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Abstract

Abstract

In decision making problems where we need to choose a particular decision or

alternative from a set of possible choices, we often have some preferences which

determine if we prefer one decision over another. When these preferences give us an

ordering on the decisions that is complete, then it is easy to choose the best or one of

the best decisions. However it often occurs that the preferences relation is partially

ordered, and we have no best decision. In this thesis, we look at what happens when

we have such a partial order over a set of decisions, in particular when we have

multiple orderings on a set of decisions, and we present a framework for qualitative

decision making. We look at the different natural notions of optimal decision that

occur in this framework, which gives us different optimality classes, and we examine

the relationships between these classes. We then look in particular at a qualitative

preference relation called Sorted-Pareto Dominance, which is an extension of Pareto

Dominance, and we give a semantics for this relation as one that is compatible with

any order-preserving mapping of an ordinal preference scale to a numerical one.

We apply Sorted-Pareto dominance to a Soft Constraints setting, where we solve

problems in which the soft constraints associate qualitative preferences to decisions

in a decision problem. We also examine the Sorted-Pareto dominance relation in

the context of our qualitative decision making framework, looking at the relevant

optimality classes for the Sorted-Pareto case, which gives us classes of decisions

that are necessarily optimal, and optimal for some choice of mapping of an ordinal

scale to a quantitative one. We provide some empirical analysis of Sorted-Pareto

constraints problems and examine the optimality classes that result.

vii
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1. INTRODUCTION 1.1 Introduction

1.1 Introduction

In any given decision making problem, we have a set of decisions or alternatives or

choices, and the task may be to choose a decision from this set which is in some way

the most preferred one. Considering that we have some preferential information

available for each decision, then we can form a preference relation on the set of

decisions, where for a pair of decisions we can say that we prefer one over the

other. If we have enough information available then we might be able to compare

every pair of decisions, and therefore the resulting relation is total. In this case,

the decision to choose then is simply the best one, or if we have more than one

best decision, i.e., we have a set of equivalent decisions that are better than all the

others, then we choose one from this set. However, it can also occur that there is not

enough information to do this, and we end up not being able to compare every pair

of decisions in the set. This gives us the notion of incomparability between decisions,

and as a result we have a partial ordering on the set, and as such we may no longer

have a best decision or set of equivalent best decisions from which to choose.

Partial orders in decision making can occur in many natural situations, for example,

in multi-criteria decision making where we are comparing decisions on more than

one criteria, or in decision making under uncertainty, where there is more than one

possible state of the world to consider. They can also occur when the preferential

information available is of a qualitative nature, and we cannot numerically aggregate

preference values associated to a decision. For example, in the quantitative case, if

we were evaluating two decisions based on some cost or utility, then we could add

the costs or utilities associated to each decision and compare the sum of these costs,

which would give us a total order on the set of decisions. However if we have only

qualitative preferential information associated with each decision then we cannot

do this.

In partially ordered decision making situations, if we cannot choose a single “best”

decision, then is there another way to choose a decision that is in some way better

than the other decisions? In some cases, we may not want to choose a single decision,

but instead present a set of decisions that are the better ones to another decision

maker so that they can choose. Can we classify decisions in such a way that we

can see which decisions are better in some way than the other decisions? Might a

decision be the best one given some criterion if we are looking at multiple criteria, or

given some possible scenario if we are dealing with uncertainty? What other notions

of optimality are there? The focus of this thesis is to look at some decision making

2
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situations where we have partially ordered or qualitative preference information,

and investigate how we can solve these problems and classify decisions in such a

way so that a decision maker can make their choice.

1.2 Overview and Contributions

In this section, we give a brief outline of the main chapters in the thesis, and we

also highlight the main contributions.

Chapter 2: Background I - Preferences

In this chapter, we look at some background material on preference relations. We

describe different types of preorder relations and look briefly at the relationships

between them, in terms of the resulting orderings over a given set of elements,

and the elements that are the “‘best” elements and the “optimal” elements of the

set. We also introduce the Sorted-Pareto dominance relation, which is a preference

relation we explore later in Chapters 5 and 6 and we look at some specific relations

in different decision making situations that are connected to the Sorted-Pareto

dominance relation. We provide some new results and new formulations of existing

results which describe these connections between Sorted-Pareto dominance and

related preference relations.

Chapter 3: Background II - Soft Constraints

In this second introductory chapter, we give some background material on constraint

networks. First we look at hard constraints problems and the basic terminology asso-

ciated with hard constraints networks. Then we look at soft constraints, which are a

generalisation of hard constraints, and we define some of the constraints formalisms

that are related to works in the thesis, for example, weighted constraints, which

specify weight values to associate with variable assignments in a given weighted

constraint problem. We look at a general constraints problem which incorporates

both hard and soft constraints, and we look at some methods on how to solve these

problems, which include depth first and branch and bound searches.

3



1. INTRODUCTION 1.2 Overview and Contributions

Chapter 4: Qualitative Notions of Optimality

In this chapter, we look at the first main contribution of the thesis. We consider a

qualitative framework for decision making, where for a set of decisions we have

multiple ordering or rankings, and we look at the relations for comparing decisions

and the resulting notions of optimal decisions that occur, which gives us a classifica-

tion of notions of optimality. We precisely describe the relationships between the

optimality classes and also investigate how these classes can simplify under extra

conditions.

Chapter 5: Sorted-Pareto Dominance and Soft Constraints

In this chapter, we look at the second main contribution of the thesis. We consider a

qualitative preference relation called Sorted-Pareto dominance, which is an extension

of the Pareto Dominance relation. We give a semantics for Sorted-Pareto dominance,

as a relation that is compatible with any order-preserving mapping that maps

a qualitative scale to a quantitative scale. We look at Sorted-Pareto dominance

in a Soft-Constraints setting, where we describe our implementation of a Soft

Constraints Solver, and detail three different search algorithms (and variations

thereof) for solving Sorted-Pareto problems. We give some experimental results

for solving different problem instances, comparing Sorted-Pareto dominance to

other preference relations and examining the sizes of the resulting sets of optimal

solutions. We also look at an extension to the Sorted-Pareto dominance relation, for

minimising the maximum costs of the Sorted-Pareto non-dominated solutions.

Chapter 6: Sorted-Pareto Dominance and Qualitative Notions Of Optimality

In this chapter, we look at the third main contribution of the thesis. The analysis

in Chapter 4 suggests different natural notions of optimality which are applicable

to the connection between Sorted-Pareto dominance and the Min-Sum of weights

relation given in Section 5.3. Using this framework from Chapter 4, we capture this

relationship between the Sorted-Pareto dominance relation for qualitative prefer-

ences and the sum of weights relation for quantitative preferences. We see how the

relationship between the optimality classes from the qualitative framework simplify

in this instance, and we look at some experimental results where solutions are

classified according to their optimality classes.
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Situations that are partially ordered or use qualitative information are important as

they occur naturally in decision making, so frameworks and preference relations

that deal with these situations are motivation for this thesis. Therefore in this thesis

we develop a unifying framework for qualitative decision making which can be used

by a decision maker, for example, in the context of decision support or recommender

systems, to help narrow down the set of decisions or alternatives from which the

decision maker can choose. In this framework, the optimality classes presented in

Chapter 4 show how decisions can be categorised according to their optimality class,

which can be useful in order to aid a decision maker in their choice. The Sorted-

Pareto dominance relation presented in Chapter 5 is a qualitative preference relation

for which we show that the non-dominated decisions have semantic significance

and are also experimentally useful in the context of selecting decisions to present to

a decision maker. Further optimality classes in relation to Sorted-Pareto dominance

are developed in Chapter 6 which further add to this overall unifying framework for

qualitative decision making.

1.3 Publications

Parts of the work of the thesis have appeared in the following published proceedings

of various conferences and workshops, which have been subject to peer review.

Conference Papers

[OW13] Conor O’Mahony and Nic Wilson. Sorted-Pareto Dominance and qualitative

notions of optimality.

In Proceedings of the 12th European Conference on Symbolic and Quantitative

Approaches to Reasoning with Uncertainty, ECSQARU 2013, 2013.

[OW12] Conor O’Mahony and Nic Wilson. Sorted-Pareto Dominance: an extension

to Pareto Dominance and its application in Soft Constraints.

In Proceedings of the 24th IEEE International Conference on Tools with Artificial

Intelligence‚ ICTAI 2012, 2012.

[WO11] Nic Wilson and Conor O’Mahony. The relationships between qualitative

notions of optimality for decision making under logical uncertainty.
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In Proceedings of the 22nd Irish Conference on Artificial Intelligence and Cognitive

Science, AICS 2011, 2011.

Workshop Paper

[OW11] Conor O’Mahony and Nic Wilson. Sorted-Pareto Dominance: an extension

to Pareto Dominance and its application in Soft Constraints.

In Proceedings of CP 2011 Workshop: Preferences and Soft Constraints (SofT’11),

CP 2011, 2011.
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2. BACKGROUND I - PREFERENCES 2.1 Introduction

2.1 Introduction

In a decision making problem, we have a set of decisions (or options, alternatives or

choices), and the task is to choose a single decision or subset of decisions that are

in some way preferred to the other decisions. Aside from the information relating

directly to the actual decision itself, for example, the actual domain values assigned to

the decision variables in a combinatorial problem, we can have additional preference

information associated with a decision. This preference information can take various

different forms, for example, it could form a collection of evaluations by one or

more agents [vN28, vNM47] or with respect to one or more criteria [KR76, Ehr05]
where the evaluations represent the cost incurred or satisfaction gained should a

decision be realised. Using this preference information, the set of decisions can be

ordered or ranked in relation to each other, and this ordering on the set is called a

preference relation.

The outline of the Chapter is as follows. In Section 2.2 we describe some different

types of preference relations and give definitions of best and optimal elements, which

are the elements of a given set that are preferred in some way according to a given

preference relation. Section 2.3 looks at preference relations in a general decision

making context and looks at what sort of preference information might be available.

In Section 2.4, we introduce the Pareto dominance relation, which is a preference

relation that compares decisions over multiple preference values, and in Section 2.5

we define Sorted-Pareto dominance, which extends Pareto Dominance, and which

is the main focus of Chapter 5. In Section 2.6, we look at some other preference

relations and works that are related to the Sorted-Pareto dominance. We consider

preference relations that work with qualitative and quantitative preference scales,

and we also consider different preference relations that maximise positive preference

or minimise negative preferences.

Unless otherwise stated, the basic results in this chapter are well known but to our

knowledge do not appear anywhere else in their current formulation.

2.2 Preference Relations

Firstly, for some set A, a binary relation R on A is a set of ordered pairs of the elements

of A, i.e., R is a subset of the Cartesian product A2 =A×A = {(a, b) : a ∈A, b ∈A}.

We now define a preference relation which is a type of binary relation.
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Definition 2.1 » Preference relation

A preference relation R on a set A is a binary relation such that for any α,β ∈A, if

(α,β) ∈ R, then we say that α is preferred to β . «

It is also called an order relation, as it gives an ordering over the set of elements.

Given any α,β ∈A, if α is preferred to β according to relation R, i.e., if (α,β) ∈ R,

we can also write this as αRβ . If we have that α is not preferred to β according to

relation R, i.e., we have that (α,β) 6∈ R, then we can write this as α 6Rβ . Next, we

give some definitions of basic properties of order relations in the following remark.

Remark 2.1 » Basic properties of a relation

A relation R on a set A is:

(i) reflexive if, for all α ∈A, αRα;

(ii) transitive if, for all α,β ,γ ∈A, if αRβ and β Rγ, then αRγ;

(iii) complete if, for all α,β ∈A, either αRβ or β Rα;

(iv) antisymmetric if, for all α,β ∈A, if αRβ and β Rα, then α= β;

(v) symmetric if, for all α,β ∈A, if αRβ then β Rα;

(vi) asymmetric if, for all α,β ∈A, if αRβ then β 6Rα.

We now look at some specific types of order relations. We consider in particular the

four types of preorder relation defined as follows.

Definition 2.2 » Preorder relations

A relation R on a set A is a:

(i) preorder on A, if it is reflexive and transitive;

(ii) partial order on A, if it is a preorder (i.e., reflexive and transitive) and anti-

symmetric;

(iii) total preorder on A, if it is complete and transitive;

(iv) total order on A, if it is a total preorder (i.e, complete and transitive) and

antisymmetric. «
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2.2.1 Associated Relations to a Preorder

For a preorder R on a set A, we look at some relations that are associated with R,

and which can also be defined in terms of R. First we look at the strict or asymmetric

part of R, which is defined as follows.

Definition 2.3 » Strict relation

For a preorder R on a set A, the associated strict preorder relation SR is given by

— for all α,β ∈A, α SR β , if and only if, αRβ and β 6Rα. «

This relation SR, is irreflexive and transitive, and represents the notion of strict

preference, so for some α,β ∈ A, if α SR β , then α is strictly preferred to β , with

respect to relation R. We now look at the symmetric part of R, which is defined as

follows.

Definition 2.4 » Equivalence relation

For a preorder R on a set A, the associated equivalence relation ER is given by

— for all α,β ∈A, α ER β , if and only if, αRβ and β Rα. «

This relation ER is reflexive, symmetric, and transitive; it represents the notion of

equally preferred, if α ER β , then α is equivalent (or equally preferred) to β , with

respect to relation R. This also gives us the notion of an equivalence class of a

particular element α ∈A, which is the set consisting of all the elements of A that

are equivalent to α. We define this as follows.

Definition 2.5 » Equivalence class

For a preorder R on a set A, the equivalence class of an element α ∈A, denoted by

[α]R, is defined as

— [α]R = {β : β ∈A,β ERα} «

When elements cannot be compared with respect to R, we have the following

relation.

Definition 2.6 » Incomparability relation

For a preorder R on a set A, the incomparability relation IR, is given by

— for all α,β ∈A, α IR β , if and only if, α 6Rβ and β 6Rα. «

10
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Therefore, if α IR β , then α and β are incomparable with respect to the original

relation R.

2.2.2 Connections between Preorder Relations

For the definitions of preorder and associated relations given in Section 2.2 we now

take a brief look at some of the relationships between relation R and its associated

relations SR, ER and IR. To aid the discussion, first we define R−1, the inverse of

relation R, as follows.

Definition 2.7 » Inverse of relation R

For some relation R on A, the inverse relation R−1 of R is given by

— for all α,β ∈A, (β ,α) ∈ R−1 if and only if (α,β) ∈ R. «

Now we look at Figure 2.1, which shows the basic set relationships between the

relations R, ER, SR, IR and R−1. For example, we can see that R ∩ R−1 = ER, i.e.,

the intersection of relation R and its inverse relation R−1 gives us the equivalence

relation ER. Also we can see that SR∪ ER = R, i.e., for all (α,β) ∈ R, we have either

(α,β) ∈ SR, i.e., α is strictly preferred to β , or we have that (α,β) ∈ ER, i.e., α is

equivalent to β .

Figure 2.1: The relationships between relations R, SR, ER and IR

We give some further properties of relation R in the following remark.

Remark 2.2 » Preorders and associated relations

For a preorder R on a set A,

(i) If R is antisymmetric, then ER = ;.

11
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(ii) If R is complete, then IR = ;; inversely, if R is not complete, IR 6= ;.

Part (i) of Remark 2.2 gives us that if R is antisymmetric (a partial order or total

order), then we have no two distinct elements that are equally preferred. Part (ii)

gives us that if relation R is complete (a total preorder or total order), since we

have for all α,β ∈A, either αRβ , or β Rα (or both), then we have no two distinct

elements that are incomparable. We also have that if R is not complete then there

exists α,β ∈A such that α and β are incomparable.

2.2.3 Preferable Elements

Here we introduce some general terms for elements of a given set that are of interest

when given a particular preference relation, the elements of A that are in some way

preferable. For a preorder R on a set A, with associated relations SR, ER and IR, we

consider the following elements of A.

Definition 2.8 » Best element

A element α ∈A is a best element for R of A, if and only if

— for all β ∈A, αRβ . «

That is, an element α is a best element of A if it is preferred to all other elements

in A. For a preorder R on a set A, let BR denote the set of best elements of A, with

respect to R. We also call this set the best set.

Definition 2.9 » Optimal element

An element α ∈A is a optimal (or non-dominated) element for R of A, if and only if

— there is no element β ∈A such that β SRα. «

That is, an element α is an optimal element of A if there is no other element in A
that is strictly preferred to α. For a preorder R on a set A, let OSR

denote the set

of optimal elements of A with respect to SR, the strict part of R. We call this the

optimal set.

12
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2.2.4 Relationship between Optimal and Best Elements

Now we take a look at the relationship between the optimal and best elements of a

set A given some preorder R. Firstly, we have the following remark.

Remark 2.3 » Best and optimal sets

For a preorder R on a set A, we have

(i) BR ⊆ OSR

(ii) |OSR
| ≥ 1

(iii) If R is complete, then |BR| ≥ 1 and OSR
= BR.

(iv) If R is antisymmetric, then |BR|= 0 or 1.

Part (i) gives us that the best elements are also optimal. Part (ii) gives us that we

necessarily have an optimal element. Part (iii) gives us that if R is complete, then

we necessarily have a best element and the best and optimal sets coincide. Part

(iv) gives us that if R is antisymmetric and there is a best element, it is necessarily

unique.

Let us look at an example showing the relationships between the best and optimal

sets for different relations.

Example 2.1 É Best and optimal sets example.

Figure 2.2 shows three different example relations R on some set A, where the relation

is defined by,

É [α]R [β]R if and only if for all α ∈ [α]R, for all β ∈ [β]R, α SR β ,

which is if and only if any element of the equivalence class [α]R is strictly preferred to

any element of the equivalence class [β]R.

Part (a) of Figure 2.2 shows the best and optimal sets for a total preorder R, where we

necessarily have one or more best elements, part (b) of Figure 2.2 shows the optimal

set and non-empty best set for a preorder R, when R is not complete, and part (c) of

Figure 2.2 shows the optimal set and empty best set for a preorder R, when again R is

not complete, and the best set is empty. Î

We can also see, from part (c) of Figure 2.2, that the optimal set OSR
for relation R

on set A is made up of unions of equivalence classes of ER.
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Figure 2.2: The best set BR and optimal set OSR
for relation R on set A, (a) when R is a

total preorder (b) when R is not complete and the best set is not empty, and (c) when R
is not complete and there are no best elements.

2.2.5 Extending Relations

To aid the later comparisons of different preference relations, i.e., different R, we

define the notion of an extension to a relation [FRW10].

Definition 2.10 » Relation extension

An extension R′ to a relation R on a set A, is a binary relation on A such that

— for all α,β ∈A, αRβ ⇒ αR′ β «

So if α is preferred to β according to the original relation, then it is still preferred

according to the extending relation. However the extending relation is more dis-

criminating than the original relation as it can compare more pairs of decisions than

the original relation. In terms of relations R and R′ as sets of ordered pairs, we have

that R⊆ R′.

Now we look at the relationships between the optimal sets of preorder relations

R and R′ on A, where SR′ , the strict part of R′, is an extension of SR, the strict part

of R′. Let OSR
denotes the optimal set of A with respect to SR and let OSR′

denotes

the optimal set of A with respect to SR′ . The following result gives us that if α is

an optimal element of A with respect to R′, then it is an optimal element of A with

respect to R.
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Proposition 2.1 » Optimal sets for preorder and extension

For preorders R, R′ on a set A, such that SR′ is an extension of SR, i.e., such that

α SR β ⇒ α SR′ β , we have that

— OSR
⊇ OSR′

�

Proof: Suppose there exists α ∈ A such that α 6∈ OSR
. Then by definition of OSR

,

there exists some β ∈A such that β SRα. Since SR′ extends SR, then we have β SRα

implies β SR′ α. This implies α /∈ OSR′
, proving the result. �

2.3 Preference Relations and Decision Making

In this section, we look at preference relations in the context of a general decision

making problem, where we have a set A of decisions, alternatives or choices, and

depending on the situation the task is to choose a single decision or a subset of

decisions from this set, given some preference information relating to each decision.

Firstly, we consider a general decision making problem, which is not specific to any

particular decision-making field or area, where the purpose of this definition is to

facilitate the discussion of different preference relations.

Definition 2.11 » Multi-aspect decision problem

A multi-aspect decision problem is a tuple P = 〈A,S, T,≤〉, where:

• A is a finite set of decisions, alternatives or choices,

• S = {1, . . . , m} is a finite set of decision aspects, where each i ∈ S labels some

preferential aspect of the problem, and for which pi is a function that specifies

the preference value of each decision, i.e., pi : A→ T ,

• T is a scale of preference values, where ≤ is a total order on T . «

In this definition, each i ∈ S is a labelling of some aspect of the problem for which

there is a preference value specified, for example, it could be a criterion in multi-

criteria decision making and pi(α) is a rating of α in criterion i, or it could be a

state of the world in decision making under uncertainty, and pi(α) is the preference

level of α should state i occur. To define some compact notation, we let αi denote
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the preference value for decision α ∈ A in aspect i ∈ S, i.e., αi = pi(α). For each

decision α ∈A, we have m preference values α1 . . . ,αm, one value for each of the

given aspects.

In the definition given, we consider a single scale T , however it could be the case

that each labelled aspect has a scale of preference values of its own, for example,

criteria with different scales. We also consider the polarity of the scale, where T

could represent positive preferences or different levels of positive outcomes such as

utilities or degrees of satisfaction, or T could represent negative preferences, where

the values represent different levels of negative outcomes such as costs or degrees

of violation. The polarity of the scale T determines whether or not larger or smaller

values are preferred according to some preference relation; intuitively, for positive

preferences, larger values are preferred, and for negative preferences smaller values

are preferred.

Another consideration in these problems is that we can also have different types

of scale, for example, T can be quantitative, where the difference between two

preference degrees has some meaning, or, if T is purely qualitative, then we just

have an ordering between preference degrees.

2.3.1 Preference Level Representation and Notation

Given a multi-aspect decision problem P = 〈A,S, T,≤〉, we present a couple of

different ways of representing the overall preference level of a decision α, i.e, the m

preference values α1 . . . ,αm associated to α.

Definition 2.12 » Preference vector

The preference vector υ(α) of a decision α ∈A is given by

— υ(α) = (α1, . . . ,αm). «

That is, it is the vector of m preference values of decision α given in the order of

the decision aspects 1, . . . , m. The preference vector representation is important

when the ordering of the preference values needs to be maintained, for example,

in multi-scale decision making problems such as in multi-criteria decision making

[KR76], where we require to compare the preference values of two decisions on a

given criterion.
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Definition 2.13 » Sorted preference vector

The sorted preference vector υ(α)↑ of a decision α ∈A is given by

— υ(α)↑ = (α(1), . . . ,α(m)), such that, α(1) ≤ . . .≤ α(m). «

That is, υ(α)↑ is the unique permutation of υ(α) such that the preference values are

reordered in non-decreasing order. The sorted preference vector representations

can be used when the ordering of the preference values is not important and the

comparison of two decisions does not rely on maintaining the aspect ordering, for

example, in social welfare theory [Sen70], where in a social welfare distribution

there is no ordering over the individuals.

We use the following notation for the component-wise comparison of two preference

vectors, where we have the relations ≤, < and =, defined over preference vectors

of equal size.

Definition 2.14 » Preference vector dominance

For any two preference vectors υ(α) and υ(β), of size m, we have that

(i) υ(α)≤ υ(β) if and only if αi ≤ βi for all i ∈ {1, . . . , m},

(ii) υ(α) < υ(β) if and only if αi ≤ βi for all i ∈ {1, . . . , m}, and there exists

j ∈ {i, . . . , m} such that α j < β j.

(iii) υ(α) = υ(β) if and only if αi = βi for all i ∈ {1, . . . , m}. «

2.4 Pareto Dominance

In this section, we look at a preference relation called Pareto dominance. This is

with a view to providing some background on the Sorted-Pareto dominance relation

(see Section 2.5), which is an extension to Pareto dominance and is one of the main

focuses of the thesis.

The Pareto dominance relation [Par97] prefers decisions that are at least as good in

every aspect, and strictly better in at least one aspect [Sen70, Ch. 2]. For example,

in multi-criteria decision making, if we are comparing two decisions, then Pareto

dominance will prefer the decision that is at least as good in every criteria and

strictly better in at least one. Here we give definitions for the Pareto dominance

relations, where we assume some multi-aspect decision problem P = 〈A,S, T,≤〉,
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for which T is a negative preference scale, i.e., we are minimising and smaller values

are preferred.

First we give a definition for the Weak Pareto dominance relation, which is a preorder

on A (see Definition 2.2).

Definition 2.15 » Weak Pareto dominance

For all α,β ∈A, α Weak Pareto dominates β , written as α´P β , if and only if

— υ(α)≤ υ(β) «

That is, we have that αi ≤ βi for all i ∈ {1, . . . , m}. For example, for two decisions

α and β , with preference vectors υ(α) = (2,3) and υ(β) = (2,4), we can see that

α ´P β , since α is at least as good as β for all i ∈ {1, . . . , m}. The strict version of

Pareto dominance is defined as follows.

Definition 2.16 » Pareto dominance

For all α,β ∈A, α Pareto dominates β , written as α≺P β , if and only if

— υ(α)< υ(β) «

That is, we have αi ≤ βi for all i ∈ {1, . . . , m}, and there exists j ∈ {i, . . . , m} such

that α j < β j. For example, for two decisions α and β , with preference vectors

υ(α) = (2, 3) and υ(β) = (2, 4), we can see that α≺P β , since α is at least as good

as β for all i ∈ {1, . . . , m}, and strictly better for j = 2.

Since Pareto dominance is the strict or asymmetric part of weak Pareto dominance

(see Definition 2.3), then ≺P can also be defined in terms of ´P, which we give in

the following remark.

Remark 2.4 » Pareto dominance in terms of ´P

For all α,β ∈A, α≺P β if and only if α´P β and β 6´P α.

Now we look at the equivalence relation for Pareto dominance, which is defined as

follows.

Definition 2.17 » Pareto equivalence

For all α,β ∈A, α is Pareto equivalent β , written as α≡P β , if and only if

— υ(α) = υ(β) «
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That is, we have that αi = βi for all i ∈ {1, . . . , m}. For example, for two decisions

γ and δ, with preference vectors υ(γ) = (4,2) and υ(δ) = (4,2), we can see that

γ≡P δ, since γi = δi, for all i ∈ {1, . . . , m}.

Since Pareto equivalence is the symmetric part of weak Pareto dominance (see

Definition 2.4), then ≡P can also be defined in terms of ´P, which we give in the

following remark.

Remark 2.5 » Pareto equivalence in terms of ´P

For all α,β ∈A, α≡P β if and only if α´P β and β ´P α.

We now look at the notion of non-dominated or optimal decisions when considering

the Pareto dominance relation. In the context of Definition 2.9, these decisions are

the optimal elements of A with respect to the ≺P relation. It is a desirable property

in decision making, since for any decision in A that is not Pareto optimal, there

exists some other decision in A that is at least as good in every aspect and strictly

better in some.

Definition 2.18 » Pareto non-dominated/optimal decision

A decision α ∈A is Pareto non-dominated (or Pareto optimal) if and only if

— there is no β ∈A such that β ≺P α. «

That is, if and only if it is not Pareto dominated by any other decision. We denote

the set of Pareto non-dominated decisions of A as OP. Let us look at an example:

Example 2.2 É Pareto optimal example.

Consider some multi-aspect decision problem P = 〈A,S, T,≤〉, where

É A= {α,β ,γ,δ}

É S = {1,2}

É T = {low, med, hi}

where T is a scale of cost estimates, ordered by ≤.

The preference vector for each decision is given as follows.

É υ(α) = (low, med)

É υ(β) = (low, hi)

É υ(γ) = (hi, low)
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É υ(δ) = (hi, low)

Since we have α≺P β , then β is not Pareto optimal, i.e., we have that

É β 6∈ OP

However, there exists no decision in A that Pareto-dominates α, γ or δ, so we have that

É OP = {α,γ,δ} Î

2.4.1 Pareto Dominance on Preference Vectors

The interpretation of Pareto dominance given in Section 2.4 is as a relation on a set

of decisions A in a multi-aspect decision problem P = 〈A,S, T,≤〉, where for each

decision α ∈A we have a preference vector υ(α) of m values from a given scale T .

We can see that the preference vector space is T m, the set of m-tuples of T , which is

T m = T × · · · × T
︸ ︷︷ ︸

m

.

If instead we consider Pareto dominance as a relation on the preference vector space

T m, then using preference vector dominance (see Definition 2.14), we induce the

Pareto dominance relations over T m, as follows.

Remark 2.6 » Pareto dominance on T m

For all u,v ∈ T m, we have

• u´P v if and only if u≤ v,

• u≺P v if and only if u< v,

• u≡P v if and only if u= v.

2.5 Sorted-Pareto Dominance

As mentioned in the previous section, Pareto optimality is a desirable property

when choosing decisions in a multi-aspect decision problem, however the Pareto

dominance relation is not very discerning since many comparisons between pairs

of decisions do not result in dominance. In this section, we look at Sorted-Pareto

dominance, which is also called Ordered Pareto [KP08], or Symmetric Pareto [DPT13],
and it can be used in situations when the ordering of the decision aspects is not

important, or when the scales used in each aspect can be made commensurate.

Since it is more discriminating than Pareto dominance, it produces a much smaller

20



2. BACKGROUND I - PREFERENCES 2.5 Sorted-Pareto Dominance

optimal set of decisions, and since the Sorted-Pareto dominance extends the Pareto

dominance relation (see Proposition 2.4), then Sorted-Pareto optimal decisions are

also Pareto optimal.

Here we define the Sorted-Pareto dominance relations, assuming some multi-aspect

decision problem 〈A,S, T,≤〉, where we have a negative preference scale T . First

we give the definition for Weak Sorted-Pareto dominance, which is a preorder on A.

Definition 2.19 » Weak Sorted-Pareto dominance

For all α,β ∈A, α Weak Sorted-Pareto dominates β , written as α´SP β , iff.

— υ(α)↑ ≤ υ(β)↑ «

That is, if and only if α(i) ≤ β(i) for all i ∈ {1, . . . , m}. The strict version of the

relation is defined as follows.

Definition 2.20 » Sorted-Pareto dominance

For all α,β ∈A, α Sorted-Pareto dominates β , written as α≺SP β , if and only if

— υ(α)↑ < υ(β)↑ «

That is, if and only if α(i) ≤ β(i) for all i ∈ {1, . . . , m}, and there exists j ∈ {1, . . . , m}
such that α( j) < β( j). From Definition 2.3, the Sorted-Pareto dominance relation ≺SP

can also be defined in terms of ´SP, which we give in the following result.

Proposition 2.2 » Sorted-Pareto dominance in terms of ´SP

For all α,β ∈A, α≺SP β if and only if

— α´SP β and β 6´SP α. �

Proof: Suppose α ≺SP β , Then by definition of ≺SP, we have α(i) ≤ β(i) for all

i ∈ {1, . . . , m}, which means by definition of ´SP we have that α´SP β . By definition

of ≺SP, we also have that there exists j ∈ {1, . . . , m} such that α( j) < β( j), which

means by definition of ´SP, we cannot have that β ´SP α.

Now we prove the converse. Suppose α ´SP β and β 6´SP α. By definition of ´SP,

we have α(i) ≤ β(i) for all i ∈ {1, . . . , m}. Since β 6´SP α, then it is not the case

that β(i) ≤ α(i) for all i ∈ {1, . . . , m}, i.e., there exists some j ∈ {1, . . . , m} such that

β( j) 6≤ α( j), i.e., α( j) < β( j). By definition of ≺SP, this gives us that α≺SP β . �
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The equivalence relation for Sorted-Pareto is defined as follows.

Definition 2.21 » Sorted-Pareto equivalence

For all α,β ∈A, α is Sorted-Pareto equivalent to β , written as α≡SP β , if and only if

— υ(α)↑ = υ(β)↑ «

That is, if and only if α(i) = β(i), for all i ∈ {1, . . . , m}, i.e., υ(α) and υ(β) are

permutations of each other. Referring to Definition 2.4, we can see that Sorted-

Pareto equivalence can also be defined in terms of Weak Sorted-Pareto dominance.

We have the following result.

Proposition 2.3 » Sorted-Pareto equivalence in terms of ´SP

For all α,β ∈A, α≡SP β if and only if

— α´SP β and β ´SP α. �

Proof: Suppose α ≡SP β . By definition of ≡SP, we have α(i) = β(i) for all i ∈
{1, . . . , m}. It follows from the definition of ´SP that α´SP β and β ´SP α.

Now suppose α ´SP β and β ´SP α. By definition of ´SP we have, for all i ∈
{1, . . . , m}, α(i) ≤ β(i) and β(i) ≤ α(i), i.e., for all i ∈ {1, . . . , m}, α(i) = β(i), which

gives us, by definition of ≡SP, that α≡SP β . �

Given the Sorted-Pareto equivalence definition, we also have the notion of a Sorted-

Pareto equivalence class for a decision, which we define as follows.

Definition 2.22 » Sorted-Pareto equivalence class

The Sorted-Pareto equivalence class of α ∈A, denoted by [α]SP, is defined as

— [α]SP = {β : β ∈A, β ≡SP α} «

Therefore for some α ∈A, the set [α]SP is the set all the decisions that are Sorted-

Pareto equivalent to α.

For a multi-aspect decision problem P = 〈A,S, T,≤〉, the optimal decisions of A
with respect to the ≺SP relation (see Definition 2.9) are called Sorted-Pareto non-

dominated decisions, which are defined as follows.
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Definition 2.23 » Sorted-Pareto non-dominated/optimal decision

A decision α ∈A is Sorted-Pareto non-dominated/optimal, if and only if

— there is no β ∈A such that β ≺SP α. «

That is, if and only if it is not Sorted-Pareto dominated by any other decision. We

denote the set of Sorted-Pareto non-dominated decisions as OSP.

Now we look at an example which compares the resulting Pareto optimal and

Sorted-Pareto optimal sets of decisions for a given problem.

Example 2.3 É Pareto and Sorted-Pareto optimal example.

Consider again the multi-aspect decision problem P = 〈A,S, T,≤〉 from Example 2.2,

where we have:

É υ(α) = (low, med)

É υ(β) = (low, hi)

É υ(γ) = (hi, low)

É υ(δ) = (hi, low)

The Pareto optimal set of A is given by:

É OP = {α,γ,δ}.

Now, if we use Sorted-Pareto dominance instead of Pareto dominance, then the sorted

preference vectors of the decisions are given by:

É υ(α) = (low, med)

É υ(β) = (low, hi)

É υ(γ) = (low, hi)

É υ(δ) = (low, hi)

We can see that α ≺SP β , α ≺SP γ and α ≺SP δ, and there is no decision in A that

Sorted-Pareto dominates α, so we have that:

É OSP = {α}

Now there is a smaller set of optimal decisions from which to choose; in this instance

OSP is a strict subset of OP. Since α is now the only optimal decision with respect to the
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Sorted-Pareto relation, there is an argument for a decision maker to choose decision α

over any of the others. Î

As already illustrated in Example 2.3, the Sorted-Pareto dominance relation extends

the Pareto dominance relation, and given Proposition 2.1, we have that OSP is a

subset of OP. We give the following result.

Proposition 2.4 » Sorted-Pareto extends Pareto result

For a multi-aspect decision problem 〈A,S, T,≤〉, we have that:

(i) ´SP extends ´P i.e., for all α,β ∈A, if α´P β then α´SP β .

(ii) ≺SP extends ≺P, i.e., for all α,β ∈A, if α≺P β , then α≺SP β . �

Proof:

(i) Suppose α´P β . Therefore, by definition of ´P, αi ≤ βi, for all i = 1, . . . , m.

Consider any j ∈ {1, . . . , m}. β( j) is the j-th smallest element of β , so there are

at least j components βi of β with βi ≤ β( j). If βi ≤ β( j), then αi ≤ β( j), since

αi ≤ βi by definition of ´P. Therefore, there are at least j components αi of α

with αi ≤ β( j), in particular α( j) ≤ β( j). Therefore, υ(α)↑ ≤ υ(β)↑, which by

definition of ´SP, implies that α´SP β .

(ii) Suppose α ≺P β . Then we have, by definition of ≺P, that α ´P β , and

therefore from (i) we have that α ´SP β , which means we must have either

α ≡SP β or α ≺SP β . Suppose α ≡SP β , and we prove a contradiction here.

By definition of ≺P, we have that there exists some j ∈ {1, . . . , m} such that

α j < β j. Let jα ∈ {1, . . . , m} be such that α( jα) = α j, and let jβ ∈ {1, . . . , m}
be such that β( jβ ) = β j. Then since we have from our supposition α(i) = β(i)
for all i ∈ {1, . . . , m}, then we must have that jα < jβ . Therefore there must

exists some other k ∈ {1, . . . , m} such that βk > αk. However this contradicts

α≺P β , so therefore we must have that α≺SP β . �

2.5.1 Sorted-Pareto Dominance on Preference Vectors

The definitions of the Sorted-Pareto dominance relations given in the previous

section are defined over the set of decisions A in a multi-aspect decision problem
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P = 〈A,S, T,≤〉. Similar to as done with Pareto dominance in Section 2.4.1, if we let

the set of decisions A be equal to the preference vector space T m = T × · · · × T
︸ ︷︷ ︸

m

, then

we induce the Sorted-Pareto dominance relations over T m, again using preference

vector dominance from Definition 2.14.

Remark 2.7 » Sorted-Pareto dominance on T m

For all u,v ∈ T m, we have

• u´SP v if and only if u↑ ≤ v↑,

• u≺SP v if and only if u↑ < v↑,

• u≡SP v if and only if u↑ = v↑.

2.6 Connections between Sorted-Pareto Dominance

and Other Relations

In this section, we look at some other preference relations that are connected to

Sorted-Pareto dominance. Since the Sorted-Pareto relation involves comparing deci-

sions based on a reordering of the preference vectors associated with the decisions,

then we look at other preference relations that also use such a reordering. The

definition of Sorted-Pareto dominance given in the previous section is in the context

of minimising negative preferences, for example, costs, so smaller values on our

scale T are preferred. We look at some preference relations that are related to

Sorted-Pareto in the context of minimising, but we also examine the connection be-

tween Sorted-Pareto and relations in the context of maximising positive preferences.

We also discuss relations that use on additional information such as quantitative

preferential information or probability information on scenarios.

