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ABSTRACT 

Alcohol use disorder (AUD) has been associated with impairments in social and emotional 

cognition that play a crucial role in the development and maintenance of addiction. Repeated 

alcohol intoxications trigger inflammatory processes and sensitize the immune system.  In 

addition, emerging data points to perturbations in the gut microbiome as a key regulator of 

the inflammatory cascade in AUD. Inflammation and social cognition are potent modulators 

of one another. At the same time, accumulating evidence implicates the gut microbiome in 

shaping emotional and social cognition, suggesting the possibility of a common underlying 

loop of crucial importance for addiction. Here we propose an integrative microbiome neuro-

immuno-affective framework of how emotional dysregulation and alcohol-related 

microbiome dysbiosis could accelerate the cycle of addiction. We outline the overlapping 

effects of chronic alcohol use, inflammation and microbiome alterations on the fronto-limbic 

circuitry as a convergence hub for emotional dysregulation. We discuss the interdependent 

relationship of social cognition, immunity and the microbiome in relation to alcohol misuse- 

from binge drinking to addiction. Additionally, we emphasize adolescence as a sensitive 

period for the confluence of alcohol harmful effects and emotional dysregulation in the 

developing gut-brain axis. 
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1. INTRODUCTION 

Alcohol use disorder (AUD) is a multifaceted psychiatric condition influenced by 

environmental factors [1] and genetic components [2], that has been associated with 

widespread cognitive deficits [3]. Only recently, impairments in social and emotional 

functioning -accompanied by alterations in underlying fronto-limbic circuits- have emerged 

as a key factor for the development and chronicity of the disorder [4-6].  

Over the past number of years there is a growing realisation that repeated drinking and 

withdrawal cycles enhance neuroimmune signaling in the brain and peripheral inflammation 

[7]. Alterations in dopamine, glutamate and γ-aminobutyric acid (GABA) release are linked 

to chronic alcohol exposure [8]. In particular, dopaminergic decreases in the reward system 

and recruitment of brain stress neurotransmitters, play a role in the progression form positive 

to negative reinforcement [9]. These psychoneuroimmunological neuroadaptations promote 

emotional dysregulation -and further inflammation- contributing to the development of AUD 

and related affective co-morbidities [10, 11].  

New data point to perturbations in the gut microbiome- the trillions of microorganisms 

residing in our gut- and intestinal permeability as key regulators of the inflammatory cascade 

in AUD [10, 12]. Indeed, we are witnessing the rise of studies that aim to understand the role 

of the gut microbiota in drug addiction, and particularly in AUD [13, 14]. At the same time, it 

is being increasingly recognized that gastrointestinal microbes can influence the social brain 

and behaviour [15, 16]. The fronto-limbic circuitry constitutes a crucial target for low-grade 

systemic inflammation [17]. This brain network -and in particular the amygdala- is also a 

focal point through which the gut microbiota modulates social behaviour [18]. Perturbations 

in both the intestinal mucosa and the community of microorganisms colonizing the gut [19] 

might accelerate the cycle of addiction via metabolic and inflammatory pathways that 

translate into augmented emotional and social cognition impairments, promoting negative 

reinforcement processes.  Here we propose a microbiome neuro-immuno-affective 

framework to advance the understanding of the mechanisms that might fuel the transition 

from binge to addiction by linking the social brain and the distant gut microbiome.   

The social brain shows marked development during adolescence [20], which is considered to 

last up to 24 years of age in terms of both biological growth and major social role transitions 

[21]. Among young people, drinking to intoxication or binge drinking (BD) is the most 

prevalent pattern of alcohol consumption (National Institute on Alcohol Abuse and 
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Alcoholism [NIAAA], 2004) [22]. Previous studies have demonstrated the particular 

sensitivity of the adolescent brain to repeated alcohol intoxications and the risk for future 

addiction [23]. Although the literature on the neurocognitive consequences of BD has 

traditionally focused on emotion-independent cognitive functions; the study of deficits in 

social cognition in binge drinkers (BDs) has gained increased interest [24]. Fronto-limbic 

brain regions implicated in emotional functioning -including the amygdala- exhibit dramatic 

neuromaturational changes during adolescence [20, 25] and have known connections with the 

immune system and the microbiome, both of which are still developing [26, 27]. The 

adolescent years are characterized by emotional fluctuations and increased stress reactivity, 

which creates the perfect context for disturbances [28]. Therefore, BD-related emotional 

dysregulation is likely to be augmented by both the disruption of neurodevelopmental 

processes and overlooked factors in the refinement of the gut-brain axis communication, 

together with the added effect of typical emotional fluctuations and the co-occurrence of 

social stressors. 

 

In this review, we synthetize the literature -from BD to AUD- describing deficits in social 

cognition and emotional functioning and the underling alterations in fronto-limbic circuitries. 

Then, we provide an overview of the links between alcohol and the immune system and the 

implications of the co-regulation of inflammation, drinking and social behaviour. Based on 

the emerging biology of the gut-brain communication, we discuss its role in shaping 

cognitive networks that encompass social and emotional functioning. We present an in-depth 

analysis of alcohol-related alterations in the gut microbiota and their clinical implications. By 

integrating seemingly disparate areas of research (e.g., microbiology, psychology, 

immunology) we explain how fronto-limbic anomalies are at the centre of a feed-forward 

loop that is likely to accelerate loss of control over drinking and promote co-occurring mood 

disorders. We discuss the implications of our framework for the aetiology and pathogenesis 

of AUD in the light of classical addiction theories to delineate future directions. Finally, we 

highlight the special case of adolescence as a period in which alcohol-related social deficits 

are likely to be amplified causing an allostatic load that may act as an open door to addiction 

and psychopathology. 

 

2. SOCIAL COGNITION, GENERATION AND REGULATION OF EMOTIONS  
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Central to our framework is the concept of emotional dysregulation which has served as an 

umbrella to unify varied alterations in emotional functioning in many psychopathological 

disorders (e.g., anxiety or personality disorders) including AUD. In order to overcome the 

non-specific nature of this term, we describe alterations across all facets of emotional 

dysregulation -social cognition, generation and regulation of emotions-, both in AUD and 

BD, and the implications for drinking escalation.  

2.1 SOCIAL COGNITION 

Social cognition refers to the ability to make sense of the world through processing signals 

generated by other members of the same species and modifying our behaviour accordingly 

[29]. Social cognition encompasses two main components, namely emotional processing and 

theory of mind [30] and involves a network of fronto-limbic brain areas (principally 

dorsolateral prefrontal cortex, orbitofrontal cortices, amygdala and anterior cingulate cortex) 

[25].  

2.1.1 EMOTIONAL PROCESSING  

Emotion decoding skills are crucial for navigating social interactions. Impairments in 

decoding basic and especially complex emotions have been consistently reported in 

individuals with AUD, in terms of overestimation of socio-affective information signaling 

social threat and misinterpretation of emotional facial expressions as negative [4, 31, 32]. 

Accordingly, a recent meta-analysis found that facial emotion recognition was significantly 

impaired in patients with AUD for negative emotions, principally for anger, but also for 

disgust and fear [33]. In addition, others have argued that when using more complex 

paradigms patients show impairments not only for negative emotions but also for positive 

ones [34]. These emotional decoding disruptions are not exclusive to visual modality, in fact, 

impairments in recognizing emotions have also been observed for voices, body postures and 

musical excerpts [35-37]. In the same line, individuals with AUD do not seem to benefit from 

crossmodal processing facilitation (i.e., emotional information presented through multiple 

sensory modalities) [38-40]; which, together, suggest a generalized emotional decoding 

impairment in AUD individuals. 

