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Abstract 
 
Ehsani and Linnainmaa (2021) show that time-series efficient investment factors in US stock 
returns span and earn 40% higher Sharpe ratios than the original factors. We examine the 
impact of these efficient factors on factor model comparison tests in U.S returns. Using the 
Bayesian model scan approach of Chib, Zeng and Zhao(2020), and Chib, Zhao and Zhou(2022) 
on a set of 26 factors across the period 1972-2022 we show that that the optimal asset pricing 
model is an 8-factor model which contains efficient versions of the Market factor, Value factor 
(HML) and long-horizon behavioural factor (FIN). Our findings show that these efficient 
factors enhance the performance of U.S factor model performance. The top performing asset 
pricing model does not change in recent data.  
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1. Introduction 
 

Asset pricing models can be improved by either adding factors that expand the efficient frontier 
or by enhancing the mean-variance efficiency of the existing factors. Ehsani and Linnainmaa 
(2022) follow the second approach by examining if the autocorrelation present in factor returns 
can be used boost the Sharpe ratio of an investment factor. The authors follow the framework 
of Ferson and Siegel (2001) to create so-called efficient factors in which factor weightings are 
conditioned on the information contained in lagged returns. Using this framework Ehsani and 
Linnainmaa (2022) show that time-series efficient factors significantly outperform the standard 
factors in U.S stock returns. In the Fama and French (2015) five-factor model, all efficient 
factors earn higher Sharpe ratios than the original factors and largely span the standard factors.  

Classical tests of asset pricing models examine portfolio efficiency by comparing squared 
Sharpe ratios (Sharpe, 1992). The tests of Gibbons, Ross and Shanken (1989) compare the 
maximum squared Sharpe ratio, S2 (r,f), of a portfolio formed from test assets r and factors f to 
that of the portfolio of factors, S2 (f). Barillas and Shanken (2017) outline that in this 
framework, when comparing two models’ factors, the model with the higher S2 (f) produces 
smaller pricing errors for any test assets. The authors outline how test assets tell us nothing 
about model comparison in these cases, beyond what we learn by examining the extent to which 
each model prices the factors in the other model. The logic of the Barillas and Shanken (2017) 
framework allow tests of model comparison to focus on the maximization of investment 
factors’ squared Sharpe ratios in order to identify the optimal asset pricing model (O’Connell, 
2022). The most recent tests of model comparison in the U.S stock returns when the extent of 
model mispricing is gauged by the squared Sharpe ratio improvement measure is that of 
Barillas, Kan, Robotti and Shanken (2020).  

Ehsani and Linnainmaa (2022) outline how their result is not specific to the Fama and French 
(2015) five-factor model: time-series efficiency improves Sharpe ratios of the factors in all 
popular asset pricing models. The objective of this paper is to examine the optimal combination 
of factors in the top performing asset pricing models in US stock returns over the period 1972-
2022 when these efficient factors are considered.  

Given the large number of factors we are aiming to examine we utilise the Bayesian approach 
for model comparison tests developed by Barillas and Shanken (2018). The Bayesian method 
is useful as we have a large number of factors to examine, as a list of predetermined models 
may exclude important combinations. This approach evaluates factor models on the basis of 
their Marginal Likelihoods (ML), from which the posterior probabilities of the models can be 
calculated. Chib, Zeng and Zhao (2020) provide a critique of the Barillas and Shanken (2018) 
approach and show that their method of calculating ML is not appropriate.  Chib et al propose 
an alternative approach to calculating ML that can be used for relative model comparison tests.  
The attraction of their approach is that the ML can be solved analytically as relies on 
multivariate normality.  Chib, Zhao and Zhou (2022) use this approach to run a model scan for 
comparing models in a set of 12 U.S factor returns.  
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We use the model scan approach building on Chib et al., (2020), and Chib et al., (2022) to 
examine the performance of different models that can be formed from 13 investment factors 
and their efficient counterparts over the sample period is between July 1972 and December 
2022.  We use the first 10% of the sample as a training sample as in Chib et al.,(2022) to 
estimate the hyperparameters for the prior distribution, and we use the remaining 90% to 
conduct the model comparison tests. We also compare Student-t distributed factor models with 
Gaussian distributed factor models over our period of analysis. 
 
There main finding of our study is we find that the optimal asset pricing model is an 8-factor 
model which contains efficient versions of the Market factor, Value factor (HML) and long-
horizon behavioural factor (FIN) along with the following original factors {Market, BAB, 
MGMT, PERF, PEAD}. This shows that the efficient factor transformation of Ehsani and 
Linnainmaa (2022) does have an impact on our model comparison tests. This transformation 
enhances existing factor models in U.S stock returns. When we examine optimal change points 
the model identified changes very slightly in recent data.  
 
There are three main contributions of our study.  First, we are the only authors to examine if 
the efficient factors developed by Ehsani and Linnainmaa (2022) have an impact on model 
comparison tests in U.S stock returns. Second, we complement the Bayesian model scan studies 
of Barillas and Shanken (2018), Chib et al (2021), and Chib et al (2022) in U.S. stock returns 
by conducting a model scan on an extended group of factors. Third, as well as conducting a 
model scan across the whole sample period, we also consider whether the best factor model in 
more recent data is different from the best factor model using all data using the approach of 
Chib, Zhao and Zhou (2021). We find that the optimal change point in the sample period is 
December 1997.  There is a small change in the best factor model in recent data.  
 
The paper is organized as follows. Section 2 presents the research method and describes the 
data used in my study. Section 3 reports the empirical results.  The final section concludes. 