In the positive preference scale case, the direction of preference is reversed from the

negative preference scale case, so we have that if α ¼SP β , then α is Weak Sorted-

Pareto preferred to β , and we have that if α�SP β , then α is Sorted-Pareto preferred

to β . This also gives us that a decision α ∈ A is Sorted-Pareto optimal if and only

if there is no β ∈A such that β �SP α. To differentiate between the Sorted-Pareto

optimal sets for minimising and maximising preferences, we let OSP∗ denote the set

of Sorted-Pareto optimal decisions for maximising positive preferences.

To aid the comparison between Sorted-Pareto dominance and other preference

relations, we first give the following result on extending Sorted-Pareto dominance,
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which is a new result.

Lemma 2.1 » Extending Sorted-Pareto result

(i) Let ≤R be a preorder on T m that extends Weak-Pareto dominance ´P defined

on T m. Define relation ´ on A by, α´ β ⇐⇒ υ(α)↑ ≤R υ(β)↑.

Then ´ extends ´SP.

(ii) Let <S be a preorder on T m that extends Pareto dominance ≺P defined on

T m. Define relation ≺ on A by, α≺ β ⇐⇒ υ(α)↑ <S υ(β)↑.

Then ≺ extends ≺SP. �

Proof:

(i) Suppose that α´SP β . Then we have by definition of ´SP that υ(α)↑ ≤ υ(β)↑.
Since ≤R extends ≤, then we have υ(α)↑ ≤ υ(β)↑ ⇒ υ(α)↑ ≤R υ(β)↑, so by

definition of ´, we have that α´ β .

(ii) Suppose that α ≺SP β . Then have by definition of ≺SP that υ(α)↑ < υ(β)↑.
Since <S extends <, then we have that υ(α)↑ < υ(β)↑⇒ υ(α)↑ <S υ(β)↑, and

by definition of ≺, we have that α≺ β . �

Lemma 2.1 implies that Sorted-Pareto dominance is extended by the Lexicographi-

cal Max Ordering [Ehr96] and Leximin [DFP96b, PSS06] total preorders. Sorted-

Pareto is also extended by Generalized Lorenz dominance [Sho83], and by Ordered

Weighted Averages [Yag88], which are other refinements of Pareto dominance, how-

ever unlike these relations Sorted-Pareto can be used for purely ordinal or qualitative

information aggregation.

2.6.1 Sorted-Pareto and Minimax

In this section we relate Sorted-Pareto dominance to the Minimax relation, which

is a preference relation for minimising negative qualitative preferences. When

comparing any two decision in our set of decisions, the Minimax relation [vN28]
prefers the decision that has a smaller maximum negative preference level. For

example, in game theory, if we are comparing two decisions, and the preference
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values indicate possible loss, Minimax will prefer the decision with the smaller

maximum loss. We give a definition as follows.

Definition 2.24 » Minimax

For all α,β ∈A, α is Minmax-preferred to β , written as α�MX β , if and only if

— maxυ(α)≤maxυ(β) «

That is, we have that α�MX β if and only if α(m) ≤ β(m). We also have a strict version

of the Minimax relation, where there is a strict preference between two decisions.

Definition 2.25 » Strict Minimax

For all α,β ∈A, α is strictly Minimax-preferred to β , written as α≺MX β , iff

— maxυ(α)<maxυ(β) «

That is, we have that α≺MX β if and only if α(m) < β(m). The equivalence relation

for Minimax is defined as follows.

Definition 2.26 » Minimax equivalence

For all α,β ∈A, α is Minimax equivalent to β , written as α≡MX β , if and only if

— maxυ(α) =maxυ(β) «

That is, we have that α≡MX β if and only if α(m) = β(m).

From the definitions, we can see that the Minimax relation extends the Weak Sorted-

Pareto relation, so we have the following result.

Proposition 2.5 » Sorted-Pareto and Minimax

For all α,β ∈A, we have

— α´SP β ⇒ α�MX β . �

Proof: This follows from the definitions and from Lemma 2.1 (i). �

Let BMX denote the set of best decisions from A with respect to �MX, and let OMX

denote the set of optimal decisions from A with respect to ≺MX. The Minimax

relation �MX forms a total preorder on A, so we have that BMX = OMX 6= ;.
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Let us look at an example.

Example 2.4 É Minimax example.

For some scale T = {1,2, 3,4, 5}, which is ordered by ≤, let us consider the preference

vectors for two decisions α and β , given by

É υ(α) = (1, 4,1)

É υ(β) = (4,4, 4)

We can see that

É maxυ(α) = 4

É maxυ(β) = 4

so we have α 6≺MX β , and β 6≺MX α, i.e., neither is strictly preferred to the other with

respect to the Minimax relation.

However, we can see that for all preference values other than the maximum value, α is

better than β , i.e., we have that

É α(1) < β(1)

É α(2) < β(2)

but these comparisons are not considered by Minimax. We can see however that α

Pareto dominates β . Î

This example shows what is known as the “Drowning effect” [DF05, FLS93], since

the other preference values in the preference vector besides the maximum value are

not considered by the relation. The Sorted-Pareto preference relation does not suffer

from this since it considers all values in the preference vector in its comparison.

2.6.2 Sorted-Pareto and Lexicographic-Max

In this section, we compare Sorted-Pareto dominance with the Lexicographic-Max

ordering, another preference relation for minimising negative preferences. The

Lexicographic-Max ordering [Ehr96] is similar to Minimax in that when it compares

two decisions, it prefers the one with the smaller maximum preference value, how-

ever if both maxima are equal then it will lexicographically compare the next largest

preference value of each decision until it finds that they are not equal. Therefore the
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Lexicographic-Max ordering is an extension of MinMax. First we define the strict

Lexicographic-Max ordering ≺LMX as follows.

Definition 2.27 » Strict Lexicographic-Max

For all α,β ∈A, α is strictly Lexicographic-Max preferred to β , written as α≺LMX β ,

if and only if there exists some j ∈ {1, . . . , m} such that

(a) for all i ∈ { j + 1, . . . , m}, α(i) = β(i), and

(b) α( j) < β( j) «

Now we define the Lexicographic-Max equivalence ordering ≡LMX.

Definition 2.28 » Lexicographic-Max equivalence

For all α,β ∈A, α is Lexicographic-Max equivalent to β , written as α≡LMX β , iff

— υ(α)↑ = υ(β)↑ «

From this, we can define the Lexicographic-Max ordering �LMX as follows, in terms

of ≺LMX and ≡LMX.

Definition 2.29 » Lexicographic-Max

For all α,β ∈A, α is Lexicographic-Max preferred to β , written as α�LMX β , iff

— α≡LMX β or α≺LMX β . «

Let BLMX denote the set of best decisions from A with respect to �LMX, and let OLMX

denote the set of optimal decisions from A with respect to ≺LMX. The Lexicographic-

Max ordering relation �LMX forms a total preorder on A, so we have that BLMX =
OLMX 6= ;. Comparing the Sorted-Pareto dominance relation and Lexicographic-Max

ordering, we can see that the Sorted-Pareto relations are extended by Lexicographic-

Max relations, so we have the following result.
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Proposition 2.6 » Sorted-Pareto and Lexicographic-Max

For a set of decisions A, where α,β ∈A, we have:

(i) α´SP β ⇒ α�LMX β

(ii) α≺SP β ⇒ α≺LMX β

(iii) OSP ⊇ OLMX �

Proof:

(i) This follows from the definitions and from Lemma 2.1 (i).

(ii) This follows from the definitions and from Lemma 2.1 (ii).

(iii) This follows from (ii) and from Proposition 2.1. �

Now, let us look at an example using the Lexicographic-Max relation.

Example 2.5 É Lexicographic-Max example.

For some multi-aspect decision problem P = 〈A,S, T,≤〉, let us consider the preference

vectors for two decisions α and β , given by:

É υ(α) = (8, 10,8, 7)

É υ(β) = (1,10, 9,1)

The sorted preference vectors are given by:

É υ(α)↑ = (7,8, 8,10)

É υ(β)↑ = (1,1, 9,10)

We have that α 6≺SP β and β 6≺SP α, therefore we have:

É OSP = {α,β}

We also have that α≺LMX β , since α(4) = β(4) and α(3) < β(3), so we have:

É OLMX = {α}

and we can see that in this example OSP ⊃ OLMX.

However we also have that decision β is much better than decision α for the remaining

components in the preference vectors, i.e.,

É β(2) < α(2), where 1< 8, and
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É β(1) < α(1), where 1< 7

but these comparisons are not considered by the Lexicographic-Max ordering. Î

The example here illustrates that even though the Lexicographic-Max ordering does

not suffer as much from the drowning effect as the Minimax relation, it can still

effectively “ignore” preference values when comparing decisions.

2.6.3 Sorted-Pareto and Maximin

The Maximin relation [Raw71, Wal50] is the maximising counterpart to the Minimax

relation already defined. When comparing two decisions the Maximin relation,

prefers the decision that has a larger minimum positive preference level. For example,

if each value in the preference vector represents some income or utility gained by

a person, then the Maximin relation will prefer the decision that has the larger

minimum value, therefore maximising the utility of the worst off person. It is

defined as follows.

Definition 2.30 » Maximin

For all α,β ∈A, α is Maximin-preferred to β , written as α�MN β , if and only if

— minυ(α)≥minυ(β) «

Similar to Minimax, for Maximin we can also define the strict relation �MN and

the equivalence relation ≡MN in the obvious ways, where α �MN β if and only if

minυ(α) > minυ(β), and α ≡MN β if and only if minυ(α) = minυ(β). As with

the Minimax relation, Maximin is a total preorder on the set of decisions A, and

we have that the Weak Sorted-Pareto dominance relation is extended by Maximin,

which can be shown in a similar way to Proposition 2.5.

2.6.4 Sorted-Pareto and Leximin

The Leximin relation [BJ88, DFP96b, FLS93] is the lexicographical version of

the Maximin relation, or in other terms, it is the maximising equivalent of the

Lexicographic-Max ordering defined in Section 2.6.2. Leximin is defined as follows.
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Definition 2.31 » Strict Leximin

For all α,β ∈A, α is strictly Leximin-preferred to β , written as α�LMN β , if and only

if there exists some j ∈ {1, . . . , m} such that

(a) for all i ∈ {1, . . . , j − 1}, α(i) = β(i), and

(b) α( j) > β( j) «

Similar to the Lexicographic-Max ordering, for Leximin we have the equivalence

relation ≡LMN, where α ≡LMN β if and only if υ(α)↑ = υ(β)↑, and we have the

weak version �LMN, where α�LMN β if and only if α�LMN β or α≡LMN β . Leximin

compares two decisions by comparing the minimum preference values in each

preference vector with one another, and if these are equal, it proceeds to the next

smallest value in the vector. The Leximin ordering is a total preorder on A.

We can perform a similar comparison between Leximin and Sorted-Pareto as is done

for Lexicographic-Max ordering and Sorted-Pareto in Proposition 2.6 to show that

the Sorted-Pareto is extended by Leximin.

2.6.5 Sorted-Pareto and Sum of Weights

Aside from the information that is available given a multi-aspect decision problem

as defined in Definition 2.11, there may be further information available to consider.

We could have that the values in T are numerical, or we could have some function

f : T → R+ that maps our scale T to a numerical scale. In these cases one way of

comparing decisions is to perform an aggregation, e.g., summation, of the preference

values associated with each decision and then compare the resulting aggregations

to see which are preferable.

For example, in weighted constraints (see Section 3.3.2), decisions with a lower sum

of negative preference values are preferred, and in Generalised Additive Independence

(GAI) networks [BG95, BPPS06, GPD11], decisions with a higher sum of positive

preference values are preferred. For a function f : T → R+ to preserve the order of

the scale T , we require that f is monotonic with respect to the scale T . We define a

monotonic function as follows.
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Definition 2.32 » Monotonic function

For some ordered scale T , ordered by ≤, a function f : T → R+ is monotonic with

respect to scale T , if and only if

— u≤ v⇒ f (u)≤ f (v), for all u, v ∈ T «

We could also have that f is strictly monotonic with respect to the scale T . We define

a strictly monotonic function as follows.

Definition 2.33 » Strictly monotonic function

For some ordered scale T , ordered by ≤, a function f : T → R+ is strictly monotonic

with respect to scale T , if and only if

— u< v⇔ f (u)< f (v) for all u, v ∈ T

or equivalently, if and only if

— u≤ v⇔ f (u)≤ f (v) for all u, v ∈ T «

Here we define the Min-sum relation for minimising negative preferences.

Definition 2.34 » Min-sum preferred

For all α,β ∈A, for some function f : T → R+, α is Min-sum preferred (with respect

to f) to β , written as α≤ f β , if and only if

—
m
∑

i=1

f (αi)≤
m
∑

i=1

f (βi) «

We also have the strict version of Min-sum preference, defined as follows.

Definition 2.35 » Strictly Min-sum preferred

For all α,β ∈A, for some function f : T → R+, α is strictly Min-sum preferred (with

respect to f) to β , written as α < f β , if and only if

—
m
∑

i=1

f (αi)<
m
∑

i=1

f (βi) «

And we have the definition for Min-sum equivalent, as follows.
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Definition 2.36 » Min-sum equivalent

For all α,β ∈ A, for some function f : T → R+, α is Min-sum equivalent (with

respect to f) to β , written as α≡ f β , if and only if

—
m
∑

i=1

f (αi) =
m
∑

i=1

f (βi) «

A Min-sum optimal decision is defined as follows.

Definition 2.37 » Min-sum optimal

For some function f : T → R+, decision α ∈A is Min-sum optimal (with respect to

f) if and only if

— α≤ f β for all β ∈A «

For some f : T → R+, let Bf denote the set of best decisions from A with respect to

the Min-sum relation for that f , and let Of denote the set of optimal decisions from

A with respect to the Min-sum relation for that f . The Min-sum relation forms a

total preorder on A, so we have that Bf = Of 6= ;.

The Min-sum of weights relation extends the Sorted-Pareto dominance relation, so

we have the following result.

Proposition 2.7 » Sorted-Pareto dominance and Min-Sum of weights

For a multi-aspect decision problem 〈A,S, T,≤〉, where f : T → R+ and is mono-

tonic with respect to scale T , then we have for all α,β ∈A,

(i) α´SP β ⇒ α≤ f β

If f is strictly monotonic with respect to scale T , then we have:

(ii) α≺SP β ⇒ α < f β

(iii) OSP ⊇ Of �

Proof:

(i) Suppose that α ´SP β , then for all i ∈ {1, . . . , m}, α(i) ≤ β(i). Monotonicity

of f implies that, for all i ∈ {1, . . . , m}, f (α(i)) ≤ f (β(i)). This implies that
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∑m
i=1 f (α(i)) ≤

∑m
i=1 f (β(i)), which is equivalent to

∑m
i=1 f (αi) ≤

∑m
i=1 f (βi),

and by definition of ≤ f gives us that α≤ f β , proving the result.

(ii) Suppose that α ≺SP β , then for all i ∈ {1, . . . , m}, α(i) ≤ β(i), and exists

j ∈ {1, . . . , m} such that α(i) < β(i). Strict monotonicity of f implies that

f (α( j)) < f (β( j)). This implies that
∑m

i=1 f (α(i)) <
∑m

i=1 f (β(i)), which is

equivalent to
∑m

i=1 f (αi)<
∑m

i=1 f (βi), and by definition of < f gives us that

α < f β , proving the result.

(iii) This follows from (ii) and Proposition 2.1. �

We will discuss further the relationship between the Min-sum of weights relation

and Sorted-Pareto dominance later in Section 5.3.

2.6.6 Sorted-Pareto and Ordered Weighted Averages

Ordered weighted averages (OWA) [Yag88] are a family of aggregation operator

used for multicriteria decision making for maximising positive preferences. The

scale of preference values used is the unit interval, i.e., we have that T = [0,1],
and these values indicate degrees of satisfaction for a criterion, which constitute

the preference vector for each decision. The OWA operators also incorporate a

weighting vector w = (W1, W2, . . . , Wm), which assign weights to the values in the

sorted preference vectors. Then for some OWA operator Fw with weighting vector

w, we have that Fw(α) =W1α(1) +W2α(2) + · · ·+Wmα(m). The preference relation is

given as follows:

Definition 2.38 » Ordered Weighted Averages

For all α,β ∈ A, for some OWA operator Fw with weighting vector w, α is Fw

preferred to β , written as α�Fw
β , if and only if

— Fw(α)≥ Fw(β) «

We can also define the strict relation �Fw
and the equivalence relation ≡Fw

in the

obvious ways, where α�Fw
β if and only if Fw(α)< Fw(β), and α≡Fw

β if and only

if Fw(α) = Fw(β). The OWA relation is a total preorder on A, and the set of optimal

decisions is denoted by OFw
.

As we can see the resulting relation �Fw
depends on the weighting vector w, for

example, if we choose w such that W1 = 1 and Wi = 0 for i ∈ {2, . . . , m}, then that

gives us the Maximin operator as previously defined.
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Ordered Weighted Averages extend the Sorted-Pareto dominance relation, so we

have the following result.

Proposition 2.8 » Sorted-Pareto and Ordered Weighted Averages

For a multi-aspect decision problem 〈A,S, T,≤〉, where T is a subset of the reals

and w is such that for all i ∈ {1, . . . , m}, Wi ≥ 0, then we have for all α,β ∈A,

(i) α¼SP β ⇒ α�Fw
β

If, for all i ∈ {1, . . . , m}, Wi > 0, then

(ii) α�SP β ⇒ α�Fw
β

(iii) OSP∗ ⊇ OFw
�

Proof:

(i) Suppose α¼SP β . Then by definition we have for all i ∈ {1, . . . , m}, α(i) ≥ β(i).
Since for all i ∈ {1, . . . , m}, Wi ≥ 0, then we have for all i ∈ {1, . . . , m},
Wiα(i) ≥ Wiβ(i), and therefore

∑m
i=1 Wiα(i) ≥

∑m
i=1 Wiβ(i). By definition, this

gives us Fw(α)≥ Fw(β), and therefore we have that α�Fw
β .

(ii) Suppose α�SP β . Then by definition we have for all i ∈ {1, . . . , m}, α(i) ≥ β(i)
and there exists j ∈ {1, . . . , m} such that α( j) > β( j). Since for all i ∈ {1, . . . , m},
Wi > 0, then we have for all i ∈ {1, . . . , m}, Wiα(i) ≥Wiβ(i), and there exists

some j ∈ {1, . . . , m} such that Wjα( j) > Wjβ( j). Therefore this gives us that
∑m

i=1 Wiα(i) >
∑m

i=1 Wiβ(i) and by definition, we have Fw(α) ≥ Fw(β), and

therefore α�Fw
β .

(iii) This follows from (ii) and from Proposition 2.1. �

Ordered Weighted Averages extend the Sorted-Pareto dominance relation, however

as seen with Generalized Lorenz dominance and the other relations in this section,

Ordered Weighted Averages requires that the values in the preference vectors to

be on a quantitative scale, since it performs multiplication of the weights in the

weighting vector with the preference values.
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2.6.7 Sorted-Pareto and Generalised Lorenz Dominance

The Generalised Lorenz Dominance relation [Atk70, Sho83] was developed in the

context of social welfare distributions to compare the equitability of income distri-

butions, i.e., the fairness of the values in positive preference vectors. The Lorenz

curve of a distribution (or decision) is constructed as follows, considering the sorted

preference vector associated with the decision.

Definition 2.39 » Lorenz curve of a decision

For a decision α ∈ A, with the mean of the distribution equal to µ, let L(α, p) be

the Lorenz curve of α, where rational p ∈ [0, 1], and

— L(α,
k
m
) =

k
∑

i=1

α(i)

mµ
, for k = 1, . . . , m. «

Let L(α, 0) = 0, and to create the curve, adjacent points, of the form [ k
m , L(α, k

m)],
are joined together. For two distributions or decisions of equal means, i.e., where

the sum of the preference vectors are equal, then we have the following.

Definition 2.40 » Lorenz dominance

For α,β ∈A, α Lorenz-dominates β , written as α¼LOR β , if and only if

— L(α, p)≥ L(β , p), for all rational p ∈ [0,1] «

This means that if the Lorenz curve of α lies above the Lorenz curve of β , then we

have that α is preferred to β as it is more equitable.

To compare decisions that do not have the same mean, then we have the notion

of Generalized Lorenz dominance, where a Generalized Lorenz curve is given by

scaling up the regular Lorenz curve by the mean of the distribution, i.e.,

Definition 2.41 » Generalized Lorenz curve of a decision

For a decision α ∈ A, let GL(α, p) be the generalized Lorenz curve of α, where

rational p ∈ [0,1] and GL(α, p) = µL(α, p), and

— GL(α,
k
m
) =

1
m

k
∑

i=1

α(i), for k = 1, . . . , m. «

This gives us the Generalized Lorenz dominance relation as follows.
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Definition 2.42 » Generalized Lorenz dominance

For α,β ∈A, α Generalized Lorenz dominates β , written as α¼GL β , if and only if

— GL(α,
k
m
)≥ GL(β ,

k
m
), for k = 1, . . . , m. «

We can also define the strict relation �GL in terms of ¼GL, where α �GL β if and

only if α¼GL β and β 6¼GL α. We define the equivalence relation ≡GL by, α≡GL β if

and only if α¼GL β and β ¼GL α. Generalized Lorenz dominance is a total preorder

on A, and the set of optimal elements of A with respect to Generalized Lorenz

dominance, is denoted by OGL.

Generalized Lorenz dominance extends Sorted-Pareto dominance, so we have the

following result.

Proposition 2.9 » Sorted-Pareto and Generalized Lorenz dominance

For all α,β ∈A, we have:

(i) α¼SP β ⇒ α¼GL β

(ii) α�SP β ⇒ α�GL β

(iii) OSP∗ ⊇ OGL �

Proof:

(i) Suppose α¼SP β . Then by definition we have for all i ∈ {1, . . . , m}, α(i) ≥ β(i).
Therefore, for k = 1, . . . , m, we have 1

m

∑k
i=1α(i) ≥

1
m

∑k
i=1β(i), which gives us

GL(α, k
m)≥ GL(β , k

m), for k = 1, . . . , m. Therefore we have that α¼GL β .

(ii) Suppose α�SP β . By (i), we have that α¼GL β . By definition of �SP we have

for all i ∈ {1, . . . , m}, α(i) ≥ β(i) and there exists j ∈ {1, . . . , m} such that α( j) >

β( j). Therefore there exists j ∈ {1, . . . , m}, such that 1
m

∑ j−1
i=1 α(i) ≥

1
m

∑ j−1
i=1 β(i),

and 1
m

∑m
i= j α(i) >

1
m

∑m
i= j β(i). Therefore we have that β 6¼GL α.

(iii) This follows from (ii) and from Proposition 2.1. �

Generalized Lorenz Dominance extends Sorted-Pareto dominance, however it re-

quires that the values in the preference vectors (i.e., the income distribution) to be
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on a quantitative or additive scale, since it performs a summation of the preference

values to construct the Generalized Lorenz curve.

2.6.8 Sorted-Pareto and Minimax Regret

We have seen how Sorted-Pareto dominance is related to other preference relations

that use a reordering of the preference vectors. Now we examine a preference

relation that maintains the ordering of the preference vectors, and we compare it

with Sorted-Pareto dominance. The Minimax Regret [Sav51, BPPS06, LS82] relation

looks to minimise the worst case regret, where the regret of a decision with respect to

another decision is the difference between the maximum preference values, and the

maximum regret of a decision is the maximum regret over all decisions. The Minimax

Regret relation is used in situations where decision making is under uncertainty, so

for a multi-aspect decision problem 〈A,S, T,≤〉, where T is here assumed to be a

subset of the reals, the set of decision aspects S corresponds to the set of possible

scenarios that can occur. Therefore the comparison between decisions occurs on

the preference vectors where the ordering is maintained according to the scenarios.

Given this we define the notion of regret.

Definition 2.43 » Regret of α with respect to β

For α,β ∈A, the regret of α with respect to β , denoted by R(α,β) is

— R(α,β) =max
i∈S
βi −αi «

Now we define the notion of maximum regret of a decision.

Definition 2.44 » Maximum regret of a decision

For α ∈A, the maximum regret of α, denoted by MR(α,A) is

— MR(α,A) =max
β∈A

R(α,β) «

To compare two decision based on their maximum regret, we have the following.

Definition 2.45 » Maximum regret preferred

For α,β ∈A, α is maximum regret preferred to β , if and only if

— MR(α,A)≤ MR(β ,A) «
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Given this definition, the decisions that are optimal with respect to maximum

regret, are those that have the minimal maximum regret, and we denote this set

as OMR. Since the comparison performed by Minimax regret involved maintaining

the ordering of the states or aspects, i.e., the preference vector is not sorted, then

the relation is not comparable with Sorted-Pareto dominance. Let us look at an

example.

Example 2.6 É Sorted-Pareto and Minimax regret.

Consider some multi-aspect decision problem P = 〈A,S, T,≤〉, where we have two

decisions α and β which are evaluated over four different aspects, and the preference

vectors are given as follows:

É υ(α) = (3, 1,4, 5)

É υ(β) = (1,4, 3,4)

We can see that the regret of α with respect to β is 3, which occurs in scenario 2, and

the regret of β with respect to α is 2, which occurs in scenario 1. This means that

MR(β ,A)< MR(α,A), and we have that

É OMR = {β}

If we evaluate the decisions using Sorted-Pareto dominance, we have

É υ(α)↑ = (1,3, 4,5)

É υ(β)↑ = (1,3, 4,4)

We can see that α�SP β and we have that

É OSP∗ = {α}

We can also see that OMR is incomparable with OSP∗ . Î

2.6.9 Other Relations using Additional Information

There are other preference relations that use information not considered by the

Sorted-Pareto dominance relation. We may have additional information in relation

to the decision aspects, for example, there may be a probability distribution P on the

set of aspects S, which give a weighting to each preference value in the preference

vector for each decision. A probability distribution P over S is a mapping from

S → [0, 1] such that P(i)≥ 0 for all i ∈ S, and
∑

i∈S P(i) = 1. This could represent

a situation where the aspects correspond to different possible states of the world, of
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which one will actualise, and the probabilities over the aspects are the likelihood of

each state occurring.

For example, if we consider positive preference values, e.g., utilities, then given

a probability distribution P we can try and maximise our expected utility, such as

in the Expected Utility preference relation [Sav54], where α is EU-preferred to β ,

if and only if
∑

i∈S P(i)αi ≥
∑

i∈S P(i)βi, and P(i) is the probability of state i ∈ S
occurring. However in this thesis, since we consider situations where this probability

information is not available, we do not discuss further these types of relations.

2.7 Chapter Conclusion

In this chapter, we provided some introductory material to give some background

to the work in the thesis. We gave an introduction to preference and preference

relations, firstly in a general context and also in the context of a decision problem

where we have multiple preferences associated with each decision. We looked at

the resulting preferred elements of a set of decisions and discussed the relationships

between them. We also looked at the notion of an extension to a relation, and

examined the relationships between the sets of optimal elements with respect to a

given relation and its extension.

We introduced Sorted-Pareto dominance, which is a qualitative preference relation

that extends Pareto-dominance, and is one of the major focuses of this thesis. We

discussed the relationship between Sorted-Pareto dominance and other quantitative

preference relations for minimising negative preferences and maximising positive

preferences. We also looked at relations that are connected to Sorted-Pareto based on

the comparison of reordered preference vectors, and relations that utilise additional

quantitative information. We explore further the Sorted-Pareto dominance relation

in Chapter 5.
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3.1 Introduction

A combinatorial problem involves a set of decision variables, where each variable

can take values from their given domains, and solving a combinatorial problem

involves finding one or more solutions consistent with the problem description,

where a solution is an assignment of domain values to the decision variables. The

constraint programming paradigm is an approach that naturally fits the solving

of combinatorial problems, where constraints are used to model the problem by

specifying the relationships between decision variables and the values that the

variables are allowed to take. Hard constraints formalisms can be used to model

problems where the problem description specifies properties that must be present

in a solution to the problem, i.e., required properties, and these properties are

modelled using hard constraints – where a hard constraint must be satisfied by a

solution for the requirement modelled by the constraint to be met.

However there are a number of situations where modelling a problem using only

hard constraints can be inadequate. These include:

• when a problem is over-constrained, i.e., that all hard constraints cannot be

satisfied by any solution, and therefore there are no solutions to the problem

that meet all requirements.

• when a problem is under-constrained, i.e., a large number of solutions satisfy

the hard constraints and thus meet the problem requirements – this may be

prohibitive in terms of generating the solutions to the problem, or once the

set has been generated, the choice between decisions is inconsequential since

all solutions are equivalent.

• when the problem may have constraints that can be partially satisfied, i.e., a

given constraint can have different levels of satisfaction

• when the problem may have requirements that are optional or preferential

(rather than absolute requirements), meaning that a solution may or may not

meet these requirements and still be a valid solution to the problem.

• when there is uncertainty around the problem, e.g., there could be uncertainty

as to whether or not a constraint is satisfied.

• when the user can specify their own preferences or desires in the problem

over the set of consistent solutions to the problem.

In these situations above, we can use soft constraints to effectively model these
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problems. Soft constraints are a generalisation of hard constraints, where instead of a

constraint either being satisfied or not satisfied by an assignment to a set of variables,

as in hard constraints, a soft constraint associates with an assignment a preference

value. The values associated to each assignment can then be combined and reasoned

with to deduce information about the assignment, to compare assignments with one

another to see which is preferable, and to choose the most preferred solution or set

of solutions to the problem.

In this chapter, we give a brief introduction to constraints formalisms with a view to

providing some background for the works of the thesis. The chapter outline is as

follows. In Section 3.2 we give some background on hard constraints and constraint

satisfaction problems (CSPs). In Section 3.3 we then look at soft constraints, which

allow us to specify preferences in a constraint problem, and we review some of the

frameworks for soft constraints in the literature that are relevant to our work. In

Section 3.4 we describe a general constraints problem, which gives the background

to our work in later chapters and in Section 3.5 we look at some general algorithm

such as backtracking search and branch and bound search which are used to solve

problems of this nature.

3.2 Hard Constraints

In this section, we give a brief overview of hard constraints and hard constraint

networks. Firstly we give some preliminary definitions and notation.

In a combinatorial problem, a variable represents an unknown value from a finite set

of values, known as its domain. For some variable X , let D(X ) denote the domain

of variable X , and for some sequence of variables V = {X1, . . . , Xn}, let D(V ) =
∏

X i∈V D(X i) denote the cartesian product of the domains of the variables.

For a sequence of variables V = {X1, . . . , Xn} an assignment is an ordered tuple of

domain values of the variables in V , i.e., an assignment is a tuple in D(V ).

For an assignment t ∈ D(V ), and set of variables W , where W ⊆ V , the projection of

an assignment t ∈ D(V ) over the set W , denoted by t↓W , is the subtuple of t over

the variables in W . We also call this subtuple t↓W a scoped tuple, i.e., the tuple t is

scoped with respect to the set of variables W .

Now we look at a hard constraint network, which is defined as follows.
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Definition 3.1 » Hard constraint network (HCN)

A hard constraint network is a tuple 〈X ,D,CH〉, where:

• X is a set of n variables, {X1, . . . , Xn}.

• D is a set of variable domains, {D(X1), . . . ,D(Xn)}.

• CH is a set of hard constraints, where a hard constraint cV ∈ CH with scope

V ⊆ X is a relation on V , i.e., cV ⊆ D(V ). «

Given a hard constraint cV ∈ CH with scope V , and given a set of variables W ⊆ X ,

with some assignment t ∈ D(W ), we have the following terminology associated

with hard constraint cV :

• cV is completely assigned by t if V ⊆W .

• cV is satisfied by t, (or t satisfies cV ), if t↓V ∈ cV .

Given an assignment t ∈ D(W ), where W ⊆ X , we have the following terminology

associated with assignment t:

• t is consistent if it satisfies all cV ∈ CH that are completely assigned by t.

• t is a complete assignment if W = X ; inversely t is a partial assignment if it is

not complete, i.e., if W ⊂ X .

• t is a solution to the hard constraint network if it is complete and consistent.

We define the set of all consistent solutions to a hard constraint network as follows:

Definition 3.2 » Solution set (HCN)

The solution set of a hard constraint network P = 〈X ,D,CH〉, denoted by Sol(P), is

given by

— Sol(P) = {t ∈ D(X ) : t satisfies cV , for all cV ∈ CH}. «

That is, Sol(P) is the set of all complete assignments that are consistent with the

hard constraints of the problem.

Finally, A Constraint Satisfaction Problem (CSP) is a task on a hard constraint network,

which could be, to find one solution, or to find all solutions of the network.
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3.3 Soft Constraints

For situations where hard constraints are not expressive enough, such as those given

in Section 3.1, we can use soft constraints to model these types of problems. A hard

constraint is a relation which specifies which scoped tuples of domain values satisfy

the constraint, whereas a soft constraint is a function which associates a preference

value or preference degree to scoped tuples of domain values. The preference values

associated with a solution can then be combined to give an overall preference level

of that solution, and then solutions can be compared to see which are preferred to

others, and which solutions are optimal. In this section we look briefly at some soft

constraints formalisms, with a view to providing some background for the works in

the thesis.

3.3.1 Semiring Constraint Network

One of the most well known formalisms for soft constraints is the semiring constraint

network [BMR97] which is based on an algebraic structure called a c-semiring which

can be used to model and reason with soft constraints. The semiring constraint

network is defined as follows.

Definition 3.3 » Semiring constraint network (SCN)

A semiring constraint network [BMR97] is a tuple 〈X ,D,CS, S〉, where

• X is a set of n variables, {X1, . . . , Xn}.

• D is a set of variable domains, {D(X1), . . . ,D(Xn)}.

• S is a c-semiring, which is a tuple 〈E,+,×, 0, 1〉 where

– E is a set of values, where 0 ∈ E and 1 ∈ E.

– + is an operator closed in E, which is associative, commutative, idempo-

tent, and for which 0 is a neutral element and 1 is an annihilator.

– × is an operator closed in E, which is associative, commutative, and for

which 0 is an annihilator and 1 a neutral element.

– × distributes over +.

• CS is a finite set of soft constraints, where each soft constraint sV ∈ CS , with

scope V ⊆ X , associates c-semiring values from E to scoped tuples of domain

values, i.e., sV : D(V )→ E. «

46



3. BACKGROUND II - SOFT CONSTRAINTS 3.3 Soft Constraints

As in a hard constraint network, in a semiring constraint network we have a set

of variables X , where each variable X can take a value from their domain D(X ).
However, instead of a set of hard constraints we have a set of soft constraints CS on

the variables in the network, which associate semiring values to tuples of domain

values. Given a soft constraint sV ∈ CS with scope V ⊆ X , and given a set of variables

W ⊆ X , with some assignment t ∈ D(W ), and when sV is completely assigned by t,

i.e., V ⊆W , then the preference level, i.e., a value from E, associated to t by sV is

denoted by sV (t↓V ). We can also write this compactly as sV (t).

The × operator is used to combine semiring values, and the + operator induces

an ordering �S over the values of the semiring, defined by, for all a, b ∈ E, a �S

b⇔ a + b = a. A c-semiring is idempotent if × is idempotent, i.e., for all a ∈ E,

a × a = a. A c-semiring is monotonic if × is monotonic, i.e., for all a, b ∈ E,

a �S b⇒ a× c �S b× c, and it is strictly monotonic if × is strictly monotonic, i.e.,

a, b ∈ E, a �S b⇔ a× c �S b× c.

We now give the definition of the preference level of an assignment for a semiring

constraint network.

Definition 3.4 » Assignment preference level (SCN)

For a semiring constraint network P = 〈X ,D,CS, S〉, the preference level ρ(t) of an

assignment t ∈ D(X ) is given by

— ρ(t) =
¡

sV∈CS

sV (t) «

That is, the preference level of t is the combination of all semiring values associated

to t by the soft constraints. The preference relation for a semiring constraint network

is defined as follows.

Definition 3.5 » Preference relation (SCN)

For a semiring constraint network P = 〈X ,D,CS, S〉, a solution t ∈ D(X ) is preferred

to solution t ′ ∈ D(X ), if and only if

— ρ(t)�S ρ(t ′) «

Given this preference relation, we can define an optimal solution to a semiring

constraint network as follows.
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Definition 3.6 » Optimal solution (SCN)

For a semiring constraint network P = 〈X ,D,CS, S〉, a solution t ∈ D(X ) is optimal

if and only if

— there is no t ′ ∈ D(X ) such that ρ(t)′ �S ρ(t) and ρ(t) 6�S ρ(t ′) «

That is, there is no other complete assignment t ′ such that t ′ is strictly preferred to t.

We can see that this definition for an optimal solution of a semiring constraint net-

work is consistent with the general definition for an optimal element of a preference

relation (Definition 2.9).

Another well known general formalism which is related to the semiring constraint

network is the Valued Constraint Network, [SFV95], where the semiring structure in

the network is replaced by a valuation structure, based on totally ordered degrees

of preference; the valued constraint network can be used to represent the same

types of networks as the semiring constraint network [BMR+99], and has similar

concepts for combining and comparing values. Both general formalisms can be used

to model a number of different type of soft constraints formalisms, such as weighted

constraints, which we look at next.

3.3.2 Weighted Constraints

In weighted constraints, the values or weights associated to scoped tuples by a

weighted constraint represent the cost of the tuple. In k-weighted constraints

[SH81], the maximum weight that can be specified is denoted by k, and any tuple

with weight k does not satisfy the constraint. We give the definition of a k-weighted

constraint network as follows.

Definition 3.7 » k-weighted constraint network (k-WCN)

A k-weighted constraint network is a tuple 〈X ,D,CW , k〉, where

• X is a set of n variables, {X1, . . . , Xn},

• D is a set of variable domains, {D(X1), . . . ,D(Xn)},

• CW is a set of weighted constraints, where each weighted constraint wV ∈ CW

with scope V ⊆ X , associates a value from [0, k] to scoped tuples of domain

values, i.e., wV : D(V )→ [0, k].

• k is an element in N∪ {∞}. «
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We now define the preference level, or cost, of an assignment in a k-weighted

constraint network.

Definition 3.8 » Assignment preference level (k-WCN)

For a k-weighted constraint network P = 〈X ,D,CW , k〉, the preference level ρ(t) of

an assignment t ∈ D(X ) is given by

— ρ(t) =
∑

wV∈CW

wV (t) «

That is, the cost of an assignment t is the sum of the weights associated to t by the

weighted constraints. Given that k denotes a cost that is prohibited in a weighted

constraint network, then an assignment t that has a cost equal to or higher than

k does not satisfy the problem, i.e., we have that for t ∈ D(X ), if ρ(t) ≥ k, then

t 6∈ Sol(P).