Alterations in brain activity associated with emotional facial processing -specially for 

negative emotions- have also been reported by electrophysiological studies in AUD [41,42], 

that seem to persist with midterm abstinence [43]. These deficits originate earlier in the 
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cognitive stream, at the attentional level (N2b/P3a attention orienting complex) and extend to 

later decisional levels (P3b) [41, 42]. The greater the deficit for N2b/P3a (indexing the 

recruitment of attentional resources to switch and orient the attentional focus towards new or 

relevant stimuli) in AUD individuals, the greater the deficit for P3b, suggesting an 

accumulative influence of early attentional difficulties on later decisional processes [42]. 

Neuroimaging studies in AUD have also shown structural and functional abnormalities in 

brain regions involved in emotional processing, such as the prefrontal cortex (PFC; 

particularly the orbitofrontal region), the limbic system (including the hippocampus and 

amygdala), and the insula [44-46]. The amygdala is a critical structure of the social brain 

implicated in processing salient stimuli, especially negative stimuli, and it is also related to 

stress responsiveness through activation of neurohormonal systems [47]. Convergent 

evidence shows that alcohol (both acute and long-term consumption) alters amygdala 

reactivity to emotional stimuli [46, 48-51]. The severity of the disorder appears to be 

particularly associated with greater hyper-responsiveness of the amygdala to emotional 

stimuli [52], suggesting that repeated cycles of intoxication and withdrawal lead to increased 

bottom-up responsiveness and hyperexcitability [53]. Some inconsistencies (e.g., over-

responsiveness versus under-responsiveness) may respond to long-term neural adaptations in 

the extended amygdala [53]. 

Preliminary findings in young BDs seem to mirror –to a lower degree- the difficulties in 

emotion decoding found in AUD. Indeed, BDs present poor emotional decoding 

performance, especially in the recognition of negative stimuli [24, 40, 54-56] but also 

positive stimuli [57]. Adolescents who started drinking alcohol at an early age have increased 

threat-related amygdala and ventral striatal activity and higher levels of stress, indicative of 

relevant developmental effects [6, 58] 

2.1.2 THEORY OF MIND 

Theory of mind (ToM), which is the ability to attribute mental states (intentions, feelings or 

beliefs) to self and others, enables individuals to successfully adapt to social interactions [59]. 

ToM is a broad concept usually subdivided into two different aspects: affective and cognitive 

ToM, which involve tasks requiring the decoding of others’ emotional or cognitive states, 

respectively [33, 59]. AUD individuals appear to display a particularly severe disruption for 

affective ToM [4, 60]. Findings are in accordance with brain imaging studies revealing 

structural and functional changes in critical networks for ToM (namely, ventromedial and 
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dorsolateral prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala and insula) 

[61-63]. The strong links among ToM compromise and chronicity, amount of alcohol 

consumed or craving, underscore the clinical prognostic relevance [4, 64]. Emerging findings 

in BD [65, 66] also point to a dissociation between cognitive and affective ToM in this 

population, the latter being the most affected [66]. This apparent “continuum” reinforces the 

hypothesis that similar deficits are expected across different alcohol-related disorder stages.  

2.2 EMOTIONAL REACTIVITY  

Research in the area of emotional reactivity (i.e., intensity of emotions) show that individuals 

with AUD present higher subjective emotional reactivity than controls in response to aversive 

tasks [67,68], basal hyperactivity of peripheral stress markers, accompanied by hypoactivity 

in response to stress and alcohol cues [69]. A lower ability to withstand negative emotional 

states, also termed distress tolerance [70], has been frequently reported in AUD [71, 72]. 

Individuals with lower distress tolerance may attempt to avoid aversive states by pursuing 

negative reinforcement opportunities (i.e., escape/avoidance) through drinking intoxications, 

resulting in a vicious circle [70]. Similarly, adolescent BDs appear to display heightened 

emotional reactivity and poor distress tolerance to stressful tasks [73, 74], that improved after 

an abstinence period [75], suggesting a causative effect. 

2.3 EMOTIONAL REGULATION 

Emotion regulation is a multifaceted process by which individuals successfully modulate the 

intensity of emotions and modify emotional reactions to accomplish goals [76]. Substance 

use can be a maladaptive emotional regulation strategy [77], and impulsive drinking is one of 

the most common examples [78]. Some individuals show a tendency to act rashly when 

experiencing strong positive or negative emotions, referred to as positive and negative 

urgency [79]. While BD has been associated with both forms of impulsivity [79, 80], 

negative urgency seems to be more strongly linked with problematic alcohol consumption 

[81, 82].  

On the continuum of impulsive/controlled emotional regulation strategies [83], the pole in 

which controlled processes dominate, refers to affective control (i.e., application of cognitive 

control to affective contexts [84]). Strong evidence supports the association of AUD and BD 

with impairments in controlled processes, principally in response inhibition and interference 

control, but also in self-monitoring processes in working memory and cognitive flexibility 
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[45, 85]. The imbalance in affective control systems (enhanced bottom-up emotional 

processing and diminished top-down regulation) has been extensively studied in relation to 

cue (drug/alcohol) reactivity (e.g., dual process model [86]); but is relatively unexplored in 

relation to emotional reactivity. Emerging data points to difficulties in affective control of 

emotional stimuli in both AUD individuals and BDs [87-90]. In this line, neuroimaging 

studies have revealed that alcohol-related impairments in executive functions seem to 

contribute to the dysregulation of the extended amygdala [91, 92], which may promote 

negative emotional states difficult to inhibit at later stages of the addiction cycle [9]. Like 

alcohol-related stimuli, emotional stimuli might activate craving-related regions in AUD, and 

the urge to consume alcohol [93]. Paralleling findings from AUD, young BDs also display 

decreased recruitment of executive control regions due to the interference of negative content 

[94, 95]. A deeper understating of the role of affective control deficits in relapse risk for 

AUD and a better characterization of such difficulties in young BDs from a developmental 

perspective are needed (see Table 1 for proposed future directions on this topic). 

 

3. INFLAMMATION: FOCUS ON THE SOCIAL BRAIN  

3.1. ALCOHOL AND THE IMMUNE SYSTEM 

Innate immune signaling (pathways of immune-to-brain communication can be found in 

Table 2) is an important feature in the pathophysiology of many disorders, including AUD. 

Ethanol activates the peripheral and central immune systems in multiple ways [7]. Even after 

a short exposure, there are significant changes in the upregulation of immunity, such as 

increased microglial markers [96], that seem to persist over time [97]. After chronic 

administration, alcohol sensitizes the neuroimmune system to subsequent inflammatory 

stimuli [98]. Apart from a direct interaction of ethanol with neuronal and immune brain cells, 

a large contribution of neuroinflammation originates in the periphery [7, 19]. The most 

extensively studied inflammatory pathway in AUD is the Toll-like receptor 4 (TLR4) 

signaling pathway, which is critical for ethanol-induced neuroinflammation, brain injury, and 

possible neurodegeneration [99, 100].  Part of the pro-inflammatory effects of chronic alcohol 

are due to impairments of the gut barrier function or “leaky gut” [19]. Alcohol disrupts gut 

tight junctions, allowing the passage of bacteria and endotoxins (such as lipopolysaccharide 

[LPS]) across the gut wall, that enter the liver via portal circulation and release of 

proinflammatory cytokines into systemic circulation (for gut-liver-brain interactions, see 
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[101]). The peripheral inflammatory response can then impact brain and behaviour through 

several routes (see Figure 1). AUD individuals present an increase in blood LPS levels and 

low-grade inflammation, both in non-cirrhotic and cirrhotic populations, compatible with 

increased intestinal permeability [10, 12]. It appears that a single BD episode in healthy 

subjects is enough to cause a rapid increase in serum endotoxin levels [102], whereas a 

regular BD pattern was associated with elevated pro-inflammatory markers in -otherwise- 

healthy young individuals [103]. In a sample of moderate drinkers, a single binge alcohol 

intoxication elicited changes in pro-inflammatory cytokines (IL-8 and TNF-α), six hours after 

the drinking episode [104]. Moreover, an earlier age of BD onset may be a risk factor for 

increased inflammation [100].  