2. Research Method 
 

2.1 Model Comparison Framework 
 
Ross (1978), Harrison and Kreps (1979), and Hansen and Richard (1987) show that if the Law 
of One Price (LOP) holds in financial markets, then a stochastic discount factor (mt+1) exists 
such that: 
                                      E(𝑚𝑚𝑡𝑡+1𝑋𝑋𝑖𝑖𝑡𝑡+1|𝑍𝑍𝑡𝑡) = 𝑝𝑝𝑖𝑖𝑡𝑡       for i=1,….N                                             (1) 

 
where 𝑋𝑋𝑖𝑖𝑡𝑡+1 is the payoff of asset i at time t+1, 𝑝𝑝𝑖𝑖𝑡𝑡 is the cost of asset i at time t, 𝑍𝑍𝑡𝑡 is the 
information set used by investors, and N is the number of primitive assets.  If 𝑚𝑚𝑡𝑡+1 > 0, then 



3 
 

financial markets also satisfy the No Arbitrage (NA) opportunities in financial markets 
(Cochrane (2005))1.  If the asset payoffs are excess returns then equation (1) implies that: 
 

                                                 E(𝑚𝑚𝑡𝑡+1𝑟𝑟𝑖𝑖𝑡𝑡+1) = 0      for i=1,…..,N                                   (2) 
 

where 𝑟𝑟𝑖𝑖𝑡𝑡+1 is the excess return of asset i at time t+1. 
 
Most asset pricing models specify a candidate model for the stochastic discount factor (𝑦𝑦𝑡𝑡+1).  
The most popular models are linear factor models, where the candidate stochastic discount 
factor is given by: 
 

                                𝑦𝑦𝑡𝑡+1 = α +∑ 𝑏𝑏𝑘𝑘𝑓𝑓𝑘𝑘+1
𝐾𝐾
𝑘𝑘=1                                                       (3) 

  
where α and 𝑏𝑏𝑘𝑘 are the constant and slope coefficients in the stochastic discount factor, 𝑓𝑓𝑘𝑘+1 
are the values of the factors at time t+1, and K is the number of factors in the model.  The slope 
coefficient (𝑏𝑏𝑘𝑘) tells us whether factor k is important in pricing the primitive assets given the 
other factors in the model (Cochrane (2005)). These models are linear, as they define the 
securities returns to be a linear combination of factor returns weighted by the securities factor 
exposures. In this study we only consider factor models with traded factors where factors 
included are constructed from market trading or accounting data.  
 
When we evaluate linear factor models using equation (2), we face a difficulty in identifying 
all the coefficients of the stochastic discount factor in equation (3). As a result of this, we must 
select a specific normalization for the stochastic discount factor.  We choose the normalization 
followed by Chib and Zeng (2020) so that the expected value of the stochastic discount factor 
is set equal to 1, and equation (3) becomes: 
 

                                 yt+1 = 1 +∑ 𝑏𝑏𝑘𝑘𝑓𝑓𝑓𝑓𝑘𝑘𝑡𝑡+1
𝐾𝐾
𝑘𝑘=1                                                       (4) 

 
 

where 𝑓𝑓𝑓𝑓𝑘𝑘𝑡𝑡+1 is the demeaned value of factor k at time t+1. 
 
Dybvig and Ingersoll (1982) and Ferson and Jagannathan (1996) demonstrate that linear factor 
models establish an analogous relationship between expected returns and betas. Cochrane 
(2005) and Ferson (2019) establish that stochastic discount factors, expected return-to-beta 
ratios, and mean-variance frontiers represent equivalent frameworks. Cochrane shows that if 
the linear factor model in equation (4) satisfies the pricing restrictions in equation (2), then: 

                                        
𝐸𝐸(𝑟𝑟𝑖𝑖𝑡𝑡+1) = ∑ 𝛽𝛽𝑖𝑖𝑘𝑘𝜆𝜆𝑘𝑘

𝐾𝐾
𝑘𝑘=1                                                       (5) 

 

 
1 The stochastic discount factor will only be unique if markets are complete. 
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where 𝛽𝛽𝑖𝑖𝑘𝑘 is the factor beta of asset i relative to factor k, and λk is the factor risk premium of 
factor k.  Define b is a (K,1) vector of stochastic discount factor coefficients (bk), λ is a (K,1) 
vector of factor premiums (𝜆𝜆𝐾𝐾), and 𝑉𝑉𝑓𝑓 is the (K,K) covariance matrix of the factors, Cochrane 
shows that: 

                                                       b = -𝑉𝑉𝑓𝑓 P

-1  𝜆𝜆R                                                                (6) 
 

This mispricing framework is challenged by Barillas and Shanken (2017) who show that for 
relative model comparison tests for traded linear factor models, the choice of test assets is 
irrelevant for a number of metrics.  Any linear factor model should be able to correctly price 
the test assets, and any excluded factors from the model.  When the union of all the factors in 
each model is included in the investment universe, the test assets drop out of the analysis and 
are, therefore, irrelevant for model comparison. To illustrate, consider two models A and B 
with factors 𝑓𝑓𝐴𝐴, and 𝑓𝑓𝐵𝐵, and a set of test asset excess returns r.  Using the maximum squared 
Sharpe (1966) (Sh2) ratio to compare models, then for model A the metric is Sh2(𝑓𝑓𝐴𝐴, 𝑓𝑓𝐵𝐵,r)-
Sh2(𝑓𝑓𝐴𝐴), and for model B Sh2(𝑓𝑓𝐴𝐴, 𝑓𝑓𝐵𝐵,r) - Sh2(𝑓𝑓𝐵𝐵).  Given the Sh2(𝑓𝑓𝐴𝐴, 𝑓𝑓𝐵𝐵,r) is fixed across models, 
then we can compare the relative performance of the models using the Sh2(𝑓𝑓𝐴𝐴) and Sh2(𝑓𝑓𝐵𝐵) 
measures alone.  Chib and Zeng (2020) extend this test asset irrelevance framework to the 
stochastic discount factor approach in relative model comparison tests. 
 
