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Abstract

In this thesis a novel transmission format, named Coherent Wavelength Division

Multiplexing (CoWDM) for use in high information spectral density optical

communication networks is proposed and studied. In chapter I a historical view of

fibre optic communication systems as well as an overview of state of the art

technology is presented to provide an introduction to the subject area. We see that,

in general the aim of modem optical communication system designers is to provide

high bandwidth services while reducing the overall cost per transmitted bit of

information.

In the remainder of the thesis a range of investigations, both of a theoretical

and experimental nature are carried out using the CoWDM transmission format.

These investigations are designed to consider features of CoWDM such as its

dispersion tolerance, compatibility with forward error correction and suitability for

use in currently installed long haul networks amongst others. A high bit rate optical

test bed constructed at the Tyndall National Institute facilitated most of the

experimental work outlined in this thesis and a collaboration with France Telecom

enabled long haul transmission experiments using the CoWDM format to be carried

out. An amount of research was also carried out on ancillary topics such as optical

comb generation, forward error correction and phase stabilisation techniques.

The aim of these investigations is to verify the suitability of CoWDM as a

cost effective solution for use in both current and future high bit rate optical

communication networks.
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Chapter 1

Introduction to High Capacity/Spectral Density

Optical Communication Systems

1. 1 Historical Perspective

Fibre-optic based communication systems have revolutionised the

telecommunications field since their introduction in the mid-twentieth century. Prior

to this data transmission was almost entirely carried out using basic digital

(telegraph) and analog electrical (coaxial systems) techniques, both of which were

severely limited in bandwidth, bit-rate and un-repeatered reach. The first of two

vital breakthroughs in the transition to fibre-optic based communication systems

came in 1960 when the ruby laser was invented and demonstrated at Hughes

Research Laboratories by T.H. Maiman [1]. This provided an optical source, which

could then be modulated with a data signal and transmitted via optical fibre between

a transmitter and a receiver. The second breakthrough concerned the transmission

medium, which until 1970 exhibited prohibitively large losses in excess of 1000

dBIkm. Before this optical communication was carried out using high loss lens

guided systems in free space [2]. In their seminal paper in 1966 Kao and Hockham

proposed the use of optical fibre for use in communication systems [3]. This idea

was made feasible in 1970 when Kapron and Keck of Coming Glass Works

developed optical fibre which had a low loss value of20 dBlkm [4]. With these two

technologies it now became feasible to attempt optical transmission experiments

over appreciable distances (several hundreds of km) at much higher bit rates than

was achievable using electrical or microwave communication systems.

The last thirty years have seen a range of other technological advancements

which have brought us to the position where a number of groups have

experimentally demonstrated multi-terabit/s transmission over trans-oceanic
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distances using a number of different transmission techniques [5, 6, 7]. These

technological advancements include but are not limited to:

• Optical Amplifiers such as erbium doped fibre amplifiers (EOFAs) and

Raman amplification which were developed during the 1980's and provide

a means of overcoming fibre induced loss by direct amplification of the

optical signal.

• Broadband Optical Components such as optical filters, transmission fibre,

operating with low loss over a large range of wavelengths.

• Modulation Formats with increased tolerance to specific fibre induced

impairments (section 1.4).

• Forward Error Correction (FEC) codes, which are used in a

communications system to improve the quality of transmission and thus

optimise system margin. FEe codes used in optical communication systems

are described in detail in section 1.5.

Arguably the most important of these technological advancements was the

development of optical amplifier technology in the mid-1980's which enabled

transmission over increasingly long fibre spans by providing low-noise high-gain

response across a wide range of transmission wavelengths [8]. The wide bandwidth

in the optical fibre which was now available for transmission encouraged the

adoption of wavelength-division multiplexing (WOM) based transmission systems

where data is transmitted on multiple optical channels spaced in wavelength.

Optical time-division multiplexing (OTOM) is a transmission technique which is

mainly used in lab based investigations where several optical signals are optically

multiplexed together in the time domain to form a bit-stream at a particular carrier

frequency.

Since the dawn of civilisation when smoke signals were used to

communicate the news of victorious armies or impending danger data traffic has

increased exponentially, growing from 3 billion to 24 billion gigabytes during the

period from 2000-2003 alone [9]. The rapid growth of data traffic on global
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communication networks was initiated by the explosion of internet traffic in the

1990's and superseded the amount of voice traffic on the network around the tum of

the millennium. The expansion in the amount of data traffic on modem

communication networks is being generated by the transition of many traditionally

analogue services (e.g. TV) to the digital domain (e.g. HDTV) as well as the

increasing demands of the scientific and large business users which require access to

high bandwidth services. Residential users too are requiring increased data

bandwidths to facilitate triple play service (TPS) where high speed internet,

television and telephone services are available over a single broadband connection

[10].

Optical networks can be divided into three categories as shown in the

schematic below, (i) core networks primarily made up of long haul (LH) point-to­

point transmission links but also including networking capability via optical cross

connects (OXCs) and optical add drop multiplexers (OADMS), (ii) metro area

networks (MANs) and (iii) access networks which provide the final connection to

the end user via copper or fibre links (fibre to the home (FTTH) and fibre to the curb

(FTTC».
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rate/format-variable local access network. Amongst others these requirements

include scalability, multi-protocol support, transparency and low

maintenance/installation costs. WDM fulfils all of these requirements and as we

have seen also has the capability to increase transmission capacity to multi-Tbit/s

levels.

The use of dense WDM technology in the access domain to increase system

reach, and reduce the cost to the customer by the sharing of WDM components is

also receiving a lot of recent research attention [17, 18, 19, 20]. The access domain

is the final link of the network providing broadband services to a wide range of

customers which have various requirements in terms of data rates and formats and

WDM provides the transparency and scalability functionality to achieve this in a

cost effective manner. As the available bandwidth increases and the price per bit of

information transmitted is reduced the demand from the customer end increases

which results in a further increase in the available bandwidth. This circular trend of

ever increasing demand requires the continuous development of new technologies to

provide such service.

As the use of WDM proliferates throughout modem day optical

communication networks, the ever increasing demands of data-centric networks

require a continuous increase in system throughput (bits transmitted per second per

km) while reducing the cost of the end-to-end transmitted bit to the customer. The

next section looks in detail at the implementation of a typical point-to-point WDM

system and considers some of the system design features required to meet this

challenge.

1.2 WDM-based Optical Fibre Communication Systems

The concept of WDM was first proposed by Delagne in 1970 in which he proposed

to place a large number of channels of limited bandwidth adjacent to each other in

the frequency spectrum to provide a wide-band composite signal [21]. Concerted

research into WDM systems has been carried out since the early 1980's but it was
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amplifiers and optical fibre between all the WDM channels (all components inside

the dashed box in figure 1.2 above). It becomes clear then that there are two main

ways of increasing system capacity in a WDM system with a fixed optical

bandwidth:

• Increasing the number of wavelengths on the fibre.

• Increasing the bit rate of data channels in the system.

The relationship between these two parameters can be quantified as the information

spectral density (ISD) of a system which refers to the amount of information which

can be transmitted over a given bandwidth in a communication system. The ISD is

defined as

ISD= Total Capacity
Total Bandwidth Occupied

(1.1 )

and is given the unit bit/slHz. So for example if a WDM system has 50 channels

spaced by 100 GHz and operating at 40 Gbit/s the ISD of the system is

ISD= Total Capacity :::= 50x 40 = 0.4 bit/s/Hz
Total Bandwidth Occupied 50 x 100

It should now be clear that for a WDM system which has fixed interchannel spacing

the ISD can be calculated from the per channel bit rate and channel spacing values.

Therefore by reducing the spacing between channels in a WDM system it is possible

to increase the ISD of the system and consequently the overall capacity. When

calculating the ISD of any system it is also important to adjust the value accordingly

to consider the effect of FEC codes, which reduces the amount of information

transmitted for a fixed bit rate. For example a WDM system similar to the one

described above but requiring standard FEC (7% overhead) for error free operation
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would have an adjusted ISD of 0.37 bit/s/Hz. All ISD values quoted in this thesis

have been adjusted for the inclusion of FEC where appropriate.

The second way of increasing WDM system capacity is to increase the bit

rate of each channel. Per channel bit rates in WDM systems have typically

increased in multiples of 4 since the introduction of the synchronous digital

hierarchy (SDH), the European standard in the telecommunications industry [27].

The first high capacity systems that underwent field trials in the early 90's operated

at STM-16 with a per-channel bit rate of 2.5 Gbit/s [28] with long haul WDM

systems operating at 10 Gbit/s being introduced in the late 1990's [29]. The

transition from 2.5 Gbit/s to 10 Gbit/s was a difficult one as it required the

introduction of inline dispersion compensation modules (DCMs) into fibre spans and

the corresponding adjustment to the fibre amplifiers to account for the extra losses

encountered. However it has been shown that by increasing the bit rate of the WDM

systems by a factor of four the overall cost per transmitted information bit is reduced

by a factor of almost two and it is at this point that operators are willing to accept the

new line rate for use in their systems [30]. The next step along this roadmap is the

transition from 10 Gbit/s to 40 Gbit/s. However 10 Gbit/s remains the operational

bit rate for most long haul terrestrial and submarine systems today. This is because

some of the impairments associated with transmission such as chromatic dispersion

and nonlinear effects increase exponentially with bit rate and are relatively easier to

manage at 10 Gbit/s than at 40 Gbit/s. Added to this is the fact that much of the

fibre and infrastructure which was installed during the boom period which the fibre

optic community enjoyed in the late 1990's was designed specifically for use with

10 Gbit/s systems. The deployment of 40 Gbit/s systems was also delayed by the

crash which the industry experienced around the tum of the century. However the

demand from the customer continues to drive a need for an increase in capacity and

inevitably the next stage in the development of WDM systems, namely the transition

from 10 Gbit/s to 40 Gbit/s is beginning to occur. Field trials of WDM systems with

40 Gbit/s line rates have been carried out since 2002 [31, 32], and transport

subsystems allowing for 40 Gbits/s operation over deployed in-service networks

using 10 Gbit/s signals are now commercially available [33].
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Furthermore as we continue along this trend-line to WOM systems with

lower spaced channels operating at higher and higher bit rates the sensitivity of the

systems to both linear and nonlinear impairments becomes significant, and can result

in severe performance degradation. Higher bit rates mean narrower pulses (40

Gbitls bit rate pulses are 25 ps wide) which are more susceptible to dispersion in the

fibre and closer channel spacing increases the amount of interchannel crosstalk in

the system. In the next section we will look in detail at some of these transmission

impairments encountered by WOM systems operating at the limits of the system

characteristics mentioned above.

1.3 WDM Transmission Impairments

It was shown in the last section that the ISO of a fixed bandwidth WOM

transmission systems can be enhanced by (i) by increasing the bit-rate of each

channel or by (ii) decreasing the spacing between optical channels. However, these

enhancements come at a price, either in terms of the technology required and/or the

transmission impairments encountered. This section considers some of the

impairments which affect traditional WOM-based optical communication systems,

placing a particular emphasis on systems operating at 40 Gbitls.

1.3.1 Interchannel Crosstalk

The most significant impairment encountered in traditional WOM systems is

interchannel crosstalk which arises from power leakage between neighbouring

optical channels and results in a degradation of system performance. The effects of

interchannel crosstalk are relatively small when the optical channels are widely

spaced but as the channel spacing is reduced in order to optimise system ISO

adjacent channel spectra begin to overlap. In ultra dense WOM systems this

overlapping of adjacent spectra causes neighbouring channels to interfere with each
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1.3.2 Dispersion

The chromatic dispersion of the transmission fibre can significantly impair the

performance of a typical 40 Gbit/s WOM system. Chromatic dispersion occurs due

to the fact that different wavelengths of light have different propagation speeds

within a given transmission medium. If we consider that standard single mode fibre

(SSMF), which has a dispersion value of approximately 17 ps/nmlkm is the most

common transmission medium for traditional WOM systems and calculate the

maximum transmission distance (L) for a 1 dB eye opening penalty of a transform

limited non-retum-to-zero (NRZ) signal from the approximation in equation 1.2 [36]

we obtain the results shown in table 1 for various bit-rates (B in Gbit/s).

Bit Rate (Gbit/s) L(km)

2.5 1016

10 63.5

40 4

160 0.25

(1.2)

Table 1.1. Distance limitation in SMF for various bit rates due to chromatic

dispersion

It is clear from looking at the values for L in table 1 that the impact of chromatic

dispersion at 10 Gbit/s where the system is limited to -60 km becomes even more

pronounced at 40 Gbit/s and 160 Gbit/s where the transmission distance is limited to

-4 km and -0.2 km respectively. The effects of chromatic dispersion at high bit

rates require dispersion management strategies such as the insertion of dispersion

compensation modules along the fibre link (OCM's) which compensate for this

effect.
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A second type of dispersion known as polarisation mode dispersion (PMD)

also affects high bit-rate WDM transmission systems. PMD originates because of

the different velocities with which the different states of polarisation propagate in

the transmission fibre, and is generally caused by the non-uniform shape of the fibre

core along its length. These random birefringences in the fibre can be caused by a

range of factors including stress on the fibre, manufacturing flaws and fluctuating

environmental conditions. Because of the nature of its origin PMD randomly varies

with time, wavelength and is different for each individual fibre thus making it

difficult to quantify theoretically and as a result compensate for in the field. As with

chromatic dispersion PMD becomes increasingly problematic as the bit rate of the

WDM system increases and is one of the major limiting factors affecting 40 Gbitls

WDM systems [31, 38]. This is because as the pulse widths become shorter at

higher bit rates (bit slot is only 25 ps wide at 40 Gbitls) the pulse spreading effect of

PMD becomes more significant and results in a higher level of impairment.
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Figure l.S. Transmission distance as a function of bit rate for chromatic

dispersion limited systems

30



It is also important to note that both CD and PMD vary with wavelength and

therefore careful planning is necessary to ensure correct compensation for these

impairments in WDM systems which operate across wide wavelength ranges.

1.3.3 Non-linear Effects

The optical signal to noise ratio (OSNR) at the receiver determines the performance

of an optical communication system. In order to maximise this OSNR value the

launched signal must be launched from the transmitter at high power. However, it is

well known that optical non-linear effects within transmission fibre impact on

system performance, at these high signal launch powers. These non-linear effects

arise from the fact that the refractive index of the fibre depends on intensity of the

optical signal propagating therein, a phenomenon known as the Kerr effect [39].

Most WDM transmission systems make use of optical amplifier technology to

overcome fibre losses by boosting signal power along fibre links. Optical

nonlinearities such as self phase modulation (SPM), four wave mixing (FWM) and

cross phase modulation (XPM), all arising from the Kerr effect can severely impact

a WDM systems performance [40] at such high launch powers and, as with the

previous impairments discussed become more evident with increasing bit rate.

1.4 Modulation Formats

An optical modulation format is a way of applying an electrical data stream to an

optical carrier signal. This section considers some of the modulation formats used in

state-of-the-art WDM systems. There are a large range of modulation formats which

can be applied to optical signals. The ideal modulation format for a WDM system

would have some or all of the following characteristics:

• (I) A simple cost effective transmitter and receiver configuration.
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• (2) A high tolerance to fibre induced impainnents such as chromatic

dispersion, polarisation mode dispersion and nonlinearities.

• (3) A high tolerance to the levels of interchannel crosstalk exhibited

in high ISD WDM systems.

• (4) Spectrally efficient.

• (5) Resilience to the effects of multiple optical filters.

