-semiring is idempotent, to find a solution inPos(P, α) it is sufficient to
solve one CSP, as shown in the following theorem.

Theorem 11. Given an IVSCSPP over an idempotent c-semiring and an assignment
s, s ∈ Pos(P, α) iff it is a solution ofcutα(bs(P )).

Proof: We first show that, ifs is a solution ofcutα(bs(P )), thens ∈ Pos(P, α).
If s is a solution ofcutα(bs(P )), then, sincecutα(bs(P )) is the CSP obtained from
the best scenario by allowing only tuples with preference greater than or equal toα,
pref(bs(P ), s) ≥ α. Hence, in the best scenarios has preference greater than or equal
to α, hences ∈ Pos(P, α).

To conclude the proof, we show that ifs ∈ Pos(P, α), thens is a solution of
cutα(bs(P )). If s ∈ Pos(P, α), then there is a scenario, sayQi, wherepref(Qi, s) ≥
α. Hence, since the preference of a solution in a scenario is always lower than or equal
to its preference in the best scenario, thenpref(bs(P ), s) ≥ pref(Qi, s) ≥ α, and sos
is a solution ofcutα(bs(P )). 2
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By Proposition 8, we know thatPos(P, α∗) = UO(P ). Therefore, to find a solution
in Pos(P, α∗), it is sufficient to find an optimal solution of the best scenario of P , i.e.,
a solution inUO(P ), and thus to solve one SCSP.

7.5 Finding and testing optimality notions: summary of the results

We have provided algorithms to find solutions according to the various optimality no-
tions and also to test whether a given solution is optimal. Inmost of the cases, these
algorithms amounts to solving a soft constraint problem as shown in Table 2.

Table 2.Finding and testing optimal solutions.

Optimality notion c-semiring Finding Testing

LO(P ) generic 1 SCSP 1SCSP
UO(P ) generic 1 SCSP 1SCSP

IO(P )
generic 1 SCSP 3 SCSPs

idempotent 1SCSP 1CSP
LLO(P ) strictly monotonic 1 SCSP 1 SCSP
WID(P ) idempotent 2 SCSPs + 1 CSP 2SCSPs

ID(P )
generic 2 SCSPs 2 SCSPs

idempotent 1 SCSP + 1 CSP1 SCSP + 1 CSP

NO(P )
idempotent 2 SCSPs + 2 CSPs2 SCSPs + 1 CSP

strictly monotonic 1 SCSP 1 SCSP

Nec(P, α)
generic 1 SCSP linear time

idempotent 1 CSP linear time
Nec(P, α∗) generic 1 SCSP linear time

PO(P )
idempotent 1 SCSP 1 SCSP

strictly monotonic 1 SCSP 1 SCSP
Pos(P, α) idempotent 1 CSP linear time
Pos(P, α∗) generic 1 SCSP linear time

8 Necessary and possible dominance

Besides finding or testing for optimality, it may sometimes be useful to know if a so-
lution dominates another one. We will consider four notionsof dominance, which are
related to the general optimality notions defined above.

Definition 15 ((strictly) dominance).Given a scenarioQ, a solutions strictly domi-
nates (resp., dominates) a solutions′ if and only ifpref(Q, s) > pref(Q, s′) (resp.,pref(Q,
s) ≥ pref(Q, s′)) in the ordering of the considered c-semiring.

Definition 16 (necessarily (strictly) dominance).Given an IVSCSPP and two solu-
tionss ands′ of P , s necessarily strictly dominates (resp., necessarily dominates)s′ if
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and only if, in all scenarios,s strictly dominates (resp., dominates)s′. We will denote
with NDTOP (P ) (resp.,NSDTOP (P )) the undominated elements in the binary re-
lation given by the necessarily dominance (resp., strictlynecessarily dominance).

Definition 17 (possibly (strictly) dominance).Given an IVSCSPP and two solutions
s ands′ of P , s possibly strictly dominates (resp., possibly dominates)s′ if and only if
there is at least one scenario wheres strictly dominates (resp., dominates)s′. We will
denote with withPDTOP (P ) (resp.,PSDTOP (P )) the undominated elements of the
binary relation given by the possibly dominance (resp., strictly possible dominance).

