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Abstract 36 
 37 
Coated microneedle patches have demonstrated potential for effective, minimally invasive, 38 

drug and vaccine delivery. To facilitate cost-effective, industrial-scale production of coated 39 

microneedle patches, a continuous coating method which utilises conventional 40 

pharmaceutical processes is an attractive prospect. Here, the potential of spray-coating silicon 41 

microneedle patches using a conventional film-coating process was evaluated and the key 42 

process parameters which impact on coating coalescence and weight were identified by 43 

employing a fractional factorial design to coat flat silicon patches. Processing parameters 44 

analysed included concentration of coating material, liquid input rate, duration of spraying, 45 

atomisation air pressure, gun-to-surface distance and air cap setting. Two film-coating 46 

materials were investigated; hydroxypropylmethylcellulose (HPMC) and 47 

carboxymethylcellulose (CMC). HPMC readily formed a film-coat on silicon when suitable 48 

spray coating parameter settings were determined. CMC films required the inclusion of a 49 

surfactant (1% w/w Tween 80) to facilitate coalescence of the sprayed droplets on the silicon 50 

surface. Spray coating parameters identified by experimental design, successfully coated 280 51 

μm silicon microneedle arrays, producing an intact film-coat, which follows the contours of 52 

the microneedle array without occlusion of the microneedle shape. This study demonstrates a 53 

novel method of coating microneedle arrays with biocompatible polymers using a 54 

conventional film-coating process. It is the first study to indicate the thickness and roughness 55 

of coatings applied to microneedle arrays. The study also highlights the importance of 56 

identifying suitable processing parameters when film coating substrates of micron 57 

dimensions. The ability of a fractional factorial design to identify these critical parameters is 58 

also demonstrated. The polymer coatings applied in this study can potentially be drug loaded 59 

for intradermal drug and vaccine delivery.  60 

 61 
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Introduction  67 
 68 
Microneedle-assisted drug delivery has the potential to overcome many of the disadvantages 69 

associated with traditional injection using a hypodermic needle. An alternative to invasive 70 

and painful hypodermic injections, an ideal microneedle product would deliver the required 71 

drug dose reproducibly, increase the pharmacokinetic profile and drug safety, decrease the 72 

level of expertise required for administration and decrease the risks associated with sharps 73 

waste disposal. Microneedle application can be used to enhance the delivery of drug-loaded 74 

solutions applied to the skin (Prausnitz, 2004). Drug-coated microneedle arrays have the 75 

advantage of producing a single unit delivery system, incorporating the drug and delivery 76 

device (microneedle array) in a single dosage form. Techniques currently described for drug-77 

coating microneedle arrays include dip-coating (Ameri et al., 2009; Gill and Prausnitz, 2007; 78 

Kim et al., 2010; Zhu et al., 2009), coating using a roller drum (Ameri et al., 2009), gas-jet 79 

dry coating (Chen et al., 2009), coating using aerosolisation (Cormier et al., 2004; Dalton, 80 

2007; Sathyan, 2005) and coating by immersion (Maa, 2005; Matriano et al., 2002). Scale up 81 

of the these microneedle coating processes poses a number of challenges relating to factors 82 

such as efficiency of drug loading, regulatory compliance and automation. The objective of 83 

this study was to investigate whether a conventional spray coating process, similar to that 84 

used for film-coating tablets, could be employed to apply polymer films to microneedle 85 

arrays. To our knowledge this conventional spray coating approach to applying polymeric 86 

coatings to microneedle arrays has not previously been investigated. 87 

 88 

Within the pharmaceutical industry spray coating is widely used to coat tablets and particles 89 

with coatings of the millimetre thicknesses (Behzadi, 2008). Microneedle dimensions 90 

(ranging from approximately 60 to 700µm in height), necessitate a coating thickness in the 91 

micron range which would not occlude the needles or inhibit skin penetration, thus 92 
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suggesting that common spraying techniques would not be sufficiently sensitive to coat 93 

microneedles. Ideally, a film-coat applied to microneedles for insertion into the skin should 94 

be composed of approved biocompatible materials. HPMC coating material, while not an 95 

approved biocompatible material, was chosen initially to prove the concept that a 96 

conventional spray coating approach could apply a polymeric coating to a microneedle array. 97 

HPMC was selected because it is considered to be a polymer with good film forming 98 

properties and is a widely used film-coating agent (Aulton and Twitchell, 1995; Aulton et al., 99 

1986; Twitchell, 1990). After demonstrating the capability to film-coat microneedle arrays 100 

using HPMC, an approved biocompatible film-forming agent, carboxymethylcellulose 101 

sodium salt (CMC) was selected (Rowe, 2003).  102 

 103 

Spraying a film-coat on to microneedle arrays requires the deposition of fine droplets (< 280 104 

μm) on to the microneedle array and spreading and coalescence of the droplets after 105 

deposition to form an intact film-coat. The spray coating process can be divided into three 106 

steps, 1) generation of fine droplets (atomisation) and 2) impingement on the surface 107 