Since equations (2) and (5) hold for linear factor models in the form of equation (4), this implies 
that:  
                                                  E(𝐹𝐹𝑡𝑡+1) = λ for factors included in the model,                     (7) 

 
                                           and E(𝐹𝐹𝑡𝑡+1

∗ ) = 𝛽𝛽𝜆𝜆 for factors excluded from the model 
 
where β is a (L,K) matrix of factor betas, 𝐹𝐹𝑡𝑡+1 is the K factors included in the model, and 𝐹𝐹𝑡𝑡+1

∗ , 
represents the L factors excluded from the model.  The restrictions of equation (7) can be cast 
into a regression framework in which the excess returns of the factors incorporated in the model 
are regressed against a constant term, while the excess returns of the factors not included in the 
model are regressed against the excess returns of the included factors, with the removal of the 
intercept term. The exclusion of the intercept2 in the second regression imposes the zero pricing 
error restriction on the excluded factors. 
 
Barillas and Shanken (2018) derive a Bayesian model comparison test on the basis of Marginal 
Likelihoods (ML) that can be used to compare the performance of a large number of traded 
factor models simultaneously.  Chib, Zeng, and Zhao (2020) present a critique of the Barillas 
and Shanken approach, focusing on their selection of prior distributions on model-specific 
nuisance parameters in the regression framework. In response, Chib et al. (2020) introduces a 
more comprehensive framework that can be utilized within the constrained regression 

 
2 If the intercept was included it would capture the Jensen (1968) alpha of the excluded factors.  
The Jensen alpha is identical to the stochastic discount factor alpha in this setup as E(yt+1) = 1.  
See Ferson(2019). 
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framework outlined in equation (7). Chib and Zeng (2020) begin their approach by initially 
considering a model that encompasses all K+L factors within the set of factor models under 
comparison. They introduce a prior distribution for this comprehensive model that incorporates 
all factors. Subsequently, they derive the prior distribution for any model that involves a subset 
of these factors.  The log ML of a candidate model (𝑚𝑚𝑗𝑗) is given by: 
 

                                Log 𝑀𝑀𝑀𝑀(𝑚𝑚𝑗𝑗) = log 𝑀𝑀𝑀𝑀(𝐹𝐹) + log 𝑀𝑀𝑀𝑀(𝐹𝐹∗)                                  (8) 
 

Assuming that the factor data follows a multivariate normal distribution, Chib et al.,(2022) 
show that the log ML of each model can be solved analytically in Proposition 5 of their paper. 
Chib, Zhao and Zhou (2022) apply the results of Chib et al.,(2020) to evaluate model 
comparison tests of all models that can comprise the factor models of Fama and French (2018), 
Hou et al (2015), Stambaugh and Yuan (2017), and Daniel et al (2020), which they identify as 
winner factor models given their performance in historical tests of model comparison.  There 
are J = 2𝐾𝐾+𝐿𝐿 – 1 potential factor models that can be constructed and is defined as a model scan.  
The models can be compared using their posterior probabilities, assuming that each factor 
model has an equal prior probability of 1/J as: 
 

                     Posterior Probabilityj = 𝑀𝑀𝑀𝑀𝑗𝑗 / Σj=1J𝑀𝑀𝑀𝑀𝑗𝑗                                                 (9) 
 

where 𝑀𝑀𝑀𝑀𝑗𝑗 is the marginal likelihood of model j.  The approach of Chib et al.,(2020) uses a 
training sample to estimate the hyperparameters for the prior distributions.  We use the first 
10% of our sample period as the training sample. Chib et al.,(2022) also derive the posterior 
distribution of the various parameters in the regression framework, from which we can then 
derive the posterior distribution of the stochastic discount factor coefficients in equation (6).  
To assess the capability of a specific factor model in pricing an omitted factor, we can refer to 
the two regressions, omitting the time t+1: 
 

                 𝐹𝐹1
∗ = 𝛼𝛼1 +𝛽𝛽1

𝑈𝑈𝐹𝐹𝐾𝐾 + 𝑒𝑒1
𝑈𝑈                                                               (9a)  

 
                                     𝐹𝐹1

∗ = 𝛽𝛽1
𝑅𝑅𝐹𝐹𝐾𝐾 + 𝑒𝑒1

𝑅𝑅                                                                       (9b) 
 

where 𝐹𝐹1
∗ is the excess return of the excluded factor l, 𝛽𝛽1

𝑈𝑈 and 𝛽𝛽1
𝑅𝑅 are (1,K) vectors of the betas 

from the unrestricted and restricted regressions, αl is the Jensen(1968) performance measure, 
and 𝑒𝑒1

𝑈𝑈, and 𝑒𝑒1
𝑅𝑅  are the residuals from the two regressions.  Chib et al., (2020) estimate the log 

ML for each equation. According to Jeffrey's rule, if the difference in the log ML exceeds 1.15, 
the null hypothesis of a zero alpha can be dismissed. 
 
A recent paper by Chib, Zhao, and Zhou in 2021 expands the scope of model comparison tests 
to address the possibility that the most suitable factor model for recent data might differ from 
the one identified using the entire dataset. Chib et al.,(2022) posit that the observed divergence 
might result from significant shifts caused by the widespread growth of the internet, the concept 
of adaptive efficient markets presented by Lo (2004), or the impact of the publication effect as 
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outlined by McLean and Pontiff (2016). To tackle this issue, Chib et al.,(2022) introduce the 
concept of employing the model scan approach in conjunction ML estimation to determine the 
optimal change point within the dataset. The overall sample period is split into two subperiods 
for a given change point.  Chib et al.,(2021) use December 1996, June 1997, December 1997, 
June 1998, December 1998, June 1999, and December 1999 due to the internet revolution.  
Define t* as a given split point.  The model scan is run on both subperiods, and the ML is 
calculated for each potential model as 𝑀𝑀𝑀𝑀1𝑗𝑗 and 𝑀𝑀𝑀𝑀2𝑗𝑗.  Chib et al.,(2022) then calculate the 
ML for a given split point t* as: 
 

                     𝑀𝑀𝑀𝑀𝑡𝑡∗ = (1/J2) ΣJj=1ΣJj=1 𝑀𝑀𝑀𝑀1𝐽𝐽 𝑀𝑀𝑀𝑀2𝐽𝐽                                             (10) 
 

The 𝑀𝑀𝑀𝑀𝑡𝑡∗ is calculated for each split point, and the optimal split point is given by the highest 
𝑀𝑀𝑀𝑀𝑡𝑡∗.  Given the optimal split point, the model scan is then run on the second subperiod to 
identify the best factor model in the most recent data. 