The associated preference relation to a k-weighted constraint network is defined as

follows.

Definition 3.9 » Preference relation (k-WCN)

For a k-weighted constraint network P = 〈X ,D,CW , k〉, a solution t ∈ Sol(P) is

preferred to solution t ′ ∈ Sol(P), if and only if

— ρ(t)≤ ρ(t ′) «

An optimal solution to a k-weighted constraint network is defined as follows.

Definition 3.10 » Optimal solution (k-WCN)

For a k-weighted constraint network P = 〈X ,D,CW , k〉, a solution t ∈ Sol(P) is

optimal, if and only if

— for all t ′ ∈ Sol(P), ρ(t)≤ ρ(t ′) «

We can see that this definition for an optimal solution of a k-weighted constraint

network is consistent with the general definition for an best element of a preference

relation (Definition 2.8), however since the scale of preference levels [0, k] is totally

ordered by ≤, then the k-weighted preference relation is complete, and we have

from Remark 2.3 (iii) that the best elements and the optimal elements coincide.
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3.4 A General Constraints Problem

For the purposes of the work in later chapters, we now give a definition of a

constraints problem with hard and soft constraints. Firstly, we define a structure

for handling the ordering and combination of preference degrees, which is called a

Preference Degree Structure [FRW10], and this structure determines the preference

relation over the set of solutions in a given problem.

Definition 3.11 » Preference degree structure (PDS)

A preference degree structure (PDS) is a tuple 〈I ,⊗,�〉, where

• I is a set of preference degrees;

• ⊗ is a commutative and associative operator, monotonic with respect to �
(i.e., for a, b, c ∈ I , a � b ⇒ a ⊗ c � b ⊗ c), which is used to combine the

preference degrees;

• � is a preorder relation on the set of degrees I . «

We assume a minimising context, so for relation �, we have that for all u, v ∈ I , if

u � v, then u is preferred to v. For relation �, we also have the associated strict

preference relation ≺, where for all u, v ∈ I , u ≺ v if and only if u � v and v 6� u,

and we say that u is strictly preferred to v.

Now we give the following definition of a general constraints problem which we

use as the constraints formalism for our work in this thesis.

Definition 3.12 » General constraints problem (GCP)

A general constraints problem (GCP) is a tuple 〈X ,D,CH ,CS,P〉, where

• X is a set of n variables, {X1, . . . , Xn};

• D is a set of variable domains, {D(X1), . . . ,D(Xn)};

• CH is a set of hard constraints;

• CS is a multiset of soft constraints, where for all sV ∈ CS, with scope V ⊆ X ,

sV : D(V )→ I ;

• P is a preference degree structure 〈I ,⊗,�〉. «

We now define the preference level of an assignment in a general constraints problem.
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Definition 3.13 » Assignment preference level (GCP)

For a general constraints problem P = 〈X ,D,CH ,CS,P〉, where P = 〈I ,⊗,�〉, the

preference level ρ(t) of a solution t ∈ Sol(P) is given by

— ρ(t) =
⊗

sV∈CS

sV (t) «

That is, the preference level of t is the combination of all the preference degrees as-

sociated to t by the soft constraints. The preference relation for a general constraints

problem is defined as follows.

Definition 3.14 » Preference relation (GCP)

For a general constraints problem P = 〈X ,D,CH ,CS,P〉, where P = 〈I ,⊗,�〉, a

solution t ∈ Sol(P) is preferred to solution t ′ ∈ Sol(P), if and only if

— ρ(t)� ρ(t ′) «

An optimal solution of a general constraints problem is defined as follows.

Definition 3.15 » Optimal solution (GCP)

For a general constraints problem P = 〈X ,D,CH ,CS,P〉, where P = 〈I ,⊗,�〉, a

solution t ∈ Sol(P) is optimal if and only if,

— there exists no t ′ ∈ Sol(P) such that ρ(t ′)≺ ρ(t). «

As discussed in Section 3.1, soft constraints are a generalisation of hard constraints

and can also be used to express hard constraints, for example, as in k-weighted

constraints, where for a constraint wV , a tuple t with cost k does not satisfy the

constraint, and therefore constraint wV is a hard constraint. However in our General

Constraints Problem we have an explicit separation of the hard constraints and soft

constraints of the problem.

The general constraints problem as defined is similar to, but more general than

the semiring constraint network as given in Section 3.3. In the preference degree

structure, we do not assume a top or bottom element, and we do not assume the

semiring addition operator +. Any c-semiring can be mapped to a preference degree

structure, and so any semiring constraint (and any semiring constraint network)

can be mapped to a general constraint/general constraint problem. So for some

c-semiring 〈E,+,×, 0, 1〉, we have a preference degree structure 〈I ,⊗,�〉 where:

• I = E

51



3. BACKGROUND II - SOFT CONSTRAINTS

3.5 Searching for Solutions to Constraints
Problems

• ⊗= ×

• � is given by: ∀a, b ∈ E, b �s a⇔ a � b

Therefore the ordering on solutions, and hence the set of optimal solutions, for both

the c-semiring and the preference degree structure as defined is the same.

3.5 Searching for Solutions to Constraints Problems

In this section, we discuss some methods for searching for solutions to a general

constraints problem P = 〈X ,D,CH ,CS,P〉. The space explored by the search is

called a search tree, where a (non-leaf) node represents a variable X ∈ X , and a

downward edge from that node represents the assigning of a domain value v ∈ D(X )
to variable X , i.e., the variable assignment (X , v). A path from the root to a given

node represents an assignment to the set of variables along the path. A path from

the root node to a leaf node represents a complete assignment or a solution to the

problem, i.e., it is a tuple in D(X ), and a path from the root to a non-leaf node

represents a partial assignment to some strict subset of the problem variables.

For the purpose of the presentation in this section, we assume a fixed variable

ordering of (X1, X2, . . . , Xn), i.e., that the variables are assigned in the given order

during the search. Let us look at an example.

A

D E

B

F G

C

Figure 3.1: For Example 3.1, search tree for a problem with two variables X1 and X2,
where D(X1) = {1,2} and D(X2) = {3,4}.

Example 3.1 É Search tree example.

Figure 3.1 shows an example search tree for two variables X1 and X2, where D(X1) =
{1,2} and D(X2) = {3, 4}.

For example, node A represents variable X1, and the edge from node A to node B

represents the variable assignment (X1, 1).
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We can also say that a given node represents the (partial or complete) assignment

corresponding to the path from the root node to the given node.

For example, the assignment represented by node F , i.e., the path from root node A

to F , is a complete assignment, denoted by {(X1, 2), (X2, 3)}, and assuming the given

variable ordering, this can be denoted by (2,3), which is a tuple in D(X ). Î

3.5.1 Finding Consistent Solutions

First we consider searching for complete assignments that are consistent with the set

of hard constraints in a problem P = 〈X ,D,CH ,CS,P〉, i.e., the solutions in Sol(P).
One method to find all solutions to a constraints problem is to systematically generate

and test every possible complete assignment, i.e., every tuple in D(X ) is generated in

turn and checked to see if it is consistent with the set of hard constraints. However

this is a naive approach as it does not check that an assignment is inconsistent until

the complete assignment is generated; it could be possible to detect inconsistencies

at an earlier stage.

Backtracking Search

Backtracking search [DF98, Kum92] is a search procedure where each problem

variable in turn is chosen and assigned a value from its domain, i.e., it is a depth

first search of the search tree. During the search process, at any given node, if there

are any constraints that are now completely assigned by the partial assignment

represented at the given node, then the partial assignment is checked to see if it is

valid with these constraints. If the search encounters such a node where the partial

assignment is not valid, then the search will backtrack up the search tree and resume

at the next node.

We look at a simple example for backtracking search. For ease of notation in the

examples, we let ci j be compact notation for a constraint c with scope {X i, X j}, and

we let c̄i j be the set of tuples such that, for all tuples t ∈ D({X i, X j}), if t 6∈ ci j, then

t ∈ c̄i j, i.e., c̄i j is the set of tuples that are not allowed by the constraint ci j.

Example 3.2 É Backtracking search example.

Figure 3.2 shows a search tree for a problem with three variables X1, X2 and X3, where

D(X1) = {1,2}, D(X2) = {3,4} and D(X3) = {5,6}.
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F

Figure 3.2: For Example 3.2, search tree for a problem with three variables X1, X2 and
X3, where D(X1) = {1,2}, D(X2) = {3, 4} and D(X3) = {5,6} and hard constraints c12
such that c̄12 = {(2,3)}. A backtracking search will backtrack at the node labelled F .

Suppose we have one hard constraint c12, such that c̄12 = {(2,3)}, i.e., tuple (2,3) is

not allowed by the constraint c12

For backtracking search, the search will backtrack at node F , i.e., it will not visit

nodes L and M , since the partial assignment represented by node F , i.e, tuple

(2,3), is not allowed by the hard constraint c12. Î

Local Consistency

As well as checking to see if the current partial assignment at some node is consistent

with the hard constraints in the problem, the search procedure may also perform

some techniques to remove inconsistent values from the variable domains. A node

consistency algorithm checks to see if a variable domain is consistent with any unary

constraints on that variable, and removes any domain values that are inconsistent.

An arc consistency algorithm performs a similar task for pairs of variables in binary

constraints. For example, in the AC3 algorithm [Mac77], for a binary constraint

ci j on variables (X i, X j), each domain value in D(X i) is checked to see if there is

a supporting value in D(X j) such that the binary constraint is satisfied, and any

inconsistent values in the domain of X i are removed. Also, any revision of a variable

domain will result in any other constraint with that variable in its scope to be

checked again, since removing a value from a domain may trigger another value as

inconsistent in another constraint. The algorithm continues in this manner until the

whole constraint network is consistent. This technique for checking arc consistency

can then be combined with backtracking search to remove inconsistent values from
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domains of variables that have not yet been assigned, which is called full look-ahead

[Dec03]. Let us look at an example.

Example 3.3 É Look-ahead search example.

Figure 3.3 shows a search tree for a problem with three variables X1, X2 and X3, and

where the original domains of the variables are D(X1) = {1,2}, D(X2) = {3, 4} and

D(X3) = {5,6}.

We also have two hard constraints c13 and c23, such that c̄13 = {(2, 5)} and c̄23 =
{(3,6)}, which specify the tuples that are not allowed by the constraints.

At node C , the algorithm maintains arc consistency as follows:

(a) At node C , the search algorithm will remove the value 5 from the domain of

variable X3, since it is inconsistent with the assignment (X1, 2).

(b) Since the domain of X3 has been updated, the algorithm will check any other

constraints that has X3 in its scope, and as a result it will remove value 6 from

the domain of X3 since there is no supporting value in the domain of X2 that

satisfies constraint c23.

(c) The algorithm continues and value 3 is removed from the domain of X2, since

there is no supporting value in the domain of X3 that satisfies constraint c23. Î

A

E

B

F G

H I J K L M N O

C

D

C

Figure 3.3: For Example 3.3, search tree for three variables X1, X2 and X3, where
D(X1) = {1, 2}, D(X2) = {3,4} and D(X3) = {5,6} and hard constraints c13 = {(2, 5)}
and c23 = {(3, 6)}. Maintaining arc consistency at the node labelled C will allow the
search to prune part of the search below this node since there are no supported values.
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3.5.2 Finding Optimal Solutions

In the previous section, we looked at searching for consistent solutions to a con-

straints problem P = 〈X ,D,CH ,CS,P〉, i.e., the complete assignments that are con-

sistent with CH . Now we look at searching for solutions that are more preferable,

considering the set of soft constraints CS.

As previously defined in Section 3.3, a soft constraint sV ∈ CS, with scope V ⊆ X
associates values from a set I of preference degrees to scoped tuples of domain

values, i.e., sV : D(V ) → I . The preference degrees given by the soft constraints

are combined using the combination operator ⊗ to give the preference degree of

a solution, i.e., for some t ∈ Sol(P), ρ(t) = ⊗sV∈CS
sV (t). Then solutions can be

compared using the � operator, i.e., t is preferred to t ′ if ρ(t) � ρ(t ′), and an

optimal solution is one such that there is no other solution t ′ such that ρ(t ′)≺ ρ(t).
We are looking to generate a set of optimal solutions to the problem P, denoted by

OP . Let us look at an example.

Example 3.4 É Searching for optimal solutions example.

Figure 3.4 shows a search tree for a problem with three variables X1, X2 and X3,

and where the domains of the variables are D(X1) = {a, b}, D(X2) = {c, d} and

D(X3) = {e, f }.

We have two soft constraints, s23 and s13, which are defined in the following tables.

X1

s12 a b

X2

c 4 6

d 3 2

X1

s13 a b

X3

e 4 1

f 2 3

Each soft constraint associates different costs to scoped tuples.

For example, for tuple (a, c), the soft constraint s12 will associate a cost of 4 to this

tuple, i.e., s12((a, c)) = 4.

Suppose we wish to minimise the sum of these costs. Therefore the solutions with the

smallest sum of costs are the ones that are optimal.

In Figure 3.4, the preference level of each solution is denoted by ρ(t), which is the sum

of all the costs associated to each solution by the constraints s12 and s13.

Therefore we can see that the only optimal solution in OP is the solution represented by

node N . Î
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Figure 3.4: For Example 3.4, search tree for a problem with three variables X1, X2 and
X3, where D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }, and the soft constraints
s12 and s23 are given by the tables in the figure. The optimal solution is the one
represented by the node labelled N.

Generate and Test

The generate and test approach described in Section 3.5.1 can also be used to

generate the set of optimal solutions OP for a problem P. Each tuple t ∈ D(X ) is

generated in turn and the preference level of the tuple t is checked against the

preference level of every other solution t ′ ∈ OP . If t is not dominated, then it is

added to OP . Since t might be strictly preferred to some other t ′ already in OP , then

any such t ′ is no longer optimal and is removed. As with the generate and test

approach for hard constraints, this is a naive approach, as it could be possible to

check if a solution is dominated without generating the complete assignment.

Branch and Bound

In a branch and bound search [Dec03, SFV95] for a constraints problem, the algo-

rithm can also check if partial assignments are dominated by some solution already

found. Again in this part we assume we are dealing with negative preference levels,

e.g. costs. At each node in the search, a lower bound preference level ρ∗(t) is

generated for the partial assignment t represented by that node, which is a lower

bound preference level of any complete assignment in the subtree under that node.

If this lower bound is dominated by the preference level of any previously found
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solution in OP , then there is no complete assignment extending from that node that

could be optimal, and the search can backtrack. This eliminates parts of the search

tree that do not contain any optimal solutions.

There are a number of different methods for generating a lower bound at a particular

node (for a survey, see [RvBW06, Ch. 9]). The simplest lower bound at a given

node is given by just considering the preference levels of the soft constraints that are

fully assigned at that node. For some partial assignment t let Ts(t) be the set of soft

constraints that are fully assigned by t. Then this simple lower bound preference

level of t, denoted by ρ1
∗(t), is given by

— ρ1
∗(t) =

⊗

s∈Ts(t)

s(t)

That is, the lower bound is the combination of all the preference levels given by the

soft constraints that are fully assigned by t.

As well as considering the soft constraints that are fully assigned at a given node, the

lower bound can also take into account the soft constraints that are only partially

assigned. For some partial assignment t, and some variable X ∈ X not yet assigned,

let t(X ,v) denote the extension of tuple t to include the assignment of domain value

v ∈ D(X ) to variable X , i.e, t(X ,v) = t ∪ (X , v). For some partial assignment t, let

Ps(t) be the set of soft constraints whose variables are partially assigned by tuple t.

Then in the case of totally ordered preferences, another lower bound preference

level of t, denoted by ρ2
∗(t), is given by

— ρ2
∗(t) = ρ

1
∗(t)⊗ min

v∈D(X )

⊗

s∈Ps(t)∩Ts(t(X ,v))

s(t(X ,v))

That is, the lower bound ρ2
∗(t) is given by ρ1

∗(t) combined with the minimum

combination of preference levels given by the soft constraints that would be fully

assigned by the extension of tuple t to include an assignment to variable X . In the

case of partially ordered preferences, if the partial order is a lattice, where there is a

greatest lower bound, then we can replace the min operation with the inf operation,

which returns the greatest lower bound of the combination of preference levels.

This approach used for ρ2
∗ is similar to that used in the partial forward checking

algorithm for partial constraint satisfaction [FW92].

Let us look at an example.

Example 3.5 É Branch and Bound Search.

Figure 3.5 shows a search tree for the same problem as given in Example 3.4, where

we have three variables X1, X2 and X3, and where the domains of the variables are
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Figure 3.5: For Example 3.5, search tree for a problem with three variables X1, X2 and
X3, where D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }, and the soft constraints
s12 and s23 are given by the tables in the figure. The lower bound at the node labelled F
is dominated by the preference level of a previously found solution.

D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }.

We have two soft constraints, s23 and s13, which are defined in the following tables.

X1

s12 a b

X2

c 4 4

d 3 2

X1

s13 a b

X3

e 4 2

f 2 3

We can see at node F that we have a partial assignment t = (b, c). The only optimal

solution found at this point in the search is the solution represented by K , which is

tuple (a, d, f ), and we have ρ(a, d, f ) = 5.

If we use lower bound ρ1
∗ , then we have ρ1

∗(b, c) = 4, which is a lower bound preference

level of any complete assignment in the subtree under node F .

We can see that ρ1
∗(b, c) is not strictly dominated by ρ(a, d, f ), so in this case the

search would continue to node L .

If we use a better lower bound, i.e., ρ2
∗ , then we have ρ2

∗(b, c) = 6, and in this case

ρ2
∗(b, c) is strictly dominated by ρ(a, d, f ).

Hence the search can backtrack at node F since it will not find any optimal solutions

in the subtree under F . Î
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The lower bound approach can be expanded further to factor in the preference

levels of more constraints, such as the constraints that are completely unassigned at

a given node, which is similar to that used in [Wal94, LMS99]. We will see such an

approach later in Section 5.5.2. There are other types of lower bounds approaches,

such as in the Russian Doll search [VLS96], which treats each node in the search as a

subproblem, and uses the preference levels of optimal solutions for the subproblem

in the subtree at a given node as a lower bound.

As well as depth first and branch and bound searches, there are other methods for

solving such constraints problems, which include methods based on complete infer-

ence such as Bucket elimination [Dec99], which is a scheme that removes variables

from the problem and adds implied constraints in order to make the problem easier

to solve. However, since these complete inference schemes can be computationally

expensive, Minibucket elimination [DR03] can be used as an approximation scheme

and it is less computationally expensive. Also, the approximation generated can be

used as a lower bound in an algorithm that combines both branch and bound search

with inference. Other methods for solving these problems based on incomplete

inference include soft local consistency [CS04, Sch00] which extends the classical

notion of arc consistency as discussed in Section 3.5.1 to the soft constraint case,

and is also used to generate a lower bound for a branch and bound algorithm.

3.6 Chapter Conclusion

In this chapter, we gave an introduction to hard and soft constraints problems. We

describe the constraints formalism and associated notation used in the thesis, and

look at some related formalisms for hard and soft constraints problems, such as

semiring constraints problems and weighted constraints problems. We detailed

some algorithms used to solve constraints problems of these types, such as depth

first search and branch and bound algorithms, and we looked briefly at how to

generate a lower bound for a branch and bound search. We will revisit some of

these search algorithms in Chapter 5 as part of the works of the thesis.
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4.1 Introduction

In this chapter, we present a decision-making framework for qualitative decision

making, which we call the Multiple-Ordering Decision Structure (MODS) framework,

where we examine the various natural notions of optimality that occur and the

relationships between these notions of optimality.

The setting we consider is where the task is to support a decision maker by presenting

a subset of decisions from a larger set of initial decisions, where the decisions

presented are preferred to the other decisions, or regarded as better in some way,

thus aiding the decision maker by narrowing down the set of decisions from which

they have to choose. We consider situations where there is more than one ordering

on the decisions; this can occur, for example, in decision making under uncertainty,

where there is more than one possible state that can happen and decisions are

ordered differently depending on the state, or it can occur in multi-criteria decision

making where evaluations in different criteria rank the decisions differently over

the criteria.

We presuppose only qualitative preference information in relation to the set of

decisions, i.e., that we only have a set of ordinal rankings on the decisions rather

than any quantitative information, e.g., costs or utilities. However, the results given

regarding the different notions of optimality also hold when there is this quantitative

information available. Also, we do not assume any information on the relationships

between different orderings, i.e., weighting or probabilistic information, such as, for

example, criteria that are more important than others in a multi-criteria decision

making problem, or states that are more likely to occur in a decision-making under

uncertainty problem.

The chapter outline is as follows. In Section 4.2 we define the MODS framework

and the different notions of optimality that we consider. Section 4.3 gives the main

result of the chapter, which precisely describes the subclass relationships between

the different notions of optimality. In Section 4.4, we show how these relationships

simplify under three separate assumptions: (i) when there exists a necessarily

optimal element; (ii) when there exists a best scenario for each decision; and

(iii) when each scenario totally orders the set of decisions. In Section 4.5, we give a

brief example of the MODS framework in multi-criteria decision making (MDCM). In

Section 4.6, we look at how this framework and the subclass relationships between

the optimality classes can be used to order the decisions for presenting to a decision

maker, and we conclude the chapter with some discussion.
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The framework developed in this chapter will also be used in the work in Chapter 6,

where we develop an instance of the framework for the Sorted-Pareto dominance

preference relation, which we introduced in Section 2.5.

4.2 Qualitative Notions of Optimality

In this section, we look at the Multiple-Ordering Decision Structure (MODS) frame-

work, as originally given in [WO11]. We assume a minimising context, i.e., where

smaller preference values are preferred, however an alternative framework for

maximising preferences can easily be derived, for example, as originally presented

in [WO11]. In the MODS framework, we have a set of elements, where each ele-

ment in the set is interpreted as a decision (option, alternative, choice, etc.) that is

available to a decision maker, and given this set, we have a set of scenarios which

give different orderings on the decisions in the set. These scenarios could also be

interpreted in other ways, for example, in multi-criteria decision making, a scenario

would represent a criterion; or in a group decision making context, scenarios would

correspond to agents, with their orderings over decisions. Let us look at a small

example.

Example 4.1 É MODS example.

Suppose we have a set of alternatives A = {α,β ,γ} and a set of agents S = {A, B},
where each agent ranks the alternatives in order of preference. The following table

shows these rankings, in descending order of preference.

A B

α β

β γ γ

α

We can see that for agent A, α is preferred to β , and α is preferred to γ, but β and γ are

of equal preference. For agent B, β is preferred to γ, and both β and γ are preferred to

α. Î

4.2.1 Multiple-Ordering Decision Structures

We now give a formal definition of the framework.
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Definition 4.1 » Multiple-ordering decision structure

A multiple-ordering decision structure (MODS) G is a tuple 〈A,S, {´s : s ∈ S}〉, where

• A is a non-empty, finite set of decisions,

• S is a non-empty (finite or infinite) set of scenarios,

• for each s ∈ S, relation ´s is a total preorder on A. «

This gives us a framework where, for a set of decisions A, each scenario s in S
provides an ordering ´s over A. For each relation ´s∈ {´s : s ∈ S}, we also derive

the corresponding strict relation ≺s, i.e., for all α,β ∈ A, α ≺s β , if and only if,

α ´s β and β 6´s α, and the corresponding equivalence relation ≡s, i.e, for all

α,β ∈A, α≡s β , if and only if, α´s β and β ´s α (see Definitions 2.3 and 2.4).

The MODS framework is a more general framework than that described by the

multi-aspect decision problem defined in Section 2.3, which we recall here.

Recall » General Decision Making Problem (Definition 2.11)

A multi-aspect decision problem is a tuple P = 〈A,S, T,≤〉, where:

• A is a finite set of decisions, alternatives or choices,

• S = {1, . . . , m} is a finite set of decision aspects, where each i ∈ S labels some

preferential aspect of the problem, and for which pi is a function that specifies

the preference value of each decision, i.e., pi : A→ T ,

• T is a scale of preference values, where ≤ is a total order on T . «

In a multi-aspect decision problem, we have an ordered scale T , where for each

decision under consideration we have a vector of preference values, one for each

aspect or scenario. In the MODS framework, we do not assume that there is any

such scale T , the assumption is only that in each scenario we have a total ordering

on the decisions.

4.2.2 Basic Optimality Notions of a MODS

For any MODS G = 〈A,S, {´s : s ∈ S}〉, and where α and β are some arbitrary

elements (decisions) of A, we define the following preference relations. Firstly we
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define the ´N relation, where a decision necessarily dominates another if it is at

least as good as the other in every scenario.

Definition 4.2 » Necessarily dominates

We say that α necessarily dominates β , written as α´N β , if and only if

— for all s ∈ S, α´s β . «

Relation ´N is the intersection of ´s over all s ∈ S, i.e., ´N=
⋂

s∈S ´s.

For relation ´N, we define ≺N as the corresponding strict relation (see Definition

2.3).

Definition 4.3 » Strict-necessarily dominates

We say that α strict-necessarily dominates β , written as α≺N β , if and only if

— α´N β and β 6´N α. «

We also define ≡N as the corresponding equivalence relation to ´N (see Definition

2.4).

Definition 4.4 » Necessarily equivalent

We say that α and β are necessarily equivalent, written as α≡N β , if and only if

— α´N β and β ´N α. «

Relation ≡N is the intersection of ≡s over all s ∈ S, i.e., ≡N=
⋂

s∈S ≡s.

We now define the ≺NS relation, where a decision necessarily strictly dominates

another if it is strictly better in every scenario.

Definition 4.5 » Necessarily strictly dominates

We say that α necessarily strictly dominates β , written α≺NS β , if and only if

— for all s ∈ S, α≺s β . «

Relation ≺NS is the intersection of ≺s over all s ∈ S, i.e., ≺NS=
⋂

s∈S ≺s.

We define, for α ∈A, the N-equivalence class of α, which is the subset of all elements

in A that are necessarily equivalent to α (see Definition 2.5).
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Definition 4.6 » N-equivalence class

For α ∈A, let [α]N denote the N-equivalence class of α, given by

— [α]N = {β ∈ A : α≡N β} «

We now define the set of optimal elements and the set of strictly optimal elements

with respect to some given scenario.

Definition 4.7 » Optimal in a scenario

For scenario s ∈ S, let Os be the set of optimal elements in s, i.e., the set of α ∈A
such that for all β ∈A, α´s β . «

Definition 4.8 » Strictly optimal in a scenario

For scenario s ∈ S, let SOs be the set of strictly optimal elements in s, i.e., the set of

α ∈A such that α≺s β for all β ∈A \ [α]N. «

4.2.3 The Basic Optimality Classes

In this section we look at some basic optimality classes which represent different

natural notions of optimality in the MODS framework.

Definition 4.9 » Necessarily optimal

We say that α is necessarily optimal if and only if

— α´N β , for all β ∈A. «

That is, α is necessarily optimal if it necessarily dominates every β ∈A. Let NO(G)
denote the set of necessarily optimal elements for MODS G.

Definition 4.10 » Necessarily strictly optimal

We say that α is necessarily strictly optimal if and only if

— α≺NS β , for all β ∈A \ [α]N «

That is, α is necessarily strictly optimal if it necessarily strictly dominates every β

that is not equivalent to α. Let NSO(G) denote the set of necessarily strictly optimal

elements for MODS G.
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Definition 4.11 » Possibly optimal

We say that α is possibly optimal if and only if

• there exists s ∈ S, such that α´s β for all β ∈A. «

That is, α is possibly optimal if it is optimal in some scenario. Let PO(G) denote the

set of possibly optimal elements for MODS G.

Definition 4.12 » Possibly strictly optimal

We say that α is possibly strictly optimal if and only if

— there exists s ∈ S such that α≺s β for all β ∈A \ [α]N «

That is, α is possibly strictly optimal if it is strictly optimal in some scenario. Let

PSO(G) denote the set of possibly optimal elements for MODS G.

Definition 4.13 » Can dominate

We say that α can dominate any other decision if and only if

— for all β ∈A there exists s ∈ S such that α´s β . «

That is, α is in CD(G) if for every decision there exists some scenario in which it

dominates that decision. Let CD(G) denote the set of decisions that can dominate

any other decision, for MODS G. We have the following result.

Proposition 4.1 » CD(G) and ≺NS result

α ∈ CD(G)⇔ there exists no β ∈A such that β ≺NS α �

Proof: By definition, we have that α ∈ CD(G) if and only if for all β ∈ A there

exists s ∈ S such that α ´s β , i.e., α ≺s β or α ≡s β . Since ´s is complete, then

α ∈ CD(G) if and only if for all β ∈A there exists s ∈ S such that β 6≺s α. Therefore,

α ∈ CD(G), if and only if for all β ∈ A, it is not the case that for all s ∈ S, β ≺s α.

This gives us that α ∈ CD(G), if and only if it is not the case that there exists β ∈A
such that for all s ∈ S, β ≺s α. By definition of ≺NS, this gives us that α ∈ CD(G) if

and only if it is not the case that there exists β ∈A such that β ≺NS α. �
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Therefore we can see that CD(G) are the decisions that are undominated with respect

to the ≺NS relation.

Definition 4.14 » Can strictly dominate

We say that α can strictly dominate any non-equivalent decision if and only if

— for all β ∈A \ [α]N, there exists s ∈ S such that α≺s β . «

That is, α is in CSD(G) if for every non-equivalent decision there exists some scenario

in which it strictly dominates that decision. Let CSD(G) denote the set of decisions

that can strictly dominate any other decision, for MODS G. We have the following

result in relation to CSD(G).

Proposition 4.2 » CSD(G) and ≺N result

α ∈ CSD(G)⇔ there exists no β ∈A such that β ≺N α �

Proof: By definition, we have α ∈ CSD(G) if and only if for all β ∈A \ [α]N, there

exists s ∈ S such that α ≺s β . Since ≺s is the strict part of ´s, and ´s is complete,

then we have that α ∈ CSD(G) if and only if for all β ∈A \ [α]N, there exists s ∈ S
such that β 6´s α. Therefore, α ∈ CSD(G), if and only if for all β ∈ A \ [α]N, it is

not the case that for all s ∈ S, β ´s α. This gives us that α ∈ CSD(G), if and only

if it is not the case that there exists β ∈ A \ [α]N such that for all s ∈ S, β ´s α.

By definition of ´N, this gives us that α ∈ CSD(G) if and only if it is not the case

that there exists β ∈ A \ [α]N such that β ´N α, i.e., β ≺N α or β ≡N α. Since

β ∈A \ [α]N does not contain any elements that are equivalent to α, then we have

that α ∈ CSD(G) if and only if it is not the case that there exists β ∈A \ [α]N such

that β ≺N α. �

Therefore we can see that CSD(G) are the decisions that are undominated with

respect to ≺N.

We now look at some classes which are given by the intersections of previously

defined classes. First, for any class X(G), let X′(G) = X(G)∩CSD(G). Some specific

intersection classes that we use are defined as follows.
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Definition 4.15 » Intersection classes

For MODS G,

(i) NOPSO(G) = NO(G)∩ PSO(G).

(ii) PO′(G) = PO(G)∩CSD(G).

(iii) For some scenario s ∈ S, O′s = Os ∩CSD(G). «

Now we look at some basic results, which give some properties of the basic optimality

classes and some of the relationships between these classes, in particular how the

sets of optimal and strictly optimal decisions in a particular scenario relate to the

basic classes.

Proposition 4.3 » Basic classes result

For any MODS G = 〈A,S, {´s : s ∈ S}〉, where s is an arbitrary scenario in S, we

have the following relationships.

(i) SOs ⊆ O′s ⊆ Os.

(ii) O′s and Os are always non-empty.

(iii) SOs is non-empty, if and only if, every pair of decisions in Os are necessarily

equivalent. If SOs is non-empty then SOs = O′s = Os.

(iv) NO(G) ⊆ Os ⊆ PO(G); NO(G) =
⋂

s∈S Os; PO(G) =
⋃

s∈S Os.

(v) NSO(G) ⊆ SOs ⊆ PSO(G); NSO(G) =
⋂

s∈S SOs; PSO(G) =
⋃

s∈S SOs.

(vi) NO(G) ⊆ CSD(G).

(vii) NO(G) ⊆ O′s ⊆ PO′(G); NO(G) =
⋂

s∈S O′s; PO′(G) =
⋃

s∈S O′s. �

Proof:

(i) O′s ⊆ Os follows directly from definition of O′s.

Now we show that SOs ⊆ O′s. Suppose, there exists α ∈ A, such that α is

in SOs but not in O′s. Then we have either α 6∈ Os or α 6∈ CSD(G). Since by

definition of SOs, α ∈ SOs implies that α ∈ Os, then we must have α 6∈ CSD(G),
i.e., there exists β ∈ A \ [α]N such that β ≺N α, and therefore β ´N α, i.e.,

for all s′ ∈ S, β ´s′ α. Therefore β ´s α, which contradicts α ∈ SOs, since
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β 6≡N α. Therefore we have that if α ∈ SOs, then α ∈ O′s, and thus SOs ⊆ O′s.

(ii) Since relation ´s is complete and the set of decisions A is finite, then there

necessarily exists an uniformly-dominating decision with respect to relation

´s, and therefore Os is always non-empty.

Now we show that O′s is always non-empty. Suppose for all α ∈A, if α ∈ Os,

then α 6∈ CSD(G). Let a1 be some decision in Os. Then there exists a2 ∈A such

that a2 ≺N a1, so we have for all s′ ∈ S, in particular s, a2 ´s′ a1. Therefore

we have a2 ∈ Os, and from our supposition we have that a2 6∈ CSD(G). Since

A is finite, we can continue until we exhaust all decisions in A, and the final

decision an is an element of Os. However an is undominated with respect

to ≺N, and since ≺N is acyclic, then an ∈ CSD(G), which is a contradiction.

Therefore we have that there exists α ∈A such that α ∈ Os and α ∈ CSD(G),
i.e., O′s is always non-empty.

(iii) First we show SOs is non-empty, if and only if, every pair of decisions in Os are

necessarily equivalent. Suppose every pair of decisions in Os are necessarily

equivalent. Let α be some decision in Os. Since by definition of Os, we have

that for all β ∈ A, α ´s β , which means α ≡s β or α ≺s β . If α ≡s β , then

β ∈ Os, and we have that α ≡N β . Therefore, we have for all β ∈ A \ [α]N,

α ≺s β , i.e., α ∈ SOs. Now suppose that exists α,β ∈ Os such that α 6≡N β .

Therefore, since we have α ≡s β i.e., α 6≺s β and β 6≺s α, then by definition

of SOs, we have that both α,β 6∈ SOs. Since this is true for any pair of non-

necessarily equivalent decisions in Os, therefore we have that SOs is empty.

This shows SOs is non-empty if and only if every pair of decisions in Os are

necessarily equivalent.

Now we show that if SOs is non-empty, then SOs = O′s = Os. Suppose SOs is

non-empty, i.e., we have some β ∈ A such that β is in SOs. Now suppose

that there is some α ∈ A such that α is in Os but not in SOs. Since SOs ⊆ Os,

then β is also in Os, and since we have from (i) α≡N β , then this contradicts

α 6∈ SOs. Therefore we have shown that if SOs is non-empty, then Os ⊆ SOs,

and therefore SOs = O′s = Os.

(iv) NO(G) =
⋂

s∈S Os follows from definitions of ´N, NO(G) and Os.

PO(G) =
⋃

s∈S Os follows from definitions of PO(G) and Os.

NO(G) ⊆ Os ⊆ PO(G) follows from NO(G) =
⋂

s∈S Os and PO(G) =
⋃

s∈S Os.

(v) NSO(G) =
⋂

s∈S SOs follows from definitions of ≺NS, NSO(G) and SOs.
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PSO(G) =
⋃

s∈S SOs follows from definitions of PSO(G) and SOs.

NSO(G) ⊆ SOs ⊆ PSO(G) follows from NSO(G) =
⋂

s∈S SOs and PSO(G) =
⋃

s∈S SOs.

(vi) Suppose there exists α ∈ NO(G) such that α 6∈ CSD(G). Then there exists

β ∈ A \ [α]N such that β ≺N α. This contradicts α ∈ NO(G), since for all

β ∈A, α´N β . Therefore, we have NO(G) ⊆ CSD(G).

(vii) This follows from definitions of O′s and PO′(G), and from (iv) and (vi). �

Let us look at an example considering the six basic optimality classes defined to this

point.

Table 4.1: An example of seven different scenarios and their associated orderings over
a set of decisions {α,β ,γ,δ}

´s1
´s2

´s3
´s4

´s5
´s6

´s7

α β α β δ α γ α β δ γ γ
γ δ γ β γ β δ
δ γ β δ α α

α δ β

Example 4.2 É Basic classes example.

Consider MODS G = G123, with set of decisions A = {α,β ,γ,δ}, set of scenarios

S = {s1, s2, s3}, where the associated total pre-orders are given by Table 4.1.

For example, the scenario s1 has associated total pre-order ´s1
over A which is given

by the transitive closure of α≡s1
β ≺s1

γ≺s1
δ.

We look at the resulting basic optimality classes.

For scenario s1, the optimal decisions according to ´s1
are α and β , so we have:

É Os1
= {α,β}

For scenario s3, with associated total preorder ´s3
, we have that δ is strictly optimal,

so we have:

É SOs3
= {δ}

Since α and β are optimal in the first two scenarios, and δ is optimal in the third, and

since these are the decisions that are optimal in some scenario, we have:

É PO(G) = {α,β ,δ}
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Because no decision is optimal in all scenarios, there is no necessarily optimal decision,

so we have:

É NO(G) = NSO(G) = ;

Since δ is strictly optimal in the third scenario, then we have:

É PSO(G) = {δ}

We have that α /∈ CSD(G), since in none of the three scenarios does it strictly dominate

β , and since all other decisions can strictly dominate any other decision, we have:

É CSD(G) = {β ,γ,δ}

Since NOPSO(G) = NO(G)∩ PSO(G), and NO(G) is empty, then we have:

É NOPSO(G) = ;

Since PO′(G) = PO(G)∩CSD(G), then we have:

É PO′(G) = {β ,δ}

Finally, since no decision is strictly dominated by another in all scenarios, we have:

É CD(G) = {α,β ,γ,δ}=A Î

4.2.4 Relations between Basic Classes

In this section, we look at the relationships between the basic optimality classes,

examining which classes are subsets of other classes, and also which classes are

always non-empty.