(deposition) and 3) coalescence of droplets on the substrate (coalescence). The droplet size 108 

generated by atomisation of the coating solution is dependent on nozzle design, 109 

physicochemical properties of the coating solution (surface tension, viscosity and density) 110 

and processing parameters such as the air-to-liquid mass ratio (Aulton and Twitchell, 1995; 111 

Missaghi and Fassihi, 2004; Mueller and Kleinebudde, 2007). Two-substance nozzles, of the 112 

type used in this investigation, can produce fine droplets with droplets diameters less that 50 113 

μm (Mueller and Kleinebudde, 2007). Spray velocity and spray density influence the 114 

deposition of droplets on a surface. The spray velocity is influenced by the atomisation air 115 

pressure, gun-to-surface distance and air cap setting. Increasing the air cap setting increases 116 

the air flow rate as it exits the nozzle. Higher atomisation air pressure, higher air cap setting 117 
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and lower gun-to-surface distances increase spray velocity. While high spray velocities have 118 

been reported to facilitate spreading of droplets upon impingement on the surface (Twitchell, 119 

1990), too high a velocity can result in droplets being blown off the surface by the stream of 120 

atomising air. The air cap setting also controls the spray angle of the cone of liquid droplets 121 

exiting the nozzle. Increasing the air cap setting increases the spray angle, while reducing it 122 

decreases it. The more acute the spray angle, the smaller the surface area coated by the spray 123 

and the greater the spray density. The coalescence of solution droplets after deposition is 124 

influenced by the composition of the substrate, the physicochemical properties of coating 125 

solution and the droplet size deposited. 126 

 127 

In our investigation, a design of experiments approach was utilised to identify the 128 

combination of process parameters suitable for spraying film-coating silicon substrates. To 129 

facilitate efficient analysis of film formation, which is complicated for three dimensional 130 

surfaces such as microneedle arrays, we initially coated flat silicon patches and then validated 131 

findings using silicon microneedle arrays. We hypothesised that the key factors that would 132 

influence the process were concentration of coating material, liquid input rate, duration of 133 

spraying, atomisation air pressure, gun-to-surface distance and air cap setting. Due to the 134 

number of factors identified for investigation (6 factors), a Taguchi method of fractional 135 

factorial experimental design was selected to identify suitable parameter settings. The 136 

Taguchi method of experimental design is considered to be both more efficient and easier to 137 

interpret than a full factorial design when investigating this large number of factors (Roy, 138 

1990).  139 

 140 

Our study demonstrates that an intact film-coating, of micron thickness, can be applied to 141 

silicon substrates using a conventional spray coating process. A fractional factorial 142 
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experimental design efficiently identified a suitable combination of process parameters for 143 

applying polymer coatings to flat silicon patches. Based on the findings of the fractional 144 

factorial experimental design, intact, uniform film-coatings of HPMC and CMC were applied 145 

to silicon microneedle arrays. 146 

 147 

Materials and methods 148 

Materials 149 

Hydropropylmethylcellulose (HPMC) (Methocel® E5 Premium LV, Colorcon, UK) or 150 

carboxymethylcellulose sodium salt (CMC) ultra low viscosity (Fluka, Finland) were the 151 

coating agents of choice. Polyethylene glycol sorbitan monooleate (Tween 80®) was sourced 152 

from Sigma-Aldrich, (USA). Flat silicon patches (2 x 2 cm2) and wet-etched silicon 153 

microneedle arrays (1 cm2) were provided by the Tyndall National Institute, Ireland. Silicon 154 

microneedles were fabricated using a wet-etch fabrication method which has been previously 155 

described (Wilke et al., 2006). Water-based coating formulations were used throughout this 156 

study. 157 

 158 

Characterisation of the coating solutions 159 

Surface tension was quantified using a Kruss GMBH Tensiometer K6, (Germany). Kinematic 160 

viscosity was measured using a Vibro Viscometer SV-10, (Japan). Contact angle 161 

measurements were obtained using a Dataphysics Contact Angle System OCA, (Germany). 162 

Surface tension and viscosity measurements were conducted at 20°C. 163 

 164 

Spray coating process 165 

A Düsen-Schlick nozzle 970 S8 two substance nozzle, (Germany) with a 0.5mm nozzle 166 

diameter was used to produce an atomised spray. The nozzle was connected to a compressed 167 
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air source and coating solution (Figure 1). The flat silicon patches or silicon microneedle 168 

arrays were fixed to an adjustable stage using double sided tape during the spray coating 169 

process. In the HPMC study, a Masterflex® peristaltic pump, (USA), was used to control the 170 

rate of liquid input and in the CMC study an Aladdin AL-2000 syringe driver, World 171 

