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Abstract— In this work, we investigate tennis stroke recognition
using a single inertial measuring unit attached to a player’s
forearm during a competitive match. This paper evaluates the
best approach for stroke detection using either accelerometers,
gyroscopes or magnetometers, which are embedded into the
inertial measuring unit. This work concludes what is the op-
timal training data set for stroke classification and proves that
classifiers can perform well when tested on players who were not
used to train the classifier. This work provides a significant step
forward for our overall goal, which is to develop next generation
sports coaching tools using both inertial and visual sensors in an
instrumented indoor sporting environment.

I. INTRODUCTION

In this paper, we describe our approach to automatically
index a tennis match based on strokes played using a single
Wireless Inertial Measuring Unit (WIMU), which is attached
to a tennis player’s forearm (as shown in Figure 3). We classify
the main types of tennis strokes (forehand, backhand and
serves) played in a competitive match. Each WIMU contains
accelerometer, gyroscope and magnetometer sensors, aligned
with three principle axes. In our previous work on tennis
stroke recognition, we classified the accelerometer data from
the WIMUs only and the data set used was produced in a
supervised environment, where several professional players
performed a series of strokes from a fixed position [10].
This paper delivers a new contribution, which can classify
tennis strokes performed in a competitive match, by players
of different levels using either accelerometers, magnetometers
or gyroscopes. The two-level classification process used in this
paper can filter any player movements where they are not
performing a tennis stroke whilst the second step classifies
candidate tennis strokes into serves, backhands or forehands.
We evaluate the accuracy of using accelerometer, gyroscope
and magnetometer sensors to perform tennis stroke classifica-
tion on previously unseen players.

Automatic detection of tennis events is necessary to reduce
the time a coach will spend manually indexing a recorded
match and the work in this paper is part of a wider system,
which we have developed to automatically segment a tennis
match into key events using both inertial and visual sensors
in an instrumented environment. In previous publications, we
outlined our work for detecting key tennis events in a match
using visual sensors [5] [8] [10] and also on the development
of a suitable sports coaching system [6] [7], where a coach

can quickly retrieve key events from a tennis match. However
this paper describes how inertial sensing can efficiently index
tennis strokes. The advantage of using inertial sensing to index
tennis strokes is of course that, visual sensing can suffer from
self occlusion and player orientation issues, which are inherent
in wide area scene analysis.

II. RELATED WORK

Lightweight inertial sensors are cheap and ubiquitous. Re-
search into such sensors has focused on recognition of human
actions. For example, microphones are combined with three-
axis accelerometers by Ward et al. to determine the activities
of a person in maintenance and assembly tasks [13].

There has been plenty previous work on tennis stroke recog-
nition using visual sensing [5] [8] [4], but the research field
of stroke classification using inertial sensors has not been as
active. However, one such contribution from [3], investigates
the possibility of using wearable gyroscope sensors for skill
assessment and skill acquisition in a tennis serve. A marker-
based method using the vicon motion capture system [2] was
used to calculate the angular velocity of the upper arm internal
rotation, wrist flexion, and shoulder rotation for a range of ath-
letes during the first serve in tennis. Participants from amateur
to elite participated in this study and results showed that the
peak values of the upper arm internal rotation, wrist flexion,
and shoulder rotation just before impact are indicative in
classifying the participants’ skill level. The correct positioning
of three gyroscope sensors on the player’s arm, to detect the
same trends as those from the marker-based methods were then
determined. As a result [3] envisaged that gyroscope sensors
could be used for skill assessment and skill acquisition for a
first tennis serve.

In our previous work to detect tennis strokes in an instru-
mented environment [10], we used visual and inertial sensors
to recognise tennis strokes played from a fixed position on a
tennis court. The cameras were positioned behind the player
and action recognition was achieved using pie features of
the players silhouette. Accelerometer magnitudes were also
used to detect the temporal locations where the ball and
racket collide and a W-second window was extracted from
the accelerometer data and classified into strokes played using
either Support Vector Machine(SVM) classifiers or K-means
nearest neighbor clustering.



III. INFRASTRUCTURE

In collaboration with Tennis Ireland [1], the national gov-
erning body for Tennis in Ireland, we have instrumented an
indoor tennis-court with a data-gathering infrastructure for use
as a test-bed for sports and health research. This infrastructure
includes overhead and baseline IP cameras with pan, tilt and
zoom capability from which a tennis match can be digitally
captured. In addition, the capture framework uses a custom,
Tyndall developed TennisSense WIMU system which is based
on Tyndall’s 25mm Mote platform [11]. This provides a
small, wearable and low cost method for instrumenting human
subjects to provide high speed motion data [10]. This system
consists of up to 6 Wearable WIMUs connecting wirelessly
to a base station using a 2.4GHz RF system, which in turn
connects to the PC over USB, appearing as a serial device
and delivering data as a simple text stream [9]. In this work
we focus on using a single WIMU placed onto the player’s
forearm during a competitive match as shown in Figure 3.