However a trade-off between these characteristics must be reached depending on the

network which the modulation fonnat is being applied in. For example the return­

to-zero (RZ) modulation fonnat is good for (2) but not for (4) whereas the system

proposed in [34] is good for (4) but not for (1). Modulation fonnats can be grouped

into two main categories, (i) intensity modulation fonnats and (ii) phase modulation

fonnats depending on the physical aspect of the optical signal which is modulated to

encode the data. Polarisation can also be used to encode data on an optical signal

[41] but is not considered as a modulation fonnat here. Polarisation is more often

used to enhance the ISD of a WDM system by transmitting signals in orthogonal

polarisations (polarisation division multiplexing) to reduce impairments such as inter

channel crosstalk.

The two most common intensity modulation fonnats, non-return-to-zero on­

off-keying (NRZ-OOK) and retum-to-zero OOK (RZ-OOK) are described in some

detail before a brief discussion on phase modulation fonnats which are gaining

attention for use in modem WDM systems.

1.4.1 NRZ-OOK and RZ-oOK

OOK encodes data on an optical carrier simply by turning on and ofT the light.

Direct detection using a photodiode is perfonned at the receiver to recover the

encoded data. The two most common intensity modulation fonnats are NRZ-oOK

and RZ-OOK. Both are shown in figure 1.6 below.

32



NRZ-OOK maintains an optical pulse in the 'on' state for the entire duration

of the bit period and its amplitude remains high for two or more consecutive' I' bits.

In contrast with this the optical pulse for the RZ modulation format is shorter than

the duration of the bit period and its amplitude always returns to the zero level

before the end of the bit slot. The bandwidth of the NRZ-OOK format (50% duty

cycle) is typically half that of the RZ-OOK format because on-off transitions occur

less frequently. This results in the better tolerance of NRZ-OOK to the effects of

dispersion and makes it more suitable to closely spaced WDM systems. RZ-OOK

however does have the advantage of having an improved tolerance to single channel

non-linear effects than NRZ-OOK. A range of studies both in experiment and

simulation have been carried out to compare the performances of NRZ-OOK and

RZ-OOK in WDM systems [42,43].

(8) NRZ-OOK

(b) RZ-OOK

I I
I I I II I

I I I I I I

I I I I I I

0 ) 0 ) ) 0 0 )

, I
I I, I, I I I
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I

0 I 0 I I 0 0 I
~

Figure 1.6. <a) NRZ-OOK modulation format (b) RZ-OOK modulation format

1.4.2 Phase Modulation Formats

Phase modulation formats encode data in the phase of the optical signal and this

information is detected at the receiver by performing phase-to-amplitude conversion
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before the photodiode. Differential phase shift keying (DPSK) is becoming

considered as a potential modulation format for WDM systems as it gives a

theoretical 3 dB receiver sensitivity improvement over OOK due to the increased

symbol spacing compared to OOK for a fixed optical power [44, 45]. The DPSK

modulation format represents a ' I' bit with a 1t phase change between successive bits

whereas a '0' bit is represented by a zero phase change. At the receiver a balanced

detector consisting of two photodiodes preceded by a delay interferometer is

required to perform phase to amplitude conversion and recover the data.

Differential quadrature phase shift keying (DQPSK) is an enhancement of

DPSK which encodes 2 information bits per optical sYmbol, and has been used to

achieve very high ISD values due to its narrow spectrum [46, 47]. Data is

modulated onto the phase of the optical carrier using one of four phases [0, tr/2, 1t,

3tr/2]. At the receiver two of the balanced receivers similar to that described above

are required to detect the DQPSK signal which increases the cost and complexity of

the receiver significantly. In addition two MZMs are required as phase modulators

in a DQPSK transmitter.

As mentioned above the choice of modulation format is highly dependant on

the type of optical network which is under consideration. For high capacity, high

ISD WDM systems it is important to have a spectrally compact format, with good

tolerance to CD and PMD, and a simple cost-effective configuration to reduce

systems complexity and cost.

1.5 Forward Error Correction Codes

Error correction codes are used in communication systems to improve the quality of

transmission and are commonly used in optical communication systems to correct

errors encountered during transmission. In the previous section we have seen how

transmission impairments such as dispersion and interchannel crosstalk can

introduce errors in a WDM system. For any particular application there is usually an

error rate threshold above which the received data becomes unusable. For most
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commercial systems this is currently set at a BER of 10.9, although many deployed

systems have thresholds of much lower than this to allow a margin for deterioration

of equipment and other impairments which increase with time. State-of-the-art

WDM systems operate in a high bit rate (~ 40 Gbit/s), narrow channel spacing «

100 GHz) regime over large transmission distances (> 1000 km) and may have a

fundamental BER of the link above these thresholds. FEC codes are often used on a

specific link to bring the received BER to below allocated threshold levels. This

section introduces the basic concepts of FEC codes and describes the operation of

the most commonly used FEC code in optical communications.

1.5.1 What Is FEe

FEC is the inCOrPOration of a suitable code into a data stream for the

detection and correction of data errors about which there is no a priori information

[48]. At the transmitter side FEC adds parity information to the data stream. At the

receiver end this parity information can be used to determine if errors have occurred

during transmission and can also be used to correct these errors. The FEC most

commonly used in DWDM systems is termed out-of-band (OOB) as it is added as an

overhead to the data, which effectively causes and increase in the bit rate of the

system. In contrast the SDH/SONET standards for telecommunication allows for in

band FEC within the existing overhead. Research into error correcting codes began

in the late 40's when a number of significant developments occurred. In 1948

Claude Shannon proved that for a noisy channel communication with arbitrarily low

error probabilities is possible if the data transmission rate R is equal or less than the

channel capacity C [49]. Shannon proved that a code that enables error free

transmission across a noisy channel exists provided certain constraints are adhered

to. However Shannon's paper does not give any indication of how to construct such

a code. Around the same time Richard Hamming developed the first error correcting

code [50]. The next few decades saw the rapid advancement of this field of study

with the development of many error-correcting codes. The standard FEC code used
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The higher the number of bits assigned to the overhead en-k) the more

errors the code can correct but the lower the amount of information ('k') which can

be transmitted per codeword. This is taken into consideration by the net coding gain

(NCG) value of any particular FEC code which is given by the gross coding gain in

dB - the bit rate increment in dB due to additional overhead.

The next section looks at the most commonly used RS codes and their

application in WDM systems. Further details on the implementation of FEC codes

are contained in chapter 4.

1.5.2 FEe in WDM Optical Transmission Systems

FEC technology plays an important role in modem day WDM optical transmission

systems. Almost all recently deployed fibre systems rely on some kind of FEC in

order to enhance system performance, increasing the system margin available to

improve other system parameters such as reducing launch power or increasing

transmission distance. The ITU-T G.975 standard recommends an interleaved 7%

overhead RS(255, 239) code which gives approximately 6.2 dB of coding gain (i.e.

6.2 dB of OSNR margin over an un-coded system for a give BER). For a 40 Gbit/s

WDM system a 7% overhead FEC code increases the operating bit rate per channel

to 42.6 Gbitls. Many of the experimental results presented in this thesis are at this

modified bit rate in order to allow for the inclusion ofa FEC frame along with the 40

Gbitls data. The tradeoff between increased gain and increased line rate must be

considered when choosing a code for a transmission system. For RS codes it was

concluded in [53] that single RS codes with a redundancy of 6.7% are suitable for

systems operating over sub-transatlantic distances « 6500 km). For distances

greater than this concatenated codes with a redundancy between 10% and 14%

proved more suitable.

Other FEC codes, such as block turbo codes [54] and low density parity

check (LDPC) codes [55] which give higher coding gain values are attracting
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attention from research groups for use in optical transmission systems but have yet

to become adopted by the carrier companies for use in the field because of their

increased implementation complexity. The next section looks at the state of the art

technologies that are currently being used to implement high capacity WOM

systems.

1.6 State of the Art

As already mentioned the recent rapid growth in demand for high bandwidth

services has necessitated the development of high capacity, flexible, low-cost optical

communication networks. This section presents some of the most recent 'state of the

art' research results and looks at the technology on which these solutions are based.

1.6.1 Ultra High ISO Systems

As we have seen in section 1.2 current state-of-the-art deployed 40 Gbit/s systems

are limited to channel spacings of approximately 100 GHz in order to avoid the

deleterious effects of interchannel crosstalk, limiting the ISO to 0.4 bit/slHz with

NRZ modulation. In order to enhance the ISO techniques such as advanced

modulation formats [56], transmitter pre-filtering [57] and POM have been

employed [58] amongst others. Each of these techniques requires complicated

transmitter and/or receiver configurations, further increasing the cost and complexity

of the system. For example the highest reported ISO of 2.33 bit/slHz in a 40 Gbit/s

WOM system was achieved using quadrature phase shift keying QPSK combined

with POM and FEe [59]. This required a local oscillator at the receiver to perform

coherent detection and a complex transmitter in order to achieve QPSK modulation,

all of which increase system cost. Indeed almost all reported systems achieving ISO

values approaching 1 bit/slHz rely on combinations of these advanced techniques.

The highest reported ISO value in an optical WOM system at the time of writing this
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thesis was 3.2 bit/s/Hz which was achieved by Gnauck et al. and reported in [34]. In

that work polarisation division multiplexed RZ-OQPSK signals at 85.4 Gbit/s were

placed on a 50 GHz grid and error free performance over 240 km was achieved with

the aid ofFEC. A total capacity of25.6 Tbit/s was achieved by using 80 OFB lasers

in both the C and L band. Optical equalisation (OEQ) was also used after

polarisation demultiplexing to reduce the influence of distortions caused by the

narrow receiver side filtering of the optical signal. It is evident from this work and

other reported high ISO results that a combination of POM, advanced modulation

formats and other advanced techniques such as transmitter pre-filtering or OEQ is

necessary to achieve these high ISO values in WOM systems. Consequently these

systems can be complex and expensive to implement and are not necessarily the

most suitable candidates for modem optical communication networks where

lowering cost is a major objective of system designers.

1.6.2 Photonic Integrated Circuits

In contrast with the complex high ISO systems mentioned in the previous section

InP-based photonic integrated circuit (PIC) based solutions have emerged in recent

years as a potential low cost solution for use in WOM networks. A PIC integrates

multiple discrete optical components into a single device. Early research focussed

on integrating single passive optical components such as arrayed waveguide gratings

(AWG) in the late 1980's [60] and the development of other devices such as

OAOMs and OXCs followed in the 1990's [61, 62]. For a fully integrated

transmitter or receiver however active components such as optical modulators and

amplifiers must be combined with the already mentioned Passive optical

components. This level of integration has led to the development of complete

optical transmitter and receiver modules based on PIC technology [63, 64].

Transmission experiments in a lab research environment using such modules were

carried out in the 1990's [65, 66]. In a typical modem optical communication

network a OWOM PIC transmitter and receiver combination could be used to
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achieve high capacity throughput with a low cost and complexity footprint. Infinera

have recently developed a single chip PIC capable of transmitting 1.6 Tbit/s [67].

The PIC consists of 40 x 40 Gbit/s channels on a 50 GHz grid (ISO = 0.8 bit/slHz)

which are modulated with NRZ data using an integrated electroabsorption modulator

(EAM). Transmission ofone wavelength at a time over 100 km of Coming LEAFTM

fibre was reported in [68] using a lOx 40 Gbit/s channel transmitter (200 GHz

channel spacing) and receiver PIC pair. This recent success of large scale PIC based

technology augurs well for the future of optical device integration which should

greatly facilitate the development of novel solutions for increasing system capacity

in a cost effective manner.

1.6.3 Summary

In this section we have looked at two different types of state of the art technology.

The first are systems based on combinations of advanced techniques which have

high levels of implementation cost and complexity but have achieved record high

spectral density values. Secondly we considered PIC based solutions which can

provide a low cost solution for WOM systems by integrating many devices onto a

single chip but with a lower ISO. A middle ground between these two approaches

which combines the advantages of both is desirable.

1.7 Coherent WDM as a High ISD Transmission Technique

[69J

The major challenge facing WOM transmission systems of today is to maintain the

rate of increase of system capacity while reducing the cost per transmitted

information bit. The continuously increasing demand for low cost, high bandwidth

services is driving the evolution of WOM systems to higher bit rates and lower inter­

channel spacing and we have seen in earlier sections how certain technologies

(advanced modulation formats and FEC) are being exploited to achieve this. In

many current high ISO WOM systems the system setup is as shown in figure 1.2.
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In this thesis we will introduce a novel solution known as coherent

wavelength division multiplexing (CoWOM) which we will show enables high ISO

values, up to 1 bit/s/Hz at 40 Gbit/s in a single polarisation using simple NRZ

modulation with no pre-filtering at the transmitter and a standard pre-amplified

receiver configuration and without relying on FEC. This combination of a low cost

simple experimental configuration and high ISO values at 40 Gbit/s makes CoWOM

an attractive solution for low cost high capacity/ISO modem WOM networks. In

contrast with the setup for high ISO systems described above CoWOM uses a comb

generator to generate an optical comb of 'n' phase locked channels. Because of this

stable phase relationship between the channels the interference signal is no longer

random and can be arranged in order to optimise system performance.

In order to understand the principle of CoWOM, consider a filter that passes

the channel of interest (green in figure 1.9 left panel), while substantially rejecting

the carriers of adjacent channels (yellow and blue arrows in figure 1.9 left panel).

Residual crosstalk arises from the high frequency content of the two adjacent

channels, which lies within the filter passband as shown in yellow and blue in figure

1.9 (left panel) below. This high frequency content corresponds, in the time domain,

to the transitions in their respective eye diagrams (figure 1.9 right panel). Thus, the

residual crosstalk is manifested as a series of retum-to-zero pulses corresponding to

these transitions.
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1.8.1 Organisation of the Thesis

In Chapter 2 a theoretical investigation of CoWDM is presented. A standard WDM

system is initially considered and it is shown that by placing certain constraints on

such a system the CoWDM transmission format can be achieved. Numerical

simulations are presented which show the impact of certain system parameters such

as the optical filtering strategy employed on the performance ofCoWDM.

The description of the implementation of the CoWDM based 40 Gbit/s optical

testbed including the transmitter and receiver configurations forms a major part of

Chapter 3. Details on auxiliary experimental work performed to support the

implementation ofCoWDM such as the development of a phase locked optical comb

generator are also included in this chapter.

In Chapter 4 results from the investigations on the performance of various

FEC codes with CoWDM are presented, along with a detailed study on the tolerance

of CoWDM to dispersion and nonlinear effects in transmission fibre. The work

presented in this chapter verifies CoWDM's compatibility with FEC codes and its

high tolerance to transmission impairments common in WDM systems. These are

important benchmarks in the overall consideration of CoWDM as a candidate

transmission format for use in WDM systems.

Chapter 5 presents the high capacity and long-haul transmission experiments

which were performed using CoWDM. The basic CoWDM format described in

chapter 4 is extended by using advanced techniques such as polarisation

multiplexing and multiple wavelength sources to demonstrate methods of further

enhancing the achievable capacity of a CoWDM transmission system, without

compromising the high ISD. The performance of CoWDM over a long haul link is

evaluated both by simulations (performed by Benjamin Cuenot) and experimental

work which was carried out in France Telecom laboratories (in collaboration with

Erwin Pincemin).

Finally in Chapter 6 the main findings of the thesis are summarised and

suggestions for further work are discussed.
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1.8.2 Contributions of the Thesis

The main contributions of this thesis are listed below:

(i) The development and characterisation of a novel optical transmission

format called CoWDM for use in high capacity high ISD WDM systems.

(ii) A theoretical explanation ofCoWDM.

(iii) The experimental verification of the principle of CoWDM using a 40

Gbit/s optical testbed developed at the Photonic Systems Group

laboratory.

(iv) The development of an optical comb generator capable of generating up

to II phase locked optical channels for use as a wavelength source for

CoWDM.

(v) Results from the experimental investigation of the nonlinear tolerance of

CoWDM which outlines the primary non linear effects which impact

upon CoWDM at high signal launch powers.

(vi) Results from an experimental investigation of the dispersion tolerance of

CoWDM showing that CoWDM behaves in a similar fashion to

conventional widely spaced WDM systems.