2.2 Efficient Factors 
 

As outlined by Ferson and Siegel (2001), conditioning information is present when the optimal 
solution may be a function of information received about the probability distribution of future 
outcomes. We must consider that even though factor models can be conditionally efficient, the 
factors themselves may be unconditionally mean-variance inefficient. When the factors are not 
unconditionally MVE, the asset pricing model may not explain a fairly priced asset's mean 
return with constant coefficients. To solve this problem, one could increase the number of 
factors in the model in an attempt to minimise the non-zero alpha. Instead, Ehsani and 
Linnainmaa (2022) construct unconditionally MVE factors to conduct a valid test of the model 
by the means of time-series regressions. 

The authors assume that a factor's return follows an AR(1) process to form unconditionally 
MVE factors. In other words, the prior month return of a given factors may contain information 
useful in deciding the optimal weight on that factor in the following month. The investor needs 
just three parameters the factor's unconditional mean, variance, and autocorrelation and the 
factor's prior return to generate a factor's time-series efficient version. A time-series efficient 
factor exploits the autocorrelation in factor returns; it times the original factor to minimize 
variance while maintaining the expected return. Time-series efficient factors may deliver 
higher Sharpe ratios relative to the original factors and contain all the information found in the 
original factors. 
 
Ehsani and Linnainmaa (2022) use the framework of Ferson and Siegal (2001) to construct 
time series efficient factors. Time series efficient factors being a portfolio of factors where the 
weights of each factor in the portfolio are a function of conditioning information, which in our 
cases is the prior month return of the factor. Starting from a single risky asset with a return of 

 R�  = 𝜇𝜇(S�) + ε̃, (11) 
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where R̃ is the risky asset's return in excess of the risk-free rate, S̃ is the predictor (signal), 𝜇𝜇(S�) 
is the expected excess return conditional on the signal, and ε̃ is the random noise net of the 
signal with a mean of zero and a variance of σ2ε (S̃). The efficient strategy invests x(S̃) in the 
risky asset and the remainder, 1 - x(S�), in the risk-free asset. The unconditional expected excess 
return and variance of this investment strategy are given by  

 μp =   E [x(S�) 𝜇𝜇(S�)], (12) 

 

 σ2p = E [x2(S�) (μ2(S�)+ σ2ε(S�))] - μ2p (13) 

 

Ferson and Siegel (2001) show that the portfolio that minimizes σ2p for a given conditional 
expectation μp invests x(S̃) in the risky asset, 

 

 
𝑥𝑥�S�� =

𝜇𝜇𝑃𝑃

∂
𝜇𝜇�S��

𝜇𝜇2�S�� + σε
2(S�)

 
(14) 

 

Here 𝜇𝜇𝑃𝑃 denotes the unconditional expected factor returns obtained from the original factor. 
The conditional expected portfolio returns 𝜇𝜇�S��, assuming an AR(1) model is used to condition 
the time-series Efficient factor on, and the constant ζ are defined below. 

 

 
∂ =

𝜇𝜇2�S��
𝜇𝜇2�S�� +  σε

2(S�)
 

(15) 

 

This weighting program produces a unique mean-variance efficient portfolio. That being no 
other portfolio has the same unconditional return at a lower unconditional variance (Ferson and 
Siegel, 2001). 

Ehsani and Linnainmaa (2022) focus on time-series efficiency, using information embedded in 
the factors’ realized returns. This case gives a closed-form solution for the MVE transformation 
and for the expected efficiency gain or increase in Sharpe ratio. The new factors the authors 
construct, using information only in factors’ past returns, are weak-form efficient in the sense 
of Fama (1970). Ehsani and Linnainmaa (2022)  assume that past returns are related to future 
returns but unrelated to variance. Specifically, we assume that returns follow a homoscedastic 
autoregressive process, 
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  R� 𝑡𝑡= μ + ρ R� 𝑡𝑡−1+ 𝜀𝜀𝑡𝑡   (16) 

 

 var[𝜀𝜀𝑡𝑡 | R𝑡𝑡−1 ] = σε
2 (17) 

 

The factor’s conditional expected return under this model is  μ(S̃) = μ + ρ R� 𝑡𝑡−1. Using equations 
(13) and (15), the investor’s optimal weight on the factor is 

 x(St) = μp SR2+1 
SR2+𝜌𝜌²

 𝜇𝜇𝑝𝑝(1− 𝜌𝜌)+  𝜌𝜌𝑟𝑟𝑡𝑡−1

�𝜇𝜇𝑝𝑝(1− 𝜌𝜌)+𝜌𝜌𝑟𝑟𝑡𝑡−1�2+𝜎𝜎ε
2 (18) 

 

In this equation, μp is the factor’s unconditional mean, SR is the unconditional Sharpe ratio, ρ 
is the autocorrelation coefficient, and σ2ε = (1 – p2) σ2 is the constant variance of the noise term. 
We define time-series efficient factor as the portfolio that invests x(St) (from equation (5)) on 
the original factor. A time-series efficient HML, for example, would be the return on a portfolio 
that optimally times HML given, in this derivation, its month t−1 return. In our empirical work, 
like Ehsani and Linnainmaa (2022),  we use month t − 1 return as our conditioning information.  
The optimal weight on a given factor depends on the factor’s mean, standard deviation, and 
first-order autocorrelation.  

 

2.3 Data 
 

Our focus in this study is on U.S. factors The factor data used in this study comes from the Ken 
French website. We obtain the updated value factor (HMLM), quality minus junk factor (QMJ) 
along with the Betting Against Beta (BAB) factor from the AQR database. We obtain the 
behavioural factors from Lin Suns’ homepage. All factors are denominated in USD. The 
approach for constructing the factor portfolios follows Fama and French (1993, 2012). The 
market factor (MKT) consists of value-weighted returns of all available (and valid) securities 
on the U.S market less the risk-free rate.  
 