Firstly, we define the following property for closed under improvement, and give a

basic result in relation to it.

Definition 4.16 » Closed under improvement

For some X ⊆A, we say that X is closed under improvement if the following property

holds:

— for all α,β ∈A, if α ∈ X and β ´N α then β ∈ X. «
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Proposition 4.4 » Closed under improvement result

For MODS G, let X be a subset of A that is closed under improvement.

(i) NO(G) ∩ X 6= ; implies NO(G) ⊆ X; hence, if also X ⊆ NO(G) then X =
NO(G).

(ii) X 6= ; implies X ∩CSD(G) 6= ;.

(iii) NSO(G), NOPSO(G), PSO(G), NO(G), PO′(G), PO(G), CSD(G), CD(G),
SOs and Os are closed under improvement. �

Proof:

(i) Suppose NO(G)∩ X 6= ;, i.e., there exists α ∈ NO(G)∩ X. Now suppose there

exists β ∈ NO(G) such that β 6∈ X. Since both α,β ∈ NO(G), then we have

that α≡N β , and since X is closed under improvement, then we have β ∈ X.

This is a contradiction, so we have that NO(G) ⊆ X.

Also, if NO(G) ⊆ X, then since X ⊆ NO(G), we obviously have NO(G) = X.

(ii) Suppose X 6= ;. Now suppose X∩CSD(G) = ;. Then there is no decision α ∈ X

such that α ∈ CSD(G), i.e., for all α ∈ X, there exists some β ∈ A such that

β ≺N α. Let a1 be some decision in X. Then there exists a2 ∈ A such that

a2 ≺N a1. Since X is closed under improvement, then a2 ∈ X, which means

that there exists some a3 ∈ A such that a3 ≺N a2. Since A is finite, we can

continue like this until we exhaust all elements of A, and for the final element

an there is no remaining element an+1 ∈ A such that an+1 ≺N an. We have

an ∈ X, and since an is undominated with respect to ≺N, then an ∈ CSD(G),
which is a contradiction. Therefore we have that X ∩CSD(G) is non-empty.

(iii) By definition, NO(G) is closed under improvement.

Now we show NSO(G) is closed under improvement. Suppose that α ∈ NSO(G)
and β ´N α. Now suppose that β 6∈ NSO(G), i.e, there exists α′ ∈ A \ [β]N
such that β 6≺NS α

′. However since β ´N α, and α≺NS α
′ for all α′ ∈A \ [α]N,

then this leads to a contradiction. Therefore we have β ∈ NSO(G), and thus

NSO(G) is closed under improvement.

Here, we show PSO(G) is closed under improvement. Suppose thatα ∈ PSO(G)
and β ´N α. Since there exists s′ ∈ S such that α≺s′ α

′, for all α′ ∈A \ [α]N,

and since for all s ∈ S, in particular s′, β ´s α, then β must be strictly
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optimal in scenario s′. Therefore β ∈ PSO(G) and thus PSO(G) is closed under

improvement.

A proof similar to that used for PSO(G) can also be used to prove PO(G) is

closed under improvement.

We show CD(G) is closed under improvement. Suppose that α ∈ CD(G), and

β ´N α. Since for all α′ ∈ A, there exists a scenario s′ such that α ´s′ α
′,

and since for all s ∈ S, in particular s′, β ´s α, then we have that β ∈ CD(G).
Therefore CD(G) is closed under improvement.

We prove CSD(G) is closed under improvement as follows. Suppose that

α ∈ CSD(G), and β ´N α. Now suppose that β 6∈ CSD(G). Then there exists

some α′ ∈ A \ [β]N such that α′ ≺N β . However since α ∈ CSD(G) we have

for all α′ ∈ A \ [α]N that α′ 6≺N α, and since β ´N α, then this leads to

a contradiction. Therefore β ∈ CSD(G) and thus CSD(G) is closed under

improvement.

SOs is closed under improvement, since if α is in SOs and β ´N α, then for all

s′ ∈ S, in particular s, β ´s′ α, and therefore β ∈ SOs.

By a similar argument used for SOs, Os is closed under improvement. �

The following result gives the basic subset relationships between the classes we

have introduced to this point. We use the notation A ⊆ (B, C) ⊆ D to mean that

A⊆ B ⊆ D and A⊆ C ⊆ D.

Figure 4.1: Subclass relationships for the basic optimality classes.
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Proposition 4.5 » Basic classes hierarchy

For all MODS G,

(i) The classes satisfy the following relationships:

NSO(G) ⊆ NOPSO ⊆ (NO(G), PSO(G)) ⊆ PO′(G) ⊆ (PO(G), CSD(G)) ⊆
CD(G).

(ii) PO′(G), PO(G), CSD(G) and CD(G) are always non-empty. �

Proof:

(i) NSO(G) ⊆ NOPSO ⊆ (NO(G), PSO(G)) follows from the definitions of the

classes, as does PO′(G) ⊆ (PO(G), CSD(G)) and CSD(G) ⊆ CD(G).

NO(G) ⊆ PO′(G) follows directly from (vii) in Proposition 4.3.

PSO(G) ⊆ PO′(G) follows from (i), (v) and (vii) of Proposition 4.3, i.e., SOs ⊆
O′s, PSO(G) =

⋃

s∈S SOs, and PO′(G) =
⋃

s∈S O′s.

Finally we show PO(G) ⊆ CD(G). From Proposition 4.3 (iv), we have PO(G) =
⋃

s∈S Os. Since for any s ∈ S, we have for some α ∈A that α ∈ Os, if and only

if, α ´s β for all β ∈ A, then by definition of CD(G), α ∈ CD(G), and thus

PO(G) ⊆ CD(G).

(ii) PO′(G) is non-empty since PO′(G) =
⋃

s∈S O′s and from Proposition 4.3 (ii), we

have, for any s ∈ S, O′s is non-empty.

Since PO′(G) is non-empty, then it follows from the class hierarchy given in

(i) that PO(G), CSD(G) and CD(G) are non-empty. �

4.2.5 Discussion of the Basic Classes

In this section, we look at the basic classes and discuss some of the relationships

between these classes, in the context of our decision-making task for selecting a

subset of decisions in the MODS framework.
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Necessarily optimal

The class NO(G) consists of all the decisions that are optimal in every scenario.

NO(G) will often be empty, but if it is not, then the subclass graph collapses into a

chain, as we will see in Proposition 4.8.

Necessarily strictly optimal

The class NSO(G) consists of the decisions that are strictly optimal in every scenario,

i.e., when all scenarios agree that exactly the same decisions are optimal. NSO(G)
will nearly always be empty, but if it is not, then all the classes collapse into one

class, as we will see in Proposition 4.8.

Possibly optimal

The class PO(G) consists the decisions that are optimal in some scenario. For decision

making under uncertainty, where we consider that some scenario ordering ´s gives

the correct ordering on A, the possibly optimal decisions are the ones that could be

the best.

Can dominate

The class CD(G) contains the decisions that are undominated with respect to ≺NS,

so if a decision α is not in CD(G), then there exists some decision that is strictly

better in every scenario. Thus, being a member of CD(G) is a very weak notion of

optimality, and it would be hard to argue that any decision that is not in CD(G)
should be viewed as being an optimal decision.

Can strictly dominate

The class CSD(G) contains the decisions that are undominated with respect to ≺N,

so if a decision α is not in CSD(G), then there exists some decision that is at least as

good in every scenario, and better in some scenario. Because of this, we argue that

being a member of CSD(G) is a minimal requirement for a notion of “optimality”.
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From Proposition 4.4, if X is non-empty and closed under improvement, then

X′ = X ∩CSD(G) is non-empty, hence we can reduce any such non-empty class X to

the potentially smaller non-empty set X′, by eliminating decisions not in CSD(G).

4.2.6 Maximally Possibly Optimal Decisions

In this section, we define another optimality class, which is a refinement to the

notion of possibly optimal. First, recall that Os is the set of optimal decisions in s, i.e.,

the set of α ∈A such that α´s β for all β ∈A. For each α ∈A, we define Opt(α) to

consist of the set of scenarios in which α is optimal, i.e., Opt(α) = {s ∈ S : α ∈ Os}.
Now, let Opt(A) = {Opt(α) : α ∈A}. We define the notion of maximally possibly

optimal as follows:

Definition 4.17 » Maximally possibly optimal

We say that α is maximally possibly optimal, if and only if

— Opt(α) is a maximal subset (w.r.t. ⊆) in Opt(A). «

That is, α is maximally possibly optimal if α is optimal in a maximal set of scenarios.

We let MPO(G) denote the set of maximally possibly optimal decisions. From the

definition, we can see that if we have a decision α that is not in MPO(G), then there

exists some β such that β is optimal in more scenarios than α.

We also explicitly define the intersection of MPO(G) and CSD(G) as follows.

Definition 4.18 » MPO′(G) definition

For MODS G, let MPO′(G) =MPO(G)∩CSD(G). «

Let us look at an example for maximally possibly optimal.

Example 4.3 É MPO(G) example.

Let us consider MODS G = G15, where we have set of decisions A= {α,β ,γ,δ}, set of

scenarios S = {s1, s5}, and with associated total pre-orders given in Table 4.1, which

we recall here:

É ´s1
is the transitive closure of α≡s1

β ≺s1
γ≺s1

δ.

É ´s5
is the transitive closure of α≡s5

β ≡s5
δ ≺s5

γ.

We can see that the set of scenarios for which each decision is optimal is as follows:
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É Opt(α) = {s1, s5}

É Opt(β) = {s1, s5}

É Opt(γ) = ;

É Opt(δ) = {s5}

The maximal sets of scenarios are given by:

É maxOpt(A) =max {{s1, s5}, {s5},;}= {{s1, s5}}

Therefore the decisions that are optimal in a maximal subset of scenarios, i.e., the

maximally possibly optimal decisions, are:

É MPO(G) = {α,β} Î

For MPO(G) and MPO′(G), we have the following result.

Proposition 4.6 » MPO(G) result

For all MODS G,

(i) MPO(G) is non-empty.

(ii) MPO(G) is closed under improvement.

(iii) NO(G), PSO(G) ⊆MPO(G) ⊆ PO(G).

(iv) NO(G), PSO(G) ⊆MPO′(G) ⊆ PO′(G). �

Proof:

(i) Since Os is non-empty for any s ∈ S, then there exists some α ∈A such that

Opt(α) ⊇ {s}. Therefore Opt(A) is non-empty, so there exists a maximal subset

in Opt(A), i.e., max Opt(A) is non-empty. This means that there exists some

α for which Opt(α) ∈ max Opt(A), i.e., it is maximally possibly optimal, so

we have that MPO(G) is non empty.

(ii) Suppose that α is in MPO(G), and β ´N α. Since Opt(α) ∈max Opt(A), and

since for all s ∈ S, β ´s α, then we must have Opt(β) ⊇ Opt(α), therefore

Opt(β) ∈ max Opt(A), and thus β ∈ MPO(G). Therefore MPO(G) is closed

under improvement.
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(iii) By definitions of MPO(G) and PO(G), we have MPO(G) ⊆ PO(G), since

MPO(G) consists of the decisions that are optimal in a maximal set of scenarios,

and PO(G) consists of the decisions that are optimal in any scenario.

By definitions of NO(G) and MPO(G), we have NO(G) ⊆MPO(G), since NO(G)
consists of the decisions which are optimal in all scenarios, which is obviously

a maximal set of scenarios.

Now we show that PSO(G) ⊆ MPO(G). Suppose there is some α ∈ PSO(G),
i.e., there exists some scenario s ∈ S such that α≺s β for all β ∈A\[α]N. Now

suppose that α is not in MPO(G). Then we have that Opt(α), which contains

s, is not in max Opt(A). However, by definition of PSO(G), since α≺s β for all

β ∈A\ [α]N, then there can be no other β ∈A\ [α]N such that s ∈ Opt(β), so

Opt(α) must be in max Opt(A), which is a contradiction. Therefore we have

that PSO(G) ⊆MPO(G).

(iv) MPO′(G) ⊆ PO′(G) follows from (iii).

NO(G) ⊆ MPO′(G) follows from (iii) and from Proposition 4.3 (vi), i.e,

NO(G) ⊆ CSD(G).

PSO(G) ⊆ MPO′(G) follows from (iii) and from Proposition 4.5 (i), i.e.,

PSO(G) ⊆ CSD(G). �

4.2.7 Extreme Decisions

In this section, we define another refinement of possibly optimal, based on the

notion of extreme solution in multi-criteria optimisation [Jun04]. For this notion of

optimality, we consider the optimal decisions with respect to some scenario s1, and

then (since in this context we are minimising) we consider the minimal decisions of

this set with respect to another scenario s2; this is continued until the set of decisions

are all equivalent, and these are the extreme decisions. To aid the definition of an

extreme decision, first we define the following.

Let s1, . . . , sk be a finite sequence of scenarios. Let As1
= min´s1

A = Os1
. For

i = 2, . . . , k, let As1,...,si
be min´si

As1,...,si−1
. Let us call a sequence s1, . . . , sk a sufficient

sequence if all the elements of As1,...,sk
are necessarily equivalent.
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Definition 4.19 » Extreme decisions

We say that α is an extreme decision, if and only if

— there exists a sufficient sequence s1, . . . , sk of scenarios such that α ∈ As1,...,sk
«

We let EXT(G) denote the set of extreme decisions. We also define the intersection

of MPO(G) and EXT(G).

Definition 4.20 » MPO-EXT(G) definition

For MODS G, let MPO-EXT(G) =MPO(G)∩ EXT(G). «

Let us now look at an example with EXT(G).

Example 4.4 É EXT(G) example.

Let us consider MODS G = G345, where we have set of decisions A = {α,β ,γ,δ}, set of

scenarios S = {s3, s4, s5}, and with associated total pre-orders given in Table 4.1, which

we recall here:

É ´s3
is the transitive closure of δ ≺s3

γ≺s3
β ≺s3

α.

É ´s4
is the transitive closure of α≡s4

γ≺s3
β ≺s3

δ.

É ´s5
is the transitive closure of α≡s5

β ≡s5
δ ≺s5

γ.

We can see that:

É α ∈ EXT(G) since for sufficient sequence s4, s5 we have α ∈ As4,s5
, which is the set

{α}.

É γ ∈ EXT(G) since for sufficient sequence s4, s3 we have γ ∈ As4,s3
, which is the set

{γ}.

É δ ∈ EXT(G) since for sufficient sequence s3 we have γ ∈ As3
, which is the set {δ}.

É β 6∈ EXT(G) since there is no sufficient sequence s1, . . . , sk such that As1,...,sk

contains β .

Therefore we have the following set of extreme decisions

É EXT(G) = {α,γ,δ}. Î

We now give the following results in relation to EXT(G) and MPO-EXT(G):
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Proposition 4.7 » EXT(G) result

For all MODS G,

(i) EXT(G) is always non-empty.

(ii) EXT(G) is closed under improvement.

(iii) (NO(G), PSO(G)) ⊆ EXT(G) ⊆ (PO(G), CSD(G)), so EXT(G) ⊆ PO′(G).

(iv) Furthermore, MPO-EXT(G) is always non-empty. �

Proof:

(i) This follows from (iv), since MPO-EXT(G) ⊆ EXT(G) and MPO-EXT(G) is

non-empty.

(ii) We can show, by induction on i, that each As1,...,si
is closed under improvement.

This also implies that EXT(G) is closed under improvement.

(iii) First, we show that EXT(G) ⊆ PO(G). Consider any α ∈ EXT(G), so there

exists a sufficient sequence s1, . . . , sk with As1,...,sk
containing α. As1,...,sk

is a

subset of As1
which equals Os1

, which is a subset of PO(G). Thus α ∈ PO(G),
and therefore EXT(G) ⊆ PO(G).

Now we show that EXT(G) ⊆ CSD(G). Suppose thatα /∈ CSD(G). Now suppose

that α ∈ EXT(G), so that there exists a sufficient sequence s1, . . . , sk such that

α ∈ As1,...,sk
. Since α /∈ CSD(G), then there exists β such that β ≺N α. Since

α ∈ As1,...,sk
, and β ´N α, we have β ∈ As1,...,sk

because from (ii) we have that

As1,...,sk
is closed under improvement. This implies that β and α are equivalent,

which contradicts the fact that β ≺N α. Therefore α /∈ EXT(G), and thus

EXT(G) ⊆ CSD(G).

Here we show NO(G) ⊆ EXT(G). Suppose α ∈ NO(G). Consider any sufficient

sequence s1, . . . , sk and let β be some element of As1,...,sk
. Since α ∈ NO(G),

then α´N β and, since As1,...,sk
is closed under improvement, α ∈ As1,...,sk

, and

hence α ∈ EXT(G). Therefore we have NO(G) ⊆ EXT(G).

Finally, we show PSO(G) ⊆ EXT(G). Suppose α ∈ PSO(G), so there exists

some scenario s with α ∈ SOs. Then from Proposition 4.5 ((iii)), we have

Os = SOs, and the elements of Os are equivalent to each other. Thus s (on

its own) is a sufficient sequence. α ∈ As = Os implies that α ∈ EXT(G), and
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therefore PSO(G) ⊆ EXT(G).

(iv) By Proposition 4.6 (i), MPO(G) is non-empty, so we can choose some decision

α ∈MPO(G). Consider B =
⋂

s∈Opt(α)Os, which contains α. Since A is finite,

then there exists some finite subset T of Opt(α) such that B =
⋂

s∈T Os. Choose

{s1, . . . , s|T |} to be the decisions of T in any order. Then As1,...,s|T | = B. For each

i = |T | + 1, |T | + 2, . . . we choose any scenario si ∈ S such that As1,...,si
is a

strict subset of As1,...,si−1
. If this is not possible then all decisions of As1,...,si−1

are

equivalent, so we stop. Since A, and hence each As1,...,si
, is finite the process

must terminate at some point, giving a set As1,...,sk
which is non-empty by

construction; let β be any decision of it. β ∈ EXT(G), by definition of EXT(G).
Also, As1,...,sk

⊆ B, so β ∈ B, and therefore Opt(β) ⊇ Opt(α). Hence Opt(β) =
Opt(α), since α ∈MPO(G). Thus β ∈MPO(G), so β ∈MPO-EXT(G), showing

that MPO-EXT(G) is non-empty. �

4.3 Subclass Relationships

Figure 4.2: Subclass relationships, including examples showing inequality between
adjacent optimality classes - see Theorem 4.1 and Section 4.4.1.

In this section, we show the precise subclass relationships between the different

definitions of optimality. In the result below, we define, for any G, ;(G) to be ;, and

A(G) to be A, the set of decisions in G.
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Theorem 4.1 » Subclass relationships for optimality classes

Consider the directed acyclic graph given in Figure 4.2, including edges:

; → NSO(G), NSO(G)→ NOPSO(G), and so on.

The vertices of the graph are:

C = { ;, NSO(G), NOPSO(G), NO(G), PSO(G), MPO-EXT(G), EXT(G), MPO′(G),
MPO(G), PO′(G), PO(G), CSD(G), CD(G), A}.

Let L be the transitive closure of this graph, so that (X,Y) ∈ L if and only if there

exists a directed path from X to Y. Then for any different X, Y ∈ C

— (X, Y) ∈ L if and only if for all MODS G, X(G) ⊆ Y(G)

Furthermore, MPO-EXT(G), EXT(G), MPO′(G), MPO(G), PO′(G), PO(G),
CSD(G) and CD(G) are non-empty for any G, but there exists G such that NSO(G),
NOPSO(G), NO(G) and PSO(G) are empty. �

Proof: If (X, Y) ∈ L then by Propositions 4.5, 4.6 and 4.7, for all G, X(G) ⊆
Y(G). These propositions also show that MPO-EXT(G), EXT(G), MPO′(G), MPO(G),
PO′(G), PO(G), CSD(G) and CD(G) are non-empty for any G.

Conversely, suppose that (X,Y) /∈ L. We need to prove that there exists some G such

that X(G) 6⊆ Y(G).

First suppose that (i) (Y, X) is an edge in the graph. Then Figure 4.2 and Tables 4.1

and 4.2 give an example of G with X(G) 6⊆ Y(G), so that Y(G) 6= X(G). For example,

the edge from MPO(G) to PO(G) is labelled with MODS G15, which has S = {s1, s5}
(as defined in Table 4.1) and MPO(G15) = {α,β}, which is a strict subset of PO(G15) =
{α,β ,δ}: see Table 4.2.

Now suppose that (ii) (Y, X) is in L, and let (Y, Z) be an edge on a path from Y

to X in the graph. We have, by the previous part of the theorem, that for all G,

Y(G) ⊆ Z(G) ⊆ X(G). By Case (i), there exists G such that Y(G) 6= Z(G), and so

Y(G) 6= X(G).

We now consider the general case. The construction of C implies that there exists

W ∈ C with, for all G, X(G) ∩ Y(G) = W(G). Also, (W, X) is in L. By Case (ii)

there exists G with W(G) 6= X(G), i.e., X(G)∩ Y(G) 6= X(G), so that X(G) 6⊆ Y(G), as

required.

Examples G13 and G14 (see Table 4.2) show that NSO(G), NOPSO(G), NO(G) and
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PSO(G) can be empty. In fact, it is easy to construct a single G such that they are

all empty; for example, if there are three scenarios, with sets of optimal decisions

{α,β}, {α,γ} and {β ,γ}. �

Table 4.2: Classes in different examples – we consider six different MODS G over set of
decisions A = {α,β ,γ,δ}, using different sets of scenarios from Table 4.1. For example,
G12 involves set of scenarios {s1, s2} with orderings as defined in Table 4.1.

NSO(G) NOPSO(G) NO(G) PSO(G) MPO-EXT(G) EXT(G)
G12 α,β α,β α,β α,β α,β α,β
G13 ; ; ; δ β ,δ β ,δ
G14 ; ; α ; α α
G15 ; α,β α,β α,β α,β α,β
G345 ; ; ; δ α,δ α,γ,δ
G567 ; ; ; γ β ,γ,δ β ,γ,δ

MPO′(G) MPO(G) PO′(G) PO(G) CSD(G) CD(G)
G12 α,β α,β α,β α,β α,β α,β
G13 β ,δ α,β ,δ β ,δ α,β ,δ β ,γ,δ A
G14 α α α α,β ,γ α α,β ,γ
G15 α,β α,β α,β α,β ,δ α,β α,β ,δ
G345 α,δ α,δ A A A A
G567 A A A A A A

4.4 Subclass Simplifications Under Extra Conditions

In this section, we consider three important extra conditions, which are:

(i) if there exists a decision that is optimal in all scenarios;

(ii) if for any decision there exists a most favourable scenario; and

(iii) if the orders are all total orders.

We then show how the subclass relationships between the optimality classes simplify

under each condition.
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4.4.1 When there exists a Necessarily Optimal Decision

The following result, Proposition 4.8, considers the case when there exists a neces-

sarily optimal decision. Part (i) of the result below implies that the graph of subset

relations collapses to a chain, with NO(G) equalling CSD(G), and PO(G) = CD(G).
Part (ii) implies that either NOPSO(G) = NO(G) = PSO(G) or NOPSO(G) = ;. Part

(iii) implies that when there exists a necessarily strictly optimal decision, the set

of optimal decisions are the same in each scenario and all the classes including

NSO(G), NO(G), PSO(G), PO(G), CSD(G), CD(G) and any Os and SOs collapse into

one class, i.e., are all equal.

Proposition 4.8 » Necessarily optimal decision exists

Suppose, for some MODS G = 〈A,S, {´s : s ∈ S}〉, that NO(G) 6= ;, and let s be

an arbitrary scenario in S. Then,

(i) NSO(G) ⊆ SOs ⊆ PSO(G) ⊆ (NO(G) = MPO(G) = EXT(G) = CSD(G)) ⊆
Os ⊆ (PO(G) = CD(G)).

(ii) For X ∈ {NSO(G),NOPSO(G), PSO(G), SOs}, either X = ; or X = NO(G).

(iii) If NSO(G) 6= ; then all the classes NSO(G), SOs, PSO(G), NO(G), CSD(G)
MPO(G), EXT(G), Os, PO(G) and CD(G) are equal. �

Proof:

(i) First we show NO(G) =MPO(G). Since NO(G) is non-empty, and any element

of NO(G) is optimal in all scenarios then we have α ∈MPO(G) if and only if

α ∈MPO(G).

Now we show NO(G) = EXT(G). Suppose α ∈ EXT(G). Then there exists

some sufficient sequence s1, . . . , sk such that As1,...,sk
3 α, with all elements of

As1,...,sk
being necessarily equivalent. Since NO(G) is non empty, then let β

be an element of NO(G). Since EXT(G) is closed under improvement, then

β ∈ As1,...,sk
, which means that α and β are necessarily equivalent. Therefore

we have that α ∈ NO(G), and therefore EXT(G) ⊆ NO(G). Since in the general

case we also have NO(G) ⊆ EXT(G), then we have NO(G) = EXT(G).

Here we show NO(G) = CSD(G). Suppose that α ∈ CSD, and since NO(G)
is non-empty, let β be some element in NO(G). We have that β ´N α. But
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since α is undominated w.r.t ≺N, we don’t have that β ≺N α, so we must have

that α≡N β , and hence α ∈ NO(G). Therefore we have that CSD(G) ⊆ NO(G)
and since in the general case we also have NO(G) ⊆ CSD(G), then we have

NO(G) = CSD(G).

Now we show PO(G) = CD(G). Suppose that α ∈ CD(G), and since NO(G) is

non-empty, let β be some element in NO(G). By definition of CD(G), there

exists some scenario s such that α´s β . Since β is optimal in every scenario,

then α is in Os, and therefore α is in PO(G). Therefore we have that CD(G) ⊆
PO(G), and since in the general case we also have PO(G) ⊆ CD(G), then we

have PO(G) = CD(G).

The rest of the result follows from Proposition 4.3, parts (iv) and (v), i.e.,

NO(G) ⊆ Os ⊆ PO(G) and NSO(G) ⊆ SOs ⊆ PSO(G).

(ii) Let X be any of {NSO(G),NOPSO(G), PSO(G), SOs}, and suppose that X is non-

empty. By (i), X ⊆ NO(G), and so there exists some α in X and NO(G). If β

is any element of NO(G), then β ≡N α, which implies that β ∈ X, since X is

closed under improvement. Since β was arbitrary, this shows that NO(G) ⊆ X,

and hence NO(G) = X.

(iii) Suppose NSO(G) 6= ;. Now suppose we have some decision β in CD(G), but β

not in NSO(G). Since NSO(G) is not empty, then we have some α ∈ NSO(G),
i.e., for all β ′ ∈ A \ [α]N, α ≺NS β

′. Therefore, for all β ′ ∈ A \ [α]N, for

all s′ ∈ S, α ≺s′ β
′. However this contradicts β ∈ CD(G), since there is no

scenario s ∈ S such that β ´s α. Therefore we have that, if NSO(G) 6= ;, then

CD(G) ⊆ NSO(G) and therefore NSO(G) = CD(G), which gives us that the

classes all collapse into one. �

Figure 4.3: Proposition 4.8 gives us that when NO(G) is non-empty, the graph of subset
relations simplifies as shown, where circled classes show classes that collapse to equality.
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4.4.2 Most Favourable Scenario for a Decision

We now look at how the subclass hierarchy simplifies when there is a most favourable

scenario for every decision α ∈A, defined as follows:

Definition 4.21 » Most favourable scenario for α

We say that scenario s′ is a most favourable scenario for α, if

— for all β ∈A, for all s ∈ S, [α´s β ⇒ α´s′ β] and [α≺s β ⇒ α≺s′ β] «

Let us look at an example.

Example 4.5 É Most favourable scenario example.

Consider MODS G = G15, with set of decisions A = {α,β ,γ,δ}, set of scenarios

S = {s1, s5}, where the associated total pre-orders, originally given in Table 4.1, are

recalled as follows.

´s1
´s5

α β α β δ

γ γ

δ

We can see that

É Scenario s1 is a most favourable scenario for α, β and γ

É Scenario s2 is a most favourable scenario for δ. Î

Another example of a most favourable scenario for a decision occurs in interval-

valued soft constraints problems, as we will see in Section 4.6.2. The following

result gives us the subclass relationships between the classes when there exists most

favourable scenarios for all decisions (see also Figure 4.4).
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Proposition 4.9 » Most favourable scenario exists

Suppose, for some MODS G, that for every decision α ∈ A there exists a most

favourable scenario.

Then CSD(G) = PSO(G) =MPO(G) and CD(G) = PO(G).

Hence we then have the following relationships:

NSO(G) ⊆ NO(G) ⊆ (PSO(G) = EXT(G) = PO′(G) = CSD(G) = MPO(G)) ⊆
(PO(G) = CD(G)). �

Proof: First we show that CSD(G) ⊆ PSO(G). Suppose α ∈ CSD(G). Let s be a

most favourable scenario for α. Consider any other decision β ∈ A \ [α]N. Since

α ∈ CSD(G) there exists some scenario s′ with α≺s′ β . Hence, α≺s β . This shows

that α is strictly optimal in scenario s, and thus is in PSO(G). Therefore we have

CSD(G) ⊆ PSO(G), and so CSD(G) = PSO(G).

Similarly, now we show CD(G) ⊆ PO(G). Suppose α ∈ CD(G). Let s be a most

favourable scenario for α. Consider any other decision β ∈ A. Since α ∈ CD(G)
there exists some scenario s′ with α ´s′ β . Hence, α ´s β . This shows that α is

optimal in scenario s, and thus is in PO(G). Therefore we have CD(G) ⊆ PO(G), and

so PO(G) = CD(G).

CSD(G) ⊆ PSO(G) implies also CSD(G) ⊆ MPO(G), and therefore CSD(G) =
MPO(G).

Now we show that MPO(G) ⊆ CSD(G). Suppose there exists some α which is in

MPO(G) but not in CSD(G). α 6∈ CSD(G) implies that there exists β such that β ≺N α.

This implies that Opt(β) ⊇ Opt(α), and so Opt(β) = Opt(α), since α ∈ MPO(G).
Also, β ≺N α implies that there exists some scenario s with β ≺s α. Let s′ be a

most favourable scenario for β . Then β ≺s′ α, and also, since β ∈ PO(G) it can be

seen that β is optimal in s′. However, β ≺s′ α implies that α is not optimal in s′,

which contradicts that Opt(β) = Opt(α) (i.e., that β and α are optimal in the same

scenarios). Thus the earlier assumption that MPO(G) 6⊆ CSD(G) is incorrect, so we

have MPO(G) ⊆ CSD(G), and therefore CSD(G) =MPO(G). �
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Figure 4.4: Proposition 4.9 gives us that when there exists a most favourable scenario
for every decision, the graph of subset relations simplifies as shown, where circled
classes show classes that collapse to equality.

4.4.3 When Scenarios Totally Order Decisions

In this section, we consider the case when the ordering in each scenario is a total

order, i.e., for all s, for all α,β , either α ´s β or β ´s α (see Definition 2.2). The

class hierarchy simplifies as follows (see Figure 4.5).

Proposition 4.10 » Scenarios as total orders

Suppose, for some MODS G, that for every scenario s ∈ S, ´s is a total order. Then

we have:

(i) NSO(G) = NO(G), PSO(G) = PO(G), CSD(G) = CD(G), and for every

scenario s, SOs = Os.

We have the following relationships between the classes:

(NSO(G) = NOPSO(G) = NO(G)) ⊆ (PSO(G) = PO(G) = MPO(G) =
EXT(G)) ⊆ (CSD(G) = CD(G)).

(ii) If there exists a necessarily optimal decision α, then all the classes NSO(G),
NOPSO(G), NO(G), PSO(G), PO′(G), PO(G), CSD(G) and CD(G) are equal

to {α}.

(iii) If, for every decision α ∈ A, there exists a most favourable scenario for α

then we have:

(NSO(G) = NOPSO(G) = NO(G)) ⊆ (PSO(G) = PO(G) = MPO(G) =
EXT(G) = CSD(G) = CD(G)).

�
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Proof:

(i) Recall that α ∈ NSO(G) if and only if for all s ∈ S, α≺s β for all β ∈A \ [α]N,

and recall that α ∈ NO(G) if and only if for all s ∈ S, α ´s β for all β ∈ A.

Since for all s ∈ S, ´s is a total order, then we have that ≡s is equality. Also,

since ≡N=
⋂

s∈S ≡s, then ≡N is equality, therefore for all α,β ∈A, if α´N β

and β ´N α, then α= β . This means that definitions for NSO(G) and NO(G)
are now the same, since for each α ∈ A, [α]N consists of just {α}. Similarly,

the definitions coincide for PSO(G) and PO(G), and CSD(G) and CD(G), and

SOs and Os, which gives us that (NSO(G) = NOPSO(G) = NO(G)) ⊆ (PSO(G)
= PO(G) = MPO(G) = EXT(G)) ⊆ (CSD(G) = CD(G)).

(ii) Suppose there exists some α ∈A such that α is in NO(G). Then, from (i), and

from Proposition 4.8 (i), where NO(G) = CSD(G), we have that all the classes

NSO(G), NOPSO(G), NO(G), PSO(G), PO′(G), PO(G), CSD(G) and CD(G) are

equal.

Now suppose that there is some β ∈A such that β is in NO(G). Then we have

that α´N β and β ´N α, i.e., α≡N β . Since each ´s is a total order, therefore

α≡N β if and only if α= β . Therefore we have that NO(G) = {α}.

(iii) This follows from Proposition 4.9, since if there exists a most favourable

scenario for each decision, then we have CSD(G) = PSO(G), which gives us

that PSO(G) = PO(G) =MPO(G) = EXT(G) = CSD(G) = CD(G). �

Figure 4.5: Proposition 4.10 gives us that when for each scenario the ordering is a
total order, the graph of subset relations simplifies as shown, where circled classes show
classes that collapse to equality.
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4.5 A Multi-criteria Example

As mentioned in Section 4.2, the set of scenarios in the MODS framework can also

have other interpretations. In a multi-criteria decision making or multi-criteria

optimisation problem [KR76], the decisions or alternatives in the problem are

evaluated over a number of different criteria, and the task is usually to choose a

decision or set of decisions that optimise these evaluations. In this section, we look

at a small example of the MODS framework in multi-criteria decision making, where

the scenarios in the MODS framework represent criteria.

We assume that the objective in each criterion is to minimise. Let MODS M =
〈A,C, {´i : i ∈ C}〉, where A is a non-empty, finite set of decisions, C is a non-empty

finite set of criteria, and {´i : i ∈ C} is the set of orderings in each criteria. For

α,β ∈ A, we have that α ´N β if and only if α ´i β , for all i ∈ C, i.e., α is at least

as good as β in every criterion. We also have that α≺N β if and only if α´N β and

β 6´N α, i.e., α is at least as good as β in every criterion, and strictly better in some.

We can see here that the necessarily dominates relation and the necessarily strictly

dominates relation correspond the Weak Pareto and Pareto dominance relations

respectively, as given in Section 2.4. Also, since CSD(M) are the decisions that

are undominated with respect to ≺N, which in this instance of the framework is

the Pareto dominance relation, then these are the decisions that correspond to

what is known in multi-criteria decision making literature as Pareto optimal or

non-dominated (see Definition 2.18).

Let us look at an example of a multi-criteria MODS and the resulting optimality

classes.

Example 4.6 É Multi-criteria MODS example.

Consider the following MODS M, where the set of decisions is A = {α,β ,γ,δ} and the

set of criteria is C = {1, 2,3}.

For decision α ∈A, let υ(α) = (α1,α2,α3) be the preference vector for α, consisting of

the evaluation of α over each criterion i ∈ C.

Suppose the preference vectors for each decision are as follows:

É υ(α) = (4, 1,1)

É υ(β) = (3,2, 1)

É υ(γ) = (2,1, 2)
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É υ(δ) = (1,3, 1)

These preference vectors give us an ordering of the decisions for each criterion as follows:

´1 ´2 ´3

δ α γ α β δ

γ β γ

β δ

α

Since, for each decision there exists a scenario in which it is optimal, and given that

PO(M) ⊆ CD(M), we have:

É PO(M) = {α,β ,γ,δ}=A

É CD(M) =A

Also, any of the decisions can strictly dominate any other decision in some scenario,

and since PO′(M) = PO(M)∩CSD(M), so we have:

É CSD(M) = {α,β ,γ,δ}=A

É PO′(M) =A

Both α and δ are optimal in a maximal subset of criteria, i.e., α is optimal in each of

the criteria in {2,3} and δ is optimal in each of the criteria in {1,3}, so we have:

É MPO(M) = {α,δ}

É MPO′(M) = {α,δ}

β is not in EXT(M), since there is no sequence of criteria for which the resulting

equivalence class considered by EXT(M) contains β . We have such sequences of criteria

for α,γ and δ, for example, (3, 2), (2,1) and (3, 1) respectively, therefore we have:

É EXT(M) = {α,γ,δ}

É MPO-EXT(M) = {α,δ}

We can see that δ strictly dominates all other decisions in criterion 1. Since no other

decision can strictly dominate all other decisions in some criterion, we have:

É PSO(M) = {δ}

Finally, we can see that there are no decisions that necessarily dominate all others

decisions in every criterion, so we have:
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É NSO(M) = NOPSO(M) = NO(M) = ; Î

4.6 Discussion

In this section, we look at one possible way to use the general MODS framework

and the subclass relationships between the optimality classes to order the decisions.

We also conclude the chapter with some further discussion on the optimality classes.

4.6.1 Using Subclass Relationships to Order Decisions

Considering the task where we wish to show a list of decisions to a decision maker,

how should we order this list so that the more interesting decisions are first? Again,

we consider that we only have qualitative information as expressed in a given

MODS G = 〈A,S, {´s : s ∈ S}〉, and that we only want to use this purely qualitative

information, (e.g., we don’t want to convert the orderings to numerical rankings,

and we don’t want to reason based on numbers of the scenarios). We now outline

one approach for presenting such a list of decisions to a decision maker.

Firstly, for MODS G, for all α ∈ A, let XG(α) be the minimal optimality class that

contains α . Based on this, we define a new preference relation as follows:

Definition 4.22 » Minimal-class dominates

For all α,β ∈ A, we say that decision α minimal-class dominates β , written as

α≺L β , if and only if

— XG(α) is a strict subset of XG(β). «

This relation ≺L is compatible with relation ≺N and we can therefore show the user

decisions in an order compatible with the union of these two relations, i.e., ≺L ∪ ≺N .