Precision Instruments, (USA), was used. After coating application, coatings were allowed to 172 

dry at room temperature for 12 hours before analysis.  173 

 174 

Identification of suitable processing parameters  175 

HPMC film-coating was investigated in the HPMC study and CMC film-coating was 176 

investigated in the CMC study. Both experimental designs consisted of a six factor, two level, 177 

fractional factorial design applied to a L8 orthogonal array to define the experimental 178 

conditions, as described in Table 1 and 2. Each set of experiments was carried out in 179 

triplicate. Two way analysis of variance (ANOVA) was used to assess the impact of the 180 

various processing parameters on the coating weight response factor. The average 181 

experimental response for each factor at each level was calculated. These values indicate the 182 

relative impact of using a high or low level of each factor on the coating weight. The 183 

statistical significance of each factor at each level was determined by calculating the sum of 184 

squares using all individual data points. From the sum of squares data, variance (mean 185 

square) values for each factor and the variance due to the error term were then calculated. 186 

From these values, the F statistic, the ratio of variance due to the effect of a factor and 187 

variance due to the error term, was determined. The F factor measures the significance of the 188 

factor under investigation with respect to variance of all the factors included in the error term 189 

(Roy, 1990). 190 

 191 

Assessment of film-coating coalescence and weight  192 
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Film-coated silicon patches were visually assessed by light microscopy using an Olympus 193 

BX51 optical microscope and magnification of 10x. Coating thickness and roughness was 194 

assessed using a Zygo NewView 5022 white-light interferometer for selected coated patches. 195 

Film-coated silicon patches were sputter coated with gold (Au) for 20 seconds prior to 196 

analysis by Zygo-white light interferometry. To determine thickness and roughness using this 197 

technique a portion of the coating from the silicon patch surface was removed to obtain a 198 

baseline measurement. From the baseline a visual representation of the coating was created. 199 

Film thickness and roughness were measured through a central point on the coated wafer. 200 

The surface roughness of the coating was determined using the arithmetic surface roughness 201 

(Ra) value. Ra is based on the distance of the coating from a central reference point over a 202 

measured distance. Coating weight was determined using a Sartorius RC210D 5 place 203 

balance for coating runs in the HPMC study and a Mettler Toledo MX5 6 place electronic 204 

weighing balance in the CMC study. Coated microneedles were imaged by scanning electron 205 

microscopy using a JSM 5510 SEM. Coated microneedles were sputter coated with Au for 20 206 

seconds prior to SEM analysis. 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 
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Results 218 

Characterisation of coating solutions  219 

It is hypothesised that properties of the substrate to be coated and the physicochemical 220 

properties of the coating solution would affect the formation of an intact film. In advance of 221 

coating trials a number of relevant physicochemical properties were determined. All HPMC 222 

and CMC coating solutions used in this study were aqueous based. The contact angle of water 223 

on flat silicon patches was determined to be 32.5° +/- 2.0° at ambient temperature. A surface 224 

is considered hydrophilic when the contact angle of water on its surface is < 90 o. The contact 225 

angle measured suggests that silicon is a hydrophilic material and will be wetted by aqueous 226 

based formulations employed in this investigation, thereby facilitating coating of the silicon 227 

substrates investigated. The surface tension of HPMC and CMC coating solutions employed 228 

are detailed in Table 4. HPMC exhibited surfactant properties and these values correlated 229 

well with those previously described (Twitchell, 1990). The surface tension of 1 %w/v CMC 230 

coating solutions, were significantly higher than those determined for the 5 %w/v CMC and 231 

both HPMC coating solutions (p ≤ 0.01) . As increased surface tension can adversely affect 232 

coating coalescence, a surfactant Tween 80 was incorporated as a formulation variable within 233 

the CMC study. The addition of 1 % w/v Tween 80 to CMC solutions reduced surface 234 

tension to values comparable to the HPMC solutions. The viscosity of HPMC and CMC 235 

coating solutions employed are also detailed in Table 4. There was a disproportionate 236 

increase in the viscosity of HPMC solutions with increase in concentration. This increase in 237 

viscosity is thought to be the result of an increased resistance to flow due to the large 238 

hydrodynamic volume of the randomly coiled polymer chains and their associated hydrogen-239 

bonded water molecules (Clasen and Kulicke, 2001). The viscosity of CMC solutions also 240 

increased disproportionately with increased concentration. The addition of 1% w/v Tween 80 241 

altered the viscosity marginally. The surface tension and viscosity of HPMC solutions 242 
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employed are similar to those of HPMC solutions which were previously reported to form 243 

film-coats (Aulton and Twitchell, 1995). While the surface tension of CMC solutions 244 

investigated were higher that the HPMC solution which may adversely affect film-coat 245 

coalescence, the addition of Tween 80 reduced the surface tension into a range similar to that 246 

of the HPMC solutions. 247 

 248 

Assessment of HPMC film-coat coalescence and weight 249 

The effect of six parameters (HPMC concentration, liquid input rate, duration of spraying, 250 

atomisation air pressure, gun-to-surface distance and air cap setting) on HPMC film-coat 251 

coalescence on silicon patches was assessed in a fractional factorial design. Processing 252 

parameters for the eight runs performed in this design of experiments are detailed in Table 3. 253 