The factors in the FF6 model are the excess returns on the market index, and zero-cost 
portfolios of the size (SMB), value (HML), profitability (RMW), investment (CMA), and 
momentum (MOM) effects in stock returns. We include the Betting against Beta (BAB) factor 
of Frazzini and Pedersen(2014) along with the two mispricing factors termed Management 
(MMGT), and Performance (PERF) of Stambaugh and Yuan(2017). The short-horizon 
behavioural factor (PEAD) and long-horizon behavioural factor (FIN) of Daniel, Hirshleifer, 
and Sun (2020) are also included.  
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Table 1 reports summary statistics of the excess factor returns between July 1972 and 
December 2022.  The summary statistics include the average excess return (%), standard 
deviation (Std Dev), and the t-statistic of the null hypothesis that the average excess factor 
returns are equal to zero. 
 
Table 1 Summary Statistics of Factors 

 Mean Std Dev t-statistic 
Market 0.590 4.612 3.1461 

SMB 0.164 3.005 1.344 

HML 0.333 3.101 2.6441 

RMW 0.301 2.323 3.1901 

CMA 0.328 2.031 3.9741 

Mom    0.617 4.360 3.4811 

BAB 0.858 3.430 6.1501 

HMLm 0.343 3.703 2.2781 

QMJ 0.405 2.357 4.2241 

MGMT 0.643 2.708 5.8401 

PERF 0.584 3.879 3.7061 

PEAD 0.576 1.912 7.4101 

FIN 0.734 3.899 4.6291 

The table reports summary statistics of factors between July 1972 and December 2022.  The summary statistics 
include the average excess returns (%) and standard deviation (Std Dev) of the factors.  The t-statistic column is 
the t-statistic of the null hypothesis that the average excess factor returns are equal to zero. 
1 Significant at 5% 
2 Significant at 10% 
 
Table 1 shows that all of the factors have significant positive average excess returns, except for 
the SMB factor which has an insignificant positive return.  The BAB and FIN factors have the 
largest average excess returns at 0.858%, and 0.734% respectively. The mispricing factors of 
Stambaugh and Yuan (2017) have significant positive average excess returns.  All but three of 
the factors in our set have a t-statistic higher than 3, which is the cut-off t-statistic recommended 
by Harvey, Liu and Zhu (2016) to control for multiple testing. 

3. Empirical Results 
 
Barillas, Kan, Robotti and Shanken (2020) develop asymptotically valid tests of model 
comparison when the extent of model mispricing is gauged by the squared Sharpe ratio 
improvement. Using this framework the authors conduct the most recent tests of model 
comparison in the U.S stock returns from 1972 to 2015. In these tests they find that a variant 
of the Fama and French (2018) six-factor model, with a monthly-updated version of the usual 
value spread, emerges as the dominant model. We conduct these tests on the same subset of 
factor models as Barillas et al., (2020) from the period 1972 to 2022. Table 1A contained in 
Appendix A1 presents the results of these tests. Naturally, our results are almost identical to 
those of Barillas et al., (2020). We find that the variant of the Fama and French (2018) six-
factor model, with a monthly-updated version of the value factor emerges as the dominant 



10 
 

model. The only difference in our study is that we find the second highest performing model 
to be the Chib, Zeng, Zhao (2020) five-factor model instead of the Hou et al. (2015) (HXZ) q 
factor model. The Fama and French (2018) six factor model remains the third highest 
performing model followed by the Fama and French five factor model and Stambaugh and 
Yuan (2017) (SY) four factor model. From Panel B we can see that the differences in Sharpe 
ratios of the top performing models is not statistically significant. Full details on these 
asymptotically valid tests of model comparison can be found in Barillas et al., (2020)3. 
 
Turning to a Bayesian method of model comparison we begin by running the model scan using 
all 13 original factors.  There are 8,192 possible models, and we assign an equal prior 
probability to them all as in Chib and Zeng (2020), and Chib et al.,(2022).  Table 2 reports the 
empirical results.  Panel A of the Table reports the results for the top 6 models in terms of the 
highest posterior probability.  Panel A includes the posterior probability of each model, the 
ratio of the posterior probability to the prior probability, and the difference in log marginal 
likelihoods (ML) between the best model (M1) to that of another model.  Chib et al., (2022) 
outline that if the difference in log ML ≤ 1.15 according to the Jeffrey’s rule, then the best 
model is indistinguishable from the alternative model. Panel B reports the identity of the factors 
in the top 6 models from the model scan. 
 
Table 2 Model Scan of 13 Factors 
Panel A: 

Posterior Probability Posterior/Prior ML Top 
Models 
Model    

1   0.1514   1240.12  
2   0.14667   1201.4   0.03172 
3   0.05889   482.368   0.94425 
4   0.05718   468.325   0.9738 
5   0.03536   289.627   1.45437 
6   0.0329   269.501   1.52639 

Panel B: 
    

  
Factors 

1 Market BAB MGMT PERF PEAD FIN    

2 Market SMB BAB MGMT PERF PEAD FIN   

3 Market CMA BAB MGMT PERF PEAD FIN   

4 Market RMW CMA BAB MGMT PERF PEAD   

5 Market BAB HMLm MGMT PERF PEAD FIN   

6 Market SMB CMA BAB MGMT PERF PEAD FIN   
The table reports the results of the Bayesian model scan of 13 factors in U.S. stock returns.  The sample period is 
July 1972 and December 2022. The first 10% of the sample period is used for the training sample, and the model 
scan is then conducted on the remaining 90% of the sample period.  Panel A reports the posterior probability, the 
ratio of posterior probability to prior probability, for the top 6 models.  The ML column is the difference in the log 

 
3 We are thankful to Professor Cesare Robotti for the provision of the code online to run 
these model comparison tests using Sharpe ratios. 
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ML of the best model and the next best models 2 to 7.  Panel B presents the identity of the factors in the top 6 
models from the Bayesian model scan. 
 