Let us look at an example.

Example 4.7 É Minimal classes example.

Consider MODS G = G123, with set of decisions A = {α,β ,γ,δ}, set of scenarios

S = {s1, s2, s3}, and with associated total pre-orders given in Table 4.1, which we recall

as follows:
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´s1
´s2

´s3

α β α β δ

γ δ γ

δ γ β

α

Considering the optimality classes already calculated in Example 4.2, along with the

optimality classes defined consequently, gives us the following.

É NSO(G) = NOPSO(G) = NO(G) = ;

É PSO(G) = {δ}

É MPO-EXT(G) =MPO′(G) = EXT(G) = PO′(G) = {β ,δ}

É MPO(G) = PO(G) = {α,β ,δ}

É CSD(G) = {β ,γ,δ}

É CD(G) = {α,β ,γ,δ}

From these optimality classes, we determine the minimal class for each decision. Figure

4.6 shows the minimal class for the decisions on the subclass diagram.

É XG(α) =MPO(G)

É XG(β) =MPO-EXT(G)

É XG(γ) = CSD(G)

É XG(δ) = PSO(G)

From the minimal classes, we can determine the minimal-class dominance relation ≺L:

É ≺L= {(δ,β), (δ,α), (δ,γ), (β ,α), (β ,γ)}

Also from the scenario orderings, we can see that the relation ≺N is given by

É ≺N= {(β ,α)}

Using both these relations, we can show the decisions to a decision maker in a manner

that is compatible with these relations along with a description of the optimality class

to which it belongs, e.g.,
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1. δ is possibly strictly optimal

2. β is maximally possibly optimal and is an extreme decision

3a. α is maximally possibly optimal

3b. γ can strictly dominate every other decision in some scenario

In the case where we have two decisions that do not dominate each other according to

≺L ∪ ≺N, e.g., in this example α and γ, and since we could present with each decision

the description of the minimal optimality class to which it belongs; this would allow

the decision maker to choose between these decisions considering the optimality class,

which might depend on e.g., the context of the problem or their own attitudes to risk.

For example, a decision maker who does not mind some risk may prefer decision α

over decision γ, even though α is not in CSD(G), (and decision γ is), decision α is

more likely to be optimal for some scenarios, since it is in MPO(G) (and decisions γ is

not). Î

Figure 4.6: For Example 4.7, for MODS G = G123, we show the minimal classes for α,
β , γ and δ on the subclass relationship diagram.

4.6.2 Relationship with Interval Valued Soft Constraints

In this section, we discuss the connection between the MODS framework and the

resulting notions of optimality with the optimality classes for interval-valued soft

constraints [GPR+10b]. In a soft constraints problem (see Section 3.3), a soft

constraint is a function which associates a preference value to scoped tuples of

domain values (or assignments). In an interval valued soft constraints problem,

instead of associating a single preference value with an assignment, an interval

valued soft constraint associates an interval of preference values with an assignment.

First we define an interval-valued soft constraint problem.
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Definition 4.23 » Interval-valued soft constraint problem (IVSCSP)

An interval-valued soft constraint problem is a semiring constraints network P =
〈X ,D,CS, S〉with totally ordered c-semiring 〈E,+,×, 0, 1〉 (see Definition 3.3), where

CS is a set of interval-valued soft constraints, and where an interval-valued soft

constraint iV , with scope V ⊆ X , is a function iV : D(V )→ E × E. «

For an interval-valued soft constraint iV , for some tuple t, we let liV
(t) denote the

first component of iV (t), and we let uiV
(t) denote the second component, i.e., we

have iV (t) = (liV
(t), uiV

(t)).

The preference level for an assignment is given as follows.

Definition 4.24 » Assignment preference level (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, the preference level

ρ(t) of an assignment t ∈ D(X ) is given by

— ρ(t) = [L(t), U(t)]

where L(t) = ×iV∈CS
liV
(t), and U(t) = ×iV∈CS

uiV
(t) «

That is, for any tuple t, the preference interval of t is given by a lower bound and an

upper bound, where the lower bound is the combination of all the lower bounds of

the preference intervals associated to t by the interval-valued soft constraints, and

the upper bound of t is the combination of all the upper bounds of the preference

intervals associated to t by the constraints.

The intervals in each constraint represent some sort imprecision or uncertainty

around the actual preference value. A scenario in an interval-valued soft constraint

problem occurs as a result of choosing a preference value from the interval.

Definition 4.25 » Scenario (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, a scenario P ′ of P

is a problem P ′ = 〈X ,D,C′S, S〉, such that for all iV ∈ CS, let sV be a soft constraint in

C′S such that sV (t) ∈ [liV
(t), uiV

(t)]. «

Then, given a particular scenario, the preference level of an assignment in that

scenario is defined follows.
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Definition 4.26 » Preference level in a scenario (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, the preference

level ρ(t) of a solution t in a given scenario P ′ = 〈X ,D,C′S, S〉 is given by

— ρP ′(t) =
¡

sV∈C′S

sV (t) «

We can say that a solution dominates or strictly dominates another in a given scenario

as follows.

Definition 4.27 » Dominance (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, for a scenario

P ′ = 〈X ,D,C′S, S〉, a solution t ∈ D(X ) dominates a solution t ′ ∈ D(X ) in scenario

P ′ if and only if

— ρP ′(t)�S ρP ′(t ′) «

Definition 4.28 » Strict dominance (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, for a scenario

P ′ = 〈X ,D,C′S, S〉, a solution t ∈ D(X ) strictly dominates a solution t ′ ∈ D(X ) in

scenario P ′ if and only if

— ρP ′(t)�S ρP ′(t ′) «

Given a scenario, an optimal solution in that scenario is defined as follows.

Definition 4.29 » Optimal solution in a scenario (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, for a scenario

P ′ = 〈X ,D,C′S, S〉, a solution t ∈ D(X ) is optimal in scenario P ′ if and only if

— for all t ′ ∈ D(X ), ρP ′(t)�S ρP ′(t ′) «

We have different notions of optimality for interval-valued soft constraints problems

(Definitions 6 and 7 from [GPR+10b]).

Definition 4.30 » Necessarily optimal (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, an assignment is

necessarily optimal if and only if it is optimal in all scenarios. «

The set of necessarily optimal elements is denoted by NO(P).
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Definition 4.31 » Possibly optimal (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, an assignment is

possibly optimal if and only if it is optimal in some scenario. «

The set of possibly optimal elements is denoted by PO(P).

We also have the notions of necessarily dominates and necessarily strictly dominates

in interval-valued soft constraints (Definitions 15 and 16 from [GPR+10b]).

Definition 4.32 » Necessarily dominates (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, an assignment

t ∈ D(X ) necessarily dominates an assignment t ′ in D(X ) if and only if

— for all scenarios P ′, ρP ′(t)�S ρP ′(t ′) «

Definition 4.33 » Necessarily strictly dominates (IVSCSP)

For an interval-valued soft constraints problem P = 〈X ,D,CS, S〉, an assignment

t ∈ D(X ) necessarily strictly dominates an assignment t ′ in D(X ) if and only if

— for all scenarios P ′, ρP ′(t)�S ρP ′(t ′) «

The undominated solutions with respect to necessarily dominates are denoted

by N DTOP(P) and the undominated solutions with respect to necessarily strictly

dominates are denoted NSDTOP(P). The results in Theorem 12 in [GPR+10b]
gives us different subclass relationships between the optimality classes for the

interval valued soft constraints. For example, the first part of Theorem 12 gives

us that NO(P) ⊆ N DTOP(P) ⊆ NSDTOP(P), and the second part gives us that

PO(P) ⊆ NSDTOP(P).

We can see that the scenarios of an interval-valued soft constraint problem corre-

spond to the scenarios in the MODS framework, and that some of the different

notions of optimality for interval-valued soft constraints and the MODS framework

coincide. The NO(P) class for interval-valued soft constraints corresponds to the

class NO(G) in the MODS framework, similarly for the PO(P) and PO(G) classes.

Since the notions of necessarily dominates and necessarily strictly dominates for

interval-valued soft constraints correspond to ´N and ≺NS respectively in the MODS

framework, and we have that NSDTOP(P) corresponds to CD(G), and N DTOP(P)
corresponds to CSD(G).
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In Theorem 8 in [GPR+10a], we have the definition of a scenario Qs, which is the

scenario where every preference associated to a tuple of s is set to its lower bound

and the preferences of all other tuples are set to their upper bound. In our MODS

framework, this corresponds to the definition of a most favourable scenario for a

decision, as given in Section 4.4.2. Proposition 4.9 gives us in the MODS framework

that NO(G) ⊆ (PSO(G) = CSD(G)) ⊆ (PO(G) = CSD(G)), then we have for strictly

monotonic interval-valued soft constraints problems (where the c-semiring is strictly

monotonic) that NO(P) ⊆ N DTOP ⊆ (PO(P) = NSDTOP(P)), which corresponds

to the results in the first four parts in Theorem 12 in [GPR+10b]. In addition, if

we have that NO(G) is non-empty, then we have from Proposition 4.8 in the MODS

framework that PSO(G) ⊆ (NO(G) = CSD(G)) ⊆ (PO(G) = CD(G)), which gives us

that PSO(G) = NO(G) = CSD(G) = PO(G) = CD(G), so for the interval valued soft

constraints problem we have that NO(P) = N DTOP(P) = PO(P) = NSDTOP(P).
Therefore we can see that some of the notions of optimality from [GPR+10b] also

apply in the more general context of the MODS framework.

4.7 Chapter Conclusion

In this chapter, we looked at some notions for optimality for decision making with

qualitative information, in situations where we want to present a set of decisions to a

decision maker that are in some way “optimal”, or “preferable” to the other decisions.

If there exists a necessarily optimal decision, then being necessarily optimal seems

the most natural notion of optimality; most of the optimality classes we consider

collapse to NO(G) in this case: see Proposition 4.8. However, more generally, there

is no unique most appropriate notion of optimality in all contexts. If one of the

scenarios represents the true preference ordering, then PO(G) gives the decisions

that could be optimal. However, we might eliminate decisions not in CSD(G) (each

of which is inferior to one that is in CSD(G)), leading to PO′(G). Where this class is

large, we may refine this to consider more special decisions in different ways, and

based on different intuitions, leading to MPO′(G), EXT(G) and MPO-EXT(G), the

latter being the most specific class we consider that is always non-empty.

The notions of optimality in the MODS framework are partly inspired by the notions

of optimality for interval-valued constraints [GPR+10b] as seen in Section 4.6.2,

however we assume only qualitative or ordinal information. The MODS framework

has a connection to decision-making under uncertainty (DMU) [Sav54], where the

decision-making task involves the consideration of multiple possible states that
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can occur and the outcomes associated to the decisions in these states. [HK95]
classifies various different types of uncertainty in decision problems, where we

have precise, ambiguous or no knowledge on the probabilities or outcomes of

different problems. Often such DMU frameworks assume that there is precise

knowledge, for example, a probability distribution that assigns probabilities to the

states, such as in expected utility framework [vNM47]. However our framework is

more closely related to decision-making under complete uncertainty, or ignorance

[AH72, Mas79, LKM10, CM10] where there is no information assumed as to which

states are more likely than others.

We only considered qualitative orderings, and purely qualitative notions of optimal-

ity, such as in [FP99]. If in each scenario there is instead a numerical utility or cost

function over decisions (or if one converts the qualitative orderings to numerical

rankings) then other natural notions of optimality are available, e.g., for positive pref-

erences we could use Maxmin [Raw71], Leximin [BJ88], or Minimax regret [Sav51],
and for negative preferences we could use Lexicographic Min-Max [Ehr96] or take

the min-sum of costs, such as is done in Weighted CSP [RvBW06]; in fact, any of the

preference relations discussed in Section 2.3 that can utilise quantitative preferences

could be used. Furthermore, if we have, for example, a probability distribution over

scenarios, then we can consider the decisions that have highest probability of being

optimal [Pea88], or those that maximise expected utility [vNM47].
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CONSTRAINTS 5.1 Introduction

5.1 Introduction

The notion of Pareto optimality originated in social welfare and economic theory

[Par97], and the Pareto dominance relation is widely used in that field and many

other related decision making fields. In a general decision-making context, a decision

Pareto dominates another if it is strictly preferred in at least one aspect of the decision

and at least as good in all other aspects (see Section 2.4) where an aspect could

be: a voter in collective decision making, a state of the world in decision making

under uncertainty [CM10], or a criterion in multi-criteria decision-making [KR76].
However, a problem with Pareto dominance is its lack of discriminatory power, as

many comparisons between pairs of decisions do not result in dominance, which

in turn leads to a large number of non-dominated or Pareto optimal solutions.

Therefore, it is desirable to look at relations that extend Pareto dominance, where

the extending relation has more power when comparing decisions, thus leading to a

smaller set of non-dominated decisions that are all still Pareto optimal.

In this chapter we look at an extension to the Pareto dominance relation, called

Sorted-Pareto dominance. As shown in Section 2.6, this relation is extended by the

Lexicographic-Max relation [Ehr05] and Leximin [DFP96b, PSS06], which compares

two decisions by lexicographically comparing the worst evaluations of the decisions.

However these Lexicographic relations places excessive emphasis on the worst

evaluations (as it ignores the better evaluations when comparing two decisions,

except if the decisions have the same worst evaluation) whereas Sorted-Pareto

compares decisions considering all evaluations. Also, Sorted-Pareto assumes only a

qualitative or ordinal scale, and therefore does not rely on quantitative information

to compare decisions (as in, for example, the quantitative preference relations

discussed in Section 2.6).

The remainder of the chapter is outlined as follows. In Section 5.2 we revisit the

definitions for the Sorted-Pareto dominance relation, giving some properties that

characterise the relation, and in Section 5.3 we give a semantics for Sorted-Pareto

dominance in terms of a preference relation that is compatible with any order-

preserving mapping that maps a qualitative scale to a quantitative one. In Section

5.4, we examine Sorted-Pareto dominance in the context of a general constraints

problem framework, and in Section 5.5 we describe some backtracking search and

depth first branch and bound algorithms for searching for a set of Sorted-Pareto

optimal solutions. Section 5.6 details our implementation of a constraints solver

for Sorted-Pareto framework and the algorithms in our Soft Constraints solver, and
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in Section 5.7 we discuss some results obtained when solving general constraint

problem instances using this implementation, where we examine the solver execution

times for the algorithms developed as well as looking at the resulting sizes of the

Sorted-Pareto optimal sets for different types of problems. In Section 5.8 we describe

some extensions to the Sorted-Pareto dominance relation and look at some further

experimental results. Section 5.9 highlights some similar work in this area, and

Section 5.10 concludes with some discussion.

5.2 Sorted-Pareto Dominance

We assume a multi-aspect decision problem P = 〈A,S, T,≤〉 from Section 2.3, and

we recall the definition as follows.

Recall » General Decision Making Problem (Definition 2.11)

A multi-aspect decision problem is a tuple P = 〈A,S, T,≤〉, where:

• A is a finite set of decisions, alternatives or choices,

• S = {1, . . . , m} is a finite set of decision aspects, where each i ∈ S labels some

preferential aspect of the problem, and for which pi is a function that specifies

the preference value of each decision, i.e., pi : A→ T ,

• T is a scale of preference values, where ≤ is a total order on T . «

We also recall for each decision α ∈ A we have a preference vector υ(α) =
(α1, . . . ,αm), and υ(α)↑ = (α(1), . . . ,α(m)) is such that α(1) ≤ · · · ≤ α(m). We recall

the following notation for preference vector dominance from Section 2.2.

Recall » Preference vector dominance (Definition 2.14)

For any two preference vectors υ(α) and υ(β), of size m, we have that

(i) υ(α)≤ υ(β) if and only if αi ≤ βi for all i ∈ {1, . . . , m},

(ii) υ(α) < υ(β) if and only if αi ≤ βi for all i ∈ {1, . . . , m}, and there exists

j ∈ {i, . . . , m} such that α j < β j.

(iii) υ(α) = υ(β) if and only if αi = βi for all i ∈ {1, . . . , m}. «

The Sorted-Pareto dominance relation, which we introduced in Section 2.5 is a

preference relation which can be used in the ordering of decisions with multiple
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qualitative preference levels. We assume decision making situations where the

decision aspects use the same scale, for example in the situation where the aspects

correspond to different voters or experts, or different criteria with commensurate

scales. However, even in situations where evaluations of aspects may not be on

the same scale, then there are methods for modifying or normalising the different

scales, e.g., such as the joint ordinal scale [LM95, MMO02], so that the scales are

commensurate and of equal importance. We also assume that each of the aspects

are of equal importance, or in other terms, that the ordering of the preference vector

is irrelevant. This naturally occurs in decision making situations such as, group

decision making where all experts are considered equal, or in decision making under

uncertainty where there is no information on which state will occur.

Now we recall the definitions of the Sorted-Pareto dominance relations from Section

2.5

Recall » Weak Sorted-Pareto dominance (Definition 2.19)

For all α,β ∈A, α Weak Sorted-Pareto dominates β , written as α´SP β , iff.

— υ(α)↑ ≤ υ(β)↑ «

Recall » Sorted-Pareto dominance (Definition 2.20)

For all α,β ∈A, α Sorted-Pareto dominates β , written as α≺SP β , if and only if

— υ(α)↑ < υ(β)↑ «

Recall » Sorted-Pareto equivalence (Definition 2.21)

For all α,β ∈A, α is Sorted-Pareto equivalent to β , written as α≡SP β , if and only if

— υ(α)↑ = υ(β)↑ «

5.2.1 Properties of Sorted-Pareto Dominance

In this section, we give some general properties of the Sorted-Pareto dominance

relations. First, we have the following result.

104



5. SORTED-PARETO DOMINANCE AND SOFT

CONSTRAINTS 5.2 Sorted-Pareto Dominance

Proposition 5.1 » Properties of Sorted-Pareto Dominance

For a multi-aspect decision problem P = 〈A,S, T,≤〉, we have for the Sorted-Pareto

relations ´SP, ≺SP and ≡SP

(i) Relation ´SP is a preorder on A, i.e., it is reflexive and transitive.

(ii) Relation ≺SP is a strict preorder on A, i.e., it is irreflexive and transitive.

(iii) Relation ≡SP is an equivalence relation on A, i.e., it is reflexive, transitive,

and symmetric. �

Proof:

(i) First we show that ´SP is transitive. Suppose α ´SP β and β ´SP γ. Then

by definition of ´SP, υ(α)↑ ≤ υ(β)↑ and υ(β)↑ ≤ υ(γ)↑. By transitivity of ≤,

υ(α)↑ ≤ υ(γ)↑, which by definition of ´SP, implies that α ´SP γ. Therefore

´SP is transitive.

Now we show that ´SP is reflexive. For any α ∈A, consider its sorted prefer-

ence vector, υ(α)↑ = (α(1), . . . ,α(m)). Since T is a totally ordered scale, then

for any scale value υ ∈ T , υ≤ υ, which means for any α(i) ∈ υ(α)↑, α(i) ≤ α(i),
i.e., for all i ∈ {1, . . . , m}, α(i) ≤ α(i). Therefore, by definition of the vector

dominance relation ≤, we have υ(α)↑ ≤ υ(α)↑, which by definition of ´SP

implies that α´SP α. Therefore ´SP is reflexive.

(ii) This follows from Proposition 2.2 and the properties stated in Section 2.2.1,

however we include a more detailed proof here to aid in the intuition of the

relation.

First we show that ≺SP is transitive. Suppose α≺SP β and β ≺SP γ. Then by

definition of ´SP, we have that α´SP β and β ´SP γ, which by transitivity of

´SP, means that α´SP γ. From this, we must have either α≡SP γ or α≺SP γ.

If we have that α ≡SP γ, then for all i ∈ {1, . . . , m}, α(i) = γ(i), and since

we have β ´SP γ, then for all i ∈ {1, . . . , m}, β(i) ≤ γ(i) and therefore for

all i ∈ {1, . . . , m}, β(i) ≤ α(i) This contradicts α ≺SP β , since there exists no

i ∈ {1, . . . , m} such that α(i) < β(i). Therefore we must have that α≺SP γ, and

thus ≺SP is transitive.

Since, α≺SP α if and only if α´SP α and α 6´SP α is a contradiction, we have

that ≺SP is irreflexive.
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(iii) This follows from Proposition 2.3 and the properties stated in Section 2.2.1,

however as above we include a more detailed proof here to aid in the intuition

of the relation.

First we show that ≡SP is reflexive. For any α ∈A, consider its sorted prefer-

ence vector, υ(α)↑ = (α(1), . . . ,α(m)). Since T is a totally ordered scale, then for

any scale value υ ∈ T , υ = υ, which means for all i ∈ {1, . . . , m}, α(i) = α(i).
Therefore, by definition of vector equality, we have υ(α)↑ = υ(α)↑, which by

definition of ≡SP implies that α≡SP α. Therefore ≡SP is reflexive.

Now we show that ≡SP is symmetric. Suppose we have α ≡SP β . Then we

have that υ(α)↑ = υ(β)↑. By symmetry of equality, we have υ(β)↑ = υ(α)↑,
which means that we have β ≡SP α.

Now we show that ≡SP is transitive. Suppose we have that α ≡SP β and

β ≡SP γ. Then we have that υ(α)↑ = υ(β)↑ and υ(β)↑ = υ(γ)↑. By transitivity

of equality, we have υ(α)↑ = υ(γ)↑, which means that we have α≡SP γ. �

Now we give an alternative characterisation of Weak Sorted-Pareto dominance,

which connects the relation to the orderings defined in Definition 2.1 of [BS06] and

Definition 11 of [PS05], which looks at the problem of finding minimal paths on

ordered graphs.

First we give some notation. Let σ be a permutation function on {1, . . . , m}, i.e.,

it is a bijective function, σ : {1, . . . , m} → {1, . . . , m}. Relaxing notation, we extend

this definition of a permutation function to also use over preference vectors; a

permutation function σ is a bijective function on a preference vector υ(α) that gives

a reordering of the preference vector, i.e., let σ
�

υ(α)
�

= (ασ(1),ασ(2), . . . ,ασ(m)).

We have the following result.

Proposition 5.2 » Sorted-Pareto permutation result

For all α,β ∈A, α´SP β if and only if there exists a vector permutation function

σ such that, σ
�

υ(α)
�

≤ υ(β). �

Proof: Suppose that α ´SP β . Then we have that υ(α)↑ ≤ υ(β)↑, i.e., for all i ∈
{1, . . . , m}, α(i) ≤ β(i). Letσ′ be a permutation function such thatσ′

�

υ(β)↑
�

= υ(β),
i.e., we have that σ′

�

υ(β)↑
�

=
�

βσ′((1)),βσ′((2)), . . . ,βσ′((m))
�

= (β1,β2, . . .βm). Let
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A = σ′
�

υ(α)↑
�

. We have Ai ≤ βσ′((1)), for all i ∈ {1, . . . , m}, and thus Ai ≤ βi for

all i ∈ {1, . . . , m}. This gives us that A≤ υ(β) and since A is a permuted vector of

υ(α)↑, which is in turn a permuted vector of υ(α), then we have that there exists a

permutation σ such that σ
�

υ(α)
�

≤ υ(β).

Now we prove the converse. Suppose that σ
�

υ(α)
�

≤ υ(β). This implies
�

σ
�

υ(α)
��↑
≤
�

υ(β)
�↑

using the proof of Proposition 2.4, which is equivalent to

υ(α)↑ ≤ υ(β)↑, i.e., α´SP β .

�

5.2.2 A Characterisation of Sorted-Pareto as a Relation on Mul-

tisets

In the preceding discussions, we viewed the Sorted-Pareto preference relation as

an ordering over a set of decisions A, where each decision α ∈A has a preference

vector υ(α) of m values from a given scale T . In Section 2.5.1, we also looked at

the induced Sorted-Pareto dominance relation over the preference vector space T m.

In this section, we now show how the Sorted-Pareto ordering can be characterised

when viewed as an ordering on M T , the set of multisets of T . To facilitate this

characterisation, we define the following.

Definition 5.1 » Unaffected by permutations

Let us say that an ordering ´ on T m is unaffected by permutations if, for any two

vectors u, v ∈ T m, and for any two permutation functions σ and σ′,

• u´ v ⇐⇒ σ(u)´ σ′(v). «

In this case, ´ can be represented as an ordering on M T , the set of multisets of

T , rather than vectors of T . Orderings that are unaffected by permutations are

important, for instance, in the context of soft constraints, where the ordering of

the soft constraints is taken to be irrelevant, so we can view the input as being a

multiset of soft constraints. Its definition immediately implies that the Sorted-Pareto

dominance relation is unaffected by permutations. In fact, it can be easily seen that

it is the setwise smallest such relation that extends the Pareto dominance relation.
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Proposition 5.3 » Sorted-Pareto and unaffected by permutations

If an ordering´ on T m extends Pareto dominance and is unaffected by permutations,

then

— ´ ⊇ ´SP �

Proof: Suppose for u,v ∈ T m, we have u´SP v. By definition of ´SP, we have that

u↑ ≤ v↑. Therefore, since ´ extends Pareto dominance, we have that u↑ ´ v↑. Since

u↑ is a permutation of u and v↑ is a permutation of v, and since ´ is unaffected by

permutations, we have u´ v. �

In the remainder of this section, we consider the induced Sorted-Pareto ordering on

M T . First, for multiset A∈ M T , let A↑ be the vector in T m which has the values of A

in non-descending order, i.e., it is the sorted vector of the values of multiset A. We

induce the Weak Sorted-Pareto dominance relation on M T as follows.

Definition 5.2 » Sorted-Pareto dominance on M T

For multisets A, B ∈ M T ,

• ;´SP ;

• A´SP B⇔ A↑ ≤ B↑ «

From this definition, we have that the Sorted-Pareto relation ´SP is a partial order

on M T (see Definition 2.2).

Proposition 5.4 » Sorted-Pareto dominance on M T

´SP is a partial order on M T , i.e., it is reflexive, transitive and antisymmetric. �

Proof: Reflexivity and transitivity of ´SP follow from reflexivity and transitivity

of ≤. For antisymmetry, we have A ´SP B ´SP A implies A↑ ≤ B↑ ≤ A↑, and hence

A↑ = B↑, which implies A= B. �

Consider the following two properties for orderings of M T . The first property relates

the ordering on T with the ordering on singleton multisets. The second is a kind of

independence (] is multiset sum).
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Property 5.1. For all x , y ∈ T , x ≤ y ⇒ {x}´ {y}

Property 5.2. For all A, B, C ∈ M T , A´ B ⇒ A] C ´ B ] C

Proposition 5.5 » Sorted-Pareto relation on T -multisets

The Sorted-Pareto ordering ´SP on multisets of T is the unique minimal preorder

on M T satisfying Properties 5.1 and 5.2.

That is, ´SP satisfies Properties 5.1 and 5.2, and if ´ is an ordering on M T

satisfying Properties 5.1 and 5.2 then for A, B ∈ M T , A´SP B ⇒ A´ B. �

Proof: First, ´SP on multisets of T satisfies Property 5.1 by definition of ´SP.

Now we show that ´SP satisfies Property 5.2. First, let us derive a consequence of

Property 5.2.

Property (*) If for all j = 1, . . . , k we have Aj ´ B j, then A ´ B, where A is the

multiset union of the Aj ’s and similarly for B.

To prove (*), we first prove the case when k = 2, i.e., A1 ´ B1 and A2 ´ B2 implies

A1]A2 ´ B1]B2. (*) follows from this by an inductive/iterative argument. To prove

the property for k = 2 we just apply Property 5.2 twice, using transitivity: Assume

A1 ´ B1 and A2 ´ B2 Then Property 5.2 implies A1 ] A2 ´ B1 ] A2. Also Property 5.2

implies B1 ] A2 ´ B1 ] B2, Then by transitivity of ´, A1 ] A2 ´ B1 ] B2.

To complete the proof: Suppose that A ´S B, and that ´ satisfies properties 5.1

and 5.2 (and hence (*)). We have for all i, A(i) ≤ B(i). Thus by Property 5.1,

{A(i)}´ {B(i)}.

Property (*) then implies A´ B, as required. �

Another characterisation of Sorted-Pareto is given by Property 5.3 below.

Property 5.3. For all A, B ∈ M T , A´ B if and only if

(I) min(A)≤min(B) and

(II) A− {min(A)}´ B − {min(B)}.

The following result in Proposition 5.6 shows that the Sorted-Pareto ordering is

the unique ordering, that only compares multisets of equal cardinality, satisfying
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Property 5.3.

Proposition 5.6 » Sorted-Pareto dominance on equal cardinality multisets

Let ´ be an ordering on M T that only compares multisets of equal cardinality, i.e.,

such that A´ B ⇒ |A|= |B|.

Then ´ satisfies Property 5.3 if and only if ´ = ´SP. �

Proof: Let P(´) be the condition of satisfying Property 5.3, i.e., for all A, B ∈ M T ,

A´ B if and only if

(I) min(A)≤min(B); and

(II) A− {min(A)}´ B − {min(B)}.

We need to show that P(´) holds iff ´=´SP.

Let A(1) =min(A), A(2) is the second smallest element of A, and so on. Let A[k] be

A with the k smallest elements removed. Let’s assume that P(´) holds. We have

A´ B iff A(1) ≤ B(1) and A[1] ´ B[1]. We also have A[1] ´ B[1] iff A(2) ≤ B(2) and

A[2]´ B[2], and so on.

Thus A ´ B iff A(1) ≤ B(1) and A[1] ´ B[1] iff A(1) ≤ B(1) and A(2) ≤ B(2) and

A[2] ´ B[2] iff A(1) ≤ B(1) and A(2) ≤ B(2) and A(3) ≤ B(3) and A[3] ´ B[3] iff

(continuing) for all i, A(i) ≤ B(i), i.e., iff A´SP B.

We’ve shown that P(´) holds only if ´=´SP. To complete the proof we just need

to show that P(´SP) holds.

P(´SP) states that for all multisets A, B ∈ M T we have A ´SP B iff A(1) ≤ B(1) and

A[1] ´SP B[1]. Both ⇒ and ⇐ follow fairly easily from the definition of Sorted

Pareto. �

5.3 A Semantics for Sorted-Pareto Dominance

We now look at a semantics for the Sorted-Pareto dominance. We assume a multi-

aspect decision problem P = 〈A,S, T,≤〉, where each decision α ∈A is characterised

by its preference vectorυ(α). One way of comparing decisions using these preference

values is to map the qualitative scale values onto quantitative values, for example,
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representing some sort of numerical cost. To do this, one can define a weights

function f on the scale values, e.g., f : T → R+, where the function is monotonic

with respect to the ordering of the scale. We recall the definition of monotonic

function from Section 2.6 here.

Recall » Monotonic function (Definition 2.32)

For some ordered scale T , ordered by ≤, a function f : T → R+ is monotonic with

respect to scale T , if and only if

— u≤ v⇒ f (u)≤ f (v), for all u, v ∈ T «

Therefore, for our set of decisions A, and using some weights function f : T → R+,

the decisions can be ordered by summing and comparing the preference vectors

associated with each decision. This is the Min-sum of weights ordering, as seen in

Section 2.3, and we recall the definition here.

Recall » Min-sum preferred (Definition 2.34)

For all α,β ∈A, for some function f : T → R+, α is Min-sum preferred (with respect

to f) to β , written as α≤ f β , if and only if

—
m
∑

i=1

f (αi)≤
m
∑

i=1

f (βi) «

This order relation ≤ f is a total preorder on the set of decisions A, but for different

mappings (i.e., different f : T → R+), the resulting orders can be different. Let us

look at an example.

Example 5.1 É Sum of weights example.

Consider some multi-aspect decision problem 〈A,S, T,≤〉, where we have:

É A= {α,β ,γ,δ,ε,ζ}, i.e., there are 6 decisions,

É S = {1,2}, i.e., there are two aspects for which we have preferences values,

É T = {low, med, hi}, which is ordered by≤, and the scale represents some negative

preferences which we wish to minimise.

Suppose that the resulting preference vectors are:

É υ(α) = (low, low);

É υ(β) = (low, med);

É υ(γ) = (low, hi);
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É υ(δ) = (med, med);

É υ(ε) = (med, hi); and

É υ(ζ) = (hi, hi).

Let f1 and f2 be two weight functions, e.g., cost functions, that are applied to the

preference vectors associated with the decisions in the set A= {α,β ,γ,δ,ε,ζ}.

f1 and f2 are defined as follows, where the ordered pair
�

i, f (i)
�

denotes the mapping

from i ∈ T to f (i) ∈ R+:

É f1 =
�

(hi, 6), (med, 3), (low, 2)
	

É f2 =
�

(hi, 5), (med, 4), (low, 1)
	

The following table shows the resulting sum of weights, for both f1 and f2 when applied

to the decisions in A.
m
∑

i=1

f1(vi)
m
∑

i=1

f2(vi)

υ(α) = (low, low) 4 2

υ(β) = (low, med) 5 5

υ(γ) = (low, hi) 8 6

υ(δ) = (med, med) 6 8

υ(ε) = (med, hi) 9 9

υ(ζ) = (hi, hi) 12 10

Using the sum of weights for f1 and f2, the resulting orderings ≤ f1 and ≤ f2 over A are:

É ≤ f1: α≤ f1 β ≤ f1 δ ≤ f1 γ≤ f1 ε ≤ f1 ζ

É ≤ f2: α≤ f2 β ≤ f2 γ≤ f2 δ ≤ f2 ε ≤ f2 ζ

Both f1 and f2 are monotonic with respect to scale T , i.e., for all υ,υ′ ∈ T, we have

u ≤ v ⇒ f1(u) ≤ f1(v) and u ≤ v ⇒ f2(u) ≤ f2(v), but the resulting orderings ≤ f1

and ≤ f2 over A are different.

We can see in ordering ≤ f1 that

É δ ≤ f1 γ,

but we can see in ordering ≤ f2 that

É γ≤ f2 δ and δ 6≤ f2 γ Î
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When it is possible to provide a weights function (like f1 or f2) to map the scale

values to some quantitative measure, then it is easy to compare decisions by using

the sum of these weights. However, sometimes it is not possible to create this

quantitative mapping, e.g., when this information is not available or is uncertain, or

it may be hard to elicit such values from a decision maker [Lar92, MMO02], so we

consider a different order that does not rely on this quantitative information.

First, we define the following set of functions.

Definition 5.3 » Set FT of monotonic functions

For some ordered scale T , let FT be the set of all weight functions f : T → R+ such

that f ∈ FT if and only if f is monotonic with respect to T , i.e., u≤ v⇒ f (u)≤ f (v)
for all u, v ∈ T . «

We now define an order relation ≤F on A as follows:

Definition 5.4 » Relation ≤F

For all α,β ∈A,

α≤F β⇔ [α≤ f β , for all f ∈ FT ] «

This relation is the intersection of all possible order relations ≤ f , for all monotonic

functions f defined on T , i.e., we have that

≤F =
⋂

f ∈FT

≤ f

By Theorem 5.1, this relation ≤F is equal to the Weak Sorted-Pareto order ´SP.

Theorem 5.1 » Sorted-Pareto and ≤F result

≤F is equal to the Weak Sorted-Pareto order ´SP. �

Proof: First we show that for all α,β ∈ A,α ´SP β ⇒ α ≤F β . Assume α ´SP β .

This implies, by definition of ´SP, υ(α)↑ ´P υ(β)↑, which means that α(i) ≤ β(i),
for all i ∈ {1, . . . , m}. Therefore, for any f ,

∑m
i=1 f (α(i)) ≤ f

∑m
i=1 f (β(i)). Since

υ(α)↑ and υ(β)↑ are permutations of α and β respectively, then
∑m

i=1 f (α(i)) ≤ f
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∑m
i=1 f (β(i))⇔

∑m
i=1 f (αi)≤

∑m
i=1 f (βi), which implies, for any monotonic function

f , α≤ f β . Since this is true for any f , then α≤F β .

Now we show that for all α,β ∈ A, α 6´SP β ⇒ α 6≤F β . Assume α 6´SP β . This

implies, by definition of ´SP, υ(α)↑ 6´P υ(β)↑. Therefore, ∃i ∈ {1, . . . , m} such

that α(i) 6≤ β(i). We can construct a monotonic function f such that α 6≤ f β , and

therefore α 6≤F β . For instance, assign f such that f (υ) = 0 if υ < α(i), and f (υ) = 1

otherwise. Hence f (α( j)) = 1 for all j ≥ i and f (β( j)) = 0 for all j ≤ i. Therefore,
∑m

j=1 f (α( j)) ≥ m− i + 1 and
∑m

j=1 f (β( j)) ≤ m− i, so
∑m

j=1 f (α( j)) >
∑m

j=1 f (β( j)).
Hence, ∃ f such that α 6≤ f β , which shows α 6≤F β . �

Now we define an ordering based on the set of strictly monotonic weight functions.

We recall the definition for a strictly monotonic function as follows.

Recall » Strictly monotonic function (Definition 2.33)

For some ordered scale T , ordered by ≤, a function f : T → R+ is strictly monotonic

with respect to scale T , if and only if

— u< v⇔ f (u)< f (v) for all u, v ∈ T

or equivalently, if and only if

— u≤ v⇔ f (u)≤ f (v) for all u, v ∈ T «

Now we define the set F ′T as follows.

Definition 5.5 » Set F ′T of strictly monotonic functions

For some ordered scale T , let F ′T be the set of all possible weight functions such that

f ∈ F ′T if and only if f is strictly monotonic with respect to scale T . «

Given this set, we define the order relation ≤F ′ on our set of decisions A as follows:

Definition 5.6 » Order relation ≤F ′

For all α,β ∈A,

— α≤F ′ β⇔
�

α≤ f β , for all f ∈ F ′T
�

«

We also define the relation <∩F ′
as follows:
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Definition 5.7 » Order relation <∩F ′

Let <∩F ′
be the intersection of all < f such that f ∈ F ′T , i.e., we have

— <∩F ′
=
⋂

f ∈F ′T

< f «

Therefore, for all α,β ∈A, α <∩F ′
β if and only if α < f β for all f ∈ F ′T . Given these

definitions, we have the following results.