(vii) An investigation of the compatibility of CoWDM with standard forward

error correction codes used in optical transmission systems.

(viii) Experimental results from long-haul transmission experiments which

show that CoWDM is a promising technique for low cost, high capacity,

high ISD WDM systems and is compatible with existing installed

infrastructure.

(ix) A demonstration of multi-banded CoWDM resulting in ultra-high

capacities.
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Chapter 2

Coherent Wavelength Division Multiplexing: Theory

and Modelling

2. 1 Introduction

In chapter I we proposed CoWDM as a potential solution for use in modem optical

communication networks where high information spectral density is required to

provide services requiring high bandwidths at a low cost. In this chapter we

consider the theoretical basis for CoWDM, by identifying the terms which control

the amount and location of the inter-channel crosstalk in a standard WDM system

and explaining their origin. We then extend this basis to consider the special case

which must be considered for CoWDM and show that CoWDM is based on

controlling the optical phase relationship between adjacent channels in a WDM

system in order to minimise the amount of interference experienced by the target

channel at the receiver. Certain constraints are placed on a standard WDM system

in order to achieve CoWDM operation and these are discussed in the following

section. In section 2.3 some of the factors affecting the crosstalk terms in a

CoWDM system are modelled using Mathematica 5.1.
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2.2 Theory of Coherent WDM

2.2.1 Introduction

In order to fully understand the performance characteristics ofCoWDM presented in

the experimental chapters later in this work a complete understanding of the

fundamental concept of CoWDM is advantageous. This section provides a detailed

theoretical explanation of the CoWDM transmission format beginning with the

electric field equation for an optical channel and finally expressing a term for the

received signal taking into account the receiver side optical filters together with the

data patterns of both the target and neighbouring channels for a standard WDM

system. Following from this the conditions which lead to CoWDM are presented

and the various constituent terms that make up the final equation are discussed in

terms of the system parameters which they represent. The experimental

investigation which considers the effects of these terms on the performance of

CoWDM can be found later in the thesis in section 3.8.

2.2.2 Standard WDM System Description

In order to begin the derivation of the equation for the received signal we can

consider the ideal electric field, E: (t) of the j(h optical channel as

EO(t)-d (t)E e'(tllt l +;') +c.c
It - It,n ° . ( 2. t )

where dj.,,(/) represents the amplitude and phase of the n'h data bit in an ideal square

pulsed data sequence, Eo the electric field amplitude, ltJlt the optical frequency of

the j(h channel, c.c the complex conjugate term, and ;It the optical phase of the j(h

channel. We account for the finite rise and fall time of a practical signal arising
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from the limited optical and electrical bandwidth by convolving the ideal optical

signal with an impulse response HI (1) and allow for a variable time delay 1- 1'k by

evaluating

(2.2 )

If we now consider the signal in the frequency domain by taking the Fourier

transform of this electric field over a period NT of the N-bit periodic sequence dk •
n

(2.3 )

Substituting ( 2.2 ) into the integral in ( 2.3 ) we obtain the following expression

(2.4 )

(2.5 )

By using the convolution theorem for Fourier transforms on ( 2.5 ) we get the

following expression for &k (w)

(2.6 )

During any given bit period, that is the interval 1 E {(n -I)T~ nT} both the electric

field Eo and the data sequence dt.,,(/) can be assumed to be constant so we can

represent &k(W) as the sum of the integrals over I bit period for the entire bit stream

as shown in equation (2.7) below.
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(2.7 )

(fwe now calculate this integral we obtain the final expression for a practical optical

signal with a variable time delay which has been convolved with an impulse

response

(2.8 )

For a WDM signal we have J such optical channels which are multiplexed together

at the transmitter before transmission in the optical media. This is equivalent to

forming the sum of ( 2.8 ) over all channels. At the receiver the target channel (j) is

demultiplexed using a filter with a frequency response of ~) (lO) resulting in a target

optical channel spectrum of

all )

&j'(lO) = ~) (lO)L&k (lO)
k

(2.9 )

By substituting ( 2.8 ) into ( 2.9 ) and calculating the inverse Fourier transform we

obtain the temporal function of the electric field

all) N-I

E')(/) = EoLLek."Ik(/-nT -it)
k ,,=0

where

takes the data sequence, optical and electrical delays into account and

51

(2.10 )

( 2.11 )



(2.12 )
-iI QI-Qlt )T I

l
k
(l) = [ h,(m-m

k
)h

2
/m) e • - e,(QI-Qlt)I dm

<I) -l(m - mk)

considers the optical filters and channel frequencies. Direct detection of the optical

signal occurs at the receiver-side photodiode where an electrical signal proportional

to the intensity of the incident optical signal is generated. This intensity value can

be expressed as

[

~ N-I ]

V, (I) = K~DlIII ~e·K.n [c.c] ( 2.13 )

If we assume that the receiver side filtering function is sufficient to eliminate

contributions from all but the nearest neighbours to the target channel we can

consider ( 2.13 ) to be reduced to the following expression

where

e~.n = e K .n1K .n

( 2.14 )

(2.15 )

From ( 2.14 ) and ( 2.15 ) it becomes evident that the response of a WDM system at

the receiver is governed by inter-channel crosstalk terms of the form

( 2.16 )

If we combine this term with equations ( 2.11 ) and ( 2.12 ) and perform the

following algebraic reduction steps we obtain equation ( 2.17 ) below
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( 2.17)

Because of the receiver side filter function a,r e (j -I,j,j + I) and if the channels

have low inter symbol interference (lSI) thenp,be(n-l,n,n+I). Equation (2.17)

can be broken down into six constituent parts which represent the various sources of

impairments in a typical WDM system. By adjusting any or a combination of these

terms accordingly the overall effect of the crosstalk in a WDM system can be

reduced. These terms are as follows:

I. The dapd~ term represents the data patterns of the adjacent channels.

Yamazaki et al showed in [70] that by suitably encoding each data

channel with its own data and data from its adjacent channel that the

effects of interchannel crosstalk can be suppressed in densely spaced

WDM systems.

2. The IapI~ term represents the transmitter and receiver side filter profiles

which can be adjusted to determine the amount of inter-channel crosstalk

at the receiver.

3. The e'(~art) term represents the sine wave beat signal located at the

channel spacing
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4. The e -/(I1DI
07 r.. ) tenn represents the electrical delay of the target channel

with respect to the adjacent channels.

5. The tenn e-/(tV,lir
07

) tenn represents the relative optical delay of the target

channel with respect to the adjacent channels.

6. The final tenn, e-/( &;07) is related to the phase of the target channel.

In the next section we will show that by placing certain constraints on a standard

WDM system we can reduce the impact of a number of these tenns, leading to

suppressed levels of interchannel crosstalk.

2.2.3 Conditions for CoWDM

In the previous section the six tenns governing the amount of crosstalk in a standard

WDM system were isolated. If we now consider a WDM system where we

constrain the spacing between the optical channels to be equal to the bit rate of the

data encoding such that

2ft
!!(f) = -(a - r)

ar T ( 2.18 )

we find that the crosstalk tenn from equation (2.18) can be rewritten as follows

( 2.19)

This 'channel spacing = hit rale' constraint on a standard WDM system is what

defines a CoWDM system. For 1- 1'k approaching zero which is reasonable to

assume as we are condsidering a square pulse shape and if l'a = 0 for all a the
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crosstalk in the system is now dominated by the data patterns, the filter profiles and

the optical phase term, which can be actively tuned to achieve optimum

performance. The tuning of the optical phase relationship between adjacent

channels is dealt with in detail in chapter 3 where an experimental technique for

selecting and controlling the phase is proposed and implemented.

2.2.4 Summary

This section has provided a detailed mathematical description of a standard WDM

system beginning with the electrical field equation for an optical channel. The

resultant equation provides an insight into the factors which determine the level of

crosstalk experienced by a target channel due to its neighbours and the receiver side

filter. By constraining a standard WDM system to have a channel spacing equal to

the bit rate we have seen that many of the terms in the final equation can be

suppressed leaving the ~optical phase relationship' term available to optimise the

system. The next section looks in detail at results of numerical modelling of

equation (2.18) which shows how CoWDM, by setting the bit rate equal to the

channel spacing and by optimising the optical phase relationship between adjacent

channels can reduce the impact ofdeterministic inter-channel crosstalk which occurs

in high ISD optical communication systems.
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2.3 Coherent WDM Modelling

2.3.1 Introduction

In the last section it was shown that the deterministic crosstalk in a typical WDM

system can be attributed to six terms. Moreover by constraining the channel spacing

to be equal to the bit rate (as is the case for CoWDM) we showed analytically that

many of these terms become suppressed and the remaining term (optical phase

relationship) could be used to optimise the level of residual crosstalk. In addition to

this we saw that both the transmit and receiver side optical filters playa large role in

determining the amount of crosstalk affecting the target channel. In this section we

present the result of numerical simulations which consider these effects. These

simulations were carried out using Mathematica Version 5.1.

2.3.2 CoWDM Modelling - Influence of Optical Filtering

The optical filters used in a CoWDM system have a significant impact on the level

of crosstalk in the system. If we consider equation (2.12) we can determine the

amount of crosstalk arising from a particular channel within the filter bandwidth of a

particular target channel. This equation was modelled in Mathematica in order to

determine the impact of various types of filters on the crosstalk. The filters

modelled were super Gaussian type filters described by equation (2.21) below [39]

[ ( )2"']l+iC T
U(O,T)=exp --2- To (2.20 )

where the parameter m controls the degree of sharpness of the edge of the filter

(higher m values give a more square shaped filter). C is the chirp parameter and is

left equal to zero for this investigation. For a Gaussian filter
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TFWHM =2~(ln 2)To =1.665To ( 2.21 )

and the full width half maximum (TFWHM) of the filter is detennined by equation

2.22. Figure 2.1 below shows filter shapes for ~m' values of I, 2, 3, 4 and 5 each

with a FWHM value of 1t.

--m=1
--m=2
--m=3
--m=4
----...-. m=5

FWHM = 1t

-1t
Time/Bit Period

Figure 2.1. Super Gaussian filters with various '",' values
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The FWHM of the filter can also be varied and figure 2.2 shows the shape of the

filter for a number ofdifferent values of FWHM with a fixed m = I.

Pi/2
--Pi
----2 Pi

O....L.----r-----=::;..r---"---~--...;;;"",...___,--=--- __-~

-27t -7t
Timel8it Period

7t 27t

Figure 2.2. Super Gaussian filters with varying FWHM values

The interchannel spacing for the simulations was 271:. Figure 2.3 shows a plot of the

amount of signal passing through the filter for the target channel (solid trace) and for

the nearest neighbour channel (dashed trace) for a number of different ·m' values for

a set FWHM value. In this case the FWHM value of the filter is close to the

experimental value chosen.
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3x2n

--m=1
--m=2
---m=3
--m=4
--m=5
--Center channel
---- Interfering channel

-1(-3n -2n

1 FWHM =1[

Time/Bit Period

Figure 2.3. Target signal and neighbour signal for various 'm' values

It is clear that as the filter becomes more square shaped the SNR improves, but the

rate of improvement is very small beyond an 'm' value of 3. Figure 2.4 below

shows the amount of signal passing through the filter (m = 2) for the target and

neighbour channels for varying FWHM values.
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m=2
1 --1t/4

--7tl2
--1t
--21t
--31t

--center channel
---- interfering channel

-3x -2x -x

Time/Bit Period

2x 3x

Figure 2.4. Target signal and neighbour signal for various FWHM values

As the filter becomes increasingly narrow the output spectra of the target channel

and the crosstalk from the interfering channel broaden. The contour plot in figure

2.5 below combines these results of the simulations described above and it is evident

that the FWHM of the filter (y-axis) is a more significant parameter than the 'm'

value (x-axis) of the filter when selecting a filter for use in a CoWDM receiver.
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2.4 Summary

In this chapter we have presented a theoretical derivation of a standard WDM

system and then proposed certain constraints on such a system which result in the

generation of the CoWDM transmission format. The terms which influence the

level of interference experienced by a target channel were identified and these will

be investigated in an experimental context in the next chapter. In section 2.3 results

of CoWDM modelling carried out using Mathematica were presented. The imPaCt

of the order and width of a Gaussian filter on the amount of crosstalk from

neighbouring channels was investigated. It was shown that the width of the filter is

a more important consideration than the 'm' value when choosing a receiver side

filter for use with CoWDM. Following from this the level of interference in terms of

the channel number was presented. A surface plot and a contour plot were used to

show that the level of crosstalk was minimised at the exact channel locations due to

the CoWDM constraint, implying that improved performance with respect to a

standard WDM system should be achievable. In the next chapter we look at the

actual implementation of a high speed optical test bed and a CoWDM transmitter.

These are used to experimentally verify the impact of certain terms outlined in

section 2.2 on system performance.
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Chapter 3

Coherent Wavelength Division Multiplexing

Implementation

3. 1 Motivation

As we have seen in the earlier chapters the current trend in optical communications

is towards operating at higher and higher transmission bit rates, in order to maximise

the throughput of fibre links. The majority of installed long-haul fibre links are

designed for transmission systems operating at line rates of ~ 10 Gbit/s. However in

a research environment where next generation systems are being investigated as

candidates for use in future optical communication networks it becomes necessary to

consider higher bit rates such as 40 Gbit/s. In this chapter we describe the

implementation of a 40 Gbit/s optical testbed incorporating a CoWDM transmitter

that was established at the Photonic Systems Group laboratories, Tyndall National

Institute, Cork.

We begin by discussing standard high bit rate WDM transmitter and receiver

configurations with particular emphasis on the devices and components which are

necessary for the implementation of systems operating at bit rates in excess of 40

Gbit/s. Following from this, details on the modifications to a standard transmitter

which were necessary for the implementation of the CoWDM transmitter, including

optical comb generation and optical phase stabilisation are presented. In the final

section we will describe the implementation of the pre-amplified optical receiver

which was used with CoWDM and look at the receiver side filter characterisation

that was carried out. The CoWDM transmitter and optical testbed described in this

chapter are the central experimental devices which were used throughout this work

and were constructed over a number of years with the aid of colleagues in the

Photonic Systems Group.
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3.2 Standard High Bit Rate WDM Transmitter

Optical communication systems operating at bit rates of -40 Gbit/s require optical,

opto-electronic and electronic components capable of operating at high speeds. In

general the performance of many passive optical components such as optical filters

tend to be independent of the data-rate of the system. One obvious exception is

optical fibre which has much higher losses at high bit-rates due to the effect of

impairments such as dispersion on the increasingly narrow pulses at high bit rates.

In addition to this the design and implementation of opto-electronic and electronic

components becomes increasingly complex at higher frequencies. In this section we

look at the implementation of standard high bit rate WDM optical transmitters with

particular emphasis on the operation of a number of such components. These

include amongst others the data modulator, the pattern generator and the D-flip-flop

(OFF), which are central to the operation ofa typical 40 Gbit/s optical transmitter.

3.2.1 Optical Modulators at 40 Gbitls

The role of the optical modulator in a standard optical transmitter is to encode or

modulate the optical carrier signal with an RF data sequence. This can either be

performed directly by modulating the light directly at its source or externally by

using an optical modulator. Direct modulation techniques suffer from excessive

amounts of chirp and are limited to bit rates of 10 Gbit/s and lower for practical

implementations [71, 72, 73] although transmission of 40 Gbit/s signals has also

been achieved in lab experiments [74, 75, 76]. At high bit rates such as 40 Gbit/s

external modulation of the optical carrier signal does not suffer from the high chirp

induced impairments associated with the other techniques and as a result external

optical modulators capable of operating in this range are essential for high bit rate

systems experiments. The two most common types of optical modulator designed

for use in optical communication systems are the electro-absorption modulator

(EAM) and the Mach-Zehnder Interferometer (MZI) modulator. The large chirp and
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lower output power values associated with the EAM solution make them less

suitable for high bit rate data modulation whilst a MZI based optical transmitter is

capable of providing low chirp and high output power with relatively low drive

voltages. For this reason we consider only Mach-Zehnder based solutions in the

remainder of this work.