IV. SYSTEM OVERVIEW

In this section, we give an overview of our tennis stroke
detection system using inertial measuring units only. As each
WIMU contains accelerometers, gyroscopes and magnetome-
ters, we can detect strokes played using any of the three
sensors.

A. Tennis Stroke Detection

A WIMU sensor placed on a players dominant arm will
register a spike in its accelerometer data due to the impact
of the ball on the tennis racket. Detecting such data-spikes
provides the temporal location of tennis strokes, as shown in
Figure 1. To detect ball contact impacts, we first compute
the acceleration magnitude for each sensor sample, simply
by taking the length of the 3D acceleration vector. We select
the value with the largest absolute magnitude in the data. A
W-second window around this peak is extracted to represent
a candidate stroke in progress. Adopting a greedy approach,
this window is removed from the data and the procedure is
then repeated to find the remaining candidate strokes, until
we have extracted all candidate strokes which generate an
accelerometer magnitude of 3g or above. Even the slightest
of ball contact will always generate a magnitude of at least 3g
in force, so this is a suitable threshold for detecting candidate
strokes.

However, there are other actions which a tennis player
will perform during a match, that will generate a spike
in accelerometer magnitude and therefore it is necessary to
identify which of these spikes are candidate tennis strokes
and which spikes are generated from a player performing a
non tennis stroke. A non-stroke action can include using the
racket to lift a ball of the court surface or twirling the racket
in a players hands whilst waiting on an opponent to serve,
which is in fact common. Also problematic are activities such
as running, practice swings and arm movements performed
during rest periods. Its for this reason that we use a two level
classification system to classify candidate strokes.

Fig. 1. Tennis stroke detection using accelerometer magnitude on dominant
arm: red lines show detected strokes.

B. Stroke Classification

The classification of tennis strokes is accomplished in two
steps as shown in Figure 2. The top level of this process
filters non-stroke events, which generate an accelerometer
magnitude from various arm movements during a match. The
second stage of the classification uses either accelerometers,
magnetometers or gyroscopes to classify all the candidate
strokes into either serves, backhands or forehands.

Fig. 2. Two-level classification: Step one filters noisy data and step two
classifies the remaining candidate strokes. Both steps use naive Bayesian
classifiers

1) Filtering Non-Tennis Stroke Events: To filter non-stroke
events, we use the accelerometer data from 8 players during a
tennis match to create two global feature vectors, one global
feature vector contained a mixture of serves, backhands and
forehands as played in a competitive match. The second global
feature vector contained all non-stroke events. The model was
trained using a naive Bayesian classifiers, which are known to
be effective at classifying instances with a high attribute list
and have been successfully employed as binary classifiers in
the past to filter email spam [12].

Each W-second accelerometer instance that had a magnitude
of 3g or greater was feed into the binary classifier and any
instance which was predicted as a non-stroke event was filtered



from the dataset. The remaining candidate strokes were passed
to level two of the classification process to predict if the stroke
is a backhand, forehand or serve.

Fig. 3. WIMU as positioned on a player

2) Candidate Stroke Classification: To classify candidate
strokes into serves, backhands and forehands, we first trained
three classifiers for each stroke. For each serve, we trained
a classifier with accelerometer data from a subset of serves
by various players, then a second serve classifier was trained
with gyroscope data of serves and a third serve classifier was
trained with the magnetometer data for serves. Similarly, three
classifiers were built for forehands and backhands.

Having filtered out all noise from the data we have the
temporal locations of all candidate strokes that a single player
has performed during a match. Using the temporal locations
we can select each candidate stroke in turn. For each candidate
stroke, we then select the accelerometer data at this time
and compare it to the serve classifier, forehand classifier and
backhand classifier for the accelerometer data. The model is
then able to predict if the candidate stroke belongs to the
serve class, forehand class or backhand class. An identical
approach is used for employ the gyroscopes and magnetometer
classifiers.

V. EXPERIMENTS

In this section we discuss the main experiments and also
the results and findings from these experiments

A. Filtering Non-Stroke Events

Step one in the two stage classification process detects
which spikes in the accelerometer data are likely to be tennis
strokes and which can be considered non-strokes. To verify the
accuracy of this binary classifier, we performed 10 fold cross
validation on the entire dataset of accelerometer instances from
all players which were above 3g in magnitude.

As the results prove, this filtering process has a very high
accuracy rate at removing any non-stroke events. This filtering
is necessary to create accurate candidate stroke classification

in step 2 of this classification process. With respect to Table
I, precision is the number of correct results returned, divided
by the number of all returned results. Recall is the number of
correctly classified strokes divided by the number of results
that should have been returned, while Acc. is the percentage
measure of the correctly classified instances.

Category # Precision Recall % Acc.
Candidate Strokes 2090 0.688 0.89 85

Non-Candidate Stroke events 5749 0.95 0.83 85

TABLE I
DETECTING ALL NON TENNIS STROKE EVENTS WHICH ARE GENERATING

A SPIKE IN THE MAGNITUDE OF ACCELEROMETER DATA.