In the IVSCSPP of Figure 1,s1 necessarily strictly dominatess8. In the best sce-
nario, s2 strictly dominatess4, while in the worst scenarios4 strictly dominatess2.
Thuss2 possibly strictly dominatess4, and viceversa.

Theorem 12. Consider an IVSCSPP . The following results hold:

– NO(P ) ⊆ NDTOP (P ) ⊆ NSDTOP (P ).
– NSDTOP (P ) ⊇ PO(P ).
– If the c-semiring is strictly monotonic or idempotent, thenNDTOP (P ) ⊆ PO(P ).
– If the c-semiring is strictly monotonic,NSDTOP (P ) = PO(P ).
– The setsPSDTOP (P ) andPDTOP (P ) may be empty.
– If PDTOP (P ) 6= ∅, then|PDTOP (P )| = 1.
– PDTOP (P ) ⊆ PSDTOP (P ) = NO(P ).

Proof: Let s be a solution ofP .
We first show thatNO(P ) ⊆ NDTOP (P ). If s 6∈ NDTOP (P ), then there a

solutions′ that necessarily dominatess, and so there is a scenarioQ wheres′ strictly
dominatess, that is,pref(Q, s′) > pref(Q, s). Hence,s is not optimal in that scenario
and sos 6∈ NO(P ).

We now show thatNDTOP (P ) ⊆ NSDTOP (P ). If s 6∈ NSDTOP (P ), then
there is a solutions′ that necessarily strictly dominatess and sos′ necessarily dominates
s and thuss 6∈ NDTOP (P ).

We now show thatPO ⊆ NSDTOP (P ). If s 6∈ NSDTOP (P ), then there is a
solutions′ that necessarily strictly dominatess, hence, for every scenarioQ, s′ strictly
dominatess, that is, for every scenarioQ, pref(Q, s′) > pref(Q, s), hence for every
scenarioQ, s is not optimal, hences 6∈ PO(P ).

To prove thatNDTOP (P ) ⊆ PO(P ) whenP is idempotent, we will show that if
s ∈ NDTOP (P ) thens is optimal in the scenarioQs, where every tuple ins is set to
its maximum preference value and all other tuples are set to their minimum preference
value. This then implies thats is possibly optimal, and hence inPO(P ), as required.

Suppose, thats ∈ NDTOP (P ) is not optimal in the scenarioQs, so there exists
some solutions′ with pref(Qs, s′) > pref(Qs, s). Sinces ∈ NDTOP (P ) there
exists a scenarioQ with pref(Q, s) > pref(Q, s′) or elses′ would necessarily dom-
inate s. We havepref(Qs, s′) > pref(Q, s′). Since the combination is minimum,
this means that the preference value of the worst tuple ofs′ (i.e., of the worst con-
straint) is worse inQ than it is inQs. The definition ofQs means that this tuple is
also ins′ (i.e., s ands′ agree on the scope of the worst constraint). This implies that
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pref(Q, s) ≤ pref(Q, s′), which contradictspref(Q, s) > pref(Q, s′), completing
the proof thatNDTOP (P ) ⊆ PO(P ) whenP is idempotent.

If the c-semiring is strictly monotonic,NSDTOP (P ) = PO(P ). We have al-
ready shown thatNSDTOP (P ) ⊇ PO(P ). We now show thatNSDTOP (P ) ⊆
PO(P ). If s ∈ NSDTOP (P ), then there is no solutions′ such that for every sce-
narioQi, pref(Qi, s

′) > pref(Qi, s). Hence, for everys′, there is a scenarioQi where
pref(Qi, s

′) ≤ pref(Qi, s). By following the same reasoning done above, it is possible
to show that,∀s′, pref(Qs, s′) ≤ pref(Qs, s). Therefore,s is optimal inQs and so
s ∈ PO(P ).

Furthermore, if the c-semiring is strictly monotonic, thenwe haveNDTOP (P ) ⊆
PO(P ) sinceNDTOP (P ) ⊆ NSDTOP (P ) = PO(P ).

PSDTOP (P ) andPDTOP (P ) may be empty,because there can be cycles in
the possibly dominatesandpossibly strictly dominatesrelations. Let us consider the
solutionss2 ands4 in the running example.s2 has preference interval[0.5, 0.9] ands4

has preference interval[0.6, 0.8]. Then,s2 possibly strictly dominates (and so possibly
dominates)s4, sinces2 strictly dominatess4 in the best scenario, ands4 possibly
strictly dominates (and so possibly dominates)s2, sinces4 strictly dominatess2 in the
worst scenario.