Table 2 shows that the best factor model in the model scan is a six-factor model with a posterior 
probability of 0.1514.  The next best model has a posterior probability of 0.014667. The next 
four best models have a posterior probability that ranges between 0.05889 and 0.05718.  The 
ratio of the posterior probability to prior probability shows a substantial increase for the six 
best models.  The differences in log ML in Panel A of Table 2 are all below 1.15 for the next 
top 3 performing models and so the best model is statistically indistinguishable from the other 
top 3 models. The results in panel A of Table 2 are very similar to that from Chib et al(2022). 
 
Panel B of Table 2 shows that the best model includes the Market, BAB, MGMT, PERF, 
PEAD, and FIN factors.  The next top models contain the majority of factors outlined with the 
addition of either the SMB or CMA factor.  The role of the market index in the best factor 
models is consistent with Harvey and Liu(2021).  The SMB factor is included in 2 of the top 
models, which is surprising given the low average excess returns of the SMB factor in Table 
1.   
 
Table 2 suggests that the best model in terms of posterior probability is a six-factor model.  
Chib et al(2022) derive the posterior distribution of the factor premiums in a given factor 
model.  We use 10,000 simulation draws for generating the posterior distribution of the factor 
premiums, and the corresponding stochastic discount factor coefficients in the best factor 
model.   
 
Table 3 reports the summary statistics of the posterior distribution of the factor premiums 
(Panel A), and stochastic discount factor coefficients (Panel B).  The summary statistics include 
the mean, standard deviation (Std Dev), median, and 2.5% and 97.5% percentiles of the 
posterior distribution. 
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Table 3 Summary Statistics of the Posterior Distribution of the Best Model Risk Factors 
Panel A: 

Mean Std Dev Median 2.50% 97.50% 
Premiums 
Market 0.668 0.198 0.665 0.282 1.058 
BAB 0.880 0.153 0.882 0.578 1.178 
MGMT 0.578 0.116 0.578 0.350 0.811 
PERF 0.640 0.168 0.642 0.309 0.969 
FIN 0.540 0.083 0.539 0.380 0.705 
PEAD 0.678 0.170 0.679 0.344 1.011 
      
Panel B: 

Mean Std Dev Median 2.50% 97.50% 
SDF Coeffs 
Market -7.494 1.286 -7.477 -10.067 -5.007 
BAB -6.225 1.651 -6.214 -9.507 -3.009 
MGMT -8.478 1.865 -8.453 -12.246 -4.903 
PERF -5.167 1.268 -5.152 -7.690 -2.715 
FIN -17.501 2.978 -17.488 -23.465 -11.731 
PEAD -5.803 1.599 -5.783 -8.986 -2.750 

The table reports the summary statistics of the posterior distribution of the factors in the best model from the 
Bayesian model scan of 13 factors in U.S. stock returns.  The sample period is July 1972 and December 2022.  The 
first 10% of the sample period i used for the training sample, and the model scan is then conducted on the 
remaining 90% of the sample period.  Panel A reports the summary statistics of the posterior distribution of the 
factor premiums (%), and panel B reports the summary statistics of the posterior distribution of the stochastic 
discount factor coefficients.  The summary statistics include the mean, standard deviation (Std Dev), median, 
2.5% and 97.5% percentiles using 10,000 simulation draws. 
 
Panel A of Table 3 shows that the BAB factor has the largest mean factor premium at 0.880%, 
followed by the PEAD factor at 0.678%.  All of the factor premiums are significantly positive 
using the 95% percentile interval with the exception of the Market factor.  In Panel B of Table 
3 all of the mean stochastic discount factor coefficients are negative for each factor, and 
significantly negative using the 95% percentile intervals.  This finding suggests that all six 
factors play an important role in the stochastic discount factor in pricing assets given the other 
factors in the model (Cochrane (2005)).  The Market factor plays an important role even where 
the mean factor premium is not significantly positive.   
 
Similar to Qiao, Wang, and Lam (2022) we will now compare the results from our model scan 
where the joint distribution of the factor data is assumed to be Gaussian to results where this 
distribution is assumed to be multivariate t. Qiao et al (2022) find strong evidence that the 
Student-t distributed global factor pricing models significantly outperform the Gaussian 
distributed ones highlighting the importance of using multivariate Student-t distributions to 
model the fat tails in global risk factor data. We rerun our model scan of our set of 13 U.S 
factors assuming multivariate t with three degrees of freedom. In this case when the joint 
distribution of our risk factors follows a Student-t distribution, to calculate the marginal 
likelihood of each contending model, we first use an initial portion of our data as the training 
sample to get prior distribution of the parameters of the factor model. The Markov chain Monte 
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Carlo (MCMC) method is then used to get the posterior distribution of the parameters and 
calculate their posterior means, with which we further calculate the marginal likelihood of the 
factor model4. For full details on the calculation of the marginal likelihood under the 
multivariate-t assumption see Chib et al,. (2020).  
 
Table 4 Model Scan of 13 Factors assuming Multivariate-t Factor Distribution 
Panel A: 

Posterior Probability Posterior/Prior ML Top 
Models 
Model    

1   0.4071   3335.17  
2   0.1446   1185.32   1.03451 
3   0.1086   889.67   1.32143 
4   0.0477   391.412   2.14252 
5   0.0429   352.209   2.24805 
6   0.0391   320.686   2.34182 

Panel B: 
      Factors 

1 Market BAB MGMT PERF PEAD FIN    

2 Market SMB BAB MGMT PERF PEAD FIN   

3 Market MOM BAB MGMT PERF PEAD FIN   

4 Market BAB HMLm MGMT PERF PEAD FIN   

5 Market CMA BAB MGMT PERF PEAD FIN   

6 Market SMB MOM BAB MGMT PERF PEAD FIN   
The table reports the results of the Bayesian model scan of 13 factors in U.S. stock returns when the joint 
distribution of factors is assumed to follow a multivariate t distribution.  The sample period is July 1972 and 
December 2022. Panel A reports the posterior probability, the ratio of posterior probability to prior probability, 
for the top 6 models.  The ML column is the difference in the log ML of the best model and the next best models 
2 to 7.  Panel B presents the identity of the factors in the top 6 models from the Bayesian model scan. 
 