/
waveguide

electrodes

!

optical si nalout

t
electrodes

Figure 3.1 Mach-Zehnder Interferometer with electrical contacts

A MZI can be constructed as shown in figure 3.1 above where the input is

split into two arms of equal length which are coupled at the output of the device.

The waveguide is fabricated from a material such as LiNb03. the refractive index of

which can be changed by applying a voltage to the electrical contacts. The change

in refractive index in the waveguide causes a phase shift in the optical signal

propagating through that particular path. When this phase shift is equal to 1t, no light

is transmitted at the output due to the destructive interference between the signals.

Conversely when there is no applied voltage the phase shift is zero and the signals

interfere constructively resulting in a maximum amplitude signal at the output of the

device. If we consider an electrical bit pattern applied to a MZI and monitor the

output optical signal it is evident how a MZI can be used as an optical modulator.

Figure 3.2 shows the operation of a typical MZI modulator for the given input bit
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opposite phase shift in each branch thus producing zero chirp. In contrast a z-cut

MZM (not shown) has its 'hot' electrode directly by one waveguide and induces a

phase difference in that branch only, giving rise to chirp.

optical signal in

WaVegUi\

I
waveguide

electrode

Figure 3.3. Single drive x-cut Mach-Zehnder modulator

Two of these x-cut single drive MZM's were used to generate a seven

channel comb ofoptical channels (section 3.2.3) and the remaining two were used to

modulate these optical carrier channels with the high speed data stream from the

PPG. The optical and electrical performance of the data modulators used in the

CoWDM experiments described later in the thesis was measured using the setup

shown in figure 3.4. The MZM was driven by a 42.6 Gbit/s PRBS generated from

the PPG via a OFF and RF amplifier. The unused output of the OFF was terminated

using a 50 n terminator in order to avoid reflections which would affect the output

data signal. This data signal was modulated onto a single carrier wavelength

generated and amplified by a single distributed feedback (OFB) laser and an EOFA

respectively. Polarisation controllers at the input to and output from the modulator

ensured optimum performance. The modulated optical signal was converted to an

electrical eye diagram using a high speed photodiode (PO) and was detected using a

high speed oscilloscope.

69



40G PPG

ED A

rm~lII(:c

mimi

in fi

ops/division

uJ t r i n

ut

I.

n rum

7



-10
res =O.01nm

(a) PRBS7 (b) PRBS31

-20

E -30
£I)

~

I -40

Q.

~
-so

Q.
0

-80

-70

-80
1546 1547 1548 1546 1547 1548

Wavelength (nm)

Figure 3.6. Optical spectra at the transmitter output for 42.6 Gbitls NRZ with

PRBS pattern length of (a) 27_1 and (b) 231 _1

In the back-to-back single channel configuration these spectra are the input to the

pre-amplified optical receiver which is described in section 3.3. The insertion loss

of these modulators was approximately 5 dB and due to the fact that the devices are

polarisation sensitive polarisation controllers were used to ensure optimum output

power (described in the experimental setup in section 3.3.2). A pair of Versawave

40 Gbit/s GaAs electro-optic polarization modulators was also tested successfully in

the comb generator, the details of which are discussed in section 3.3.4.

3.2.3 40 Gbitls Pulsed Pattern Generator

The function of a pulsed pattern generator (PPG) in an optical transmitter is to

generate a known electrical bit stream at a specific bit-rate, which can then be

modulated onto the optical carrier. Many research optical testbeds rely on the

external electrical multiplexing of a number of lower bit-rate tributaries (e.g. 4 x 10
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Gbit/s) to generate a 40 Gbit/s data stream [78, 79, 80, 81]. In the majority of the

work described in this thesis (section 5.3 being the exception) however a

commercially available ANDO 40 Gbit/s PPG was used to generate a true 40 Gbit/s

data signal of a pre-selected pattern length [82]. The ANDO PPG is composed of

four primary sections as shown in the diagram below. These are connected to a

central processing unit (CPU) and a power supply unit (PSU).

Signal Generator ~

Pattern Generator ~
CPU

>- &

10 Gbitls Mux PSU
14-

40 Gbitls Mux ~

Figure 3.7. Pulsed pattern generator sections

The signal generator produces a clock signal in the frequency range 19.5 GHz to

22.5 GHz. The pattern generator section is capable of producing a range of data

patterns of which the PRBS pattern was the most commonly used during this work.

The 10 Gbit/s multiplexer generates 4 x 10 Gbit/s data streams for the output and 4 x

10 Gbit/s streams which are passed to the 40 Gbit/s multiplexer where they are time

division multiplexed to produce a 40 Gbit/s data stream. Figure 3.8 shows (top) the

40 Gbit/s data-bar output and (bottom) the 40 GHz clock output from the PPG.
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signals in the system, for example from the PPG to the external DFF and to the drive

amplifiers in the data encoding section.

3.3 Standard High Bit Rate WDM Receiver

This section looks in detail at the standard WDM receiver configuration for use in

high bit rate optical systems. In fact CoWDM uses a simple pre-amplified optical

receiver, which as we will see is much the same as is used in conventional WDM

systems so there is a large amount of overlap when considering the constituent

components. The primary function of the optical receiver in traditional optical

communication systems is to convert the received optical signal into an electrical

one and to recover the transmitted data.

3.3.1 Experimental Setup

A schematic of the pre-amplified receiver is presented in figure 3.10. A typical

optical receiver in a WDM system will use at least one optical filter in order to select

the target channel from the received spectrum. These WDM systems, especially at

high bit rates have approximately 100 GHz spacing between the channels and

therefore a simple bandpass filter can be used to select the target channel. As will be

outlined in section 3.7 the optimum filter configuration for use with 42.6 Gbit/s

CoWDM consisted of a tuneable 0.64 nm bandpass filter to select the target channel

and an 85.2 GHz FSR AMZI to cancel the crosstalk from adjacent channels. In

figure 3.10 the AMZI is surrounded by a dashed box indicating it is only required in

the receiver when CoWDM is the transmission format in use. This is the only

additional level of complexity required in the receiver when moving from standard

WDM to CoWDM.

Two low noise-figure « 6 dB) EDFAs, with output powers of I mW (gain =
34 dB) and 23 dBm (gain = 38 dB) respectively, were used in the receiver to amplify
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the received signal. A pair of variable optical attenuators (VOA) enabled full

control of the optical power incident on the amplifiers and on the high speed

photodiode used to convert the optical signal to its electrical equivalent. The power

meter (PM) positioned after the first VOA was used to monitor the optical power on

the receiver.

from
transmitter

,._~~yy_C?~ _~')~ _.,
: AMZI :
: FSR=85.2 GHz :
I I
I I
I I
I I

Figure 3.10. Pre-amplified optical receiver configuration

Error
Detector

A series of optical taps were placed after the VOA to allow for real-time monitoring

of the received optical spectrum, received optical eye and optical power incident on

the photodiode.

The performance of an optical receiver can be determined by measuring the

BER as a function of the average optical power incident on the receiver. The

'receiver sensitivity' is then defined as the minimum average optical power at a BER

of 10·9.and is typically measured in dBm. Throughout the course of this work

receiver sensitivity was used to determine the performance of the system. If we

consider a pre-amplified optical receiver which is dominated by amplifier noise the

receiver sensitivity (Pree) can be defined in empirical terms by equation 3.1 which

considers the noise figure of the amplifier (NF) in dBs, and the bit rate (B) in bls

[83]

P,yc = NF + 10 loglO(B)-143 (3.1)

where NF = 3 dB for a quantum limited amplifier. Figure 3.11 below shows a plot

of receiver sensitivity as a function of bit rate for an optical receiver using (i) a very

76



good EDFA with a low NF of 3 dB (squares) and (ii) the EDFA which was used in

our receiver which had a NF = 5.2 dB (circles).

-20
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e-m
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f:e -35
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~
~ -40
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.j!
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-50-

-55

-.- NF =3dB
-e- NF =5.2 dB

.,
1

I

I

10

Bit Rate (Gbitls)

I

100

Figure 3.11. Theoretical receiver sensitivity limit as a function of bit rate for

receiver with EDFA NF = 3 dB (squares) and EDFA =5.2 dB (circles)

For a single 42.6 Gbit/s NRZ (PRBS 2'-1) channel the receiver sensitivity of the

experimental receiver described above was approximately -30.6 dBm. This is

approximately 3.1 dB away from the limit when using a very low NF EDFA and

approximately 0.9 dB away from the limit when considering the actual EDFA used

in our receiver. The single channel received spectrum for both pattern lengths (2'-1

and 231 -1) was measured by an OSA with 0.01 nm resolution and is shown in figure

3.12 below. The centre wavelength is at 1546.9 om and the effect of the 2'_1 PRBS

pattern on the spectrum is clearly visible. The suppressed sidebands arise from the

presence of ASE from the amplifiers in the spectrum which is passes through the

AMZI. The slight unevenness in the sidebands is a result of the shape of the ASE

profile of the system.
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Figure 3.12. Received optical spectrum for a single NRZ 42.6 Gbitls channel

The receiver sensitivity curve for single channel operation both with and without the

AMZI and the corresponding eye diagram with the AMZI at the receiver is shown in

figure 3.13 below. The eye diagram is shown on a 10 psldivision grid and the width

of the eye is approximately 23 ps. As expected for single channel operation there is

no sign ofan error floor in either of the receiver sensitivity curves.
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the CoWDM receiver was a commercially available Centellax. 40 Gbit/s SiGe CRU

which has an input data rate range between 39.8 Gbit/s and 44 Gbit/s and was found

to be adequate for recovering the 40 Gbit/s clock signal. Along with the data signal

which was provided from a high-speed photodiode the CRU required a reference

clock signal input at 1/16 of the data rate. The CRU can output a clock signal at

either ~ or ~ the data rate. The unit has two operation loops~ one of which trains the

loop to the correct frequency and the other which phase locks the loop to the data.

This provided a ~ rate clock reference signal which was then frequency doubled in

order to provide a 40GHz clock signal at the data rate to the Ando 40 Gbit/s error

detector.

The function of the error detector (ED) is to execute the seemingly trivial

operation of comparing the received bit stream with the expected data sequence and

producing an error rate. However at high bit-rates the execution of this task

becomes more complex due to the requirement of high speed RF components. The

ED used in the majority of this work was a commercially available ANOO ED

capable of operating between 40-43 Gbit/s. More detailed information on the

operation of this device can be found in [80].

Error rate information from the ED can be presented in a number of ways.

One of the most common of these as described earlier is to use 'receiver sensitivity~

curves which gives a performance measure of an optical receiver and is defined as

the minimum received power incident on the receiver for a measured BER of 10.9•

In the following chapters the performance of various implementations of the

CoWDM transmission system will often be presented by showing BER as a function

of received power.
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3.4 Optical Comb Generation [84J

In the traditional WDM system outlined in Chapter 2 we have seen that the optical

channels which carry the data are generated by individual DFB lasers that are

typically spaced by of the order of 100 GHz. These individual lasers have random

phases which lead to random interference signals at low channel spacing. However

as we have seen for CoWDM it is necessary to have a set of optical channels which

are spaced by a specific frequency (equal to the bit rate) and that have a stable inter­

channel phase relationship. It is also desirable (especially in a research lab

environment) to reduce the inventory required to generate the optical channels. As a

result multi-wavelength generation (also called multi-frequency or comb generation)

was employed as the wavelength source for CoWDM. This section gives brief

overview of the applications of optical combs, considers some of the well known

comb generation techniques and describes in detail the method which we used to

generate a phase locked optical comb for use with CoWDM.

There are a large range ofapplications (in addition to CoWDM) in photonics

technology for optical combs and much of the published work on comb generation

techniques has been carried out with these applications in mind. For example, in

optical communications ultra-dense wavelength division multiplexing (UD-WDM)

uses tightly spaced optical channels «50 GHz spacing) generated from spectrally

sliced optical combs to transmit data in both access and long-haul networks

requiring large channel counts. Zeller et al suggested that optical combs generated

from mode-locked lasers are suitable sources for test and measurement of DWDM

systems [85]. Optical combs are also finding application in the microwave regime

where they have been used to implement photonic microwave filters [86], and the

frequency up-shifting of arbitrary microwave waveforms [87], where tunability is a

key parameter.

A wide variety of techniques have been described in order to generate these

optical combs, each resulting in a comb with different properties. Six of these

reported techniques are summarised in table 3.1 below. Some of the key
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characteristics of an optical comb such as the spacing between channels, the number

ofchannels produced and the spectral width of the comb signal are also listed.
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Table 3.1. Comb generation techniques

(I, 2 and 3) The use of ampl itude or frequency modulated (FM) mode-locked lasers

(such as ERGO (Er:Yb:glass laser oscillator) lasers [84], fibre ring lasers [88], or

mode-locked semiconductor lasers [89]), give good OSNR values, and the range of

channel spacing achievable is suitable for WDM applications (10 - 100 GHz).

However these techniques rely on precise control of the laser cavity length and an

amount of optical fibre to which adds to the complexity of the experimental setup.

For example in [84] a piece of dispersion compensating fibre (DCF) and 50 m of

highly nonlinear photonic crystal fibre (HNLF) is needed to generate a 43 nm wide

set of 50 GHz spaced channels whilst in [86] a combination of SMF and erbium

doped fibre (EDF) is required to generated an 8 channel optical comb. Additional

complexity is also a feature of these techniques due to the difficulty in starting and

maintaining suitable mode-locking, a problem arising from the inherent multi-mode

optical cavities and therefore multiple stabilities, of mode-locked lasers.

(4) This technique employs a wideband LiNb03 phase modulator in self-oscillating

mode [90] i.e. the modulator is driven with a feedback signal from its output, which

makes oscillation easier to start and maintain than mode-locked lasers because it is

essentially a single-mode oscillator at a microwave frequency and results in a 13

channel optical comb with 9.95 GHz channel spacing. The drawbacks of this

method are that it requires large RF power amplifiers (-30 dBm input RF power

required) with precise control of the output voltage for the feedback loop, in addition
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to an extra photodiode and RF filters the optical feedback signal and select the

appropriate RF content respectively.

(5) A section of specialised fibre (in this case polarisation-maintaining dispersion

flattened dispersion-decreasing supercontinuum (SC» is again used in [91] together

with an amplitude modulator in order to generate a SC source based on optical pulse

compression of more than 1000 frequency spaced optical channels with 12.5 GHz

spacing. These channels span most of the C-band and such a source would be

suitable for UD-WDM systems as has been demonstrated in [92]. However, the

scalability of such combs to higher bit rates may not be easy due to spectral

broadening of the optical channels which would lead to increased interchannel

interference. In addition to this limitations to this scheme include the requirement of

high optical launch powers, long specialised fibre lengths and stimulated Brillouin

scattering (SBS) suppression. For most applications such a large number of

channels is undesired and appropriate filtering is necessary which affects the overall

power efficiency of the generator.

(6) Finally in [93] an assembly consisting of a concatenated Mach-Zehnder (MZ)

and phase modulator was used to generate a uniform « 3dB flatness) optical comb

of 9 channels separated by 12.5 GHz. This technique is similar to the one eventually

employed as a comb generator in our experimental setup but requires the use of large

drive voltage amplifiers and precise control of the applied voltage. In addition its

poor side mode suppression ratio (SMSR) of approximately 3 dB could lead to

unwanted interchannel crosstalk affecting the channels furthest from the centre

wavelength.