If PDTOP (P ) 6= ∅, then|PDTOP (P )| = 1. In fact, assume thatPDTOP (P )
contains two complete assignmentss1 ands2. If s1 ands2 are inPDTOP (P ), thens1

does not possibly dominates2 ands2 does not possibly dominates1. Sinces1 does not
possibly dominates2, then for every scenarioQ of P , pref(Q, s1) < pref(Q, s2), and,
sinces2 does not possibly dominates1, then for every scenarioQ of P , pref(Q, s2) <
pref(Q, s1), that is a contradiction.

PSDTOP (P ) = NO(P ). In fact,s ∈ PSDTOP (P ) iff there is no solutions′

such thats′ possibly strictly dominatess, iff there is no solutions′ that strictly dom-
inatess, iff there is no solutions′ such thatpref(Q, s′) > pref(Q, s) for some sce-
nario Q, iff for every solutions′, pref(Q, s) ≥ pref(Q, s′) for every scenarioQ, iff
s ∈ NO(P ).

PDTOP (P ) ⊆ PSDTOP (P ). In fact, if s 6∈ PSDTOP (P ), then there is a
solutions′ that possibly strictly dominatess and thuss′ possibly dominatess and so
s 6∈ PDTOP (P ). 2

Summarizing, given an IVSCSPP with an idempotent or a strictly monotonic c-
semiring, we have the following inclusions, that are shown in Figure 4:PDTOP (P ) ⊆
PSDTOP (P ) = NO(P ) ⊆ NDTOP (P ) ⊆ PO(P ) ⊆ NSDTOP (P ). Moreover,
when the c-semiring is strictly monotonic, we have alsoNSDTOP (P ) = PO(P ).
Therefore, the set of the necessarily optimal solutions ofP coincides with the set of the
undominated elements of the binary relation given by the possibly strictly dominance
overP , both if the c-semiring is strictly monotonic and if it idempotent. Moreover, the
set of the possibly optimal solutions ofP coincides with the set of the undominated
elements of the binary relation given by the necessarily strictly dominance overP , if
the c-semiring is strictly monotonic.

To test ifs possibly strictly dominates (resp., possibly dominates)s′ we can set each
interval associated withs but not withs′ to its upper bound; letλ be the combination
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Fig. 4. Relation between undominated elements of the binary relation given by the (strictly) nec-
essarily dominance and the undominated elements of the binary relation given by the (strictly)
possibly dominance for an IVSCSPP defined over an idempotent or a strictly monotonic c-
semiring.

of these values. Then we set each interval associated withs′ but not withs to its lower
bound; letµ be the combination of these values. Finally, we compare the preference
values ofs ands′, by testing if the conditionλ × u1 × · · · × uk > µ × u1 × · · · × uk

(resp.,λ × u1 × · · · × uk ≥ µ × u1 × · · · × uk ) holds for any selections of values
u1, . . . , uk in the intervals of boths ands′. If we have strict monotonicity, testing this
condition amounts to testing ifλ > µ (resp.,λ ≥ µ). If we have idempotence, we can
replace eachui with its upper bound, and then test the condition.

To test ifs necessarily dominatess′, we first check ifs possibly strictly dominates
s′. Then:

– If s possibly strictly dominatess′, then there is a scenario wheres strictly dominates
s′ and sos′ does not necessarily dominates. Then, we check ifs′ possibly strictly
dominatess. If so, then there is a scenario wheres′ strictly dominatess, hence
s does not necessarily dominates′. Therefore,s ands′ are incomparable w.r.t. the
necessarily dominance relation and so we conclude negatively. Otherwise, ifs′ does
not possibly strictly dominatess, then, for every scenario,s dominatess′ and, since,
by hypothesis, there is a scenario wheres strictly dominatess′, thens necessarily
dominatess′ and so we conclude positively.

– If s does not possibly strictly dominates′, then, for every scenario,s′ dominatess,
i.e., for every scenarioQ, pref(Q, s′) ≥ pref(Q, s). Then, we check ifs′ possibly
strictly dominatess. If so, thens′ necessarily dominatess and so we conclude
negatively. Otherwise, ifs′ does not possibly strictly dominatess, then, for every
scenario,s dominatess′, i.e., for every scenarioQ, pref(Q, s) ≥ pref(Q, s′), and
so, since by the hypothesis abovepref(Q, s′) ≥ pref(Q, s), we have that, for every
scenarioQ, pref(Q, s) = pref(Q, s′), hences does not necessarily dominatess′

and so we conclude negatively.

