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Summary

Uniformly Convergent Finite Element and

Finite Difference Methods for

Singularly Perturbed Ordinary Differential Equations

Guangfu Sun

Department of Mathematics

University College, Cork, Ireland

A thesis submitted for the degree of Doctor of Philosophy

August 1993

This thesis is concerned with uniformly convergent finite element and finite dif

ference methods for numerically solving singularly perturbed two-point boundary

value problems.

We examine the following four problems: (i) high order problem of reaction

diffusion type; (ii) high order problem of convection-diffusion type; (iii) second

order interior turning point problem; (iv) semilinear reaction-diffusion problem.

Firstly, we consider high order problems of reaction-diffusion type and convection

diffusion type. Under suitable hypotheses, the coercivity of the associated bilinear

forms is proved and representation results for the solutions of such problems are

given. It is shown that, on an equidistant mesh, polynomial schemes cannot achieve
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a high order of convergence which is uniform in the perturbation parameter. Piece

wise polynomial Galerkin finite element methods are then constructed on a Shishkin

mesh. High order convergence results, which are uniform in the perturbation pa

rameter, are obtained in various norms.

Secondly, we investigate linear second order problems with interior turning points.

Piecewise linear Galerkin finite element methods are generated on various piecewise

equidistant meshes designed for such problems. These methods are shown to be

convergent, uniformly in the singular perturbation parameter, in a weighted energy

norm and the usual L2 norm.

Finally, we deal with a semilinear reaction-diffusion problem. Asymptotic prop

erties of solutions to this problem are discussed and analysed. Two simple finite

difference schemes on Shishkin meshes are applied to the problem. They are proved

to be uniformly convergent of second order and fourth order respectively. Existence

and uniqueness of a solution to both schemes are investigated.

Numerica1 results for the above methods are presented.
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Chapter 1

Introduction

A singularly perturbed problem is a problem that depends on a parameter (or pa-

rameters) in such a way that solutions behave nonuniformly as the parameter tends

toward some limiting value of interest. Singularly perturbed differential equations

occur in many areas of application and have been widely considered both in uymp-

totic and numerical analysis. This thesis is concerned with finite element and finite

difference methods which are convergent, uniformly in the perturbation parameter,

for certain types of singularly perturbed two-point boundary value problems.

1.1 Singularly Perturbed Ordinary Differential Equa
tions

Consider the two-point boundary value problem consisting of the differential equa-

tion of order m

and the boundary conditions

B"u. ="ria, for k =1, ... ,m.

4
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Here t e (0,1] is a small parameter, Po (which is independent of t) is a linear or

nonlinear ordinary differential operator of order fRo « m) and the B. are auxiliary

functions.

Suppose that problem (1.1.1) has a solution _.(z). This solution depends not

only on the independent variable % but also on the parameter t. Let UI obeerve

the behaviour of _.(%). We start by examining the model ~ond order convection-

diffusion problem

-tu:(%) +u~(%) =0, for %e (0,1),

u.(O) =0, u.(I) =1.

The solution of this problem is

_.(%) =exp( -(1 - x)/t) - exp( -1/t).
1 - exp( -1 / t )

(1.1.28)

(1.1.26)

For any fixed x E [0, 1), the solution u.(x) converges to °as t -+ 0, but _.( 1) = 1

for all t E (0,1]. This indicates that u.(x) changes abruptly in a neighbourhood of

% =1 when t is small. The smaller t is, the worse u.(x) behaves. Problem (1.1.2)

is a singularly perturbed problem.

For the more general problem (1.1.1), the behaviour of the solution u.( x ) is more

complicated. Here we confine our discussion to singularities of the solution _.(x)

itself as t -+ O. ( For certain problems, e.g., Example 1.1.2 below, such singularities

occur not in _.(x) but in some of its derivatives.) Under appropriate conditions,

-.(%) will converge to a piecewise smooth function ..<x ) for any fixed x E [Xl, X2] as

t -+ 0, except for a finite set of points Xi (i =1, ... , I). We refer to the Zi &8 critical

points. The limiting function ..(x) is a solution to the reduced problem of (1.1.1).

This reduced problem consists of the reduced equation p.( tie, %) =0, obtained by
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letting t = 0 in (1.1.1a), and me conditions c:hoeen from (1.1.1b). For small t,

-.(z) changes rapidly on small regions adjoining the critical points. The location of

these critical points and the nature of the solution -.(z) Deal' them depend on the

character of the reduced operator Po and the boundary conditions (1.1.1b).

A critical point can be an endpoint of the interval [XttXt ]. In this case we say

that u. exhibits a boundary layer in a neighbourhood of the critical point. H the

point is in the interior of [Xtt X,], we say that .. has an internal layer at this poiDt.

Many approaches have been developed to derive asymptotic expansions for lOIu

tions to problems of type (1.1.1); see O'Malley [29], Smith [38], Wasow [51] and their

references. An asymptotic expansion is usually composed of an "outer solution" and

an "inner solution". The outer solution approximates the exact solution ..(z) weD

for valuel of z away from layen. The inner solution (a1Io known as a boundary or

internal layer function) describes the singular behaviour of the solution in layera.

The IOlution of problem (1.1.1) exhibit various singular behaviour in layera. Let UI

sives some examples which have different layer functions and which are typical of

the problems examined in this thesis.

Example 1.1.1 ContJe£tion-fliffusWn problem

-tu: +a(z)u~ +b(z)u. = f(z), for z E (0,1),

tDith ..(0) and u.(I) given, tDlaere a(z) ~ 0 > 0 for z E [0, I). This probkm htu •

boundary layer exp( -0(1 - z)/ t) of ezponential type .t z = 1.

Example 1.1.2 Linearized model of the ezteruible beam problem

-tu~4) + (a(z)u~)' + b(z)..~ = f(z), for z E (0,1),

I



where a(z) ~ 0 > 0 for % E [0,1], tDitla cltJmped 6nndG'lI contlitiom, i.e., ..(0),

_~(o), u.(I) arul _~(l) are given. Thy problem Au tflO bourulo,., ltJ,ef"ll

..(iexp( -O%/..{i) arul ..(iexp( -0(1 - a)/..{i) 0/ ezponential t",e.

Example 1.1.3 Simple attractive t"ming point problem

-EU: - zu~ +6(%)1£. = f(%), for % E (-1,1),

tDitla _.( -1) arul u.(I) given, tDlaere 6(a) ~ 0 aratl 6(0) > O. Thy problem Iuu an

intemalltJye,. (lzi +£1/2).\ of cup tJPe at z = 0, where ~ = 6(0).

Example 1.1.4 Semilinea,. reaction-diffusion problem

-EU: +6(%, u.) =0, for %E (0,1),

tDitla _.(0) aratla.(I) given, tDhere '.(z,u) ~ (j > 0/0,. all (a,_) E [0,1] x'R1 •

Thy problem #au tlfO 6o"ntla,., ltJye,.. exp( -oz/../i) and exp(-o(1 - z)/../i) of

uponential t",e.

Singularly perturbed problems of type (1.1.1) arise in many fields of application,

notably chemical-reactor theory, optimal-control theory, fluid mechanics, elasticity

theory and the physical theory of semiconductors and transistors. The purpoee

of this thesis is to develop numerical methods for solving certain cases of problem

(1.1.1).

1.2 Uniformly Convergent Numerical Methods

It has long been recognized that severe difficulties can arise when "standard" nu

merical methods are applied to problem (1.1.1) for small E. These difficulties often

result from the instability of the numerical process.
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Consider, for example, the model aerond order convection-difFusion problem (Ex

ample 1.1.1) with" =1= 0 and a constant. Suppoee that we use equidistuat meshes

with mesh spacing h. On this mesh, the standard central difference scheme sufFen

from spurious oscillations and is grossly inaccurate, unless ah/2E < 1. In other

words, a stringent restriction on the number of the mesh points is required to pre

serve stability when E is small.

To achieve stability without mesh restriction, one can Ule an upwinding scheme.

In fad, such a scheme is convergent &I h -+ 0 for any fixed E. However, in the typical

cue h ~ E, the scheme gives a Kood approximation of the behaviour of the exact

IOlution only outside the boundary layer. H a node lies inside the boundary layer,

the discrete solution at that node may be quite inaccurate when E is small.

We shall consider methods which are both stable and accurate for all £ e (0,1).

Consider a numerical method for (1.1.1). Suppoee that this method has a solution

"N. The method is said to be uniformly CORveJWelJt, with reaped to a norm 11·11, if

II_ - MNII-+ 0 as N -+ 00, uniformly in the parameter t. Here and subsequently, N

iI the number of subintervals in the mesh used. Furthermore, if lIa - uNIi ~ G,(N),

where G is a constant independent of N and E, we say that the method is uniformly

convergent with order ,(N).

Various approaches have heeD used to produce uniformly convergent methoda.

One approach is to work with a uniform mesh and ue special difference schemea

which take account of the nature of the solution to (1.1.1). Such scheme. are caIlec:l

fitted schemes. An alterna.tive is to devise polynomial-based methods on DODequidis

taBt special meshes. The construction of these meshes is based on the boundary and

internal layer functions.

8



Much research has been carried out on the uee of uniformly CODvefKent fitted

achemes for convection-diffusion problema such .. Example 1.1.1. See for example

Allen and Southwell [1), Doolan et ale (10), Gartland (16), Stynes and O'Riordaa

(43) and their references.

Problems like those in Examples 1.1.2-1.1.4 have been leu widely studied and it

is these types of problem which we shall examine in this thesis. (We sive references

to earlier work on such problems in the appropriate chapters below.) Since fitted

Idtemes are related to the 8Olution of the differential equation, they can be quite

complicated. This disadvantage makes it difficult to Ule fitted schemes to I01ve more

complex problems. For an example of this complexity in the context of higher-1)rder

problems, Bee Roo. and Stynes (35).

Consequently, instead of fitted schemes, we shall nle the alternative approach

outliDed earlier, of using simple schemes on special meshes.

Uniformly convergent polynomial-based methods on nonequidistant special

meshes date back to Bakhvalov [2], who introduced a graded mesh constructed by

a mesh~nerating function to solve a reaction-diffusioll problem. Based OR to

idea several modifications ud ~nera1izatioD8of Dakhvalov mesh were coutructed.

They were used in finite difference schemes for varioul singularly perturbed second

order problema of type (1.1.1); see Vulanovic [46,47,48] aad Her~ [21]. Gartland

[17] CODstncted and analysed a family of compact finite difference acheme. 08 an

exponentially graded mesh for higher order problems of the form (1.1.1).

Recently, Shishkin [37] propoeed a piecewile equidistant mesh suitable for sin

plarly perturbed problema with layers of exponential type. The mesh of ShishkiB

type is piecewise uniform and 80 much simpler than the graded meshes of the above



authors. We are not aware of any published work on finite element analysis of uni

formly convergent methods on special meshes for problems of type (1.1.1). This

leads u. to construct and analyse uniformly convergent POlynomial-based methods

on the meshes of Shishkin type for various .ingularly perturbed problems of type

(1.1.1), using for the most part a finite element framework.

1.3 Outline of Thesis

An outline of this thesis is as follows:

In Chapten 2 and 3 we consider high order problems of reaction-diffusion type

and convection-diffusion type respectively. Under suitable hypotheses, the coercivity

of the &88OCiated bilinear forms i. proved and representation results for the solution.

of such problems are given. Galerkin finite element methods based on piecewise

POlynomial test/trial functions and Shishkin meshes are constructed and proved to

be uniformly convergent in various norm•.

Chapter 4 investigates linear second order problems with interior turnins points.

Piecewise linear Galerkin finite element methods are senerated on various piecewiee

equidistant meshes desisned for such problems. These methods are shown to be

uniformly convergent in a weighted energy norm and the usual L2 norm.

In Chapter 5 we deal with a semilinear reaction-diffusion problem. A.ymptotic

properties of solutions to this problem are discussed and analysed. Two simple

finite difference schemes on Shishkin meshes are applied to the problem. Existence,

uniqueness and uniform convergence of a solution to both schemes are investisated.

Finally Chapter 6 draws lOme conclusions from oar work.

Notation: Throughout this thesis we let C, sometimes subscripted, denote a senene

10



positive constant that may take different values in different formulu, but is always

independent of N and E. We shall say that a quantity , is O( z) when we mean that

1,1 ~ C z for all sufficiently small z.

11



Chapter 2

High Order Reaction-Diffusion
Problems

2.1 Introduction and Background

Consider the singularly perturbed twcrpoint boundary value problem:

=fez), for z E (0,1),

,,(i)(0) = uU)(1) = 0, for j = O, ... ,m -1,

where m ~ 2 is an int~, E E (0,1] is a perturbation parameter, and

L1.. ;;; f:(-1 )...-10 ( 42(..._10)+1 ..(...-10+1) + 112(...-10)..(...-10)) (...-10) •

i=2

(2.1.1cz)

(2.1.16)

The functions ...(for r = 0, 1, ... ,2(m - I» and f are Ulumed to be sufficiently

.mooth with

AJ(_-l)(Z) > Q >° on [0,1],

and

4J(_-i)(Z) - ~a~__i)+l(Z) > o..-i, for k =2, ... , m,

12
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for all z E [0, I} and some constants a.-I =Q and a.-i (k =2, ... , m) satisfying

i

L a",-i > 0, for k =2, ... , m..-1 (2.1.1e)

Condition (2.1.1c) excludes turning points, while (2.1.1c) - (2.1.1e) will ~

sether guarantee the coercivity of the ueociated bilinear form, and hence the IOlv-

ability of the liven problem. We consider the homoseneous boundary conditiona

(2.1.1b), since non-homogeneous conditions u(;)(O) = AJ and u(;)(I) = BJ' for

j = 0, 1, ... ,m - 1, can be homogenized by the transformation i(z) = u(z) 

Ej:;I{(-lpA;~"'J(l- z)+ BJ~"'J(z)},where the ~"'J(') are defined by (2.5.39).

The solution of problem (2.1.1) has, in general, boundary layers at both end

points of [0,1]. More precisely, 1"("')(z)1 is unbounded in the neighbourhoods of

z = 0 and z = 1 as £ .... O. See (2.2.7) - (2.2.11) below.

If we formally set m = 1 in (2.1.1a), we have a model second order reaction

diffusion problem. For this reason we refer to (2.1.1) as being of reaction-diffusion

type. In chapter 3 we shall consider 2mth order singularly perturbed ordinary

differential equations which have a nonvanishing ,,(2M-I) term; we 8&Y that such

problems are of convection-diffusion type.

When m =2, (2.1.1a) is a variant of the Orr-Sommerfeld equation. This dif-

ferential equation also governs the deflection of an elastic beam with small flexural

rigidity under tension subject to a SPecified load !, according to the linearized Euler-

Bernoulli beam theory; see Semper [36]. The conditions (2.1.1b) correspond to the

ends of the beam being clamped.

In this chapter, we consider only "uniformly convergent" (also known as "ro-

bust"; see Babusb. and Suri [3]) methods; these are methods whose solutions con-

13



vel'8e to u, uniformly in E, in some norm.

The second order problem (m =1 and L1 == 0) has been extensively examined.

Ways of generating uniformly convergent, exponentially fitted schemes OD equidis

tant meshes are considered for example in Doolan et al. [10], Guo and Lin [19],

Hegarty et ale [20], Niijima [28], O'Riordan [30], O'Riordan and Stynes [31], R.ooi

[33] and Sun [44], while a uniformly conve~nt cluaical scheme OD a special mesh

may be found in Herceg [21]. In contrast, there are only a few results aD high order

problems in the literature (see Roos and Stynes [35] and its references).

Roos and Stynes [35] considered the fourth order problem

with

and

E2U(4) - (o(z)u')' +6(z).' +c(z)u =!(z), for % E (0,1),

u(O) = u'(O) = u(l) = .'(1) =0,

o(z) ~ 0 > 0,

(2.1.20)

(2.1.26)

(2.1.2c)

c(z)- ~6'(Z) ~ {j > -0. (2.1.2d)

This is the problem (2.1.1) with m = 2. In R.ooi and Stynes [35] an approximate

lO1ution is generated by usin~ patched basis functions. The method is uniformly fint

order convergent i. the Hl[O, 1] norm. It appears to be the only published scheme

whicll achieves this degree of accuracy for this problem. However, tbe scheme ia

quite complicated, since the patched basis functioas ,; are approximate lOlutions of

the problems

14



and

with some boundary conditions on each mesh interval.

Semper [36] also considered the problem (2.1.2). He examines piecewise poIy-

nomial finite element solutions on a quasi-equidistant mesh and Kivell the error

estimate

Vlill(u - uN)'II£2 +IIu - uNII£2 =O(H)+ O(£/H),

when £ < H, where u is the solution of problem (2.1.2), UN is a piecewise cubic finite

element approximation and H is the mesh diameter. Numerical results in Semper

[36] show that this estimate is sharp. Thus the numerical solution may exhibit a

significant order of locking; see Babuska and Suri [3], i.e., the order of convergence

obtained for small £ is significantly inferior to that obtained when £ = 1.

Gartland [17] studied compact finite difference schemes for differential operators

of the form
.-1

L.u == £U(·) + L a.u(·)
.=0

without turning points (i.e., 0..-1(Z) # 0 for all z) on a special graded mesh. His

results are based on the stability theory of Niederdrenk and Yserentant [27], whose

assumption that 0..-1 # 0 seems essential, so it is not possible to apply these results

directly to our problem (2.1.1).

In this chapter, we shall generate and analyse Galerkin finite element methods

for problem (2.1.1). First, in Section 2.2 we prove existence and uniqueness of a

eoIution to (2.1.1) and examine an asymptotic expansion of this solution. In Section

2.3, we consider equidistant meshes. We show (Lemma 2.3.1) that on an equidistant

15



meah standard polynomial (2m + I)-point difference schemel for (2.1.1) cannot be

uniformly convergent of O1'der greater than m - 1 in the discrete maximum norm.

Thus the optimal order of convergence is not attained. We also briefly discuss an

exponentially fitted scheme which for m = 2 is uniformly first order convergent in &

weighted energy norm and uniformly second order convergent in the usual discrete

maximum norm. In Section 2.4, we tum our attention to finite element methods.

Using piecewise polynomials as our basis functions on an arbitrary mesh, we obtain

a uniform error estimate. Section 2.5 contains an analysis of uniform convergence for

the finite element approximation when the mesh is of Shishkin type. This piecewise

equidistant mesh is much simpler than the ~aded meshes of Bakhvalov [2], Gartland

[17] and Herceg [21]; in general, it resolves part (but not all) of the boundary layers.

Furthermore, the resulting method has polynomial coefficients and is simpler than

that of Roos and Stynes [35]. We use a standard finite element analysis to prove that

the resulting method is uniformly convergent of order (N-Iln N)- with respect to

the weighted energy norm 111·111 associated with (2.1.1&). It does not seem possible

to use a standard duality argument to deduce a higher order of uniform convergence

in the H--I[O, 1] Sobolev norm 11·11_-1. We therefore employ another technique,

which is based on that of Stynes and O'Riordan [43], to show that our method is

uniformly convergent of order (N-Iln N)-+I in 11·11_-1. These uniform convergence

results are almost optimal (see Remarks 2.5.1 and 2.5.2). Our method is significantly

more accurate than those of Roos and Stynes [35] and Semper [36]; see Remark 2.5.3

below. Section 2.6 contains numerical results for the fourth order problem (2.1.2).

1.



2.2 Coercivity, Existence and Uniqueness

We analyze the properties of the continuous solution _ to problem (2.1.1). Let ua

first introduce some notation. We denote by (.,.) the LI(O, 1) inner product and

by HO = LI and H' (for k = 1, ... , m) the usual Sobolev spaces on [0,1]. The

norm on H' will be written as II . II" with the usual associated seminorm I . I"

for k = 0, ... , m. The essential supremum norm on L-[O, I] is denoted by 11·11••

For k =0,1, ... , m - 1, the maximum norm on C'[O,I] is denoted by 11·11,••, i.e.,

IIvll,.• =E:=o IIv(;)II., for all v E C'[O, 1]. Set

HO' = {v E H-: v(;)(O) =v(;)(1) =0, for j =O, ..• ,m - I}.

We define our bilinear form Ac(·,·) to be

where

-A1(v, 10) =L (42(__')+1v(_-'+l) +4t<__')V(--'), 10(--'») ,
'=2

for all v, to E Hr. Our weighted energy norm is given by

IIlvlll = {Ellvl:' + II v11:'-1 }1/1, Vv E HO'.

ha what follows we shall make repeated use of the fact that

1"1.-1 ~ Ivl., for. e {1, ... ,m} and all "E Ho· (2.2.1)

We begin the analysis by showing that the bilinear form Ac(·,·) ia continuous

and uniformly coercive over Hr x Hr.
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Lemma 2.2.1 A88ume that (!.l.lc) - (!.l.le) Iaold. Then then! emt po8itil7f! con-

stonts C1 and CJ 8uch that for all 17, to e Hr,

IA.(v, w)1 ~ C1111vlll·lllwlll

and

(2.2.2)

(2.2.3)

Proof. It is easy to see that (2.2.2) is true, using the Cauchy-Schwarz inequality.

For (2.2.3), we have for each 17 e HI"

'"
~ eJlvl:' +L a",_,lvl:'_"

'=1
by (2.1.1c) and (2.1.1d).

We now prove, by induction on r, that for r = 1, ... , m,

p j

L a,.-,Ivl:_, ~ 1~!~P L a,.-,Ivl:_l' Vve Ho·
'=1 -,- '=1

(2.2.4)

(2.2.5)

The case r = 1 is trivially true. Fix 8 e {I, ... , m - I}. Assume that (2.2.5) holds

for r =s. Then

.+1
L a.+l-,Ivl:+l_'
'=1

•
= a.lvl: +L o.-,Ivl:_,

'=1

~ o.lvl: + l~j~.{t ",.-.} 1171:-1'
-,- '=1

by the inductive hypothesis,

18



This proves the cue r = , + 1. By induction, the proof of (2.2.5) is complete.

Hence, (2.2.4) implies that

Ac("_") ~ £2f"f:' +1~~"{to..-.} 1"1:'-1

~ €21vl:' +m-1 1~~'"{t o..-.} IIvll:'-I'
-,- 6=1

by (2.2.1), which is the desired result with

C2 =min {l_m-ll~~"{to_-.}}. Cl

We can now define our weak formulation of (2.1.1): find U E H;:' such that

.4.(u,v) = (I, v), VvEH:'. (2.2.6)

Clearly, the mapping v ......... (I, v) is a bounded functional on H:'. Combining

this with Lemma 2.2.1, the Lax-Milgram Lemma tells us that (2.2.6) has a unique

solution v(z) in Hr. This weak solution is a1ao the classical solution to (2.1.1), if

all the data are smooth.

The reduced problem of (2.1.1) is (see O'Malley [29], p.42)

(_1)"'-1 (02(__1)Z(_-I») (_-1) +L1z = I(z), for z E (0,1),

Z<j)(O) = z<j)(I) =0, for j =O, ..• ,m - 2.
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From the proof of Lemma 2.2.1, we know that the reduced problem also has a unique

solution. It follows from Theorem 2 of O'Malley [29] that the solution u(x) of (2.1.1)

has the representation

u(:t) =G(:t) +£M-1G1(:t)exp (_~ /.8 ";a2(M_l)(S)dS)

+£M-1G,(:t)exp (-~11

";a2(M-l)(S)dA) , (2.2.7)

where the functions G, Gt, and G, have asymptotic power series expansions in E

and are sufficiently differentiable for x E [0,1]. For convenience we will write this in

the form

u(x) =G(x) +E(x) +F(x),

where for x E [0,1] and j = 0,1, ... , we have

1~;)(x)1 ~ C,

1E(;)( x)1 ~ CEfA
-

1-; exp (-ox / E) ,

1p(;)(z)1 ~ CEfA
-

1-; exp (-o(1 - z)/E) •

Thus, for x E [0, 1],

1u(j)(z )I ~ C, for j = 0, ... , m - 1.

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

2.3 A Necessary Condition on an Equidistant Mesh

In this section, we consider the numerica.l80lution of (2.1.1) on an equidistant mesh.

We show that, if a typical difference scheme is uniformly convergent of sufficiently

high order in the discrete maximum nonn, then certain coefficients of that scheme
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mUlt have an exponential nature. This generalizea & reault of Doolan, Miller and

Schilders [10], who considered the cue m =1.

Auume that G1(0) F 0 and GJ (I) F 0, so that lu"'(z)1 is not bounded uniformly

in £ for z =0 and z =1. (For otherwise the problem is better behaved and il easier

to solve numerically.)

Let the mesh be {Zi : z. =ih, for i =0, ... , N}, where N is a positive integer.

Let the difference scheme be

(-1)'" J .( )6
Jwa

uN (z,)
£ tI, P hJwa

+( -1 )"'-1 6",-1 (a2("'-1)( Xi )6"'-1 UN(z,»
hJwa- J

+LrUN(Z,) =f(z.), for i =m, ... , N - m,

with some appropriate discrete boundary conditions, where

6r(z,) == r(z, +h/2) - r(zi - h/2),

and Lr is any standard approximation to L1 satisfying

I(Lr - L1 )u(z,)1 ~ Mh, for i =m, . .. ,N - m,

with

M = max {\u(;)(z)\: for j = 0, ... , 2m - 2} .
O~.~l

We have

(2.3.1)

(2.3.2)

Lemma 2.S.1 Let u be tM solution of problem (!.1.1). lW:oll ovr 488umption tlaG'

G1(0) F 0 and GJ (I) F o. Let {UN(Z.) : i =0, 1, ... ,N} 6e G solution of (!.3.1).

Suppose tlaGt UN converges to u, uniformly in £, tDith order greater than m - 1 in t~
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tlUcrete mGZimum noma. Then lor fizetl p =h / e anti each fizetl i E {m, ... , N - m},

lim -,.( )= ( Po/2 )1 ( )
A-o v p sinh Po/2 2.3.3

anti

. ( 1'1/2 )1lim CTN-.(p) = . h /2 'A-o 81n 1'1
(2.3.4)

Prool. Fix p > 0 and i E {m, ... , N - m}. Since UN converges to u, uniformly in e,

with order greater than m - 1 in the discrete maximum norm, we have

LrUN(Z.) =Lru(z,) +o (h",-th-tM+1)

= Ltu(z.) + o (he-"'+t) +o (h-",+I) ,

by (2.3.2), with M ~ Ce-",+t from (2.2.8) - (2.2.11). Hence

since ILta(z,)1 ~ Ce-",+I, from (2.2.8) - (2.2.11).

Multiplying (2.3.1) by (-I)-hh-l, we obtain

(1~)62000uN(Zi) _ r-1 (a>(__l)(Z,)6"'-l uN(Zi»)

= (-1 )-hS.-1 (/(zs) - LrUN( za»)

(2.3.5)

Moreover, our assumption of uniform convergence with order sreater than m - 1

implies that
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aad

lim E--+1r-1 (02(__I)(zdr-tUN(Zi»
1&-0

= lim E--+1r-1 (02(__I)(zdr-tU(Zi» .
1&-0

On the other hand, from the decomposition (2.2.7),

and

lim E--+1ra-1 (02(__I)(Zi)r-1u(zd)
1&-0

=Gl(O)02(__I)(O)~h-2exp( -Poi).

Combining (2.3.5) - (2.3.9) yields

li () li {
p~~J.-2 exp( - Poi) p20(h-) }

m (I. p = m +-~----'--~--'----
1&-0 • 1&-0 ~J. exp( -Poi) E--1G1(O)f5J. exp( -Poi)

_ p~ exp( -Poi) (exp(Po/2) - exp( -Po/2»J.-2

- exp( -Poi) (exp(Po/2) - exp( -Po/2»J.

Po/2 I
=(sinh Po/2) .

(2.3.7)

(2.3.8)

(2.3.9)

which completes the proof of (2.3.3). Then (2.3.4) can be proven similarly. 0

An exponentially fitted scheme can be constructed in the following way on an

equidistant mesh. Consider a Galerkin finite element method with a bilinear form

bued on approximating the coefficients in (2.1.18,) by piecewise linean. The basis

functions are simplified i-splines defined by

2 (J.) - (:a.-I) 0
t 'P, - 02(_-I)'P, =,

with lOme boundary conditioDs, for k = 1, ... , N, where 42(_-1) is 8, piecewise

constant approximation of 42(_-1)(z). When m =2, this scheme is much simpler
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than that of R.oos and Stynes [35]. One can prove that it is uniformly first order

convergent in a weighted energy norm and uniformly IeCOnd order convergent in the

usual discrete maximum norm, by employinS an analysis similar to that of Stynes

and O'Riordan (43). However, the resultins scheme is still complicated because of

the exponential fitting factors. In Section 2.5, we shall show that one can obtain

uniformly convergent numerical solutions on a certain piecewise equidistant mesh

without requiring any exponential factors in the scheme.

2.4 A Galerkin Finite Element Analysis on an Arbi
trary Mesh

To construct a Galerkin finite element method for (2.1.1), we first work with a

seneral finittHlimensional approximation space SN ~ HO', on an arbitrary mesh

x N : 0 =%0 < %1 < ... < %N-l < %N =1.

Set "s =%. - Zi-l, for i =1, ... , N, and H =m&Xi "s. For each i, denote by Ii the

subinterval [Zi-l, zil.

To take into account the effect of quadrature errors, we define a modified bilinear

form A:(.,.) on Hi x HO' by

AN(" to) = or
J ("C",) wC"'») + (aN "C"'-I) 1"'-1») +AN(" to)• , - ~, 2("'-1)'10' 1"

where
'"

AN(" U7) =~ (aN ,,("'-'+1) +aN ,,("'-i) .,("'-i»)1 , - L..J 2(",-i)+1 2(",-i) ,
i=2

and 4:' denotes a piecewise polynomial approximatioa of ca,. for r = 0, 1, ..., 2(m -1)

respectively. For each r, these approximations are assumed to satisfy

1(4~ - ca,.) (z)1 ~ Ch~, for z e Ii and i =1, ... , N,
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where I i. a fixed positive integer.

It is easy to lee that the modified bilinear form A~( ., .) is uniformly bounded,

i.e.,

IA:'(v,w)1 ~ Clllvlll·lllwlll, \lv,VJ E Hl:.

We show that A:'(., .) is alto uniformly coercive over Hl: X Hl:.

(2.4.2)

Lemma 2.4.1 There emts a positive constant he (independent of e) 3uch tluJt for

H ~ ho, we have

Proof. Let v E Hr be arbitrary but fixed. Now

A:'(v,l1) = Ac(I1,v) + (A~ - Ac) (v, v).

For the second term of (2.4.3),

I(A~ - Ac) (v, 11)1

= I((a~"'_I) - a2(__I»)V(_-I), v(_-I») + (Ai" - AI) (v, 11)1

~ CH'lIvll:'_1

~ CH'lIlvI1l2
•

Combining this with (2.4.3) and Lemma 2.2.1 completes the proof. C

(2.4.3)

We are now in a position to introduce our approximate solution: find _II E sIt

IUch that

A~ (_", v) =(fll, v), Vv E SIt,

where fll il defined an~aly to a:' in (2.4.1).

It follows from Lemma 2.4.1 that _" is well defined.
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We begin the error analysis with a standard finite element estimate. We give

details of the proof here 80 the reader can see that certain constanta are independent

of t.