Visual inspection of the film-coating produced for each run by light microscopy indicated 254 

clear variability between the eight coating runs performed. Observation of replicate samples 255 

for each run suggests inter-batch consistency with respect to the coating appearance. Visually 256 

film-coating appearance was divided into three categories; (1) intact coalesced coating which 257 

was blemish and bubble free, (2) coating with blemishes and bubbles present and (3) coating 258 

that failed to coalesce on the silicon surface. The best quality film-coat was produced by the 259 

processing parameters in Run 5 (Figure 2a). The coating was complete to the silicon patch 260 

edges. Analysis using the zygo white light interferometer determined a film thickness of 3 - 4 261 

µm and a Ra (roughness) value of 0.16 µm, which confirms the smooth nature of the film 262 

formed. A typical blemished film-coat was produced by the processing parameters in Run 4. 263 

Light microscope images of coated samples from Run 4 highlight regions of uniform blemish 264 

free film and regions of film with air bubbles and blemishes in the coating (Figure 2b). This 265 

coating process resulted in a coat of variable thickness (12-35 µm) and relatively high Ra 266 

value of 0.74 µm. Coalescence of the droplets on the surface was incomplete with areas 267 
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remaining uncoated. Light microscope images of film-coated substrates from Run 6 show 268 

examples of coatings where droplets failed to coalesce on the surface (Figure 2c). Despite 269 

lack of coalescence, the coating was consistent and covers the entire wafer surface. Zygo 270 

white light analysis confirms an Ra value of 0.73 µm indicating a coating of variable 271 

thickness and a coating thickness of 5 µm.  272 

 273 

The effect of processing variables on HPMC film-coat weight was also assessed in the 274 

HPMC coating study. Table 5 shows the average film-coat weight for each run. Figure 3 275 

shows a plot of mean coating weight for the low and high levels of each parameter compared 276 

to the global average coating weight. All parameters investigated, with the exception of liquid 277 

input rate, significantly influenced coating weight (p<0.05). Increased spray time had a 278 

positive effect on coating weight which was expected due to the increased mass of material 279 

deposited. Increased atomisation air pressure also increased the coating weight. Increasing 280 

gun-to-surface distance or decreasing air cap setting had a negative effect on coating. The use 281 

of higher HPMC concentrations failed to increase the coating weight as would be expected. 282 

The high viscosity of the 12% w/v HPMC solution may have resulted in irregular flow of the 283 

coating solution through the nozzle, resulting in blockages, irregular coating and therefore a 284 

lower than expected coating weight.  285 

 286 

The HPMC coating study efficiently highlighted the effect of processing parameters on the 287 

coalescence, thickness, roughness and weight of HPMC film-coating applied to a flat silicon 288 

substrate. This information was then used to identify a set of suitable processing parameters 289 

to apply a HPMC film-coat to silicon microneedle arrays.  290 

 291 

Spray coating microneedles with HPMC 292 
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We next determined if the critical parameters identified in the HPMC coating study translated 293 

to coating silcon microneedles. We hypothesised that suitable parameters for coating silicon 294 

microneedles would be low HPMC concentration (5% w/v), low spray time (30 secs), low 295 

liquid input (3.1 mls/min), high air pressure (1 bar), high air cap setting (3) and low gun-to-296 

surface distance (5 cm). Figure 4a shows a single silicon microneedle and silicon 297 

microneedle array film-coated with HPMC using the selected processing parameters. The 298 

coating formed was intact, followed the contours of the microneedle array and does not 299 

occlude the microneedle shape. Therefore the coating achieved confirms that using a Taguchi 300 

fractional factorial design to identify suitable parameters to apply a film-coat on to a flat 301 

silicon patch, the processing parameters identified could be translated to successfully coat 302 

silicon microneedle arrays. 303 

 304 

Assessment of CMC film-coat coalescence and weight 305 

The well characterized film-coating material employed in the first study, HPMC, was 306 

replaced with the biocompatible film-forming polymer CMC in the second study. Building on 307 

the knowledge regarding film-coating silicon surfaces acquired with HPMC coating material, 308 

in the second study the influence of six processing variables on coating coalescence and 309 

weight was investigated using a second fractional factorial design. The processing parameters 310 

investigated were CMC concentration, addition of surfactant (1% w/v Tween 80), 311 

atomisation air pressure, gun-to-surface distance and air cap setting. The total volume of 312 

solution sprayed was constant for all runs and the duration of spraying was dependent on the 313 

liquid input rate. Processing parameters for the eight runs performed in this design of 314 

experiments are detailed in Table 2. Visual inspection of the dried film-coating produced for 315 

each run by light microscopy indicated variability between the eight coating runs performed. 316 

When compared to the initial HPMC coating study, there was a marked difference in the 317 
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nature of the film-coating variability between the CMC runs which was attributed to the 318 

increased role of surface tension.  319 

 320 

Coating solutions which did not include Tween 80 in the formulation (Runs 1, 3, 5, 7) 321 

typically displayed a combination of large uncoated areas in which some droplets had dried in 322 

isolation, small patches of coating where isolated droplets had coalesced and large areas in 323 

which droplets had coalesced well and formed an intact coat (Figure 5a). The edges of these 324 

coated areas were jagged, indicating that the coating retracted from the silicon surface on 325 

drying. The high surface tension of the coating solution promotes cohesion of the coating 326 

solution droplets and inhibits even spread of the droplets across the wafer surface. The 327 

reduction in the coating solution surface tension associated with the addition of 1% w/v 328 