To test if s necessarily strictly dominatess′, we follow a reasoning similar to the
one presented above, but we consider the possibly dominancerelation instead of the
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possibly strictly dominance relation. Moreover, whens does not possibly dominates′

(i.e., the second item above), we can conclude immediately negatively, since in this case
s′ necessarily strictly dominatess.

9 Multiple intervals

One may wonder if IVSCSPs would be more expressive if we allowed not just a single
preference interval for each assignment, but a set of such intervals. For example, instead
of giving us the interval [0.1, 0.8], a user could be more precise and give us [0.1,0.5]
and [0.7,0.8]. This would reduce the uncertainty of the problem. We will now show that
all the interval-based optimality notions and all the scenario-based optimality notions
that guarantee a certain level of preference would give the same set of optimals in this
more general setting. Moreover, when the c-semiring is strictly monotonic, also the
possibly and necessary optimality notions give the same setof optimals. Also, when
the c-semiring is idempotent, the necessary optimality notions give the same set of
optimals. In the other cases, we are however able to find approximations of the possibly
and necessarily optimal solutions. More precisely, we havethe following results, that
are also summarized in Table 3.

Theorem 13. Consider an IVSCSPP . Take now a new problemP ′ with the same vari-
ables, domains, and constraint topology asP , where, for each interval[l, u] in P , there
is a set of intervals[l, u1], [l2, u2], . . . , [ln, u] such thatui < li+1 for i = 1, . . . , n − 1.
Then:

– X(P ) = X(P ′) for X ∈ {LO, UO, IO, LLO, ULO, WID, ID}.
– Nec(P, α) = Nec(P ′, α) for all α.
– Pos(P, α) = Pos(P ′, α) for all α.
– NO(P ′) ⊇ NO(P ).
– PO(P ′) ⊆ PO(P ).
– If the c-semiring is strictly monotonic,NO(P ) = NO(P ′) andPO(P ) = PO(P ′).
– If the c-semiring is idempotent,NO(P ) = NO(P ′).

Proof: To show thatX(P ) = X(P ′) for X ∈ {LO, UO, IO, LLO, ULO, WID, ID},
it is sufficient to recall that all solutions in{LO, UO, IO, LLO, ULO, WID, ID} are
computed by considering for every tuple associated with interval [l, u] only the lower
boundl and the upper boundu that, by construction ofP ′, are the same inP andP ′.

Let s be a complete assignment ofP . Let us consider a genericα. To show that
Nec(P, α) = Nec(P ′, α), we first show thatNec(P, α) ⊆ Nec(P ′, α). If s ∈ Nec(P,
α), then, for every scenarioQ of P , pref(Q, s) ≥ α. Since the set of the scenarios ofP
is a superset of the scenarios ofP ′, this holds also for every scenarios ofP ′. Therefore,
s ∈ Nec(P ′, α). We now show thatNec(P ′, α) ⊆ Nec(P, α). If s 6∈ Nec(P, α), then
pref(Q, s) < α for some scenarioQ of P and this holds also for the worst scenario,
sincepref(ws(P ), s) ≤ pref(Q, s) < α. Since the worst scenario is one of the scenario
of P ′, thens 6∈ Nec(P ′, α).

To show thatPos(P, α) = Pos(P ′, α), we first show thatPos(P ′, α) ⊆ Pos(P, α).
If s ∈ Pos(P ′, α), then for some scenarioQ of P ′, pref(Q, s) ≥ α. Since ev-
ery scenario ofP ′ is also a scenario ofP , thens ∈ Pos(P, α). We now show that
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Pos(P, α) ⊆ Pos(P ′, α). If s ∈ Pos(P, α), thenpref(Q, s) ≥ α for some scenarioQ
of P , and this holds also for the best scenario, sincepref(bs(P ), s) ≥ pref(Q, s) ≥ α.
Since the best scenario is one of the scenarios ofP ′, thens ∈ Pos(P ′, α).