Theorem 2.4.1 Let U be tM solution of problem (!.1.1) and.N E SN 1M solution

of our method (!..l..1) on an arbitrary mesh X". Then

IIlu - uN1I1 ~ C inf Illu - "III +CN-'.
_eSIi

Proof. Let "E SN be arbitrary. Then by Lemma 2.4.1,

(2.4.5)

+A.(u," - UN) - A:'(UN," - UN)

= A:'(., - u," - UN) + ((a~__I) - 01(_-1») .(_-1), (v - "N )(_-1»)

+ (Af' - AI) (u, ., - UN) + (I - I", v - UN)

~ Clllv- ullI·lllv- uN1I1 +CN-'IIuII__l11" - uNII_-l

+CN-'II" - uNllo

~ C(III" - ulIl +N-') IlIv - uNIII,

usin~ (2.4.1), (2.4.2) and (2.2.12). Hence

Then

1111£ - .NIII ~ 1111£ - vIII + IIIv - "NIII

~ Cillu - vIII +CN-l.



Since t1 e SN is arbitrary, (2.4.5) follows. 0

2.5 Uniform Convergence Results on a Shishkin Mesh

For arbitrary meshes and general approximation spaces, (2.4.5) will not yield &

bound which is uniform in £. To achieve such uniformity (in various norms), we

shall work with piecewise polynomial spaces on a special piecewise equidistant mesh.

The construction and analysis of such meshes was initiated by Shishkin [37].

2.5.1 The Mesh

Given a positive integer N which is divisible by 4, the Shishkin mesh X!' is con

structed by dividing the interval [0,1] into three subintervals

[0,(7], ((7,1 - (7], and [1 - (7, 1].

Equidistant meshes are then used on each subinterval, with N /4 points on each of

[0, (7] and [1 - (7,1], and N /2 points on [(7,1 - (7]. The parameter (7 is defined by

(7 =min {1/4, (m + I)Q-l£ in N} ,

which depends on £ and N. More explicitly, we have

X:' :°= %0 < %1 < ... < %io < ... < %N -'0 < ... < %N = 1,

with ie = N/4,zio = (7, %N-ie = 1- (7, and

#at =4(7N-1, for i =1, ... , ie, N - ie + 1, ... , N,

#at =2(1 - 2t7)N-1
, for i =ie + 1, ... , N - ie.
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This mesh is much simpler than other graded meshes which have been used for

aiD«Ularly perturbed tWG-point boundary value problems, such as the Bakhvalov

mesh; see BakhvaJov [2] and Herceg [21], and the Gartland mesh [17].

We shall assume that

(2.5.3)

For otherwise E-1 ~ 4(m + 1)a-1 In N, i.e., N-l is small relative to E, which is

unlikely in practice (and in this case the method can be analyzed in the classical

way).

From (2.5.1) - (2.5.3), one can easily see that the interval lengths satisfy

for i =1, ... , to, N - it» +1, ... , N, and
~

N-1 ~ hi ~ 2N-1 ,

for i = it» +1, ... ,N - itt.

2.5.2 Interpolation Error Estimates

(2.5.4)

(2.5.5)

We use standard approximation theory to estimate the interpolation errore in the

weighted energy norm III ·111 and the Sobolev norm 11·11.-1 on the Shishkin mesh.

However as we shall see, the analysis is not entirely straightforward.

Since the solution of the weak formulation (2.2.6) lies in HI', we define our

piecewise polynomial approximation space by

SN ={v(z) E Hi: vII. E PII(I.) for i =1, ... , N},
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where PIl(I.) is the set of polynomials of degree at moet R on I. and R is lOme

positive integer. In order to guarantee that SN c c-- l C H-, we U8ume that

R ~ 2m-I.

Consider a finite element (Ei, Pa(Is), Ii), where Ei is the set of degrees of freedom.

It will be assumed that the set Ea is P.-uni80lvent, for i = I, ... , N. Let .. be

the greatest order of derivatives occuring in the definition of Ea. From the p.

uni80lvence of the set Es, we have R + 1 ~ ... Given v E C-'(Is), we denote by

niV the Pa-interpolant to " on Ii. Set 3 = max{.. : i = 1, ... , N}. Then for

v E C·(O, I), we will denote by nN v the piecewise polynomial interpolant from SN

to t1. This interpolant satisfies (nN")lli =n,VI,i, for i =I, ... ,N.

Denote by II· 1I1.-.Ii the maximum nonn on Ci(Is), with the usual associated

seminorm I . li.-.Ii. We have

Lemma 2.5.1 Let k be an integer 30tishing R + 1 ~ k ~ ... Let v E C'(Is). Then

there emU a comtont Cl , which is independent of ht and v, nch that

(2.5.6)

lor j =0, I, ... ,i.

Proof. From Theorem 3.1.5 of Ciar1et [7), (2.5.6) holds for R + 1 ~ k > ... The

case k =.. can be shown by a similar argument. 0

We remark that Lemma 2.5.1 is valid on an arbitrary mesh.

Next, we use Lemma 2.5.1 to estimate u-nN u on each intervallt of the Shishkin

mesh of subsection 2.5.1.



and

Recalling (2.2.8) - (2.2.11), we see that

!u(h)(Z)! ~ Ce---1 , for z E [0,1] (2.5.7)

(2.5.8)!u(JIa)(z)! ~ C, for z E [0'.,1 - 0'.],

where 0'. =min {1/4,(m + l)a-1eln(l/e)}.

Consider the realistic situation when N-1 > E. In this case, we see that

[0'.,1- 0'.] ~ [0',1- 0']. Consequently, as e .... 0 with N fixed, lu(;)(z)1 is unbounded

for j ~ m when z E J. == ([0',0'.) U (1- 0'.,1- 0']). Recall that the Shishkin mesh

X!' is coarse on [0',1 - 0']. In particular, it is coarse on J.. It turns out that a

direct application of standard approximation theory to " yields suboptimal results

on J.. In the proof of Lemma 2.5.2 we shall need an asymptotic decomposition of

" in order to achieve the desired optimality. The estimate (2.5.6) with Ie =at then

plays a special role in our error analysis.

Set

; =max {3i : io + 1 ~ i ~ i 1 and N - i 1 + 1 ~ i ~ N - io} ,

where i1 =mu{i: 1. n (0',0'.) 1= '}. We will assume that; =m-l, 80 that (2.5.6)

can be used with Ie = m - 1 for those coarse subintervals Ii where 1-(-)(z)1 is

unbounded as E .... O.

Lemma 2.5.2 Let. 6e tk MIlution 0/ problem (1.1.1). Let i e {I, ... , N}. T~,.

on the Shi8hkin mesA X!" we have

(2.5.9)

30



(2.5.10)

for j =0,1, ... ,m - 1.

Proof. Consider first the fine portions of the mesh, Le., suppoee that i e {I, ... , ie}U

{N - ie +1, ... , N}. Then it is clear, on taking Ie =2m in (2.5.6) and using (2.5.4)

and (2.5.7), that (2.5.9) and (2.5.10) hold.

Now suppose that we are on the coarse part of the mesh, i.e., suppoee that

i e tie +1, ... , N - io}. We discu88 two cases.

Case 1: N-I ~ E. Then [0',1 - 0'] ~ [0'.,1 - 0'.]. Hence

(2.5.11 )

It is easy to see, on again taking Ie = 2m in (2.5.6) ud using (2.5.5) and (2.5.11),

tha.t

I - n· I· < Ch~-;-IN---I" .U ,.-.1, _. , (2.5.12)

for j =0,1, ... , m, which implies (2.5.9) and (2.5.10).

Case 2: N-I > E. By the same argument as in Cue 1, one can show that (2.5.12)

still holds for i e {il + 1, ... , N - il}'

Now suppose that i E {io + 1, ... , il} U {N - i l + 1, ... , N - i)}, i.e., we are

dealing with the intersection of the coarse mesh and the boundary layers. Here we

need the decomp08ition (2.2.8). Write nil' in the form

(2.5.13)
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where IIiG, IIiE and IIiF denote the Pa-interpolants to G, E and F respectively.

j =0,1, ... , m.

Firstly, by (2.2.9) and arguments similar to thOle of Cue 1, we have

IG - II ·GI. < Ch"!'-J-lN---1
, " • .Ii -, ,

for j =O,I, ... ,m.

(2.5.14)

Secondly, we estimate IE - IIiEli,.",. For j =m, we obtain, from (2.5.6) with

Ie= m,

Since 1. ~ [(7,1], we get by (2.2.10)

by (2.5.3). For j = 0, 1, ... , m - 1, using (2.5.6) with Ie = m - 1,

IE - IIiEli••.It ~ Ch,;,-J-l IEl..-1,• .It

~ Ch,;,-J-l exp (-Q(7IE)

Similarly, one may show that

IF - II·FI . < CE-1N---1· -.-.1.-
and

IF - II·FI· < Ch"!'-J-lN---1, ,.-'" -, ,
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for j =0, 1, ... , m - 1.

Combining (2.2.8) and (2.5.13) - (2.5.18) yields

and

I - n ,. < Ch~-j-lN-_-l" ,a ,.-,1. -. ,
for i E {io + l, ... ,it } U {N - i 1 + 1, ... ,N - io} and j E {O, l, ... ,m -I}.

This completes the proof of Cue 2. Combining Cases 1 and 2 yields

and

I_- n·ul· < Ch'!"-j-lN---1• ,.-.li -. ,
for all i E {io+ 1, ... , N - io} and j E {O, 1, ... , m-l}. Recalling the first paragraph

of the proof, we are done. 0

The next result follows immediately.

Corollary 2.5.1 L€t u be the solution oJproblem (!.1.1). L€t nNu be the piece~

polynomial interpolant from SN to" on the Shishhn mesh X!'. Then

arul
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Remark 2.5.1 Recall thtJt SN conttliR8 pieceU1iBe polynomitJU of degree 2m - 1.

A_, from the hounda,., layers tlte mesh i8 in pmcti« coer., fI1ith diameter 0 (N -1 ) .

C0R8equentl, it con be seen a priori that OM aannot do #letter tlaGn

(2.5.21)

Our e.timate (I.5.1O) thus mow thtJt the Shishkin me'" u at letut alrrKMt optimal,

in the BeR8e that no mesh consisting of O(N) point. con improve on (1.5.ll).

2.5.1 Convergence Results

We first present a uniform convergence result in the weighted energy norm 111·111.

Theorem 2.5.1 Let UN e SN be tM 8Olution of OtIr method (I.-I.-I) on tM Shiahkin

me. X!'. Then for N sufficientl, la~ (independentl, of £), we htJve

(2.5.22)

Proof. The result follows immediately from Theorem 2.4.1 and Corollary 2.5.1. C

Remark 2.5.2 Suppose that !De ue a sufficientl, accurate quadrature ruk, «J that

I ~ ffl. Then our polynomially bo8ed method on a piecewiM equidistant me'" u

optimal, in the Ben« that (!.5.19) and (1.5.!!) correspond. In the terminologJl

of BahAlca and Sun {S}, it is roInut (uniformly contJe~nt) tDith uniform order

(N -lin N)- in the VJeighted energy norm III . III and only sho"'s a Blight amount of

locking, viz., onler (In N)-.

Recalling (2:5.20), one may expect that II_ - 8NII.-l has a higher order of

uniform convergence than that implied by (2.5.22). However, for the problem (2.1.1),



one cannot in general use an Aubin-Nitsche approach to show that lIu-uNII"'-1 has

a higher order of uniform convergence than Illu - "NIII on an arbitrary mesh. For in

Stynes and O'lliordan [42) an example is presented with m =1 and piecewise linear

functions on an equidistant mesh, where it is shown that II_ - uNII~ and Illu - -NIII

are both O(NI/I}. Here II·II~ is a discrete L' norm.

We shall see that on a Shishkin mesh one does in fact achieve a hi~her order

of convergence in II . ""'-1 than in III . III. However it does not seem possible to

prove this via an Aubin-Nitsche argument, since to get sharp interpolation error

estimates one needs a decomposition similar to (2.2.8). We shall instead show that

this higher order convergence occurs by usin~ an analysis similar to that of Stynes

and O'lliordan [43).

Since SN ~ c--1(0, 1), it is natural to assume that the set E, includes pU)(Zi-l)

and pCJ)(Zi), for p e Pa(Id and j = 0,1, ... , m - 1. Hence for t1 e C·(O, 1),

(2.5.23)

for i =0, 1, ... ,N and j =0, 1, ... , m - 1.

Theorem 2.5.2 Under the _me h1fPOthe~, CII Theorem 1.5.1,

IIInN u- uN1I1 ~ C ((N-1 In N}"'+1 + N-') ,

II_ - UN\I"'-1 ~ C ((N-1ln N}"'+1 +N-')

and
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Proof. By the coercivity of A~(.,.) over Bra x Bra,

=A:' (nNa - tI,nNu - "N)

+A:' (ti - UN,nN" - "N).

We bound these two terms separately. First

A:' (nNu - a, nNu - UN)

= (e2 (nNu - .)(-) , (nNa - aN )(-»)
+ (a~__I) (nN" - a)(--I) , (nN" _ tlN)(_-I»)

+Ar (nN" - .,nNa - UN)

= (a~__I) (nN " _ u)(_-I) ,(nN a _ aN)(_-1»)

+A{' (nN" - ", nN" - tiN),

(2.5.27)

by (2.5.23) and using integration by parts, since (nN " - VN)(h) == 0 on each 8ubin-

A:' (nNu - u, nN• - "N) ~ cllnNa - vlI__ ll1nNv - uNII_-l

~ C (N-1 In N)_+1 IIInN u - uNIII, (2.5.28)

by Corollary 2.5.1.

Secondly,

=(A:' -.4.) (a, nN" - tiN)

+A. (u,nNtI - UN) - A:' ("N,nNa - aN)
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(( N ) (..-1) (nN )(..-1»)= 42("'-1) - 82(_-1) u , U - -N

+(Ai' - AI) (u,nNu - UN) + (/_/N,nNu - UN)

~ CN-'llInNu - -NIII, (2.5.29)

by (2.2.12) and (2.4.1).

From (2.5.27) - (2.5.29), we obtain (2.5.24). CombininK (2.5.24) with (2.5.20)

yields (2.5.25).

Note that for all t7 e Hr,

(2.5.30)

We therefore have from (2.5.25)

II (- - UN)(i) 11_ ~ lIu - uNII;+l

~ C ((N-1lnN)-+1 +N-') , for j =0, ... ,m - 2,

This completes the proof of (2.5.26). a

Remark 2.5.S Consider the cue m = 2. If I ~ 3, then (!.5.t5) 81wttJB tluJt IDe

06tGin uniform amvetyenee of alJTa(Mt third order in HI. This is in contrut to t~

fir8t order uniform amveryence in HI obtained ", R008 and Styne8 {as} using G

much more complicated schefM. Our uniform conve~nce rate U tJl80 8igni.ficantl,

IJetter thon the 0 (Nl/J) rate obtained ", Semper {36}.

When I is odd, we can obtain a stronger convergence result, provided that a2(_-l)

is now approximated to a higher order of accuracy than the other a,. in (2.1.1).
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Theorem 2.5.3 Let" be the solution of proIHem (I.l.l) and UN E SN the solution

of (1.4.4) on the Shishkin mesh X!'. A88ume also that for i = 1, ... , N,

I(a~__I) - tIJ(_-I») (z>1 ~ Ch~+I, for zEli,

1/.
" (a~ - ca.) (Z)dZI ~ Ch:+J

, for r =0, 1, .•. ,2m - 3,
8.-1

IL~, (IN - f) (Z)dZI $ Ch:+I.

Then for N sufficiently large (independently of E), t« have

IlInN
U - uN1I1 ~ C ( N-Iln N)-+I + N-1- I ) ,

lIu - uNII_-I ~ C ((N-Iln N)-+I + N-1- I )

end

(2.5.31)

(2.5.32)

(2.5.33)

(2.5.34)

(2.5.35)

(2.5.36)

Remark 2.5.4 It is well moum in the contezt of Netl!ton-Cotes integration rules

that properties (1.5.3!) and (!.5.33) are etUilJl achieved using pi~U1W polJlflomioU

of degree I - 1 tohen I is odd.

Proof of Theorem !.5.3. Recalling the proof of Theorem 2.5.2, we only need to show

that

(2.5.37)

Here

A~ (u - "N, nNu - "N)

(( N ) (_-I) ( N )(_-1»)= a2(_-I) - a2(_-I) u , n ,,- UN

+(Ar - AI) (u,nN
• - UN) + (f - fN,n N• - UN).
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It is easy to see that

I((a~"'_l) - a2("'-I») U<"'-I), (nN tI - tiN)<_-1»)I
~ CN-'-llnNu - tlNI"'-h

by (2.2.12) and (2.5.31).

We now bound I(Al' - AI) (u, nNtI - tlN)I. Fix i e {1, ,N}. Then set

",(x) =18
(a~ - 0,.) (t) dt, for r = 0,1, , 2m - 3.

8i-1

We have

and

IJL("')I ~ Ch',.+I, I e ( )...,... lor x %i-h%i,

by (2.5.32) and (2.4.1). Hence

It [' ((a~__')+1 - "'<--,)+1) ,,(--'+1) + (a~__,) - "'<_-,)) "(--'))
'=2 8i_1

. (rrNu - UN) <"'-.) (x)dxl

= I~ {("2(_-')+1,,(--'+1) +"2(_-')"(--')) (z) (nN
" - "N )(--') (z)I:.._.

-L~. ("2(_-')+1,,(_-,+1) +"2(_-,),,(_-,+1)) (z) (nN" - "N)(--') (z)dz

-l~i ("2(__.)+IU<_-i+I) +",<__.)u<--·») (x) (rrNu - UN)<_-,+I) (%)dx}1
8.-1

'"
~ Ch:+2 L lIull__.+I,.lIrrNu- UNII",-...

• =2

+Chl+1~ {L~, (1,,(-,+I)(z)1 + 1,,(--'+I)(z)1) dz nnN,,- "NII--....

+ L~, (1,,(--'+I)(z)1 +1,,(--6)(z)1) l(nNa - "N)(_-,+I)(z)1 dZ}.



Therefore,

I(Ar' - AI) (u,nNu - uN)1
N '"

~ c L h~+2 L lIull"'_i+l.•lInNu - "NII",-i••
s=1 i=2

+ct h~+l t {(IIu(",-i+2>II 1 +Ilu(--'+I>II 1 ) linN" - UNII",-i••
i=1 i=2 £ (O.IJ £ (O.IJ

+ (lul",-i+l + lul",-i) InN. - 1£NI"'_'+I}

~ CN-I
-

1 linNu - UNII"'_t '

by (2.2.8) - (2.2.12) and (2.5.30).

The term (I - IN, nN u - "N) is handled similarly. This completes the proof of

(2.5.37).

Combining (2.5.27), (2.5.28) with (2.5.37) yields (2.5.34). Then (2.5.35) and

(2.5.36) follow from the arguments similar to those of Theorem 2.5.2. 0

Corollary 2.5.2 Let • and "N 6e defined tu in Theorem 1.5.3. Then under the

.me h1lf'Otheaes CI8 in Theorem !.5.3,

Proof. Combining (2.5.19) and (2.5.34), the result follow•. 0

2.5.4 A Special Case: .s =7ft - 1 for each i

In this subsection, we give lOme results for inite element discretization! hued on

the following Hermite basis function space:



where 1;,. =linear span of {'Pi : i =1, .•. , N - I}, for r =0,1, ... , m - 1. The basis

functions {'Pi}~11, for r =O, •.• ,m -1, are defined by

I
h,e..." (--::-1) , for z e (Zi-l,zd,

",Hz) = (-I)"h'+le..." (-~:~-) , for z e (Zi, Zi+l),

0, ebewhere,

where e..."(8) satisfies

e1!~,,(o) = 0 and e1!~,.(l) =6,,;, for j =0,1, ... , m - 1.

(2.5.380)

(2.5.38b)

(2.5.38c)

(2.5.390)

(2.5.396)

From (2.1.5.3) of Stoer and Bulirsch (39), one can for example easily compute the

following explicit formulae for e...,,(8).

m r=O r=1 r=2
1 s
2 8 2 ( -28 + 3) 8 2 (8 - 1)
3 s"'(68~ - 158 + 10) 8~(8 - 1)( -38 + 4) ~(8 - 1)~ /2

When m = 2 (Le., we consider problem (2.1.2» and I = 1, we can sharPen

Thec>rem 2.5.1.

We define a discrete H 1_norm by

for all" = EZ:l1 [vi",f(z)+"i",l(z)] e yN, where las = (#at+#&t+l)/2. Bya

calculatioo, one may show that for all " e yN,

(2.5.40)

That is, on yN the discrete HI-norm 1·141 is equivalent to the Ulual seminorm I· It·
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Theorem 2.5.4 Let U be the solution oj problem {I. 1.1). Let UN E V N be the

solution oj (1.-I ..4) on the Shishkin mesh X!', with m =2. Let

tDith similar definitions oj~(z ), eN(z) and f N ( z ), ~ I =1. Then Jor N 8uffie~ntl"

large (independentl, oj e), toe Iaove

ProoJ. We shall prove that

From (2.5.27) and (2.5.28) with m =2, we need only bound

A~ (u - UN, DNu - UN)

=(f - fN,DNu - UN) + ((aN - a) a', (DNa - UN)')

+((bN -.) a' + (eN - e) u,DNa - UN).

Recalling the proof of Theorem 2.5.3 with I =1, one may see that

(2.5.41)

(2.5.42)

(2.5.43)

We now examine the term ((aN - a) u', (DNu - UN)'). The term is split into

three parts:
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(2.5.44)

+{-... (aN -a) (z),,'(z) (fiN" - "N)' (z),u
'0

+11
(aN - a) (z)u'(z) (DN• - .N)' (z)dz

1-840

Fix i E {I, 2, ... , N}. In what follows, we shall denote by Z. any quantity of

O(hl). Also set Z'-I/1 = (Z.-1 + z.)/2. For z E (Z'_I,Z.), we have

(aN - a) (z) = (Z'_I/1 - z)a'(z) + Zi

Set

r(z) =1- (Z'-I/I- t)dt, for z E [Zi-l,Z.].
"-1

Then

r(Zi-l) =r(Zi) =0 and Ir(z)1 ~ chI, for z E (Zi-l,Zi).

We are ready to bound the first term of tile right hand side of (2.5.44). For i e

{I, ... , io},

L~, (aN -a) (z),,'(z) (fiN" - "N)' (z),u

= L~, (Z'_I/I- z)a'(z),,'(z) (fiN" - "N)' (z)lIz

+I.:. z.(nN
" - "N)' (z),u

=- f~. r(z) (a'(z),,'(z»' (nN" - "N)' (z),u

-J:~I r(z )a'(z ),,'(z) (nN" - "N)" (z),u

+L~. z.(nN" - "N)' (z),u.

We have by (2.2.8) - (2.2.12) aad (2.5.•)

IL~, r(z) (a'(z),,'(z»' (fiN" - "N)' (Z),ul

.3



s Ch!e-1L~, l(nN
" - "N)' (x)1 tlz

s C (N-1 ln N)I eL~, l(nN
" - "N)' (x)1 tlz

and

Therefore,

110'" (aN -a)(x)u'(x) (nN"-flN)'(X)dX!

~ C (N-1 ln N)2 E (lI(nN
U - uN )'II£.[O..io) +EII(nNu - uN)"11£1[0..'0))

~ C (N-1 ln N)I EllinNu - IINIII. (2.5.45)

Similarly

If... (aN - a) (x)u'(x) (nNfI - fiN)' (X)tlz!

~ C (N-1 ln N)2 ElllnN" - UNlit. (2.5.46)

In order to estima.te the second term of (2.5.44) more carefully, we uee the de-

composition of (2.2.8). Then

l-'" (aN - a) (x)u'(xj(nNfI - fiN)' (x)dx
'0

1
1-810

= (4N - 4) (z)G'(z) (nN • - tiN)' (z)dz
810

+l-'" (aN - a) (x)(E'(z) + l"(z») (nNfI - fiN)' (z)tlz. (2.5.47)
'0



We bound these two terms separately. Let i E {io +1, .. . ,N - io}.

Firstly, we have

IE'(x) + r(x)1 ~ CN-I, for x E [x'o, 1- x'o],

by (2.2.10), (2.2.11) and (2.5.3). Hence

11:-'" (aN - a) (z) (E'(z) + I"(z») (fiN. - .N)' (Z)d%1

~ CN-4 11(nNu - UN)'II
Ll[8io. I -8io]

~ CN-4 111nNU - uNIII. (2.5.48)

We now bound the first term of (2.5.47). We introduce some notation. Set

q =nNu - UN. Since VN =~~EB VI (recall m =2), we can write q =eo +et where

ee E Vo and el E VI. These eo and el are uniquely determined by q. Then for each

i,

1
~ ,

(aN - a) (x)G'(z) (nN " - UN) (x) dx
8i-l

1
~ 1~= (X'-1/2 - x)a'(x)G'(x)q'(x)dx + Z,q'(x)dz

8i-l 8i-l

." 1.'" (Z'-I/I- z)a'(z,)G'(z,)q'(z)d% +1.'" Z,q'(z)dz
~-l 8i-l

." a'(z,)O'(z,) 1.e , (Zo-I/1 - z) (e~(z)+ e~(z») dz +1.'" Ziq'(z)d%.
8i-l ~-l

(2.5.49)

with



Since ~(8) =68(1 -.) =- ~,O (1 - .),

where 8 = (Z-Zi-l)/~' But 68(1-.) is symmetric about. = 1/2, while Zi-l/I-z

is antisymmetric about z = Zi-l/I' Consequently in (2.5.49),

"1" (Zi-l/1 - z)e~(z)dz = o.
8.-1

Next,

[,(%;-1/2 - %)e~(%)d%

=1" (%;-1/2 - %) t e~(%i) (cp})' (%)d%
"-1 ;-i-l

i 1"= L e~(z;) (Zi-l/1 - z) (cp})' (z)dz
;=i-l 8.-1

=[eH%;) - eH%'-I») f~ hf G-.) (~~1 (.») th

= Kh? [eHza) - eHzi-d] ,

where the fixed constant K = J.~o (1 - .) (~'1 (8») tis,

Combining this with (2.5.49) and (2.5.50), we get

1
1-8 40

(aN - a) (z)G'(z)q'(z)dz
8io

=~~1 {a'(%;)G'(%;) L~, (%1-1/2 - %)eH%) d% + L~, Z;q'(%)d%}

=.~ {Kh!a'(%')G'(%,) [eH%,) - e~(%;-I») +[ z,q'(%)d%}
1=10+1 "-I

N-io-l

=K L eHzi) [h?a'(zi)G'(Za) - h?+I G'(Zi+l)G'(Zi+l)]
i=io+l

(2.5.50)



+K [h~_'o0'(ZN-io)G'(.ZN-io)e~(ZN-io)- ht+l0'(Zio+l)G'(Zio+l)eHzio)]

+~ 1" Z,q'(:r) liz.
i='o+l 8.-1

But lo'(z)G'(z)1 ~ C for Z e [0,1], ht =O(N-l) for i = ie + 1, . .. ,N - ie, and

IO'(Zi)G'(Zi) - O'(Zi+l)G'(Zi+l)1 ~ CN-l, for i = itt + 1, ... ,N - ie -1. Hence

\J~-'" (aN - a) (:r)G'(:r)9'(:r) lizI
N-'o-l

~ CN-1 L leHzi)1 +CN-2 [IeHZN-io)1 + le~(z'o)1l
i=io+l

+CN -2 IIq'IILI [0,1)

~ CN-2 (~~-lh;) 1/2 (~~-l h;e:(:r,») 1/2

.=to+1 .=to+l

+CN-2 NI/211e~II"1 + CN-211q'IIv[o,l)

~ CN-I/2I1e~""1 + CN-2111qlll

~ CN-I/211Iqlll.

Substituting this and (2.5.48) into (2.5.47) yields

t-... (aN - a) (:r )u'(:r) (fiN" - UN)' (:r) liz
'0

~ CN-1
/
21I1nNu - -NIII·

Combining (2.5.44) - (2.5.46) and (2.5.51), we get

Consequently, from (2.5.42), (2.5.43) and (2.5.52), we obtain

Thil completes the proof of (2.5.41). Recalling (2.5.19), we are done. 0
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Remark 2.5.5 Numeriml resul" 01 Section 1.6 3IwvJ tlaGt the result 01 Theorem

1.5.4 u slaGrp.

2.6 Numerical Results

In this section we present numerical results for the method (2.4.4) with Hermite

basis functions (see subsection 2.5.4) applied to problem (2.1.2), with

a(z) = 1 +z(l- z), b(z) =c(z) == 0,

where I(z) is chosen 80 that the solution of (2.1.2) is

u(z) =t {exp (-z/£) +exp (-(1 - z)/t) _ I}
1+exp (-1 It)

l-exp(-l/t)+ z(1 - z) + z2(1 - z)2.
1 +exp (-11£)

Thi. u(z) exhibits typical boundary layer behaviour.

Set
N-l

UN(Z) =L [uN(zi)<pl(z) + uN(zi)<pl(z)] .
i-I

The method (2.4.4), with m = 2, may be written in the form

+9i UN(Zi-l) + qiuN(zd + 9tuN(Zi+l) =FJi,

for i =1, ... , N -1. The coefficients r, t, fI, 9, F1 and FJ are some linear combinations

of t 2 and point evaluations of a, II, c, and I, since only polynomials are used u our

basis functions. The coefficient matrix of the scheme can be easily permuted to yield



a heptadiagonal matrix. The resulting system of 2(N - 1) equations is solved by

Gau88ian elimination.