Tween 80 (Runs 2, 4, 6, 8), resulted in a film-coat that coalesced well and coated the entire 329 

wafer patch (Figure 5b and c). However, there was notable variation observed in the texture 330 

of film-coatings formed from solutions of CMC containing Tween 80. For example, Run 6 331 

(Figure 5c) produced a smooth film-coating (average thickness of 2.1 µm and average Ra 332 

value of 0.8 µm), while Run 4 (Figure 5b) produced a textured coating (average thickness 333 

4.4µm and average Ra value of 1.4µm). Of the eight runs, the processing parameters 334 

employed in Run 6 were deemed to be the most suitable for film-coating flat silicon patches 335 

with CMC. 336 

 337 

The average film-coat weight for the eight runs varied from 0.1 to 4.6 mg (Table 5). Figure 6 338 

shows a plot of mean coating weight at the low and high levels of each parameter compared 339 

to the global average coating weight. All processing parameters, with the exception of liquid 340 

input rate and air cap setting, had a significant effect on coating weight (p<0.05). CMC 341 

concentration had the greatest positive effect which was expected due to the increased mass 342 
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of the material being sprayed.  The presence of 1% w/v Tween 80 also had a positive effect 343 

on the coating weight. While the atomisation air pressure range (0.5 to 1 bar) investigated in 344 

the HPMC study had no effect on coating weight, the range investigated in the CMC study 345 

(0.5 to 1.75 bar) had a negative effect. The high level of atomisation air pressure investigated 346 

in the CMC study may have resulted in coating being blown away from the silicon surface 347 

prior to adhesion due to increased spray velocity at these pressures. Using the information 348 

gained from the CMC coating fractional factorial design, a set of revised processing 349 

parameters was identified for applying CMC film-coating to silicon microneedle arrays 350 

which are detailed below.  351 

 352 

Spray coating microneedles with CMC 353 

Finally, it was determined whether the set of process parameters identified for coating flat 354 

silicon patches could be translated to coating silcon microneedles with CMC. An aqueous  355 

coating solution containing 3% w/v CMC with 1% w/v Tween 80 was selected. A low liquid 356 

input rate (1.5 ml/min), low air pressure (0.5 bar), an intermediate air cap setting (3) and  357 

gun-to-surface distance (6 cm) were selected. Figure 4b shows a single microneedle and a 358 

microneedle array coated using these parameters. The coating appears uniform and follows 359 

the contours of the microneedle array and its thickness does not occlude the microneedle 360 

shape. The intact, uniform film-coat achieved confirms that biocompatible polymers, such a 361 

CMC, can be film-coated onto silicon microneedle arrays using a conventional film-coating 362 

process. It also highlights the importance of selecting an appropriate set of processing 363 

parameters to achieve a film-coat of the desired quality.  364 

 365 

366 
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Discussion 367 

The results of this study demonstrate the capability of conventional film-coating processes, 368 

similar to those utilised to film-coat tablets, to apply a film-coat to microneedle arrays. Other 369 

researchers have published more novel approaches to apply coatings to microneedle 370 

substrates (Ameri et al., 2009; Chen et al., 2009; Cormier et al., 2004; Dalton, 2007; Gill and 371 

Prausnitz, 2007; Kim et al., 2010; Maa, 2005; Matriano et al., 2002; Sathyan, 2005; Zhu et 372 

al., 2009). To our knowledge this is the first report using a conventional film-coating 373 

approach to coat microneedle substrates. Additionally, this is the first report to give an 374 

indication of the thickness and roughness of coatings applied to microneedles. Employing 375 

conventional technology offers a number of advantages over more novel approaches. These 376 

include the relative low-cost and availability of cGMP compliant equipment and the vast pool 377 

of existing know-how regarding the technology and its scale-up from laboratory to industrial 378 

scale (Aulton and Twitchell, 1995; Mehta, 2008; Mueller and Kleinebudde, 2007; Muller and 379 

Kleinebudde, 2006). 380 

 381 

As previously highlighted, the physicochemical properties of coating solutions (surface 382 

tension and viscosity) can influence atomised droplet size and film-coat coalescence. Both 383 

HPMC and CMC have surfactant properties in solution which would facilitate the production 384 

of small droplet sizes by atomisation. While the surface tension of CMC solutions was higher 385 

than that of the HPMC solutions, the addition of 1% Tween 80 reduced the surface tension to 386 

within a similar range. The viscosity of HPMC and CMC showed disproportional increases 387 

with increase in concentration. HPMC is reported to exhibit Newtonian behaviour at low 388 

concentrations and pseudoplastic rheological properties at higher concentrations (Aulton and 389 