Since the set of the scenarios ofP is a superset of the scenarios ofP ′, thenNO(P ) ⊆
NO(P ′). In fact, if s ∈ NO(P ), then it is optimal for every scenario ofP and also for
every scenario ofP ′.

Moreover,PO(P ′) ⊆ PO(P ). In fact, if s ∈ PO(P ′), then there is a scenario
of P ′ wheres is optimal and, as every scenario ofP ′ is also a scenario ofP , then
s ∈ PO(P ).

If the c-semiring is strictly monotonic, thenNO(P ) = NO(P ′). By Theorem 8, we
know that, if the c-semiring is strictly monotonic, thens ∈ NO(P ) iff s ∈ Opt(Qs),
whereQs is the scenario where every preference associated to a tupleof s is set to
its lower bound and the preferences of all other tuples are set to their upper bound.
SinceQs is one of the scenarios ofP ′, it is possible to show thats ∈ NO(P ′) iff
s ∈ Opt(Qs), by following the same proof of Theorem 8. Hence,NO(P ′) = NO(P ).

Similarly, if the c-semiring is strictly monotonic, thenPO(P ) = PO(P ′). By The-
orem 10, we know that, if the c-semiring is strictly monotonic, thens ∈ PO(P ) iff
s ∈ Opt(Qs), whereQs is the scenario where all the preferences of tuples ins are
set to their upper bound and all other tuples are associated to their lower bound. Since
Qs is one of the scenarios ofP ′, it is possible to show, by following the same proof of
Theorem 10, thats ∈ PO(P ) iff s ∈ Opt(Qs).

If the c-semiring is idempotent,NO(P ) = NO(P ′). In fact, by Theorem 8, we
know thats ∈ NO(P ) iff for every s′, s ∈ Opt(Qs′

), whereQs′

is the scenario
where we put every tuple ofs′ to its upper bound and every other tuple to its lower
bound. Since, for everys′, Qs′

is a scenario ofP ′, then by following the same proof
of Theorem 8, we can show thats ∈ NO(P ′) iff for every s′, s ∈ Opt(Qs′

), Hence,
NO(P ′) = NO(P ). 2

Table 3. Comparison of the optimality sets of problemsP (with single intervals) andP ′ (with
multiple intervals), as defined in Theorem 13.

Optimality notion c-semiring Comparison

LO generic LO(P ) = LO(P ′)

UO generic UO(P ) = UO(P ′)

IO generic IO(P ) = IO(P ′)

LLO generic LLO(P ) = LLO(P ′)

ULO generic ULO(P ) = ULO(P ′)

Nec(α) generic Nec(P, α) = Nec(P ′, α)

Pos(α) generic Pos(P, α) = Pos(P ′, α)

NO

generic NO(P ) ⊆ NO(P ′)
idempotent NO(P ) = NO(P ′)

strictly monotonic NO(P ) = NO(P ′)

PO
generic PO(P ) ⊇ PO(P ′)

strictly monotonic PO(P ) = PO(P ′)
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10 Experimental results

10.1 Instance generator

We randomly generated fuzzy IVMSPs (as defined in Section 5.7) according to the
following parameters:

– m: number of meetings (default 12);
– n: number of agents (default 5);
– k: number of meetings per agent (default 3);
– l: number of time slots (default 10);
– min andmax: minimal (default 1) and maximal (default 2) distance (in time slots)

between two locations;
– i: percentage of preference intervals (default 30%).

Given such parameters, we generate an IVSCSP withm variables, representing the
meetings, each with domain of sizel. The domain values1, . . . , l represent the time
slots, that are assumed to all have the same length equal to one time unit, and to be
adjacent to each other. Thus, for example, time sloti ends when time sloti + 1 starts.
Given two time slotsi andj > i, they can be used for two meetings only if the distance
between their locations (see later) is at mostj − i − 1.

For each of then agents, we generate randomlyk integers between 1 andm, rep-
resenting the meetings he needs to participate in. Also, foreach pair of time slots, we
randomly generate a integer betweenmin andmax that represents the time needed to
go from one location to the other one. This will be called the distance table.

Given two meetings, if there is at least one agent who needs toparticipate in both,
we generate a binary constraint between the corresponding variables. Such a constraint
is satisfied by all pairs of time slots that are compatible according to the distance table.

We then generate the preferences over the domain values and the compatible pairs
in the binary constraints, by randomly generating a number in (0, 1] or an interval over
(0, 1], according to the parameteri.

