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Adaptive Neural Network Equalisation Using Skip Connections
for Future 100 Gbit/s/λ Passive Optical Networks

Stephen L. Murphy(1,*), Fariba Jamali(1), Paul D. Townsend(1), Cleitus Antony(1)

(1) Photonics Systems Group, Tyndall National Institute, University College Cork, Cork, Ireland
(*) stephen.murphy@tyndall.ie

Abstract We present a novel equaliser based on a neural network with skip connections for 100 Gbit/s
PAM4 SOA-preamplfied PONs which can converge within 2000 symbols on a burst-by-burst basis, and
effectively compensate SOA patterning and 81.6 ps/nm fiber dispersion, enabling 21 dB system dynamic
range. ©2023 The Author(s)

Introduction

Current Passive Optical Network (PON) research
is focused on pushing beyond recent 50 Gbit/s
standards[1] while adhering to strict optical loss
budget and dynamic range (DR) requirements.
50 Gbaud 4-level pulse amplitude modulation
(PAM4) is being considered alongside 25G class
opto-electronics, but is highly susceptible to non-
linearities and would require optical amplifica-
tion due to its reduced signal-to-noise tolerance.
Semiconductor optical amplifiers (SOAs) could
provide this[2], but nonlinear gain saturation in-
duced SOA patterning effects can limit system
DR. Neural network equaliser (NNE) techniques
have been widely proposed to overcome this and
other nonlinear impairments, and have achieved
impressive performance when compared with
conventional equalisation techniques[3]–[5].

However, advanced digital signal processing
is most likely to be deployed at the optical line
terminal (OLT) where resources and costs can
be shared among network subscribers, meaning
any equalisation must be able to deal with vary-
ing levels and combinations of system and de-
vice impairments of the burst-packets received by
the OLT transceiver. Adaptive NNEs would need
to converge within 100s of nanoseconds, using
a short sequence of training symbols located
in each packet’s preamble[6], making conven-
tional NNE training schemes unsuitable as they
rely on large datasets and computationally com-
plex optimisation algorithms, such as ADAM[7],
to achieve optimal performance. Many reported
NNEs undergo full retraining using such algo-
rithms for each impairment or power level con-
sidered, which is impossible under realistic PON
operating conditions. Proposed solutions include
creating large ”universal” NNEs which are ex-
posed to all possible packet conditions[8] during

offline training, or to similarly train sub-models to
differentiate each distinct packet’s signal statis-
tics[9], but these come with non-ideal, large train-
ing and data collection overhead.

In this paper, we propose a novel modular NNE
architecture for PON which is trained once and
then adapted to varying packet conditions using
a simple LMS algorithm and only 2000 training
symbols. It achieves this using skip connections
which are inspired by residual networks[10], and
has similar structure to the time delay NNE dis-
cussed in[11]. We apply the proposed scheme to
a 100 Gbit/s PAM4 system emulating upstream
PON transmission with an SOA preamplifier in
continuous mode, and demonstrate its robust-
ness to varying SOA gain saturation induced pat-
terning and fiber dispersion up to 81.6 ps/nm. The
scheme achieves 27 dB DR performance back-to-
back (BtB), matching the performance observed
when using full ADAM optimisation, and 21 dB DR
with 81.6 ps/nm of fiber dispersion, exceeding the
19.5 dB DR of current 50G standards[1].

Adaptive Neural Network Equalisation
One approach to applying NNEs to varying PON
packet impairments is to train a NNE once, expos-
ing it to a single stressed packet scenario, and
then apply to all other packet conditions without
further training or adaption. While this ”static”
NNE fully utilizes its nonlinear capabilities for
the stressed packet, it fails for disparate or less
severely impaired packets, as we show below.

Fig. 1 outlines our proposed adaptive scheme.
First, a NNE is trained offline and exposed to
a worst-case packet, such as high dispersion or
nonlinear SOA patterning, using the ADAM opti-
misation algorithm or similar. The NNE is then de-
composed into its nonlinear hidden layers whose
parameters are kept static, and an output layer
consisting of a single neuron with linear activation



Fig. 1: (a) and (b) outline the proposed skip connection and adaptive linear output structure, which allow for rapid adaption to
packet conditions outside the NNE training data using LMS, as shown in (c). In (d), the concept of combining modular NNEs for

addressing multiple impairments is shown, where each ”module” is exposed to a single isolated impairment during training.

which is adaptively trained packet-by-packet, as
in Fig. 1 (b). Signal samples are input to the NNE
as usual, but are also also fed via a skip connec-
tion to the adaptive output layer according to:

ŷ = wHL · a+ wskip · x+ b

Where ŷ, w, b are the equalised output sample,
weight and bias parameters respectively. x is the
equaliser inputs coming from the skip connection,
while a is the nonlinear outputs from the hidden
layers having processed x already. The weights
of the output layer are then adaptively trained like
an FFE, using the LMS algorithm as shown in Fig.
1 (c).