Following a different approach, other researchers have suggested co-regulation, or in other 

words, immune signaling activation promotes alcohol consumption. Preclinical findings have 

showed that immune activation might be a relevant factor driving alcohol-seeking behaviour. 

Interestingly, inflammatory activation (a single injection of LPS) can produce long-lasting 

increases in alcohol consumption (up to 3 months) [105]. Peripheral inflammation plays an 

integral role during withdrawal, inflammatory markers (i.e., IL-1β and IL-8) have been 

shown to positively correlate with scores of anxiety and alcohol craving in detoxified AUD 

patients [12]. This association might be already present at early stages of alcohol misuse. In 

fact, changes in pro-inflammatory cytokines (i.e., IL-6) predicted alcohol craving in BDs 

[106]. Moreover, alcohol intoxication is a potent activator of the stress system 

(hypothalamic–pituitary–adrenal axis [HPA axis]), which in turn, results in failure to down-

regulate the inflammatory response [69], adding another factor to this negative feedback self-

regulation.  

3.2. BRAIN TARGETS FOR INFLAMMATION 

Numerous studies have confirmed the negative effects of peripheral inflammation in key 

brain areas for social cognition [17] (for immune-to-brain communication see Table 2). The 

amygdala is a central hub in this “neuroimmune network” [17, 107]. Acute inflammation has 

been shown to increase amygdala reactivity in response to stress [108]. Similarly, endotoxin-

induced inflammation enhanced neural responsivity in threat-related (e.g., bilateral amygdala) 

and reward-related (e.g., ventral striatum) brain regions, as well as in a region implicated in 

inferring mental states of others (dorsomedial prefrontal cortex [DMPFC]) [109, 110]. 

Focusing on ventral striatum as a key area for reward anticipation, another study 
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demonstrated that individuals exposed to endotoxin challenge showed significant reductions 

in activity related to reward cues [111]. The insula is a brain area highly involved in 

emotional processing of negative emotions [112] and has also been shown to be activated 

under inflammatory conditions [113].  Another major target for cytokines is the anterior 

cingulate cortex (ACC), a region involved in cognitive control processes, including 

performance monitoring and inhibitory control, with a crucial role in compulsive drug-

seeking behaviours [114, 115]. In addition, this region plays a role in regulating autonomic 

and neuroendocrine outflow- and, in turn, constitutes a potential neural hub to influence 

inflammation in the periphery [107]. Experimental data linking inflammation to deficits in 

social cognition are sparse. Exposure to an endotoxin inflammatory challenge (versus 

placebo) led to changes in ToM (Reading the Mind in the Eyes test) [116]. However, non-

social cognition was not assessed, limiting the specificity of the assumptions. From a network 

perspective, fronto-limbic regions implicated in social behaviour (including the amygdala, 

hippocampus, hypothalamus, insula, ventral striatum, medial prefrontal and anterior cingulate 

cortex) have been consistently involved in peripheral inflammatory physiology across 

neuroimaging studies [17], which appears to contribute to sensitization towards social threats 

and altered reward-related neural responding. This interconnected circuitry is a probable hub 

where the effects of alcohol and peripheral inflammation converge to produce disordered 

socio-affective behaviour. 

 

4.THE MICROBIOTA-GUT-BRAIN AXIS  

The microbiota-gut-brain axis is a bidirectional pathway of communication that encompasses 

the central nervous system, the autonomic and enteric nervous system, and the 

neuroendocrine and neuroimmune systems [117, 118]. It plays a key role in brain 

development and neuroinflammatory responses influencing cognition and emotional 

behaviour [16]. The bottom-up crosstalk between the gut microbes and the host implicates a 

vast array of signaling pathways, from neurotransmitters to inflammatory cytokines [119]. 

Conversely, neural signaling through top-down pathways can disrupt the intestinal barrier and 

alter the composition and function of the gut microbiota (for gut-brain communication 

pathways, see Table 3) [118]. 

4.1 INTESTINAL MICROBES AND BRAIN FUNCTION  

4.1.1 NEUROBIOLOGICAL LINKS 
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The gut microbiome and its metabolites are long-overlooked modulators of immune function 

[120]. In the first instance, the microbiome has a vital role in the early development of the 

immune system [121, 122]. For example, microglia from germ-free (GF) mice exhibited 

alterations that resulted in an impaired innate immune response, which was restored after 

treatment with microbial-produced metabolites (e.g., short-chain fatty acids [SCFAs]) [123]. 

Without the microbiota, certain TLRs are not fully expressed in the gut [120]. Compelling 

evidence points to gastrointestinal microbes as mediators of sustained inflammatory 

activation in mood disorders [119]. The microbiota has a profound effect in the development 

of the HPA axis and the stress response, a cross-talk that is bidirectional in nature [119]. In a 

milestone study, GF mice exhibited inflated HPA axis hyperactivity with elevated 

corticosterone levels in response to stressors [124]. Interestingly, this exaggerated HPA stress 

response was reversed by microbiome reconstitution at an early age but not later in life [124]. 

This time-sensitive efficacy hinted at the existence of neurodevelopmental windows. 

Microbiome-derived dysregulation of the stress response further impacts the immune 

response, causing an allostatic load [125]. Allostasis is a term that describes body 

adjustments in order to maintain homeostasis and it is thought to be coordinated by the 

activation of the HPA axis and its main end hormone cortisol. Such adjustments include 

shutting down activation of some immune mechanisms and regulation of systemic low-grade 

inflammation [126]. Altogether, there is strong evidence supporting that dysfunction of stress 

- and immune- systems may be dependent on a healthy gastrointestinal microbiota. 

Furthermore, gut microbes contribute to the production of potentially neuroactive molecules, 

including GABA and serotonin [127]. Of great importance for addiction is the increasing 

evidence showing that changes in gut microbiota composition influence dopaminergic 

neurotransmission [13, 128]. Dopamine is regarded as a main regulator of the 

mesocorticolimbic circuit, which is involved in reward responses. A recent investigation has 

found a gut-to-brain neural circuit that establishes vagal neurons as an essential component of 

the reward neuronal pathway, linking sensory neurons in the upper gut to striatal dopamine 

release [129]. Preliminary evidence indicates that drug-induced perturbations in the gut 

microbiota are linked to dopamine reductions in the striatum [130] and causally relate to 

neuroinflammation and deficits in reward responding [131]. Studies examining 

neurobehavioural responses to drugs showed that microbiome-depleted animals exhibited 

enhanced sensitivity to reward [132] and altered brain responses during withdrawal [133], 
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which indicates the need for research investigating the role of microbiome alterations in 

driving reward-seeking behaviours. 