 
 
Similar to Qiao, Wang, and Lam (2022) we find that the multivariate t assumption identifies 
the same top performing models as when we assuming a gaussian joint distribution of factors. 
We also find increased support for this top performing six-factor model as our posterior 
probability increases to 0.4071 from 0.1514. The differences in log ML in Panel A of Table 4 
are below 1.15 for only the second highest performing model. When we assumed a Gaussian 
distribution on our factors we found that the top four models were statistically indistinguishable 
from each other . This again shows increased support for our top two performing models when 
we assuming fat tails on our U.S factor data. 
 

 
4 We are thankful to Professor Siddhartha Chib for providing the code online for which we 
used to run the model scan assuming multivariate normality for the joint distribution of 
factors.  
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We now rerun our model scan including our original factors along with their efficient 
counterparts calculated using the framework of Ehsani and Linnainmaa (2022). This gives us 
a starting collection of 26 factors. Assuming a multivariate normal distribution on the joint 
factor data there are now 67,108,864 possible models, and we assign an equal prior probability 
to them all as in Chib and Zeng(2020), and Chib et al(2022). Given the fact that Ehsani and 
Linnainmaa (2022) show the efficient factor transformation allows for a significant increase in 
the Sharpe ratio provided by U.S factors we would expect these factors to improve the Sharpe 
ratio provided by a given model and therefore be present in an optimal asset pricing model.  
 
Table 5 reports the empirical results.  Panel A of the Table reports the results for the top 6 
models in terms of the highest posterior probability.  Panel A includes the posterior probability 
of each model and the difference in log marginal likelihoods (ML) between the best model 
(M1) to that of another model. Panel B reports the identity of the factors in the top 6 models 
from the model scan. 
 
Table 5 Model Scan of 26 Factors 
Panel A: Posterior Probability ML   Models 
Model    

1   0.161   
 

 
2   0.057   1.043    
3   0.054   1.087    
4   0.047   1.238    
5   0.031   1.642    
6   0.028   1.752    

Panel B: 
      Factors 

1 Market BAB MGMT PERF PEAD Marketef HMLmef FINef  
2 Market RMW BAB MGMT PEAD Marketef HMLmef FINef  
3 Market BAB MGMT PEAD FIN Marketef HMLmef PEADef FINef 
4 Market BAB MGMT PERF PEAD Marketef HMLmef MGMTef FINef 
5 Market BAB MGMT PERF Marketef MOMef HMLmef PEADef FINef 
6 Market MGMT PERF PEAD Marketef BABef HMLmef PEADef FINef 

The table reports the results of the Bayesian model scan of 26 factors in U.S. stock returns. This set is made up of 
13 factors and their efficient counterparts.  The sample period is July 1972 and December 2022. The first 10% of 
the sample period is used for the training sample, and the model scan is then conducted on the remaining 90% 
of the sample period.  Panel A reports the posterior probability.  The ML column is the difference in the log ML of 
the best model and the next best models 2 to 6.  Panel B presents the identity of the factors in the top 6 models 
from the Bayesian model scan. 
 
Table 5 shows that the best factor model in the model scan is an eight-factor model with a 
posterior probability of 0.161 indicating that there is large support from the data for this 
particular model from our possible set.  The next six best models have a posterior probability 
that ranges between 0.057 and 0.028.  The ratio of the posterior probability to prior probability 
shows a substantial increase for the seven best models.  The difference in log ML in panel A 
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of Table 2 are above 1.15 for models 4-6, however it is below 1.15 for the top three models 
and so the best model is statistically indistinguishable from the other top two models.   
 
We can see from Panel B that the efficient factors are included in the top performing models. 
More specifically the efficient versions of the Market factor, Value factor (HML) and long-
horizon behavioural factor (FIN) are included in the top performing model along with the 
following original factors {Market, BAB, MGMT, PERF, PEAD}. All of the original factors 
have been retained in the top performing model however when the FIN factor undergoes the 
efficient factor transformation it improves the performance of the asset pricing model to the 
extent that the original factor is no longer required. The inclusion of the efficient value factor 
(HMLmef) is not surprising given that Ehsani and Linnainmaa (2022) note the large increase in 
Sharpe performance for this factor when its weight is conditioned on its previous returns.  
 
The analysis so far has run the model scan using all the available data.  Chib et al(2021) argues 
that the choice of the relevant factor model might change for a number of reasons for example 
technological change, or the adaptive efficient market hypothesis (Lo(2004)) among others.  
We adapt the Bayesian approach of Chib et al(2021) to identify the optimal split point among 
the set of split points used in their study.  Table 5 reports the log ML for each of the split points 
(t*) for December 1996, June 1997, December 1997, June 1998, December 1998, June 1999, 
and December 1999. 
 
Table 6 Test of Optimal Change Point 
t* Log ML 
Dec-96 11482.36 
Jun-97 11492 
Dec-97 11493.82 
Jun-98 11547.33 
Dec-98 11524.47 
Jun-99 11447.32 
Dec-99 11455.66 

The table reports the results of the Bayesian tests of the optimal split sample point following the approach of 
Chib et al(2021).  The overall sample period is July 1983 and June 2021.  The first 10% of the sample period is 
used for the training sample, and the model scan is then conducted over the two subperiods where sample split 
points are set to December 1996, June 1997, December 1997, June 1998, December 1998, June 1999, and 
December 1999.  The table reports the log of the marginal likelihoods (ML) for each sample split period.  
 