B. Stroke Recognition

A series of experiments on stroke recognition are reported
in Table II, which shows results for advanced (Adv.), interme-
diate (Inter.), and novice players. The acceleromoter stroke
classification section in Table II illustrates how the stroke
classifiers performed when trained on 7 players and tested
on a unseen player. It also illustrates the results when trained
on a random 4 players were then tested on an unseen player.
The gyroscope section and magnetometer section in Table II
report results in a similar way.

1) Testing classifiers on players not in the training set :
To evaluate how accurate each sensor is at predicting strokes
from a player who is not in the training set, we trained the
classifiers with 7 players and tested on the remaining unseen
player. For each player the classifiers were retrained using all
the other players to find if stroke classification can be achieved
by testing on an unseen player. The results are displayed in
the 7 player training size section in Table II.

As the results in Table II prove stroke classification can
indeed be accurately achieved without training the classifiers
on the player who performed the candidate stroke. It should
also be noted that since the classifiers were trained on a variety
of players from different skill levels that to achieve 79%
accuracy, as was the case with the accelerometer classifiers
is very encouraging. As expected however the gyroscopes
perform the worst of the 3 sensors, this is because the
measure of temporal orientation during a given stroke will be
significantly different between players of different skill levels.
This is in contrast to a tri-axis accelerometer, which measures
acceleration on three planes, which will be more effective at
classifying strokes from different skill levels.

2) Evaluating classification performance as training size
decreases: We trained the stroke classifiers on 4 players and
tested on an unseen player. The results from this experiment
were compared to the results from training on 7 players.
With accelerometers and gyroscopes, there was no significant
decrease between training on 7 players or training on 4
players. However, the magnetometers display a 10% decrease
in performance as the training set is reduced to 4 players.



Training Size: 7 players 4 Players
2543 strokes strokes

Player Test Strokes % %
Accelerometer Stroke Classification

Adv. Player A 597 77 68
Adv. Player B 197 80 80
Adv. Player C 177 82 82
Inter. player D 220 62 62
Inter. player E 333 80 77
Inter. player F 325 78 82

Novice player G 163 78 88
Novice player H 225 84 80
Overall Accuracy 79% 80%

Gyroscope Stroke Classification)
Adv. Player A 597 48 64
Adv. Player B 197 84 85
Adv. Player C 177 82 83
Inter. player D 220 46 50
Inter. player E 333 73 59
Inter. player F 325 71 70

Novice player G 163 71 72
Novice player H 225 78 73
Overall Accuracy 76% 71%

Magnetometer Stroke Classification)
Adv. Player A 597 72 70
Adv. Player B 197 78 74
Adv. Player C 177 78 79
Inter. player D 220 48 50
Inter. player E 333 87 86
Inter. player F 325 74 76

Novice player G 163 78 75
Novice player H 225 81 75
Overall Accuracy 76% 75%

TABLE II
TENNIS STROKE CLASSIFICATION, TESTING ON A PLAYER NOT IN

TRAINING SET. ONE CLASSIFIER IS TRAINED ON 7 PLAYERS AND THE

OTHER IS TRAINED ON A RANDOM 4 PLAYERS TO ILLUSTRATE

PERFORMANCE DECREASE AS THE TRAINING SET DECREASES.

Sensor Fusion Overall Accuracy %
Accelerometer & Gyroscope 82.5

Accelerometer & Magnetometer 86
Gyroscope & Magnetometer 88

Accelerometer & Gyroscope & Magnetometer 90

TABLE III
TO ANALYSE THE BENEFITS OF SENSOR FUSION BEFORE CLASSIFICATION,
WE PERFORMED EXPERIMENTS TRAINING FROM 7 PLAYERS AND TESTING

ON AN UNSEEN PLAYER.

3) Sensor Fusion Comparison: In this experiment we
trained the classifiers with a combination of the data from
three sensors to identify if stroke recognition performance is
effected using sensor fusion. The classifiers were trained using
seven players and again tested on a player not in the training
set. Using this leave one player out approach, we retrained the
classifiers for each player. The results can be seen in Table
III. Interestingly, we discovered that using a combination of
accelerometer, gyroscope and magnetometer sensors gives an
overall stroke recognition performance of 90%. This accuracy
rate is 10% higher than that of accelerometer classification,
which gave the highest results in the single sensor classifica-

tion in Table II.

VI. CONCLUSION

Overall, accelerometers perform the best of the three sensors
at stroke recognition when trained on multiple players, but
when we fuse the data from the three sensors and train the
classifiers on a large data set this gives the best performance
as illustrated in Table III.

In the future we plan to fuse this inertial stroke recognition
system with our visual event recognition system [5] to improve
the performance of detecting tennis events and ultimately
create a tennis coaching system which will automatically
segment a game into key events and allow the coaches quickly
retrieve interesting locations in a game.
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