The comb generation technique which was employed for use with CoWDM

in this work was based on a pair ofcascaded amplitude modulators. In the following

subsections we present an analysis of the production a phase locked optical comb

using this technique. We also demonstrate a practical implementation of the

scheme, where a 7 channel, 298 GHz bandwidth comb is generated using two

Avanex 40 Gbit/s intensity modulators. It is shown that the additional tuning

freedom offered by replacing the phase modulator described in [92] by a second

amplitude modulator allows excellent flatness «I dB) and high SMSR values (>12
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dB) without the need to precisely tune RF amplitudes. This method of optical comb

generation is used throughout the experimental sections as the optical channel source

for CoWDM. An enhancement to this technique is described in the final section

where we replace the Avanex modulators with two Versawave electro-optic

polarization modulators which enable an II channel comb resulting in an increased

overall bandwidth of 468.6 (11 x 42.6 GHz) GHz with a flatness of less than 2 dB

and SMSR values above 12 dB. This increased channel count is due to the

combination of a wideband frequency response and low VII of the electro-optic

polarisation modulators.

3.4.1 Comb Generation Theory

The proposed comb generation module is shown in figure 3.14, and comprises a

single DFB laser source at I546.8nm, and two sine wave driven balanced 40 Gbit/s

amplitude modulators.

f= .2.6 GHz

DFB laser

phase

"'---~0 shdter

;,

t---.......~-.... Optical output
(EotJ

Figure 3.14. Schematic diagram of comb generator experimental configuration
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It is well known that for a continuous wave input with frequency 10, amplitude Eo

and phase tAn, the output optical field Ele of the /(h modulator can be represented as a

series of harmonic frequency components fo+pf where 10 is the optical carrier

frequency, f is the frequency of the sine wave drive, and p represents the harmonic

number,pe{O. ±/. ±2....) [94]. The total field Ele is given by

(3.2)

where

and the amplitudes Ap.1e and phases Bp.1e of the components are given by

1 1t b1t
Ap It =-cos(0lt +p)-]J (_It_)

. 2 2 p 4

(3.3)

(3.4)

(3.5)

In both equations, Ok. ble and ¢It represent the DC offset, peak-to-peak amplitude, and

phase of the drive signal of the kdl modulator respectively, and Jp is the Bessel

function ofthe first kind oforder p.

By considering each component generated from the first modulator as a CW

input to the second, and summing all of the terms which result in an output from the

second modulator at a given harmonic frequency component fo+qf we obtain the

total output field (Eoul) from the second modulator. Assuming, without loss of

generality, that this results in a total output field (Eout) of
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(3.6)

It can be shown that

We can see from equations 3.4 and 3.5 respectively that the RF amplitudes (h'.2),

DC bias (a'.2) and relative phase difference (¢'l-;,) between the RF drive signals

may be used to control the relative amplitudes of each comb line, giving excellent

control of the profile of the generated comb signal. In particular, we may use these

five variables to solve a set of five simultaneous equations matching the amplitudes

of the first five harmonics to the central carrier component (&o=&q. q=O, 1,2. 3, 4,5).

Given the inherent symmetry of the system &q=E..q this implies that ideally an 11

channels comb could be generated with 0 dB power variation. Note that, if one of

the amplitude modulators is replaced by a phase modulator [95], the cosine term,

along with the term {-If is omitted from equation 3.4 and 3.5 respectively, thus

reducing by one the number of control parameters available which results in a

reduction of the number of flat comb lines to 9.

Figure 3.15 illustrates, for various numbers of comb lines, the calculated power

variation (flatness) of the side-bands when the same RF power (hk ) is applied to both

modulators simultaneously and the RF phase and DC biases are optimised for each

point. Under these restrictive conditions negligible power variation is obtained for

up to 11 comb lines, whilst a flatness of less than 2 dB is obtained for up to 13 comb

lines. It is interesting to note that total bandwidths of close to or above 0.5 THz can

be obtained with this method whilst maintaining a good flatness and that by tuning

the RF amplitude to between 4.37 and 4.45 V1( an optimum flatness value may be

achieved.
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Figure 3.15. Optimised comb flatness venus relative drive amplifier amplitude

for 7 (squares), 9 (circles), 11 (triangles), 13 (diamonds) and 15 (star) comb

lines

A more detailed analysis of the impact of the RF amplitudes on flatness for a comb

of 7, 9, II and 13 lines is shown in figure 3.I6(a), (b), (c) and (d) respectively. In

this case, hie was set independently for each modulator, while the OC biases and

relative optical phases were optimised. In the 7 line case shown in figure 3.I6(a) we

can see there are a wide range of voltages which result in a flatness below I dB. As

we move to higher numbers of comb lines this range of voltages decreases

significantly and for 13 lines very high drive voltages are required to obtain flatness

approaching I dB. For II lines, it is clear that whilst voltages above 3.5 Vx are

necessary in order to achieve good flatness, values of less than I dB are possible for

a wide range of drive voltages, eliminating the need for controlled drive amplitudes,

suggesting that the comb can be controlled by 0/, 02 and ¢J2 alone. For target drive

voltage values of around 4.5 Vx, an almost ideal flatness of 0 dB may be obtained,

again with a reasonable tolerance to the drive signal amplitudes.
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3.4.2 Experimental Configuration

Two 40 Gbit/s Avanex MZ modulators were driven with a sine wave of frequency f
= 42.6 GHz at peak-to-peak amplitude of 2.1 V11 synchronised by an RF delay line.

The peak to peak drive voltages were approximately 30 V. The resultant seven

channel optical comb is shown in figure 3.17 below. The flatness achieved was

below I dB which agrees well with the theoretical prediction shown in figure

3.16(a). A value of II dB was obtained for the SMSR of the seven channel optical

comb. Moreover, this setup also provides a phase coherent comb, suitable for

CoWDM applications, where each comb line could be independently modulated at

42.6 Gbit/s, enabling almost 0.3 Tbit/s ofcapacity using only one DFB laser.

5

0
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.................................. O' " .
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Figure J.t7. Experimental speetrum of a 7 channel optical comb

Figure 3.18 below shows the simulated and experimental patterns when the comb

signal is detected on a high speed oscilloscope using a 50 GHz bandwidth

89



m unt

imil r.

rim nt 1 tr

ut th

ph

th imul

Simulation E perimental

T (10 P dl 0) TI (0 p

th

th nm I.

3.4.3 Comb S abili a ion

n

If

i n in I Uf .1 Q/



optimized) where the variation of flatness with hi, h] is low. Consequently the

amplitudes of the comb lines generated by the modulators may be effectively

controlled by the DC bias values of the modulators and a simple stabilisation circuit

was implemented whereby the comb output is monitored using a fast scanning

Fabry-Perot filter (FSR = 13.7 THz, RBW = 6.1 GHz) driven by a triangle wave

(frequency = 5.4 Hz, duty cycle = 50 %, amplitude = 957 mY) from the function

generator. The analogue signal from the low bandwidth photodiode (gain = 100)

with an incorporated bandpass filter (DC-3000 Hz ) is converted to a digital signal

using data acquisition (DAQ) board and a simple algorithm provides feedback to the

appropriate modulator DC bias controls. The DAQ board acquires 5000 samples at

a frequency of 125 kHz. The experimental setup for the stabilization circuit is

shown in detail in figure 3.19 below.

Function
Generator

PC

10 % comb sig..LM.I:"'-~~~""~ Fabry-Perot
Scanning Filter

DC feedback

----of DAQ D:A

Figure 3.19. Experimental configuration of comb stabilisation circuit

With the stabilisation circuit turned on a constant comb flatness of less than 1 dB

was achievable over a period of several hours as is demonstrated in the FEC section

in chapter 4. The algorithm used to control the DC bias values of the modulators is

shown in figure 3.20 below. The algorithm is designed for use with a 7 channel

optical comb. If the phase term is correct the optical comb will be in one of the four

positions depicted by the insets in figure 3.20. By adjusting the DC bias of the

appropriate modulator the comb can be effectively flattened. In each iteration the

DC bias of one of the comb modulators is adjusted. The comb modulator which is
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adjusted is determined by whether the difference between average amplitudes of

comb lines (-3, -I, + I, +3) and comb lines (-2, 0, +2) is greater than or less than the

difference between the average amplitudes of comb lines (-2, 0, +2) and comb line

(0). The DC bias is then adjusted by an amount proportional to a gain control factor.

Imax -minH com~a~:ess )

[ sa"1Jle Data Hfind peaks InnLnnmmnmm m.... --m00 n~...,---------;:s- ______

Four possible
comb states:

feedback signal feedb8CI< signal

Figure 3.20. Algorithm for comb stabilisation of a seven channel comb. Inset:

Four possible states for a 7 channel optical comb

3.4.4 Enhanced Comb Generator [96]

We have shown in figure 3.16(c) in section 3.3.2 that in theory for the case of II

comb lines there is a range of voltages above 3.5 Vl( which result in a flatness of less

than I dB. By using two 40 Gbit/s Versawave electro-optic polarisation modulators

which were driven with the same sine wave at a frequency of 42.6 GHz, but with

amplitudes h, = 3.36 V. and h2 = 4.70 V., synchronised by an RF delay line. The

Versawave modulators were based on GaAs polarisation mode converters, with low

V. (3.3 V and 3.7 V at 20 GHz), low insertion loss (4.3 dB and 6.0 dB), and 3 dB

bandwidths of 31 GHz and 49 GHz respectively. The combination of a wideband

frequency response and low V. enables a significant increase in the number of
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generated comb lines without an increase in RF power levels in comparison to

typical LiNb03 based MZ modulators. The low drive voltage of the GaAs mode

converter results from the tight mode confinement that is possible with etched

semiconductor waveguides, while the high bandwidth results from low-loss, velocity

matched slow-wave electrodes [97]. A further advantage of GaAs over LiNb03 for

high-power applications is that GaAs has much higher thermal conductivity (55 vs.

5.6 Wm-1K-1), potentially increasing the reliability during high power operation.

This configuration yields a compact and square-shaped-like II channel optical

comb, as shown in figure 3.21.
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Figure 3.21. Experimental spectrum of an 11 channel optical comb

The flatness achieved was 1.97 dB which is higher than the theoretical prediction

from figure 3.16(c) of less than IdB. We believe this is due to features of the

experimental setup such as the large amount of fibre between the two modulators

which causes the optical phase to drift slightly more than in the seven channel case

where we had a short piece of fibre between the two Avanex modulators. A value of

12.6 dB was obtained for the SMSR of the optical comb; representing a 1.6 dB

improvement over the seven channel LiNb03 based MZ solution. This setup also
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provides a phase coherent comb, suitable for CoWDM applications, where each

comb line could be independently modulated at 42.6 Gbit/s, and would therefore

enable almost 0.5 Tbit/s of capacity using only one DFB laser, which would

represent a 0.2 Tbit/s enhancement per laser over the 7 channel comb generator.

3.5 CoWDM Transmitter Configuration

In the context of a fibre based optical communication system the role of the optical

transmitter is to convert an electrical data signal to an optical signal and to launch it

into the transmission fibre. Earlier in the chapter the operation ofa standard high bit

rate optical WDM transmitter was described with particular emphasis on the major

constituent components such as the MZM's, the PPG and the DFF. In this section

the concept of an optical transmitter is expanded to consider and describe the

implementation of a CoWDM transmitter. Essentially the CoWDM transmitter is a

fibre based interferometer with a MZ data modulator on each arm, and pairs of delay

lines to enable full control of the relative optical phase relationship between the

arms.

3.5.1 CoWDM Transmitter Overview

This section is concerned with the experimental implementation of the CoWDM

transmitter. As discussed in chapter 2 CoWDM is based on controlling the optical

phase difference between adjacent optical channels in order to create a deterministic

interference signal which can then be controlled. The input signal for the CoWDM

transmitter was the 7 channel phase coherent optical comb derived from the optical

comb generator described in section 3.3 via a 27 dBm output power EDFA. In an

ideal transmitter implementation each of the optical channels would be separated by

an arrayed waveguide grating (A WG) and independently encoded in a phase

preserving modulator array before being wavelength multiplexed at the output of the

transmitter as depicted in figure 3.22 (a). The experimental setup shown in figure
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3.22 below shows how the transmitter was implemented in the lab. Instead of an

AWG a double stage thin film filter (DS TFF) with a FSR of 85.2 GHz which gave

good extinction ratio (-45 dB) and had a square shaped transfer function was

employed to separate the odd and even optical channels, which were then encoded

with NRZ data and data-bar patterns at the bit rate of the PPG (42.6 Gbitls in this

case) in a two modulator array.

(a)

from comb
generato,

r---------------------:

phase power
shifters combiner

to transmission

r-------------------------------------------

to transmission

phase
stabilisation

circuit

feedbaclc sign.'

DSTFF
85.2 GHz

L •••••••••••••••••••••• ,

I
Oili I

PPG :
42.6 Gbitls date I

I
I •
I •
_____________________________ J

(b)

from comb EDFA
genera_to_'_....

Figure 3.22. (a) Ideal and (b) experimental CoWDM transmitter

This method of data encoding represents a 'worst case' scenario as it permits the

inclusion of the dominant crosstalk from adjacent channels, since any target

channels 'nearest neighbours' after the demultiplexing filter in the receiver have

been encoded with the same data sequence. Three optical delay lines and a piezo
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fibre stretcher enabled the optimization of the data time delays and optical phases,

the detail of which is contained in the next section. A pair of input polarisation

controllers (PC) were used to control the state of polarisation of the signals before

the polarisation sensitive data modulators. The odd and even channels were

passively multiplexed at the output of the transmitter using a fibre coupler.

The output of the transmitter was split, with 90 % going to the transmission

fibre and the remainder used as an input to the phase stabilisation circuit, the

operation of which is described in detail in section 3.6. The CoWDM transmitter in

the fonn shown in figure 3.22 was essentially a fibre interferometer. The optical

fibre within the transmitter was highly sensitive to mechanical vibrations and

temperature fluctuations. In order to negate the effects of this the CoWDM

transmitter (inside the dashed lines in figure 3.22) was assembled and housed in a

purpose built aluminium case and placed on an air-table during most of the

experimental work.

3.5.2 CoWDM Transmitter Alignment

In the CoWDM transmitter we have seen that when the bit rate of the system and the

frequency driving the comb generator are equal a stable interference signal is

generated. The CoWDM simulations presented in chapter 2 showed that by time

aligning the contributions from the interfering neighbour channels such that the

optimum interference which reduces the impact of the crosstalk occurs at the eye

centre (where wemake a decision) and the orthogonal interference condition which

increases the impact of the crosstalk occurs at the eye crossing (where we don't care)

we can effectively control the position of the residual crosstalk thus improving

perfonnance. Intuitively it would be thought that optimal perfonnance would be

achieved by increasing the eye opening at the transmitter using the following

procedure (the alignment procedures described here deal with the 4two modulator'

case):
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the output of the transmitter where the interference signal appears to be well

controlled and the data and sine wave oscillations are aligned. It was realised that

the enhanced alignment strategy needed to take into account the characteristics of

the transmission link and even more importantly the characteristics of the optical

receiver used to detect the signal.

It was shown in in sections 3.3 and 3.7 that the receiver configuration

implemented for the detection of a 42.6 Gbit/s CoWDM signal consists of an AMZI

with a FSR of 85.2 GHz equal to twice the channel spacing and a tunable bandpass

filter with a 3 dB bandwidth of 0.64 nm. The misalignment after detection described

above is a direct consequence of the delay properties of the AMZI which has a delay

of half of the signal bit period (-11.7 ps for a 42.6 Gbit/s signal). The output signal

from the AMZI consists of the interference between an un-delayed copy of the

CoWDM signal entering the AMZI, and a copy of the CoWDM signal delayed by

half of the bit period. As we have seen the CoWDM signal is composed of:

(i) Data signals representing the information for each channel.