As an example, assume to havem = 5, n = 3, k = 2, l = 5, min = 1, max = 2,
andi = 30. According to these parameters, we generate a IVMSP with thefollowing
features:

– 5 meetings:m1, m2, m3, m4, andm5;
– 3 agents:a1, a2, anda3;
– 5 time slots:t1, . . . , t5;
– agents’ participation to meetings: we randomly generate2 meetings for each agent,

for example
• a1 must participate in meetingsm1 andm2;
• a2 must participate in meetingsm4 andm5;
• a3 must participate in meetingsm2 andm3;

– distance table: we randomly generate its values, for example as in Table 4;
– we randomly generate the preferences associated to domain values and compatible

pairs in the constraints, in a way that 30% of the preferencesare preference intervals
contained in(0, 1] and 70% of the preferences are single values in(0, 1].
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Table 4.Distance between meeting locations.

1 2 3 4 5

1 0 1 2 1 2
2 1 0 2 1 2
3 2 2 0 1 1
4 1 1 1 0 2
5 2 2 1 2 0

In this example, a feasible meeting scheduling is obtained by assigning the follow-
ing time slots to meetings:(m1, t3), (m2, t1), (m3, t5), (m4, t2), (m5, t5). The prefer-
ence interval for such a scheduling will depend on the preference values in the domains
and constraints. More precisely, as we use preference values between 0 and 1 and we
adopt the fuzzy criteria, the preference interval will be[l, u], wherel (resp.,u) is the
minimum among all the lower (resp., upper) bounds of the preference intervals selected
by this assignment in the constraints.

10.2 Experimental tests

We implemented our algorithms using a Java (version 1.6.007) c-semiring based frame-
work and the Choco constraint programming toolkit (version1.2.06). Experiments were
run on AMD Opteron 2.3GHz machines with 2GB of RAM.

We used 4 different test sets, each one generated varying in turn n, m, k, andi,
while fixing the others to their default values. Moreover,α, i.e., the minimum level of
preference used inPos(P, α) andNec(P, α), is always 0.5.2 The sample size is 50 for
each data point.

Figure 5(a) shows the execution time (measured in milliseconds) of the algorithms
to find a solution, belonging to each type of the interval-based optimality notions, as a
function of the number of agents. We can notice that there is apeak when the number
of agents is 8, which represents problems with a small numberof solutions. With more
agents, the problems have no solution, while with a smaller number of agents there are
many solutions. In both such cases, it is easy to find a feasible meeting scheduling.

For the more general optimality notions, Figure 5(b) shows that the behavior is the
same except for POS(0.5) and NEC(0.5) because, in these algorithms, we need to solve
a CSP, while in the other algorithms we solve at least one SCSP. In fact, POS(0.5) and
NEC(0.5) takes approximately the same time no matter the number of agents in the
problem.

Figures 5(c) and 5(d) show the performance of the algorithmsfor all optimality no-
tions, as a function of the number of meetings per agent. Since LO(P ) = Nec(P, α∗)
andUO(P ) = Pos(P, α∗), these curves in the two graphs coincide. The lines corre-
sponding to the WID algorithm in Figure 5(c) and to the NO algorithm in Figure 5(d)
are similar, and are above the others in both figures, becausethe WID algorithm needs
to find the lower and upper optimal preference, to perform twocuts, and to solve the

2 In the following figures, we will omit writingP in the names of the algorithms.

34



 0

 1000

 2000

 3000

 4000

 5000

 4  5  6  7  8  9  10

ex
ec

ut
io

n 
tim

e 
(m

se
c)

agents

 LO/IO
 UO

 WID
 ID

(a)

 0

 1000

 2000

 3000

 4000

 5000

 4  5  6  7  8  9  10

ex
ec

ut
io

n 
tim

e 
(m

se
c)

agents

 NO
 NEC(0.5)
 NEC(α∗ )

 PO/POS(α∗ )
 POS(0.5)

(b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2  3  4  5

ex
ec

ut
io

n 
tim

e 
(m

se
c)

meetings per agent

 LO/IO
 UO

 WID
 ID

(c)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2  3  4  5

ex
ec

ut
io

n 
tim

e 
(m

se
c)

meetings per agent

 NO
 NEC(0.5)
 NEC(α∗ )

 PO/POS(α∗ )
 POS(0.5)

(d)

Fig. 5. Execution time (msec.) as a function of number of agents and meetings per agent.