Theorem 5.2 » Sorted Pareto and ≤F ′ result

We have that: ´SP = ≤F = ≤F ′ . �

Proof: First we show that for all α,β ∈ A,α ´SP β ⇒ α ≤F β , and α ´SP β ⇒
α ≤F ′ β . Assume α ´SP β . This implies, by definition of ´SP, that for all i ∈
{1, . . . , m}, α(i) ≤ β(i). Therefore, for any f ,

∑m
i=1 f (α(i)) ≤

∑m
i=1 f (β(i)). Since

υ(α)↑ andυ(β)↑ are permutations ofυ(α) andυ(β) respectively, then
∑m

i=1 f (α(i))≤
∑m

i=1 f (β(i))⇔
∑m

i=1 f (αi) ≤
∑m

i=1 f (βi), which implies α ≤ f β . Since this is true

for all f monotonic with respect to T , then α ≤F β . Also, since F ′T ⊂ FT , i.e., the

set of all strictly monotonic functions is a subset of the set of monotonic functions,

then we have for all f strictly monotonic with respect to T , α≤ f β and therefore

α≤F ′ β .

Now we show that for all α,β ∈ A, α 6´SP β ⇒ α 6≤F ′ β , and α 6´SP β ⇒ α 6≤F β .

Assume α 6´SP β . This implies, by definition of ´SP, that it is not the case that

for all i ∈ {1, . . . , m}, α(i) ≤ β(i). Therefore, there exists i ∈ {1, . . . , m} such that

α(i) 6≤ β(i). We can construct a strictly monotonic function f such that α 6≤ f β , and

therefore α 6≤F ′ β . For instance, assign f such that 0 ≤ f (υ) ≤ ε if υ < α(i), and

1≤ f (υ)≤ 1+ ε otherwise, where ε is chosen suitably small (e.g., ε= 1/(m+ 1)).

For this choice of f , we have f (α( j)) ∈ [0,ε] for all j < i, and f (α( j)) ∈ [1, 1+ε] for

all j ≥ i. Therefore,
∑m

j=1 f (α( j)) ≥ m− i + 1. We also have f (β( j)) ∈ [0,ε] for all

j ≤ i, and f (β( j)) ∈ [0, 1+ε], for all j > i. Therefore,
∑m

j=1 f (β( j))≤ m− i+mε. So

we have
∑m

j=1 f (α( j))≥ m− i+1 and
∑m

j=1 f (β( j))≤ m− i+mε, and since ε < 1/m,

we have
∑m

j=1 f (α( j)) >
∑m

j=1 f (β( j)), and therefore
∑m

j=1 f (α j) >
∑m

j=1 f (β j), i.e.,

α 6≤ f β . Hence, there exists f that is strictly monotonic with respect to T such that

α 6≤ f β , so we have α 6≤F ′ β . Also, since f is strictly monotonic with respect to T ,

then a fortiori f is monotonic with respect to T , and we have α 6≤F β . �
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Corollary 5.3 » Sorted-Pareto and <∩F ′
result

We have that: ≺SP = <∩F ′
�

Proof: First we show that for all α,β ∈A, α <∩F ′
β ⇒ α≺SP β . Suppose α <∩F ′

β .

Then, for all f ∈ F ′, α < f β , and so for all f ∈ F ′, α≤ f β and hence α≤F ′ β . Thus

by Theorem 5.2 we have that α´SP β . This means that either α≺SP β , or α≡SP β .

Assume α ≡SP β . Then υ(α)↑ = υ(β)↑, i.e., α(i) = β(i), for all i ∈ {1, . . . , m}, and

therefore we could not have any f ∈ F ′ such that α < f β . This contradicts α <∩F ′
β ,

so we must have that α≺SP β .

Now we show that for all α,β ∈ A, α ≺SP β ⇒ α <∩F ′
β . Suppose α ≺SP β , then

by definition of ≺SP, we have α´SP β . Thus, from Theorem 5.2, we have α≤F ′ β ,

i.e., for all f ∈ F ′, α≤ f β . We need to show that for all f ∈ F ′, α < f β , i.e., for all

f ∈ F ′, β 6≤ f α. Assume for some f ∈ F ′, β ≤ f α. Since α ≤ f β and β ≤ f α, we

have
∑m

i=1 f (αi) =
∑m

i=1 f (βi) and therefore
∑m

i=1 f (α(i)) =
∑m

i=1 f (β(i)). Also, since

we have α´SP β , we have for all i ∈ {1, . . . , m}, α(i) ≤ β(i), and since
∑m

i=1 f (α(i)) =
∑m

i=1 f (β(i)) we have for all i ∈ {1, . . . , m}, α(i) = β(i). This contradicts α ≺SP β ,

therefore, we have that α < f β . Since this is true for all f ∈ F ′, then we have that

α <∩F ′
β . �

This gives a semantics to Sorted-Pareto, as a relation that can be used in decision

making situations where there may only be ordinal or qualitative information avail-

able, and it provides an ordering that is consistent with any possible weights function

selected to map an ordinal scale to a numerical one. It can be viewed as a more

cautious representation than a weighted constraints one, and it can be applied in

many of the application areas of weighted constraints. The weighted constraints

formalism assumes that the costs are on an additive scale, where the cost of A

and B is the sum of the costs of A and B; however, in many situations this can be

questionable. Different experiments have shown [Lar92, LM95] that the elicitation

of numerical preferences from experts can be difficult. For example, for a Bayesian

network [Pea88], one can map the network to a soft constraint problem where the

constraints correspond to conditional probability tables, and then solving for an op-

timal solution using a weighted constraints solver is the equivalent of most probable

explanation (MPE) task [FL93]. Suppose one is using a weighted constraints solver

to find a most probable explanation. Since the elicitation of probabilities can be
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problematic and unreliable, then instead of taking the elicited values at face value,

one considers them as just representing the ordering between the probabilities.

In this case, Theorems 5.1 and 5.2 shows that Sorted-Pareto represents the order

relation that all compatible probability assignments agree with.

5.4 Soft Constraints and Sorted-Pareto Dominance

As discussed in Section 3.1, soft constraints can be used to model many real-world

problems when there is a need to specify preferences on particular aspects of the

problem solutions. A soft constraint associates a preference degree to an assignment

of a set of decision or problem variables. These preference degrees associated

with an assignment can be combined to give the overall preference level of the

assignment, usually with the aim of ordering these assignments and to obtain a set

of optimal solutions. In this section, we look at an instance of a constraints problem

for Sorted-Pareto dominance.

First we revisit our definitions of a preference degree structure (PDS) and a general

constraints problem (GCP), as given in Section 3.4.

Recall » Preference degree structure (Definition 3.11)

A preference degree structure (PDS) is a tuple 〈I ,⊗,�〉, where

• I is a set of preference degrees;

• ⊗ is a commutative and associative operator, monotonic with respect to �
(i.e., for a, b, c ∈ I , a � b ⇒ a ⊗ c � b ⊗ c), which is used to combine the

preference degrees;

• � is a preorder relation on the set of degrees I . «

Recall » General constraint problem (Definition 3.12)

A general constraints problem (GCP) is a tuple 〈X ,D,CH ,CS,P〉, where

• X is a set of n variables, {X1, . . . , Xn};

• D is a set of variable domains, {D(X1), . . . ,D(Xn)};

• CH is a set of hard constraints;

• CS is a multiset of soft constraints, where for all sV ∈ CS, with scope V ⊆ X ,

sV : D(V )→ I ;

• P is a preference degree structure 〈I ,⊗,�〉. «
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For a general constraints problem, we recall that Sol(P) is the set of all complete

assignments that are consistent with the hard constraints in CH . The preference

level ρ(t) of an assignment t ∈ Sol(P) is the combination of all the preference

degrees associated to t by the soft constraints in CS, i.e., ρ(t) = ⊗sV∈CS
sV (t). An

optimal solution t ∈ Sol(P) is one such that there is no other t ′ ∈ Sol(P) such that

ρ(t ′)´ ρ(t). Now we give the definition for a Sorted-Pareto constraints problem as

follows.

Definition 5.8 » Sorted-Pareto constraints problem (SPCP)

A Sorted-Pareto constraints problem is a problem P = 〈X ,D,CH ,CS,P〉 where the

preference degree structure P = 〈I ,⊗,�〉 is given by:

• I = M T , i.e., the set of preference degrees is the set of multisets of T ,

• ⊗= ], i.e., the combination operator is multiset sum,

• � = ´SP, i.e., the order relation is the induced Sorted-Pareto preference

relation defined on M T , where for A, B ∈ M T , A´SP B ⇐⇒ A↑ ≤ B↑ «

The preference level ρ(t) of a solution t ∈ Sol(P) for a Sorted-Pareto constraints

problem is defined as follows.

Definition 5.9 » Preference level (SPCP)

Given a Sorted-Pareto constraints problem, the preference level ρ(t) of a solution

t ∈ Sol(P) is given by

— ρ(t) =
⊎

sV∈CS
sV (t) = {sV (t) : sV ∈ CS} «

i.e., it is the multiset of all the preference degrees associated to the solution by the

soft constraints of the problem.

We can now define the Sorted-Pareto dominance relations over constraints problems.

Definition 5.10 » Weak Sorted-Pareto Dominance (SPCP)

For all t, t ′ ∈ Sol(P), t Weak Sorted-Pareto dominates t ′, written as t ´SP t ′, if and

only if

— ρ(t)´SP ρ(t ′) «

That is, a solution t Weak Sorted-Pareto dominates another solution t ′ if the multiset

of preference values associated to t Weak Sorted-Pareto dominates the multiset of
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preference values associated to t ′.

Definition 5.11 » Sorted-Pareto Dominance (SPCP)

For all t, t ′ ∈ Sol(P), t Sorted-Pareto dominates t ′, written as t ≺SP t ′, if and only if

— ρ(t)≺SP ρ(t ′) «

That is, a solution t Sorted-Pareto dominates another solution t ′ if the multiset of

preference values associated to t Sorted-Pareto dominates the multiset of preference

values associated to t ′.

Definition 5.12 » Sorted-Pareto Equivalence (SPCP)

For all t, t ′ ∈ Sol(P), t is Sorted-Pareto equivalent to t ′, written as t ≡SP t ′, if and

only if

— ρ(t)≡SP ρ(t ′), or equivalently, ρ(t) = ρ(t ′) «

That is, a solution t is Sorted-Pareto equivalent to another solution t ′ if the multiset

of preference values associated to t is equal to the multiset of preference values

associated to t ′. An optimal solution of a Sorted-Pareto constraints problem is

defined as follows.

Definition 5.13 » Optimal solution (SPCP)

Given a Sorted-Pareto constraints problem P, an solution t ∈ Sol(P) is optimal if

and only if

— there exists no t′ ∈ Sol(P) such that t′ ≺SP t «

Let us look at an example.

Example 5.2 É Sorted-Pareto constraints problem example.

Let us consider a Sorted-Pareto constraints problem P = 〈X ,D,CH ,CS,P〉, where we

have three variables, X1, X2 and X3, and where the domains of the variables are

D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }.

The problem has two hard constraints c13 and c23 such that c̄13 = {(a, e)} and c̄23 =
{(c, e)}, which specify the tuples that are not allowed by the constraints.

The problem has two soft constraints s12 and s13, which are defined in the following

tables.
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X1

s12 a b

X2

c 4 6

d 3 1

X1

s13 a b

X3

e 4 5

f 2 6

The next table shows the tuples in D(X ) and the preference level of each solution, which

is given by the multiset of the values associated to the solution by the soft constraints of

the problem. Not all tuples in D(X ) are solutions of Sol(P), since they do not satisfy

the hard constraints.

t ρ(t)

t1 (a, c, e) n/a

t2 (a, c, f ) {2,4}
t3 (a, d, e) n/a

t4 (a, d, f ) {2,3}
t5 (b, c, e) n/a

t6 (b, c, f ) {6,6}
t7 (b, d, e) {1,5}
t8 (b, d, f ) {1,6}

We can see that the Sorted-Pareto optimal solutions are t4 and t7, since any other

solution is strictly dominated by either t4 or t7 and we also have that t4 6≺SP t7 and

t7 6≺SP t4.

Therefore, we have the Sorted-Pareto optimal set

É OSP = {t4, t7} Î

5.5 Solving Constraints Problems

In this section we describe some algorithms for solving a general constraints problem

P = 〈X ,D,CH ,CS,P〉. First we describe the algorithms in a general context and then

we also discuss some specific algorithmic details relating to Sorted-Pareto constraints

problems. We detail three different algorithms: the first is a brute force search, the

second is a depth first branch and bound search which uses a lower bound, and the

third is a depth first brand and bound algorithm which uses both a lower and upper

bound. We also look at variations of these three algorithms where equivalences

between solutions are explicitly handled.
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5.5.1 BruteSearch algorithm

In this section, we look at the algorithm which is outlined in Figure 5.1. In this

depth first search algorithm, each problem variable in turn is chosen and assigned a

value from its domain. If the algorithm encounters a variable assignment that is not

consistent with the hard constraints in the problem, then the search will backtrack,

as in the backtracking search detailed in Section 3.5.1. Also, the domains of the

variables are updated and inconsistent values are removed, in order to maintain

some form of consistency with the set of hard constraints, as done in the look-ahead

search in Section 3.5.1. If a variable has no legal values left in its domain, then

the search will backtrack. The algorithm also maintains a set of non-dominated or

optimal assignments, and once a complete consistent assignment is encountered,

the algorithm will compare the preference level of this assignment (given by the

soft constraints) with any previously found non-dominated complete assignments,

and update the set of non-dominated assignments if this new complete assignment

is non-dominated. Once the procedure is finished, the output of the algorithm is

the set of non-dominated or optimal solutions to the problem. This algorithm, as

described, is a generate and test (or “brute force”) approach to the soft constraints

as detailed in Section 3.5.2, so we label this algorithm BruteSearch.

Algorithm 5.1: BruteSearch recursive algorithm for generating a set of opti-
mal solutions to a general constraints problem P= 〈X ,D,CH ,CS,P〉

Input : GCP problem P, partial assignment t
Output : set of optimal solutions OP

1 begin
2 if HasNextVar() = false then
3 if IsStrictlyDominated(t, OP) = false then
4 OP ← t∪ RemoveStrictlyDominated(OP , {t})
5 else
6 X← NextVar()
7 while HasNextVal(X) do
8 t← t∪ (X, NextVal(X))
9 if IsConsistent(t) then

10 return BruteSearch(t,OP)
11 return OP

The auxiliary functions used in the BruteSearch algorithm in Figure 5.1 are described

as follows.
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HasNextVar(P, t)
Given problem P and assignment t, this function returns true if t is not a

complete assignment.

NextVar(P, t)
Given problem P and assignment t, this function returns the next unassigned

variable X that is to be assigned by t.

HasNextVal(X)
Given variable X, this function returns true if there is a value remaining in

the domain of X.

NextVal(X)
Given variable X, this function returns the next value a from the domain of

variable X.

IsStrictlyDominated(t, S)
Given set of complete assignments S, the function returns true if there exists

s ∈ S such that ρ(t) is strictly dominated by ρ(s).

RemoveStrictlyDominated(S, S′)
Given sets of complete assignments S and S′, this function returns a new set

containing all s ∈ S such that the preference level of s is not dominated by

the preference level of any s′ ∈ S′.

IsConsistent(t)
Given assignment t, this function returns true if t is consistent with all hard

constraints cV ∈ CH , given the consistency algorithm being used by the

solving process.

Let us look at an example. As in Section 3.5, for presentation purposes we assume a

fixed variable ordering (X1, . . . , Xn).

Example 5.3 É BruteSearch example.

Figure 5.1 shows the search tree for the BruteSearch algorithm for a problem with

three variables, X1, X2 and X3, and where the original domains of the variables are

D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }.

The problem has two hard constraints, c13 and c23 such that c̄13 = {(a, e)} and c̄23 =
{(c, e)}, which specify the tuples that are not allowed by the constraints.

The problem has two soft constraints s12 and s13, defined in the following tables.
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A

D E

B

G

C
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F
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a b

c d c d

f

c d

f f e f

N K

Figure 5.1: For Example 5.3, BruteSearch search tree for a problem with three variables
X1, X2 and X3, where D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }, with two hard
and two soft constraints as given in the figure. The BruteSearch checks the preference
level of complete assignments with any previously found optimal solutions.

X1

s12 a b

X2

c 4 6

d 3 1

X1

s13 a b

X3

e 4 5

f 2 6

The BruteSearch algorithm removes any inconsistent values from the variable domains.

Once a complete consistent assignment is encountered, the algorithm will compare the

preference level of this assignment with any previously found non-dominated complete

assignments.

For example, at node M , the preference level of the tuple associated with node M is

compared with the preference level of the tuple associated with node K , which is the

current optimal assignment at that point in the search. At node O , the preference

level of the tuple associated with node M is compared with nodes K and N , since

these are both optimal at that point in the search. Î

5.5.2 DFBBSearch algorithm

In this section we look at the algorithm outlined in Figure 5.2. In this depth first

branch and bound (DFBB) search, as detailed in Section 3.5.2, instead of only testing
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if complete assignments are dominated by the set of non-dominated solutions, the

algorithm will also check to see if partial assignments are dominated. It does this as

follows. First it calculates a lower bound for the current partial assignment, which

is a lower bound on the preference level of any complete assignment extending this

partial assignment. Then, if this bound is strictly dominated by some previously

found non-dominated solution, the search will backtrack, since all completed as-

signments extending the current partial assignment will be dominated. As in the

BruteSearch algorithm, once the search is finished, the output of the algorithm is the

set of non-dominated or optimal solutions to the problem. This approach improves

on the BruteSearch by eliminating parts of the search space that do not contain any

non-dominated solutions, therefore eliminating unnecessary dominance checking

and reducing the amount of time the algorithm spent doing these checks. We label

this algorithm DFBBSearch.

Algorithm 5.2: DFBBSearch recursive algorithm for generating a set of opti-
mal solutions to a general constraints problem P= 〈X ,D,CH ,CS,P〉

Input : problem P, partial assignment t
Output : set of optimal solutions OP

1 begin
2 if HasNextVar() = false then
3 if IsStrictlyDominated(t, OP) = false then
4 OP ← t∪ RemoveStrictlyDominated(OP , {t})
5 return OP

6 X← NextVar()
7 while HasNextVal(X) do
8 t← t∪ (X, NextVal(X))
9 lb← CalculateLowerBound(t)

10 if IsConsistent(t)∧¬IsBoundDominated(lb, OP) then
11 return DFBBSearch(t,OP)
12 return OP

The additional auxiliary functions used in the DFBBSearch algorithm in Figure 5.2

are described as follows.

IsBoundDominated(lb, S)
Given a lower bound preference level lb, and a set of complete assignments

S this function returns true if there exists s ∈ S such that lb is dominated by

ρ(s).

CalculateLowerBound(t)
Given (partial) assignment t, this function calculates a lower bound prefer-
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ence level for t.

Calculating lower bound for Sorted-Pareto. For the Sorted-Pareto constraints

problem, we can calculate a lower bound preference level for some partial assignment

t, as follows.

Definition 5.14 » Lower bound for Sorted-Pareto constraints problem

For a Sorted-Pareto constraints problem, for partial assignment t, let s1, . . . , sm be the

soft constraints in CS once t has been instantiated. Then the lower bound preference

level ρ∗(t) of t is given as

— ρ∗(t) = {smin
1 , . . . , smin

m }, where smin
i = min

u∈scope(si)
si(u) «

That is, smin
i is the minimum value that si can take over all tuples u ∈ D(X ), where

u is scoped to si. Let us look at an example.

A

D E

B

G

C

I K M

F

ONL

a b

c d c d

f

c d

f f e f

F

F

K

K

e

Figure 5.2: For Example 5.4, DFBBSearch search tree for a problem with three variables
X1, X2 and X3, where D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }, with one
hard and two soft constraints as given in the figure. The DFBBSearch generates a lower
bound and will backtrack if the bound is dominated by any previously found optimal
solutions.

Example 5.4 É Lower bound for Sorted-Pareto example.

Figure 5.2 shows the search tree for the DFBBSearch algorithm for a problem with
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three variables, X1, X2 and X3, and where the original domains of the variables are

D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }.

This time the problem has one hard constraint c13, such that c̄13 = {(a, e)}, which

specifies the tuples that are not allowed by the constraint, and two soft constraints s12

and s13, defined in the following tables.

X1

s12 a b

X2

c 4 6

d 3 1

X1

s13 a b

X3

e 4 5

f 2 6

The BruteSearch algorithm calculates a lower bound for the current partial assignment,

which is a lower bound on the preference level of any complete assignment extending

this partial assignment. If this bound is strictly dominated by some previously found

non-dominated solution, the search will backtrack.

For example, at node F , the lower bound preference of the assignment represented by

node F is given by

É ρ∗((b, c)) = {smin
12 , smin

13 }= {5, 6}.

Since this lower bound is strictly dominated by the preference level of current non-

dominated solution represented by K , i.e.,

É ρ((a, d, f )) = {2, 3},

then the BruteSearch algorithm will backtrack at F . Î

5.5.3 PANDSearch algorithm

In this section we look at another algorithm which is outlined in Figure 5.3. Since in

this problem we are dealing with a partial order on the set of complete assignments,

we have a set of non-dominated solutions at each point in the search. However, not

all of these assignments are relevant in each part of the search space, so if it can be

shown that some complete assignment s fails to dominate any complete assignment

extending partial assignment t, then there is no need to consider assignment s in

the search space extending below t. To determine which previously found complete

assignments are relevant to a partial assignment at a particular point in the search,

the algorithm calculates an upper bound for the current partial assignment, which

is a upper bound on the preference level of any complete assignment extending
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the current assignment. If this bound is not strictly dominated by the previously

found complete assignment s, then s can be ignored in the subsearch extending

below t. This potentially improves on the previous algorithm by further eliminating

unnecessary dominance checks, but at the cost of performing this extra test. A

similar idea in [WT11] has been shown to be effective in optimisation with respect

to comparative preferences.

Algorithm 5.3: PANDSearch recursive algorithm for generating a set of opti-
mal solutions to a general constraints problem P= 〈X ,D,CH ,CS,P〉

Input : problem P, partial assignment t, undominated solution set RUS
Output : pair of solution sets 〈RUS, NEW〉

1 begin
2 NEW← ;
3 if HasNextVar() = false then
4 if IsStrictlyDominated(t, RUS) = false then
5 NEW← {t}
6 RUS← RemoveStrictlyDominated(RUS,NEW)
7 return 〈RUS,NEW〉
8 RUS′← RUS
9 X← NextVar()

10 while HasNextVal(X) do
11 t← t∪ (X, NextVal(X))
12 lb← CalculateLowerBound(t)
13 if IsConsistent(t)∧¬IsBoundDominated(lb, RUS′) then
14 ub← CalculateUpperBound(t)
15 〈RUS′, OTHERS〉 ← Partition(ub, RUS′)
16 〈RUS′, NEW′〉 ← PANDSearch(t, RUS′)
17 OTHERS← RemoveStrictlyDominated(OTHERS, NEW′)
18 RUS′← RUS′ ∪OTHERS∪NEW′

19 NEW← RUS′ \RUS
20 RUS← RUS′ ∩RUS
21 return 〈RUS,NEW〉

The main details of the algorithm are outlined as follows. The recursive function

PANDSearch takes as input a partial assignment t and a set RUS, which is the set of

relevant undominated solutions inherited from the parent node. If t is a complete

assignment, i.e., if there are no more variables to be assigned (line 3), then, if t

is not dominated by any solution in RUS (line 4), it is added to the set NEW (line

5). Any solutions in RUS that are dominated by t are removed (line 6), and the

pair of sets RUS and NEW are returned (line 7). Otherwise, if t is not a complete

assignment, then a variable X is chosen (line 9), and a value in the domain of X is
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chosen to extend partial assignment t (line 11). A lower bound preference level ub

for t is calculated (line 12), and if the lower bound of t is not dominated by any

other solution (line 13), then the search continues. An upper bound preference

level ub for t is calculated (line 14), and any previously found complete assignment

s that does not dominate this upper bound is removed from RUS, and added to set

variable OTHERS to allow such s to be restored on backtracking (line 15). The search

continues with the recursive call to PANDSearch (line 16), until all non-dominated

solutions are found and returned (line 21). The output of the algorithm is a pair of

sets, and NEW contains the set of non-dominated solutions to the problem.

The additional auxiliary functions used in the PANDSearch algorithm in Figure 5.3

are described as follows.

CalculateUpperBound(t)
Given (partial) assignment t, this function calculates an upper bound prefer-

ence level for t.

Partition(ub, S)
Given an upper bound preference level ub and a set of complete assignments

S, this function returns a pair of sets 〈S′, S′′〉, where S′ contains the elements

of S whose preference levels strictly dominate the bound ub, and S′′ contains

the elements of S whose preference levels do not strictly dominate the bound

ub, i.e., S′ = {s ∈ S : ρ(s)≺ ub}, and S′′ = {s ∈ S : ρ(s) 6≺ ub}.

Calculating upper bound for Sorted-Pareto. For the Sorted-Pareto constraints

problem, we can calculate an upper bound preference level for some partial assign-

ment t, as follows.

Definition 5.15 » Upper bound for Sorted-Pareto constraints problem

For a Sorted-Pareto constraints problem, for partial assignment t, let s1, . . . , sm be the

soft constraints in CS once t has been instantiated. Then the upper bound preference

level ρ∗(t) of t is given as

— ρ∗(t) = {smax
1 , . . . , smax

m }, where smax
i = max

u∈scope(si)
si(u) «

That is, smax
i is the maximum value that si can take over all tuples u ∈ D(X ), where

u is scoped to si. Let us look at an example.

Example 5.5 É Upper bound for Sorted-Pareto example.

Figure 5.3 shows the search tree for the DFBBSearch algorithm for a problem with
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Figure 5.3: For Example 5.5, PANDSearch search tree for a problem with three variables
X1, X2 and X3, where D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }, with one
hard and two soft constraints as given in the figure. The PANDSearch generates a upper
bound to reduce the amount of optimal solutions to test against when extending a
partial assignment.

three variables, X1, X2 and X3, and where the original domains of the variables are

D(X1) = {a, b}, D(X2) = {c, d} and D(X3) = {e, f }.

This time the problem has one hard constraint c13, such that c̄13 = {(a, e)}, which

specifies the tuples not allowed by the constraint.

The problem has two soft constraints s12 and s13, defined in the following tables.

X1

s12 a b

X2

c 4 6

d 3 1

X1

s13 a b

X3

e 4 5

f 2 6

At any given node, the PANDSearch algorithm calculates an upper bound on the

preference level of any complete assignment extending the assignment at that node. If

this upper bound is not strictly dominated by a previously found solution, then that

solution can be ignored in the dominance checks in the search below the given node.

For example, in Figure 5.3 at node G , the upper bound preference of the assignment

represented by node G is given by

É ρ∗((b, c)) = {smin
12 , smin

13 }= {1,6}.

129



5. SORTED-PARETO DOMINANCE AND SOFT

CONSTRAINTS 5.5 Solving Constraints Problems

Since this upper bound is not strictly dominated by the preference level of current

non-dominated solution represented by K , i.e.,

É ρ((a, d, f )) = {2, 3},

then the PANDSearch algorithm will not consider the solution represented by node K

in the search below node G . Î

5.5.4 Handling Equivalences

We now discuss some variations of the three algorithms already detailed, in which we

look at explicitly handling Sorted-Pareto equivalent solutions. Since Sorted-Pareto

is a preorder on a set of solutions, we can have solutions that are Sorted-Pareto

equivalent, i.e., for t, t ′ ∈ Sol(P), we have that ρ(t) = ρ(t ′). Given this, we define

the notion of Sorted-Pareto equivalence classes (see Definitions 2.22 and 5.12) for

our Sorted-Pareto constraints problem, as follows.

Definition 5.16 » Sorted-Pareto equivalence class (GCP)

Given a general constraints problem P = 〈X ,D,CH ,CS,P〉, the Sorted-Pareto equiva-

lence class of a solution t ∈ Sol(P), denoted by [t]SP, is defined as

— [t]SP = {t ′ : t ′ ∈ Sol(P), t ′ ≡SP t} «

Therefore, the resulting set of Sorted-Pareto non-dominated solutions to a problem

can be partitioned into equivalence classes of solutions where each class contains

the solutions that have the same preference level.

When searching for a set of optimal solutions, given that some solutions may have

the same preference level, we look at a variation of each of the three algorithms

BruteSearch, DFBBSearch and PANDSearch which takes equivalence into considera-

tion. Instead of maintaining a set of undominated solutions during the search as in

the original algorithms, the equivalence handling version of the algorithm maintains

an undominated preference map, where each preference level in the map maps to

the equivalence class corresponding to that preference level, i.e, each preference

level maps to a set of undominated, equivalent solutions.

In the original algorithms, at various points during the search, the algorithms per-

form a dominance check of the preference level of the current solution (or in the

case of the branch and bound algorithms, the lower or upper bound preference
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level of the solution) against the set of previously found solutions. In the equiva-

lence handling algorithms, instead of comparing against the preference levels of

all undominated solutions (some of which may be Sorted-Pareto equivalent and

have the same preference level) we compare against the preference levels in the

undominated preference map. This results in a smaller amount of dominance checks

and potentially saves on time spent performing these checks, however this is at

the expense of maintaining a map of preference levels to solutions rather than

maintaining a set of solutions.

We label the original versions of the BruteSearch, DFBBSearch and PANDSearch

algorithms, i.e., the set-based implementations, as Brute-A, DFBB-A and PAND-A

respectively. We label the equivalence handling versions of the algorithms as Brute-B,

DFBB-B and PAND-B.

5.6 Implementation Details

In this section, we detail the implementation of the solver used to solve the problem

instances for our experimental results in Section 5.7. The BruteSearch, DFBBSearch

and PANDSearch algorithms, as detailed in the previous section, along with the

Sorted-Pareto dominance preference relation were implemented in our own soft

constraint solver. We detail some of the other algorithms and heuristics used in the

solver implementation, and we also describe the problem generation process for the

random problems used in the experimental results.

5.6.1 Algorithm Implementation

Maintaining consistency

To implement the IsConsistent function, i.e., to test during the search if an assignment

t maintains some level of consistency with the hard constraints in the problem, the

solver uses a MAC3 algorithm [Mac77, RvBW06, Ch. 3]. As detailed in Section 3.5.1,

the algorithm revises the domains of unassigned variables if they are not consistent

with the hard constraints of the problem, so that only values that are consistent

remain.
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Variable selection

To implement the NextVar function, i.e., to select the next variable to assign to some

assignment t during the search, we use the min domain over degree heuristic [BR96].
First we define the degree of a variable.

Definition 5.17 » Variable degree

For a problem P = 〈X ,D,CH ,CS,P〉, the degree of a variable X ∈ X is given by

— deg(X ) = |{cV : cV ∈ CH ∪ CS ∧ V 3 X |} «

That is, the degree of a variable is the number of hard and soft constraints for which

the variable appears in the scope of the constraint. The NextVar function therefore

chooses a variable X from X such that

— X ∈ argmin
X∈X

|D(X )|
deg(X )

Value selection

To implement the NextVal function, i.e., to select the next value from the domain of

a given variable, we use a min sum of weights heuristic. Firstly, since the preference

scale T is a qualitative scale, then the values in T are mapped in a canonical way

to some numerical values to perform the sum of weights. We use some additional

notation defined as follows. For some assignment t ∈ D(W ), and some variable

X ∈ X , where X 6∈ W , let t(X ,v) denote the extension of tuple t to include the

assignment of domain value v to variable X , i.e, t(X ,v) = t ∪ (X , v). For some partial

assignment t, let Ts(t) be the set of soft constraints that are completely assigned by

tuple t and let Ps(t) be the set of soft constraints that are partially assigned by tuple

t. Now we define the domain value sum of weights as follows.

Definition 5.18 » Domain value sum of weights

For a problem P = 〈X ,D,CH ,CS,P〉, where t ∈ D(W ) and W ⊂ X , then for some

variable X ∈ X , the sum of weights of a domain value v ∈ D(X ), denoted by w(v) is

given by:

— w(v) =
∑

{sV (t(X ,v)) : sV ∈ Ps(t)∩ Ts(t(X ,v))} «

That is, it is the sum of the preference values associated with t(X ,v) by the soft

constraints that are completely assigned by t(X ,v).
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Then the NextVal function, using the min sum of weights heuristic, chooses a domain

value v′ from D(X ) such that:

— v′ ∈ arg min
v∈D(X )

w(v)

5.6.2 Problem Generator Implementation

For the purposes of performing the experiments, we developed a constraint problem

generator to generate some random problem instances. In this section, we describe

the generation process we used to create the random problems and also describe the

parameters to the generator. In the problem instances generated by our constraint

generator, the size of the scope of each constraint is two, i.e., binary constraints,

and therefore the following definitions and descriptions are in terms of binary

constraints.

First we define some properties of the random constraint problems, which form

parameters to the constraint problem generator.

Definition 5.19 » Normalised problem

We say that a problem P = 〈X ,D,CH ,CS,P〉 is normalised if there are no two hard

constraints cV , cW ∈ CH such that V =W . «

That is, there are no two hard constraints in the problem that have the same scope.

We now define problem size and domain size.

Definition 5.20 » Problem size (n)

For a problem P = 〈X ,D,CH ,CS,P〉, the problem size is given by

— n= |X | «

That is, the problem size is the number of variables in the problem.

Definition 5.21 » Domain size (m)

For a problem P = 〈X ,D,CH ,CS,P〉, the domain size of a variable X ∈ X is given by

— m(X ) = |D(X )| «

For a problem instance where all the variables in the problem have the same size

domain, we use m to denote this size. Given these parameters, the solution space of

a problem is defined as follows.
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Definition 5.22 » Solution space (ss)

For a problem P = 〈X ,D,CH ,CS,P〉, the solution space is given by

— ss = |D(X )|= m(X1)× · · · ×m(Xn) = mn «

We now look at some properties of the hard constraints in a given problem. We

define the hard constraint count and hard constraint density.

Definition 5.23 » Hard constraint count (hc)

For a problem P = 〈X ,D,CH ,CS,P〉, the hard constraint count is given by

— hc = |CH | «

That is, hc denotes the number of hard constraints in the problem.

Definition 5.24 » Hard constraint density (hd)

For a problem P = 〈X ,D,CH ,CS,P〉, the hard constraint density is given by

— hd =
hc

(n ∗ (n− 1)/2)
«

That is, the hard constraint density is the fraction of hard constraints in the problem

with respect to the maximum number of constraints in a normalised problem with

binary hard constraints. Since we consider only normalised problems with binary

hard constraints, we can easily derive the hard constraint count from the hard

constraint density and vice versa. Now we define the tightness property of a hard

constraint.

Definition 5.25 » Hard constraint tightness (ht)

For a problem P = 〈X ,D,CH ,CS,P〉, for a hard binary constraint cV ∈ CH , the

constraint tightness is given by

— ht(cV ) =
|{t ∈ D(X ) : t /∈ cV}|

m2
«

That is, the hard constraint tightness is the fraction of tuples that are forbidden by

the constraint with respect to the total number of tuples. For the generated instances

under consideration here, for a particular problem, all hard constraints have the

same tightness, therefore in this context ht denotes the tightness of all the hard

constraints in the problem. The work in [GMP+01] highlights some problems with

134



5. SORTED-PARETO DOMINANCE AND SOFT

CONSTRAINTS 5.6 Implementation Details

generation procedures for random binary (hard) constraint problems, for which our

generation procedure conforms to model C in [GMP+01], however the primary focus

of the experimentation is on the soft constraint aspect of the generated problems.

Given the values for these parameters for hard constraints, and given that each

variable domain is of size m, we can calculate the expected number of consistent

solutions [SD96] for any given problem, which is defined as follows

Definition 5.26 » Expected number of consistent solutions (es)

For a problem P = 〈X ,D,CH ,CS,P〉, the expected number of consistent solutions is

given by

— es = ss× ((1− ht)hc) «

We now look at some properties of the soft constraints of a problem. Firstly, we

define the soft constraint count.

Definition 5.27 » Soft Constraint Count (sc)

For a problem P = 〈X ,D,CH ,CS,P〉, the soft constraint count is given by

— sc = |CS| «

We also look at the size of the scale from which the preference values are chosen.

Definition 5.28 » Size of scale T

For a problem P = 〈X ,D,CH ,CS,P〉, let z denote the maximum value of the prefer-

ence scale T , so that the scale T is given by

— T = (1, . . . , z) «

We may also wish to express the number of soft constraints as a parameter of the

problem size. Therefore we have the soft constraint density as follows.

Definition 5.29 » Soft Constraint Density (sd)

For a problem P = 〈X ,D,CH ,CS,P〉, the soft constraint density is given by

— sd =
sc

(n ∗ (n− 1)/2)
«

That is, the soft constraint density is the fraction of soft constraints in the problem

with respect to the maximum number of constraints in a normalised problem with
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binary soft constraints.

Generation Parameters

We now define the parameters that are passed to the constraint generator to generate

the random problems. To generate a problem containing hard constraints, i.e., such

that CH 6= ;, either the hc, hd or es parameter needs to be specified. To generate a

problem containing soft constraints, i.e., such that CS 6= ;, the sc parameter needs

to be specified. If neither hard nor soft constraints are specified, then we have a

trivial problem with no constraints.

n specifies the number of variables in the problem.

m specifies the size of variable domains.

hc specifies the number of hard constraints in the problem.

hd specifies the hard constraint density, where hd ∈ [0,1].

ht specifies the tightness of each hard constraint, where ht ∈ [0,1].

es specifies the expected number of solutions

sc specifies the number of soft constraints.

sd specifies the soft constraint density, where sd ∈ [0, 1].

k specifies the preference value of non-satisfaction, i.e., if a tuple is associated

this value by a constraint, then the tuple does not satisfy the constraint.

z specifies the maximum value of scale T .

5.7 Experimental Results

In this section, we look at some experimental results for solving some general

constraints problems using the Sorted-Pareto dominance relation. First we perform

a brief comparison of the resulting Pareto and Sorted-Pareto optimal sets for some

random instances of different sizes. We perform an evaluation of the six algorithms

discussed, using some randomly generated problem instances and some modified

benchmark instances. For the random instances, we investigate the effect of varying

some generation parameters, such as the size of the problems, the size of the

preference scale used, and the number of soft constraints. Finally we compare the
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sizes of the resulting Sorted-Pareto optimal sets against the sizes of the resulting

Lexicographic-Max optimal sets for different problem instances.