We compute the errors in the following two ways:

(i). The error between the exact solution a(z) and the computed solution "N(Z)

in the discrete maximum norm,

(il). The error between the interpolant .,(z) and the computed solution "N(Z) in

the discrete HI-norm,

We calculate the convergence rate tables as follows; see Farrell and Hegarty [14J:

(i). Except for the last row, the table entries are given by the classical convergence

rate,

(il). The last row of each table is the uniform convergence rate,

where EN =max. E!'.
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E N=8 16 32 64 128
2.5000Oe-O1 2.10ge-03 5.367e-04 1.348e-04 3.374e-05 8.435e-06
6.25000e-02 6.626e-03 1.70ge-03 4.313e-04 l.081e-04 2.704e-05
1.56250e-02 1.872e-02 3.738e-03 7.385e-04 1.489t'-04 3.317e-05
3.90625e-03 3.537e-02 8.494e-03 2.020e-03 4.7~-04 1.137e-04
9.76562e-04 4.058e-02 1.013e-02 2.50ge-03 6.208e-04 1.535e-04
2.44141e-04 4.195e-02 1.057e-02 2.642e-03 6.597e-04 1.646e-04
6.10352e-05 4.22ge-02 1.068e-02 2.675e-03 6.696e-04 1.675e-04
1.52588e-05 4.238e-02 1.071e-02 2.684e-03 6.721e-04 1.682e-04
3.81470e-06 4.240e-02 l.071e-02 2.686e-03 6.727e-04 1.684e-04
9.53674e-07 4.241e-02 1.071e-02 2.686e-03 6.72ge-04 1.684e-04

Table 2.6.1: Erron in Maximum Norm II ·11. for A Scheme

E N=8 16 32 64
2.5000Ck--Ol 1.97 1.99 2.00 2.00
6.2500Ck--02 1.96 1.99 2.00 2.00
1.56250e-02 2.32 2.34 2.31 2.17
3.90625e-03 2.06 2.07 2.07 2.08
9.76562e-04 2.00 2.01 2.01 2.02
2.44141e-04 1.99 2.00 2.00 2.00
6.103S2e-05 1.99 2.00 2.00 2.00
1.52588e-05 1.99 2.00 2.00 2.00
3.81470e-06 1.98 2.00 2.00 2.00
9.53674e-07 1.98 2.00 2.00 2.00

Rl'I 1.98 2.00 2.00 2.00

Table 2.6.2: Convergence Rates in Maximum Norm II . II. for A Scheme

Tables 2.6.1 - 2.6.4 present the errors and conve~nce rates for the A scheme;

this is the method (2.4.4) with the piecewise coDstant approximatioDs

for z E (Z.-h zs) and i =1, ... , N,

where , can be CI, II, t: or f.
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E N=8 16 32 64 128
2.50000e-01 6.47ge-03 1.673e-03 4.215e-04 1.05&-04 2.640e-05
6.25000e-02 2.09ge-02 5.471e-03 1.386e-03 3.476e-04 8.697e-05
1.56250e-02 5.678e-02 1.174e-02 2.332e-03 4.800e-04 1.112e-04
3.90625e-03 1.055e-01 2.86Oe-02 7.432e-03 1.793e-03 4.185e-04
9.76562e-04 1.217e-01 3.62ge-02 1.107e-02 3.304e-03 9.132e-04
2.44141e-04 1.260e-01 3.853e-02 1.233e-02 4.022e-03 1.302e-03
6.10352e-05 1.271e-Ol 3.911e-02 1.267e-02 4.232e-03 1.433e-03
1.52588e-05 1.274e-01 3.925e-02 1.276e-02 4.286e-03 1.468e-03
3.81470e-06 1.275e-Ol 3.92ge-02 1.278e-02 4.300e-03 1.477e-03
9.53674e-07 1.275e-Ol 3.93Oe-02 1.278e-02 4.303e-03 1.48Oe-03

Table 2.6.3 : Erron in Discrete HI-Norm for A Scheme

E N=8 16 32 64
2.50000f>-01 1.95 1.99 2.00 2.00
6.25000e-02 1.94 1.98 2.00 2.00
1.56250e-02 2.27 2.33 2.28 2.11
3.90625e-03 1.88 1.94 2.05 2.10
9.76562e-04 1.75 1.71 1.74 1.86
2.44141e-04 1.71 1.64 1.62 1.63
6.10352~05 1.70 1.63 1.58 1.56
1.5258&--05 1.70 1.62 1.57 1.55
3.81470e-06 1.70 1.62 1.57 1.54
9.53674e-07 1.70 1.62 1.57 1.54

Rl'f 1.70 1.62 1.57 1.54

Table 2.6.4: Convergence Rates in Discrete HI-Norm for A Scheme

We denote by A the method (2.4.4) with the piecewise linear approxima.tions

N Zi - % % - %i-l
P (z) = ~P(Zi-l) + ht P(Zi),

for % E (%i-l' Zi) and i =I, ... , N, where p can be 0, 6, c and I. Tables 2.6.5 - 2.6.8

sive the errors aDd convergence rates for the A scheme.

51



€ N=8 16 32 64 128
2.50000e-Ol 1.065e-03 2.691e-04 6.745e-05 1.687e-05 4.217e-06
6.25000e-02 3.627e-03 8.870e-04 2.180e-04 5.41ge-05 1.353e-05
1.56250e-02 1.097e-02 2.321e-03 4.571e-04 8.543e-05 1.69ge-05
3.90625e-03 1.648e-02 4.081e-03 9.883e-04 2.38Oe-04 5.732e-05
9.76562e-04 1.783e-02 4.544e-03 1.134e-03 2.814e-04 6.982e-05
2.44141e-04 1.817e-02 4.662e-03 1.171e-03 2.926e-04 7.305e-05
6.103.52e-05 1.826e-02 4.692e-03 1.181e-03 2.95Se-04 7.386e-05
1.52588e-05 1.828e-02 4.700e-03 1.183e-03 2.962e-04 7.407e-05
3.81470e-06 1.82ge-02 4.701e-03 1.183e-03 2.964e-04 7.412e-05
9.53674e-07 1.82ge-02 4.702e-03 1.184e-03 2.964e-04 7.413e-05

Table 2.6.5: Errors in Maximum Norm II . 11_ for A Scheme

€ N=8 16 32 64

2.50000e-01 1.98 2.00 2.00 2.00
6.25000e-02 2.03 2.02 2.01 2.00
1.56250e-02 2.24 2.34 2.42 2.33
3.90625e-03 2.01 2.05 2.05 2.05
9.76562e-04 1.97 2.00 2.01 2.01
2.44141e-04 1.96 1.99 2.00 2.00
6.10352e-05 1.96 1.99 2.00 2.00
1.52588e-05 1.96 1.99 2.00 2.00
3.81470e-06 1.96 1.99 2.00 2.00
9.53674e-07 1.96 1.99 2.00 2.00

Rl'I 1.96 1.99 2.00 2.00

Table 2.6.6: Convergence Rate. in Maximum Norm II . 11_ for A Scheme

€ N=8 16 32 64 128
2.50000e-01 3.294e-03 8.39Re-04 2.10ge-04 5.279P-05 1.320e-05
6.25000e-02 1.232e-02 2.86Oe-03 7.oo8e-04 1.743e-04 4.352e-05
1.5625Oe-02 4.024e-02 8.283e-03 1.53~-03 2.78~-04 5.655e-05
3.90625e-03 5.753e-02 1.401e-02 3.332e-03 7.851e-04 1.85ge-04
9.76562e-04 6. 193e-02 1.56Oe-02 3.87Se-03 9.581e-04 2.354e-04
2.44141e-04 6.302e-02 1.6OOe-02 4.011e-03 1.002e-03 2.498e-04
6.10352e-05 6.330e-02 1.610e-02 4.04Se-03 1.012e-03 2.53Oe-04
1.52588e-05 6.336e-02 1.613e-02 4.053e-03 1.01Se-03 2.537e-04
3.81470e-06 6.338e-02 1.613e-02 4.05Se-03 1.01Se-03 2.53ge-04
9.53674e-07 6.33ge-02 1.613e-02 4.05&-03 1.01Se-03 2.540e-04

Table 2.6.7: Errors in Discrete HI-Norm for A Scheme
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! N=8 16 32 64
2.50000e-Ol 1.97 1.99 2.00 2.00
6.25000e-02 2.11 2.03 2.01 2.00
1.56250e-02 2.28 2.43 2.46 2.30
3.90625e-03 2.04 2.07 2.09 2.08
9.76562e-04 1.99 2.01 2.02 2.03
2.44141e-04 1.98 2.00 2.00 2.00
6.10352e-05 1.97 1.99 2.00 2.00
1.52588e-05 1.97 1.99 2.00 2.00
3.81470e-06 1.97 1.99 2.00 2.00
9.53674e-07 1.97 1.99 2.00 2.00

RI'I 1.97 1.99 2.00 2.00

Table 2.6.8: Convergence Rates in Discrete HI-Norm for A. Scheme

The predicted uniform accuracy is clearly observed. We note that, when erron

are measured in 11·11., the A scheme is almost as accurate u the more complicated A

scheme. We have observed a similar phenomenon with a higher order approximation

applied to problems with other data; both piecewise quadratic and piecewise cubic

approximations to a, 6, c and I yield fourth order accuracy in II . II., uniformly

in £. Thus it seems that in cases where coefficients are approximated by piecewise

polynomials of even degree and I < m +1, the order of convergence in II .11_ i. ODe

more than that predicted by Theorem 2.5.2.

If instead of 11·11. one consider the errors measured in 1.141 , then Tables 2.6.4 and

2.6.8 show that the A. scheme il superior. Neverthelea, the A seheme il O(N-·/J)

COD~nt, better than the O(N-l) predicted by Theorem 2.5.1. Theorem 2.5.4

furnishes a proof of this O(N-·/J) result.



Chapter 3

High Order
Convection-Diffusion Problems

3.1 Introduction

This chapter is concerned with the numerical approximation by finite element meth

ods of certain singularly perturbed high order two-point boundary value prob

lellll with one boundary layer. A model problem of this type is the second order

convection-diffusion problem

-£"," +4(Z).,' +b(z)tD = f(z), for z e (0,1),

tD(O) =w(l) =0,

(3.1.14)

(3.1.16)

with 4(Z) > Q > 0, where E is a small positive parameter. The problem (3.1.1)

haa been extensively examined. Ways of using equidistant meshes and locally quasi

equidistant meshes and of ~eratins expoaentially fitted schemes which are C08

vergent, uaiformly ia E, with respect to various norms are considered for example

in Berger et al. [5], EI-Mistibwy and Werle [ll], D'in [23], Kellogg and Tsan [24],

Stynes [40], ud Stynes and O'Riordan [41,43], while uniformly CODvergent clauicu



difference schemes on special ~aded meshes may be found in Gartland [17] and

Vulanovic [46].

However, there are still some unsolved problems. For example, in Gartland [18]

there is numerical evidence that the standard central difference scheme is convergent,

uniformly in E, in the discrete maximum norm, when applied on a special mesh. This

i. true even though the scheme does not satisfy .. discrete maximum principle and

admits oscillatory solutions. Gartland [17] has proved that a hybrid scheme, where

upwinding i. used only in a narrow "transition region" and central differencing ia

used elaewhere, is uniformly convergent OD a special exponentially ~aded mesh. We

shall show that in fact exponential ~ading of the mesh is unnecessary. Instead,

we CODstruct a simpler piecewise equidistant mesh, on which we Ule polynomial

Galerkin methods. Then we analyse their convergence propertiea in energy and W:
DOrms.

ID fact, in this chapter, we consider the following more general problem:

=fez), for z E (0,1),

.(;)(0) = .(;)(1) = 0, for j = O, ... ,m -1,

where m 2: 1 is an integer aad E E (0,1] is a perturbation parameter, and

L1 1& == t(-1)_-i ( 42(_-i)+1 (z)1&(_-~1)( z») (_-i)

i=2

+t (-1 )_-i (42(_-i)(%)1&(_-i)(z )) (_-i) •

i=1

(3.1.24)

(3.1.26)

The functions tip (for r = 0,1, ... , 2m - 1) and f are assumed to be sufficiently



smooth with

O'-_I(Z) > 0 > 0 on [0,1],

and

02(",_,)(z) - ~a~<"'_')+1 (z) > 0",_" for Ie =1, ... , m,

for all z E [0,1] and BOme constants 0 and 0,.-, (Ie =1, ... , m) satisfyinS
,
L 0",... > 0, for Ie =1, ... , fR.

1=1

(3.1.2c)

(3.1.2tl)

(3.1.2e)

Under the conditions (3.1.2d) and (3.1.2e), problem (3.1.2) is well posed for t > 0

and in fact possesses a coercive bilinear form associated with (3.1.2a). The condition

(3.1.2c) prohibits the development of tllrning points or interior layen.

We refer to the problem (3.1.2) as being of convection-diffusion type since it is

a generalization of (3.1.1). In Chapter 2 we considered the situation when 0'--1 ==

0; we describe such problems as being of reaction-diffusion type, again using the

terminology associated with the second order case. See the discuuion of problem

(3.1.5) below.

We take the above form of the operator L. for conveniena!. Any linear operator

i. of the form
1M-I

i. == (-I)"'t.<'-) + L ",,,C')
'=0

can be rewritten in the form of L., with each a,. (for r = 0, ... , 2m - 1) equal

to a linear combination of ,,-, "-+17 ... ,"'-1 aad certain of their derivativel. We

consider the homogeneous boundary conditions (3.1.2b), since non-homogeneous

conditions 1&(;)(0) = Aj &ad 1&(;)(1) = Bj, for j = 0, 1, ... ,m-l, can be homogenized

by the transformation i(z) =.(z) - ,,£;;.1 {( -1)iAje"'J(1- z)+Bje""i(z)}, where

the e"'J(·) are defined by (3.3.8) below.



In contrast to the second order problem (3.1.1), there are only a few l'eIults OD

higher order problems with ODe boundary layer; Bee Gartland [17] and Rooe [34].

Gartland [17] studied compact finite difference schemes for a problem of the form

,,-1

EVC") +L a.(z)vC') = fez), for z E (0,1),
'=0

(3.1.3)

with ""-l(Z) 1: 0 and appropriate boundary conditioDs which fulfill certain condi-

tions due to Niederdrenk and Yserentant [27]. His schemes are higher order uBi-

formly convergent on a special graded mesh in the weighted Sobolev norm

,,-2

I/vl/N-r == El/vC,,-l)l/. +L IIv(;)I/.,
;=0

(3.1.4)

where 11·11. == 11'11£-[0,1)' The Niederdrenk and Yserentant conditions guarantee

that the differential operator of (3.1.3) is uniformly stable (in the sense of Gartland

(17) with respect to the norm (3.1.4). That is, in the cue ofhom~neousboundary

conditions,

where the constant C is independent of E. Now with n =2m, one does not in general

have

where .(.) denotes the solution of (3.1.2). See, e.g., the example in Gartland (17),

p.655. That is, (3.1.2) is less stable (and consequently more difficult to solve numer-

ically) than (3.1.3).

R.oos [34] applied an iterative approach to problem (3.1.3), &88uming the Nieder-

drenk and Yserentant conditions. This approach is similar to the defect correction
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method and allow. ODe to «enerate hiKher order schemes in a systematic way. How-

ever, the method is quite complicated since it is baaed OR obtainiDK exact lOIutioDl

of boundary value problems with piecewise constant coefficient•.

ID Chapter 2 we considered the problem of reaction-diffusion type

(-1 )"'EVC2Ra) +(-1 )"'-1 (~"'-1)(z )vC--1»)C--I)

+t(-1)"'-' ( b,C--')+1 (z )vC"'-'+I) +~__')(Z )vC--'»)C--')

'=2

=g(z), for z e (0,1),

v(J)(O) =v(i)(1) =0, for j =0, ... , m - 1,

(3.1.5a)

(3.1.511)

with ~_-I)(Z) > {3 > 0 and some conditions analogous to (3.1.2d, e) above on b,.

(for r = 0, 1, ... , 2( m - 1». Problem (3.1.5) is a «eneralization of the well known

second order reaction-diffusion problem. The mth order derivative of its solution

has a boundary layer of width 0(E1/ 1) at each endpoint of [0,1]. Thus (cf. (3.2.6)

below) the solution of (3.1.5) is better behaved than that of (3.1.2). In Chapter 2,

BOme finite element methods for problem (3.1.5) were constructed and proved to be

convergent, uniformly in E, in various norms.

Employing a Sturm transformation

(3.1.6)

one may eliminate the u(2Ra-l) term of (3.1.2a) and reduce problem (3.1.2) to prob-

lem (3.1.5) with

(3.1.7)
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It is in principle possible to apply the method. in Chapter 2 to solve the problem

(3.1.5) with g(z) defined by (3.1.7), then to transform back to (3.1.2). However, from

(3.1.6) we can see that, since .(z) =0(1) (d. (3.2.6) below), t1{z) i. exponentially

.mall and consequently it will be difficult to accurately oompute an approximation

to it theD transform back to u(z ).

In this chapter, we senerate aad analyee Ga1erkin finite element method. for

problem (3.1.2). We consider only "uniformly conv~Dt" method.; these are meth

od. whOle lOlution. converge to _, uniformly in E, in some norm. Since the bilinear

fonn associated with (3.1.2&) ia not satisfactorily bounded ill term. of all auociated

weighted energy nonn (see (3.2.2) below), a classical finite element aaaly. doeI

Bot yield uniform convergence result.. We therefore Ute the technique of Styna aad

O'Riordan [43], which turna out to be effective for the problem (3.1.2). We obtain

convergence results in energy and W:' norm. for i =0, ... , m - 2. Theee result•

•how that the accuracy of our method depends both on m and OR how well we ap

proximate the coefficients in (3.1.2&). We present numerical experiment. to ••pport

oar claim•.

In classical finite element analyses, one expects that by using an Aubin-Nitsche

&fKUment one can show enhanced convergence of the computed solution in Dorma

weaker than the energy Dorm. TlUs it not the cue here wheal '" ~ 2, .. au

numeric:al results show. When m = 1 (i.e., the second order convection-diffusion

problem (3.1.1», the situation is different; we shall prove that tile order of uniform

oonvergence in the L2 Donn it at leaIt 1/2 hi«her than that i. the sere Dorm

associated with (3.1.1a).

In contrut to the result. of Chapter 2 for (3.1.5),~ find here that tlte value of
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m poses a more severe restriction on the accuracy of the method; see Remark 3.5.2

for details.

The structure of the chapter is &8 follows: Section 3.2 contains existence and

uniqueness results and an asymptotic decomposition for the solution of (3.1.2). We

briefly discuss in Section 3.3 the necessity of usin« a special scheme to pt high

order uniform convergence results for the given problem and «enerate finite element

methods using piecewise polynomials &8 our basis functions on an arbitrary mesh.

Section 3.4 gives interpolation error estimates on a piecewise equidistant mesh. This

type of mesh, which was recently introduced by Shishkin [37], is much simpler than

those of Vulanovic [46] and Gartland [17]. In Section 3.5, we prove that (&88umin«

a sufficiently accurate quadrature rule is used) the resulting polynomial methods

on the Shishkin mesh are uniformly convergent of order (N-1In N)- in a weighted

ener«)' norm associated with (3.1.2a). This implies uniform convergence of the

solution and its derivatives of up to the (m - 2)th order in the maximum norm. III

the final section, some numerical results are given for a second order problem and

fourth order problema to confirm the theoretical stimates.

3.2 The Continuous Problem

In this section we discuss those properties of (3.1.2) and of its solution a which we

shall need later for the analysis of our finite element methods.

DefinitionB and notation: Let (.,.) denote the usual LJ(O, I) inner produd. Let

HO = LJ, H" (for k = 1, ... , m) denote the usual Sobolev spaces on [0,1]. Define

II . II" to be the norm on H" and I . I" to be the usual associated seminorm for

k = 0, ... , m. Let II . 11_ denote the essential supremum norm on L-[O,I]. For
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Ir = 0,1, ... , m - 1, the maximum norm on C'[O,I] is denoted by H• n,.•, i.e.,

IIvll,.• =E:=o IIv(J)II., for all " e C'[O,IJ. Set

Hi ={v e H-: v(,;)(O) =v(,;)(I) =0, for j =O, ... ,m-l}.

Then our bilinear form .4.(.,.) is defined to be

(3.2.1)

where

- -A1(v,w) =L (a2(__')+1 V(_-,+1),w(_-'») +L (02(_-')v(--'),w(--'»),

'=2 '=1

for all v, tD e Hr. Our weighted ene~ norm is siven by

Our fint lemma shows that the bilinear form A.("') is uniformly coercive over

Hi X Hr, but is not satisfactorily uniformly bounded in terms of the energy norm.

Lemma 3.2.1 Auume tJaat (S.I.ld) aAd (S.I.le) hold. Then there eNt po8itive

amstonts C1 and C2 such that for all v, ., e Hi,

.ntI

C2111vl1l2~ A.(v, t1).

(3.2.2)

(3.2.3)

Proof. It is easy to see that
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using the Cauchy-Schwarz inequality. Then (3.2.2) follow. immediately, linee 0 <

£ ~ 1. For (3.2.3) we have, for each t7 e Hr,

A.(v, v) = E ( v(-), v(-»)

+f ((OJ(--.) - ~"'_-.l+l),,(--.), .,l--.))
.=1 -~ Elvl:a +L Q,.-.Ivl:a_.,

.=1
by (3.1.2d). Using induction on r, one can readily prove (see Chapter 2) that for

r =1, ... ,m,

p ;

L op_.lvl:_. ~ 1~!~" L op-.lvl:_h Vv E H:'.
• =1 -,- .=1

Hence

Ac(v,v) ~ Elvl:' + 1~~'" {ta.-.} Ivl:'-1
-,- .=1

~ £1"1:' +m-
1 l~~_{t....-.}11"11:'-10

which by (3.1.2e) is the desired result with

We can now define our weak formulation of (3.1.2): find a E Hi such that

Ac(a, t7) = (f, t7), Vt7 E Hi. (3.2.5)

For each fixed E E (0,1], Lemma 3.2.1 shows that Ac(·,·) is bounded and coercive

over Hox Ho.Furthermore, the mapping t7 ........ (f, t7) is a bounded linear functional

on HO' with respect to the norm 11·11•. Thus the Lax-Milgram Lemma tells 118 that
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(3.2.5) has a unique solution u in Hr. Throughout this chapter, " will denote this

solution. This weak solution is also a classical solution to (3.1.2), if all the data are

smooth.

Usin8 the characterization of the null space of L. siven in Theorem 3.1.4 of

Gartland [17], we can prove a representation result for the solution of problem

(3.1.2). This result will be used in the error analysis for the methods derived in

Section 3.3.

Lemma 3.2.2 The 3Olution u of (3.1.1) tUlmiu the repreM!ntation

_(O') = G(O') +E--1G1(O')exp ( - ~ /.1 " ...-1($) d$) , (3.2.6)

""'ere G .nd G l and their tleril1tJti~. II' to an, pre«rihed finite~r can 6e 60undetl

independentl, of t.

Proof. This i. essentially the same result as Theorem 3.1.4 of Gartland [17]. It

is proved using Gartland's argument, the only difference being that since we have

IlIulll ~ C, which follows from (3.2.3) and (3.2.5), the layer function component of

" must be scaled as in (3.2.6). C

In what follows, we shall denote by E(x) the boundary layer term of (3.2.6).

Thus

u(x) = G(x) +E(x),

where for x E [0, 1] and j =0, 1, ... , we have

IGb1(x)1 ~ C,

IE(;)(x)1 ~ Ct-- l - i exp(-0(1 - X)/E).

63

(3.2.7)

(3.2.8)

(3.2.9)



Hence, for z E [0,1],

lu(j)(z)1 ~ C, for j = O, ••• ,m-1.

3.3 Galerkin Finite Element Methods

(3.2.10)

It is well known that classical difference schemes on an equidistant mesh for the

second order problem (3.1.1) do not converge uniformly with respect to the discrete

L-(O, 1) norm. This result can be extended to the more ~eneral problem (3.1.2).

One may show, by arguments similar to Lemma 2.3.1, that if a typical difference

scheme is uniformly convergent of sufficiently high order in the maximum norm,

then certain coefficients of that scheme must have an exponential nature.

An exponentially fitted scheme can be constructed in the followin~ way on aD

equidistant mesh. Consider a Petrov-Galerkin finite element method with a bilinear

form based on approximating the coefficients in (3.2.1) by piecewise linear functions.

The basis functions for the trial space are simplified L-splines defined by

(3.3.1 )

on the interior of each mesh subinterval, with some boundary conditions, where

GJIa-l is a piecewise constant approximation of (lJIa-l(Z). The test function. are

simplified L*-splines satisfying the adjoint equation of (3.3.1). One can expect

to prove that this scheme is uniformly convergent in a weighted energy Dorm, by

employing an analysis similar to that of Stynes and O'Riordan [43]. However, the

resultin~ scheme is quite complicated because of the exponential fittin~ facton.

We therefore consider classical Galerkin finite element methods OD special meshs



for problem (3.1.2). We first work with an arbitrary mesh

x N : 0 =%0 < %1 < ... < %N-l < %N =1,

where hot =%. - %.-1, for i =1, ... ,N, and H =m&Xiht.

Since the solution of the weak formulation (3.2.2) lies in Hr, we define our

piecewise polynomial approximation space by

SN = {v(%) E Hi: vb. E P.(I.) for i = 1, .•. ,N},

where Pa(Ii) is the set of polynomials of degree at most R on Ii and R is some

positive integer. In order to guarantee that SN C C--1 C H-, we assume that

R ~ 2m-I.

To generate our computed solution, we define the modified bilinear form A:'(·,.)

on SN X SN to be

A~(v,.,) == e( v<-) , w<-» + (ar.-l v<-), .,<_-1») +Af(v, to),

where

- -Af(v,w) == L (a~__.)+IV<_-'+I),w(_-·») +L (a~__.)v(--·),tD(--·»)

.=2 .=1
and a:' denotes a piecewise polynomial approximation of .. for r =0,1, ..., 2m-1

respectively. For each r, these approximations are assumed to satisfy

I(~ - lip) (%)1 ~ Ch~, for %E (%i-l,%.) and i =1, ... ,N,

where I is a fixed positive int.r. We also require that

(3.3.2)

(3.3.3)



and

(3.3.4)

for % e (%i-l,Zi) and i =1, ... ,N.

The following lemma proves uniform coercivity of the discrete bilinear form

A~(.,.). This property will be used in the discretization error analyses of Section

3.5.

Lemma S.S.l TM~ emu a pt'Mitive comtaRt he (independent 01 e) .vch tJaot lor

Prool. Let v e Hr be arbitrary but fixed. Write

A~(v,v) =A.(v,v)+ (A~ - A.) (v,v).

For the second term of (3.3.5),

(3.3.5)

We have, integrating by parts,

I((a='_1 - 4..-1) vC-), vC--
1))I

=I(-~ (":"-1 - ""'-1)' ,,(_-1), ,,<_-1)) I
~ CHlvl:'_I.

Hence

1(A~ - .4.) (v, t1)1 ~ CHlllvllll .



Combining this with (3.3.5) and Lemma (3.2.1) completes the proof. 0

We may then pose the Galerkin discretization of problem (3.1.2): find UN e Sll

such that

(3.3.6)

where /11 approximates / analogously to~ approximating a,. in (3.3.2).

It follows from Lemma 3.3.1 that UII is well defined.

One choice of the approximation space Sll is the following Hermite basis function

space:

where V. is the linear span of {~ : i = 1, . .. ,N - I}, for r = 0,1, ... ,m - 1. The

basis functions {<pr}~lt, for r =0, ... , m - 1, are piecewise Hermite interpolation

polynomials of degree 2m - 1. That is,

I
h,e_,.(~),

<pHz) = (-I).h! ~ (.~1-.),+1'-""· +1 '

0,

where e",...(,) satisfies

for z e (Zi-t, za),

elsewhere,

(3.3.7&)

(3.3.71~)

(3.3.7c)

(3.3.84)

(3.3.86)

The e"".(') can be easily computed from (2.1.5.3) of Stoer and Bulirsch [39). We

see that

d'<fJ!
-'(z') =6 6··
dz" .. ",

for i = 1, ... ,N -1, for j = 0, 1, ... ,N and for r,f = O, .•• ,m-1.
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When SN =V N , the method (3.3.6) i. equivalent to

Write
N-l_-t

UN(Z) = E E <pHz)u~)(zd.
'=1 ,,=0

Set

Then the method may be written in the form

AU =F, (3.3.9)

where A is a m( N - 1) x m(N - 1) banded matrix with bandwidth 4m - 1. The non-

zero entries of the coefficient matrix A and the right hand side F are certain linear

combinations of E and point evaluations of a,. (for r =0,1, ... , 2m -1) and I, when

a!, and IN are Lagra.nge interpolants to a,. and I respectively. When m = 1 (the

second order convection-diffusion problem), the resulting scheme is cloeely related

to the classical central difference scheme.

In Section 3.5, we shall show that UN is uniformly convergent to t& in certain

norms provided that one takes X N to be a certain piecewise equidistant mesh.

3.4 Interpolation Error Estimates

In this sectioa, we first introd.ce a Shishkin mesh, then estimate interpoiatioD erron

in energy aad Sobolev norms. The results will be used to analyse the llniform

convergence of the computed solution.



3.4.1 The Mesh

In the literature, several types of special meshes have been introduced for singularly

perturbed two-point boundary value problems. Bakhvalov [2] and Vulanovic [46]

construct a graded mesh using a special mesh-generating function. Gartland [17]

subdivided the interval [0,1] into three regions: an inner region [z*, 1], a transition

region [z', z*] and an outer region [0, z~, where

z* ~ 1- KEln(K/h), z' ~ 1- KEln(I/E),

with K a positive integer, h a prescribed outer mesh spacing and K t < h. A special

mesh was generated by taking an exponentially graded mesh on [z*, 1], a locally

quasi-equidistant mesh on [z', z*] and an equidistant mesh on [0, z~.

In this chapter we shall employ a Shishkin mesh, which is piecewise equidistant

and consequently much simpler than the Bakhvalov and Gartland meshes.

Given an even positive integer N, the Shishkin mesh X:' is constructed by

dividing the interval [0, I] into two subintervals

[0,1 - (1], and [1 - u, I].

Equidistant meshes with N /2 points are then used on each subinterval. The param

eter (1 is defined by

(1 =min{1/2, (m + 1)o-IElnN},

which depends on t and N. Set io =N /2. Then zio =1 - u is the transition poillt

of the Shishkin mesh

X:' : 0 =%0 < Zl < ... < %io < ... < %It-I < Zit =1.
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The mesh spacing on the inner interval [Zio, 1] is given by

hi =2(1N -I , for i =io + 1, ... , N.

On the outer region [0, zio], the mesh spacing i.

hi =2(1- (I)N-1
, for i =O, ... ,ie.

(3.4.1)

(3.4.2)

Remark 3.4.1 The distinguished mesh point zio is analogous to the point z· oj the

Gartland mesh.

H (I = 1/2, i.e., 1/2 ~ (m + 1)a-IE In N, then N-I is very small relative to

E. This is unlikely in practice (and in this case the method can be treated in the

classical way). We therefore assume that

(J = (m + l)o-IEln N.

From this, (3.4.1) and (3.4.2), one may easily obtain that

hi = 2(m + l)a-I£N-1 tn N,

for i = io + 1, ... ,N and

for i = 1, ... , io.

3.4.2 Interpolation Error Estimates

(3.4.3)

(3.4.4)

(3.4.5)

For the purpose of our interpolation error analysis, we first present some standard

approximation error estimates (Lemma 3.4.1) which are valid on an arbitrary mesh.

Consider a finite element (E., PII(Ii), Id, where E. is the set ofd~of freedom.

It will be aB8umed that the set E. is PII-unisolvent, for i =1, ... , N. Let .. be the
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sreatest order of derivatives occuring in the definition of E•. For v E C~(I.), we

denote by niV the Pa-interpolant to v on Ii. Set • =max{" : i =1, ... , N}. Then

liven v E C·(O, 1), we will denote by nN v the piecewise polynomial interpolant from

SN to v. This interpolant satisfies (nN v)lI, = nivl", for i =1, ... ,N.

Let 1I·lIi,.,I, be the maximum norm on Ci(I.), with the 1l8ual uaociated eemi

norm 1·li,• .I•. Denote by 1I·lIi,J.I. the norm on the Sobolev space Hi(Ii) and by

I. li,J.I. the associated seminorm. We have

Lemma 3.4.1 Let k be an integer .atisfying R +1 ~ k ~ "t. Let v E C·(It}. Then

there ezist. a constant C1, which is independent of~ and v, .uch that

lor j =0,1. .. , k. 11 R + 1 ~ k ~ "t +1, then

Iv - nivlj,J.I. :5 Clh~-; Ivl.,J.Ii '

lor j =0,1 ... , k.