4.1.2 THE FRONTO-LIMBIC SYSTEM 

There is an emerging consensus, at least from animal studies, that the gut microbiota plays a 

role in regulating early brain development [26, 134]. One brain region shown to be regulated 

by the microbiome is the amygdala [135]. The absence of the microbiome results in 

perturbations in the amygdaloid complex, such as enlarged amygdala volume and dendritic 

hypertrophy, and an overall increase in neural hyperactivity [136]. Several studies in GF and 

microbiome-depleted mice have shown changes in the amygdalar concentration of various 

brain chemicals and receptors, including brain-derived neurotrophic factor (BDNF) and N-

methyl-D-aspartate (NMDA) receptors, that contributed to increased risk-taking behaviour 

[135-137].   

The hippocampus is another limbic region tightly connected to the amygdala that also 

depends on input from the microbiome for normal development [138]. While the 

hippocampus is most notably known for its role in episodic and spatial memory; it also plays 

an essential role in emotional behaviours and neuroendocrine responses, modulating 

emotional regulation [139]. Early antibiotic depletion of the gut microbiome led to significant 

reductions in BDNF and monoamine neuromodulation function in the hippocampus (e.g., 

increased tryptophan and decreased kynurenine) [140], which could represent early evidence 

of microbial-neural critical windows. Similarly, manipulating the microbiome has been 

shown to alter neurogenesis and hippocampal gene expression involved in neural plasticity 

[141-143]. 

Another aspect of neurodevelopment shown to be partially regulated by the microbiome is 

prefrontal cortical myelination [142, 144]. The PFC is essential in cognitive flexibility and 

inhibitory control but also in emotion regulation [145]. Gut microbiota can modify the 

synthesis of key metabolites affecting gene expression in the PFC, subsequently altering 

social behaviour [146, 147]. Following these early rodent models, further replication will 

allow confirmation of the apparent contribution of gut microbes in shaping the development 

of the central nervous system. 

4.1.3 COGNITION AND BEHAVIOUR 
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Although inconsistencies are evident, the social dimension appears to be among the 

behaviours most intimately connected to a functional microbiome [16], including a pivotal 

role in disorders with persistent deficits in social skills (e.g., autism spectrum disorders 

[134]). Different studies using GF mice have demonstrated that animals completely lacking 

microbiota have impaired sociability and present deficits in the identification of social 

novelty [148, 149]. These findings have been corroborated in antibiotic depletion models 

across species [16]. Social behaviour and emotional functioning have been further 

investigated through the use of probiotics, i.e., live bacteria that, when ingested in adequate 

amounts, produce health benefits [150]. In different mouse models of autism, a probiotic 

administration could reverse observed social behaviour deficits and restore plasticity [151]. In 

a human placebo-controlled study, a probiotic intervention in stressed adults resulted in 

reduced levels of proinflammatory cytokines, lower anxiety scores and faster reaction times 

in an emotional recognition task [152]. In healthy participants, 4-week administration of 

probiotics was associated with changes in brain activation patterns related to emotional 

memory and emotional decision-making tasks [153]. Similarly, in healthy women the 

consumption of a probiotic for one month reduced task-related responses in a distributed 

brain network involved in emotional processing, including the insula and the PFC [154]. 

Animal studies have also shown that the microbiome may be necessary for adequate learning-

related plasticity in fear extinction behaviour [155, 156]. For example, GF mice show 

impaired maintenance of fear stimuli–response associations, regulated by altered gene 

expression in the amygdala, and these anomalies were partially reversed after microbial 

colonization [157, 158]. Microbiome manipulations reinforce the idea that microbial signals 

are important for the healthy neurodevelopment and programming of social cognition.  

Therefore, the fronto-limbic circuitry appears to be a convergence hub for the overlapping 

effects of alcohol misuse, inflammation and microbiome alterations, constituting an 

intertwined matrix that is likely to amplify emotional dysregulation (for proposed 

overlapping hubs see Figure 2). 

4.2 ALCOHOL EFFECTS ON GUT MICROBIOME 

Chronic alcohol consumption induces intestinal inflammation through various pathways, 

including increased permeability of the intestinal mucosa and changes in intestinal microbiota 

composition and function [159, 160]. Despite some inconsistencies, AUD seems to alter the 

balance between bacterial strains, decreasing the presence of beneficial bacteria (e.g., 
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Lactobacillus and Bifidobacterium) and increasing abundance of pro-inflammatory bacteria 

(e.g., Proteobacteria) [161-166], which create a state of microbial dysbiosis. Alterations in 

microbiota-generated metabolites have been reported (e.g., lower levels of indoles and 

reduced tryptophan biosynthesis [167]). Here, we will focus on AUD individuals without 

alcohol-related liver disease, as cirrhosis, rather than alcohol use, may be the primary factor 

influencing microbiome disturbances in such patients (for liver disease and gut microbiota 

see [101, 167]).  

 

The literature arising from preclinical studies has suggested a role for gut microbiota in the 

pathophysiology of alcohol addiction. Mice exposed to ethanol over four weeks showed 

notable changes in many bacterial taxa, particularly significant reductions in the genera 

Clostridium and a significant decrease in alpha diversity (an index of species richness) [164]. 

Mixed findings have been found in relation to alpha diversity (e.g., no differences [130] or 

higher species richness [162]). In a similar study, many genus level bacteria in order 

Clostridiales, family Ruminococcaceae and Lachnospiraceae, were positively associated to 

the severity of alcohol seeking [130]. Interestingly, microbiome alterations correlated with 

increased impulsive and compulsive behaviours, as well as with dopamine receptors type 2 in 

the striatum (i.e., D2R decreased mRNA expression) [130]. Reductions in striatal D2R has 

been proposed to modulate negative reinforcement processes implicated in impulsive and 

compulsive behaviours via striato-cortical pathways [114, 168]. In this vein, a recent study 

reported significant correlations between bacteria belonging to the families Ruminococcaceae 

and Lachnospiraceae with several addiction-related behaviours, principally increased 

impulsivity, inattention deficits and reward learning [169]. 

 

Only one study so far has investigated this issue in relation to a BD pattern during 

adolescence [170]. Using an intermittent ethanol model to mimic human adolescent BD, the 

authors found massive BD-derived microbial dysbiosis during adolescence. Importantly, 

some of these changes persisted into adulthood (e.g., decreased abundance of microbes from 

the Firmicutes and Bacteroidetes phylum) [170]. Another work on adult rats reported a 

decrease in gut microbial alpha diversity and Bacteroidales abundance after alcohol binge 

exposure [171]. This preliminary evidence seems to be in line with findings in chronic 

alcohol use [13, 162].  
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Although human studies are scarce, current data indicate that gut dysbiosis might be related 

to AUD symptomatology, especially craving and withdrawal responses [10]. Moreover, gut 

dysbiosis correlated with the duration of sobriety, suggesting long-lasting alterations that 

persist despite abstinence periods [163]. This assumption was corroborated in an elegant 

detoxification study [162]. After three weeks of detoxification, patients’ intestinal 

permeability was recovered but gut-microbiota composition and functionality remained 

altered. Those individuals with high intestinal permeability and microbiome dysbiosis 

(principally decreases in genera from the Ruminococcaceae family) also presented the 

highest scores of alcohol craving and anxiety [162]. This aligns with other studies showing 

alterations in bacteria from the family Ruminococcaceae associated with alcohol severity 

[130, 172]. Overall, these findings lead the authors to suggest that microbiota changes could 

have a role - together with inflammation - in negative reinforcement processes driving 

alcohol consumption [12, 162]. In this sense, many outstanding questions remain 

unanswered: Is it possible to identify a microbiome signature in AUD? Are microbial 

alterations in AUD associated with neurocognitive deficits in social cognition and executive 

functions? Can alterations in the gut microbiome -and its immunomodulatory metabolites- 

drive alcohol-seeking behaviours? 