5.7.1 Experimental Setup

The experiments in this section were run on a node on the 4C cluster [Cen13], which

has a dual Intel Xeon E5430 Processor (2.66Ghz) machine, with 12GB RAM. Table

5.1 shows the relevant problem generation parameters from Section 5.6.2 for all

the problem instance sets generated.

Table 5.1: Table of parameters used for generating the sets of problem instances for
the experimental results.

Name size n d hd ht z sc sd

Set A 50 10,12, . . . , 20 2 0.06 0.25 10 - 0.25
Set A - II 50 24, 28, . . . , 40 2 0.06 0.25 10 - 0.25
Set B 50 20,24, . . . , 40 2 0.06 0.25 3 25 -
Set C 50 25 2 0.06 0.25 3 5,10, . . . , 30 -
Set D 50 25 2 0.06 0.25 3,4, . . . , 8 10 -

5.7.2 Comparing Pareto and Sorted-Pareto optimal sets

In this section, we compare the sizes of the resulting Pareto optimal and Sorted-

Pareto optimal sets for some general constraint problem instances. Table 5.2 shows

the average number of consistent solutions 〈Sol〉, the average number of Pareto non-

dominated solutions 〈OP〉, and the average number of Sorted-Pareto non-dominated

solutions 〈OSP〉, for the instances in Set A (see Table 5.1), where we vary n, i.e., the

size of the problems, and a set of 50 problems was generated for each n. For these

parameters, the number of consistent solutions grows exponentially with the size of

the problem, given the range of the values of n used, (however at bigger values of n,

the rate of growth of the number of consistent solutions will drop off and eventually

decline). The number of soft constraints grows as a parameter of the problem size

n, as a result of specifying the sd parameter, and the maximum scale value is z = 10.

For these small size problems we can see that for increasing values of n, the size of

the set of Pareto non-dominated solutions grows very rapidly, whereas the size of

the set of Sorted-Pareto non-dominated solutions grows much slower.

Table 5.3 shows the average number of consistent solutions 〈Sol〉 and the average

number of Sorted-Pareto non-dominated solutions 〈OSP〉 for the instances in Set
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Table 5.2: The average number of solutions 〈Sol〉, the average number of Pareto non-
dominated solutions 〈OP〉, and the average number of Sorted-Pareto non-dominated
solutions 〈OSP〉, for the instances in Set A, varying the size of the problems n =
10, 12,14, 16,18, 20.

Set A n= 10 n= 12 n= 14 n= 16 n= 18 n= 20

〈Sol〉 432 1, 292 3, 830 8, 785 19, 974 47,018
〈OP〉 38 141 419 1, 120 3, 838 13,443
〈OSP〉 7 13 22 28 43 75

A - II, which are over larger values of n. We can see that for these larger instances

the sets OSP are still moderately sized.

Table 5.3: The average number of consistent solutions 〈Sol〉 and average number of
Sorted-Pareto non-dominated solutions 〈OSP〉, for the instances in Set A, for larger
problem sizes n= 24,28, 32,36, 40.

Set A n= 24 n= 28 n= 32 n= 36 n= 40

〈Sol〉 126, 500 417, 507 702,907 1,476, 080 1, 759,033
〈OSP〉 128 216 247 352 403

5.7.3 Comparing Sorted-Pareto algorithms

In this section, we look at some experimental results for solving Sorted-Pareto

constraints problems. We compare the six different algorithms that were described in

Section 5.4, by generating some random problems and evaluating the performances

of the algorithms where we vary different problem parameters such as the size of

the problems and the number of soft constraints. We also look at the sizes of the

resulting Sorted-Pareto optimal sets and the number of Sorted-Pareto equivalence

classes for these problems.

Varying problem size

Figure 5.4 shows the average solve times for the algorithms for the instances in

Set B (see Table 5.1). In these instances, the size of the problems is varied, i.e., a

set of 50 problems was generated for each of n= 20,24,28,32,36,40. The table

accompanying Figure 5.4 shows the average number of solutions 〈Sol〉, the average

number of Sorted-Pareto optimal solutions 〈OSP〉, the average number of Sorted-

Pareto optimal equivalence classes 〈O[SP]〉, and the ratio between the number of

optimal solutions and optimal equivalence classes.
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n=20 n=24 n=28 n=32 n=36 n=40

〈Sol〉 44260.48 125977.84 356328.00 764423.20 1218371.52 1462344.32

〈OSP〉 50.90 89.12 141.18 154.26 316.20 335.18

〈O[SP]〉 18.66 21.32 16.62 13.90 11.22 9.58

Ratio 2.73 4.18 8.49 11.10 28.18 34.99
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Figure 5.4: Graph of average solve times for algorithms Brute-A, Brute-B, DFBB-A,
DFBB-B, PAND-A, and PAND-B, for the instances in Set B, varying the size of the problems
n = 20,24,28,32,36,40. The table shows the average number of solutions 〈Sol〉,
average number of Sorted-Pareto optimal solutions 〈OSP〉, average number of Sorted-
Pareto optimal equivalence classes 〈O[SP]〉, and the ratio between 〈OSP〉 and 〈O[SP]〉.

As we can see in Figure 5.4, both the set based and equivalence handling brute force

algorithms, Brute-A and Brute-B, perform similarly (the graphed lines of solve times

for the two algorithms are almost identical), and the solve times grow with the size

of the problems. The solve times of the set-based algorithms DFBB-A and PAND-A

also appear to grow with the size of the problems, however the solve times for the

equivalence-handling algorithms DFBB-B and PAND-B appear to be constant even

as the size of the problems increase. The table attached to Figure 5.4 may indicate

a reasonable explanation for this, as for these particular problem instances, even

though the average number of Sorted-Pareto non-dominated solutions is growing

as the sizes of the problems grow, the number of equivalence classes is decreasing,

therefore there is a smaller number of distinct preference values for the algorithm

to handle during the search when performing dominance checks.
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sc=5 sc=10 sc=15 sc=20 sc=25 sc=30

〈Sol〉 188787.52 188787.52 188787.52 188787.52 188787.52 188787.52

〈OSP〉 8470.96 1084.80 214.08 84.24 53.90 24.10

〈O[SP]〉 1.10 1.32 1.56 1.84 2.24 2.30

Ratio 7700.87 821.82 137.23 45.78 24.06 10.48

102

103

104

105

106

107

so
lv

e
ti

m
e

(m
s)

Brute-A
Brute-B
DFBB-A
DFBB-B
PAND-A
PAND-B

Figure 5.5: Graph of average solve times for algorithms Brute-A, Brute-B, DFBB-A,
DFBB-B, PAND-A, and PAND-B, for the instances in Set C, varying the number of soft
constraints sc = 5,10,15,20,25. The table shows the average number of solutions
〈Sol〉, average number of Sorted-Pareto optimal solutions 〈OSP〉, average number of
Sorted-Pareto optimal equivalence classes 〈O[SP]〉, and the ratio between 〈OSP〉 and
〈O[SP]〉.

Varying number of soft constraints

Figure 5.5 shows the average solve times for the algorithms for the instances in Set

C (see Table 5.1). In these instances, the size of the problems is constant, but the

number of soft constraints is varied. Firstly, a set of 50 problems was generated

which contained only hard constraints, and from this set, to vary the number of soft

constraints, a new set of problems was generated for each of sc = 5,10, 15, 20,25.

The table shown in Figure 5.5 shows the average number of solutions 〈Sol〉, the

average number of Sorted-Pareto optimal solutions 〈OSP〉, the average number of

Sorted-Pareto optimal equivalence classes 〈O[SP]〉, and the ratio between the number

of optimal solutions and optimal equivalence classes.

In these instances, the set-based algorithms DFBB-A and PAND-A are outperformed

by the equivalence-handling algorithms DFBB-B and PAND-B. For the instances

where there is a higher average number of Sorted-Pareto non-dominated solutions,
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for example when sc = 10 we have 〈OSP〉= 1084, we can see that the equivalence

handling algorithms perform much better than the set based algorithms. We also

observe that, as the number of soft constraints increases, 〈OSP〉 decreases, and the

average solve times of the set based algorithms DFBB-A and PAND-A approach the

solve times of the equivalence-handling algorithms DFBB-B and PAND-B.

5.7.4 Non-random problems

In this section, we compare the performance of the algorithms for some modified

benchmark instances from the CELAR Radio-Link Frequency Assignment problem

benchmark (RLFAP problem) [CdGL+99, Scha, Schb]. The instances used are shown

in Table 5.4, and have been modified by adding some hard constraints to limit the

number of solutions to around 100,000.

The table shows for each problem: the number of variables n, the maximum domain

sizes d, the size of the scale |T |, the number of soft constraints sc, the number of

solutions |Sol|, the number of Sorted-Pareto optimal solutions |OSP|, the number of

Sorted-Pareto optimal equivalence classes |O[SP]|, and the ratio between the number

of optimal solutions and optimal equivalence classes.

Table 5.4: The number of Sorted-Pareto optimal solutions |OSP| and the number of
Sorted-Pareto optimal equivalence classes |O[SP]| for the modified instances from the
CELAR Radio-Link Frequency Assignment problem benchmark, where hard constraints
have been added to limit the number of solutions to around 100, 000.

Name n d |T | sc |Sol| |OSP| |O[SP]| Ratio

CELAR6-SUB0* 16 44 5 207 101660 17 9 1.89
CELAR6-SUB1* 14 44 5 300 91562 35 32 1.09
CELAR6-SUB2* 16 44 5 353 100783 20 20 1.00
CELAR6-SUB3* 18 44 5 421 96611 23 19 1.21
CELAR6-SUB4* 22 44 5 477 91994 36 27 1.33
CELAR7-SUB0* 16 44 5 188 91010 11 9 1.22
CELAR7-SUB1* 14 44 5 300 97437 19 17 1.12
CELAR7-SUB2* 16 44 5 353 93569 31 29 1.07
CELAR7-SUB3* 18 44 5 421 101851 42 34 1.24
CELAR7-SUB4* 22 44 5 477 97185 26 23 1.13

Figure 5.6 shows the solve time of the algorithms for the instances given in Table

5.4. In these instances the set based algorithms perform very similarly to their

equivalence handling counterparts. This could be explained by the fact that the

ratio of optimal solutions to optimal equivalence classes is low for each instance,

indicating that there is very little gain from the equivalence handling approach. The

depth-first branch and bound algorithms DFBB-A and DFBB-B, which use only a
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lower bound, perform the best, and the PAND-A and PAND-B algorithms which use

both a lower and upper bound, perform the worst.

6-SUB0* 6-SUB1* 6-SUB2* 6-SUB3* 6-SUB4* 7-SUB0* 7-SUB1* 7-SUB2* 7-SUB3* 7-SUB4*
Instances
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Figure 5.6: Solve times for algorithms Brute-A, Brute-B, DFBB-A, DFBB-B, PAND-A, and
PAND-B, for the modified CELAR RLFAP instances given in Table 5.4.

5.7.5 Discussion of the algorithms

The Brute force algorithms Brute-A and Brute-B are a naive approach, and Figure 5.4

shows that these algorithms perform relative to the size of the problems. However

as we saw in Figure 5.6, for certain instances these algorithms can perform similarly

to a branch and bound approach.

The results in Figure 5.4 and Figure 5.5 show that the equivalence handling versions

of the branch and bound algorithms DFBB-B and PAND-B perform better than their

set based versions DFBB-A and PAND-A. However the measure of improvement

depends on the size of the Sorted-Pareto optimal set and the number of Sorted-

Pareto equivalence classes, and the ratio between these numbers. For higher ratios

and smaller numbers of Sorted-Pareto equivalence classes, the equivalence handling

algorithms are much better since they are required to perform a smaller number
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of dominance checks than the set based algorithms. As this ratio decreases then

the number of dominance checks performed by both the equivalence handling and

set based algorithms converge, and as we observe in Figure 5.5 that the overall

performances of the algorithms converge.

Overall the results show that equivalence handling branch and bound algorithm

DFBB-B performed better than the other algorithms. The PAND-A and PAND-B

branch and bound algorithms, which uses both a lower and upper bound, generally

did not perform better than the lower bound only versions DFBB-A and DFBB-B.

In Figure 5.4 for n= 36 and n= 40 we observe that for the set based algorithms,

PAND-A does perform marginally better than DFBB-A, indicating that there are

instances where the upper bound is useful, but in these instances the set based

algorithms are bettered anyway by the equivalence handling algorithms.

5.7.6 Varying Size of Preference Scale

As we saw for the instances in Figure 5.5, varying the size of the preference vector

has an effect on the number of resulting Sorted-Pareto optimal solutions and Sorted-

Pareto optimal equivalence classes. In these instances, for a scale z of size 3, as

the size of the preference vector increases, the average number of Sorted-Pareto

equivalence classes also increases, indicating more variance in the preference levels

of the Sorted-Pareto optimal solutions. This also results in a decrease in the average

number of Sorted-Pareto optimal solutions, possibly because of this variance resulting

in more decisions that are dominated.

We now look at the effect of varying the scale size, i.e., the size of the scale T (which is

given by the z parameter) on some generated problems. Table 5.5 shows the average

number of solutions 〈Sol〉, the average number of Sorted-Pareto optimal solutions

〈OSP〉, the average number of Sorted-Pareto optimal equivalence classes 〈O[SP]〉, and

the ratio between the number of optimal solutions and optimal equivalence classes,

for the instances in Set D (see Table 5.1). In these instances, both the size of the

problems and the size of the preference vectors are constant, but the size of the

preference scale T is varied. Firstly, a set of 50 problems was generated for a scale

of size 8 (denoted by z = 8) and from this set, the scale used in these problems was

rescaled to generate a new set of problems for each of z = 3,4, 5,6, 7.

In these instances, as the size of the scale T increases, the average number of Sorted-

Pareto equivalence classes also increases, and we also observe a decrease in the

average number of Sorted-Pareto optimal solutions. Similar to the results in Figure
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Table 5.5: The average number of solutions 〈Sol〉, the average number of Sorted-Pareto
optimal solutions 〈OSP〉, the average number of Sorted-Pareto optimal equivalence
classes 〈O[SP]〉, and the ratio between the number of optimal solutions and optimal
equivalence classes, for the instances in Set D, where the size of the scale T is varied
(by parameter z).

Set D z = 3 z = 4 z = 5 z = 6 z = 7 z = 8

〈Sol〉 188787.52 188787.52 188787.52 188787.52 188787.52 188787.52
〈OSP〉 939.00 647.76 563.44 570.96 481.76 383.56
〈O[SP]〉 1.28 1.42 1.80 2.00 2.18 2.22
Ratio 733.59 456.17 313.02 285.48 220.99 172.77

5.5 where the size of the preference vector is varied, we can see that increasing the

size of the scale T results in more Sorted-Pareto optimal equivalence classes and

less Sorted-Pareto optimal solutions.

5.7.7 Comparing Sorted-Pareto and Lexicographic-Max Order-

ing

In this section, we compare Sorted-Pareto dominance with the Lexicographic-

Max ordering as given in Section 2.6. For a general constraints problem P =
〈X ,D,CH ,CS,P〉, where the preference degree structure P = 〈I ,⊗,�〉 is defined

with the Lexicographic-Max ordering �LMX (see Definition 2.29), then the resulting

order on Sol(P) is a total preorder.

We look at two tables of results for the Lexicographic-Max ordering. Table 5.6 shows

the average number of Lexicographic-Max optimal solutions 〈OLMX〉 for the instances

in Set B (originally from Figure 5.4). Table 5.7 shows the number of Lexicographic-

Max optimal solutions 〈OLMX〉 for the modified CELAR RLFAP instances (originally

given in Table 5.4).

Table 5.6: Comparing the average number of Sorted-Pareto optimal solutions 〈OSP〉 and
the average number of Lexicographic-Max optimal solutions 〈OLMX〉 for the instances in
Set B.

Set B n= 20 n= 24 n= 28 n= 32 n= 36 n= 40

〈Sol〉 44260.48 125977.84 356328 764423.20 1218371.52 1462344.32
〈OSP〉 50.90 89.12 141.18 154.26 316.20 335.18
〈O[SP]〉 18.66 21.32 16.62 13.90 11.22 9.58
〈OLMX〉 2.60 4.16 7.12 9.82 30.46 29.62

In both set of results, the number of Lexicographic-Max optimal solutions is much

smaller than the number of Sorted-Pareto optimal solutions. As mentioned in the
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Table 5.7: Comparing the number of Sorted-Pareto optimal solutions |OSP| and the num-
ber of Lexicographic-Max optimal solutions |OLMX| for the modified CELAR instances.

Name n d |T | sc |Sol| |OSP| |O[SP]| |OLMX|

CELAR6-SUB0* 16 44 5 207 101660 17 9 1
CELAR6-SUB1* 14 44 5 300 91562 35 32 1
CELAR6-SUB2* 16 44 5 353 100783 20 20 1
CELAR6-SUB3* 18 44 5 421 96611 23 19 1
CELAR6-SUB4* 22 44 5 477 91994 36 27 1
CELAR7-SUB0* 16 44 5 188 91010 11 9 2
CELAR7-SUB1* 14 44 5 300 97437 19 17 2
CELAR7-SUB2* 16 44 5 353 93569 31 29 1
CELAR7-SUB3* 18 44 5 421 101851 42 34 3
CELAR7-SUB4* 22 44 5 477 97185 26 23 1

introduction to the thesis in Section 1.1, we consider situations where the task is

to support a decision maker by presenting a subset of decisions from a larger set

of initial decisions. Since Lexicographic-Max is a total preorder, then choosing to

present the Lexicographic-Max optimal decisions would result in only presenting one

or a set of equivalent decisions to a decision maker. Also, as shown in Section 2.6.2,

the Lexicographic-Max relation does not consider all preference levels associated

with a decision, it ignores some preference values. The number of Sorted-Pareto

optimal equivalence classes in the results indicate the number of distinct preference

levels of the solutions in the set of Sorted-Pareto optimal decisions, so we can present

a more varied set of decisions to a decision maker by showing all the Sorted-Pareto

optimal decisions or just a representative from each equivalence class.

5.8 An Extension to Sorted-Pareto Dominance

In this section, we look at an extension to the Sorted-Pareto relation, which looks

at further refining a set of Sorted-Pareto non-dominated decisions. When we have

a set of Sorted-Pareto non-dominated solutions OSP to a particular problem P =
〈A,S, T,≤〉, we can further order this set of optimal elements using the MinMax-

Sorted-Pareto relation ≺max
SP , which is defined as follows.

Definition 5.30 » MinMax Sorted-Pareto preferred

For all α,β ∈ OSP, α≺max
SP β , if and only if

— max(ρ(α))<max(ρ(β)) «

From this, we can define MinMax Sorted-Pareto optimal as follows.
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Definition 5.31 » MinMax Sorted-Pareto preferred

A decision α ∈ OSP is MinMax Sorted-Pareto optimal if and only if

— for all β ∈ OSP, α≺max
SP β . «

The set of MinMax Sorted-Pareto optimal decisions is denoted by Omax
SP

.

Let us look at an example.

Example 5.6 É MinMax Sorted-Pareto example.

Consider a multi-aspect decision problem 〈A,S, T,≤〉 where:

É A= {α,β}, i.e., there are two decisions,

É S = {1,2, 3}, i.e., there are three preference values to consider

É T = {low, med, hi}, ordered by ≤, where again we wish to minimise.

Suppose that the resulting preference levels are:

É ρ(α) = {med, med, med}

É ρ(β) = {hi, low, hi}

We can see that neither decision Sorted-Pareto dominates the other, so we have that

É OSP = {α,β}.

Now, supposing we use MinMax Sorted-Pareto dominance, we can see that

É α≺max
SP β , since max(α)<max(β).

Therefore we have that the optimal set with respect to Minmax Sorted-Pareto is given

by

É Omax
SP
= {α}. Î

This relation forms a total preorder on OSP, and could be used as a tiebreaker

between decisions, to present a single solution or very small set of solutions to a

decision maker. It could also be considered as an egalitarian approach, since it

prefers the decisions that minimise the maximum negative preferences, for example,

if the preferences represent some costs which are to be minimised, then the relation

≺max
SP prefers decisions with smaller maximum costs.
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MinMin-Sorted-Pareto

Briefly, an alternative approach for refining the Sorted-Pareto optimal set in a

similar way could be to minimise the minimum negative preferences (similar to

a Maximax relation [BT97] for positive preferences). Let us call this the MinMin-

Sorted-Pareto relation, where the Sorted-Pareto optimal decisions with smaller

minimium preference values are preferred. For example, in decision making under

uncertainty where the aspects represent possible scenarios that could occur, the

MinMin-Sorted-Pareto optimal decisions would be the ones that could result in the

lowest cost.

5.8.1 Experimental Results

In this section we look at some experimental results for generating the MinMax

Sorted-Pareto optimal sets for some problem instances. We look at two sets of results.

Table 5.8 shows again the experimental results for the instances in Set B from Table

5.6, in addition we show the average number of MinMax-Sorted-Pareto optimal

solutions 〈Omax
SP
〉, and the resulting number of Sorted-Pareto equivalence classes for

these solution, denoted by 〈O[max
SP ]
〉. Table 5.9 shows again the experimental results

for the modified CELAR RLFAP instances from Table 5.7, and in addition we show the

number of MinMax-Sorted-Pareto optimal solutions |Omax
SP
| and the resulting number

of Sorted-Pareto equivalence classes |O[max
SP ]
| for each instance.

Table 5.8: Comparing the average number of Sorted-Pareto optimal solutions 〈OSP〉,
and the average number of Sorted-Pareto MinMax optimal solutions 〈Omax

SP
〉 for the

instances in Set B.

Set B n= 20 n= 24 n= 28 n= 32 n= 36 n= 40

〈Sol〉 44260.48 125977.84 356328 764423.20 1218371.52 1462344.32
〈OSP〉 50.90 89.12 141.18 154.26 316.20 335.18
〈O[SP]〉 18.66 21.32 16.62 13.90 11.22 9.58
〈OLMX〉 2.60 4.16 7.12 9.82 30.46 29.62
〈Omax

SP
〉 14.78 25.08 48.04 51.14 176.28 130.18

〈O[max
SP ]
〉 5.74 6.66 5.46 4.54 5.64 3.82

We can see that in Table 5.8, the average number of MinMax Sorted-Pareto optimal

solutions 〈Omax
SP
〉 is significantly smaller than the number of Sorted-Pareto optimal

solutions. However in Table 5.9, there is only one instance (CELAR7-SUB0*) where

there is a reduction in the optimal set size using MinMax Sorted-Pareto. As men-

tioned in 5.7.7, where we consider situations where we are trying to narrow down
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Table 5.9: Comparing the number of Sorted-Pareto optimal solutions |OSP|, and the
number of Sorted-Pareto MinMax optimal solutions |Omax

SP
| for the modified CELAR

instances.

Name n d |T | sc |Sol| |OSP| |O[SP]| |OLMX| |Omax
SP
| |O[max

SP ]
|

CELAR6-SUB0* 16 44 5 207 101660 17 9 1 17 9
CELAR6-SUB1* 14 44 5 300 91562 35 32 1 35 32
CELAR6-SUB2* 16 44 5 353 100783 20 20 1 20 20
CELAR6-SUB3* 18 44 5 421 96611 23 19 1 23 19
CELAR6-SUB4* 22 44 5 477 91994 36 27 1 36 27
CELAR7-SUB0* 16 44 5 188 91010 11 9 2 6 4
CELAR7-SUB1* 14 44 5 300 97437 19 17 2 19 17
CELAR7-SUB2* 16 44 5 353 93569 31 29 1 31 29
CELAR7-SUB3* 18 44 5 421 101851 42 34 3 42 34
CELAR7-SUB4* 22 44 5 477 97185 26 23 1 26 23

the optimal set to present to a decision maker, we could present the set of MinMax-

Sorted-Pareto optimal decisions or alternatively, a set of representatives from each

Minimax-Sorted-Pareto optimal equivalence class.

5.9 Related Works

In Section 2.6, we look at the connections betweeen Sorted-Pareto dominance and

other preference relations; here we look at some more related works in regards

to algorithms and methods for approximating the Pareto optimal set and solving

other partially ordered problems. The notion of Sorted-Pareto appears in [LM95],
which focuses on the elicitation of the preferences and the normalisation of different

criteria scales, whereas in this thesis we assume that such a normalisation process has

occurred. It is also called Ordered Pareto [KP08] or Symmetric Pareto [DPT13], and

is used for handling preferences and comparing alternatives using possibilistic logic.

As we show in Section 5.2.1, Sorted-Pareto is related to preference based search

for generating sets of optimal solutions for shortest path problems [PS05, BS06]. It

also appears in social welfare theory [TSS09] where it is applied to ordered income

distributions.

As we show in Proposition 2.4, the Sorted Pareto relation extends the Pareto domi-

nance relation, and computing the Sorted-Pareto optimal set is viable when prefer-

ence level scales are commensurate, since calculating the Pareto optimal set can be

prohibitive as we experienced in our results in Section 5.7.2. Some other work that

approximates the Pareto optimal set in constraints problems includes approaches

that utilise quantitative information to perform a sum of weights on the preference
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vectors [TF02], and other approximating branch and bound algorithms [Gav02]
similar to what is used in Section 5.4. Other different approaches for approximating

a set of Pareto optimal solutions include: approaches that use AND/OR search spaces

in branch and bound algorithms [Mar11], approaches that use multi-objective influ-

ence diagrams [MRW12], and approaches that incorporate additional trade-offs to

reduce the size of the optimal set [MRW13].

Other algorithms for handling partially ordered soft constraints include branch and

bound algorithms for partially-ordered constraint optimisation problems (PCOP)

[Gav01] and a branch and bound algorithm for partially ordered degrees of pref-

erences [WF08]. For the Leximin preference relation, there are branch and bound

algorithms for the computation of Leximin optimal solutions in Constraint Networks

[BL09].

5.10 Chapter Conclusion

In this chapter, we defined an extension to Pareto dominance called Sorted-Pareto

dominance. We gave a semantics for the relation, showing it is very relevant to

a situation where we have a weighted constraints problem [RvBW06, Ch. 9] (or,

similarly, a GAI decomposition [BG95]) but the numerical values are only on an

ordinal scale. Theorems 5.1 and 5.2 show that a decision Sorted-Pareto dominates

another if and only if it dominates the other in all compatible standard weighted

constraints problems.

We also explored Sorted-Pareto in the context of Soft Constraints, and we gave three

different depth-first algorithms, along with some variations of these algorithms, for

providing a set of Sorted-Pareto optimal solutions to general constraints problems

which involve both hard and soft constraints. The experimental results showed

that often the resulting set of optimal solutions is relatively small, and of certainly

a much more manageable size than the set of Pareto optimal solutions. For our

algorithm implementations, the algorithm with lower bound pruning generates an

order of magnitude speedup in some instances. For the algorithm which uses an

upper bound, a similar approach was shown to be useful in an application with

comparative preferences [WT11], however we found that in these particular soft

constraint problem instances, the algorithm did not improve solve times.

In our experimental results, we found that the number of soft constraints and

also the size of the preference scale used in the problem instances was a factor
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in the resulting number of Sorted-Pareto equivalence classes and the number of

Sorted-Pareto optimal solutions. We also compared the sizes of the resulting optimal

sets to the sizes of the resulting Lexicographic-Max optimal set. We argue, that

in some settings, it may be better to present a more varied set of Sorted-Pareto

optimal solutions rather than a single Lexicographical-Max solution that, as shown

in Section 2.6.2, can ignore some of the preferences associated to solutions, whereas

the Sorted-Pareto optimal solutions consider all the preference values associated to

solutions.
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6.1 Introduction

In a decision-making task, it is often the case that the basis for comparing decisions

involves more than one preference value (e.g., evaluations of multiple criteria in

multi-criteria decision making, evaluations by more than one agent in multi-agent

decision making, or considerations of different states in decision making under

uncertainty), and therefore we have a preference vector for each decision. If the

scale T is quantitative, or we have information that gives a quantitative mapping for

T , e.g., we have a mapping f : T → IR+, then the decisions could be compared by

summing the preference vector values and seeing which decisions have the smallest

sum of costs or the largest sum of utilities, as seen in Section 2.6.5.

However, often the preference information available is only of an ordinal or qual-

itative nature, as it can be easier to obtain such information, e.g., there may be

uncertainty over exact values, or it may be easier to elicit qualitative preference in-

formation from a decision maker [MMO02]. As seen in Chapter 5, the Sorted-Pareto

preference relation relies only on ordinal or qualitative information, and therefore

can be used in these qualitative decision making situations. In addition, for any

mapping f : T → IR+, where f is strictly monotonic with respect to the scale T , i.e.,

for all u, v ∈ T , u≤ v⇔ f (u)≤ f (v), the Sorted-Pareto relation gives an ordering

that is compatible with any such function f .

As we saw in Chapter 4, in a partially ordered setting, such as in the situation just

described, there can be different natural notions of optimality. The framework in

Chapter 4 describes some of these notions, for qualitative decision making under

uncertainty, where there are different possible scenarios in a given problem. This

gives us classes of decisions that are not dominated by any other decision, decisions

that are possibly optimal or possibly strictly optimal, (i.e., optimal in some scenario),

and decisions that are optimal in all scenarios. As shown in Section 5.3, Sorted-

Pareto connects to Weighted Constraints Satisfaction Problems (WCSP) [RvBW06,

Ch. 9] and Bayesian Networks [Pea88] where we only have ordinal information,

and in these frameworks the possibly optimal decisions are those that are min-sum

optimal for some compatible WCSP, or are the complete assignments that are most

probable in some compatible Bayesian Network.

In this chapter, we look at the relationship between the Sorted-Pareto preference

relation and Min-sum of weights orderings, and we examine this relationship as

an instance of the MODS framework from Chapter 4. The chapter outline is as

follows. In Section 6.2 we provide some preliminaries for the chapter, revisiting
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the Sorted-Pareto preference relation and the min-sum of weights ordering, and

the relationship between the two orderings as given in Section 5.3. In Section 6.3

we use the MODS framework from Chapter 4 to describe this relationship between

Sorted-Pareto dominance and min-sum of weights, and we examine the different

natural notions of optimality and the optimality classes that occur in the Sorted-

Pareto case. In Section 6.4, we show how to generate these optimality classes for

the Sorted-Pareto case, and in Section 6.5 we present some experimental results

which look at the resulting sets computed for the different notions of optimality.

6.2 Preliminaries

In this section, we recall in brief the relevant definitions and setup from the prequel

to give the setting for the work of this chapter. We assume a multi-aspect decision

problem P = 〈A,S, T,≤〉 as given in Definition 2.11, where for each decision α ∈A
we have a preference vector υ(α) = (α1,α2, . . . ,αm) of m preference values for α.

The preference vector υ(α) of decision α, sorted in non-descending order, is denoted

by υ(α)↑.

For Sorted-Pareto dominance, we recall from Definitions 2.19 to 2.21 that, for all

α,β ∈A, α´SP β if and only if υ(α)↑ ≤ υ(β)↑, α≺SP β if and only if υ(α)↑ < υ(β)↑,
and α ≡SP β if and only if υ(α)↑ = υ(β)↑, where ≤, < and = are defined over

preference vectors, as given in Definition 2.14. A decision α ∈A is Sorted-Pareto

optimal if and only if there is no β ∈A such that β ≺SP α.

For quantitative scales, or for when there is a function f : T → R+ mapping a

qualitative scale to a quantitative one, we recall here from Section 2.6.5 the defini-

tions for Min-sum preferred, strictly Min-sum preferred, and Min-sum equivalent.

For all α,β ∈ A, for some function f : T → R+, α is Min-sum preferred (with

respect to f) to β , written as α ≤ f β , if and only if
∑m

i=1 f (αi) ≤
∑m

i=1 f (βi). We

have α < f β if and only if
∑m

i=1 f (αi)<
∑m

i=1 f (βi), and we have α= f β and only

if
∑m

i=1 f (αi) =
∑m

i=1 f (βi). For some function f : T → R+, a decision α ∈ A is

Min-sum optimal (with respect to f) if and only if α≤ f β for all β ∈A.

Finally, in brief, from Section 4.2, a multiple-ordering decision structure G =
〈A,S, {´s : s ∈ S}〉, as given in Definition 4.1, is a framework where A is a set

of decisions, S is a set of possible scenarios, and for each s ∈ S, relation ´s is a total

preorder on A. The work in Chapter 4 looks at the preference relations and notions

of optimality that arise in this framework, and we will recall the relevant definitions
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as we require in the next section.

6.3 Sorted-Pareto MODS

In this section, we look at the relationship betweeen Sorted-Pareto and Min-sum

of weights as an instance of the MODS framework. Recall from Section 5.3, where

for some ordinal scale T , we define F ′T as the set of all possible weight functions

f : T → R+ such that f is strictly monotonic with respect to T , i.e., for u, v ∈ T ,

u ≤ v ⇔ f (u) ≤ f (v). The result in Theorem 5.2 gives us that for all α,β ,∈ A,

α´SP β⇔ α≤ f β for all f ∈ F ′T , i.e., we have that decision α Weak Sorted-Pareto

dominates decision β if and only if α is min-sum-preferred to β for all f ∈ F ′T .

Given this result and the relationship between the Sorted-Pareto dominance relations

and the Min-sum of weights relations we now define an instance of the MODS

framework where we view a scenario s ∈ S as a choice of function f ∈ F ′T from the

min-sum case. i.e., we have a set of possible functions F ′T , with a corresponding

set of orderings {≤ f : f ∈ F ′T}. We call the Sorted Pareto MODS, and we define it as

follows:

Definition 6.1 » Sorted-Pareto MODS R
Let MODS R = 〈A, F ′T , {≤ f : f ∈ F ′T}〉, where

• A is a non-empty, finite set of decisions,

• the set of scenarios is given by the set F ′T of strictly monotonic weight functions

f : T → R+,

• the set of orderings is given by the min-sum of weights orderings for all

possible weight functions, i.e., the set {≤ f : f ∈ F ′T}. «

We now look at the definitions for the MODS order relations used in the Sorted-

Pareto MODS R. From Section 4.2.1, we have the necessarily dominates relation

´N, the strict part ≺N of the necessarily dominates relation, and the necessarily

strictly dominates relation ≺NS, which we now define in terms of the Sorted-Pareto

MODS.
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Definition 6.2 » Necessarily dominates for MODS R
A decision α necessarily dominates β , written as α´N β , if and only if

— α≤ f β for all f ∈ F ′T «

That is, for any choice of f ∈ F ′T , α is Min-sum-preferred to β .

Definition 6.3 » Strict-necessarily dominates for MODS R
A decision α strict necessarily dominates β , written as α≺N β , if and only if

— α´N β and β 6´N α «

Definition 6.4 » Necessarily strictly dominates for MODS R
A decision α necessarily strictly dominates β , written as α≺NS β , if and only if

— α < f β for all f ∈ F ′T «

That is, for any choice of f , α is strictly Min-sum-preferred to β .

We now give some results for the Sorted-Pareto MODS. Proposition 6.1 gives us that

the necessarily dominates relation for MODS R corresponds to the Weak Sorted-

Pareto dominance relation.

Proposition 6.1 » ´N for MODS R result.

For MODS R, ´N = ´SP �

Proof: This follows from the definitions and from Theorem 5.2. �

Our next result in Proposition 6.2 gives that the strict part of the necessarily domi-

nates relation and the necessarily strictly dominates relation for MODS R are equal,

and they correspond to the Sorted-Pareto dominance relation ≺SP.

Proposition 6.2 » ≺NS and ≺N for MODS R result

For MODS R, ≺NS = ≺N = ≺SP �
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Proof: First we show that ≺N = ≺SP. From Proposition 6.1 we have that ´N = ´SP.

Since by definition, we have that α ≺SP β if and only if α ´SP β and β 6´SP α, and

by definition of ≺N we have that α≺N β if and only if α´N β and β 6´N α, then we

have that ≺N = ≺SP.

Now we show that ≺SP = ≺NS. We have from Corollary 5.3 that <∩F ′
= ≺SP. By

definition <∩F ′
is defined as the intersection of all < f such that f ∈ F ′T . So ≺NS =

<∩F ′
. Therefore we have that ≺SP = ≺NS. �

Now we define an equivalence relation ≡F ′ , which is the intersection of ≡ f over all

f ∈ F ′T , as follows:

Definition 6.5 » F ′-equivalent

For all α,β ∈A, α≡F ′ β if and only if

— α≡ f β , for all f ∈ F ′T «

That is, α and β are F ′-equivalent if they are equivalent over all possible choice of

f ∈ F ′T . Given the definition of ≡F ′ , we define the F ′-equivalence class of α ∈A as

follows:

Definition 6.6 » F ′-equivalence class

Let [α]F ′ = {β ∈A : α≡F ′ β} «

The next result gives us that the necessarily equivalence relation for the Sorted-Pareto

MODS R corresponds to Sorted-Pareto equivalence.

Proposition 6.3 » ≡N for MODS R result

For MODS R, ≡N = ≡SP �

Proof: This follows from Proposition 6.1. �

6.3.1 Sorted-Pareto Optimality classes

We now look at the notions of optimality from the MODS framework that are

applicable for the Sorted-Pareto MODS R = 〈A, F ′T , {≤ f : f ∈ F ′T}〉. As before, α
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and β are arbitrary elements of A.

First we have the set of necessarily optimal elements for the Sorted-Pareto MODS

R, which are denoted by NO(R) and are defined as follows.

Definition 6.7 » Necessarily optimal for MODS R
A decision α is in NO(R) if and only if

— for all β ∈A, for all f ∈ F ′T , α≤ f β . «

That is, we have that α is necessarily optimal if and only if for all β ∈ A, for any

choice of f , α is min-sum-preferred to β , which is if and only if α ´SP β for all

β ∈A.

Next we have the set of necessarily strictly optimal elements for the Sorted-Pareto

MODS, denoted by NSO(R), which are defined as follows.

Definition 6.8 » Necessarily strictly optimal for MODS R
A decision α is in NSO(R) if and only if

— for all β ∈A \ [α]F ′ , for all f ∈ F ′T , α < f β . «

So we have that α is necessarily strictly optimal if and only if for any choice of f , α

is strictly min-sum-preferred to every β not F ′-equivalent to α, which is if and only

if α≺SP β for all β ∈A \ [α]SP.

From these definitions, we have the following result.