(3.4.6)

(3.4.7)

Proof. From Theorem 3.1.5 of Ciarlet [7], (3.4.6) and (3.4.7) hold for R + 1 ~

k ~ "t + 1. The case k ="t of (3.4.6) can be shown by a similar argument. C

We now proceed to the estimation of the interpolation error _ - nN u OR the

Shishkin mesh of subsection 3.4.1.

Recalling (3.2.7) - (3.2.9), we see that

and

1"("")(z)1 :5 C, for z E [0,1 - 0'.],
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where tI. =min {1/2,(m+ l)a-1tln(l/t)}.

Consider the local interpolation error _ - n,. on a subinterval 1.. If 1, is in

the fine portion of the mesh or lies outside the boundary layer, then the error

analysis can be done by standard approximation theory arguments. However, when

t < N-l, the coarse mesh and the boundary layer have nonempty intersection,

viz., J. == (1 - tI., 1 - til ~ I. In other words, as t .... 0 with N fixed, lu(i)(z)1

is unbounded for j ~ m when z E J. and the Shishkin mesh is coarse on J.. It

turns out that a direct application of standard approximation theory will not yield

a bound on IIlu - niulll which is uniform in t. In order to obtain such uniformity

on those Ii ~ J., we need an asymptotic decomposition of u. The estimates (3.4.6)

with Ie =~ and (3.4.7) with Ie =~+1 then playa special role in our error analysis.

To enable us to use (3.4.6) with Ie = m - 1 and (3.4.7) with Ie = m, we shall assume

that i =m - 1, where i = max {~ : i1 + 1 ~ i ~ ie} and i1 =min {i : 1, n J. ~ '}.

In particular this assumption is satisfied if we take SN = V N , the Hermite space

defined in Section 3.3.

Lemma 3.4.2 ut. be the BOlution of problem (3.1.t). Tllen on the Shishkin me.

X!', IDe have for j =0, 1, ... , m - 1,

I n I <Ch--i-1N---l l . {I . },,- i U i.-.z. _ i , i Dr IE, ... , to

and

Proof. Follows from the argument of Lemma 2.5.2. a

(3.4.10)

(3.4.11)

The foUowin~ interpolation error estimate in the Sobolev DOrm II ·11_-1 then

follows immediately from Lemma 3.4.2.
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Corollary 3.4.1 Let u be the 3Olution of problem (3.1.t). ut nNu be the piecetDiM

polrnomiol interpolant from SN to _ on the Shishkin me'" X!'. Then

(3.4.12)

By arguments similar to those of Lemma 2.5.2, one may also show that

(3.4.13)

for i = 1, ... , N. However, in contrut to the problem of reaction-diffusion type,

combining (3.4.13) with (3.4.10) and (3.4.11) here does not yield a bound for ._nN a,

which is uniform in E, in the weighted energy norm 111·111 which was defined in Section

3.2. One needs a more precise analysis to achieve the desired uniform estimate.

Lemma 3.4.3 Under the BOme h1/pothe3e3 U in Corolla'1l 3.-4.1, we have

IIlu - nN "III ~ C(N-11n N)-.

Proof. We first show that

(3.4.14)

(3.4.15)

Let Ii ~ [zio, 1], i.e., Ii lies in the fine portion of the mesh. Then from (3.4.7) with

j =m and k =2m,

by (3.4.4). Hence

I- - niu l:'.2,1. ~ ch1"'lul:".2.It

~ C (EN-1 mN)'-I"IL..J,I"

(3.4.16)

(3.4.17)
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~ C (EN-lIn N)h IIU(JRa)II J

£2[1'40. 1)

:S: C (eN-lin N)IMl' [1 H--I exp( - ..(1- o:)/e)]1 liz
'0

~ CE-l (N-1ln N)h,

by (3.4.8). This completes the proof of (3.4.15).

Secondly, we prove that

We discuss two cases.

(3.4.18)

Case 1: N-l ~ E. In this case, we have [O,Zio] ~ [0,1 - <1.]. It is obvious, OD

again taking j =m and k =2m in (3.4.7) and using (3.4.5) and (3.4.9), that

II (u - nN u)("')II J
~ CN- Jwa Ilu(Jwa)II J

L~~.I'4o) L~~.I'4o)

~CN-". (3.4.19)

Case 2: N-l > E. By the same argument as in Cue 1, one can show that

since [0, Zil] ~ [0,1 - <1.].

(3.4.20)

We now deal with the intersection of the coarse mesh and the boundary layer.

It will be shown that

Recall the decomposition (3.2.7). Write nN u in the form
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where nNa and nNE denote the piecewise polynomial interpolants to a and E

respectively. We shall separately bound

By (3.2.8) and arguments similar to those of Case 1, we have

For the second term of (3.4.23), we use (3.4.7) with j =k =m. Then

(3.4.23)

(3.4.24)

by (3.4.3). Combining this with (3.2.7), (3.4.22) and (3.4.24) yields (3.4.21). This

completes the proof of Case 2. Then (3.4.18) follows.

Recalling (3.4.15), we have

Combining this with Corollary 3.4.1 yields the desired result. 0

3.5 Uniform Convergence Results

In this section, we present uniform convergence results in various norms for the

classical finite element method (3.3.6) on the Shishkin mesh.
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3.5.1 Analysis of Convergence

Since the bilinear form .4.( ., .) is not uniformly bounded in terms of the energy norm

111·111 (see (3.2.4», a cl&88ical finite element approach doee Bot satisfactorily analyse

the errors in the computed solution u". We shall employ an analysis similar to

Stynes and O'Riordan [43] to prove that the method (3.3.6) is uniformly convergent

in the energy norm III . III.

Recall that SN ~ C--1(0, 1). It is natural to assume that for t1 E C·(O, 1),

(3.5.1)

for i = 0, 1, ... , Nand j = 0, 1, ... , m - 1. We shall also &88ume that R = 2m - 1,

as there seems to be little benefit in using polynomials of higher degree.

Theorem 3.5.1 Let UN E SN 6e the 3olution 01 (3.3.6) on the ShiBhJrin f71e3h X!'.

Then lor N 3ufficientl1l1arge (independentlJl 01 E), IDe have

Proo/. By Lemma 3.3.1, we have

ctlllnN u- u,,1112

~ A~ (nNu - u",nNu - ",,)

= A~ (nNu - .,nN• - u,,) +A~ (. - .",n". - 8").

We begin by analyzing the first term:

A~ (nNa - u,nN• - UN)

=(E(nN• - 8)(-), (n". - a,,)(-))
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+ (a:'._I(nN" - U)(-),(nN" - UN)(_-I»)

+Ar (nNU-tl,nN"-UN)

= (a:'._I(nN" - u)(-),(nN• - I&N)(_-I»)

+Ar (nNu - _,nN" - UN), (3.5.3)

by (3.5.1) and using integration by parts, since (nN 1& - UN )(JIa) == 0 on each element

(Zi-l,Zi). It is easy to see that

IAr (nNa - u,nNu - uN)1 ~ cllnNu - ull__ll1nNu - uNII_-l

~ C (N-1 ln N)-+l l11nNu - UNIII, (3.5.4)

by Corollary 3.4.1.

We now estimate the first term of (3.5.3). We have

(ar"'_I(nNa - u)(-), (nNu - UN )(_-1»)

= - (a:'._I(nNU - u)(--I),(nN u - tlN)(-»)

- ((a:'.-d' (nN" - u)("'-I),(nN • - UN)(_-I»). (3.5.5)

Clearly

I((a:'._I)' (nN
11& - .)(_-1), (nNu - UN )(_-1»)I

~ C (N-1ln N)_+1 IIInNu - uNIII.

Next, by (3.4.10),

IJ.~ ,,:,,_.(%)(nNa - a)<--'I(%)(nNa - aN)<-I(%)/h1

~ CN---111(nN
11& - UN )("')II£2[O J

~ CN--II(nN
" - "N )(--1)11£2(0 J'
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by an inverse estimate. Also, by (3.4.11),

IJ~ ":"_l(%)(nN• - .)(_-l)(%)(nN• - .N)(-)(%)d%1

~ C (N-1\n N)_+l l' l(nN • - .N)(-)(%)1 d%
'0

~ C (N-1ln N)"'+1 (11/211(nN " - "N )("')11£2[810_ 1)

~ C (N-1 ln N)",+l ln1/2 NlllnN" - "NIII.

Hence, (3.5.8) and (3.5.9) yield

(3.5.9)

Combining (3.5.3) - (3.5.6) and (3.5.10), we have

Taking the second term of (3.5.2),

A~ (u - UN, nNu - UN)

=(A~ -.4.) (v,nN• - UN) +.4. (u,nNv - UN)

(3.5.11)

-A~ (UN,nNU - UN)

= ((a:'_ 1 - 0""-1) u("'),(nN" - UN)(",-I»)

+(Ar - Ad ('" n N" - UN) + (f - fll, nN• - "II). (3.5.12)

Since luI. ~ C for k =0, ... , m - 1, clearly

I(Ar - AI) (u, nNu - UN) + (f - fll, nN• - UN)! ~ cN-'lIInN• - uNIII.

(3.5.13)
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For the first term of (3.5.12), we have by (3.3.2) and (3.2.7) - (3.2.9),

IJ~ (a:"_1 - _-1) (z)u<-I(z)(nN" - "N)<_-II(Z) dZI
~ Ce'-1 (N-1 1n N)'lIInN" - "NIIt. (3.5.14)

Also

If.... (a:'._1 - aM-I) (z)G<-I(z)(nN" - UN)<_-II(Z) dzl
~ CN-'lInN u - uNII_-l- (3.5.15)

Since

/-'0 /-..10 1E<-)(z)ldz~C 10 E-1 exp(-0(1-z)/E)dz

=co-1 (exp (-oooIE) - exp (-olE»

we have

If.... (":"-1 - ....-1) (z)V-I(z)(nN" - "N)<_-II(Z) dzl
~ CN-'---II1(nN U - UN)<--1)11£-10, ~J

~ CN-'---1/211(nN u - UN )<--1)11£3[0, etoJ' (3.5.16)

by an inverse inequality. From (3.5.14) - (3.5.16) and u = G +E, we obtain

I((a='_1 - aha-1) u<-),(nNu - taN)<_-1»)I
~ C (N-1 1n N)'lIInNu- uNIII.

Therefore, from (3.5.12), (3.5.13) and (3.5.17),

IA:' (u - UN,nNU - UN)! ~ C (N-1 lnN)'lIInNu - uNlit.
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Combinin~ this with (3.5.2) and (3.5.11), we obtain the desired result. C

Remark 3.5.1 SUptJOM tlud £ ~ N-l in TMorem 3.5.1. (Thu u tWUOnGWe in

practice.) Then irutetJd of (3.5.1-1) _ luJoe, UBing II Clluch,,-SchtDGrz ineqtUJlit",

If~ (a:"_l - ....-1) (z)u(..I(z)(nNu - UN)(..-ll(Z) dzl
S C (EN-lin N)' /.1 (1 +E-1e--(1-al /.) l(nNu - uN)..-l(z)1 dz

'0

~ C (EN-lin N)' E- l/211InNu - uN1I1

~ cN-'lIInNu - uNIII·

Thi8 inequality clearly allo1D3 u to replace the concluion of Theorem 3.5.1 .,

Corollary 3.5.1 Let UN be defined u in Theorem 3.5.1. Then

IIlu - uN1I1 ~ C (N-l 1n N)mia{"', ') .

q in addition m ~ 2, tlaen for j E {O, .•. , m - 2},

Proof. First, (3.5.19) follows from Theorem 3.5.1 and Lemma 3.4.3.

Note that for all t1 E H;,

II v(;)II_ ~ l"li+l ~ II vlli+lt for j =0, ... , m - 2.

We therefore have from (3.5.19) that for j =0,1, ... , m - 2,

lIe 1& - UN )(j)II_ ~ II- - uNlli+l

~ C (N- l 1n N)--{"" I) ,
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which i. the desired result. c

Remark 3.5.2 Auuming that ~ ue • sufficientl, ace.nate quotlnattlre nde, .,

that I ~ m, Corolla,." 3.5.1 JielU

(3.5.21)

In tJae cltJ8sicol cae E = 1, the Shishkin me.h is equidistGnt Gnd it is t«ll moum
thGt one htJB

C0n8equently toe see thot (3.5.!1) is Gt letJ8t almost optimol.

Remark 3.5.3 In Chapter I toe gtJtJe the uniform estimote

II" - "NII_-l ~ C ((N-1 1n N)_+l +N-') , (3.5.22)

tDhere " is the solution of problem (3.1.5) and "N is it. computed solution, tDhich

tDfU obtained by a method similar to that of this chapter. When, e.g., m = I - 1,

the order of CORveryence in (3.5.!!) is greater tlaGn the order implied ", (3.5.11).

T.his difference is intrimic to the t!DO problem. untkr COR8itlenation, tDhen m ~ 2.

Numericol reBult. in Section 3.6 belotD ","llhotD that tJae ezponent m in Corolla,.,

3.5.1 is BhtJrp; hence can inequalit, such IJ8 (3.5.!I) does not hold for II. - t&NII_-l.

Corollary 3.5.2 Auume tlaat in problem (3.1.!) the functions tip for r = 0,1,

... ,2m - 1 Gnd I are comfant. Let "N e SN it tJae sol.tion of (3.3.8) tDitla a:' ==

.., for r = 0, ... , 2m - 1, and IN == I, on the Shishkin mesh X!'. Then for N

sufficiently larye (independently of E), ~ hofJf!

III" - tlN1I1 ~ C (N-1 ln N)- .
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Proo/. Our hypotheses imply that we can take I arbitrarily l&r«e in (3.5.19). 0

Remark 3.5.4 Consider noto the pro%/ Theorem 3.5.1 from CI clouical .MIDpOint.

From (3.5.8), one htu

1['" a:"_t(:r)(nN• - .)(--t)(:r)(nN• - .N)(-)(:r)d:rl

~ CE-1
/
JN---1 11InN" - uNIII·

Combining this tDith (3.5.3) - (3.5.6) and (3.5.9) yielth

IA:' (nN
" - ",DN" - uN)1

~ C (E-1/J +In-+I/J N) N---1 I11nN
1& - "NIII.

FollotDing the proof 0/ Theorem 3.5.1, thu leodI to

Combining this tDith Corolla'1l 3.~.1, IDe have

ThiB shOtlJ8 that in the classical 8enM! (i.e., for E fized) 1M order of co,u~~~ in

the noma 11·11_-1 iB greater than the order 0/ cont1t'~nce in the ene,." noma 111·111.

On the other hand, lDhen cont1t'~n~ unifomal, in E iB considered tDith m ~ 2, this

phenomenon does not occur; numerical ezperiments in Section 3.6 show that one

ma, have the _me order of cont1t'rge~ in 11·11--1 cu in 111·11I.

When I is odd, some stronger uniform convergence results C&Il be obtained, if

411II-1 and 4h-J are approximated to a higher order of accuracy than the other a.

in (3.1.2&).
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Theorem 3.5.2 Let UN E SN 6e the .matima 01 method (3.3.6) on the Shislakin

meala X!'. A33ume 0180 1M loilOtDing: for i = 1, .•. , N,

lor % E (%i-I, Xi) and r = 2m - 2,2m - 1,

If.~i (a~ - a,.) (z) dzI~ Ch:+2
, lor r = 0, 1, ... , 2m - 3-.-1

and

I.t.(IN - f)(Z)dZI $ chI+!·

Then lor N sufficiently large (independently 01 E), IDe haW!

Proo/. We need to prove that

where

A:- (u - UN,n
N

• - UN)

=((a:'_1 - Gila-I) .C..), (nN " - "N )C..-l»)

+(Ar - AI) (u,nN" - tiN) + (/-IN,nN
" - "N).

(3.5.23)

(3.5.24)

(3.5.25)

(3.5.26)

Inspecting the proof of (3.5.17) and usin« (3.5.23) with r = 2m - 1, one can

.how that

I((a:'_1 - Gila-I) .C..), (nN• - tiN )C..-I»)I
~ C (N-Iln N)'+llIInN• - uNIII.
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Imitating the proof of Theorem 2.5.3 of chapter 2 and uaing (3.5.23) with r =
2m - 2, (3.5.24) and (3.5.25), one may prove that

and

This completes the proof of (3.5.26).

Recalling the proof of Theorem 3.5.1, we are done. C

Remark 3.5.5 It u well known in t~ contezt 01 Newton-Cotes integration rule.

that properties (3.5.1-4) and (3.5.15) are etJ8ily achieved using piecewise polynomiaZ.

01 degree I - 1 tDhen I is odd.

3.5.2 A Special Cue

We work with the special case of a second order problem (i.e., m = 1). For problem

(3.1.1), the conditions (3.1.2d, e) are equivalent to the inequality 6(%) - a'(z)/2 > 0

and in fact this inequality can be deduced from a(z) > Q > 0; see Stynes and

O'Riordan [43].

Consider the method (3.3.6) with the basis function space VB (for m = 1), i.e.,

a piecewise linear function space. We take iT = 30-1£ In N in the Shishkin mesh,

which is different from our previous value of iT. Let .., be the solution of problem

(3.1.1). The next result shows that if I =2, then II.., - UBUO has order of uniform

conve~nce at least 1/2 higher than is implied by the bound on III.., - -NIII ~ven

in Corollary 3.5.1.



Theorem 3.5.3 ut to 6e the solution 01 problem (3.1.1) and let UN to e SN in

krpolote to to at eoch node z., i = 0, ... , N. ut uN e SN 6e the MHution 01 the

method (9.3.6) on the Shi&hkin me.h X!', tDith tI = 3a-1ElnN. ut

N Z. - Z Z - z'-1
a (z) =~a(z'_I) + ht a(za),

lor z e (Z.-19Z.) and i = 1, ... ,N, tDith 3imilor tkfiniti0n3 01 #)N(z) and IN(z).

Then lor N 8ufficientl1llarge (independently 01 E), tDe have

(3.5.27)

and consequently

(3.5.28)

Prool. Recall the proof of Theorem 3.5.1 and take m = 1 and I =2. In order to

obtain the desired accuracy, one needs to analyse the term

more carefully.

We again use the decomposition (3.2.7). Then

(3.5.29)

Firstly, it is clear, on taking k =j =0 in (3.4.6), that for i =1, ... , ie,

IE - D.Elo••.z. ~ C 1£1o.-.z.

~ C exp( -Otl/E)
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since t1 =30-1£ In N. Hence

Ik IIN(x) (IIN E - E) (x) (IIN
", - -N)' (X)dXI

~ CN-1 II(nNw - UN)'II
£2[0....1

~ CN-
2

I1 nN., - "Nllo'

by an inverse estimate.

(3.5.30)

Secondly, we bound the first term of the right hand side in (3.5.29). Let i e

{l, ... ,io}. For Z E (Zi-l,Zi), we have

(nNG _ G) (z) = Zi~ Z G(Zi-l) + Z -~i-lG(Zi) - G(z)

=~(z - Zi-l)(Zi - z)G"(z) +D(hf) .

In the sequel, we shall denote by Zi any quantity of D(N-J). Set

Also set

Therefore
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= It [~;a(%i)G"(%i)(e; - e;-I) +",Zi("i - "i-I)]I
I

io-l 1
= - tr 12 [h!+la(Zi+l)G"(Zi+l) - h!a(zi)G"(Zi)] ei

~ io I+ 1~ a(zio)G"(zio)eio +L ~Zi(ei - ~-1)
i=1

I
io-I ~ io I= - ~ hiZiei + 1~ a(zio)G"(Zio)~ + tr hiZi(ei - ~-d ,

since ~ =~_I =O(N-1
) ,

~ CN-
2 (t"""il + '''iol)

~ CN-
2 (t'" I(UNw - UN) (%i)1 + J(UNw - UN) (%io)l)

~ CN-
2

( (t '" I(UN
lD - UN) (%i)1

2f/2 + l(uN
lD - UN) (%io)l)

<_ CN-2 (1 + ,1(I1Nw
- UN) (Zio)l.) IllIINtD - uN111 ()IIlnNw - uNI" 3.5.31

~ CN-1
/
2111I1N

1£1 - uNIII,

by an inverse inequality. Combining this with (3.5.29) and (3.5.30) yield.

Recalling (3.5.3) - (3.5.6) and (3.5.9) with m =1, we have

Also,

by (3.5.18) with I = 2.
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Returnins to (3.5.2), we ~t

This completes the proof of (3.5.27). Then (3.5.28) follows from (3.5.27) and (3.4.12)

with m =1. 0

Remark S.5.8 lruteod of (S.5.!7), the proof of Theorem S.5.3 octull, git1t!' (II«

(3.5.31}) tlaat

IIIUN
w - "NIII :;; ((N-lln N)2 +N-

21 (~~;.: ~~~~I)I) .
Numericol ezperimenu 8hotlJ that if N i8 8ufficiently large one 1uu

Remark S.5.T One can get

on applying an int1t!ru e8timate to (3.5.!7). Auume tlaat 6(z) ~ 0 for all z E [0,1].

NotIJ tlae method defined in Theorem 3.5.3 MJtisfie8 II discrete rruuimum principle,

..men restricted to X!' n [zio, 1]. Hence w laave

max I(w - uN)(zi)1 < eN-I.
io~'~N-l -

This aIaotDa tlaat tIae method is uniforml" convergent of at ktJat fin' onkr in tIae

diKrete rruuimum norm.
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3.6 Numerical Results

In this section are reported some numerical experiments to demonstrate the accuracy

of the method (3.3.6) applied to fourth order problems and the second order problem

(3.1.1). We shall take the trial and test space SN = VN. Then the scheme has the

form of (3.3.9).

We shall examine both the error between the computed solution UN and the true

solution U and the error between the UN and the interpolant nN u. These erron

_ - UN and nNU - UN will be measured in various norms II ,11. We calculate the

convergence rate tables as follows, where E!' may denote lIu - UN II or linN. - "Nil;

see Farrell and Hegarty [14]:

(i). Except for the last row, the table entries are ~ven by the classical convergence

fate,

R~ =(In E~ -In E:')/ In 2.

(ii). The last row of each table is the uniform convergence rate,

where EN = max. E!'.

We first consider the fourth order problem (i.e., m =2)

t 2.(4) - (o(z)uH +6(z)u')' +c(z)u' +d(z)u = I(z), for z E (0,1), (3.6.10)

_(0) = u'(O) = u(l) =.'(1) =0, (3.6.16)

with

4(Z) > a > 0,
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and

6(z) - ~a'(z) ~ 01 > 0

d(z) - ~C'(Z) ~ 00 > -01,

(3.6.1d)

(3.6.1e)

for 0 ~ z ~ 1. The matrix of the method (3.3.9), with m =2, is heptadia«onal. The

scheme is solved by Gaussian elimination.

We compute the following three errors:

(i). The error between the exact solution u(z) and the computed solution t&N(Z)

in the discrete maximum norm,

(il). The error between the interpolant nNu(z) and the computed solution t&N(Z)

in a discrete HI-norm,

(iii). The error between the interpolant nNu(z) and the computed solution t&N(Z)

in a discrete energy norm,

The discrete HI-norm and the discrete ene~ norm are defined respectively by

and

90



for all v = E~11 [",cpf(z) + tDicpl(Z)] e yN, where '" =(hi + ,,-+1)/2. By calc.

IatioD, ODe may show that on yN the discrete HI-norm I ·141 is equivalent to the

usual seminorm I· It and the discrete energy norm is equivalent to the energy norm

III . III·

Example 3.8.1 (m=!). Con8ide,. (3.6.1) tDitJa a(z) ;;: 10, b(z) == I, c(z) == tI(z) ==

o and

u(z) = E2exp(-10(1- Z)/E) - EI(Z +(1- z»exp(-IO/E)

- (E(IO +E)exp(-IO/E) - EI ) z(z - 1)1

- (E(lO - E) +Elexp(-IO/E») z2(z - I)

+0.9z2( I _ %)2.

The function f(z) is then chosen to 8/disfy (3.6.1a); it 8Gtisfie.

lor z e (0, I) and j =0, I, ....

Note that, since lIuHIIL-(o,I] :s C, the solution is in fact smoother than the typical

solution of (3.1.2) ~ven in (3.2.6).

We shall confirm that the exponent m iB Theorem 3.5.1 and Corollary 3.5.1 is

sharp. To do this, we use the method (3.3.6) with the piecewise quadratic approxi-

mationa

(z - z.)(z - Zi+l)-I . ) (z - Zi-l)(Z - zi+dp( .)
2h i.. ",z.-1 + 1..1.. Z.

i'.... ' .... ' ..+1
(z - Zi-l )(z - Zi)p( . )+ 21.. i.. z.+1 ,

' ....+1'....
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for z e (Zi-l,Zi+l) and i = 1,3, . .. ,N - 1, where p can be (I, II, c, Ii or /. For this

scheme, which we refer to as the A scheme, we have I =3 in Theorem 3.5.1. We

take Q =9.5 in (3.4.3).

€ N=8 16 32 64 128 256
1.00000e+OO 1.32ge-03 7.760e-05 4.89Oe-06 3.043e-07 1.903e-08 1.241e-09
2.50000e-01 6.191e-04 1.504e-04 2.310e-05 2.903e-06 3.057e-07 1.902e-08
6.25000e-02 8.812e-04 4.830e-05 2.912e-06 1.795e-07 2.074e-08 2.2OOe-09
1.56250e-02 2.007e-03 2.108e-04 1.352e-05 8.38&-07 5. 195e-OS 3.217e-09
3.90625e-03 2.330e-03 4.53ge-04 5.261e-05 3.49ge-06 2. 185e-07 1.363e-08
9.76562e-04 2.394e-03 5.644e-04 1.1l3e-04 1.317e-05 8.83ge-07 5.52ge-08
2.44141e-04 2.408e-03 5.965e-04 1.403e-04 2.771e-05 3.2900-06 2.216e-07
6.10352e-05 2.412e-03 6.048e-04 1.49Oe-04 3.502e-05 6.923e-06 8.244e-07
1.52588e-05 2.412e-03 6.06ge-04 1.513e-04 3.725e-05 8.752e-06 1.731e-06
3.81470e-06 2.413e-03 6.074e-04 1.51ge-04 3.783e-05 9.31le-06 2. 188e-06
9.53674e-07 2.413e-03 6.0700-04 1.520e-04 3.798e-05 9.45&-06 2.32&-06
2.3841ge-07 2.413e-03 6.075e-04 1.521e-04 3.802e-05 9.496e-06 2.365e-06
5.960400-08 2.413e-03 6.075e-04 1.521e-04 3.803e-05 9.5000-06 2.374e-06
1.49012e-08 2.413e-03 6.0700-04 1.521e-04 3.803e-05 9.507e-06 2.376e-06
3.7252ge-09 2.413e-03 6.075e-04 1.521e-04 3.803e-05 9.508e-06 2.377e-06
9.31323e-10 2.413e-03 6.075e-04 1.521e-04 3.803e-05 9.508e-06 2.377e-06

Table 3.6.1: II. - .NII_~ for A Scheme
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e N=8 16 32 64 128
1.00000e+00 4.10 3.99 4.01 4.00 3.94
2.50000e-01 2.04 2.70 2.99 3.25 4.01
6.25000e-02 4.19 4.05 4.02 3.11 3.24
1.5625Oe-02 3.25 3.96 4.01 4.01 4.01
3.90625e-03 2.36 3.11 3.91 4.00 4.00
9.76562e-04 2.08 2.34 3.08 3.90 4.00
2.44141e-04 2.01 2.09 2.34 3.07 3.89
6.10352e-05 2.00 2.02 2.09 2.34 3.07
1.5258&-05 1.99 2.00 2.02 2.09 2.34
3.81470e-06 1.99 2.00 2.01 2.02 2.09
9.53674e-07 1.99 2.00 2.00 2.01 2.02
2.3841ge-07 1.99 2.00 2.00 2.00 2.01
5.96046e-08 1.99 2.00 2.00 2.00 2.00
1.49012e-08 1.99 2.00 2.00 2.00 2.00
3.7252ge-09 1.99 2.00 2.00 2.00 2.00
9.31323e-l0 1.99 2.00 2.00 2.00 2.00

RN 1.99 2.00 2.00 2.00 2.00

Table 3.6.2: lIu - uNlloo,.l Convergence Rates for A Scheme

It is easy to see that

Combining this with Corollary 3.5.1, we have

But now Table 3.6.2 implies that the exponent 2 here is best possible, i.e., the

exponent m in Corollary 3.5.1 is sharp.