 

As a causal tool to analyze the role of gut microbiota in brain functioning, two studies have 

employed a faecal matter transplant (FMT) from alcohol-fed mice to normal healthy control 

mice. This manipulation remarkably shaped the composition of gut bacteria and elicited 

withdrawal-anxiety signs [165]. Similarly, mice transplanted with microbiota from patients 

with severe alcohol-related hepatitis exhibited increased intestinal permeability and 

inflammation (in the liver and intestines) [172]. Intriguing results come from a recent FMT 

trial in males with AUD-related cirrhosis [173]. Patients were randomized into placebo or 

FMT enriched in Lachnospiraceae and Ruminococcaceae (deficient taxa in this population). 

The FMT was associated with short-term (15 days) increases in beneficial and butyrate-

producing genera accompanied by higher plasma butyrate. This intervention resulted in short-

term improvement in inhibitory control (measured by a Stroop task that lacks the classical 

interference index [neutral-conflict]) and reduced craving that negatively correlated with 

Ruminococcaceae genera. However, the long-term (6 months) stability of the findings was 

not assessed and no effects were observed in abstinence levels in the long-term [173]. 

Although promising, larger trials are needed to confirm and extend these (phase 1) findings. 

Finally, other interventions targeting the gut microbiota (psychobiotics) have reversed some 
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sequalae of alcohol misuse, which could hold potential for translation into new treatments 

(see Table 4).  

 

5.THE SPECIAL CASE OF ADOLESCENCE 

5.1 VULNERABILITY PERIOD FOR BINGE DRINKING 

Adolescence is a sensitive period for neuromaturational changes that are usually 

accompanied by unique stereotypical behaviours. The imbalance between a rapidly changing 

limbic circuitry and a relatively slower developing prefrontal circuitry leads to heightened 

limbic reactivity that is not effectively down-regulated, resulting in an immature affective 

control [77, 174]. These maturational processes are thought to underlie common adolescent 

characteristics such as emotional fluctuations, increased emotional reactivity, higher levels of 

negative mood and enhanced reward sensitivity [23, 174]. Affective processing– of both 

positive (e.g., rewards) and negative (e.g., threatening) stimuli- seems to peak in mid-

adolescence [174]. Compared with children and adults, adolescents show heightened 

amygdala activity to emotional cues and decreased fear extinction, mediated by changes in 

PFC-amygdala connectivity [20, 175]. Due to ongoing neuromaturational processes, the 

adolescent brain is particularly sensitive to repeated alcohol intoxications or BD [23]. 

Therefore, when combined with alcohol neurotoxicity, heightened emotional reactivity and 

poor affective control could create a perfect context for the emergence and exacerbation of 

emotional dysregulation; particularly, in the light of other relevant -but usually overlooked- 

developmental processes that are taking place during this sensitive window, that is, immune 

and microbiome changes. 

An additional vulnerability factor for the effects of BD might be the expected maturational 

changes of neuroimmune interactions during this period (e.g., synaptic pruning or 

fluctuations in neurotransmitter systems co-regulate immune signals) [176]. For example, the 

active pruning of glutamatergic synapses may be one potential mechanism by which blood 

brain barrier permeability could be altered during this period; facilitating the passage of 

immune molecules into the brain [176]. Adolescence is also characterized by developmental 

variations in sex hormones, which have well-known modulatory effects on brain function and 

physiological stress responses [177]. Another significant change is the marked shifts in HPA 

axis reactivity. Indeed, cortisol levels experience normative changes in adolescence, resulting 

in a prolonged HPA axis response compared to adults [28]. In addition, it is compelling to 
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note that these same brain-immune systems are - at the same time- involved in normal 

microbiome development; constituting another overlooked developmental factor. 

Although scarce, the studies comparing adolescents with children and adults revealed that 

adolescents’ microbiomes were distinguishable by changes in relative abundance and specific 

taxa in the gut, indicative of a gradual transition from childhood to adulthood rather than a 

distinct adolescent microbiome profile [178-180]. Based principally in early life studies, 

researchers have begun to propose microbial-neural critical windows [26, 124]. While more 

human studies are evidently needed, rodent models suggest that adolescence could represent 

a critical window during which the gut microbiome's colonization might impact the ongoing 

refinement of the central nervous system and the future emergence of socio-affective and 

stress�associated behaviours [27, 181, 182]. For example, antibiotic-induced depletion of the 

microbiota from adolescence alters immunological responses [183], monoamine and 

neuromodulation in the hippocampus and amygdala resulting in anxiety-like behaviours and 

social deficits in adulthood (altered social motivation and novelty preference) [140]. 

Adolescence may be also a period of opportunity for gut-brain connections [184, 185]. In this 

sense, GF mice that are colonized with commensal bacteria by adolescence- but not during 

adulthood- showed amelioration in different facets of socio-affective behaviour (e.g., reduced 

stress hyperresponsivity) [148]. These studies support the concept that homeostasis of central 

and peripheral neuroendocrine and immune responses, relies -at least partially- on the 

presence of a functional microbiota during critical windows of neurodevelopment. 

5.2. IMPLICATIONS FOR BINGE DRINKING 

Adolescent alcohol drinking contributes to the development and severity of AUD later in 

adulthood, particularly in those individuals who start drinking at an early age [23]. Rodent 

studies have demonstrated that adolescent alcohol misuse can reprogram brain development 

not only through inflammatory processes but also by decreasing neurogenesis and inducing 

changes in gene expression through epigenetic mechanisms (e.g., BDNF expression) in the 

amygdala and PFC [99, 186, 187], linked to persistent anxiogenic behaviour [188]. Human 

studies have also shown that a BD pattern of alcohol consumption during adolescence might 

alter developmental trajectories causing structural and functional alterations in prefrontal 

regions, accompanied by neuropsychological deficits in executive functions, particularly in 

inhibitory control [85, 189]. A growing number of studies in young BDs suggest specific 

difficulties for processing negative stimuli [24, 40, 54, 55], greater emotional interference 

[94, 95] and heightened reactivity [74]. In this vein, impairments in already immature 
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prefrontal control regions are likely to further fuel emotional dysregulation through poor 

affective control (see Table 4). Furthermore, alcohol is a potent deregulator of the HPA axis, 

a response that becomes adapted after chronic use resulting in blunted activity [69]; a similar 

disruption might occur in regular BDs [190]. Blunted cortisol responses have been associated 

with increasing alcohol craving and intake [190, 191] and are likely to play a role in alcohol-

related emotional dysregulation. This gains importance in the context of adolescence as a 

stressful developmental phase. 

Adolescence has been termed a “storm and stress” period, as young people usually have to 

face a variety of challenges and stressors, especially in the social domain [192]. Mild social 

stressors have rendered animals more sensitive to the rewarding properties of alcohol [193, 

194]. Stress and alcohol activate common neural circuits [195] that impact sensitivity to 

alcohol [193]. When experienced together, alcohol and stress might exert a cumulative effect 

altering reward sensitivity via perturbations in the mesocorticolimbic dopaminergic system, 

governing salience attribution and impacting alcohol sensitization [196], of crucial 

importance at early stages of drug use [196, 197]. Functional connectivity studies have 

revealed stress-induced hyperconnectivity between striatal and limbic networks but 

hypoconnectivity between striatal and control prefrontal networks, which contributes to 

sensitization and maladaptive responses to alcohol [198]. Neural sensitization leads to strong 

impulsive reactions (e.g., attentional biases and approach tendencies) to classically 

conditioned cues that signal alcohol or drugs, which might occur more rapidly during 

adolescence due to top-down imbalances in control vs. affective systems [199], in line with 

animal research [193]. 