Twitchell, 1995). During the atomisation process the coating solution is exposed to various 390 

rates of shear. While the viscosity of pseudoplastic solutions will decrease with increase in 391 
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shear the Newtonian solutions will not change rheologically during this process. The air-to-392 

liquid mass ratio, which also influences droplet size, is related to two processing parameters 393 

both investigated in the HPMC and CMC studies; atomisation air pressure and liquid input 394 

rate. The higher the air to liquid mass ratio the smaller the droplet size, up to an air to liquid 395 

mass ratio of 4 (Aulton and Twitchell, 1995; Tobiska and Kleinebudde, 2003; Twitchell, 396 

1990). Highest air to liquid mass ratios were obtained in the HPMC and CMC studies for 397 

coating runs with high levels of atomisation air pressures and low levels of liquid input rates.  398 

 399 

The coalescence of solution droplets after deposition depends on the physicochemical 400 

properties of the coating solution but also the composition of the substrate. Microneedles 401 

substrates coated in this investigation were fabricated from silicon using a wet etch process 402 

and thoroughly cleaned prior to coating. Silicon is a relatively hydrophilic material, as 403 

indicated by the 32.5° contact angle of water on its surface. A hydrophilic surface would 404 

facilitate the spread of HPMC and CMC aqueous based solutions after deposition. Low 405 

surface tension and low viscosity also facilitate droplet spread and coalescence once they are 406 

deposited on the substrate. The viscosity of coating solutions can increase during deposition 407 

due to evaporation. The gun-to-surface distance, air temperature and air to liquid ratio 408 

influence the extent of evaporation prior to deposition. After deposition the increased surface 409 

area of smaller droplets facilitates coalescence on the substrate surface. 410 

 411 

As a wide range of processing parameters highlighted in the introduction can influence film-412 

coat formation, the number of processing parameters identified for investigation in studies 1 413 

and 2 was relatively large (6 factors). A full factorial design of experiment would have 414 

required 64 individual runs for each study. The Taguchi method of experimental design 415 

enabled us to employ a fractional factorial design that reduces the number of runs to 8 416 



 18 

individual runs per study. Fractional factorial experimental designs are efficient in the 417 

number of runs required to determine main effects. A drawback to fractional experimental 418 

designs is that they do not allow analysis by changing one factor at a time.  419 

 420 

Coating coalescence was not evaluated quantitatively but qualitatively by visual observation 421 

under a light microscope. Examining film coalescence for individual runs of the fractional 422 

factorial design enabled the main processing parameters that facilitate or undermine film-coat 423 

coalescence to be identified. In the HPMC study, the most suitable set of parameters for film-424 

coat formation were observed for Run 5. Examples of unsuitable parameters combinations 425 

were observed for Runs 4 and 6. Run 4 had regions of film with air bubbles and blemishes in 426 

the coating (Figure 2b). The air bubbles and blemishes in the coating can be explained by the 427 

decreased air-to-liquid mass ratio for Runs 4 (poor coalescence) compared to Run 5 (good 428 

coalescence). Lower air-to-liquid-mass ratios can result in increased droplet size and larger 429 

droplets exhibit reduced tendency for coalescence after deposition resulting in bubbles 430 

present in the coating. More information on parameters that influence coalescence can be 431 

gained by comparing Runs 6 (poor coalescence) and Run 5 (good coalescence). Light 432 

microscopy images of film-coated substrates from Run 6 confirm the failure of the droplets to 433 

coalesce on the surface (Figure 2c). The failure of droplets to coalesce could be attributed to 434 

the considerably higher viscosity of the 12% w/v HPMC solution spray coated in Run 6 435 

compared to the 5% w/v solution in run 5 (Table 2). High viscosity solutions have been 436 

reported to produce larger droplets, reducing evaporation and coalescence of the droplets 437 

(Twitchell, 1990).  438 

 439 

The second study focused on substituting HPMC with a more biocompatible polymer (CMC) 440 

and allowed further refining of the processing parameters. Results highlight the role of 441 
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surface tension in film coating. The higher surface tension of CMC solutions employed 442 

without the addition of Tween 80 (Table 4) resulted in poor film coalescence (Figure 5a). 443 

Adjusting the surface tension to values similar to those of HPMC solutions improved film 444 

coalescence (Figure 5b and c). The surface texture of coalesced films varied between Runs. 445 

The smoothest films were obtained for Run 6; Ra value of 0.8 µm. The film produced in Run 446 

4 had a more textured coating; Ra value of 1.4µm. The textured coating may have been 447 

caused by the acute spray angle at the lower air cap setting of 1 resulting in a higher spray 448 

density and drying effects due to the increased air flow focussed on the substrate surface. 449 

 450 

The influence of processing parameters on a quantitative property coating weight is clearly 451 

illustrated in Figures 3 and 6. As expected the increase of the mass of solids atomised during 452 

the spray coating process when using longer spray time had a significantly positive impact on 453 

coating weight in the HPMC coating study. The lack of effect of liquid input rate on coating 454 

weight in the CMC coating study can be explained by the volume of coating liquid being kept 455 

constant for all runs. In this study that the mass of material deposited was controlled by the 456 

concentration of material in the coating solution, as observed in Figure 6. The inclusion of a 457 

surfactant to the coating solution in the CMC study had a positive effect on coating weight. 458 