Since 1I--uNlloo,.l = IInNu-uNII.,.I, a similar argument shows that the exponent

m in Theorem 3.5.1 is also sharp, since I =3 here.
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! N=8 16 32 64 128 256
1.56250e-02 7.797e-03 9.620e-04 7.524e-05 4.991e-06 3.102e-07 1.89&-08
3.90625e-03 8.102e-03 1.634e-03 2.160e-04 1.736e-05 1.15ge-06 7.344e-08
9.76562e-04 8.112e-03 1.92ge-03 3.932e-04 5.274e-05 4.274e-06 2.863e-07
2.44141e-04 8.10ge-03 2.015e-03 4.775e-04 9.748e-05 1.312e-05 1.065e-06
6.10352e-05 8.107e-03 2.037e-03 5.028e-04 1.191e-04 2.433e-05 3.276e-06
1.5258&-05 8.107e-03 2.042e-03 5.095e-04 1.257e-04 2.976e-05 6.07ge-06
3.81470e-06 8.107e-03 2.044e-03 5.112e-04 1.274e-04 3.141e-05 7.44Oe-06
9.53674e-07 8.107e-03 2.044e-03 5.116e-04 1.278e-04 3.185e-05 7.853e-06
2.3841ge-07 8.107e-03 2.044e-03 5.117e-04 1.27ge-04 3.19&-05 7.962e-06
5.9604&-08 8.107e-03 2.044e-03 5.117e-04 1.280e-04 3.198e-05 7.98ge-06
1.49012e-08 8.107e-03 2.044e-03 5.117e-04 1.280e-04 3.19ge-05 7.99&-06
3.7252ge-09 8.107e-03 2.044e-03 5.117e-04 1.280e-04 3.19ge-05 7.998e-06
9.31323e-l0 8.107e-03 2.044e-03 5.117e-04 1.280e-04 3.19ge-05 7.998e-06

Table 3.6.3: linNU- UNlit for ..i Scheme

! N=8 16 32 64 128
1.562.l)()e-02 3.02 3.68 3.91 4.01 4.03
3.90625e-03 2.31 2.92 3.64 3.91 3.98
9.76S62e-04 2.07 2.29 2.90 3.63 3.90
2.44141e-04 2.01 2.08 2.29 2.89 3.62
6.103.52e-05 1.99 2.02 2.08 2.29 2.89
1.52.588e-05 1.99 2.00 2.02 2.08 2.29
3.81470e-06 1.99 2.00 2.00 2.02 2.08
9.53674e-07 1.99 2.00 2.00 2.00 2.02
2.3841ge-07 1.99 2.00 2.00 2.00 2.00
5.96046e-08 1.99 2.00 2.00 2.00 2.00
1.49012e-08 1.99 2.00 2.00 2.00 2.00
3.7252ge-09 1.99 2.00 2.00 2.00 2.00
9.31323e-l0 1.99 2.00 2.00 2.00 2.00

RlY 1.99 2.00 2.00 2.00 2.00

Table 3.6.4: linNU- UNlit Conv~ence Rates for ..i Scheme



E N=8 16 32 64 128 256
1.56250e-02 1.992e-02 2.852e-03 3.184e-04 3.726e-05 4.216e-06 3.377e-07
3.90625e-03 1.987e-02 4.224e-03 5.328e-04 4.017e-05 2.96Oe-06 2.765e-07
9.76562e-04 1.977e-02 5.015e-03 1.034e-03 1.273e-04 8.98ge-06 5.796e-07
2.44141e-04 1.973e-02 5.251e-03 1.287e-03 2.601e-04 3.175e-05 2.223e-06
6.10352e-05 1.972e-02 5.313e-03 1.364e-03 3.268e-04 6.535e-05 7.95Oe-06
1.52588e-05 1.971e-02 5.328e-03 1.384e-03 3.472e-04 8.225e-05 1.637e-05
3.81470e-06 1.971e-02 5.332e-03 1.39Oe-03 3.526e-04 8.741e-05 2.061e-05
9.53674e-07 1.971e-02 5.333e-03 1.391e-03 3.53ge-04 8.876e-05 2.191e-05
2.3841ge-07 1.971e-02 5.334e-03 1.391e-03 3.542e-04 8.911e-05 2.225e-05
5.96046e-08 1.971e-02 5.334e-03 1.391e-03 3.543e-04 8.91ge-05 2.233e-05
1.49012e-08 1.971e-02 5.334e-03 1.391e-03 3.544e-04 8.922e-05 2.235e-05
3.7252ge-09 1.971e-02 5.334e-03 1.391e-03 3.544e-04 8.922e-05 2.236e-05
9.31323e-l0 1.971e-02 5.334e-03 1.391e-03 3.544e-04 8.922e-05 2.236e-05

Table 3.6.5: IIlnNU - uN1i1 for A Scheme

E N=8 16 32 64 128
1.5625Oe-02 2.80 3.16 3.10 3.14 3.64
3.90625e-03 2.23 2.99 3.73 3.76 3.42
9.76.1)62e-04 1.98 2.28 3.02 3.82 3.95
2.44141e-04 1.91 2.03 2.31 3.03 3.84
6.10352e-05 1.89 1.96 2.06 2.32 3.04
1.52.1l88e-05 1.89 1.94 2.00 2.08 2.33
3.8147Ck'-06 1.89 1.94 1.98 2.01 2.08
9.53674e-07 1.89 1.94 1.97 2.00 2.02
2.3841ge-07 1.89 1.94 1.97 1.99 2.00
5.96046e-08 1.89 1.94 1.97 1.99 2.00
1.49012e-08 1.89 1.94 1.97 1.99 2.00
3.72S2ge-09 1.89 1.94 1.97 1.99 2.00
9.31323e-l0 1.89 1.94 1.97 1.99 2.00

RN 1.89 1.94 1.97 1.99 2.00

Table 3.6.6: IlInN " - "NIII Convergence Rates for A Scheme

Tables 3.6.4 and 3.6.6 demonstrate tile same order lIniform convergence of

Example 3.8.2 (m=!). Cmvider (3.I.l) II1ith a(z) = 2 + exp(z - 1), II(z) =



2 exp(% - 1) and c(z) == d(z) == 0, ""'ere f( z) u clao«n M) thaI tIae Hlulion of

(3.1.1) U

u(z) =y(z) - (y'(O) + ,(0) - ,(1») z(z - 1)1

- (y'(I) + y(O) - ,(1») zl(z - 1) - «1 - z)y(O) + z,(I»,

",,'h ,(z) =Eexp ((-3 +2% +e--t ) IE).

This u(z) exhibits typical boundary layer behaviour.

We denote by A the method (3.3.6) with the piecewise linear approximations

for % E (Zi-t, Zi) and i =1,2, ... , N, where p can be a , 6, c, d or f. For this scheme

I =2. We choose Q =2.99 in (3.4.3).

E N=8 16 32 64 128 256
1.00000e+00 9.944e-05 2.067e-OS 5. 177e-06 1.301e-06 3.257e-07 8. 140e-08
2.50000e-Ol 4.101e-03 2.777e-04 3.362e-OS 8.467e-06 2.178e-06 5.491e-07
6.25000e-02 7.773e-03 1.410e-03 2.253e-04 3.041e-05 4.368e-06 8.504e-07
1.56250e-02 2.306e-02 1.9OOe-03 1.712e-04 2.571e-05 5.852e-06 1.443e-06
3.90625e-03 4.96Oe-02 5.751e-03 5.452e-04 5.364e-05 7.074e-06 1.622e-06
9.76562e-04 6.434e-02 1.172e-02 1.464e-03 1.48ge-04 1.641e-05 2. 177e-06
2.44141e-04 6.9OOe-02 1.510e-02 2.90ge--03 3.710e-04 3.882e-05 4.50ge-06
6.10352e-05 7.024e-02 1.618e-02 3.734e-03 7.285e-04 9.331e-05 9.886e-06
1.52588e-05 7.055e-02 1.647e-02 3.997e-03 9.33Oe-04 1.822e-04 2.335e-05
3.81470e-06 7.063e-02 1.654e-02 4.068e-03 9.98.5e-04 2.331e-04 4.54&-05
9.53674e-07 7.065e-02 1.656e-02 4.085e-03 1.016e-03 2.494e-04 5.814e-05
2.3841ge-07 7.06Se-02 1.656e-02 4.09Oe-03 1.02Oe-03 2.537e-04 6.22Oe-05
5.96046e-08 7.066e-02 1.657e-02 4.091e-03 1.022e-03 2.548e-04 6.328e-05
1.49012e-08 7.066e-02 ).657e-02 4.091e-03 1.022e-03 2.551e-04 6.3.&)6e-05
3.7252ge-09 7.066e-02 1.6.1)7e-02 4.091e-03 1.022e-03 2.552e-04 6.362e-05
9.31323e-l0 7.066e-02 1.657e-02 4.091e-03 1.022e-03 2.552e-04 6.364e-05

Table 3.6.7 : Uu - uNII.... for A Scheme
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E N=8 16 32 64 128
1.00000e+00 2.21 2.00 1.99 2.00 2.00
2.50000e-01 3.88 3.05 1.99 1.96 1.99
6.25000e-02 2.46 2.65 2.89 2.80 2.36
1.562.50e..02 3.60 3.41 2.14 2.14 2.02
3.90625e-03 3.11 3.40 3.35 2.92 2.12
9.16562e-04 2.46 3.00 3.30 3.18 2.91
2.44141e-04 2.19 2.38 2.91 3.26 3.11
6.10352e-05 2.12 2.12 2.36 2.96 3.24
1.52588e-05 2.10 2.04 2.10 2.36 2.96
3.81410e-06 2.09 2.02 2.03 2.10 2.36
9.53614e-01 2.09 2.02 2.01 2.03 2.10
2.3841ge-01 2.09 2.02 2.00 2.01 2.03
5.96046e-08 2.09 2.02 2.00 2.00 2.01
1.49012e-08 2.09 2.02 2.00 2.00 2.01
3.1252ge-09 2.09 2.02 2.00 2.00 2.00
9.31323e-l0 2.09 2.02 2.00 2.00 2.00

RIY 2.09 2.02 2.00 2.00 2.00

Table 3.6.8: II_ - -NII.otI Convergence Rates for A Scheme

Recalling Remark 3.5.4 and the inequalities

one can see from the rates of the first row of Table 3.6.8 that the exponent I in the

bound of Theorem 3.5.1 is sharp in general.

However, we observed in all our numerical experiments with m = 2 that when

piecewise constants are used to approximate the functions a, " c, d and I (i.e., when

I = 1), then IIInN u- uN1I1 is second order convergent, uniformly in E. That W, it

appears that when I = lone can replace I by 1+ 1 in the conclusion of Theorem

3.5.1.

In our last example we consider the serond order problem (3.1.1). Many schemes

have been proposed for this problem in the literature. We include results for it here
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in order to demonstrate that one may obtain a higher order of uniform convergence

for IIInNtD - uN11I than is implied by Theorem 3.5.1; see Theorem 3.5.3. We use

piecewise linear approximations of ., 6 and I as described in Theorem 3.5.3. The

resulting tridiagonal scheme can be written explicitly aa

where

r, = -Eh,1 - (CIt-l + 2C1t) /6 +~ ("--I + bt) /12,

rt = -Eh~1 + (2C1t +CIt+d /6 +~ ("- + 6'+1) /12,

rf = - (r, + rt) + (~"--1 +2(~ + "-+1)"- + "-+1"-+1)/6,

9i =("-1.-1 +2 ("- +"-+1) I. + "-+1/,+1) /6,

for i = 1, ... , N - 1.

(3.6.2.)

(3.6.26)

Example 3.8.3 (m=l). Coruitkr (3.1.1) tDith o(z) = 5 - ain(1 - z), b(z) =
cos(1 - z) and I(z) cho3en 3UCia that

tD(z) = exp« -4 +5z - cos(1 - z» /E) + (1 + z)4

-17z - (exp «-4 - cos(1» /E) +1) (1 - z).

In this case we define the discrete energy norm III . 1114 to be

for all v = I:~11 v,cpf(z) e yJf. It can be shown that the dilCrete energy norm

11I·1114 is equivalent to 111·111 on yJf.

98



E N=64 128 256 512 1024 2048
2.50000e-01 8.89&-03 2.238e-03 5.604e-04 1.413e-04 4.32ge-05 8.47ge-07
6.25000e-02 2.385e-02 8.388e-03 2.785e-03 8.893e-04 2.771e-04 7.16ge-05
1.56250e-02 2.32ge-02 8.207e-03 2.730e-03 8.732e-04 2.717e-04 8.184e-05
3.90625e-03 2.318e-02 8. 168e-03 2.718e-03 8.69&-04 2.704e-04 8.164e-05
9.76562e-04 2.340e-02 8.161e-03 2.715e-03 8.688e-04 2.702e-04 8.155e-05
2.44141e-04 2.421e-02 8.221e-03 2.715e-03 8.686e-04 2.702e-04 8.208e-05
6.10352e-05 2.468e-02 8.433e-03 2.73Oe-03 8.686e-04 2.701e-04 8.208e-05
1.52588e-05 2.483e-02 8.556e-03 2.784e-03 8.726e-04 2.701e-04 8.34Oe-05
3.81470e-06 2.487e-02 8.594e-03 2.816e-03 8.863e-04 2.711e-04 8.173e-05
9.53674e-07 2.488e-02 8.60Se-03 2.826e-03 8.943e-04 2.746e-04 8.271e-05
2.3841ge-07 2.488e-02 8.607e-03 2.828e-03 8.967e-04 2.766e-04 8.342e-05
5.96046e-08 2.488e-02 8.608e-03 2.82ge-03 8.974e-04 2.772e-04 8.352e-05

Table 3.6.9: IllnN tv - uNIII~ for Scheme (3.6.2)

E 64 128 256 512 1024
2.50000e-01 1.99 2.00 1.99 1.71 5.67
6.25000e-02 1.51 1.59 1.65 1.68 1.95
1.56250e-02 1.50 1.59 1.64 1.68 1.73
3.90625e-03 1.50 1.59 1.64 1.69 1.73
9.76562e-04 1.52 1.59 1.64 1.69 1.73
2.44141e-04 1.56 1.60 1.64 1.68 1.72
6.10352e-05 1.55 1.63 1.65 1.69 1.72
1.52588e-05 1.54 1.62 1.67 1.69 1.70
3.81470e-06 1.53 1.61 1.67 1.71 1.73
9.53674e-07 1.53 1.61 1.66 1.70 1.73
2.3841ge-07 1.53 1.61 1.66 1.70 1.73
5.96046e-08 1.53 1.61 1.66 1.69 1.73

RJ'( 1.53 1.61 1.66 1.69 1.73

Table 3.6.10: IIlnN tv - uNIII~ Convergence Rates for Scheme (3.6.2)

The experimental rates in Table 3.6.10 verify Theorem 3.5.3 and are consistent

with Remark 3.5.6.
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Chapter 4

Interior Turning Point
Problellls

4.1 Introduction

Consider the singularly perturbed two-point boundary value problems

L.u == -EU" + z'6(x).' +d(x). = I(z), for z e (-1,1),

.( -1) = u(l) = 0,

(4.1.1a)

(4.1.1b)

with a small parameter E e (0,1] and k a positive integer. These problems arise iB

modeling tile flow of a viscous fluid between two coaxial rotating disks; lee Smith

[38], Section 8.S.

We assume that b, d and 1 are sufficiently smooth on [-1,1] and satisfy, for

z E [-1,1], •
l,<x)1 > {j > 0,

tl(z) ~ 0 aDd d(O) > O.

(4.1.1c)

(4.1.14)

Condition (4.1.1d) guarantees that the operator L. is inverse monotone on [-1,1].

From this it follows that (4.1.1) has a unique solution u(z). Since the coefficient of
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the first derivative vanishes only at z =0 (by (4.1.1c», problems (4.1.1) have aa

ieolated turning point at z = O. If Ie = 1 the turning point is said to be simple.

When Ie ~ 2 it is called a multiple turning point. In the cue ,. > 0, the turning

point is said to be repulsive and in the cue ,. < 0 it .. said to be attractive. Ia

what follows we shall denote by pf the problema (4.1.1), where the IUpencript it

the sip of '( .).

It is well known that the problems pf may exhibit boundary layers ofexponential

type or an interior layer of cusp type. The nature of these layers depends OD the value

of Ie and the sip of b; see Section 4.2. Special methods must be designed to obtain

an accurate numerical solution for pf without introducing an exceuive Dumber of

meshpoints. This leads naturally to the consideration of numerical methods whidl

are convergent, uniformly in the parameter t, in some norm. Finite difference

methods for pf have been extensively considered. Berger, Han and Kellog (4)

applied a modified El-Mistikawy and Werle scheme to the problem Pf, with II(z) >

o for z e [-1,1). They proved that thia scheme is uniformly convergent of order

N---{1.1} in the L-[-l, 1) norm for PI' where ~ ="(0)/'(0), provided that ~ ;: 1

(whell ~ =1 they obtain order N-1 ln N). An improved uniform convergence rate of

N-l was obtained by Farrell and Gartland (13), usin« a scheme involving parabolic

cylinder functions. The same problem was considered in Farrell (12), where luf6cieDt

conditions for uniform convergence in the diecrete L- norm on an equidistant mesh

were investigated. Lin and Sun (25) CORstructed an exponentially fitted scheme for

the problem Pi, which they proved to be uBiformly coavergent of order N -I. All

of theee discretizations De equidistant meshes. The schemes are quite complicated.

Clavero and LisboDa (8) coasider a family of finite difference schemes, which includes
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the upwinded scheme, Samarskii scheme and exponentially fitted schemes, for the

problem Pt- with 0 < ~ < 1. They showed that on a 10cally quasi-equidistant mesh

the family of schemes is uniformly convergent of order N-). in the discrete maximum

norm. Vulanovic [41] applied a variation of the Gushchin-Shchennikov scheme, on a

.pedal graded mesh, to a simple boundary turning point problem. He proved that

the scheme ia uniformly convergent of order N-I in the discrete L- norm.

In contrast, there are few results on finite element methods for turning point

problema. Stynes and O'Riordan [42] examined problema with arbitrary turning

points. In [42], finite element methods, based on an approximate L-apline trial

apace and an approximate L·-spline test space, are conatructed ud proved to be

uniformly convergent in a weighted energy norm. Once again, the difference scheme

Kenerated is somewhat complicated.

In this chapter, we generate and analyse Galerkin finite element methods for the

problems P:. These methods use piecewise linear functiona with special piecewise

equidistant discretization meshes. Shishkin meshes [31] are ued to handle bound

ary layen of exponential type. Such layen are the only 801lrce of difficulty in the

problema P:, with the exception of PI (see Lemmas 4.2.2 aDd 4.2.3). The simple

attractive turning point problem Pt- does not have any boundary layen of expoDen

tial type but rather an internal layer of cuap type. The interior layer it essentially

a Weber parabolic cylinder function. It is not clear how to construct an ordinary

Shishkin mesh for the problem Pl' We therefore introduce a mesh which is a ~n

eralization of Shishkin's. This mesh is equidistant in each of OOn N) subintervals.

Due to the piecewise equidistance, the meshes used in this chapter are simpler than

the Bahkvalov-type mesh used by Vulanovic [41].
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(4.2.1 )

Our difference schemes are similar to the clasaical central difference lCheme.

They do not satisfy & discrete maximum principle. We shall analyse our methods in

a framework similar to that of Stynee and O'Riordaa [43]. The methods are shown

to be uniformly convergent of order N-1ln N in & weighted energy norm auociated

with (4.1.1&) and order (N-1ln N)I/2 in the L2 norm.

In Section 4.2, we present II priori estimates for the continuous problems P'f. In

Section 4.3, Galerkin finite methods are constructed on an arbitrary mesh for the

problems P'f . Uniform conve~nce results on the piecewise equidistant Shishkin

mesh are given in Section 4.4 for those problems P'f with boundary layers of ex

ponential type. In Section 4.5, we introduce a more general piecewise equidistant

mesh. On this mesh, uniform convergence is obtained for the simple attractive

turning point problem Pl. Section 4.6 gives numerical results.

4.2 The Continuous Problems

In this section we discuu those properties of (4.1.1) and of its solution II which we

shall need later for the analysis of our finite element method.

Set a(z) = z'b(z). First we show that, if we have d(O) -10'(0) > 0, then we can

deduce &Il iDequality needed later to show that certain bilinear forms associated with

the operator L. are coercive. The proof generalizes an idea of Stynes and O'Riordan

[43].

Lemma 4.2.1 Suppose that d(O) - 10'(0) > o. Then tDithout lou 01 generolit,l, we

ma, tJ38ume that there emu C1 > 0 such that lor z E [-1, 1] we ha~

(d - ia') (%) ~ 2C1o
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(4.2.2)

Proof. Set "'f =mineE[-l,l] (d - ia') (z). H"'f > 0 then we are done, 80 suppose that

"'f ~ O.

Since d(O) - ia'(O) > 0, there exist I, m > 0 (both independent of E) such that

(d - ~a') (:r) ~ m, for:r E [-~, ~).

Let IJt ={j sgn 6, where {j is ~ven by (4.l.1d) and 8gn 6 =6/161. Without 1088 of

Kenerality, we can assume that E is 80 small that

~~ +4E("'f -1) > O.

Set

r =12"/Jt - (sgn 6) v'f5 4J1 jJl + 4E(1 - 1)
2£(k + 1)

2(1 - 1)

Then r satisfies

0<r8gn6~C

uad

Consider the differential operator Ly defined by

Lyz(z) == -EZ"(Z) +i(z)z'(z) +d(z)z(z).

Here

i(z) = a(z) - 2E(k + l)rz'

= z'(b{z) - 2E(k + l)r)

= z'6(z),
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say, and

It is easy to see that, for z E [-1,1] and E sufficiently small,

d(z) ~ 0 and .1(0) > 0,

by (4.2.3). Also for the operator L-r,

(ii - ~ii/) (x) = -e(I< + 1)2T2x"" + (I< + l)Tx""6(x) + (d - ~al) (x).

We show that (.1 - la') (z) ~ 2C1 on [-1,1]. We discuss two cases.

Case 1: If z E [-6,6), then from (4.2.2) and (4.2.3)

(ii - ~ii') (x) ~ -e(I< +1)2T2+m

~ m/2,

for E sufficiently small.

Case 2: If z E [-1,1] \ [-6,6], then using the definition of fJt and (4.2.3),

(ii - ~ii/) (x) ~ -e(I< + 1)2T2+ (I< + l~""~ T +'1

=1,

by (4.2.4).

That ia, L-r satisfies the conditions we would like L. to satisfy, with 2C1 =
mia{m/2, I}. An eaay computation showl that
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10 we can now work with the problem L9'(v(z» = ~-9'••+lf(z), which has the

required properties, then transform our results back to (4.1.1) by means of u(z) =
~9'e.+l v(z). By (4.2.3) above, this transformation will at worst scale all quantities

by a factor C and so will not alter the orders of convergence in our results. 0

Remark 4.2.1 Note that

1 1 ,_ 1
d(z) - 20'(z) = d(z) - 2kz 111(z) - 2z'b'(z).

Hence (4.1.1d) implie8 that the condition d(O) - 10'(0) > 0 0/ Lemma 4.'.' holtl8

for all problerru pf ezcept pDNiblU tIae 8imple repul8i~ tllming point JIf'OIHem pt.

Aaaumption 4.2.1 From now on, t« 8holl tJ88Ume that (4.'.1) i8 Htisjied in ad

dition to (4.1.10) - (4.1.1d). BU Remark 4.'.1 and Lemma 4.t.1, thiB 488umption

i8 re8trictive only/or the problem Pi.

To construct our special meshes and analyse errors of the finite element schemes,

we need a priori estimates of the solution u(z) and its derivatives. The boundary

or interior layer behaviour of the solutions depends not only on the sign of 6, but

also on whether k is even or odd.

Lemma 4.2.2 Fiz k and b. Let u(z) be the solution 0/ (4.1.1). Then/or z E [-1,1]

and j = 0,1, ...,

(i) for P: with k e~n,

(4.2.5)

(ii) /0,. p. with keven,

(4.2.6)
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(iii) for J1 tDith k odd,

(4.2.7)

(itJ) for P; tDith odd k ~ 3,

(4.2.8)

Proof. See Vulanovic and Farrell [50]. C

From the above bounds, one can see that in case (iv) no layer is present in the

solution and cases (i) - (iii) exhibit one or two boundary layen of exponential type.

A numerical method which is suitable for all four cases will be given in Section 4.4.

The solution of the simple attractive turning point problem PI behaves very

differently from the cases listed in Lemma 4.2.2. Set ~ =d(O)/Ib(O)I. Then ~ > O.

We have

Lemma 4.2.3 There emu a COf18tant C, tohich iB independent of E, 3uch that 1M

MNution u(x) of problem Pt- BGtiBfie3

. I {C ( 1+ (lxl +Et/2) ~-;), if ~ iB not an integer,
ub)(z) ~ .I C (1 + (1.,1 +£1/2) A-, In 1e1+,•• /2 ). il A;. an intqrer,

for x E (-1, 1) and j = 1,2, ....

(4.2.9)

(4.2.10)

Proof. Let ~ =m +~ where m is a non-negative integer and 0 < ~ ~ 1. Under the

Ulumption that d(%) > 0 for x E [-1,1), Berger at al. [4] showed that the solution

-<x) of problem Pt- satisfies (4.2.9) and (4.2.10).

For the slightly weaker assumption (4.1.1d), one can obtain the same estimates

by applying the result of (4) to the problem

-E," +z'6(z ),' +d(x), = f( %), for %E (-6,6),
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J< -6) =u( -6), ,(6) =u(6),

where 6 E (0, I) is chosen such that d(%) > 0, for % E [-6,6]. 0

We remark that a simpler proof of Lemma 4.2.3 for the case 0 < ~ < 1 is given

by Clavero and Lisbona [8].

From Lemma 4.2.3, one can lee that the solution of P1- has an intemallayer at

z = O. If ~ becomes smaller, then the solution is more badly behaved. In Section

4.5, we shall discuss a uniformly convergent numerical method for the most difficult

caseO<~<1.

4.3 A Galerkin Finite Element Method on an Arbi
trary Mesh

In this section, we begin to analyse a Galerkin finite element method for the problems

pf. Let us first work with an arbitrary mesh

x N : -I =%£ < Z£+1 < ... < ZB-l < Z. =1.

Set ht = Zi - ZS-1 for i = L + I, ... ,R, with H = m&Xths.

Define the standard piecewise linear basis function VJi by

I
(z - %i-l )/hs, for Z E (%i-l, zd,

VJi(Z) = (%i+l - %)/hs+l, for % E (Zi'%l+l)'

0, ebewhere,

for i = L + 1, ... , R - 1. Our trial and test spaces SN are taken to be the linear

span of {VJi : i = L + I, ... , R - I}.

Let (".) denote the usual L'[-I,I] inner product. Denote the L'[-I,I] Dorm

by 11·11. Our weighted energy norm is defined by

IlIvlll = {ellv'II' + IIv1l2 }1/1 ,
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for all v E H~( -1, 1). Set

B.( v, U1) =(EV', .,') + (.v', .,) + (dv, U1),

for all v, to E H~( -1,1). Recall Assumption 4.2.1. A standard argument shows that

the bilinear form B.(·,·) is uniformly coercive' over H~ (-1, 1) x H~ (-1, 1) in term.

of 111·111, Le., that there exists C > 0 such that

Clllvlll J ~ B.(v, v), (4.3.1)

for all v E H~( -1,1).

We now define our weak formulation of (4.1.1): find Ii E H~( -1,1) such that

B.(u,v) =(/,v), for all v E H~(-I, 1). (4.3.2)

Clearly (4.3.2) has a unique solution u(z) in H~( -1,1). This weak solution i. also

the classical solution of (4.1.1) when all the data are smooth.

Let I' denote 6, d or /. We denote by ; the piecewise linear interpolant ;, to I'

on (-1,1], defined by

(4.3.3)

for z E (Z'-I' z.) and i = L + 1, ... , R. Our modified bilinear form is siven by

B(v,tD) =(EV', v") +(4V',W) + (dv,to),

for aD " aDd to E H~( -1,1), where i(z) =z66(z).

We begin the analysis by showin« that the bilinear form B(.,.) i. uniformly

coercive over H~( -1,1) x H~( -1,1).
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Lemma 4.3.1 For H suffic~ntl, small, independentl, 01 E, _ Mve

lor all t1 e HA{ -1,1).

Proof. For each" e HA( -1,1),

B(v, t1) = (E ,,', ,,') +(iv', t1 ) +(d", ").

Taking the second term of this, we have

Also

Hence

B(v, v) ~ €lIv'II' + .t 1~ (d(Z;) - ~a'(Zi) +0(8») v'dz
.=£+1 "-1

~ £lIv'II' +C1 11 vll',

for H sufficiently small, by (4.2.1). This implies the result. 0

Our discrete solution Ulf e Slf is defined by

It follows from Lemma 4.3.1 that the solution .If of (4.3.4) is well defined.

110

(4.3.4)



When k =1, (4.3.4) is given explicitly by the three-point scheme

where

" = (Ils/i-l +2 (Ils + Ils+l) Ii + lls+l/i+l) /6,

for i = L + 1, ... , R - 1. On ~eneral meshes this scheme does not always satisfy

a discrete maximum principle. We shall prove that on certain sPeCial meshes the

scheme (4.3.4) is uniformly conver~nt in the weighted energy norm 111·111.

4.4 The Shishkin Mesh for Boundary Layers of Expo
nential Type

In this section, we first introduce a Shishkin mesh. We then present uniform conYer·

gence results in the weighted eDe~ Dorm 111·111 and the LI norm for those problema

pf which have boundary layers of exponential type (by Lemma 4.2.2, these are all

problems pf except PI)'

Consider the simple repulsive turnin~ point problem pi. The solution haa

boundary layers of exponential type at both end points z =-1 and z =1.

We shall describe the mesh on the subinterval [0,1), then on [-1,0) the mesh

ia constructed by symmetry about z = O. Given an even positive integer N, the
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Shishkin mesh X!' is constructed by dividing the interval [0,1] into two subintervals

[0,1 - 0-], and [1 - 0-, 1].

Equidistant meshes with 1+N /2 points are then used on each of these subintervals.

The parameter 0- is defined by

which depends on E and N. More precisely, we have

X:' :°= Zo < ZI < ... < zio < ... < ZN-l < ZN = 1,

with itt =N /2 and zio =1 - 0-. The mesh spacing is given by

#at =2(1 - o-)N-t, for i =0, ... , io

and

#at = 20-N -1 , for i = itt + 1, ... , N.

Theorem 4.4.1 Let " 6t the MJIution 01 Pi. ut UN E SN 6t tM MXution 01

(-1.3.-1) lor the problem pi on the Shishkin mesh X!'. Then lor N 3ufficumtl, large

(independentl, 01 E), tDe have

IIlu - -NIII ~ eN-lin N

.nd

Proof. Consider the convection-diffusioD problems

-E'~ + zb(z)'; + tl(z)rt = I(z), for z E (-1, -1/2),

ft( -1) =0, ft( -1/2) =II(-1/2),
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and

-EJ/: +zb(Z)~ +d(z)" = fez), for z e (1/2,1),

,,(1/2) = u(I/2), ft(l) = 0.

Ilecall (4.2.7). We have IYl( -1/2)1 ~ C and 1,,(1/2)1 ~ C. Hence, from Gartland

[17], Theorem 1.4, Yl (z) and ,,(z) respectively admit the decomposition.

J/t(z) =Gt(z) + Et(z), for z E (-1, -1/2)

and

f2(z) =G,(z) + E, (z), for z E (1/2,1).

Here

IGii)(z)1 ~ C, for z E (-1, -1/2),

IEP)(z)1 ~ CE-i exp(-!1(1 +Z)/E), for z E (-I,-l/2),

lG1i)(z)1 ~ C, for z E (1/2,1),

IE~i)(z)1 ~ CE-; exp(-~(1 - Z)/E), for z e (1/2,1),

for j =0,1, .... It is easy to see that u(z) =,.(z) for z E [-1,-1/2] and u(z) =
lI(z) for z E [1/2,1]. Therefore,

where

I
Gt(z) +Et(z),

u(z) = u(z),

G,(z) +E,(z),

for z E (-1, -1/2),

for z E [-1/2,1/2],

for z e (1/2,1),

lu(i)(z)1 ~ C, for z E (-1/2,1/2),

for j =0,1, ..., by Lemma 4.2.2.
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Usint; this decomposition with arguments very similar to those of Chapter 3, one

can get the desired estimates. 0

Analogous results may be obtained for the multiple turning point problems P:
with Ie ~ 2.

4.5 The Simple Attractive Turning Point Problem PI

We now design a piecewise equidistant mesh on which we apply the method (4.3.4)

to the simple attractive turning point problem Pt-. We shall &88ume that 0 < .\ < 1;

as we saw in Sections 4.1 and 4.2, this is the most difficult case. Then (4.2.9) can

be written as

(4.5.1 )

for z E (-1, 1) and j = 1, 2, . ... Uniform convergence results are proved in the

weighted energy norm 11l·1f1 and the L" norm.