The impact of stress in the immune system is a cornerstone of the gut-brain axis literature 

[125]. Potential alcohol-related perturbations in gut bacteria may further disrupt the 

homeostasis of central and peripheral neuroendocrine and immune responses, contributing to 

altering the trajectory of brain development and augmenting the vulnerability to emotional 

disturbances and loss of control over drinking. Human studies have shown that even a single 

BD episode was able to increase peripheral endotoxin levels [102], whereas a regular BD 

pattern was associated with alterations in cortisol levels and peripheral inflammatory markers 

and endotoxemia (e.g., LPS, cytokine IL-6) that correlated with poor executive functions 

[103]. Elevated levels of plasma endotoxin in BDs could be compatible with intestinal 

alterations both in terms of permeability and microbial dysbiosis (as seen in AUD [162]). 

However, this remains unexplored in young people with a BD pattern. Further support to this 
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hypothesis comes from a recent study revealing, for the first time, microbiome alterations in 

an animal model of adolescent BD, and part of these microbiome alterations appear to be 

relatively permanent, lasting until adulthood [170]. Therefore, it is plausible that even before 

a severe AUD develops gut permeability and microbiome dysbiosis are already present. This 

hypothesis holds relevant implications for adolescence as a “gut-brain” vulnerability window 

in which repeated alcohol intoxications are the most common pattern of alcohol consumption 

among youth. 

 

6. MODEL-BASED INSIGHTS  

The critical insight of this framework is an appreciation of microbiome-immune disruptions 

as mediators of fronto-limbic anomalies - especially in the amygdala- and derived emotional 

dysregulation (Figure 3). We situate these dysfunctions at the centre of a feed-forward loop 

that is likely to accelerate loss of control over drinking and promote comorbid 

psychopathology. We have based the present framework in the classical three-stage cycle 

model of addiction: binge/intoxication stage, withdrawal/negative affect stage and the 

preoccupation/anticipation stage [200, 201]. This model conceptualizes addiction as a cycle 

of spiralling dysregulation of brain reward and stress systems, resulting in compulsive drug 

use [202].   

A) The binge/intoxication stage is characterized by the positive reinforcing effects 

of drugs and increased salience [203], mediated by the mesocorticolimbic 

dopamine system [9].  

B) In the withdrawal/negative affect stage, negative emotional states such as 

dysphoria, anxiety or irritability -principally related to withdrawal- engage the 

activation of the extended amygdala, which drives negative reinforcement 

processes. Aversive emotional states are mediated by decreases in reward function 

and increases in the stress function (mainly the HPA axis) [204]. Stress is further 

argued to impact the addiction cycle creating an emotional dysregulation or 

allostasis underlying the pathology of addiction [202, 205].  

C) The preoccupation/anticipation stage involves prefrontal dysfunction that 

results in deficits in executive functions and failure in the down-regulation of 

reward responses [53]. This imbalance contributes to cue-induced craving (as the 
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central focus of most theories), a key element for the relapsing nature of the 

disorder [191].  

Previous considerations to expand the conceptualization of addiction have been focused 

principally on prefrontal dysfunctions (e.g., self-control [114] or impaired insight [206]). 

Here, we have moved beyond the prefrontal dysfunction hypothesis and deconstructed the 

concept of emotional dysregulation across all facets -social cognition, emotional reactivity 

and regulation. We overcome the non-specific nature of emotional dysregulation as an 

umbrella term by describing individual and added contributions of different cognitive 

functions and circuitry alterations that may underly negative reinforcement, from binge 

drinking to severe AUD. Hypoactivity of top-down control regions and hyperactivity bottom-

up salience regions such as the amygdala, seem to be a signature of addiction [207], resulting 

in poor affective control. We argue for a better understanding of affective control over 

stress/emotional stimuli (in contrast to the extensively studied drug-related cues) as a domain 

dysfunction that may hold promising clinical applicability, especially with regard to 

emotional/stress-induced craving and relapse. 

Following the concept of allostatic load, classically linked to malfunctions in the stress 

response, we have integrated the latest research in immune and microbiome disruptions as 

important and overlooked drivers of this gradual accumulation of alterations. We have further 

bridged the gap between the brain and the body by moving beyond the stress response and 

integrating putative mechanisms in the microbiota-immune matrix that may influence 

emotional dysregulation. From this broad conceptualization, we have described the effects of 

inflammation, microbiota dysbiosis and chronic alcohol use in the fronto-limbic circuitry as a 

proposed underlying hub for the summative effects of these forces in the spiralling cycle of 

addiction. 

Using this framework in the context of BD during adolescence, we articulated how this 

mutual-maintenance loop might explain addiction susceptibility. During the sensitive period 

of adolescence, overlooked factors in the refinement of the gut-brain axis, normative changes 

in emotional reactivity and expected stressors might contribute to the vulnerability of the 

adolescent brain to repeated alcohol intoxications and the risk of addiction (Figure 4). 

Although a strong case can be made for adopting this framework to improve our 

understanding of alcohol-related disorders, caution is advised for causality assumptions 

regarding microbiome-cognition associations. A promising future direction could be the 
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adoption of standardised multi-centre studies that allow for larger human data sets. A deeper 

characterization of the gut microbiome using shot-gun sequencing (as opposed to 16S 

sequencing) is encouraged. Among other advantages, it will provide a much more detailed 

profiling of the taxonomy of communities, particularly at the species and strain level [160]. 

Incorporation of nutritional information and collection of repeated faecal samples to account 

for intra-individual variability will progressively become the norm [208, 209]. The 

contribution of computational approaches [210] such as machine learning will allow for 

methodological advances in the integration of neuropsychological and multimodal imaging 

data with multiomics (e.g., metagenomic [composition] and metabolomics [function]) that 

will help elucidate patterns of microbiome-brain communication. 

 

7. CONCLUDING REMARKS 

Seemingly distant, yet deeply intertwined, the social brain, the immune system and the gut 

microbiome constitute a complex matrix that deserves further investigation in addiction. 