The addition of 1% w/v Tween 80 would increase the material contents of the coating 459 

solutions and this resulted in an increase in the weight of solid material deposited.  460 

 461 

The atomisation air pressure range investigated in the HPMC study had a positive effect on 462 

coating weight (1.0 bar), however the higher upper air pressure range investigated in the 463 

CMC study (1.75 bar) had a negative effect on coating weight. The use of higher atomisation 464 

air pressure, while beneficial for producing small droplet sizes which facilitate coating and 465 

spreading of droplets after deposition (Twitchell, 1990), should be controlled to minimise 466 
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loss of coating due to increased spray velocity, associated impingement force on the surface 467 

coated and material loss from the surface in the atomisation air stream after impingement. 468 

Increasing gun-to-surface distance from 5 to 10 cm had a negative effect on coating weight in 469 

the HPMC study, which can be attributed to a decrease in spray density on the silicon surface. 470 

In the CMC study this effect was reversed when the gun-to-surface distance was increased 471 

from 3 to 6 cm. The decrease in coating weight at smaller gun-to-surface distances can be 472 

explained by the increased impact of spray velocity at the lower distances in the CMC study, 473 

similar to that observed for the high atomisation air pressure. While increasing the air cap 474 

setting had a positive effect on coating weight in the HPMC study due to a wider spray angle 475 

and lower spray density, this effect was not observed in the CMC study with the air cap 476 

setting having no effect. The combination of processing parameters selected in the CMC 477 

study negated the effect of the air cap setting on coating weight. 478 

 479 

Based on the finding in the HPMC study, a set of processing parameters were identified for 480 

coating microneedle arrays with HPMC. A coating solution with the low level of HPMC 481 

concentration (5% w/v) was selected to minimise the effects of solution viscosity observed in 482 

the HPMC study. Low liquid input (3.1 mls/min) and high air pressure (1 bar) were selected 483 

to obtain a high air-to liquid mass ratio and hence a small droplet size to achieve a thin intact 484 

film-coat and good coat coalescence. Although a low air cap setting and gun-to-surface 485 

distance maximised coating weight, a high air cap setting (3) and high gun-to-surface 486 

distance (10 cm) were selected reduce the impact of a high spray velocity on film-coat 487 

appearance and texture. The identified parameters successfully coated microneedles arrays 488 

with a HPMC coat and demonstrate the ability to transfer learnings from coating flat silicon 489 

patches to coating three-dimensional silcon microneedle arrays. 490 
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The set of processing parameters were revised following the CMC study and selected 491 

parameters for applying a CMC coat to silicon microneedle arrays included the addition of 492 

1% Tween 80 to a 3% w/v CMC concentration solution to facilitate film-coat coalescence. 493 

An intermediate air cap setting (3) was selected to focus the spray on the 1 cm2 microneedle 494 

array. A high gun-to-surface distance (6 cm) and a low atomisation air pressure (0.5 bar) 495 

were chosen to minimise the effects of a high spray velocity on coating loss and texture. The 496 

atomisation air pressure chosen was coupled with a low liquid input rate (1.5 ml/min) to 497 

obtain an relatively high air-to-liquid mass ratio suitable to generate small droplets sizes to 498 

facilitate coalescence. The intact thin CMC film-coat obtained again validates the hypothesis 499 

that spray coating can be used to apply a polymer coating to microneedle arrays and that the 500 

findings obtained from coating flat silicon substrates can be translated to coating 501 

microneedles arrays. 502 

 503 

Conclusions 504 

This study demonstrates the ability of conventional film-coating processes to coat intact films 505 

of polymers on silicon microneedle arrays. The process understanding obtained in this study 506 

can be applied to other spray coated drug delivery systems, such as coated medical devices. It 507 

also is the first study to define the coating thickness and roughness that can be achieved. The 508 

HPMC and CMC coatings produced were intact, followed the contours of the microneedle 509 

shapes and did not occlude the microneedle tip. The study also highlights the influence of 510 

coating solution physicochemical properties and spray process parameters on film-coat 511 

formation and hence the importance of identifying a set of suitable processing parameters 512 

when film coating substrates of micron dimensions. The ability of fractional factorial design 513 

to identify the effect of critical parameters on film-coat coalescence and weight with a limited 514 

number of coating runs was also demonstrated. The scale up of this conventional spray 515 
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coating process it not expected to pose the same level of challenge relating to regulatory 516 

compliance and automation as may be posed by other novel microneedle coating 517 

technologies. Therefore we propose that spray coating is an attractive process for applying a 518 

polymer coat to microneedles and potentially could be exploited to apply drug and vaccine 519 

materials to microneedles for delivery intradermally. 520 
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Figure Legends  632 
 633 
Figure   1.   Schematic diagram of spray coating apparatus. 634 
 635 
Figure 2. Images of surface topography of HPMC spray coated flat silicon substrates 636 

prepared using parameters detailed in Table 1 (a) Run 5 (good coalescence), (b) Run 4 (poor 637 

coalescence) and (c) Run 6 (poor coalescence). Left hand side images were produced by zygo 638 

white-light interferometer and right hand side were images obtained by light microscopy 639 