4.5.1 The Mesh

The behaviour of the internal layer of problem Pi" is quite different from that of the

boundary layen which occur in the other P;. The main difference is that the layer of

cusp type is "much" wider than 0(£). In fact as £ varies, 1-'1 ~ C is not suaranteed

on [-e', £'] for any fixed positive constant I. It is not clear how to construct &

Shishkin mesh of the usual type for this problem. Instead, we introduce a special

mesh which is equidistant on each of O(ln N) subintervals; this is a generalization

of the standard Shishkin approach. We shall ~ain describe the mesh on [0,1] only,

ance it is symmetric about % =o.
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For any £ e (0,1] and given a positive integer N, set

and

K . ( In 0' )=mt 1 - in 10 '

(4.5.2)

(4.5.3)

where int(z) denotes the largest integer j which satisfies j S z. The interval (0, 1]

is divided into K + 1 subintervals:

The closure of each of these subintervals is then partitioned by an equidistant mesh

containing 1 + int (1:.1) points. We shall refer to this mesh .. Xl.
From (4.5.3), it can easily be seen that

. { 1 ( ~) In £ In N }
K + 1 S 2 +mm - 2 1 - 2" In 10' 31n 10 . (4.5.4)

We shall assume that N ~ 4; then (4.5.4) implies that K +1 S N. For convenience,

it will also be assumed that int (Ih) =Itr. Let n =Itr. Then the meshpoints

on [0, 10-I ] are given by

..... -_ (... +1)10-I N-1,', I . 0 1• .n lor ,= , ,... ,n.

For j =1, ... , K, the meshpoints on (10-;,10-;+1] are defined by

Zi = 10-; +9(K + 1)10-;N-1(i - (K - j + l)n),

for i = (K - j + l)n + 1, ... ,(K - j + 2)n. It is obvious that the mesh spacing

satisfies

(4.5.5)
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and

(4.5.6)

Also from (4.5.3), we have

It is clear from (4.5.4) that

K+l~ClnN.

This inequality will be used frequently in our analysis.

4.5.2 Analysis of Convergence

('-.5.7)

(4.5.8)

Since the bilinear form B.(·, .) is not uniformly bounded in terml of the enersr norm

III· III, a classical finite element approach does not satisfactorily analyse the error iD

the computed solution UN. We shall employ an ualysis similar to that of Stynea

and O'Riordan [43] to prove that the method (4.3.4) for Pl- is uniformly cooversent

of order N-1ln N with respect to 111·111 and of order (N-1 ln N)I/2 with respect to

11·11 on the mesh X:. (It does not seem possible to use an Aubin-Nitsche approach

to let this higher order in 11·11.)

In what follows, the analysis is performed only on the interval [0, 1]. The interval

[-1,0] can be handled similarly. We shall denote by., e SN the interpolant to •

at each node %i of an arbitrary mesh XN. The notation (·,·f denotes that the

integration in (.,.) is only over [-1, 1] \ X N.

We first give some relationships between interpolation erron in different DOnIlI

on an arbitrary mesh.
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Lemma 4.5.1 ut. ~ the MHution of problem pt. TMft on an, arbitra,., ~.,.

_ have

and

11 I
-1 (z(v - .,)'(z») dz ~ Cllv - .,11·

(4.5.9)

(4.5.10)

Proof. We first prove (4.5.9). Integrating by parts, we get, using (4.1.1a) and v1 == 0

on each subinterval (Z'-I, z.),

B.(. - ." • - .,) = (-t(. - .,)H +a(. - v,)' +d(. - .,), " - .,f
=(f- aut +dv". - .,)

(4.5.11)

Since II.IIL- ~ C by Lemma 4.2.3,

(4.5.12)

To bound lIauill, suppose that z e (Z.-h z.), for lOme fixed i e {I, ... , N}.

From Lemma 4.2.3,

Now

Hence

It.'(I)1 ~ C, for all t E [-1,1].

~ C,
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using (4.5.13), 1% - 'il ~ hi and 111£11£_ ~ C. It follows that

lIauill ~ C.

Combining this with (4.5.11), (4.5.12) and (4.3.1) completes the proof of (4.5.9).

We now move to (4.5.10). For each i E {I, ... , N}, using integratioB by parts

twice, we obtain

E~, (z(u - u,)'(z))2 dz

=f.:. (z2(u - u,)'(z)) (. - .,)'(z)tiz

= - L~.(.-u,)(z)[2z(. - .,)'(z)+ z2(. - .,t(z)] dz

=f.~~, (. -ud(z) - z2....(z)(u - .,)(z)) dz

~ f.~~, (. -.,)2(Z) +CI(. - .,)(z)1) tiz, (4.5.14)

using (4.5.1). Hence

11
1 (z(. - .,)'(z))

2
dz ~ II. - .,112 +CII. - .,11£, [-1,1]

~ II_ - .,11' +Cllu - .,ft
~ Cllu - .,11,

The next result gives a bound on 1111£, - -1'111 on an arbitrary mesh.

Lemma 4.5.2 ut. be the BOlution oj J'f"Oblem Pt- and ulf tlte BOlution oj (.1.3..1)

on an arbitra,., meMo Then Jor H sufficientl" small (independentl, oj £), .e 1uJ~

118



Proof. By Lemma 4.3.1, we have

We bound these two terms separately. Firstly, integratins by parts, we obtai.

/B(ul- u, UI- UN)/

= /(E( UI - u), (UI - UN )lIf+ (o(ul - u)' +d(., - u), ul - UN) /

=/(o(ul - v)' +d( UI - u), UI - uN) /

~ c {(1: (.,(u - u,)'(.,»)2 d.,t 2

+lIu,- ""} 11",- UNII

~ CIlUI- UW/'I/UI- uNII, (4.5.16)

Secondly,

IB(v - UN, UI- UN)I

=I(B - B.) (U,., - UN) +B.(u, "I - "N) - B(-N, ul - uN>/

=1«0 - O)U',UI- UN) + (d - d)u,.,- UN) + (f - j,.,- UN)I
~ CH'l/ul- uNII, (4.5.17)

since Izv'(%)1 ~ C, for %E [-1,1].

Returning to (4.5.15), we have, from (4.5.16) and (4.5.17),

which with II ·11 ~ 111·111 yields the desired result. 0
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The following lemma contains some technical bounds on the piecewise equidistant

mesh X:.
Lemma 4.5.3 Consider the ptet%v1Ue equidutGnt mesh Xl. Let Xi E (10-",1].

Then

II ~ =eH1-t ), then

(4.5.18)

(4.5.19)

(4.5.20)

11 ~ =N-a, then

h~ (Xi-l + £1/2)'\-2 S C(i - 1)-2, lor Xi E (Zl' 10-"].

Proof. Firstly, let Xi E (10-;,10-;+1] for some j e {1, ... ,K}. From (4.5.6), we

have

h~ (.~i-l +£1/2)'\-2 S 81 (K + 1)10-;N-1)2 1oC2- A)j

< CN-2 ln2 N- ,

by (4.5.8).

If ~ =£i(I-t), then for Zi e (0,10-"],

h~ (Xi-l +£1/2)A-2 S C (K +1)10-"N-1)2 £-1++

S CN-2 1n2 N,

using (4.5.5) - (4.5.8).

If ~ = N-a, then for Xi e (ZI, 10-Jr],
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This completes the proof. 0

We now estimate the interpolation error. -., on the mesh X:.
Lemma 4.5.4 Let II be the solution of problem P1-. Let., E Sll interpolate to II

at etJCh node of the piecetDi8e equidi&tant me'" X,. Then

and

IIlv - u,III ~ CN- 1 ln N.

(4.5.21)

(4.5.22)

Proof. We first prove (4.5.21).

Let Z E (Zi-l, Zi) for some i, where Zi E (l0-&' , 1]. Then for some ~i E (Zi-l, zd,

by (4.5.18). Consequently

{I (u _ .,)I(z) ~ CN-4 ln4 N.
110-«

(4.5.23)

Next, let Z E (Zi-l, Zi), where Zi E (0,10-"]. There are two cases to be consid

ered, depending on the value of t1 generated by (4.5.2).

H t1 =El(I-t), then as above

(
1/1) .l-I J II(u - u,)(z)1 ~ chf Zi-l +E ~ CN- In N,

by (4.5.19). Consequently

10-«f. (u - u,)I(z) ~ CN-4 1nt N.
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I(U - UI )(z)1 ~ Ch: (Zi-l +tIll) A-I

<_ C(,' - 1)-1, I • 2 N
lor,= ""'K+l'

by (4.5.20). Hence

1
10-Jr In lit

., 1(. - .,)(z)1
2
liz = ~ L_. 1(. - .,)(z)12 liz

~
~CL~(i-l)-4

.=1
~ C(K +1)10-K N-1

where we used (4.5.5) - (4.5.8). Secondly,

f.
.1

o 1(- - .,)(z)I' o ~ CZt

~ C(K +1)10-"N-1

Thu when t1 = N-I,

10-JrI. I(u - .,)(z)I' tlz ~ CN-4 1n N. (4.5.25)

Combining (4.5.23) - (4.5.25) and tl8iR~ symmetry OB [-1,0) yields (4.5.21).

Recalling (4.5.9), (4.5.22) foilowl immediately from (4.5.21). 0

We now prove uniform convergence results in the energy nonn and the LI norm.
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Theorem 4.5.1 Let u be tlte 3Olution of problem Pl. Let u" E sIt 6e tJae MJlution

of (4.3.4) on the meah x~ for Pl. Then for N aufficient1r karpe, independentlr of

t, _ hoW!

(4.5.26)

anti

(4.5.27)

Proof. The bound (4.5.26) follows from a triangle inequality and Lemmas 4.5.2 and

4.5.4.

We now prove (4.5.27), by sharpening the argument of Lemma 4.5.2. The main

step is to uee a more careful analysis to show that

(4.5.28)

We discuss two cases, depending on the value of u in (4.5.2). Set

ei =(u,- u,,)(zd, for i =0,1, ... , N.

Case 1: u =etc1-t).

Integrating by parts, one haa

(o(u,- u)', ",- ",,)

= (o'(u,- .),.,- .,,) - (o(u,- _),(u,- u,,)').

From (4.5.21),
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Next,

(i(v - VI), (VI - VN )')

= t f." e(.,)(" - ",)(.,)(",- "lOr)'(.,)""
i=1 8.-1

N f..'~ e' - e' 1 -.={;r • ht 1- iii-I i(z)(v - .,)(z)dz

=~~; {(~. f.~' -~ f.8'+1) i(z)(. - .,)(Z)dZ},
1=1 1 8.-1 '''+1 iii

since eo = eN = 0,

='El
eiO(Zi-l) {(!. f.8' -~ f.~'+I) (U - UI)(Z)ciz}

1=1 '.. iii-I '''+1 8,

+~~; {(!. f.8' - ...1 f.~i+I) (o(z) - _(Z._I»(U - UI)(Z)ciz}
1=1 '.. 8'-1 , ..+1 8,

=Yl +YI, (4.5.31)

say. Set ht =(hs +ht+l)/2 for i =1,2, ... ,N -1. Inspectins the proof of (4.5.21)

and recalliJl« that (1 =e!(I-t>, we have

Hence

N-l

IY,I ~ CN-I in l N E h.le.1
'=1

(

N-l ) 1/1
~ CN-linl N ?= ~el

1=1

~ CN-lin' Nllul- uNII, (4.5.32)

as it is easy to show that the discrete L' norm (L~~1~ (( .)(Zi) )') 1/1 is equivalent

to 11·11 on SN.
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For Yl, we write

1'1 = (~' +~.) ~,a(Z'-t) { (~ J..~. -"'~t J..~l) (. -.')(Z)dz},

where E~ means summation over those i for which ht =ht+l' and E~ sums over

the remaining i.

Suppose ht =ht+l; then

(
1 f.-' 1 f.-HI)---: --.- (u - u,)(z)dz
ht -.-1 ht+1 84

1 f.-'= ht -.-1 [(. - .,)(z) - (. - u,)(z +ht)] u.

By the usual interpolation error estimate, for z E [Zi-l, zd,

(u - u,)(z) = ~(z - zi-d(z - Zi)U"({i), where Zi-l < ei < Zi,

also

(u - u,)(z + ht) =!(z + ht - zt}(z + ht - Zi+l)."(~)' where Zi < 'Ji < z'+I·
2

Therefore,

by (4.5.18) and (4.5.19). Consequently,

IL'ei 4(Zi-1) {(~ f.-' __.1 [+1) (. - .,)(Z)dZ}!
. ht 84-1 ht+1 ..•
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~ e~ 'Ieilzi-lhs (Zi-l + £1 / 2) A-I N-2 ln2 N
•

~ eN-2 1n2 N E 'hsleil
i

( )

1/2

~ eN-2
ln

2 N ~'~~?

~ eN-2 ln2 Nllu,- "Nil.

We now deal with E~'.

(4.5.33)

1~·ei4{zi_,){(~ L~, -~~1 L~I) (-- -lX%)dzJI
K+I [ A 2

~ e ~ I~;.-I%;'-_I hj. (%;'--1 +£1 / 2) -

,,=1

+h}..+1 (%Joo +£1/') A-']
K+l [ A 1 A ]

~ e ~ le;.-I h;" (%jft-l + £1 / 2) - +h1.+1 (Z;'- +£1 / 2) -I
,,=1

K+I

~ eN-lIn N E h;.-Ie;.-I
;=1

~ eN-lin N (3: iiJoo ) 1/2 (3: iiJooe}..) 1/2

,=1 ,-I
~ e (N-Iln N)S/

2 11u1 - "Nil, (4.5.34)

Combining (4.5.31) - (4.5.34) yields

Hence, recalling (4.5.29) and (4.5.30), we have prove. (4.5.28) when t.1 = £!(I-t).

Case 2: tT =N-I.
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It is easy to see that the argument of Case 1 yields

111 cl(z)(u - u,)'(z)(u,- tlN)(Z)dzl ~ C (N-1 lnN)J/2 uu,_ uNII. (4.5.35)
10-"

Adding (4.5.14) over i = 1,2, ... ,n, we obtain

If0-· (.,(. - .,)'(.,»' "I
~ lIu - u,II~2[o,10-Jrj +CII_ - -,II£I(O,10-Jrj

~ IIu - u,II~2[0, 10-Jrj +CI0-Jr
/
2

I1u - u,lIv[o,10-Jrj,

by a Cauchy-Schwarz inequality,

using (4.5.7), (4.5.25) and (1 =N-J. Hence

11.
10

-.4(.,)(. - .,)'(.,)(.,- .N)(.,)d.,/ :s; eN-7/'ln1/' NII.,- "Nil.

Combining this with (4.5.35) completes the proof of (4.5.28) for Case 2.

Therefore, using (4.5.28) and (4.5.21) in the proof of Lemma 4.5.2, we obtain

Recalling (4.5.21), the proof is completed. 0

4.6 Numerical Results and Conclusions

In this section we give some numerical experiments for the method (4.3.4) applied

to tile limple attractive turni~ point problem P1-.

Our test problem is

.(-1) = .(1) = 0,
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where I(z) is choeen so that the solution is

This u(z) exhibits typical internal layer behaviour of cusp type. Similar examples

may be found in Berger et ala [4] and Farrell [12]. Since the behaviour of u(z)

near the turning point z =0 depends specifically on E, we shall examine errors and

experimental rates of convergence for different values of E. We take A=0.25 below;

numerical experiments with A=0.5 and A=0.75 yielded similar results.

We compute the errors in the following two ways:

(i). The error between the interpolant 1I1(Z) and the computed solution 1I1I(Z) in

a discrete L2 norm,

(ii). The error between the exact solution u(z) and the computed solution -II(Z)

in the discrete maximum norm,

The discrete L2 norm is defined by

{
a-I }1/2

II vll.. = L h.vl ,
i=L+l

for all v ='E~L~1 Vil.pi(Z) E Sll. By a calculation, one may easily show that OD Sll

the discrete L2 norm II ·11.. is equivalent to the usual L2 norm II ·11·

We calculate the convergence rate tables as follows; see Farrell and Hegarty [14]:
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(i). Except for the last row, the table entries are given by the classical conversence

rate,

(4.6.1 )

(li). The last row of each table is the uniform convergence rate,

where EN =max. E!'.

Recall the definition of the mesh X~. The number of meshpoints on the interval

(0,1] is (K + l)n, which is less or equal to N. In order to use the formula (4.6.1) to

compute our convergence rates, we need exactly N meshpoints on (0,1]. Hence we

adjust the mesh X~ as follows:

Let No = N - (K + 1In. Then n points are used on each of the subintervals

... ,

and n + 1 points are taken on each of the remaining subintervals

The mesh is still uniform on each of the above subintervals.
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t N=16 32 64 128 256
1.00000e+00 2.057e-04 5.161e-05 1.291e-05 3.22ge-06 8.072e-07
2.5000Oe-O1 1.535e-03 3.834e-04 9.582e-05 2.395e-05 5.988e-06
6.25000e-02 4.755e-03 1.184e-03 2.956e-04 7.387e-05 1.847e-05
1.5625Oe-02 9.92ge-03 2.415e-03 5.985e-04 1.493e-04 3.731e-05
3.90625e-03 1.583e-02 4.66Oe-03 1.15ge-03 3.00ge-04 7.504e-05
9.76562e-04 1.314e-02 3.675e-03 8.766e-04 2.112e-04 5.12&-05
2.44141e-04 1.324e-02 3.79ge-03 1.027e-03 2.202e-04 5.021e-05
6.10352e-05 1.27ge-02 3.911e-03 1.197e-03 2.575e-04 5.572e-05
1.52588e-05 2.535e-02 8.11~03 2.287e-03 5.89&-04 1.341e-04
3.81470e-06 2.531e-02 8.278e-03 2.358e-03 6.09Oe-04 1.5OOe-04
9.53674e-07 2.541e-02 8.337e-03 2.428e-03 6.294e-04 1.555e-04

Table 4.6.1: lIul - uNII Erron

t N=16 32 64 128
1.00000e+00 1.99 2.00 2.00 2.00
2.50000e-01 2.00 2.00 2.00 2.00
6.25000e-02 2.01 2.00 2.00 2.00
1.56250e-02 2.04 2.01 2.00 2.00
3.90625e-03 1.76 2.01 1.95 2.00
9.76562e-04 1.84 2.07 2.05 2.04
2.44141e-04 1.80 1.89 2.22 2.13
6.10352e-05 1.71 1.71 2.22 2.21
1.52588e-05 1.64 1.83 1.96 2.14
3.81470e-06 1.61 1.81 1.95 2.02
9.53674e-07 1.61 1.78 1.95 2.02

RN 1.61 1.78 1.95 2.02

Table 4.6.2: lIul - uNIl Convergence Rates
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E N=16 32 64 128 256
1.00000e+00 2.970e-04 7.434e-05 1.85ge-05 4.648e-06 1.162e-06
2.50000e-0l 2.063e-03 5.152e-04 1.291e-04 3.22ge-05 8.075e-06
6.25000e-02 7.291e-03 1.823e-03 4.595e-04 1.14ge-04 2.874e-05
1.56250e-02 1.824e-02 4.89Oe-03 1.192e-03 2.964e-04 7.398e-05
3.90625e-03 2.765e-02 1.140e-02 3.281e-03 7.9800-04 1.993e-04
9.76562e-04 2.633e-02 1.060e-02 3.43ge-03 8.866e-04 1.856e-04
2.44141e-04 2.59ge-02 1.03Oe-02 3.802e-03 1.097e-03 2.625e-04
6.10352e-05 2.472e-02 1.017e-02 3.99Oe-03 1.181e-03 3.203e-04
1.52588e-05 4.282e-02 1.86Oe-02 6.741e-03 2.148e-03 6.074e-04
3.81470e-06 4.292e-02 1.89ge-02 6.896e-03 2. 167e-03 6.214e-04
9.53674e-07 4.308e-02 1.912e-02 7.058e-03 2.211e-03 6.260e-04

Table 4.6.3: II_ - -NII•.tI Errors

E N=16 32 64 128
1.00000e+00 2.00 2.00 2.00 2.00
2.50000e-Ol 2.00 2.00 2.00 2.00
6.25000e-02 2.00 1.99 2.00 2.00
1.562.'>0e-02 1.90 2.04 2.01 2.00
3.90625e-03 1.28 1.80 2.04 2.00
9.76562e-04 1.31 1.62 1.96 2.26
2.44141e-04 1.33 1.44 1.79 2.06
6.103.'>2e-05 1.28 1.35 1.76 1.88
1.52588e-05 1.20 1.46 1.65 1.82
3.81470e-06 1.18 1.46 1.67 1.80
9.53674e-07 1.17 1.44 1.67 1.82

RI'f 1.17 1.44 1.67 1.82

Table 4.6.4: II_ - "NII•. tI Convergence Rates

From Table 4.6.2, one can clearly see that the uniform conver~ce rate of

11_, - -Nil is O(N-I). Lemma 4.5.4 shows that II- - v,lI = O(N-1lnl N), 10 we

have numerical evidence that UV--NII is also O(N-1ln l N). This is better than the

O(N-I/Ilnl/I N) result proven in Theorem 4.5.1. We also notice that the uniform

conve~ence rates in the discrete maximum norm reported in Table 4.6.4 are almost

IeCOnd order.
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Conclusion.: In this work we introduced piecewise linear Galerkin finite element

methods on various piecewise equidistant meshes for the singularly perturbed inte

rior turning point problem (4.1.1). The resulting schemes are much simpler than

exponentially fitted schemes. The meshes used in this chapter are relatively simple.

We proved the convergence, uniformly in E, of our methods in a weighted energy

norm 111·111 and the usual L2 norm. Numerical experiments verified the convergence

in L2 and showed that the schemes are also uniformly convergent of almost second

order in the discrete maximum norm.
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Chapter 5

A Sernilinear
Reaction-Diffusion Problem

5.1 Introduction

Singularly perturbed nonlinear boundary value problems occur frequently in engi

neering applications such as catalytic reactions or adsorption procesaes and fluid

dynamics.

ha this chapter, we consider the semilinear problem

F.u(z) == -£',,"(z) +b(z,.) =0, for z E (0,1),

a(0) = u( 1) = 0,

(5.1.14)

(5.1.16)

where E is a small positive parameter. Set X = (0, 1]. We shall &88ume that • e

C-(X X 1l1 ) for convenience.

Asymptotic and numerical aoIutions of problem (5.1.1) have been considered by

many authon, under various hypotheses on b(z, a). See for example Chang and

Howes [6], D'Annunzio [9], Fife [15], Herees [21], Herceg and Petrovic [22] aDd

Lorenz (26).
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One of the conditions occurring frequently ill the literature it

6,,(z, u) > 6: > 0, for all (z, u) E X X R 1• (S.1.2)

Under this condition, there exists a unique solution 1& E C-(X) to the problem

(S.1.I), (S.1.2); see Lorenz (26).

The reduced problem of (S.1.1) is defined by

6(z,u) =0, for z E X. (S.1.3)

Under the condition (S.1.2), this reduced problem haa a unique solution .. e

C-(X), as can be seen using the implicit function theorem and the compactness of

X. Note that in general lie does not satisfy either of the boundary conditions ia

(S.1.lb).

Generally speaking, the reduced problem (S.1.3) may have more than one 80

lution if condition (S.1.2) is not satisfied. Fife [IS) and D'Annunzio [9] considered

problem (S.1.1) under the assumption that it has a stable reduced solution, i.e., that;

there exists a solution .. E C-(X) of (S.1.3) which satisfies

6,,(z, Uo) > ~ > 0, for all z E X,

1'" {r E (..(0),0], whenever 0 > ..(0),
6(O,s)d.9 > 0, for

tIO(O) r E [0, "'0(0», whenever ..(0) > 0,

and

1'" { r E (..(1),0], whenever °> ..(1),
6(1,s)ds > 0, for

_(1) r e [0, tao( 1», whenever -.< 1) > O.

134

(S.1.44)

(S.1.4")

(S.1.-k)

(S.1.4d)

(S.1.4e)



The conditions (5.1.4) are obviously weaker than condition (5.1.2). Problem (5.1.1)

under the conditions (5.1.4) may exhibit multiple solutions. D'Annunzio [9] showed

existence and local uniqueness of a solution satisfying (5.1.1) and (5.1.4) usin« degree

theory.

In what follows, (5.1.1) under condition (5.1.2) ud (5.1.1) under conditions

(5.1.4) will be referred to as problem (A) and problem (8) respectively.

In this chapter, we only consider uniform convergence with respect to the discrete

L- norm.

A solution u(z) of (5.1.1) usually exhibits sharp boundary layers at the endpoinu

of the interval X when the parameter E is near zero. WheD polynomial-baaed n.-

merical methods are applied to (5.1.1), one does not obtain accurate result. on all

of X, even in the linear case. This has lead to the development of uniformly conver-

gent numerical methods. In the linear case both uniformly conve~t expoDelltially

fitted schemes on equidistant meshes and uniformly convergent polynomial bued

schemes on special meshes have been considered; see Doolan et al. (10), O'Riordan

and Stynes [31] and Vulanovit [49].

Herceg [21] considered problem (A) with additional hypothesea on 6(z, .), nUDely

that there exist functions q and Q E C1[X] satisfying

and

q(z) ~ 6.(%, u) ~ Q(z), for (z, tt) E X X 'Ill

41 = min{5q(z) - 2Q(z)} > o._ex

(5.1.50)

(5.1.56)

He constructed a scheme by requiring it to be exact on all polynomials ofd~

at mOlt 4 and proved that this scheme is fourth order uniformly conYel'Kent on a
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Bakhvalov mesh, which is a graded mesh specially constructed a priori k) fit the

problem.

D'Annunzio (9) examined a solution of problem (B), using a simple central dif

ference scheme on a special locally quasi-equidistant mesh. This mesh contains

O(h-1 ln lIE} me8h points when E~ h, where h il the maximum mesh Ipacilll over

the interval X. She showed existence of a Dution to this discrete problem &ad O(h)

uniform convergence of this solution to a solution of problem (B).

In this chapter, we consider both D'Annunzio's scheme and the higher order

scheme of Herces, which we refer to aa the D-scheme and H-scheme respectively.

We shall use a piecewise equidistant mesh. This type of mesh, which Wal recently

introduced by Shishkin (37), is much limpler than tile meshes of Her~ (21) and

D'Annunzio [9).

On this mesh, we shall apply both the D-scheme and the H-scheme to problem

(A). Existence and uniqueness of a solution to the D-scheme is proved by using

Hadamard's Theorem; see Ortega and Rheinboldt [32). We show that the D-scheme

is uniformly convergent of order EJN-l +N-J InJ N. Similar existence aad unique.

ness !Suits are obtained for the H-scheme under tile assumptionl (5.1.5). We also

discu81 existence and local uniqueness of a solution for the H-scheme without the ex

tra conditions (S.1.S), using degree theory. The H-scheme is shown to be uniformly

convergent of order eJ N-J +N-4 1n4 N.

For problem (B), we consider only the D-scheme on our Shishkin mesh. We use

d~ theory to analyse the existence of a solution to the scheme. We construct

super and sub solutions which are within order eJ ln J(1IE) of a solutio. of problem

(B); we also consider their discrete ualogues for the D-scbeme. This allows UI k)
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obtain uniform conver~nce of order N-1lnl N for the D-scheme under the nonre

strictive assumption £ ~ N-l. This result is a sipifiC&llt improvement on the first

order convergence obtained by D'Annunzio (9) for the same scheme on a different

mesh.

A summary of this chapter is as follows. Section 5.2 contains results concerning

the exact solutions of problem (5.1.1), includin~ an asymptotic expansion of the

solution to problem (A) and super and sub solutions of problem (B). In Section

5.3, we bound truncation errors of the D-scheme and the H-scheme on Shishkin

meshes for problem (A). In Section 5.4, we analyse existence, uniqueness and uniform

convergence of solutions of both the D-scheme and the H-scheme (or problem (A).

Section 5.5 shows the almost second order uniform accuracy of the D-scheme (or

problem (B). In Section 5.6, we present numerical computations which confirm our

results.

5.2 The Continuous Problems

In this section, we discuss properties of the exact solutions of problem (A) and

problem (B). In the sequel, we use J to denote an arbitrary positive constant.

For problem (A), we have

Lemma 5.2.1 There emu CJ uniq1le solution. E C-(X) 01 problem (A). Thu

M.tion admiu the decomposition

u(z) =Y(z) +V(z), for z e x,

lyU)(z>1 ~ C
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for z E X and j =0,1, ... , J.

Proof. See Vulanovic [48]. [J

(5.2.3)

{

I,
O"(z) =

0,

From (5.2.1) - (5.2.3), one may see that, in seneral, the lO1ution t&(z) of problem

(A) exhibits boundary layers at the endpoints of the interval X and has no interior

layers.

We now move on to problem (B). We shall suppose without lou of generality

that Uo(O) < 0 and Uo(I) < 0, as other cases can be handled similarly. The concepts

of super and sub solutions are important for the study of problem (B). Suppose that

there exist two functions 0 and /3 E GJ(X) with the fol1owjn~ properties:

F.o(z) ~ 0 ~ F./3(z), for z E X,

0(0) ~ 0 ~ /3(0),

0(1) ~ 0 ~ /3(1),

o(z) ~ /3(z), for z E X.

Then (j(z) and o(z) are said to be super and sub solutions respectively of problem

(5.1.1).

In order to prove higher order conve~enceof the D-scheme for problem (B),

we shall introduce super and sub solutions which are more accurate than thoee ill

D'Annunzio [9]. Let us first ~ve some notation and definitions.

We define the usual cut off function O"(z) for asymptotic analysis by

for 0 ~ z ~ 1/4,

for 1/2 ~ z ~ 1,
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with 0'(%) ~ 0 infinitely differentiable for % eX.

Let v e C-(O, 00). Let ~ be a positive constant. If for each 1 e (O,~) there

exists a positive constant C" dependinK on 1 and J, such that

for " > °and j = 0, 1, ... , J, then the function v(,,) will be said to belons to the

class of e(~,J).

The following two lemmas are modifications of Lemmas 2.1 and 2.2 of Fife [15].

Lemma 5.2.2 Let ~ > 0 be a constant. Let 9 e C-[O,~] BtJtial1J g(O) =0, g'(O) > 0

and

f g(~) > 0, for r E (0, A).

Then lor " ~ 0, there em" a unique monotone 8Olution v(,.,) 01

v" - g( v) =0, lor ,., > 0,

"(0) =~, "(00) = o.

Furthermore, v belongs to the class 01 e(lIt, J) with bt =Vg'(O).

(5.2.4)

(5.2.5)

Prool. By Lemma 2.1 of Fife [15], the solution" of (5.2.4) and (5.2.5) exists, is

monotonic and satisfies

Cil exp( -(lit +I),.,) ~ v(;)(,.,) ~ C,exp(-(~ -I),.,),

for j = 0, 1 and ,., > 0, where lit = Vg'(0), ~ E (0, bt) and C, > 0 are constants.

Since g(O) =0 and g'(8) is bounded for 8 E (0, ~), we have from (5.2.4)

Iv"(,.,)1 =19'("-)117(,.,), where v- e (0,,,) ~ (O,~),

~ C,exp(-(~ - ~),.,), for" > 0,
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where we recall that C, is a seneric constant. The relult then follows from differen

tiating (5.2.4) repeatedly and induction on j, since the derivatives of g( .. ) up to any

prescribed order are bounded for .. E (0, ~). C

Lemma 5.2.3 Let ~ and g(8) 6t .., in Lemf1UJ 5.t.l. Let t1{,,) be the monotone

3Olution 0/ (5.1.-1) and (5. t.5). Let a(,,) IJelong to the clGu 0/ e(bt,J) tDith bt =
...;g'(0). Then there ezi8U CI unique 3Olution t1t (,,) 0/

": - g'(v(,,»t1t =a(,,), lor " > 0,

t1t(0) = ~lt !'t( (0) = O.

MoreotJer, t1t(,,) belongB to the CllJ8B 0/ e(~,J).