Proposition 6.4 » NSO(R), NOPSO(R) and NO(R) result

For MODS R, NSO(R) = NOPSO(R) = NO(R) �

Proof: This follows from the definitions of NSO(R) and NO(R), and from Proposi-

tion 6.2, where ≺N = ≺NS. �

We now look at definitions for the CD(R) and CSD(R) optimality classes for the

Sorted-Pareto MODS.
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Definition 6.9 » Can dominate for MODS R
A decision α is in CD(R) if and only if

— for all β ∈A, there exists f ∈ F ′T such that α≤ f β . «

That is, we have that decision α is in CD(R) if and only if it can be min-sum-preferred

to any other decision.

Definition 6.10 » Can strictly dominate for MODS R
A decision α is in CSD(R) if and only if

— for all β ∈A \ [α]F ′ , there exists f ∈ F ′T such that α < f β . «

So we have that decision α is in CSD(R) if and only if it can be strictly min-sum-

preferred to any non-equivalent decision. The decisions in the set CSD(R) are the

decisions that are optimal or undominated with respect to the ≺N relation, i.e., these

are the Sorted-Pareto optimal decisions.

Proposition 6.5 » CSD(R) and CD(R) result

For MODS R, CSD(R) = CD(R) �

Proof: This follows from Proposition 6.2, i.e., for MODS R we have that ≺N = ≺NS,

and from the definitions of CD(G) and CSD(G) in the general case, where CD(G)
are the decisions that are undominated with respect to ≺NS and CSD(G) are the

decisions that are undominated with respect to ≺N. �

Now we look at the possibly optimal and possibly strictly optimal decisions for the

Sorted-Pareto MODS.

Definition 6.11 » Possibly optimal for MODS R
A decision α is in PO(R) if and only if

— there exists f ∈ F ′T such that for all β ∈A, α≤ f β . «

That is, α is in PO(R) if and only if there exists some choice of f ∈ F ′T such that α is

min-sum-optimal with respect to that f .
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Definition 6.12 » Possibly strictly optimal for MODS R
A decision α is in PSO(R) if and only if

— there exists f ∈ F ′T such that for all β ∈A \ [α]F ′ , α≤ f β . «

That is, α is in PSO(R) if and only if there exists some choice of f ∈ F ′T such that α

is strictly min-sum-optimal with respect to that f .

Proposition 6.6 » PO(R) and CSD(R) result

For MODS R, PO(R) ⊆ CSD(R). �

Proof: This follows from Proposition 6.5, i,e., CSD(R) = CD(R), and from Propo-

sition 4.5, where we have in the general case that PO(G) ⊆ CD(G). �

6.3.2 Subclass relationships for Sorted-Pareto

Figure 6.1 shows precisely the subclass relationships between these optimality classes

that always hold in the general case, which is given by Theorem 4.1; the theorem

also gives an example of strict subclass relationships between each of the optimality

classes.

Figure 6.1: Subclass relationships (⊆) between optimality classes that always hold
in general.

Given the results in the previous section, we now look at the subclass relationships

between the optimality classes for the Sorted-Pareto and Min-sum instance of the

MODS framework. The result below in Proposition 6.7 is also depicted in Figure

6.2.

159



6. SORTED-PARETO DOMINANCE AND

QUALITATIVE NOTIONS OF OPTIMALITY 6.3 Sorted-Pareto MODS

Proposition 6.7 » Subclass relationships for Sorted-Pareto MODS

For MODS R, we have the following subclass relationships:

(NSO(R) = NOPSO(R) = NO(R)) ⊆ PSO(R) ⊆ (PO(R) = PO′(R)) ⊆
(CSD(R) = CD(R)) �

Proof: This follows from Propositions 6.1 to 6.6 and Figure 6.1, which is adapted

from Theorem 4.1 and shows the subclass relationships between the optimality

classes that always hold in general for any MODS G. �

Figure 6.2: Subclass relationships (⊆) between the optimality classes for the
Sorted-Pareto MODS R.

Now we consider the case where there exists a decision that is necessarily optimal,

i.e., when we have that NO(R) 6= ;.

Proposition 6.8 » Exists necessarily optimal element for Sorted-Pareto

MODS result

For MODS R, if NO(R) 6= ;, then

— NSO(R) = NO(R) = PSO(R) = PO(R) = CSD(R) = CD(R) ⊆ A �

Proof: This follows from: Proposition 4.8 (i), where we have that in the general

case if NO(G) 6= ; then NO(G) = CSD(G), and from Proposition 6.5 where we have

for MODS R that CSD(R) = CD(R). �
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6.4 Computing Optimality Classes for the Sorted-

Pareto MODS

In this section, we look at methods for generating the optimality classes PO(R)
and PSO(R) for the Sorted-Pareto MODS R. Here we assume that there is some

procedure to generate CSD(R), i.e., that calculates the preference vectors for each

decision and compares them using Sorted-Pareto dominance to generate the set

of decisions that are non-dominated. For example, the branch and bound search

algorithms detailed in Section 5.4 do exactly this; however other search procedures

can be used. From CSD(R), NO(R) can be calculated by comparing all the solutions

in CSD(R) with one another to see if any Sorted-Pareto dominate all others.

First let us look at an example for PO(R) and PSO(R), where we have that PSO(R) ⊂
PO(R).

Example 6.1 É PSO(R) not equals PO(R) example.

Suppose for some problem, where the possible preference values are on an ordered scale

of costs T = {A, B, C , D, E}, and we have A= {α,β ,γ}, with

É ρ(α) = {A, B, C , D, E},

É ρ(β) = {A, C , C , D, D},

É ρ(γ) = {A, B, B, E, E}.

We have that α, β and γ are all undominated with respect to the Sorted-Pareto relation

≺N, so therefore we have that

É CSD(R) = {α,β ,γ}.

Consider some possible weight functions, f1 and f2, defined as follows, where the ordered

pair
�

i, f (i)
�

denotes the mapping from i ∈ T to f (i) ∈ R+:

É f1 = {(A, 0), (B, 1), (C , 2), (D, 3), (E, 5)}

É f2 = {(A, 0), (B, 1), (C , 3), (D, 4), (E, 5)}

For f1, we have that β is strictly min-sum optimal, i.e., β ∈ PSO(R), since

É
∑m

i=i f1(βi) = 10,

É
∑m

i=i f1(αi) = 11,

É
∑m

i=i f1(γi) = 12,
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and therefore β < f1 α and β < f1 γ.

For f2, we have that γ is strictly min-sum optimal, i.e., γ ∈ PSO(R), since

É
∑m

i=i f2(γi) = 12,

É
∑m

i=i f2(αi) = 13,

É
∑m

i=i f2(βi) = 14,

and therefore γ < f2 α and γ < f2 β .

However there is no possible choice of weight function f that would make α be strictly

min-sum optimal for that f .

We have that f (α) < f f (β) if and only if f (A) + f (B) + f (C) + f (D) + f (E) <
f (A) + 2 f (C) + 2 f (D),

which is if and only if

É f (B) + f (E)< f (C) + f (D)

We also have that f (α)< f f (γ) if and only if f (A) + f (B) + f (C) + f (D) + f (E)<
f (A) + 2 f (B) + 2 f (E),

which is if and only if

É f (C) + f (D)< f (B) + f (E)

Hence, we cannot have a function f which has both f (α)< f f (β) and f (α)< f f (γ),
so α 6∈ PSO(R).

We have however that α is in PO(R), since, for example, for f3, defined as

É f3 = {(A, 0), (B, 1), (C , 2), (D, 3), (E, 4)}

we have the following sum of weights for each decision

É
∑m

i=i f2(αi) = 10,

É
∑m

i=i f2(βi) = 10,

É
∑m

i=i f2(γi) = 10

Therefore the resulting optimality classes are

É PO(R) = {α,β ,γ}

É PSO(R) = {β ,γ} Î
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6.4.1 Calculating Possibly Optimal

Suppose we want to determine if some decision α in CSD(R) is possibly optimal,

i.e., we want to determine if there exists some weight function f ∈ F such that

α ≤ f β for all β ∈ CSD(R). We can formulate this problem as a linear program.

Firstly, we give a definition for a linear program as follows.

Definition 6.13 » Linear program

A linear program is a tuple 〈X , g,C〉, where,

• X is a set of problem or decision variables,

• g is an linear objective function (e.g., maximise or minimise), expressed in

terms of the problem variables,

• C is a set of constraints on the variables, expressed in terms of linear equalities

and linear inequalities using ≤ and ≥. «

A linear program solver can be used to solve the linear program and optimise the

objective function.

To calculate if some decision α in CSD(R) is possibly optimal, then the problem can

be formulated as a linear program Pα as follows. Only certain elements on the scale

T appear in any of the preference vectors for the decisions in CSD(R); let T ′ denote

this set, i.e., T ′ = {i ∈ υ(β) : β ∈ CSD(R)}. For each of these elements i ∈ T ′ we

have a linear program variable wi, representing an unknown weight. Since the scale

T is totally ordered, then on these weights we have constraints of the form wi < w j,

where i < j. For all β ∈ CSD(R), we have a linear expression ω(β) as a sum in

terms of the unknown weight variables, i.e., ω(β) =
∑

i∈υ(β)wi. For α to be possibly

optimal, we require, for each β ∈ CSD(R), that ω(α)≤ω(β). Therefore we have a

set of linear inequalities, defined as follows:

Definition 6.14 » Set of linear inequalities Pα for PO(R)
Given some set CSD(R), to calculate if some α ∈ CSD(R) is possibly optimal, let Pα
be a set of linear inequalities where we have:

(i) wi < w j, for all i, j ∈ T ′, where i < j, and

(ii) ω(α)≤ω(β), for all β ∈ CSD(R). «
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This gives us that if Pα has a feasible solution, then there exists some weights that

make ω(α)≤ω(β) for all β ∈ CSD(R), i.e., we have that α is possibly optimal.

In order to check this using a standard linear program solver, we need to convert

to an equivalent problem which only has non-strict inequalities, as we can see

from Definition 6.13 that the inequality constraints need to be of the form ≤ or ≥.

Therefore, we create a linear program as follows.

Definition 6.15 » Linear program P c
α

for PO(R)
To calculate if some α ∈ CSD(R) is possibly optimal, we create linear program P c

α

from the set of linear inequalities Pα, where c > 0 is some arbitrary strictly positive

real number, e.g., we can set c = 1, and

(i) for any constraint in Pα in the form of Definition 6.14 (i), i.e., wi < w j, we

have a constraint in P c
α

with the form w j −wi ≥ c, and

(ii) for any constraint in Pα in the form of Definition 6.14 (ii), i.e., ω(α)≤ω(β),
we have a constraint in P c

α
of the form ω(β)−ω(α)≥ 0. «

We then solve the linear program P c
α
, and this has a solution if and only if Pα has a

solution, and therefore we have that α is possibly optimal. We have the following

result.

Proposition 6.9 » Calculating PO(R) result

For α ∈ CSD(R), with set of linear equalities Pα and linear program P c
α

with c > 0,

we have that

— Pα has a solution if and only if P c
α

has a solution. �

Proof: First we show that for α ∈ CSD(R), if Pα has a solution, then P c
α

has a

solution. Suppose that for α ∈A, Pα has a solution s, where for all wi ∈ {wi : i ∈ T ′},
we have s(wi) = ws

i, and for any α ∈ CSD(R), let ωs(α) =
∑

i∈υ(α)w
s
i. Now let

δ = mini, j∈T ′,i< j ws
j − ws

i, and let λ = c
δ . We define s′ as a function such that for

all wi ∈ {wi : i ∈ T ′}, we have s′(wi) = λws
i = ws′

i . Then we have for all i, j ∈ T ′,

where i < j, ws′
j − ws′

i = λ(w
s
j − ws

i) =
c
δ(w

s
j − ws

i) ≥
c
δδ = c. Thus we have for

all i, j ∈ T ′, where i < j, ws′
j − ws′

i ≥ c. Since we have for solution s that for all

β ∈ CSD(R),
∑

i∈υ(α)w
s
i ≤

∑

i∈υ(β)w
s
i, then we have for s′ that for all β ∈ CSD(R),

∑

i∈υ(β)w
s′
i −

∑

i∈υ(α)w
s′
i ≥ 0, i.e., ωs′(β)−ωs′(α)≥ 0. Thus, s′ is a solution for P c

α
.
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Now we will show that, for α ∈ CSD(R), a solution of P c
α

is also a solution of Pα.

For α ∈ CSD(R), suppose s is a solution for P c
α
. Then for all β ∈ CSD(R), we have

ωs(β)−ωs(α)≥ 0, so we have ωs(α)≤ωs(β). We also have for all i, j ∈ T ′, where

i < j, ws
j −ws

i ≥ c. Since c > 0, then for all i, j ∈ T ′, where i < j, we have ws
i < ws

j.

Therefore s is a solution for Pα. �

6.4.2 Calculating Possibly Strictly Optimal

We can also determine if some decision in CSD(R) is possibly strictly optimal, i.e.,

there exists f such that for all β ∈ CSD(R) \ [α], α < f β . For some α ∈ CSD(R),
we have a set Qα of linear inequalities which is defined as follows.

Definition 6.16 » Set of linear inequalities Qα for PSO(R)
To calculate if some α ∈ CSD(R) is possibly optimal, let Qα be a set of linear

inequalities where we have:

(i) wi < w j, for all i, j ∈ T ′, where i < j and,

(ii) ω(α)<ω(β), for all β ∈ CSD(R). «

Then if Qα has a feasible solution, then there exists some weights that make α < β

for all β ∈ CSD(R), i.e., α is possibly strictly optimal.

To solve this, we again create a linear program Qc
α

as follows:

Definition 6.17 » Linear program Qc
α

for PSO(R)
To calculate if some α ∈ CSD(R) is possibly strictly optimal, we create linear program

Qc
α

from set of linear inequalities Qα, where c > 0 is some arbitrary strictly positive

real number, e.g., we can set c = 1, and

(i) for any constraint in Qα in the form of Definition 6.16 (i), i.e., wi < w j, we

have a constraint in Qc
α

with the form w j −wi ≥ c, and

(ii) for any constraint in Qα in the form of Definition 6.16 (ii), i.e., ω(α)<ω(β),
we have a constraint in Qc

α
of the form ω(β)−ω(α)≥ c. «

We then solve the linear program Qc
α
, and this has a solution if and only if Qα has a

solution, which gives us that α is possibly strictly optimal. We have the following

result.
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Proposition 6.10 » Calculating PSO(R) result

For α ∈ CSD(R), with set of linear equalities Qα and linear program Qc
α

with

c > 0, we have that

— Qα has a solution if and only if Qc
α

has a solution. �

Proof: This is proved in a similar way to Proposition 6.9. First we show that

for α ∈ CSD(R), if Qα has a solution, then Qc
α

has a solution. Suppose that for

α ∈ CSD(R), Qα has a solution s. Now let δ1 = mini, j∈T ′,i< j ws
j − ws

i, and let δ2 =
minβ∈CSD(R)ω

s(β)−ωs(α). Now we set δ =min(δ1,δ2), and as before, let λ= c
δ .

We define s′ as a function such that for all wi ∈ {wi : i ∈ T ′}, we have s′(wi) =
λws

i = ws′
i . Then we have for all i, j ∈ T ′, where i < j, ws′

j − ws′
i = λ(w

s
j − ws

i) =
c
δ (w

s
j−ws

i)≥
c
δδ = c. Thus we have for all i, j ∈ T ′, where i < j, ws′

j −ws′
i ≥ c. Since

we have for solution s that for all β ∈ CSD(R),
∑

i∈υ(α)w
s
i <

∑

i∈υ(β)w
s
i, and since

for all i, j ∈ T ′, where i < j, we have ws′
j − ws′

i ≥ c then we have for s′ that for all

β ∈ CSD(R),
∑

i∈υ(β)w
s′
i −

∑

i∈υ(α)w
s′
i ≥ c, i.e., ωs′(β)−ωs′(α) ≥ 0. Thus, s′ is a

solution for P c
α
.

Now we will show that, for α ∈ CSD(R), a solution of Qc
α

is also a solution of Qα.

For α ∈ CSD(R), suppose s is a solution for Qc
α
. Then for all β ∈ CSD(R), we have

ωs(β)−ωs(α)≥ c, so we have ωs(α)≤ωs(β). We also have for all i, j ∈ T ′, where

i < j, ws
j −ws

i ≥ c. Since c > 0, then for all i, j ∈ T ′, where i < j, we have ws
i < ws

j.

Therefore s is a solution for Qα. �

6.5 Experimental Results

In this section, we calculate the optimality classes CSD(R), PO(R), PSO(R), and

NO(R) for some randomly generated and benchmark constraint problem instances.

To solve these problems, we use the soft constraints solver implementation as detailed

in Section 5.6, which was extended to calculate the MODS optimality classes for

the Sorted-Pareto MODS R. The branch and bound algorithms from Section 5.4

are used to generate CSD(R) and NO(R), and to generate PO(R) and PSO(R) the

solver creates and solves linear programs, as detailed in Section 6.4.

In the tables of results, we use the following notation for each optimality class. We
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let CSD denote the set CSD(R), and we let CSD[] denote the set of equivalence

classes of CSD(R). To relate this notation to that used in the results in Section

5.7, CSD is the same as OSP, and CSD[] is the same as O[SP], since we have that the

Sorted-Pareto optimal decisions OSP are those that are undominated with respect to

≺N, as given in Proposition 4.2. Similarly we let PO denote the set PO(R) and PO[]
the set of equivalences classes of PO(R), and so on.

6.5.1 Random Problems

In this section, we look at the results for some of the sets of random problem

instances as used in the experimental result section in Chapter 5. Table 6.1 shows

the average size of the optimality classes and the average number of equivalence

classes for each of CSD(R), PO(R), PSO(R) and NO(R), for the instances in Set

B (see Table 5.1), where there are 50 random instances for each of problem size

n = 20, 24, . . . , 40. For NO(R), in the table we show the number of instances where

NO(R) is not empty (NO 6= ;), and the average number of solutions given for NO(R)
is over the number of non-empty instances, denoted by 〈NO〉∗.

In these problems, it can be observed that PO(R) is usually smaller than CSD(R),
with PSO(R) usually smaller again. In nearly all cases NO(R) is empty, so in these

cases there does not exists a necessarily optimal solution.

Table 6.1: The average size of the optimality classes and the average number of
equivalence classes for each of CSD(R), PO(R), PSO(R) and the number of instances
where NO(R) is non-empty, for the randomly generated problems in Set B, where there
are 50 random instances for each of n= 20, 24, . . . , 40.

Set B n= 20 n= 24 n= 28 n= 32 n= 36 n= 40

〈Sol〉 44260.48 125977.84 356328.00 764423.20 1218371.52 1462344.32
〈CSD〉 50.90 89.12 141.18 154.26 316.20 335.18
〈CSD[]〉 18.66 21.32 16.62 13.90 11.22 9.58
〈PO〉 44.74 76.48 120.30 142.62 304.80 309.22
〈PO[]〉 16.84 18.34 14.64 12.66 10.48 9.02
〈PSO〉 43.90 73.68 120.26 142.62 304.80 309.22
〈PSO[]〉 16.68 18.22 14.62 12.66 10.48 9.02

NO 6= ; 1/50 0/50 0/50 1/50 0/50 1/50
〈NO〉∗ 4 - - 3 - 64

* average over instances where NO is non-empty

Table 6.2 shows the average size of the optimality classes and the average number of

equivalence classes for each of CSD(R), PO(R), PSO(R), for the instances in Set C

(see Table 5.1), where there are 50 random instances for each of sc = 5, 10, . . . , 30.
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Again for the NO(R) case, we show the number of instances where NO(R) is not

empty (NO 6= ;), and the average number of solutions over the non-empty instances,

denoted by 〈NO〉∗.

Often NO(R) is non-empty, indicating a single equivalence class of necessarily

optimal solutions, and in these cases we have CSD(R) = PO(R) = PSO(R) =
NO(R), by Proposition 6.8.

Table 6.2: The average size of the optimality classes and the average number of
equivalence classes for each of CSD(R), PO(R), PSO(R), and the number of instances
where NO(R) is non-empty, for the randomly generated problems in Set C, where there
are 50 random instances for each of sc = 5,10, . . . , 30.

Set C sc = 5 sc = 10 sc = 15 sc = 20 sc = 25 sc = 30

〈Sol〉 188787.52 188787.52 188787.52 188787.52 188787.52 188787.52
〈CSD〉 8470.96 1084.80 214.08 84.24 53.90 24.10
〈CSD[]〉 1.10 1.32 1.56 1.84 2.24 2.30
〈PO〉 8470.96 1084.80 211.68 81.08 53.90 21.70
〈PO[]〉 1.10 1.32 1.54 1.82 2.24 2.18
〈PSO〉 8470.96 1084.80 204.96 72.80 40.08 20.48
〈PSO[]〉 1.10 1.32 1.48 1.66 2.00 2.02

NO 6= ; 45/50 34/50 27/50 21/50 8/50 13/50
〈NO〉∗ 8170.40 870.71 178.89 41.10 10.50 5.77

* average over instances where NO is non-empty

6.5.2 Non-random Problems

Table 6.3 shows the optimality classes CSD(R), PO(R), PSO(R) and NO(R) for

the modified WCSP instances from the CELAR Radio-Link Frequency Assignment

problem (RLFAP problem) [Schb] used in Section 5.7.4.

In these benchmark instances, PO(R) is usually smaller than CSD(R), but there

are no instances in which PSO(R) is smaller than PO(R). In all of these instances,

NO(R) is empty.
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Table 6.3: The size of the optimality classes and the number of equivalence classes
for each of CSD(R), PO(R), PSO(R), and NO(R) for the modified instances from the
CELAR Radio-Link Frequency Assignment problem benchmark, where hard constraints
have been added to limit the number of solutions to around 100, 000.

Name |Sol| |CSD| |CSD[]| |PO| |PO[]| |PSO| |PSO[]| |NO| |NO[]|

CELAR6-SUB0* 101660 17 9 16 8 16 8 0 0

CELAR6-SUB1* 91562 35 32 13 13 13 13 0 0

CELAR6-SUB2* 100783 20 20 11 11 11 11 0 0

CELAR6-SUB3* 96611 23 19 21 17 21 17 0 0

CELAR6-SUB4* 91994 36 27 15 13 15 13 0 0

CELAR7-SUB0* 91010 11 9 8 6 8 6 0 0

CELAR7-SUB1* 97437 19 17 12 10 12 10 0 0

CELAR7-SUB2* 93569 31 29 16 16 16 16 0 0

CELAR7-SUB3* 101851 42 34 22 17 22 17 0 0

CELAR7-SUB4* 97185 26 23 15 12 15 12 0 0

6.6 Discussion

One possible approach to choosing which decisions to present to a decision maker is

to calculate CSD(R) first, and from this set, NO(R) can be easily derived. If NO(R)
is not empty, then there are one or more equivalent decisions which are preferred

to all other decisions for any choice of function f : T → R+, and these are prime

candidates for presenting to a decisions maker.

However, if NO(R) is empty, then PO(R) or PSO(R) can be computed and presented,

these sets are often much smaller than CSD(R). PO(R) is the set of decisions that

are min-sum optimal for some possible choice of function f : T → R+, and thus are

good candidates to present to a decision maker. If the PO(R) set is large, and there

is a small number of equivalence classes, then a representative solution for each

equivalence class could be chosen to present to a decision maker, since this would

give a decision maker a choice between non-equivalent solutions that are possibly

min-sum-optimal.

6.7 Chapter Conclusion

In this chapter, we looked at an instance of the multiple-ordering decision structure

framework from Chapter 4 which captures the relationship between the Sorted-

169



6. SORTED-PARETO DOMINANCE AND

QUALITATIVE NOTIONS OF OPTIMALITY 6.7 Chapter Conclusion

Pareto dominance relation and Min-sum of weights relation as given in Section 5.3,

and we examined the notions of optimality from the framework that are applicable

to the Sorted-Pareto case. Specifically, we look at decisions that are undominated,

i.e, CSD(R), the solutions that are optimal and strictly optimal in one (or more)

scenarios, i.e., PO(R) and PSO(R) respectively, and the solutions that are optimal

in all scenarios, i.e., NO(R). We explore the relations between these notions of

optimality and show how to compute them for the Sorted-Pareto ordering and

the min-sum of weights case. The experimental results show, that in some cases,

NO(R) is non-empty, and these are the decisions that would be of most interest to a

decision maker. However, in other cases, no such decisions exist, and then PO(R)
and PSO(R) are of interest to a decision maker since these are the decisions that

are optimal or strictly optimal in some scenario.

As discussed in the introduction to Sorted-Pareto dominance in Section 2.6.5, and

in the given semantics for the relation in Section 5.3, Sorted-Pareto dominance

connects with weighted constraint satisfaction problems (WCSP), or similarly, with

generalised additive independence (GAI) decompositions, where a problem has

only weights on an ordinal scale T ; each such problem has a set of compatible

proper weighted constraints problems, based on mapping the ordinal scale T → R+.

Sorted-Pareto is also connected to Bayesian Networks, where in a given network

we only have ordinal probabilistic information and therefore we have an associated

set of compatible Bayesian Networks. In a Weighted CSP with ordinal weights, the

decisions that are possibly optimal, PO(R), are those that are min-sum optimal in

some compatible weighted constraints problem, and in a Bayesian Network with

ordinal probabilities, the possibly optimal decisions are those assignments that are

most probable in some compatible Bayesian Network.
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7.1 Introduction

In this chapter, we conclude the thesis. The outline of the chapter is as follows. In

Section 7.2 we look at a couple of possible future directions for some of the material

in the thesis. The first is an extension of Sorted-Pareto dominance that also considers

the relative importance of the decision aspects, and the second is a framework for

uncertain softness soft constraints. In Section 7.3 we give a brief summary of the

work, and some final remarks.

7.2 Possible Future Work

In this section, we look at some possible future directions for the work in this thesis.

The first possible future work is an extension to Sorted-Pareto dominance relation

which takes into account the relative importance of the decision aspects. The second

is a framework for uncertain soft constraints incorporating Sorted-Pareto constraints

problems and interval-valued constraints problems (see Section 4.6.2).

7.2.1 Lex-Sorted-Pareto Dominance

First we consider another extension to the Sorted-Pareto dominance relation. Con-

sider for some multi-aspect decision problem 〈A,S, T,≤〉, there is further ordinal

information available on the importance of the aspects, for example, representing

a situation where the aspects might be states that are much more likely to occur,

or criteria that are much more important. This is similar to the approach taken by

[Jun04] for handling preferences between criteria in multi-criteria problems, and to

Lexicographic Constraint Satisifaction Problems in [FHWW10].

We give a definition of Lex-Sorted-Pareto dominance as follows. First, let L =
{L1, . . . , Lk} be an ordered partition on the set of aspects S, where each i ∈ S
appears in only one L ∈ L. The Lex-Sorted preference vector υ↑L(α) of a decision

α ∈A is given by,

υ↑L(α) = (υ
↑
L1
(α),υ↑L2

(α), . . . ,υ↑Lk
(α))

where each υ↑Li
(α) is the sub-vector of υ(α) consisting of the preference values

of the aspects in Li. Then a decision Lex-Sorted-Pareto dominates another if and

only if there exists j ∈ {1, . . . , k} such that for all i < j, υ↑Li
(α) = υ↑Li

(β), and
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υ↑L j
(α) < υ↑L j

(β). This means that for the two decisions being compared, the sub-

vector of the most important preferences are compared first, and if these sub-vectors

are equal, then the preferences of the next most important aspects are considered,

and so on.

In the general constraints problems considered in this thesis, there is no ordering

or importance given to the soft constraints, i.e., we have no partition L of the

decision aspects S, so a possible future direction of the work in this thesis would

be the extension of the constraints framework to include this sort of importance

information, for which a preference relation like Lex-Sorted-Pareto dominance could

then be implemented.

7.2.2 Uncertain Soft Constraints

As we saw in Chapters 5 and 6, the Sorted-Pareto preference relation can be used in

situations of decision making under uncertainty, where we are uncertain about the

actual numerical preference values but where instead we have a totally ordered set

of qualitative preference degrees, for example, for a qualitative scale of costs we have

a low cost is preferred to a high cost. Interval valued soft constraints [GPR+10b], as

seen in Section 4.6.2, associate a preference interval rather than a single preference

level to an assignment, which caters for decision making where there may be some

imprecision or uncertainty around the actual numerical value and instead allows a

range of preference values to be specified.

We propose in brief, as a possible area for future work, the development of a soft

constraints framework which captures constraints that associate either a qualitative

preference level (such as in the Sorted-Pareto constraints problem) or an interval

valued preference level (such as in Interval valued soft constraints) to variable

assignments or tuples in a given problem. Then the different notions of optimality

discussed in Chapters 4 and 6, and those in [GPR+10b], would then apply. This

approach described is also related to Stochastic Constraint Programming [Wal02]
and Mixed Constraint Satisfaction [FLS96]. The future work in this area could

involve the development of such a framework, and the implementation of different

algorithms, such as in the spirit of those that are described in Section 5.4, to solve

such Uncertain Soft Constraints problems.
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7.3 Final Remarks

In a decision making problem, a preference relation is an ordering over the set of

decisions, and when this ordering is not complete, we cannot compare each decision

with one another. Such situations occur where there are multiple criteria in which to

evaluate the decisions, or different possible states of the world to consider. In other

situations we may only have qualitative (rather than quantitative) information, and

sometimes this is because qualitative preferential information can be more reliable

or easier to elicit than quantitative information. In any such case, we may end up

with an ordering on the set of decisions which is only a preorder or a partial order,

and we could have no single best decision. In Section 1.1, we introduced the thesis

by asking what we should do in these decision making situations where there is not

a single best decision. When we are supporting a decision maker, how do we choose

what decisions to present to the decision maker? In the remainder of this section

we look back over the work in the thesis to try and answer this question.

In Chapter 2, we gave definitions for some of the different types of preference or

preorder relations, and described some of the properties of these relations. We

described the notions of strict preference, where a decision is strictly preferred

to another, and equivalence, where two decisions are equally preferred. The best

decisions are the ones that are preferred to (or dominate) all other decisions, and in

the case where a preference relation is not complete, the optimal (or undominated)

decisions are the ones such that there are no other decisions that are strictly preferred

to them. We looked at an extension to a preference relation, and we saw that

extending the strict part of a preference relation resulted in a smaller optimal set

for that extension.

We considered decision making problems where we have multiple decision aspects

resulting in multiple preference values for each decision, i.e., where we have a vector

of preference values for each decision. In such situations, the Pareto dominance

relation is often used; it prefers decisions that are at least as good in every aspect,

and strictly better in at least one aspect, and therefore, decisions that are Pareto

optimal are desirable. The Sorted-Pareto dominance relation, which extends Pareto

dominance, can be used in qualitative decision making situation where we can

make the preference scales in each aspect commensurate, and where the ordering

of the decision aspects (and resulting preference vectors) does not matter. Since

Sorted-Pareto dominance extends Pareto dominance, then the resulting Sorted-

Pareto optimal set for any problem is a subset of the Pareto optimal set.
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We explored the connection between Sorted-Pareto dominance and other preference

relations, such as Minimax, Lexicographic-Max ordering, Maximin, and Leximin,

which are qualitative preference relations that also use a reordering of the preference

vectors. We saw that these orderings can ignore preference values, known as “the

drowning effect”, and that Sorted-Pareto dominance considers all the values in

the preference vectors when comparing decisions, which could be important in

the context of supporting a decision maker and presenting decisions such that

any preference values are not ignored. We also compared Sorted-Pareto to other

preference relations which rely on quantitative information, such as relations that

rely on a sum of weights, ordered weighted averages, and generalised Lorenz

dominance. If the information available is of a quantitative nature then we could

use such preference relations, however Sorted-Pareto only requires a qualitative

scale and often this information is easier to elicit or more reliable.

In Chapter 3, we looked at hard and soft constraints, which are a natural way to

model a decision making problem. A constraints problem specifies a set of variables,

and the relationships between the domain values of the variables are modelled

with constraints. The hard constraints specify the combination of domain values

(or tuples) that are allowed, and the soft constraints associate preference values

to tuples. Therefore we have a collection of preference values associated with

each decision or solution to the problem, and as such we can use a soft constraints

framework to model our decision making problem.

We looked at different constraints formalisms for hard and soft constraints, such

as general frameworks like semiring constraints framework, and more specific

frameworks such as weighted constraints satisfaction problems, and we looked at

the preference relations associated with each formalism and the notion of optimal

solutions for constraints networks. We also described some methods on how to solve

constraints problem, focusing mainly on depth first search and depth first branch

and bound search, algorithms which generate a set of best or optimal solutions

to the problem. We looked at some consistency techniques which remove domain

values that are inconsistent with the hard constraints of the problem, and we looked

at how to generate a lower bound preference level for the soft constraints to help

eliminate unnecessary dominance checks.

In Chapter 4, we looked further at the notion of optimal in decision making prob-

lems. We considered a decision making situation where we only assume qualitative

information, i.e., we do not assume quantitative values or that we have a preference

vector for each decision. In this setting, we have a set of decisions, and multiple
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scenarios which each give a total preorder on the set of decisions, i.e., a decision

is preferred, strictly preferred, or equivalent to every other decision in a scenario,

and we called this a multiple-ordering decision structure (MODS). In this structure,

we defined preference relations where a decision dominates (or strictly dominates)

another decision in all scenarios, and decisions that are equivalent in all scenarios.

In the MODS framework, we investigated the different natural optimality classes

that occur in this setup:

• decisions that dominate (or strictly dominate) all others in all scenarios, i.e.,

necessarily optimal (or necessarily strictly optimal),

• decisions that dominate (or strictly dominate) all others in some scenario, i.e.,

possibly optimal (or possibly strictly optimal),

• decisions that for every other decision there exists a scenario in which it can

dominate (or can strictly dominate) that decision,

• decisions that are optimal in a maximal set of scenarios,

• decisions that are extreme decisions.

We provided some discussion on each of these optimality class, for example, the

necessarily optimal decisions are the ones that are the optimal in every scenario,

but often this class will be empty. In Theorem 4.1 we gave the precise subclass

relationships between these classes. We also looked at how the subclass relationships

simplified under additional conditions. When there exists a necessarily optimal

decision, then the subclass relationships collapse to a chain. Given the relationships

between these optimality classes, the set of decisions can be organised in such a

way that they are categorised according to the minimal class in which they belong,

which could be a useful information to present to a decision maker.

In Chapter 5, we looked further at the Sorted-Pareto dominance preference relation,

giving some further properties. As well as considering Sorted-Pareto as a preorder on

a set of decisions in a decision problem, we gave a characterisation of Sorted-Pareto

as a partial order on multisets of preference values. The Sorted-Pareto dominance

relation is unaffected by permutations, i.e., the orderings of the preference vector

is irrelevant, and this is important in the context of soft constraints, where we can

view the input as being a multiset of soft constraints. We also gave an important

semantics for Sorted-Pareto dominance, as a relation that is consistent with any

choice of weights function that maps an ordinal scale to a numerical one. We defined

the Sorted-Pareto dominance constraints problem, based on the soft constraints
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framework given in Chapter 3.3, and we looked at some different algorithms for

generating a set of Sorted-Pareto optimal solutions. We looked at a naive generate

and test algorithm, a depth first branch and bound algorithm with lower bound and

a depth first branch and bound algorithm with an upper bound. We also looked at

how equivalent solutions could be handled within the algorithm, instead of checking

if a solution is dominated by each solution in the optimal set, the algorithm can

maintain a map of preference levels to undominated solutions, where we have a

single preference level mapping to a set of equivalence solutions.

The experimental results in Chapter 5 show that for a given set of problems the

Sorted-Pareto optimal set of solutions is much smaller than the Pareto optimal

set. The equivalence handing algorithms perform much better than the set-based

algorithms, and the performance is related to the average sizes of the equivalence

classes. We also saw that the size of the preference scale and the number of soft

constraints in the problem affected the resulting number of Sorted-Pareto optimal

solutions. We performed a comparison between the sizes of the Sorted-Pareto

optimal solution sets and the Lexicographic-Max optimal solution sets; as a total

preorder the Lexicographic-Max optimal sets were much smaller, but as seen in the

comparision between Sorted-Pareto and Lexicographic-Max, the Lexicographic-Max

preference relation can ignore preference values, so we may not want to present

these to a decision maker if our decision maker is concerned about considering all

preference values. For a smaller set of optimal solutions we saw that the Minmax-

Sorted-Pareto optimal set is smaller than the Sorted-Pareto optimal set, and these

solutions do not ignore any preference values.

In Chapter 6 we returned to the MODS framework from Chapter 4. Given the

semantics for Sorted-Pareto in terms of a relation that is consistent with any choice

of weights function that maps an ordinal scale to a numerical one as seen in Theorem

5.2, we looked at an instance of the MODS framework which captures this semantics,

where a scenario corresponds to a choice of weights function. We looked at the

optimality classes that apply to the Sorted-Pareto MODS:

• decisions that are min-sum optimal for any choice of f (NO(R))

• decisions that are strictly min-sum optimal for some choice of f (PSO(R)),

• decisions that are min-sum optimal for some choice of f (PO(R)),

• decisions that are min-sum preferred to every other decision in some choice

of f (CSD(R)).
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Given that we can calculate CSD(R) using our branch and bound algorithm for

generating the Sorted-Pareto optimal set, we looked at how to calculate PSO(R) and

PO(R) for the Sorted-Pareto MODS, using a linear program solver. The experimental

results showed that NO(R) is often empty, but for some instances a necessarily

optimal solution did exist. The possibly optimal solution set PO(R) was often much

smaller than CSD(R), and these solutions would be good candidates to present to a

decision maker, since they are possibly min-sum optimal for some choice of f .

In summary, in this thesis, we have looked at some different notions of optimality

in qualitative and partially ordered decision making settings. We have shown that

the Sorted-Pareto dominance relation is a natural preference ordering and we have

provided some different characterisations of it. We have shown how it can be applied

and computed in a soft constraints setting, and we have analysed theoretically and

experimentally different notions of optimal solution in this context. We would argue

that these notions of optimal solution for Sorted-Pareto would be of interest when

choosing decisions to present to a decision maker.

The work in the thesis forms a framework for qualitative decision making, and

situations and applications where we have only qualitative information can often

naturally occur in decision making and decision support, for example, recommender

systems. We argue that in these situations, our framework provides a useful presen-

tation of the different notions of qualitative optimality for a decision maker, and by

using the Sorted-Pareto dominance relation and computing associated optimality

classes, this gives a decision maker some appropriate information in order to aid

their choice.
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