(ii) Sine wave signals which represent the beating between the carrier

components of each signals.

(iii) Residual crosstalk.

In the case of (i) the effect of this interference is to add a net delay to the rising and

falling edges equal to the mean delay of the two arms or 5.85 ps (quarter of the bit

period) in this example. This is because the half power point of the rising edge of

the pulses exiting the AMZI should correspond to the interference between the

'zero' level of the undelayed copy and the 'one' level of the delayed copy of pulses

entering the AMZI. For (ii) the 11.7 ps delay corresponds to exactly one oscillation

period for an 85.2 GHz sine wave. As a result the output is the simple in-phase

addition of two infinite sine waves which results in no phase shift. Therefore the

interference induced by the presence of the AMZI affects the relative delays of the

of the CoWDM signal in a non-uniform fashion leading to a reduction in system

performance.
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This modified alignment strategy takes into account the delay induced on

certain components of the signal by the AMZI

1. At the transmitter add a quarter bit period relative delay between the data

signals and the beat frequency signal for both odd and even channel

groups. This was achieved by aligning the transmitter such that the eye

crossing corresponds to a minimum of the 85.2 GHz beat signal. In order

to obtain a stable phase relationship between adjacent channels the 85.2

GHz tone was set to a particular value. Any harmonics or sub-harmonics

of this tone should also vary accordingly with phase and in section 3.6 a

technique for using these harmonics as an error signal for the phase

stabilisation circuit is described.

2. In order to control the exact location of the static residual interference

after the AMZI the relative optical phases within the transmitter were

adjusted from their initial values to pre-compensate for the expected

delay characteristics of the transmission link and the optical receiver.

The transmitted eye diagram if this alignment strategy is followed is shown in figure

3.25.
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over a range of wavelengths and the optical power recorded. In figure 3.27(b) we

can see the periodic response of one output of the AMZI (black trace) as a function

of wavelength (the response of the other output is shifted in wavelength by -0.6

nm).

CW laser

I
AMZI

!
power
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~
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1554.0 1554.5

Wavelength (nm)

Figure 3.27. (a) Experimental set-up. (b) Optical power as a function of

wavelength for AMZI (black solid line, res =O.Olnm) and optical comb (red

dashed line, res O.2nm)

The optical comb signal (red dashed trace) produced by the comb generator is

overlaid on the AMZI trace to show that the AMZI separates odd and even channels

effectively. The AMZI provides an extinction ratio of approximately 25 dB which is

sufficient to suppress most of the contributions from the nearest neighbour channels.

A temperature controller is used to align the AMZI to the centre wavelength of the

optical comb.

3.5.4 Piezo Fibre Stretcher Characterisation

As we have seen in section 3.4.1 a piezo fibre stretcher is used to control the optical

phase relationship between adjacent channels within the CoWDM transmitter.

Piezoelectricity is the ability of certain materials, ceramic in this case, to generate a
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voltage in response to mechanical stress [98]. This property is reversible and for our

experiment we make use of the response of a piezo-ceramic cylinder when a voltage

is applied across it. By wrapping the cylinder with the optical fibre through which

one set of the CoWDM channels is passing and applying a voltage to the cylinder,

therby causing it to change in diameter, the effective path-length of the fibre can be

changed. This enables full control of the optical phase relationship between the two

sets ofCoWDM channels as they propagate through the CoWDM transmitter.
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Figure 3.28. (a) Experimental set-up. (b) 7r phase shifts as a function of applied

peak-to-peak voltage for piezo fibre stretcher. Experimental points (black

circles) and linear fit (red line)

The sensitivity of the phase change experienced by the optical signal depends on a

number of parameters, namely the piezo-ceramic material, the amount of fibre

wound around the cylinder and the tension on the fibre surrounding the cylinder due

to the winding process. Figure 3.28(a) above shows the experimental set-up used to

characterize the piezo fibre stretcher used in the CoWDM transmitter. A CW signal

at 1310 nm was coupled into a fibre interferometer with a polarization controller and

a piezo-ceramic cylinder in each arm. One of the cylinders was subject to an

oscillating voltage (l0 Hz) generated by a function generator and a high-voltage

plumbum zirconate titanate (HVPZT) amplifier. The output of the interferometer
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was analysed using an OSA and the number of 1t phase shifts as a function of the

applied voltage is shown in figure 3.28(b). The inset (optical power as a function of

time on the OSA) in figure (b) shows a schematic of when 5 1t phase shifts were

measured. In the final experimental CoWDM transmitter phase control was

achieved using a piezo fibre stretcher, with a dynamic range of-110 1t radians, more

than sufficiently allowing for the large phase drifts expected for a CoWDM

transmitter constructed from fibre-pigtailed devices. A substantially smaller dynamic

range of a few 1t radians would be required for a hybrid or monolithically integrated

modulator array due to the significantly reduced optical phase drifts associated with

such an implementation. The piezo was controlled during the experiment by a

feedback signal from the phase stabilization circuit which is discussed in detail in

the next section.

3.5.5 Dispersion Management of Optical Comb

As we can see from figure 3.22 which shows the experimental setup of the CoWDM

transmitter there is a certain amount of single mode fibre between the comb

generator and the data encoding section. This fibre caused a delay of the comb

signal relative to the data signal at the data encoding section, which resulted in a

deterioration of the measured spread of receiver sensitivities of the CoWDM

tributaries as described in the next chapter. This issue, while present during single

banded CoWDM operation, arose as a major problem during the initial experimental

work on the multi-banded CoWDM setup (section 5.4) where we found an

unacceptably large spread in the receiver sensitivity values between the channels at

the extremeties of the comb spectra. The total fibre length between the comb and

the data encoder, taking into account the EDFA (20m), polarisation controller (6m),

splitters (4m) and other patch cords (-10m) was estimated to be approximately 40m.

Ifwe consider a multi-banded CoWDM signal which may have a total bandwidth of

up to -20 nm the total delay in 40 m of SMF would be -15 ps. This figure

represents approximately 64 % of the bit period of a 42.6 Gbit/s CoWDM tributary,
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a figure that would significantly delay the comb signal with respect to the data signal

and cause a large spread in the measured receiver sensitivity values. In order to

cancel the effect of this delay on the comb signal before the CoWDM transmitter a

-6 m long piece ofDCF (-127.29 pslnm/krn) was inserted between the optical comb

generator and the 27 dBm EDFA. This resulted in a reduction in the spread of the

receiver sensitivity values, as shown in figure 4.30 where the receiver sensitivity

spread of the tributaries was reduced to just over 3 dB in a 112 km transmission

experiment.

3.6 Phase Stabilisation [99J

The Coherent WDM transmitter operates on the principle of controlling and

optimising the optical phase relationship between adjacent optical channels, such

that the interference between adjacent channels is coherent and is aligned to increase

the eye opening at the receiver as shown in the previous section. Such fundamental

phase control necessitates continuous monitoring and stabilisation of the relative

phase delays throughout the operational lifetime of the transmitter. In the previous

section we showed the CoWDM transmitter configuration in detail and noted the

role of the piezo-ceramic cylinder in controlling the phase relationship between

adjacent channels. The high voltage feedback signal controlling the expansion and

contraction of the piezo cylinder was generated by a phase stabilisation circuit which

is described in sections 3.6.1 and 3.6.2. Finally two different implementations of the

circuit based on different technologies are discussed and compared.

3.6.1 Phase Stabilisation Circuit

In this phase stabilisation technique an error signal was acquired by monitoring the

power levels of the interfering channels at the output of the transmitter and a

feedback signal based on this error signal was used to control the piezo fibre

stretcher.
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Figure 3.29. Phase stabilisation circuit

Numerical simulations, using VPI Transmission Maker 6.5, showed that the total

output power of the CoWDM transmitter is highly correlated with its bit error rate

(BER) performance at the receiver, as per figures 3.30(a) and 3.30(b). This

encouraging result led to an experimental phase stabilisation circuitry, as shown in

figure 3.29, where an error signal was extracted from the CoWDM transmitter

output using an optical filter. Despite the fact that a CoWDM signal generated from

a seven channel optical comb has a narrow bandwidth of -0.3 nm a broad (1.1 nm)

filter was used in order to make the stabilisation circuit compatible with multi­

banded operation (section 5.4). A simple low frequency photoreceiver was used to

convert the optical signal to the electrical domain which was then passed to a data

acquisition board (DAQ). The board was set to a sampling rate of I kHz, with 20

averages, in order to enable real time monitoring of the output power (or the error

signal), and hence the relative optical phase.

108



100 200

Relative Phase (j

IE-6

IE-?

IE-S!

IE-9 [

IE-IO !

ClI::
UJ IE-II ra:l

IE-12 r

IE-1J f

IE-14 !

IE-15
100 200 -200 -100 0-200 -100 0

Relative Phase (j

9.15

9.55

9.45

9.20 .

9.50 .

-:i 9.40·
«i-t 9.35·
~
o

Q. 9.30·
:;
~ 9.25·
o

Figure 3.30. Simulated (a) total output power and (b) HER as a function of

relative phase

Typical BER measurements correlated to this monitor are shown in figure 3.31. This

correlation is maintained even when the output was not spectrally filtered,

suggesting that only immediately adjacent channels are required to generate the error

signal. This gives us confidence to predict that this control strategy may be applied

to arrays of multiple modulators, with independent error signals for each ann

generated either via tap couplers within the modulator array or by spectrally

resolving the overall transmitter output.
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The control loop was closed using a stabilisation algorithm on the PC based on a

simple low amplitude dither (resulting in less than ± 5 degrees peak-to peak phase

modulation). The LabVIEW and DAQ settings were selected to optimise the loop

bandwidth, by taking into account the observed frequency of the error rate

fluctuations (- 0.14 Hz) and the signal-to-noise ratio of the error signal. The

algorithm used to select the desired phase which is based on adding or subtracting a

fixed preset step value to the current feedback signal based on the value of the phase

obtained by the DAQ card with respect to the target value is shown in figure 3.32

below.
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Figure 3.32. Algorithm to select desired phase for standard phase stabilization

circuit

3.6.2 Enhanced Phase Stabilisation Circuit

Whilst the phase stabilisation circuit described in section 3.5.1 is a simple cost­

effective monitor, the contrast ratio of the error signal is low (as shown in 3.6.3),

necessitating the use of an artificial dither signal, which would be expected to reduce

the speed of the phase stabilisation circuitry. To enhance the contrast ratio of the

error signal, the power of the residual 42.6 GHz beat signal between adjacent

channels was monitored. In section 3.5.2 it was hypothesized that any harmonics or

sub-harmonics of the 85.2 GHz sine wave should vary accordingly with changing

phase. This hypothesis was verified by using a 50 GHz photodetector and a double

balanced mixer to generate an error signal based on the amplitude of the residual

component of the 42.6 GHz optical signal after the transmitter.

The configuration of the enhanced circuit is shown below in figure 3.33.
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Figure 3.33. Enhanced phase stabilisation circuit set-up

The double balanced mixer was used to obtain the difference between the 42.6 GHz

clock signal generated by the PPG (local oscillator (LO) input) and the 42.6 GHz RF

component of the signal (RF input) from the output of the transmitter as shown in

figure 3.25. The resultant low frequency RF signal was amplified using a low-noise

preamplifier with an incorporated 6 dB/oct roll-off low-pass filter with a cutoff

frequency of 3 Hz and a gain figure of 20, and was then converted to a digital signal

using a DAQ AID board. Similar to the circuit described in 3.5.1 the control loop

was closed using an enhanced stabilisation algorithm on the PC. This VI,

implemented in LabVIEW 7.0, enabled full monitoring and control of the optical

phase relationship between adjacent channels and was based on a PI algorithm (as

shown in figure 3.34 below) which eliminated the effect of the amplitude dither on

the stabilisation performance of the original circuit. In the algorithm the samples

obtained from the DAQ are averaged and the absolute difference between this

average and the desired phase value is obtained. This is multiplied by a 'gain

control' term and added or subtracted to the previous error signal value to generate

the new error signal. This error signal is fed back to the DAQ and subsequently

amplified before being used to drive the piezo fibre stretcher which controls the

phase condition in the transmitter.
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Figure 3.34. Enhanced phase stabilisation algorithm

Section 3.6.3 provides a detailed comparison between the performances of the two

phase stabilisation circuits.

3.6.3 Performance Comparison

In order to compare the error signals generated by the two phase stabilisation circuits

the HVPZT amplifier connected to the piezo-ceramic fibre stretcher in the CoWDM

transmitter was driven with a linear ramp and the error signals from both phase

circuits were monitored simultaneously using the set-up shown in figure 3.35 below.
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Figure 3.35. Experimental configuration for phase stabilisation circuit

comparison

The linear ramp was applied to the piezo-ceramic fibre stretcher over a duration of

approximately 2 minutes and resulted in oscillations of the BER at the receiver

(from 10-4 to 10-10
). During this time the error signals generated by each phase

stabilisation circuit were monitored and the results are presented in figure 3.36

below. The fluctuation of the BER over the duration of the experiment is also

shown in figure 3.36 (bottom solid trace).
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It is clear from figure 3.36 where the normalised outputs of both phase detectors are

plotted as a function of time that the contrast ratio of the error signal generated by

the enhanced phase stabilisation circuit (dotted trace) is significantly enhanced with

respect to the original one (dashed trace). The resultant SNR increase enabled a

more precise selection of any particular relative optical phase between adjacent

channels in the CoWDM transmitter, and in tum this lead to a more stable BER at

the receiver.

The stability of both phase stabilisation circuits as function of time is shown

in figure 3.37, where the BER of the CoWDM system was monitored over a period

of approximately two hours. In both cases the power to the levels input to the

preamplified receiver were reduced somewhat, in order to enable full visibility of the

error rate variation. In this experiment, the relative phase was locked to its optimum

value, and the BER at the receiver was monitored. The first 10 minutes shows the

expected BER fluctuations when the stabilisation control was switched otT, as the
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phase was left to drift over time. On the other hand, when the stabilisation circuit

was switched on, and locked to a particular phase value, the BER was maintained

constant throughout the remainder of the experiment, within experimental errors.

For the photodiode based phase stabilisation circuit (a) the BER can be seen to

fluctuate between 10.7 and below 10-\0 during the period of time when the phase

stabilisation circuit was switched on. The corresponding level of fluctuation for the

mixer based phase stabilisation circuit was between 10.8 and below 10·\0. While the

average BER during the phase locked period is approximately the same «a) BERavg

= 4 x 10.9 and (b) BERavg = 3 x 10.9) for both phase stabilisation circuits the

difference in the standard deviation value «a) BERsldev = 1 X 10.8 and (b) BERstdev =

1 x 10.9) verifies that the enhanced stabilisation circuit is able to maintain a more

stable phase position than the photodiode based circuit. Locking the system over a

much longer period of time (> 48 hours) using the photodiode based stabilisation

circuit has shown little degradation, when analysing FEC performance with

CoWDM, as shown in chapter 4.
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Figure 3.37. Performance of (a) Photodiode based stabilisation circuit (b) Mixer

based stabilisation circuit as a function of time
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In addition to this, the original stabilisation circuitry described above was also used

with a multi-band CoWDM system, across a bandwidth of over 1.5 nm which is

described in detail in chapter 5. The 1.1 nm tuneable bandpass filter was still used,

and the same randomly selected channel locked the relative phase of the whole

system throughout the experiment. This is promising as it shows than a transmitter

implementation consisting of an 'n x modulator' array could be easily phase locked,

and would be independent of the channel being analysed. This is significant for high

capacity multi-banded CoWDM where a number of CoWDM bands would be

independently modulated and transmitted over the same fibre link.
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3.7 Optical Filter Characterisation and Optimisation

The purpose of an optical filter in a typical WDM-based optical communication

system is to select the channel of interest at the receiver. In order to be successful in

this the optical filter must have a sufficient bandwidth to transmit the target channel

but narrow enough to cancel the effect of neighbouring WDM channels. In a

traditional WDM system where channel spacing is of the order of 100 GHz optical

filter design and selection is a relatively straightforward issue [100, 101]. However

for a 42.6 Gbit/s CoWDM system where the channels are tightly spaced (channel

spacing equal to the bit rate) correct optical filter selection at the receiver is not

trivial and has a large impact on system performance. This section deals with the

optical filter characterisation and optimisation process for CoWDM by both

simulation (3.7.1) and experimental methods (3.7.3).