(5.2.6)

(5.2.7)

Proof. The result follows easily from an inspection of the proof of Lemma 2.2 in Fife

[15]. C

The next lemma is a modification of Lemma 3.1 of D'Annunzio [9].

Lemma 5.2.4 Let ~ and g(B) be 48 in Lemf1UJ 5.!.I. Let, 6e .. OOn8tGnt. Then

tkre u a Po > 0 Buch that i/lpl < Po, there emu a unique solution v(", ,) 0/

v- ,(v) =-pt1, for" > 0,

v(O,p) =~, "(00,,) =o.

(5.2.8)

(5.2.9)

(Here and in V1IuJt foilotN a tlot denoteB partial differentiation tDith respect to ".)

For each fized p E (-JJ8, Po), the 3Olution ,,(", p) is monotone in " and belongs to the

c1lus 0/ e(~, J) tDith g'(O) > , anti ~ = "';1'(0) - p.
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z- (g'(,,) - 1') z = -t1, for" > 0,

z(O,,) = z(00,,) = 0

and

z(",p) > 0 /or" > o.

(5.2.10)

(5.2.11)

(5.2.12)

Furthennore, there emt posititJe conslan" C1 and CI, independent 0/ p, .uch

that

(5.2.13)

Proof. The results follow from aJ'KUment8 similar to those of Lemma 3.1 of

D'Annunzio [9]. 0

We DOW define the required boundary layer function8. These are more accu-

rate th&ll those of D'Annunzio. They will be ulled to COD8truct our IUpel &ad ,ub

101utionl. Let

I
(,,:(z/£,,) + £"f(z/£» 6(Z), for 0 ~ z ~ 1/2,

to(z,£,p) = (t1~ «1 - z)/£,p) +£"l «1 - z)/£») 6(l- z),

for 1/2 < z ~ 1,

where ":(11,1'), "A(",p), "f(,,), and "1<,,) are respectively defined by

v: - II (0, "0<0) +":) = -"":, for" > 0,

,,:(0,1') =-UO(O), ":(00, p) =0,

~ - "(1, ue( 1) +~) =-""~, for" > 0,

,,~(O,,) =-...(1), "(00,,) =0,
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if - b. (0, "0(0) + vg(",0») ":

= " [b. (0, ue(O) + vg( ",0») + .. (0, ue(O) + v:( ",0») t4(O)], for" > 0,

(5.2.19)

(5.2.20)

and

it - b. (1, ue(l) + v~(", 1») vt

=,,[6. (1, ue(l) + v~(", 1» + .. (1, ue(l) + ~(", 1» u;.(I)] , for" > 0,

(5.2.21)

"teo, p) =0, vt( 00, p) =O. (5.2.22)

We remark that D'Annunzio uses only the first terms of our expansions, i.e., "r ==

"I == 0 in D'Annunzio [9].

From Lemmas 5.2.2 - 5.2.4, one can see that there is a ,. > 0, independent of

t, IUch that w(z,t,p) is well defined for IPI <,.. Furthermore, we have

8wo~ 8p (Z,E,p) ~ C

and

(5.2.23)

I~x~(X,E, 1')1 ~ CE-i (exp (-(6 - 6)xIE) +exp (-(6 - 6)(1- x)/E» , (5.2.24)

for z e X and j = 0,1, ... , J, where "i > p, h = Jbr=Ii <1Jo is given by (5.1.3»

and ~ is any fixed number in (0,6). Thus to essentially models boundary layen at

z =0 and z =1.
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Lemma 5.2.5 Set p. = e2 In2(I/e). Then tI1e con c1aooBe po6iti~ constants G1 and

G2, umich a~ independent of e, such that when E U .ufficiently small, w(z,£, Gtll.)

and w(z, e, -Gtll.) a~ well defined, and

and

O(Z,E) =ue(z) +w(z,£, -Gtll.) - G211.

a~ super and sub solutions ~spectively of problem (B).

(5.2.25)

(5.2.26)

Proof. Fix E E (0,1]. We shall specify Gt and C2 later in the proof. It is easy to see

from (5.2.23) that

O(Z,E) < /I(z,£), for z E X.

By the construction of w(z,t,II), we have

(5.2.21)

(5.2.28)

(5.2.29)

To be a super solution, /I must satisfy F./I ~ 0, for z eX. Proof of this will be

shown only for z E [0,1/2] since the result for % E [1/2,1] may be obtained similarly.

In the rest of this argument, the notation , = D( M) stands for 1(1 ~ eM, where

C >°is any constant independent of Cit C2 and t.

Set

4t
z· = ,. In(l/e).

We have z· E (0,1/4), when t is sufficiently small.
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Consider first z E [0, z·). Then C7(z) == 1 and C7( 1 - z) == 0. Hence

where " =z IE. Therefore

2" -0 -0 JJ O. C )=-E UO - Vo - EVt + "'z, tao + Vo + EVt + 2P.

-0 --0 b( 0 0) I.. ( 0 o)G=-Vo - EVt + z, UO + Vo + EVt + u. z, .. + Vi + tVt 2P.

For the third term of (5.2.31), we have

A Taylor expansion gives

6(z,uo + v:)

=b (z, -.(0) + .,g +z";'(O) + z;u:(n) , where ( E (0, ZO),

=b (0, "0(0) + V:('1,GtP.») + z'. (0, Uo<O) + ":('1,GtP.»

+zh. (0, UO(O) + v:( '1, GtP.») t4(0) + 0(z2)

=b (0, "0(0) + v:( '1, GtP.») + zb. (0, ..(0) + v:( '1,0»)

+zb. (0, "0(0) + v:('1,O») ";'(0)

o ) av: I+Gtzp. b_ (0, UO(O) +"O('1,P 8p ('1,p) "..

o ) 8v: I+GtzP.";'(O) '- (0, -.(0) + vo('1,P ~('1,p)
up ~.

+0(z2), where p. ,p- E (O,GtP.),

= b (0, ..(0) + V:('1,CtP.») + zb. (0, "0(0) + V:('1,0»)

1..

(5.2.31)



+z6. (0, "0(0) + V#('1, 0» ":'(0) + O(zJ + Ctz,.) t

using (5.2.13). Also

6.(z, "0 + ":) =6. (0, "0(0) + v:('1,Ctp.» + O(z)

=6.. (0, "0(0) + v:('1, 0») + O{z + Ctp.).

Hence

6(z, "0 +": +e,,~)

=b (0, "0(0) + ":( '1, Ctp.»)

+e'1 (b. (0, Uo(O) + ":('1,0») + b. (0, uo(O) + ":('1,0» u:.(0»

+b. (0, "0(0) + ":('1,0») evr + 0 (eJ + zJ + ze + Ctzp. + Ctep.)

(5.2.32)

and

6..(z, Uo + ": + e,,~)C,p.

= 6..(z, "o)C,p. + ,,-(z, u·),,:C,p. + 0 (C,ep.) , (5.2.33)

where u· E (Bo, Uo + v:).

Therefore, by (5.2.31) - (5.2.33),

F.I3(z,t) = -v:('1,Ctp.) +6 (0, -.(0) +V:('1,Ct p.»)

+e {-v~( '1) + 6.. (0, Bo(O) + v:( '1, 0») ,,~( '1)

+'1 (6. (0, uo(O) + v:( '1,0») + 6. (0, -.(0) + v:( '1,0» ";'(O»}

+6..(z, Bo)C,p. + 6..(z, .·)v:('1,Ctp.)C".

+O(eJ +zJ +zt +Ctz,. + Cte,. + CJep.)
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by (5.2.15) and (5.2.19). Thus, there exists & constant C > 0, independent of CI ,

CI and E, IUch that

by (5.2.30) and the definition of".. Choosing CI and CI such that b:CI > 2C and

CI > CCI and taking Eo sufficiently small, 80 that (CI +CI)Eo In{1/Eo) < 1, then

for 0 < t < to,

since v:('1,GI P.) > 0 by Lemma 5.2.4.

We now deal with the cue z E [z·, 1/2]. Take P = GIl'. and 6 = "-/4 in (5.2.24).

Then, when E is 80 small that GI". < ij/4, we set

I~z~ (Z,£,I'.)I ~ eel (exp( -¥/2£) +exp(-~1- z)/2£))

< CE-i +1- ,

for S E [z·, 1/2] and j = 0,1, ... , J, from the definition of z· in (5.2.3O). Hence
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= -E· ( U;(z)+ ~z~(Z,E,Cl"'») +6(z, We +'" +C.".)

=b(z, ua) +b.(z, ua)(w +CJP.) +O(EJ +EJCJP. + (CJP.)J)

=b.(z, uc.)(w +CJP.) +O(EJ +EJCJP. + (CJP.)J)

~ b: (CJP. - CEJ) - C (EJ +E2C2P. + (C2P.)J)

> 0,

by arguments similar to the case z e [0, z*). This completes the proof of

F.I3(z,E) > 0, for z e X.

Analogously, one may show that

F.a(z,E) < 0, for I: E X.

(5.2.34)

(5.2.35)

Combining (5.2.34) and (5.2.35) with (5.2.27) - (5.2.29) concludes the proof. 0

Theorem 5.2.1 Under the 84me hypotheses u in LemmtJ 5.!.5, problem (B) htu G

8Olvtion u(z), which is the only solution 84tisJying

o(z, t) ~ u(z) ~ 13(z , E), for z eX. (5.2.36)

Here /3(z,t) and o(z,t) are the su~r and sub solutioru given'" (5.!.!5) and

(5.!.!I).

Proof. CoroUary 3.1 of D'Annunzio [9] tells us that if problem (B) has a super

lOlution l3(z,t) and a sub solutioll a(z,E), then there exists a solution t&{z) of

problem (B) such that

o(z,t) ~ .(z) ~ 13(I:,t), for z E X.
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Hence the existence of a solution follows from Lemma 5.2.5 above. The uniqueneu

of the solution satisfying (5.2.36) can be shown by arguments similar to thOle of

Theorem 3.6 in D'Annunzio [9]. C

From the definition of our super solution l3(z,e) and sub solution a(z,e) and

recalling (5.2.23), one can see that

I~(z,e) - a(z,e)1 ~ Ce2 In2(I/t), for z e X.

This shows that we have tighter control on the solution u(z) of Theorem 5.2.1 than

in Corollary 3.4 in D'Annunzio [9], where the super and sub solutions yield only an

D(t) estimate of u.

5.3 Discretizations and Truncation Errors on Shishkin
Meshes

We analyse the truncation errors o( two schemes applied to problem (A) on Shishkin

meshes.

For a given positive integer N, we denote by X N an arbitrary mesh

o=Zo < Zt < ... < ZN-l < ZN =I,

with ht =Zi - Zi-t, (or i =I, ... ,N, and ~ =(ht +ht+l)/2 (or i =1, ... ,N-1.

We shall denote by RN +1 the real N + 1 dimensional linear space of all column

vectors

In what follows, for any function, e C[X], we shall abue the notation by alIo

writing, e RN+l with Ji = r(za) for i = 0, I, ... , N.
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The space R,N+l will be assumed to be equipped with the 1Isuall.-Dorm:

The induced norm of a linear mapping A=(4ii) : R,N+l -+ R,N+l is given by

N

IIAII_ = max L l4iil·
O~i~N j.e

Let A be the (N +1) X (N + 1) tridiagonal matrix defined by

100
ri" rf rt

A=

where
_ 1

r· =--,
• ~hi

rN-1

o
rN-l

o

+ 1r, =---.
~+l~

(Bzli =

Let B : R,N+l -+ R,N+l be the mapping:

0, for i = 0,

&,b(Zi-l' %1-1) + .~b(Zi, %I) +.fb(Z'+I, %i+l),

for i =1, ... , N - 1,

0, for i =N,

where .; , &f and .t are as yet unspecified. Set

We shall use {F,XN } to denote the th~point scheme

(5.3.1 )

(5.3.2)

(5.3.3)

Define (F.u)(O) = u(O) and (F.u)(l) = .(1). The truncation error of F in

approximating F. is defined by "Fa - F.ull. = IIFull., where u(z) is the lOIutioD
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of problem (A). It is clear that (Fu)o = (FU)N =O. We shall bound I(Fu>'l, for

i =1, 2, ... , N - 1, in the truncation error analysis of this section.

5.3.1 The Mesh

Since u'(z) is in general unbounded in the boundary layers at % = °and % = 1 when

£ -+ 0, a polynomial based discretization cannot be consistent uniformly in E, unless

it is constructed on a special mesh. In the literature, several types of special meshes

have been introduced for singularly perturbed two-point boundary value problems;

see Herc~ [21], D'Annunzio [9] and Gartland [17]. In this chapter we shall employ

a Shishkin mesh [37], which i. piecewise equidistant aDd consequently much simpler

than the above meshes.

Given positive integers m and N, where N is divisible by 4, the Shishkin mesh

X: is constructed by dividing the interval [0,1] into the three subinterva1l

[0,0'",], [0'",,1 - 0'",], and [1 - 0'",,1].

Equidistant meshes are then used on each subinterval, with 1 +N /4 points in each

of [0,0'",] and [1 - 0'"" 1], and 1+ N/2 points in [0'"" 1 - 0'",]. The parameter 0'", is

defined by

0'", =min {1/4, mh01
E In N} , (5.3.4)

which depends on E, N and m. The basic idea here is to use a fine mesh to resolve

part of the boundary layers.

More explicitly, we have

X:' : 0 =z. < %1 < ... < %io < ... < ZN-ie < ... < %N =1,
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with ie =N /4, zio =a"" zN-io =1 - a"" and

~ =4a",N-1
, for i =1, ... , ie, N - itt + 1, ... , N,

~ = 2(1 - 2a",)N-1, for i = ie + 1, ... , N - ie.

(5.3.5)

(5.3.6)

If a", = 1/4, i.e., 1/4 ~ mb;l£ 1D N, then N-l ia very small relative to £. This is

unlikely in practice (and in this cue the method can be analysed usinS standard

techniques). We therefore assume that

From (5.3.5) and (5.3.6), it is clear that the intervallensths satisfy

~ =4mb;l£N-l ln N,

for i =1, ... , ie, N - itt +1, ... , N, and

for i =ie + 1, ... ,N - ie.

5.3.2 The D-scheme

The D-scheme is described by (5.3.3) with

~, = 0, ~: =1 and ~t = o.

(5.3.1)

(5.3.8)

(5.3.9)

We shall denote by Fo =-£2 A +Bo the mappins correspondins to this scheme.

Lemma 5.3.1 ut u be the solution oj problem (A). Then on 1M Shi8JaJrin mula

Xr, the t",nctJtion error oj the D-3Cheme IIdu~~

II Foull. ~ C (£2N-1 +N-J InJ N) .
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Proof· Let i E {1,2, ... ,N -I}. By a Taylor expansion, there exiat (i E (si-ttZd

and 'Ii E (Zi, Zi+l) 8uch that the truncation error of the scheme is

by (5.1.la).

On the other hand, if a Taylor expansion with integral remainder is ueed, we

obtain instead
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Uains the decomposition (5.2.1), one may split the truncation error in the form

Here for any JI e C4(X), we define

h~ - h~ hi h~
(Iw)i = '6~ 'tl £2,"'(Zi) - 24~ e2,c4)(ee> - 2~t£2,(4)( 'Ii),

(5.3.13)

(5.3.14)

where ei e (Zi-l, Zi) and 'Ii e (Zi, Ziti) depend now OIl the function " or, equiva

lently,

It is easy to see from (5.3.14), (5.2.2), (5.3.8) and (5.3.9) that

(5.3.16)

We now bound (Iyli. For i e {l, ... ,ie - I} U {N - ie + 1, ... ,N - I}, the

first term of (5.3.14) is zero, because of the uniformity of the mesh on [O,(1IJ and

[1 - (FI, IJ. Hence, for these values of i,

by (5.3.14), (5.2.3) and (5.3.8). If i =ie, then from (5.3.15) and (5.2.3) we have

/.

e,,+1

I(Iy lie I ~ c£-l -,,-1 (exp( -60"/£) +exp( -60(1- ")/e» tl"

C
= 6to (exp( -bozie-l/£) - exp( -60zietl/e)

+exp( -60(1- zietd/£) - exp( -'-<1 - Z"-I)/e»

~ Cexp( -"-Z"-I/£)

=CN-2exp(_"~/£), siace s.. = CJ2 = 2£b;lhaN,
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Analogously, one may show th&t

I(Iv),1 ~ eN-I, for i =io + 1, ... N - io.

Thus

Combinin,; this with (5.3.16) and (5.3.13) completes the proof. C

Under the reasonable assumption £ ~ N-l, the estimate (5.3.10) becomes

IIFDull. ~ eN-lin'N. This is much better than the O(h) result obtained by

D'Annunzio (9] for the same scheme with a more complicated mesh, where h is the

maximum mesh spacin,;.

5.3.3 The H-scheme

We now take

(5.3.17)

and

+ hl+1 - hl +htht+l
$. = -
• 12ht+l#&t

in (5.3.1). The mappin,; correspondins to the H-scheme will be referred to as F. =

This scheme can be found in Herce,; (21]. He derives the scheme by uain,; a

difference formula of Hermite type to approximate the differential equation (5.1.1&)

and requirin,; this formula to be exact on all polynomials of degree at most 4. The

scheme can be al80 constructed by modifyin,; a finite element scheme, as we now

demonstrate.
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We use piecewile linear "hat" (unctions u oar trial and teet (unctions, viz., set

(or z E (Zi-tt zd,

(or Z E (Zi, zi+d,

elsewhere,

for i = 1, ... , N - 1. Then the basis function space Sll is taken to be the linear

span of {<Pi: i =1, . .. ,N - I}. A finite element scheme is defined as follows: find

UN = E~11 UN(Xi)<Pi(X) E SN such that

E
J (UN,<pn + (b,<Pi) =0, for i =1, ... ,N -1,

where we denote by b the piecewise linear interpolant to 6, viz.,

for x E (Zi-l, Xi) and i = 1, ... , N.

(5.3.18)

Note that UN(XO) =UN(XN) =O. We write (5.3.18) to«ether with theM! bound

ary conditions as FBUN =0, where FB : RN+1 -+ RN+l. A lengthy caiculatioD

shows that for i = 1, ... , N - 1, we obtain (or its truncation error

(FBU)i = hf +hf+l tP
2
b(x, .(X»I _1(ht - ht+t>EJu(I)(xd

24hi dx .=tti 360~

+7~h; ~I ( - "la)((i) +5"la)(m)
+7;;~ ~I ( _"la)(oj;) +5"la)( 'Ii») • (5.3.19)
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for i =1, .•. , N - 1. This yields a higher order scheme

(5.3.20)

By a simple calculation, we see that F. has the form of (5.3.2) with 'i", 6f and ,t
siven by (5.3.17).

Lemma 5.3.2 ut u be the ,olution of problem (A). Then on the Shishl:in mesh

xr, the truncation error of the H-llCheme IIGtisfie,

Proof. Using (5.3.19) and a Taylor expansion, we obtain

On the other hand, by a Taylor expansioD witla integral remainder aDd usiq
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.; +3f +&t =1, we have

where &i and &t are given by (5.3.17).

R.ecalling the choice of (14, ODe may show the desired estimate by arsumeDts

similar to those of Lemma 5.3.1. 0

5.4 Uniform Convergence of the Schemes for Problem
(A)

We investigate the existence, uniqueness and uniform convergence of solutions of the

D-scheme and the H-scheme on the Shishkin meshes X: for problem (A). We prove

that the D-scheme haa a unique solution by employing Hadamard's Theorem. We

give all 0(£2N-l + N-1ln l N) error bound for this scheme. This bound is uniform

in £. In a separate argument, we analyse the H-scheme with and without conditio..

(5.1.5). Under the conditions (5.1.5), a similar uniqueness result is obtained for the
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H-scheme and the uniform error bound is proved to be O(EJN-I + N-4 1D4 N). In

order to dispense with the strong conditions (5.1.5), we UIe degree theory ud a local

version of the Hadamard Theorem. Existence, local uniqueness of a solution and

uniform accuracy of order EJN-I+ N-4 1n4 N for the H-scheme are proved without

the conditions (5.1.5).

It is easy to see that F, as defined in (5.3.2), is continuously differentiable on

1lN +1• The Frechet-derivative F'(z) of F at any z == (.re,Zt, ..• ,ZN)T e 1lN +1 11

the tridiagonal matrix

100

II If Ii

P(z) =

lit-l /Jt-l 1{,-1
001

where for i = 1,2, . .. ,N -1,

(5.4.1)

(5.4.2)

(5.4.3)

Set

For each scheme, we shall find a constant p. > 0, which is independent of N and

t,luch that

p ~ p. > 0, for all z e S, (5.4.4)

where S i. an open ball in 1lN +1• By Theorem A of Varga [45J, (5.4.4) implies that
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r(z)-1 exista and

(5.4.5)

This inequality plays an important role in proving existence, uniqueness and uniform

convergence of a discrete solution of both the D-scheme and the H-scheme for

problem (A).

We also uee degree theory to analyse the local uniqueness of a solution of the

H-scheme.

5.<t.1 Uniform Convergence of the D-scheme

We use Hadamard'8 Theorem to show the uniform convergence of the D-scheme OD

the Shishkin mesh for problem (A).

Theorem 5.4.1 Auume that (5.1.1) ond (5.1.!) hold. Let" denote tM MXution

01 problem (A). For ony orbitm,., mem X N , the D-acheme {FD,XN } 1uu 0 ..nique

solution in R,N+l. 11 UN E llN +1 i8 the solution 01 {FD' Xf}, then

(5.4.6)

Proo/. For the D-scheme on an arbitrary mesh XN, we have in (5.4.1) - (5.4.3)

Hence, for i =1, 2, ... ,N - 1,

~~, for aD z E llN +1
,
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by (5.1.2). Thus Theorem A of Varga [45] implies that I1(Z)-1 exists and

(5.4.7)

It follows from Hadamard's Theorem (see Theorem 5.3.10 of Ortega and Rheinboldt

[32]) that FD is a homeomorphism ofllN+1 onto llN+1• This implies that FDUN =0

has a unique solution in ll.N +1• Moreover by the invene function theorem, the

function FIJI is continuously differentiable on ll.N +1 and

(5.4.8)

From Lemma 5.3.1, we have

(5.4.9)

where UN is the solution of {FD' Xr}.

Now by Theorem 3.2.3 of Ortega and Rheinboldt [32], we obtain

II- - uNII.

= IIFiJI (FDU) - FiJ1(FDuN)II.

~ sup II (FiJI)' (FDU + t (FDU - FDUN» II. ·IIFDu - FDuNII.
O~C~l

= sup II (FiJI)' (FDzt) II. ·IIFD- - FDuNII.,
O~C~1

for some zt E ll.N +1, since we know that FD maps onto ll.N +1• Now by (5.4.7) -

(5.4.9),

1
IIv - uNII. ~ min{l,~} IIFD- - FDuNII_

~ c (£,2N-1 +N-1 ln2 N),

which i. the desired result. 0
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5.4.2 Analysis of Uniform Convergence of the H-scheme

In order to apply the Hadamard Theorem to the H--.cheme, we need the extra

assumptions (5.1.5) as in Herceg (21).

Theorem 5.4.2 Auume tlu:at (5.1.1), (5.1.!) and (5.1.5) hold. ut

4, = max {Iq'(z)l, IQ'(z)l}.
O~.~1

Then for N > 84,/41 (cf. (5.1.5)), the H-scheme {FB,Xl'} htu a uniqtte solution

UN e 'R,N+1 • Moreover, with " denoting the solution of problem (A),

Proof. For the scheme {FB,XN}, we have in (5.4.1) - (5.4.3)

for i = 1,2, ... , N - 1. It followl immediately from Herceg [21] that

(5.4.10)

On the Shishkin mesh xl', we have Iat ~ 2N-l, for i = 1,2, ... , N. Hence for

IJ;I-Ifi-I-Iftl ~ min {~,41/6- 2~2/3N}

~ min {~'~1/12}, for i =1,2, ... ,N-1.
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The theorem then follows from Lemma 5.3.2 and arguments similar to thoee of

Theorem 5.4.1. 0

The atron~ Ulumptiona (5.1.5) are imposed to parantee the lIaiqueDeu of a

eolution of the H--scheme in the whole apace 1l"+1. Since the continuoul problem

(A) has a unique solution &88umin~ only the condition (5.1.2), we would naturally

prefer to eliminate the assumptions (5.1.5) from the discrete problem. The following

theorem gives existence of a solution for the scheme {F., xfl without the condition

(5.1.5).

Given zo E 1l"+1 and r > 0, we shall denote by 5(zO, r) the open ball

in 1l"+1.

Theorem 5.4.3 A8sume that (5.1.1), (5.1.1) hold. Then there emu. constant

Co > 0, independent of E, such that tJae H-scheme {F.,Xf} htu • MHution -" E

1l"+1 tDhich 8atisfies

(5.4.11)

for N ~ No, umere No depend8 on Co ht is independent of E.

Proof. On the Shishkin mesh xf, Lemma 5.3.2 yield.

where Ct is a fixed positive constant, independent of E and N. Set

C. = 2Ct/min{1,~/6}.
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Then

(5.•.12)

We now prove that there exists a positive int~r N., depending on C. but

independent of e, such that for N ~ N.,

We have, for i = 1,2, ... , N - 1, in the notation of (5.4.1) - (5.4.3),

Ifll-I/,-I-i/tl

> hl + hl+1 + 3h,ha+l b ( . .) _ hl + hl+1 + haha+l b (. .)
- 6h,h'+1 • Z" ZS 12haha • Z,-I, ZS-I

hl +hl+1 +h,h'+1
- 12hi+lha '.(Z,+ltZS+I)

1=3"-(Zi' ZS)

hl +hl+1+ haha+l
12h,h, (-ha"..(ii, it) - (ZS - %1-1 >,..(ii,.it»

h' +h2 +haha
, l~~:+lha +1 (ha+I6..(i" it) - (ZS+1 - zs>b..(i" it», (5A.14)

where (ii, it) is between (Zi-I, ZS-I) and (Zi, ZS), and (i" it) is between (Zi, %I) and

(Zi+l, ZS+I).

By Lemma 5.2.1, max-EX lu(z)15 Ct for some positive constant Ct. Hence

'6_(z,%)1 +16..(z,%)15 C, for (z,z) e X x [-C, - I,C, + 1]. (SA. 15)

Let z = (zo, ... , .IN) e S (u, Co (e'N-I +N-4 1n4 N)). We choose N1 8uch that for

all N ~ N1 , Co (e'N-' +N-4 ln4 N) 5 1. Hence Izsl 5 c, + 1 for i =O,I, ... ,N.

Consequently for N ~ Nit

litl 5 Ct + 1 and lisl 5 c, +1, for i = 1, ... , N - 1.
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On the other hand, uain« Lemma 5.2.1, one may easily.1low that on the Shi.hkin

mesh Xr
I", - "'-II ~ CN -lin N, for i =1, ... , N.

Therefore for N ~ Nl ,

I'" - "'-11 ~ 1.It - ..I+ 1.It-l - iii-II + IIIi - iii-II

~ 2Co (t'N-I + N-4 ln4 N) + C N-l ln N,

for i =1, .. . ,N.

From (5.4.14) - (5.4.17), we obtain for N ~ N l that

(5.4.17)

where CI is a positive constant which depends on Co but is independent of N and t.

Chooee N, > 0 such that CI N- l ln N < ~/6 for N ~ N,. Set No = max{Nl , N, }.

Then for N ~ No,

Thu

This yields (5.4.13), by Theorem A of Varga [45].

Now from (5.4.12) and (5.4.13) we see that the mappin« F. : 1l1l+1 .... 1l"+1

satisfies the conditions of Theorem 5.3.11 of Ortega and Rheinboldt [32]. Hence

F."II =0 has a solution u" e S (..,Co (t'N-I +N-4 1n4 N)), i.e., II- - .,,11. ~

C. (t'N-1 +N-4 ln4 N). 0
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To prove local uniqueness of solutions of the scheme {FB, Xf} for problem (A),

we shall use degree theory. In order to do this, we imbed problem (A) in the followinS

family of problems:

F.( i, t) == -t2i_(z, t) +6(z, t, i(z, t» = ° for z e (0,1), (5.4.18)

i(O, t) = i( 1, t) = 0, (5.4.19)

where t e [0,1] is a parameter,

b(z , t, i(z , t» =til(z, i(z , t» + (1 - t) (i(z , t) - Uo(z )) , (5.4.20)

for (z,t,i) e [0,1] x [0,1] x Rl, and tao is the solution 0(5.1.3). Clearly, for each

z and t, b(z, t, Uo(z» = 0.

Set bI =min{ij, I}. Then

6.(z, t, u) =t6.(z, u) +(1 - t)

=t~ +(1- t)

> ;;'2
- "0'

(5.4.21)

for all (z, _, t) e [0,1] x R 1 X [0,1]. Hence, for each t, problem (5.4.18) - (5.4.19) is

of the same type as problem (A).

Define the mapping t.(·,·): RN+l X [0, 1] ~ RN+l by

where ilB(·,·) : RN+l X [0,1] ..... 1lN+1 is given by

0, for i =0,

." 6(Zi-l' t, %i-I) + .,:6<Zi, t, %i) + .,t6(Zi+l, t, %i+l},

for i = 1, ... , N - 1,

0, for i =N.
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Here and in the rest of this section a" ~ and at are siven by (5.3.17). Then the

H-scheme for problem (A) is imbedded in the family of schemes

I.(z, t) =0.

Let us introduce some more notation and definitions.

(5.4.23)

For zl and zl E 1lN +1 , we denote by zl ~ zl ( or .1'1 < %1) the Datura! partial

ordering on 1lN +1, i.e., z1 ~ zl ( or z1 < zl) for i = 0,1, ... , N.

Let M : 1lN +1 --+ 1lN +1 be a mapping. Let a, {3 E 1lN +1• If

and

Mo < 0,

M{3>O

a < {3,

(5.4.24)

(5.4.25)

(5.4.26)

then {J and a are said to be super and sub solutions of M % =0, respectively.

Let a, {3 E 1lN +1 satisfy 0 < {3. Let G be a mapping: 1lN +1 -+ 1lN +1• Defiae

C- : 1lN +1 -+ 1lN +1 by

I
(G/3lt+(zt-!3i),

(G"'zlt = (G/3lt,

(G/3lt + (Oi - zt),

if zt ~ Pi,
if 0i < Zi < 1Ji,
if Zi ~ Oi,

(5.4.27)

for i =0, 1, ... , N. Then C- is called a modification of G.

We sive a strengthening of Theorem 5.1 of D'AnnuDzio [9J.

Lemma 5.4.1 ut D =(dt;) he lin (N +1) )( (N +1) motriz MdiafJling

dt; ~ 0, 10,. 0 ~ i, j ~ N 11M i ~ j
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anti
N

L ~j ~ 0, lor 0 ~ i ~ N. (5.4.29)
j==1

ul G : R,N+1 -+ R,N+1 6e a mapping. ul 0, {j E R,N+1 Nluh Q < fl. ul C- be

.. in (5.4.!7). Define M : R,N+1 -+ R,N+1 .,

II

and

then

M =D+C-.

Mz = 0,

Mo<O

M{J > 0,

Q < z < {J.