(magnification x10).  640 

 641 

Figure 3. A plot showing the average HPMC coating weight for each processing parameter 642 

setting relative to the global average HPMC coating weight (indicated by the grey horizontal 643 

line). Solid line indicates the effect is not statistically significant (p > 0.05). Broken line 644 

indicates the effect is statistically significant (p < 0.05).  645 

   646 

Figure 4. Scanning electron microscopy images of a film coated single silicon microneedle 647 

and a film coated silicon microneedle array. A) shows a HPMC film-coat and B) shows a 648 

CMC film-coat.  649 

 650 

Figure 5. Images of surface topography of CMC spray coated flat silicon substrates prepared 651 

using parameters detailed in Table 2 (a) Run 3 (poor coalescence), (b) Run 4 (rough textured 652 

coating) and (c) Run 6 (good coalescence). Left hand side images were produced by zygo 653 

white-light interferometer and right hand side were images obtained by light microscopy  654 

(magnification x10). 655 

 656 

Figure 6. A plot showing the average CMC coating weight for each processing parameter 657 

setting relative to the global average CMC coating weight (indicated by the grey horizontal 658 

line). Solid line indicates the effect is not statistically significant (p > 0.05). Broken line 659 

indicates the effect is statistically significant (p < 0.05).  660 

 661 

 662 
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Table 1. The parameter values selected for the L8 orthogonal array used to develop spray coating of silicon with HPMC.  
 
 
No. Atomisation 

air 

pressure 

(bars) 

Liquid 

input 

(mls/min) 

Gun-to-

surface 

distance 

(cms) 

Conc. 

HPMC 

 

(% w/v ) 

 

Spray 

time            

(secs) 

Air cap setting 

1 0.5 3.1 5 5 30 1 

2 0.5 3.1 5 12 90 3 

3 0.5 4.5 10 5 30 3 

4 0.5 4.5 10 12 90 1 

5 1.0 3.1 10 5 90 1 

6 1.0 3.1 10 12 30 3 

7 1.0 4.5 5 5 90 3 

8 1.0 4.5 5 12 30 1 

*Overall liquid input varies from 1.33-13.5mls as described per run 
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Table 2. The parameter values selected for the L8 orthogonal array used to develop spray coating of silicon with CMC.  
 
No. Conc. 

CMC 

 

(% w/v) 

Liquid 

input 

(mls/min) 

Gun-to-

surface 

distance 

(cms) 

Tween 

 

( % w/v) 

 

Atomisation 

air 

pressure           

(bars) 

Air cap setting 

1 1 1.5 3 0 0.5 1 

2 1 1.5 3 1 1.75 5 

3 1 9 6 0 0.5 5 

4 1 9 6 1 1.75 1 

5 5 1.5 6 0 1.75 1 

6 5 1.5 6 1 0.5 5 

7 5 9 3 0 1.75 5 

8 5 9 3 1 0.5 1 

*Total volume sprayed was 0.8mls throughout this study 
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Table 3.  Process parameter settings used in the HPMC and CMC studies. 

 

 The HPMC study The CMC study 

 Variable 1 (low) Variable 2 (high) Variable 1 (low) Variable 2 (high) 

Concentration HPMC (% w/v) 5 12 n/a n/a 

Concentration CMC (% w/v) n/a n/a 1 5 

Concentration Tween 80 (% w/v) n/a n/a 0 1 

Liquid input (ml/min) 3.1 4.5 1.5 9.0 

Spray time (sec) 30 90 n/a n/a 

Atomisation Air Pressure (bar) 0.5 1.0 0.5 1.75 

Gun-to-surface distance (cm) 5 10 3 6 

Air cap setting 1 3 1 5 

n/a indicates not applicable  
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Table 4.  Average surface tension and viscosity measurements of coating solutions  

n=3, figures in brackets indicate the standard deviation.  

 Surface tension 

(mN.m) 

Viscosity 

(mPa.sec) 

The HPMC study   

5% w/v 44.7 (0.93) 9.5 (0.03) 

12% w/v 46.1 (1.23) 345 (10.54) 

The CMC study   

1% w/v 55.0 (1.58) 3.9 (0.10) 

1% w/v + 1% Tween 80 42.0 (0.92) 3.3 (0.02) 

5% w/v 48.7 (1.49) 48.2 (0.71) 

5% w/v + 1% Tween 80 45.7 (0.51 52.7 (0.70) 
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Table 5. Average coating weight determined for each run in the HPMC and CMC studies  

(n=3), standard deviation shown in brackets.  

  HPMC study  CMC study 
Run no.  

Coating Weight 
(μg) 

 
Coating Weight 

(μg) 
1   4 (1.7) 103 (80.0) 
2 12 (5.0)      216 (8.7) 
3   3 (1.0) 465 (54.7) 
4 12 (2.6) 460 (66.6) 
5   6 (1.5) 1908 (197.8) 
6   1 (1.4) 4609 (332.1) 
7   5 (0.6) 1684 (308.0) 
8 16 (1.0) 3870 (661.5) 
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