Departing from the classical theories of addiction, we have integrated the latest findings on 

immunology, microbiology and neuropsychology in relation to emotional dysregulation, in 

order to shed light on the neurobiology of drinking escalation and the development of 

comorbid psychopathology. The central consideration of this framework, is the argument that 

alcohol-related microbiome dysbiosis, together with social cognition deficits, might 

accelerate the transition to addiction through immuno-affective pathways. In addition, we 

provide a compelling argument for how this loop is likely to be amplified during the sensitive 

period of adolescence in the context of binge drinking. We argue that overlooked factors in 

the refinement of the gut-brain axis communication, together with typical emotional 

fluctuations and the co-occurrence of social stressors might contribute to the vulnerability of 

the adolescent brain to repetitive alcohol intoxications and the increased risk for addiction 

and mood disorders during these years. This framework will be a novel and important mean 

of testing hypotheses aimed at unravelling the interdependencies between these seemingly 

disparate domains and designing new therapeutic approaches that could have profound 

implications for advancing the understanding of addiction. 
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Figure Legends 

Figure 1. Effects of alcohol misuse in the gut-brain axis. Chronic alcohol consumption 
may impact inflammation directly at the brain level and in the periphery. Alcohol induces 
intestinal permeability and microbial dysbiosis that contribute to the inflammatory cascade. 
Damage to the intestinal epithelial layer causes the leakage (“leaky gut”) of bacterial products 
such as lipopolysaccharide (LPS) that can enter the blood and reach the liver. In response, 
immune cells secrete cytokines are transported via the blood stream to the brain causing 
neural damage that leads to cognitive and emotional impairments and sensitization of stress-
response pathways (hypothalamic pituitary adrenal [HPA] axis). Alcohol-derived alterations 
in stress and inflammatory responses may contribute to fronto-limbic alterations, resulting in 
emotional dysregulation. Alcohol-derived imbalances in the peripheral homeostasis might 
communicate to the brain through different routes, such as the vagus nerve, neurotransmitters 
or gut-derived metabolites such as short-chain fatty acids (SCFAs), see Table 3 for further 
details regarding communication pathways. 
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Figure 2. Overlapping brain hubs for the interlinked effects of alcohol misuse, 
inflammation and gut microbes. Alcohol misuse, inflammation and microbiome alterations 
are likely to impact the fronto-limbic circuitry as a convergence hub for emotional 
dysregulation. We highlight the summative effects on probable hubs including the amygdala, 
prefrontal cortex, hippocampus and the hypothalamic pituitary adrenal (HPA) axis, which at 
the same time, coincide with the main nodes for socio-affective networks. A) Alcohol misuse: 
Effects of alcohol misuse on socio-affective networks. AUD has been associated with deficits 
in emotional processing (misinterpretation and overestimation of emotional signals), social 
cognition (affective ToM) and exaggerated emotional reactivity. These difficulties are 
associated with abnormalities in different brain regions, principally orbitofrontal, 
ventrolateral and dorsolateral prefrontal cortex [oPFC, vPFC, dPFC], hippocampus [Hippo], 
hypothalamus [HPA axis], amygdala [Amg], anterior insula [Ant In], anterior cingulate 
cortex [ACC]). B) Inflammation: Brain targets for peripheral inflammation. Peripheral 
inflammation has been found to negatively affect several brain areas: bilateral amygdala, 
hippocampus, hypothalamus, ventral striatum (VS), insula, medial prefrontal cortex (mPFC) 
and anterior cingulate cortex. C) Microbiome: Gut microbes and derived metabolites as 
regulators of brain function. Gut microbiota and its metabolites appear to play a role in 
regulating social behaviour and brain development including: normal HPA axis and 
amygdala development, hippocampal monoamine concentrations and gene expression, 
prefrontal cortical myelination and dopaminergic neurotransmission in the mesocorticolimbic 
circuit. 
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Figure 3. Integration of the microbiome neuro-immuno-affective framework in the 
addiction cycle. The critical construct of this framework is an acknowledgement of 
microbiome-immune disruptions as potential mediators of fronto-limbic anomalies and 
derived emotional dysregulation in the alcohol addiction cycle. This model reconceptualizes 
emotional dysregulation in terms of deficits in social cognition, emotional processing and 
affective control that influence the development of alcohol-related disorders. At the 
binge/intoxication stage, alcohol use is mainly motivated by positive reinforcement (i.e., 
sensitization of incentive salience). Repeated intoxications might initiate microbiome neuro-
immune-affective imbalances that progressively feeds allostasis, contributing to alterations in 
fronto-limbic networks and early emotional dysregulation. At the withdrawal/negative affect 
stage, both negative affect related to acute withdrawal and lasting emotional disturbances 
may drive negative reinforcement processes that might be further exaggerated by 
microbiome-immune interdependencies. At the preoccupation/anticipation stage, impairments 
in top-down connectivity result in weakened affective control, with relevant implications for 
stress-induced craving and relapse. Underlying alcohol-related microbiome alterations might, 
therefore, contribute to a vicious circle of emotional dysregulation that is likely to accelerate 
the transition to compulsive alcohol use. 
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Figure 4. Adolescent vulnerability to binge drinking from a microbiome neuro-immuno-
affective perspective. Early binge drinking is a risk factor for the development of AUD (e.g. 
via epigenetic reprograming). During adolescence, maturational imbalances in fronto-limbic 
networks contribute to hyperemotionality that is not effectively down-regulated, resulting in 
poor affective control. The immaturity of the adolescent brain makes it more vulnerable to 
insults such as binge drinking (BD), which has been associated with alterations in fronto-
limbic networks accompanied by poor executive functions and deficits in emotional 
processing and social cognition. The ongoing development of the gut microbiome-brain 
communication appears to have important modulatory effects on immune and neuroendocrine 
responses, as well as on the normal development of socio-affective behaviour and fronto-
limbic circuits. BD-related microbiome disruptions could act as mediators of fronto-limbic 
anomalies and derived emotional dysregulation via neuro-immuno-affective pathways. This 
mind-body conceptualization gains importance in the context of adolescence as a stressful 
developmental phase. When experienced together, alcohol and stress might exert a 
cumulative effect altering neuroendocrine responses and salience attribution, fuelling further 
central and peripheral (i.e., immune/microbiome) alterations. Therefore, BD-related 
emotional dysregulation is likely to be augmented due to the disruption of 
neurodevelopmental processes and overlooked factors in the refinement of the gut-brain axis 
communication, together with the co-occurrence of typical emotional fluctuations and social 
stressors. These interactions might contribute to the increased risk of mood disorders and 
addiction susceptibility.  
 



EMOTIONAL DYSREGULATION IN ALCOHOL MISUSE: FROM GUT TO BRAIN 

58 
 

 

  

Table 1. Affective control in the context of alcohol misuse 

Affective control, or the down-regulation of automatic emotional responses, is central to 
emotional regulation and mental health [84]. Here we highlight the implications of affective 
control over emotional/stressful stimuli (as opposed to drug-related stimuli) for alcohol 
relapse and BD during adolescence. Although inhibition of emotional information is one of 
the main facets, it also encompasses various higher order cognitive functions, such as 
updating or shifting between emotional events, working memory (e.g., avoiding negative 
recurrent thoughts) and episodic memory control (e.g., controlling the retrieval of intrusive 
memories) [84, 211]. We propose to expand and adapt this topic to the alcohol field: (I) by 
addressing the effects of BD in the mechanisms supporting affective control. Affective 
control develops throughout adolescence until early adulthood [77]; therefore, frequent 
alcohol intoxications during this period may be a threat to future successful regulatory 
processes. (II) By exploring the role of affective control in emotional/stress-induced craving 
in relation to the escalation of addictive behaviour and relapse. (III) By investigating the 
potential efficacy of affective control training in the reduction of alcohol craving and 
immune/endocrine alterations. Cognitive control of emotional information could potentially 
be enhanced through neuropsychological training to reduce emotional/stress-induced craving 
and cytokine reactivity to emotional stress [106, 212].  