Table 6 shows that the optimal sample split point is June 1998 as it has the highest marginal 
likelihood.  This result is consistent with Chib et al(2021).  Chib et al point out that this split 
period occurs during the internet revolution, and the boom in tech stocks.  Given the optimal 
split point of June 1998, we then repeat the model scan tests during the June 1998 and 
December 2022 sample period.  Table 6 reports the top 6 models with the highest posterior 
probabilities (panel A), and the identity of the factors (panel B) in the top models. 
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Table 7 Model Scan of 26 Factors in Recent Data 
Panel A: Posterior Probability ML   Models 
Model    

1   0.019     
2   0.017   0.080   

 

3   0.010   0.583   
 

4   0.010   0.630   
 

5   0.006   1.123   
 

6   0.006   1.175   
 

Panel B: 
      Factors 

1 Market BAB PERF PEAD Marketef HMLmef MGMTef PEADef FINef 
2 Market BAB MGMT PERF PEAD Marketef HMLmef PEADef FINef 
3 Market BAB PEAD FIN HMLmef PEADef FINef   
4 Market BAB MGMT PERF PEAD Marketef HMLmef MGMTef FINef 
5 Market BAB PERF PEAD Marketef MOMef HMLmef MGMTef PEADef 
6 Market MGMT PERF Marketef HMLmef MGMTef PEADef FINef   

The table reports the results of the Bayesian model scan of 26 factors in U.S. stock returns. This set is made up of 
13 factors and their efficient counterparts.  The sample period is June 1998 and December 2022 
 
Table 7 shows that the best factor models using the most recent data are similar to that for the 
entire sample.  The best factor model in for the whole sample is a lot more dominant than the 
factor model in Table 6 in terms of a much higher posterior probability.  The best model has 
the highest posterior probability of 0.01862.  There is then drop in the posterior probabilities 
of the next best factor models.  There is no statistical difference in the performance of the best 
factor model and the 4 next best models. We see the same factors emerge in the optimal model 
as we did in the full sample. In this subperiod the efficient version of the behavioural factor 
(FIN) is included in more of the top models.  
 

4. Conclusions 
 
We use the Bayesian model scan approach of Chib et al (2020), and Chib et al (2022) to 
examine model comparison tests among a set of U.S. factors and their efficient counterparts. 
Our objective was to examine if the efficient factor transformation of Ehsani and Linnainmaa 
(2022) had an impact on model comparison tests in U.S stock returns.  
 
First, similar to Chib and Zend (2020), we find that the best factor model during the whole 
sample period with the highest posterior probability is a six-factor model, which includes the 
Market, BAB, MGMT, PERF, FIN, and PEAD factors. The posterior probability is large at 
0.1514, however the performance of the best model is statistically indistinguishable from the 
next best three factor models in terms of posterior probability.  All six factors in the best model 
play a significant role in the stochastic discount factor given the other factors in the model. 
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Similar to Qiao, Wang, and Lam (2022) when we assume that the joint distribution of our risk 
factors follows a Student-t distribution, we identify the same six factor model as the optimal 
model with increased support from our data.  
 
Second, we find that the best factor model from the Bayesian model scan when the efficient 
versions of the original factors are included in the starting set does include some of these 
efficient factors. We find that the efficient version of the Market factor, Value factor (HML) 
and long-horizon behavioural factor (FIN) are included in the optimal asset pricing model over 
our sample period model along with the following original factors {Market, BAB, MGMT, 
PERF, PEAD}. This finding indicates that the efficient factor transformation of Ehsani and 
Linnainmaa (2022) has an impact on model comparison tests in U.S stock returns.  
 
Third, we find that the best factor model does not change with the use of the most recent data.  
We find that the optimal split point in the sample is June 1998.  The best factor model in the 
June 1998 and December 2022 period is a nine-factor model, which consists of the factors 
found in the whole sample scan plus the efficient version of the behavioural factor (FIN).   
 
Our study suggests that the efficient factor transformation should be performed and included 
in model comparison tests in the asset pricing literature.  Our analysis has used the Bayesian 
model scan under the multivariate normal distribution of Chib et al(2020), and Chib et 
al(2021a).  Further work could be extended to include the efficient factors in a classical asset 
pricing framework.    
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Appendix A1 
 

Table 1A. USA Tests of Equality of Squared Sharpe Ratios 
Panel A: Difference in Squared Sharpe Performance 
Model Carhart FrazPed FF5 HXZ SY FF6 CZZ AsFraz 
FF3 -0.042 -0.051 -0.059 -0.059 -0.066 -0.087 -0.089 -0.095 
Carhart  -0.009 -0.017 -0.017 -0.024 -0.046 -0.047 -0.053 
FrazPed   -0.008 -0.008 -0.015 -0.036 -0.038 -0.043 
FF5    0 -0.007 -0.028 -0.03 -0.035 
HXZCP     -0.007 -0.028 -0.03 -0.035 
SY      -0.022 -0.023 -0.029 
FF6       -0.002 -0.007 
CZZ        -0.005 

         
Panel B: p-Values 
Model Carhart FrazPed FF5 HXZ SY FF6 CZZ AsFraz 
FF3 0 0.033 0 0.001 0.015 0 0.001 0.001 
Carhart  0.723 0.5 0.48 0.482 0 0.01 0.008 
FrazPed   0.747 0.744 0.691 0.185 0.165 0.113 
FF5    0.975 0.844 0.11 0.086 0.06 
HXZCP     0.84 0.117 0.095 0.065 
SY      0.567 0.535 0.453 
FF6       0.013 0.342 
CZZ               0.066 

Panel A shows the differences between the (bias-adjusted) sample squared Sharpe ratios (column model - row 
model) for various pairs of models. The models are presented from left to right and top to bottom in order of 
increasing squared Sharpe ratios. The diagonal elements are the sample squared Sharpe ratio differences 
between the model in that column and the next-best model. Model references are the following: Fama and 
French (1993)(FF3), Carhart(1997)(Carhart), Frazzini and Pedersen (2014)(FrazPed), Fama and 
French(2015)(FF5), Hou et al. (2015) (HXZ), Stambaugh and Yuan (2017) (SY), Fama and French (2017) (FF6) ,Chib, 
Zeng, Zhao (2020) (CZZ), Asness and Frazzini (2013) (ASFraz).  
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