3.7.1 Numerical Simulation

In this section we present numerical simulations performed using VPI Transmission

Maker V7.0 which evaluate the performance of a number of different receiver-side

optical filtering strategies. Figure 3.38 shows the configuration of the CoWDM

transmitter and receiver used for the simulations presented in this section. Where

possible, parameters such as insertion loss, gain and noise figure were taken from

the experimental components described in previous sections. The schematic differs

from the experimental setup shown in previous sections by having an array of 7

independent chirp free MZ modulators for the data encoding of the optical channels

and is an extension of the schematic described in [102] where 5 channels are

simulated.
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Figure 3.38. CoWDM transmitter and receiver simulation setup

The simulated optical receiver employed two optical amplifiers (noise figure = 5

dB), a broad bandpass filter (2.8 nm) for band selection and a demultiplexing filter

to select the target channel. As the impact of the demultiplexing filter on the

performance of the system was the subject of this investigation the other elements of

the CoWDM transmitter and receiver block were optimised for each filter

configuration. The results of these simulations for are presented in figure 3.39

below.
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(open symbols) and without (closed symbols) an AMZI

Figure 3.39 shows the Q factor of the system as a function of the optical bandwidth

of the Gaussian bandpass filter. An AMZI with a fixed free spectral range (FSR)

equal to twice the channel spacing (85.2 GHz) was then concatenated with the

Gaussian filter and the Q factor measured for a range of bandwidths. For the lower

filter bandwidths (20-40 GHz) the system is limited by inter-symbol interference

(lSI). As the filter bandwidth is increased the lSI is reduced but degradations due to

inter channel crosstalk become more significant. This increased crosstalk strongly

affects the system without the AMZI, limiting the optimum Q-factor to -20 dB when

a 50 GHz FWHM Gaussian filter is used. The effect of the AMZI is to suppress the

carrier contributions from the two nearest neighbour channels, thus reducing the

impact of the interchannel crosstalk. This resulted in optimal performance for a

wider range of filter bandwidths (approximately 25 GHz for a 1 dB penalty). An

optimum Q-factor of -20 dB was measured for a -70 GHz FWHM Gaussian filter

concatenated with the AMZI.
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It is apparent from the numerical investigation presented above that an

optimum filtering strategy is central to the operation of CoWDM. In the next

section we will present a discussion on the experimental characterisation of a

number of optical filters and finally present the results of a comparison study to

determine the optimum filter configuration.

3.7.2 Optical Filter Characterisation

The numerical investigation presented above suggests that a Gaussian optical filter

concatenated with an AMZI is the optimum filtering strategy for 42.6 GHz spaced

CoWDM. The experimental set-up shown in figure 3.40 was used to characterise

the response of three Gaussian optical filters with 3 dB bandwidths of 0.43 nm, 0.64

nm and 0.95 nm (broad filter) respectively.

CW laser H ....__filt_e_r_--IH...._~_o;_t_:_;---I

Figure 3.40. Filter measurement setup

Figure 3.41 shows the measured amplitude response of the three filters as a function

of wavelength. The filters were tuneable across a wide range so an arbitrary centre

wavelength of approximately 1553.4 nm was chosen for the investigation.
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Figure 3.41. Amplitude as a function of wavelength for three Gaussian filters

(0.95 nm, 0.64 nm and 0.43 nm) as a function of wavelength

An AMZI with a FSR of 85.2 GHz, identical to the one characterised in section 3.4.2

was used in concatenation with both the 0.64 nm and 0.43 nm bandpass filter in the

experimental demonstration described in the next section.

3.7.3 Experimental Filter Selection

In order to select the optimum receiver-side filter strategy for the CoWDM testbed a

number of different filter combinations were tested. Receiver sensitivities for all

seven 42.6 Gbit/s CoWDM channels were measured for two of the filter

configurations shown in figure 3.41. For the 0.43 nm and AMZI, whilst the signal

experienced low levels of 151, the modest roll-off and phase response of the filter de­

localised the crosstalk somewhat, resulting in a degradation of the zero level of the

CoWDM signal. Moving from a 0,43 nm to a 0,64 nm bandwidth filter resulted in a

more satisfactory location of the crosstalk and an improvement of -5 dB in the
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with a FSR of twice the channel spacing to reject the carrier contribution from the

nearest neighbour channels. Experimentally this was implemented by using a 0.64

nm Gaussian filter and an 85.2 GHz FSR AMZI.

3.8 Experimental Verification of 2.2.3

3.8.1 Introduction

In sections 2.2 and 2.3 it was shown both theoretically and numerically that by

placing certain constraints (i.e. making the data encoding bit rate equal to the

channel spacing) on a standard WDM system the residual inter channel crosstalk can

be controlled by optimising the relative optical phase relationship between the

optical channels at the transmitter. This section presents experimental verification of

this feature of CoWDM. In addition to this results are presented which show the

impact of the other terms in equation 2.18 (reproduced for reference below), namely

the relative electrical delay and receiver side filters on the level of crosstalk in the

system.

(2.18)

Finally the impact of misalignments between the channel spacing and the bit rate are

discussed.

3.8.2 Optical Phase Relationship in CoWDM Transmitter

In chapter 2 it was proposed that optical phase relationship between the channels in

the transmitter has a significant impact on the overall performance of the CoWDM

transmitter, i.e the crosstalk depends on the optical phase: SalJr6 oc: e'(.c\;""). In the
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sensitivity of -21.5 dBm. However, this would not be practical for a real system as

all channels would be received simultaneously and therefore twaeaking of the phase

of the individual channels would not be possible. It is much more feasible to have a

system where a single optimum fixed optical phase value is selected to give

acceptable performance across all channels at the same time. The circles represent

this condition where the initial optical phase was maintained at the same optimum

value throughout the receiver sensitivity measurements for all tributaries resulting in

an average receiver sensitivity value of -21.1 dBm. Finally the worst phase for each

tributary was selected and the receiver sensitivity measured. This condition is

represented by triangles in the figure above. A large average receiver sensitivity

penalty of approximately 7 dB was measured. It is clear that in every case the

receiver sensitivity of the channel is severely degraded for the worst optical phase

position. The spread (14 dB) of the tributaries for the worst phase condition is also

considerable larger than for the other conditions (approximately 2 dB in both cases).

These results verify the importance of the optical phase relationship between

adjacent channels in the CoWDM transmitter. Figure 3.44 below shows the received

eye diagrams for tributary -1 in each configuration.
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Conversely the transmitted eye for a mis-aligned system has the same characteristic

shape as the received eye of a correctly aligned CoWDM system. The next section

continues to look at the impact of various transmitter parameters on the performance

of CoWDM by considering the effect of changing the channel spacing value with

respect to the bit rate.

3.8.4 Sine Wave Term

In the conventional CoWDM system which has been introduced in this chapter

precise coincidence of the data rate and comb spacing is necessary and is achieved

by using a common clock source from the PPG. However in equation 2.18 we

observed we observe that deviation from this ideal condition may be accommodated

via appropriate adjustment of alternative parameters, such as the optical phase in the

transmitter. In this section we highlight the effect which this sine wave, located at

the channel spacing has on the performance of the CoWDM transmitter

(e/(~arl+~..,.). For the following BER evolution graphs it is important to note that

the power levels input to the pre-amplified receiver were intentionally reduced in

order to enable full visibility of the error rate variation. The experimental setup

shown in figure 3.48 below was used to carry out the 'unsynchronised' part of this

investigation.
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Figure 3.48. Experimental setup for unsynchronised CoWDM

In figure 3.49 below the phase stabilised BER is plotted for two comb frequencies, a

synchronous drive signal at 42.6 GHz (squares) and an asynchronous drive signal at

42.0 GHz (circles) with the phase stabilisation circuit set for best (closed symbols)

and worst (open symbols) BER performance. The original phase stabilisation circuit

described in section 3.6.1 was used for this investigation.
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the transmitter was investigated. It was shown that despite differences in the drive

frequency of the comb and data signals of up to 2 GHz error free operation could be

achieved by correct tuning of the optical phase relationship in the transmitter. These

results experimentally verify the conclusions of section 3.6.3, highlighting the

importance of the optical phase term and showing that the other CoWDM constraints

such as ensuring the channel spacing is equal to the bit rate are necessary for optimal

system performance.
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3.9 Conclusion

In this chapter we have presented details on the design and implementation of a

CoWOM optical testbed capable of operating in the 40-43 Gbit/s range, with which

the majority of the experimental work described in subsequent chapters was carried

out.

In sections 3.2 and 3.3 a method of optical comb generation using a pair of

amplitude modulators and its suitability as a wavelength source for WOM systems

was discussed. It was shown that up to 11 comb lines can be generated with flatness

of less than 2 dB and a SMSR of -12 dB by using an enhanced comb generator

based on a cascaded pair of Versawave electro-optic 40 Gbit/s polarisation

modulators. This comb generation technique exhibits many advantages over

alternative techniques and has potential for application across a range of WOM

technologies (e.g. a wavelength source for 100 Gbit/s Ethernet). Following this the

CoWOM transmitter was described in detail and the role of a phase stabilisation

circuit in the transmitter was outlined. The CoWOM transmitter is based on a phase

preserving data modulator array with an electrically driven piezo fibre stretcher to

maintain the optical phase relationship between the adjacent channels. The

operation of the fibre stretcher and the associated phase stabilisation circuit was the

subject of section 3.5 where we showed two different implementations of the circuit

and illustrated the enhanced stabilisation performance of the mixer based signal by

monitoring both error signals as a function of time with a fluctuating BER. The

impact of the receiver side optical filters on the performance of CoWOM was

investigated by experiment and simulation in section 3.7. A number of different

filters were experimentally characterised and used to filter the target CoWOM

channel at the receiver. It was shown that in the case of 42.6 GHz spaced CoWOM

a 0.64 nm bandpass filter used to select the target channel and a 85.2 GHz FSR

asymmetric MZO for rejection of the crosstalk from adjacent channels represent the

optimum filter configuration. In this section we also presented a description of the

pre-amplified optical receiver configuration used in the CoWOM experimental

work. Finally the characteristics of CoWOM which were introduced in chapter 2
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were investigated experimentally in section 3.8. It was demonstrated that the optical

phase relationship between adjacent channels in the transmitter can be used to

control the level of crosstalk occurring between channels at the receiver. The results

of investigations to assess the impact of other CoWDM transmitter parameters such

as the RF delay between the comb and the data were also presented. In addition,

some of the key devices such as high speed optical modulators, PPG and ED, which

enabled the development of the CoWDM system, were discussed.

In the next chapter we will look at a range of performance characteristics of

CoWDM as a transmission format, including its tolerance to various fibre induced

transmission impairments.
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Chapter 4

CoWDM Performance Characteristics

4. 1 Introduction

Recent demonstrations of high ISD in optical communication systems have required

the use of combinations of complex techniques such as advanced modulation

formats, polarisation multiplexing and transmitter prefiltering [103, 104, 105]. In

chapters 2 and 3 we have presented a novel transmission format called CoWDM

which we believe to be a simple cost-effective technique for achieving similarly high

ISD without the need for much of the complexity. We have described in detail the

experimental implementation of a CoWDM transmitter as well as the alignment

strategy required to achieve CoWDM. In addition to this the implementation of a

simple preamplified optical receiver for use with the CoWDM transmitter was

discussed.

In this chapter we set out to investigate a wide range of performance features

of CoWDM using the transmitter and receiver configurations described previously.

In section 4.2 we consider the basic back-to-back performance of CoWDM in order

to verify that an ISD of I bit/slHz can be achieved using NRZ modulated CoWDM

at 42.6 Gbit/s. We then consider the transmission of such a signal over a moderate

length of standard SMF in order to determine if there are any transmission induced

penalties which need to be considered for the CoWDM format. In section 4.3 the

performance ofCoWDM when combined with FEC codes is considered. FEC codes

are widely used in modem optical communication systems to correct for errors at the

receiver thus allowing for increased system margins in terms of transmission

distance, repeater spacing, launch power etc. Given the channel correlation of

CoWDM and the potential dominance of crosstalk penalties the Gaussian noise

statistics of the system may be altered. Therefore if CoWDM is to be considered as

a candidate transmission format for use in such systems it is necessary to verify its
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compatibility with standard FEC techniques. Furthermore many high ISD systems

reported in the literature [106, 107] require FEC in order to correct for back-to-back

errors. Section 4.3 in this chapter will verify that CoWDM allows a system designer

to use the additional margin afforded by FEC for genuine transmission impairments.

The final sections in this chapter deal with the impairments which can affect

optical signals during transmission in fibre, namely dispersion and nonlinear effects.

While the issue of PMD is not explicitly covered in this chapter the performance of

CoWDM in transmission links with PMD is considered in chapter 5. As we have

shown earlier in this work CoWDM requires a fixed phase relationship between

adjacent optical channels in the transmitter. The investigation presented in these

sections assesses the impact of dispersion and nonlinearities on this phase

relationship by monitoring the performance ofCoWDM.
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4.2 CoWDM at 1 bit/51Hz ISD

4.2.1 Introduction

This section is concerned with the performance of a standard 42.6 Gbit/s NRZ

CoWOM transmitter as outlined in Chapter 3. We will first look at the back-to-back

performance of the transmitter when combined with a simple preamplified receiver

(section 3.3) and present results showing an ISO of 1 bit/slHz for the CoWOM

transmission format with a total throughput of 298 Gbit/s for a single polarisation

NRZ signal. Following this we consider transmission of a CoWOM signal over

approximately 80 km of standard SMF using a standard EOFA amplification

scheme.

4.2.2 298 Gbit/5 CoWOM with 1 bit/51Hz ISO

The experimental configuration that was used to achieve 298 Gbit/s capacity with an

ISO figure of 1 bit/slHz consisted of the CoWOM transmitter as described in section

3.5 and the preamplified receiver as outlined in section 3.3. An overview schematic

of the back-to-back setup is shown in figure 4.1 below.
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Figure 4.1. Back-to-back CoWDM experimental setup

The output of the comb generator was a seven channel optical comb with 42.6 GHz

spacing between adjacent channels and a flatness of <0.2 dB, resulting in a total

bandwidth ofapproximately 0.3 nm as shown in figure 4.2.

o

E -10
m
:E.

I -20

;a
o

-30

15591558155715561555
.....0 +-...aw..........UoIILf........--'t---+---t--+--t---"+--&..~..............-'t

1554

Wavelength (nm)

Figure 4.2. Optical comb generator output
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The comb flatness was maintained by a simple feedback loop (section 3.4.3). The

SMSR was kept above 12 dB and the SNR from the peak was approximately 45 dB.

An optical pre-amplifier with 27 dB gain and 5 dB noise figure placed before the

transmitter was used to in order to overcome the losses within the fibre-based

interferometric transmitter. The transmitter was aligned for optimal perfonnance

according to section 3.5.2 and polarisation controllers within the transmitter were

adjusted to ensure co-polarised output. The odd and even channels were separated

using a disinterleaver at the input of the data encoding section and were NRZ data

encoded with NRZ 27_1 PRBS data and delayed data-bar patterns respectively at a

bit rate of 42.6 Gbit/s. Within the modulator array, optical delay lines and a

feedback controlled piezo fibre stretcher were used to maintain the optical phase

relationship between the channels. The simulated and experimental optical spectra

at the output of the transmitter are shown in figure 4.4 (a) and (b) respectively. The

simulations were carried out using VPI Transmission Maker 7.0 and a block diagram

of the simulation setup is shown below.