Prolonged alterations in social cognition and emotional regulation have been shown to alter 
immune signaling [213], exaggerated inflammatory responses, in turn, further dysregulate 
fronto-limbic systems in a vicious circle [17]. Some researchers have gone a step further on 
this complex co-regulation and investigated if greater efficiency in affective control could 
lead to reduced inflammation. Apparently, the answer might be yes; an efficient cognitive 
control of emotional stimuli could lead to reduced inflammatory responses and less reactivity 
to stress. For example, better cognitive control (emotional Stroop task) following a stressor 
(emotionally evocative video) was associated with lower pro-inflammatory cytokine 
reactivity to such emotional stressor, revealing the importance of control processes not only 
for self-regulation but also for inflammatory reactivity [212, 214]. An intriguing question is 
whether potential improvements in affective control training would be translated into 
amelioration of immune/endocrine alterations and reduced craving in AUDs and BDs. 
Examination of the generalisability of these findings to the alcohol field could hold clinical 
applicability. 
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Table 2. Immune-to-brain communication pathways 

A typical inflammatory response consists of inflammatory inducers, sensors detecting the 
inducers (i.e., receptors expressed by immune cells, including Toll-like receptors [TLRs]); 
and the release of inflammatory mediators such as cytokines and chemokines, (e.g., 
interleukin [IL]-1β, IL-6 or TNFα) [215]. The central nervous system has its own immune 
cells called microglia- resident macrophages of the brain- that respond to insults and 
peripheral inflammation up-regulating a number of cell surface receptors and increasing 
the production of cytokines and chemokines [216]. This neuroimmune activation, as well 
as the peripheral immune molecules that activate the immune cells in the brain, can cause 
significant tissue damage and cell death, particularly within the social brain [107, 215]. 
Brain responses to peripheral immune activity occur either via vagal afferents, directly at 
the blood brain barrier (BBB), or at circumventricular organs [17]. The vagus nerve is 
able to expresses cytokine receptors, is activated by peripheral inflammation, and this 
signal is transmitted to central brain regions involved in the regulation of emotional 
functioning [117]. Another potential route is via the BBB; peripheral cytokines can cross 
the BBB either by transport proteins or by diffusion in regions where the barrier is leaky 
such as the circumventricular organs [216]. Cytokines have been shown to deplete 
tryptophan and subsequently decrease serotonin production [217].  

Within the brain, inflammatory signals from the periphery influence local physiological 
processes such as neurotransmitter metabolism, long-term potentiation and synaptic 
plasticity [218]. Heightened activity of the immune system seems to particularly affect the 
structure and function of fronto-limbic brain regions, mainly through changes in levels of 
serotonin and kynurenine pathway metabolites and the dysregulation of the HPA axis 
[215]. 
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Table 3. Bidirectional pathways of the Microbiota-Gut-Brain axis 

The microbiota is a diverse community of trillions of microorganisms and their genes that 
reside in the gastrointestinal tract, including bacteria, fungi, and archaea [219], and 
outnumber human genes [220]. Communication via this axis influences health through 
vagal, neural, endocrine, and/or immune pathways [117]. Although, much remains to be 
understood about the mechanisms behind this cross-talk, proposed pathways include the 
vagus nerve, production of neurotransmitters, and gut-derived peptides such as ghrelin 
[221, 222], the stimulation of cytokine expression, and immune activation. 

The vagus nerve: The vagus nerve is a key branch of the parasympathetic nervous system 
and constitutes one of the main routes of bidirectional communication between the brain 
and the gut microbiome. The vagus nerve receives and responds to signals from bacterial 
metabolites and to the release of neurotransmitters such as serotonin; and its activation has 
marked anti-inflammatory effects [223]. 

Cortisol: The hypothalamic pituitary adrenal (HPA) axis represents the main efferent route 
from the brain to the gut. When activated, the resulting secretion of cortisol affects immune 
cell activity, locally and systemically [224]. Cytokines (particularly IL-1 and IL-6) 
produced in the gastrointestinal tract travel via the bloodstream to the brain and activate the 
HPA axis. Whereas pathogenic bacteria migrating out of the gut (through a weakened gut 
barrier or “leaky gut”) can trigger a proinflammatory cascade, beneficial bacteria can also 
trigger the release of anti-inflammatory cytokines [224]. 

Short-chain fatty acids (SCFAs): SCFAs, which include propionate, butyrate and acetate, 
are important microbial metabolites generated via the fermentation of non-digestible dietary 
fibers. SCFAs enter systemic circulation and have been shown to regulate the activity of the 
sympathetic nervous system [225]. SCFAs promote gut barrier integrity, gut immune 
homeostasis and modulate cytokine production. These metabolites are able to cross the 
BBB and have been shown to alter the maturation of microglia [226]. SCFAs might 
influence psychological functioning directly via humoral/immune effects or indirectly via 
interactions with histone deacetylases, G protein- coupled receptors, hormonal pathways 
[225] 

Tryptophan: Tryptophan is an essential amino acid precursor to many biologically active 
molecules such as serotonin. The enteric nervous system (ENS) produces an estimated 95% 
of the body's serotonin [118]. An adequate balance in the transformation of tryptophan into 
its metabolites kynurenine and serotonin is considered to play an important role in bacteria–
brain signaling, as microbes are important contributors in this metabolic pathway [226]. 

Neurotransmitters: Certain bacteria have the capacity to generate neurotransmitters and 
neuromodulators including GABA (e.g., produced by Lactobacillus); serotonin (e.g., by 
Enterococcus) and dopamine (e.g., by Bacillus). However, their impact on brain function is 
likely to be indirect by acting on the ENS [127]. 
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Table 4. Towards psychobiotics in alcohol use disorder 

Psychobiotics are live bacteria (probiotics) or dietary supplements (prebiotics), that when 
ingested, confer cognitive and mental health benefits [150, 227]. The restoration of the 
beneficial bacteria altered by chronic alcohol use (e.g., Bifidobacterium and Lactobacillus) 
via probiotic supplementation could ameliorate alcohol-derived damage [228]. Indeed, 
probiotic administration in mice prevents alcohol-derived inflammation, gut permeability 
and microbiome dysbiosis [161, 229, 230]. The very few studies conducted in humans 
show amelioration of alcohol-induced liver damage in patients with alcohol cirrhosis after 
probiotic interventions [231, 232]. In the alcohol field, less attention has been devoted to 
prebiotics. Prebiotics are dietary fibres that serve as nutrients for beneficial gut microbes 
(especially Bifidobacterium and Lactobacillus) and exert their effects through the 
production of beneficial metabolites such as short-chain fatty acids (e.g., butyrate) [233]. 
In rats, prebiotics improved alcohol-induced liver damage and bacterial overgrowth [234, 
235]. Prebiotics have been used in combination with probiotics to obtain a synergistic 
effect, referred to as synbiotics [236]. Synbiotics have been showed to improve hepatic 
function in patients suffering from cirrhosis [236]. Collectively, these studies support the 
therapeutic effects of psychobiotics as a co-adjuvant strategy in the management of some 
aspects of AUDs pathophysiology. However, no study to date has investigated the 
cognitive and psychological effects of psychobiotics in alcohol misuse. 

In healthy subjects, emerging studies investigating the link between pyschobiotics and 
cognition have focused principally on emotional functioning [227]. These preliminary 
studies suggest improvements in emotional processing [153, 154, 237] through modulation 
of emotional networks implicated in attentional bias and emotional reactivity [227]. 
Improvements have also been reported for reduced inflammation, lower stress reactivity 
and self-reported mood [152, 238, 239]. Nevertheless, considerable variability exists. 
Inconsistencies might respond to differences in doses or strain/composition, duration of the 
intervention and cognitive tasks employed. Larger sample sizes and randomized-placebo-
controlled trials employing sensitive neuropsychological tasks (e.g., alternate forms to 
avoid ceiling and practice effects) are needed. Future movement towards greater specificity 
will require replicable strain-dependent knowledge and new studies that mirror the 
microbial deficiencies of particular disorders for elaboration of precision probiotics [240]. 
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