CSP obtained combining the cuts, while the other algorithms(expect NO) only need to
solve an SCSP. Moreover, the WID algorithm is a sub-routine of the NO algorithm.

Notice that finding solutions in NO,Nec(P, α∗), orPOS(P, α∗) is more expensive
than finding solutions inNec(P, 0.5), orPOS(P, 0.5), as expected sinceα∗ andα∗ are
the best preference levels that one can reach.

The peak at 4 meetings per agents, shown in Figures 5(c) and 5(d), corresponds to
problems which are more difficult to solve because they have very few solutions. This
is analogous to what we have noticed in Figures 5(a) and 5(b) with the peak at 8 agents.

Figures 6(a) and 6(b) show that the execution time increasesexponentially when the
number of meetings (i.e., the number of variables in the problem) arises. In this case,
the execution time is mainly influenced by the size of the problems, no matter which
algorithm is used.

Figures 6(c) and 6(d) show that the execution time is not influenced by the amount
of intervals in the problem. As in all the other graphs, finding a WID or an NO solution
is more expensive than finding other kinds of solutions. The two peaks at 20% and 60%
of intervals are due to two very hard problems inside the testset.

Figure 7(a) and Figure 7(b) consider those optimality sets that can be empty (that
is, WID, ID, and NO) and show the percentage of times a solution of a certain kind
exists. Clearly, when there is no solution, WID, ID and NO contain all assignments
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Fig. 6. Execution time (msec.) as a function of the number of meetings and the percentage of
intervals.

and coincide. This is the case when the number of meetings peragents is larger (more
than 3 meetings per agent in our settings). When we consider less constrained problems
with 2-3 meetings per agent, as expected, we have more WID solutions than ID and NO
solutions. Notice that the size of WID, ID and NO varies very little when the number
of agents is between 4 and 8 (Figure 7(b)). However, when sucha number is between
8 to 10, the size of the solution sets is larger because there are more instances with no
solution. If we vary the number of meetings, we can see in Figure 8(a) that the number
of such a kind of solutions tends to decrease slightly as the number of variables (i.e.
meetings) arises. In fact, a larger number of variables may imply a larger number of
constraints, which may imply a smaller number of WID, ID, andNO solutions.

In figure 8(b) we consider instances where we vary the percentage of intervals from
10 to 100%. When incompleteness is higher than 40%, most of the instances don’t have
WID, ID, and NO solutions. This is predictable, because a larger number of intervals
makes it less probable the existence of solutions that are optimal in all scenarios, since
the number of scenarios is larger.
11 Final considerations and future work

Summarizing, given an IVSCSPP , the solutions inNO(P ) are certainly the most
attractive, as they are the best ones in every scenario. However, if there is none, we
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Fig. 7. Existence of WID, ID, and NO solution, varying agents and meetings per agent.
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Fig. 8. Existence of WID, ID, and NO solution, varying meetings and intervals.

can look for solutions inNec(P, α∗) (which coincide with solutions inLO(P )), which
guarantee a preference levelα∗ in all scenarios. Ifα∗ is too low, we can consider other
notions of optimality; for example, if we feel optimistic, we can consider the solutions in
Pos(P, α∗)(which coincide with solutions inUO(P )): they guarantee that it is possible
to reach a higher level of preference, although not in all scenarios.

If we allow users to associate to each partial assignment in the constraints not just
a single interval, but a set of multiple intervals, this would reduce the uncertainty of
the problem. However, when the c-semiring is strictly monotonic (resp., idempotent),
this added generality does not change the set of the optimal solutions in any of the
considered notions (resp., in any of the considered notionswith the exception of the
possibly optimal notions). This means that a level of precision greater than a single
interval does not add useful information when looking for anoptimal solution.

This paper considers only totally ordered preferences. IVSCSPs can be defined also
for a partially ordered setting. We plan to extend the analysis of the optimality notions
also to this more general case. We also intend to define dedicated solving or propagat-
ing schemes to tackle IVSCSPs rather than relying on existing solvers for SCSPs. It
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is interesting also to consider the addition of probabilitydistributions over preference
intervals and to interleave search with elicitation as in [6, 7].
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