(5.4.30)

(5.4.31)

(5.4.32)

(5.4.33)

Prool. We shall only prove z < {J, since z > 0 may be proved analogously.

Set 1/ =Z - {3. We prove that 1/ < O. Suppoee that 1/ < 0 is false. Then for lOme

i E {O, 1, ... , N}, I/i ~ O. Let k be an integer such that

(5.4.34)

Clearly

(5.4.35)

By (5.4.31),

=(Dz)a. + (GfJ)a. + (zr. - {j.),
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from (5.4.27) and (5.4.35). Hence, ulinK (5.4.27) and (5.4.33),

-". =(Dz). + (G{J).

= (Dz). +(o-P).

> (Dz). - (D{J),

=(Dv).
N

= Ed'jvj
;=0

~ (t d.;) Via, by (5.4.28) and (5.4.34),
,=0

~ 0,

by (5.4.29) and (5.4.35). That is, ". < O. This contradicts (5.4.35) and the proof of

Lemma 5.4.1 il completed. 0

D'Annunzio [9] obtained the same result under the extra conditions tlti > 0 for

i =0,1, ... , N and assuminK that strict inequality holds in (5.4.29) for at 1eut ODe

i.

For each t e [0,1], set

_ { ij: (z/ e, t, p) 0'(z),
to(z,t,e,p) =

ij~«I- z)/£,t,p)O'(I- z),

for 0 5 z 5 1/2,

for 1/2 < z 5 1,

where ij:( '1, t,p) and ij~( '1, t, p) are respectively defined by

~: - 6(0, t, "0(0) +ij:) = -,n;:, for '1 > 0,

~(O,t,p) = -1&0(0), ~(oo,t,p) = 0

and

(5.4.36)

(5.4.37)

::1 ,- (1 .'-'1) -1) -1"0 - , t, -e\ + I1j =-J"'i,
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t;~(O,t,p) =-Uo(1), ~(oo,t,p)=o. (5....39)

Recalling (5.4.21), one may show, by the arguments of Section 5.2, that there is

a iio > 0, independent of e and t, luch that w(z,t,e,p) is well defined for Ipf ~ Po.

Furthermore, we have

and

lJw
o~ lJp (z,t,e,p) ~ C (5.4.40)

I~z: (z, l,t,p)1 $ Ct- j (exp ( -(6 -I)z/t) +exp ( -(6 -1)(1- Z)/t)) ,

(5.4.41)

for (z, t) E [0,1] X [0,1] and j =0,1, ... , J. Here 6: > p and 6=V6: - p with 60
given by (5.4.21) and 6 any fixed number in (0,6).

Auumption 5.4.1 In what follow, IDe .Jaoll auume tJu:at e ~ N-l, V1hich U non-

restrictive in practice.

Lemma 5.4.2 Set PN =N-1 1n N. ut t E [0,1]. Then _ can choose a corutant

61 > 0, which u independent ofN, t anti t, and tI pt»itiW! integer No, Waich upend.

on 61 ht is independent of e tlnd t, 8uch that for tach fized t E [0,1], when N ~ Ne ,

i7(z, t,e,C1PN) tlnd w(z, t,e, -C1PN) tire well defined, tlnd

(5.4.42)

.rul

(5.4.43)

are "per and 8.6 solutiOflB respectivel, of (5.-I.!3) on tJae ShislaJrin me. xr·
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Proof. For each t E [0,1], it is clear that

-N -N
Q (·,t)<1J (·,t). (5.4.44)

We now prove that tB(/JN, t) > O. From the definitions o( the terms involved,

For i E {I, 2, ... N - I}, we have

(tB(/JN,t»)i = ((tBU}N,t»)i - (t.(/JN,t») (Zi,t,E:»)

+ (t.(,8N,t») (Zi,t,E:).

(5.4.45)

(5.4.46)

We separately analyse these two terms. In the (oUowing argument, the notation

, = OeM) stands (or 1(1 ~ eM, where C > 0 is any constant independent o( (}1'

N, E: and t.

Firstly, take N1 > 0 such that C1PN < b:/4 (or N > N1 • Then for N > N 1 and

6 = 60/4 in (5.4.41), we have

for (z, t) E [0, 1] x [0, 1] and j =O. 1, ... , J. By arguments similar to those o( Lemma

5.3.2, we see that on the Shishkin mesh Xr one has, using E: ~ N-l,

(5.4.48)

Secondly, we have (or Zi E (0, Zio]
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where " = %/ E. Therefore

= -~: +6(%, I,,, +a:) + ,-(Zi, I,,, + a:)C1PN

+0(E1 +(C1PN)')

·'0 - 0 - 0 -= -vo + 6(0, I, "0(0) + Vi) +"'(Zi, I,,, +VO)C1PN

+0 (%i + E' + (CIPN )2)

= C1PNvg +b.(%i, I,,, + vg)C1PN

(5.4.49)

by (5.4.21), since 0 < %i ~ %10 = O(E In N).

For %i E (%10,1/2], we have by (5.4.47)

I:::(z, t,c,C'PN)/ :S Cc- j (exp ( -6"zio/2£) +exp (-"(1- Zio)/2£))

~ CE-iN-1,

for j =0,1, ... , J. Hence

- -N
F.(IJ , 1)(%i, I, E)

2 ( " lJIw -)=-E Uo(%s) + 8%2 (zi,I,E,C1PN)

+6(%i, t,,, + tiJ +C1PN)

=6(%i, I, ue(%i» +6.(%i, I, ue(%i» (1O(%i' I,E,C1PN) +C1PN)

+0 (E2+N -2 + (CIPN )2)
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(5.4.50)

Recalling vg > 0 (by Lemma 5.2.4), (5.4.46) and (5.4.48) - (5.4.50), one may

chooee 61 (independent of N, £ and t) and N (dependins on 61 but independent of

£ and t) sufficiently large such that

(5.4.51)

Similarly, one may show that

(FB(,8N,t»)i > 0, for Zi E (1/2,1).

Combining this with (5.4.45) and (5.4.51) yields FB(,8N, t) > o.

Analogously, one can prove that t.(aN, I) > O. The proof is complete. C

We now introduce a modified problem corresponding to (5.4.23). Consider

FB(z,l) =0,

where the mapping F;;(.,.) : R,N+1 X [0,1] ..... RN+1 is defined by

- 2-FB(z,t) =-t Az +BB(z,t).

(5.4.52)

Here B;(.,t) is the modification of BB(·,I) with,8N and aN ~ven by (5.4.42) and

(5.4.43) respectively for each t; see (5.4.27).

Define an open and bounded set Dc C R,N+1 for each t E [0,1] by

Dc ={z E R,N+l: aN(.,I) < z< ,aN(.,,)}.

We shall denote by Dc and lJDc the closure and the boundary respectively of Dc in

RN+l.
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Define the mapping T(·,·): Dt x [0, IJ .... llN +t by

-N

(T(z,t)); = (... - or(o,l») pN( p~ (o,~~( )+ (pr(o,l) - ...) -N orc-'~1 '
i ., 1 - 0i " 1 Pi (., 1) - Qi (., 1)

for i = 0,1, ... , N. It is easy to see that for each t e (O,IJ, T(·, t) i. a linear

transformation from Dt onto D,.

We finally define a mapping R(.,.) : /)1 X [0, IJ .... llN +1 by

R(z, t) = ij;(T( z, t), t), for (z, t) e D1 X [O,lJ.

This is a continuously differentiable mapping. We shall prove that

where Deg denotes topological degree (see, e.g., Ortega and Rheinboldt [32]), by

using the Homotopy Invariance Theorem; see Ortega and Rheinboldt [32], Theorem

6.2.2. We fint show the followins

Lemma 5.4.3

R(z,t) #: ° for tJlI (z,t) e DD1 x [0, 1J.

Proof. Suppose that R(z*,t*) =°for some (z*,t*) E D1 X [0, 1]. Set'r =T(z*,t*).

Then 'r E Dc. satisfies

(5.4.53)

From the definition of ir(·,·) and Lemma 5.4.2, we have

(5.4.54)

(5.4.55)
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Settin« D = -eJ A, the condition (5.4.28) and (5.4.29) are (ulfilled. Combinin«

(5.4.53) - (5.4.55) with Lemma 5.4.1 yields

From the definition o( T(·, .), we obtain

(5.4.56)

-N -N
Z'! = (T.!' - al!(. tel) Pi (·,1) + (iJ!'(. t·) _ r:) Qi (·,1)
• • .' iJf(., t*) - af'(., t* ) ., • iJf(., t·) - or(., t·) ,

(or i = O,l, ... ,N. Hence

i.e., z* ~ 8Dh which i. the desired result. 0

Lemma 5.4.4 If (}1 in (5.~.~t) tJnd (5.~.~3) u choun sufficientl" karge, then

Proof. We start with the problem

F.(z,O) =0, (or z E llN +1
•

Set

s=

SN-l sfr-l
° 0

Then (5.4.57) can be written in the (orm

(-EJA +S)z - S.. =0,
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from (5.4.20) and (5.4.22). Since a calculation shows that

1"'~:1 +·~I-I- ~~ +·,1-1-"'::'" +.tl ~ i·
for i =0, 1, ..• , N, we obtain, by Theorem A of Varga [45], that ( -E2A +S)-1 exists

and

(5.4.58)

Consequently (5.4.57) has a unique solution z· =(-E2A +S)-lS"o e llJII+1•

We wish to prove that z· e Do. For this purpose, set

.f(Z,E) ="o(z) +W(Z,O,E,O), for z e [0,1].

Along the lines of Lemma 5.4.2, we can show that aD the Shishkin mesh Xr

Thus, by (5.4.58),

liz - z·lI. = lIe _E2A + S)-l( _E
2A + S)(z - z·)II.

~ 31!( _E2A +S)(z - z·)II.

= 311(-E2A +S)z - Sue - (-e2A +S)z· +suell.

For i = 0,1, ... ,N and Cl chosen as in Lemma 5.4.2, using (5.4.40) we have

zt ~ it+CN- l InN

~ Uo(Zi) + iJ (Zi,O,E,CI PN) +CN-
l

ln N

-/II< fJi (',0),
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provided that Ct > C, where C is the constant of (5.4.59).

Similarly,

for i =0, 1, ... , N. That is, z* e Do.

We now consider the problem

H(z,O) =0, for z EDt. (5.4.60)

As T(z,O) E Do, the problem (5.4.60) is equivalent to t.(T(z,O),O) =0. But from

above (5.4.57) has a unique solution z* E Do. Consequently we only need look for

solutions z* E Dt of

T(z,O) =z*. (5.4.61)

Ilecalling that T(·, 0) is a linear mappin~ from /)t onto De, 10 IJD. =T( IJDt , 0),

we conclude that (5.4.61) has a unique solution i EDt. That is, (5.4.60) has a

unique solution, which lies in Dt •

Furthermore, we have for z e Dt ,

From above, we know that

Since oN(',0) < pN(,,0), we have
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Therefore

del (~~ (%,0)) ~ 0, for all %E 1».

We have shown that (5.4.60) has a unique solution z·, which lies in Dt, with

tlet ( ~I ) #: 0. This completes the proof. C
••••

Theorem 5.4.4 There emu tJ po6itive integer N., independent of £, nch tJuat for

N ~ No, the H-scheme {F., Xfl hu tJ solution UN E D1• Morecwer, tAu solution

iI unique in VI'

Proof. From Lemma 5.4.3,

Deg(ii(·,t),D1 ,O) is constant for t E [0,1],

uins the Homotopy Invariance Theorem; see Ortega a.nd Rheinboldt [32], Theorem

6.2.2. Hence

by Lemma 5.4.4. This implies that the equatioll

H(z, 1) =°

(5....62)

(5.4.63)

has at least one solution UN E D1•

We now prove the uniqueneu of this solution in D1• Since T(·, 1) is a.n identity

mapping for z E VI,

iI(z, 1) =FB(z,l)

=F.(z, l)

(5.4.64)
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By ~ments similar to those of Theorem 5.4.3 we may show that there exists a

constant C > 0, which is independent of N and E, such that Fj,(z) is nonsinplar

for all z E S ( U, CN-t /2). Note that, for N sufficiently large,

when Ct is chosen (independently of N) as in (5.4.42) and (5.4.43). Hence, for any

z E iJt ,

One may choose No, depending on t and 6t but independent of £, such that iJt C

S (a,CN-t /2) for N ~ No. Consequently det(Fj,(z» has constant sign on Dt •

Since

Deg(il(.,I),Dt ,O) = L det(il'(z,l»),
{-ED. :B(a,O)=t}

it follows from (5.4.62) and (5.4.64) that our solution is unique in Dt. 0

Let UN be a solution of FUN = 0 specified in aay of tIM! Theorems 5.4.1 - 5.4.4.

In each case, the proofs of these theorems show that det (P( UN » 1 o. Hence UN is

a point of attraction of a Newton iteration. In Section 5.6, we shall give numerical

results for both the D-scheme and the H-scheme by using Newton's method with

an initial pelS obtained from sampling the reduced solution.

5.5 Uniform Convergence of the D-scheme for Prob
lem (B)

We analyse the D-scheme applied to problem (B) on tile Shishkin mesh X{. We

shall prove that the D-scheme is uniformly convergent of order N-2 1n2 N on this
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piecewise equidistant mesh.

The D-scheme is: find UN E 'R,N+l such that

where FD is given by (5.3.2) with ~i = ~t = 0, &f = 1 for each i.

llecall the boundary layer functioll ., of (5.2.14). Defiae

and

(5.5.1)

(5.5.2)

(5.5.3)

Here PN = N-J InJ N; Ca and C. are positive constants, independent of N and E.

Lemma 5.5.1 One ccan choo3e po3itive cmutant3 Ca and G., tDlaich are independent

ofNand E, and a positive integer No, which depends on Ca and C. but i& independent

of E, such that when N ~ No, W(Z,E, GaPN) and 1D(Z,E, -GaPN) are .11 tlefinetl,

and fJN (Z , E) and oN(Z , E) are 3uper and 3"b sol"tiom re~ctivel1lof tlte D-«heme

{FD,X(}.

Proof. By inspection of the proof of Lemma 5.2.5, one may show that

F.fJN(Zi,E) ~ (Ga - C.C)PNV:(Z,/E,GaPN)

+ (b:G. - C (1 +(Ga +G.)N-1 1n N)) PN,

for z. E (0, zie], and
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for Zi E (zio' 1/2J. The result then follows from ~meDta similar to thoee of Lemma

5.4.2.0

Let FZ :llN +1 -.llN +1 be the modification of FD defined by

l
-tJ(AZ}t +(Zi - fJl'),

(FJ)= -tJ(Az}t +b(zi, Zi),

-tJ(Az}t +(of - Zi),

if Zi ~ fJl',
if N (.lN

ai < Zi < IJi ,

ifZi~af,

for i =0,1, ... , N. This modification is of the same type as (5.4.27).

The following theorem gives almost second order uniform convergence for the

D-scheme applied to problem (B).

Theorem 5.5.1 ut u(z) be tlae 8Olution oj problem (B) guaranteed ", TIa~m

5.t.l. A8sume tlaat t ~ N-l. For N nfficientl, large, independentl, oj t, 1M

.cheme {FD' Xf} Iuu a 80lution u" sucla tlaat

ProoJ. Let Q and fj be given by (5.2.25) and (5.2.26). Thea

by Theorem 5.2.1.

(5.5.4)

By arguments analogous to those of subsection 5.4.2, one can show, using degree

theory, that FZz =0 has a solution u" E llN +1• Also, from Lemma 5.5.1, we have

FEfj = FDfJ > 0 and FDa =FDQ < o. Then Lemma 5.4.1 yield.

This implie& that FDV,,, =F;u" =o.
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ChOOlle c. and C. in Lemma 5.5.1 lufficiently .... IUch tbat C. ~ C
1

aad

C. ~ C" where C1 and C, are given in Lemma 5.2.5. Then C1,. ~ CaP" and

C,P. ~ C.P", since E ~ N-l. Hence

by (5.2.23).

We have

tJ:-a:=~-o=

=2Ct N-' In
'

N

and, for i =1, .. . ,N -1,

'lir -0" = 'tJ"(%i'£) - o"(%i,£)1

:$ 2C.N-·ln· NI~;(%i,£,">/ + 2C.N-·In· N,

where ,. e (-C"II, C.,,,),

by (5.2.23).

Therefore, from (5.5.4) - (5.5.6),

whkh is the desired result. 0

(5.5.6)

The uniform accuracy of Theorem 5.5.1 is aJmOlt one order hi~her than that of

D'AnnuDzio [9], who used a more romplica&ed loc.a1ly q1la.si~uidi8taat mesh.

181



5.6 Numerical Examples

In this section we present numerical results to confirm the uniform accuracy of the

achemes{FD, X:} and {FB, Xf} analysed in Sections 5.4 and 5.5.

When eJ ~ N-l, the uniform error estimates obtained in Theorems 5.4.1 - 5.4.3

and 5.5.1 have the form of

where r equals 2 for the D-scheme and 4 for the H-scheme.

For both FD and FB, the nonlinear system of equations is solved using Newton's

method with the initial guess u7, = (0, Uo(ztl, ... , Uo(ZN-l), 0)". Here, in the cue

of Problem (A), 110 is the reduced solution and in the case of Problem (B), .. is a

stable reduced solution. We iteratively compute u", for k =1,2, .... The stoppins

criterion used i.

For each N and e in the tables, it only takes about 5 iterations to satisfy this

criterion.

The exact solutions of our test problems are unknown. We use a double mesh

method; see Doolan et ale [10], to compute the experimental rates of conversence.

In order to do this, we shall in addition to computing UN also compute another

approximate solution iN which we now describe.

Let iN E llN +1 be a solution of {FD, ,if} or {FB, ,if}, where,i~ is a Shishkin

mesh with the mesh parameter (1. of (5.3.4) altered slightly to

6. =min{1/4,m6;le ln(N/2)}.
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Then for i = 0,1, ... , N, the ith point of the mesh X: coincides with tlte (2i)th

point of the mesh X:!'.
By inspecting the arguments of Sections 5.4 and 5.5, one may lee that

where C is independent of N and E. Hence for i =0,1, ... , N,

For each N and E, we shall report

in the error tables below.

Assuming convergence of order (H-1 1n H)P for lOme r, the classical CODversence

=

RN
-. -

rate r will be computed by

In t 2N -In t N
• •

In (fn~~)

In t 2N -In EN• •
In (~) ,

for H =z" and k =5, 6, ... , 11.

The last row of each rate table is the uniJoma ronversence rate,

where EN = max. t!'.

Example 5.8.1 Consider the problem

.(0) =.(1) =o.
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Since b.(x, u) = 1 +3(1 + u)J ~ 1, for all (x, u) E [0,1] X 1l1, this is a problem of

type (A). The reduced solution is ... = -1.

! N=64 128 256 512 1024
2.50000()('-01 1.386.5e-04 3.476()('-05 8.69.16e-06 2.1744~06 5.4361e-07
6.250000e-02 2.0211e-03 5.2618e-04 1.3331e-04 3.3418e-05 8.3622e-06
1.562,1)OOe-02 4.2603e-03 1.528ge-03 4.998Oe-04 1.5632~04 4.7415e-05
3.906250e-03 4.2592e-03 1.5288e-03 4.9978e-04 1.5632e-04 4.7415e-05
9.765625e-04 4.259ge-03 1.528&--03 4.9976e-04 1.5631e-04 4.7415e-05
2.441406e-04 4.2604e-03 1.528ge-03 4.9978e-04 1.5631e-04 4.7414e-05
6.103516e-05 4.2605e-03 1.528ge-03 4.997ge-04 1.5631e-04 4.7415e-05
1.52587ge-05 4.2606e-03 1.528ge-03 4.998Oe-04 1..5632e-04 4.7415e-05
3.814697e-06 4.2606e-03 1.528ge-03 4.998Oe-04 1.5632e-04 4.7415e-05
9.536743e-07 4.2606e-03 1.528ge-03 4.998Oe-04 1.5632e-04 4.7415e-05

Table 5.6.1: Example 5.6.1, D-scheme errors

! N=64 128 256 512
2.50000()('-01 2.57 2.48 2.41 2.36
6.25000()('-02 2.50 2.45 2.40 2.36
1.562.50()(,-02 1.90 2.00 2.02 2.03
3.90625()('-03 1.90 2.00 2.02 2.03
9. 76.~62,1){>-04 1.90 2.00 2.02 2.03
2.441406e-04 1.90 2.00 2.02 2.03
6.103,1) 16e-05 1.90 2.00 2.02 2.03
1.52587ge-05 1.90 2.00 2.02 2.03

3.814697e-06 1.90 2.00 2.02 2.03

9.536743e-07 1.90 2.00 2.02 2.03

R lV 1.90 2.00 2.02 2.03

Table 5.6.2: Example 5.6.1, D-scheme convergence rates

184



€ N=64 128 256 512 1024
2.500000e-01 4.1617e-07 2.6122e-08 1.633ge-09 1.020&-10 6.1062e-12
6.250000e-02 9.9833e-05 6.6272e-06 4. 1955e-07 2.635&-08 1.648&-09
1.562500e-02 1.96S3e-03 2.4192e-04 2.622ge-05 2.5718e-06 2.3682e-07
3.90625Oe-03 1.9653e-03 2.4192e-04 2.622ge-05 2.5718e-06 2.3682e-07
9.765625e-04 1.9653e-03 2.4192e-04 2.622ge-05 2.5718e-06 2.3682e-07
2.441406e-04 1.9653e-03 2.4192e-04 2.622ge-05 2.5718e-06 2.3682e-07
6.103516e-05 1.9653e-03 2.4192e-04 2.622ge-05 2.5718e-06 2.3682e-07
1.52587ge-05 1.9653e-03 2.4192e-04 2.622ge-05 2.5718e-06 2.3682e-07
3.814697e-06 1.9653e-03 2.4192e-04 2.622ge-05 2.5718e-06 2.3682e-07
9.536743e-07 1.9653e-03 2.4192e-04 2.622ge-05 2.5718e-06 2.3682e-07

Table 5.6.3: Example 5.6.1, H-scheme errors

€ N=64 128 256 512
2..I)OOOOOe-Ol 5.14 4.95 4.82 4.79
6.25OOOOe-02 5.03 4.93 4.81 4.72
I.S62S00e-02 3.89 3.97 4.04 4.06
3.9062SOe-03 3.89 3.97 4.04 4.06
9.76S62Se-04 3.89 3.97 4.04 4.06
2.441406e-04 3.89 3.97 4.04 4.06
6.103516e-05 3.89 3.97 4.04 4.06
1.52587ge-OS 3.89 3.97 4.04 4.06
3.814697e-06 3.89 3.97 4.04 4.06
9.536743e-07 3.89 3.97 4.04 4.06

RN 3.89 3.97 4.04 4.06

Table 5.6.4: Example 5.6.1, H-scheme convergence rates

Tables 5.6.2 and 5.6.4 show respectively that the D-scheme is second order ac-

curate but the H-scheme is fourth order accurate, as predicted by our theory.

Example 5.8.2 Consider the problem (Herceg {!1})

_€"." +(." +. _0.75) (_" +. - 3.75) = 0, for z e (0,1),

.(0) =u(1) =O.
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We have

b.(z, u) =(2u + 1)(2u2 +2. - 4.5).

The reduced problem

has four solutions "1 = -2.5, ., = -1.5, _. = 0.5 and U4 = 1.5. It is euy to ~t

6.(z, Ul) = -12, b.(z, .2) = 6, b.(z, u.) = -6 a.nd 6.(z, -.) = 12.

Hence -1 and u. are not stable reduced solutions of (5.6.1). By a calculation, one

may show that U2 and "4 satisfy the condition (5.1.4). Therefore, (5.6.1) is a problem

of type (B) with two stable reduced solutions Ut and Uf. Each of.t and -. is "cloee"

(in the sense of Theorem 5.2.1) to a solution of (5.6.1) when £ is sufficiently small.

We apply the D-scheme to compute these solutions of (5.6.1).

£ N=64 128 256 512 1024
2.50000(){l-01 3.431~-O4 8.66~-O5 2.l67ge-05 5.4227e-06 1.35.l)7e-06
6.250000e-02 3.517ge-03 1.1715e-03 3.4384e-04 8.68700-05 2. 1726e-05
1.562.l)OOe-02 3.5180e-03 1.1715E'-03 3.735ge-04 1.159&-04 3.5084e-05
3.906250e-03 3.5180e-03 1.1715e-03 3.735ge-04 1.15~04 3.5084e-05
9.765625e-04 3.517ge-03 1.1715e-03 3.73Sge-04 1.1S96e-04 3.5084e-05
2.441406e-04 3.517ge-03 1.1715E'-03 3.73Sge-04 1.1596e-04 3.5084e-OS

6.103516e-05 3.517ge-03 1.1715E'-03 3.73Sge-04 1.1S96e-04 3.S084e-05
1.52587ge-05 3.S17ge-03 1.1715e-03 3.735ge-04 1.1S96e-04 3.S084e-05
3.814697e-06 3.517ge-03 1.1715e-03 3.735ge-04 1.1S96e-04 3.5084e-05

9.536743e-07 3.517ge-03 1.1715e-03 3.735ge-04 1.1596e-04 3.5084e-05

Table 5.6.5: Example 5.6.2, D-scheme errors with solution near tit
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E N=64 128 256 512
2.500000e-01 2.55 2.48 2.41 2.36
6.25OOOOe-02 2.04 2.19 2.39 2.36
1.562500e-02 2.04 2.04 2.03 2.03
3.90625Oe-03 2.04 2.04 2.03 2.03
9.765625e-04 2.04 2.04 2.03 2.03
2.441406e-04 2.04 2.04 2.03 2.03
6.103516e-05 2.04 2.04 2.03 2.03
1.52587ge-05 2.04 2.04 2.03 2.03
3.814697e-06 2.04 2.04 2.03 2.03
9.536743e-07 2.04 2.04 2.03 2.03

RIY 2.04 2.04 2.03 2.03

Table 5.6.6: Example 5.6.2, D-scheme conveJ'KeDce ratel

with solution neal _I

E N=64 128 256 512 1024
2.500000e-01 1. 1820e-03 2.945&>-04 7.3.l)82e-05 1.8397e-05 4.5991e-06
6.250000e-02 5.5968e-03 1.8000e-03 5.6725e-04 1.749Oe-04 5.2884e-05
1.562500e-02 5.6164e-03 1.8021e-03 5.6737e-04 1.749Oe-04 5.2884e-05
3.90625Oe-03 5.60.l)7e-03 IJ~022e-03 5.676Oe-04 1.7493e-04 5.288Se-05
9.765625e-04 5.5976e-03 1.8008e-03 5.6743e-04 1.7493e-04 5.2888e-05
2.441406e-04 5.59.l)le-03 1.8002e-03 5.6731e-04 1.7491e-04 5.2886e-05
6.103516e-05 5.5944e-03 1.8000e-03 5.6727e-04 1.749Oe-04 5.2884e-05
1.52S87ge-05 5.5943e-03 1.8000e-03 5.672&-04 1.749Oe-04 5.2884e-05
3.814697e-06 5.5942e-03 1.8000e-03 5.672&-04 1.749Oe-04 5.2884e-05
9.536743e-07 5.5942e-03 1.8000e-03 5.6726e-04 1.749Oe-04 5.2884e-05

Table 5.6.7: Example 5.6.2, D-scheme errors with solution near ..
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€ N=64 128 256 512
2.500000e-01 2.58 2.48 2.41 2.36
6.250000e-02 2.10 2.06 2.04 2.03
1.562500e-02 2.11 2.07 2.05 2.04
3.906250e-03 2.11 2.06 2.05 2.04
9.765625e-04 2.10 2.06 2.05 2.04
2.4414(}&l..04 2.10 2.06 2.04 2.03
6.103516e-05 2.10 2.06 2.04 2.03
1.52587ge-05 2.10 2.06 2.04 2.03
3.814697e-06 2.10 2.06 2.04 2.03
9.536743e-07 2.10 2.06 2.04 2.03

RN 2.10 2.06 2.04 2.03

Table 5.6.8: Example 5.6.2, D-scheme convergence rates

with solution near U4

The numerical results for Example 5.6.2 show that the D-scheme i. capable of

computing those solutions of the problem (B) which lie clole to particular reduced

IOlutions. Furthermore, the scheme achieves second order accuracy (or this difficult

problem, confirming our theoretical results.
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Chapter 6

Conclusions

In this work we considered four singularly perturbed tW<rpoint boundary value

problems. They were (i) 2mth order problem of reactioll-diffusion type (which

has two boundary layen of exponential type in the (m - 1)th order derivative of

the solution), (ii) 2mth order problem of convection-diffu8ion type (which exhibits

ODe boundary layer of exponential type in the (m - 1)th order derivative of the

dution), (iii) second order interior turning point problem (which has a boundary

layer of exponential type or all internal layer of cusp type), and (iv) lelDilinear

reaction-diffusion problem (which has two boundary layen of exponential type).

Classical numerical methods do not in general yield satisfactory numerical soIutiou

for any of these problems. We set out to construct and analyse uniformly convergent

methods for these problems; that is, methods whOle solutions converge, uniformly

ill the singular perturbation parameter, to the analytical dution of the problem.

We constructed and analysed polynomial-based finite element and finite differ

ence methods on piecewise equidistaat meshes for our four problems. The idea of

1lsing such a mesh is due to Shishkin; he considered only schemes which satisfied

a discrete maximum principle, but ~ have extended IUs approach to more general
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lChemee generated by finite element method.. This mesh i. fine only in part of

the Iayer(s) and coarse elsewhere. It works well for thOle probleml with layers of

exponential type, IUch as occur ia problems (i), (li) and (iv) above. For layers of

ASp type, which may occur ia problem (ill), it does not yield satisfactory l'eIulta.

Consequently for (ill) we deviled a mesh which is a generalization of Shishkin'•. This

mesh is also piecewise equidistant.

Galerkin finite element methods based on piecewise polynomial basis functions

and Shishkin meshes were constructed for problems (i) and (ii). Almost optimal

uniform convergence results were obtained in the weighted energy norma &88OCiated

with the original equations for both problems. We achieved a higher order of uniform

convergence in the Sobolev norm 11·11..-1 than in the energy norm for the problema

of reaction-diffusion type. On the other hand, this phenomenon does not occur,

in general, for the higher order problems of convection-diffusion type. This ia in

contrast to convergence results in standard finite element analysis.

Piecewise linear Galerkin finite element methods were generated on the gener

alized Shishkin mesh for simple attractive turning point problems, which form a

subclass of problem (iii). These methods were shown to be uniformly convergent in

a weighted energy norm and the usual LI norm.

We also investigated the use of finite difference methods on Shishkin meshes. Two

aimple difference schemes for problem (iv) were proved to be uniformly convergent

of second order and fourth order resPectively in the discrete maximum norm.

The method. of this thesis are polynomially based aDd are 8niformly convergent.

No exponential fitting facton are uled.

We believe that uniformly convergent polynomial-baaed finite element and finite

190



difference methods on piecewise equidistant meshes can be also devised for other

singularly perturbed one-dimensional problems, IUch as boundary turning point

problems, initial value problems and systems of equations. It also seems possible to

extend the methods and analyses to problems in more than one dimension, using

dimension-splitting arguments.
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