This architecture can be made modular as in
Fig. 1 (d) to deal with multiple impairments which
may appear in isolation, or combination. A NNE
is trained offline for each isolated nonlinear im-
pairment, and then combined with a single adap-
tive linear output and skip connection. In this way,
NNEs ”modules” can be added for additional im-
pairments, without the need to retrain the other
NNEs focused on different impairments.
Experimental Setup
Fig. 2 (a) shows the experimental setup. A 50
Gbaud PAM4 signal is generated using a 100
GSa/s DAC, with linear precompensation correct-
ing for system bandwidth restrictions up to 33
GHz. A Mach Zehnder modulator combined with
an EDFA booster amplifier constitutes a high-
power C-band Tx. An ideal Rx composed of
an EDFA preamplifier and 50 GHz photodiode is
used, while waveforms are captured for offline

Fig. 2: (a) Experimental setup and (b) resulting eye diagrams
showing range of isolated and combined signal impairments.

processing and equalisation using a 200 GSa/s
real time scope.

The SOA gain saturation induced patterning ef-
fect of the SOA is first studied BtB, without the
effects of fiber dispersion. The SOA gain drops
by 3 dB for −8 dBm input power, and it’s input is
swept from −24 to +4 dBm. Fiber dispersion up
to 81.6 ps/nm is then introduced, using standard
single mode fiber. A 50 GHz 4th-order Bessel filter
is applied in offline processing to the BtB setup in
order to avoid the introduction of linear bandwidth
impairments when studying the SOA patterning
effect, while a 25 GHz filter emulating 25G class
opto-electronics is used in the transmission case.



Fig. 3: In (a) the inclusion of a skip connection allows the adaptive GRU-3T model to succeed outside it’s training conditions,
while (b) shows the transmission performance of the same model when combined with a NNE ”module” trained on dispersion.

Results
To test our scheme we use a NNE based on
Gated Recurrent Units (GRU), described in[5]. It
has one hidden layer composed of 6 GRU units
followed by a single linear output neuron. All
equalisation reported here uses 1 sample per
symbol, and the considered GRU NNE uses only
3 such taps (i.e. GRU-3T). The ‘Ideal GRU-
3T’ refers to ideal GRU-3T performance after
packet-by-packet offline training using ADAM op-
timisation for 1000 epochs with the early stopping
method. All adaptive GRU-3T equalisers and FFE
are trained using the LMS algorithm and 5000
randomly generated symbols, and tested on a
pseudo random quaternary sequence (PRQS15).
System performance is determined using the
hard decision forward error correction (HD-FEC)
limit of 3.8× 10−3 bit error ratio (BER).

Fig. 3 (a) shows BtB performance, with ideal
GRU-3T achieving > 27 dB DR. However, the
static GRU-3T trained at +4 dBm SOA input and
then applied with fixed parameters to other pow-
ers clearly fails, as does adaptively training the
linear output layer of the GRU-3T. In both these
cases the NNEs cannot deal with less severely
patterned signals below −2 and −6 dBm respect-
vively. However, if our proposed skip connec-
tion is integrated with the adaptive GRU-3T then
the ideal GRU-3T sensitivity and DR performance
can be recovered, and the adaptive NNE is effec-
tive in SOA gain saturated, impairment free, and
noise limited operating conditions.

Fig. 3 (b) shows the transmission performance
of the proposed adaptive modular GRU-3T, where
a separate GRU-3T trained on the isolated 81.6
ps/nm dispersion impairment is combined with
the original GRU-3T trained on the isolated SOA
patterning impairment reported above, and de-
scribed in Fig. 1 (c). By switching to this mod-
ular GRU-3T, the equaliser can now adaptively
equalise both varying nonlinear SOA patterning

Fig. 4: The modular structure can adapt rapidly in under
2000 symbols to a wide range of packet conditions.

effect and fiber dispersion individually. Fig. 3
(b) shows the adaptive modulat GRU-3T achieves
good performance in the combined patterning
and dispersion regime with BER below the HD-
FEC up to +1 dBm SOA input power with 81.6
ps/nm dispersion.

Fig 4 shows that the adaptive modular GRU-
3T equaliser converges below HD-FEC in up to
2000 symbols for a wide range of packet condi-
tions, corresponding to the eye diagrams in Fig. 2
(b). This is equivalent to 40 ns for a 50 Gbaud sig-
nal and so approaches the convergence require-
ments of conventional adaptive equalisers[6].
Conclusion
In summary, we propose a novel adaptive NNE
architecture using skip connections which greatly
simplifies NNE training for PON. It achieves 27

and 21 dB system DR for BtB and transmis-
sion cases respectively in a setup emulating a
100 Gbit/s upstream PAM4 with SOA preamplifier.
These DRs are above the 19.5 dB required by re-
cent 50G standards. Further, the adaptive NNE
scheme is shown to converge for a wide range
of severely impaired packet conditions using the
LMS algorithm and within 2000 training symbols.
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