Figure 4.3. Simulation setup for transmitted spectrum

Seven 42.6 Gbit/s tributaries spaced by 42.6GHz resulted in a total capacity of 298

Gbit/s and an ISD of 1 bit/s1Hz.
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Figure 4.4. (a) Simulated transmitted optical spectrum (b) Experimental

transmitted optical spectrum

The main difference between the two spectra is the presence of a number of

unwanted side modes in the experimental spectrum. These are generated by the side

modes of the optical comb generator as described in the previous chapter, and have

the effect of slightly reducing the achievable ISO in the more advanced multi-
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CoWDM, because of the sharp roll-off would have relatively improved performance

in a high ISD system.

Experimentally in the back to back condition the signal at the output of the

CoWDM transmitter was used directly as the input to a preamplified optical

receiver. All seven 42.6 Gbit/s tributaries were measured and error free operation

was achieved in all cases. In the back-to-back case the average receiver sensitivity

was measured to be -22.3 dBm at a BER of 10.9 with a standard deviation of 0.58

dB. The peak-to-peak spread in the receiver sensitivities of approximately 1.5 dB.

The receiver sensitivity curves were plotted in terms of total received power for all

seven tributary channels, and are shown in figure 4.7 below. Due to the increased

channel count the average receiver sensitivity for the seven tributaries was predicted

to be approximately 7 times or 8.45 dB greater than the sensitivity for a single NRZ

channel which was measured to be -30 dBm for this receiver configuration in

chapter 3. In this case the actual difference was measured to be 0.7 dB lower than

expected at approximately 7.7 dB and can be accounted for by the slightly degraded

performance of the single NRZ channel (the expected receiver sensitivity was

approximately -31 dBm). The received spectrum for back-to-back configuration

was the same as the transmitted spectrum.

145



o Ch-3

• Ch-2
<J Ch -1

• ChO
o Ch +1

• Ch +2
\l Ch +3

4

5

~
6

W
CO 7C;
0.- 8

9

10

11

12

-30 -28 -26 -24 -22 -20 -18 -16

Total Received Power (dBm)

-14 -12

Figure 4.7. Receiver sensitivity curves for back-to-back 42.6 Gbitls CoWDM

The received eye diagrams for each of the 42.6 Gbit/s tributaries are also shown.

Each of the eyes shows the characteristic CoWDM shape and is open at the centre

and has the residual crosstalk pushed to the eye crossing. The distance between the

peaks ofadjacent eyes is approximately 23.4 ps.
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from CoWDM Tx

Figure 4.10. Transmission section

This transmission section consisted of a pre-compensated unrepeatered link of 80

km of SMF-28 which had a residual dispersion of approximately -7 ps/nm at the

receiver. A pair of variable optical attenuators (VOA), positioned before the fibre

sections and an EDFA positioned between the fibre sections were used to control the

power of the optical signal launched into both fibres. For the DCF section the total

launched power was 3 dBm, whereas for the SMF section the total launch power

was 11.6 dBm. These values were measured using optical power meters (PM)

placed before the fibre sections and were chosen such that nonlinear effects in the

fibre were not generated. The EDFA positioned between the fibre sections to boost

the signal had a gain of 20 dB and a noise figure of 5.5 dB. Another EDFA with the

same characteristics was used after the transmission section to compensate for the

fibre losses before the receiver.

In the same manner as for the back-to-back condition all seven CoWDM

tributaries were measured at the receiver. All of the tributaries demonstrated error

free performance and the receiver sensitivity curves are shown in figure 4.11 below.
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Figure 4.11. Receiver sensitivity for all seven channels over 80.km ofSMF

The average receiver sensitivity of -19.4 dBm, with a standard deviation of 3 dB

after transmission is slightly degraded with respect to the back-to-back case. The

residual dispersion of -7 pslnm was responsible for the larger spread of the receiver

sensitivity values than in the back-to-back case. This is because the residual

dispersion causes a walkotT in the phase relationship between adjacent channels

which results in an increased variation in the receiver sensitivity values. Section

4.4.3 shows the impact of dispersion on the CoWDM format and we can see from

figure 4.23 that a residual dispersion figure of -7 pslnm is predicted to result in a

receiver sensitivity penalty of approximately 3 dB. In addition to this much of the

spread can be attributed to the dispersion of the optical comb signal with respect to

the data in the transmitter which was in place when this investigation was conducted.

This feature of the transmitter was discussed in the section 3.5.5 in the previous

chapter where a solution to the problem was proposed and the implementation

details discussed. As will be shown later in the thesis improved results (reduced

spread in receiver sensitivity values) were obtained with optimised implementation.

The received 42.6 Gbit/s spectra and eyes for three tributaries are shown below in
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free after transmission. This is a significant result as it confirms that the CoWOM

transmission format is not adversely affected by transmission impairments in

standard fibre.

4.3 Performance Evaluation of CoWDM with FEC codes

4.3.1 Introduction

As modem high bit rate optical communication systems achieve higher and higher

ISO values by using a wide range of techniques the BER of the transmitted channels

is limited not only by OSNR but also increasingly by linear and non-linear inter

channel crosstalk [110, III]. As a result the error statistics governing such systems

may no longer be the same as for widely spaced channels and the performance of

FEC codes cannot be assumed under such conditions. We have presented CoWOM

as a novel transmission format which can achieve I bit/s/Hz using NRZ modulation

without prefiltering in the transmitter. In addition to this high ISO operation, the

specific phase relationship between the adjacent optical channels in CoWOM may

result in a different set of error statistics. At the beginning of this project we

expected the errors in the system to be correlated across the channels due to the

nature of CoWOM and it was intended to develop novel FEC codes for use with

CoWOM. On examination of the error statistics however it became apparent that

this would be unnecessary as the error distribution of a CoWOM system was the

same as for a standard widely spaced WOM system. Therefore in this section we

demonstrate CoWOM in combination with a range of FEC codes in order to fully

investigate the performance of FEC codes with the novel transmission format

CoWOM. In order to provide a reference to a standard system these results are

compared with the performance of the same FEC codes on a single 42.6 Gbit/s NRZ

channel. The investigations described in this chapter were also the first reported full

line rate FEC measurements at 42.6 Gbit/s as all previous work reported in the

literature was carried out at the demultiplexed line rate of -10 Gbit/s or lower.
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4.3.2 Overview of FEe codes

As was mentioned in chapter I FEC codes play an important role in modem optical

communication systems. Most installed optical systems make use of standard Reed­

Solomon (RS) FEC codes in order to correct for errors at the receiver [82]. As a

result, where before the introduction of FEC a BER of <10.15 was necessary for

acceptable performance in an optical communication system at the beginning of life,

FEC codes allow for a degradation of the received BER before decoding to as high

as _10-3
• This gives system designers additional margin which they can use to

improve other areas of the system, for example to increase transmission distance,

repeater spacing or reduce launch power. The main trade-off required when using

FEC codes is a slight increase in the overall bit rate of the system which is

dependant on the characteristics of the FEC code employed [112].

The most commonly used FEC codes in modem optical communication

systems are standard (I) single stage and (2) concatenated RS codes [113]. RS

codes are a member of the non-binary Bose-Chaudhuri-Hocquenghem (BCH) code

family and have a wide range of applications e.g. (data storage, data transmission).

A full description of the operation of block FEC codes and more specifically the

encoding and decoding of RS codes is beyond the scope of this work but can be

found in [114, 115, 114].

(I) Single stage RS codes

Single stage RS codes are implemented as shown in figure 4.13 below. An

information sequence divided into fixed length blocks is encoded using an FEC

encoder and the resultant FEC frame (of total length 'n') is transmitted. There

are 'n-k' information bits and 'k' overhead bits in any given FEC frame. Errors

introduced in the transmit section (represented by dashed vertical lines on the

FEC frame) are corrected using a FEC decoder and ideally the original

information sequence is recovered. Single stage codes are relatively simple to
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of the elements in the set. In this work a random block interleaver and a

corresponding disinterleaver, both implemented in MATLAB were used [119, 120].

4.3.3 CoWDM and FEC [121]

In order to evaluate the performance of FEC codes with CoWDM, PRBS data was

generated and encoded in software to form the code words for each of the RS codes

considered. A list of the RS codes investigated in this section along with the

overhead associated with each code is shown in table 4.1. The standard code used in

optical communications is a concatenated version of the RS (255,239) code.

Q) •
- Q)
en"
.: 0
00

"0
S
ca •
C Q)

S"ca 0
(,)0
C
oo

Code Name Overhead (%) Bit Rate (Gbltls)
RS (255,247) 3.2 41.28-_.

-~----_._~ .- _.•. -
RS (255,239) 6.7 42.68-,-.-- - ---- .-
RS (255223) 14.4 45.76

RS (255,243) +
10.4 44.16

RS (243.231)
_. ----_..__,..._0"- ~ .. .... --~._._.__._. ~--_. . ....._----_.

RS (255,239) +
14.4 45.76

RS (239,223)

Table 4.1. Table of FEC codes used with CoWDM

The encoding and decoding functions [122] were adapted for the concatenated codes

by incorporating a block interleaver section which scrambled the bitstream

according to a randomly generated seed, and a zero padding function which ensured

that there were no ~Ieftover' bits as a result of the double stage encoding. This was

necessary for the correct uploading of the test words to the pattern generator which

only accepted data patterns of specific fixed lengths. This also determined the

number of PRBS blocks which were encoded. The FEC overhead and data frames
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4.3.4 Summary

In this section the concept of combining FEC codes with the CoWOM

transmission format in order to examine the error statistics generated in a high ISO

CoWOM system has been addressed. A range of different RS codes, both single

stage and concatenated, were used to encode a PRBS data stream in software which

was then modulated onto both a multi channel 298 Gbit/s CoWOM NRZ signal and

a single channel 42.6 Gbit/s NRZ signal. Results for concatenated codes after

decoding of the data in software showed similar performance for both multi channel

and single channel setups. In the case of single-stage codes however a variation in

performance would be expected if the high ISO CoWOM system was governed by a

different set of error statistics than the single channel NRZ system. As was

presented in section 4.3.3, however the performance of the single-stage codes was

almost identical for both conditions leading to the conclusion that a high ISO multi

channel CoWOM system is governed by the same error statistics at those affecting a

tributary channel, i.e. a single 42.6 Gbit/s NRZ channel.

In conclusion we have confirmed the compatibility of CoWOM with the

standard RS FEC codes used in modem optical communication systems and we have

demonstrated that there are no changes to the error distribution affecting a high ISO

CoWOM signal when compared to single channel operation.
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4.4 Dispersion Tolerance ofCoWDM [123J

4.4.1 Introduction

We have already seen that the principle of the CoWDM transmitter is based on

control of the relative optical phase relationship between adjacent channels in order

to allow optimal alignment of the relative optical phases thus increasing the eye

opening at the receiver. Optical signals in modem communication systems are

typically transmitted over several hundreds of kilometres and as a result fibre

induced impairments such as chromatic dispersion and fibre nonlinearities must be

considered when choosing a transmission format. In this section we consider the

impact of dispersion on a CoWDM signal and present the results of an investigation

to determine if the signal walk off which one might expect to occur in the presence

of dispersion has an effect on the performance ofCoWDM.

4.4.1 Dispersion in Optical Communication Systems

Fibre induced dispersion effects can severely degrade the performance of a typical

40 Gbit/s high ISD WDM system. There are different types of dispersion but this

section is primarily concerned with chromatic dispersion, where pulses at different

wavelengths propagate through the fibre at different speeds leading to pulse

broadening. For high bit rate, high ISD systems this leads to an increased amount of

temporal broadening which can cause intersymbol interference within the channel

and may increase the width of the crossing region between adjacent channels and

reduces the performance of the system. Figure 1.5 in chapter I showed the

transmission distance as a function of bit rate for a single NRZ channel in standard

SMF which has a CD value of approximately 17 pslnmlkm. It is evident from this

figure that high bit rate systems without dispersion compensation strategies are

limited to very low transmission distances «5 km for 40 Gbit/s) because of the

effects of dispersion. In addition to this pulse broadening effect it might be expected
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that a high ISO system using the CoWOM transmission format would suffer an

additional penalty due to the importance of the phase relationship between adjacent

channels in the transmitter. The impact of dispersion on this phase relationship as

the signal propagates in the fibre is crucial in the evaluation of CoWOM as a

candidate transmission format for use in medium to long haul optical links, where

the effects of dispersion are unavoidable.

4.4.3 Investigation of Dispersion Effects on CoWDM

The experimental setup used for the investigation of dispersion on CoWOM was the

same as that shown in section 4.2.3 except that varying lengths of SMF without

optical amplifiers were used in place of the transmission link. Total SMF lengths of

0, 200, 400 and 600 m were used to increase the amount of dispersion in the link.

The dispersion tolerance for a 298 Gbit/s CoWOM system was investigated by

measuring the receiver sensitivity penalty at a BER of 10-9 between the back-to-back

condition (zero dispersion) and the various conditions where fibre was introduced

between the transmitter and receiver. The results of these measurements which were

initially performed with the optical phase value maintained throughout at a fixed

value (optimised value for the back-to-back condition) are shown in figure 4.21.

The open squares represent the experimental data and the dashed line shows the

performance as predicted by simulations performed in VPITransmission MakerV6.5.

The initial simulations were performed using the setup shown in figure 4.3 where

two data modulators were used to encode the 7 tributary channels.
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Figure 4.21. Receiver sensitivity penalty as a function of fibre length (chromatic

dispersion) for fixed phase condition

The experimental results obtained are in clear agreement with the predictions and a I

dB receiver sensitivity penalty is observed at approximately 3 pslnm. This value is

comparable to the I dB penalty for an 80 Gbit/s OTDM signal [124]. A sensitivity

penalty of 2 dB or less is predicted across a 9.8 pslnm range between -4.8 and +5.6

pslnm. Figure 4.22 below shows received eye diagrams for a randomly selected

tributary before and after transmission over 80 Ion of fibre (as described in section

4.2.3). It is interesting to note that while the eye diagrams after transmission do not

shown distortion at the centre of the eye, the shape of the eye crossings have

changed somewhat with respect to the back-to-back received eye diagrams. As

expected the interference is in the form of RZ-shaped pulses from transitions in

adjacent tributaries which are aligned at the eye crossing.
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Figure 4.23. Receiver sensitivity penalty as a function of fibre length for both

fixed optimised phase condition

For this phase optimised condition the I dB receiver sensitivity penalty is observed

at ±7 pslnm, which is comparable to a 40 Gbit/s signal when the same optical filters

are used in the receiver. The performance improvement can be further quantified in

terms of a receiver sensitivity penalty reduction from 2.64 to 1.05 dB for the

experimental point at 6.4 pslnm. Moreover the predicted dispersion range for a 2 dB

receiver sensitivity penalty has increased from ± 9.1 pslnm to ± 10.7 pslnm, thereby

confirming the benefits of a phase precompensation strategy to combat the effects of

dispersion in a CoWDM system.

In both the simulations and experimental work described above two data

modulators were used in the CoWDM transmitter to independently encode the odd

and even channels with data and delayed data bar NRZ data at 42.6 Gbit/s. However

a ~real-world' implementation of a CoWDM system would use ~n' data modulators

to modulate the ~n' optical channels. In order to verify that the unavoidable
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correlation between interfering channels which occurs in the experimental 2 data

modulator case does not benefit the system in any way we performed the simulations

incorporating seven independent modulators driven by independent data sequences.

These results are presented in figure 4.24 (dashed trace) and it is evident that even

further enhancement of the phase precompensation is possible under these

conditions.

This result is understandable as we now have full control over the optical

phase of each individual channel. When this result is compared with the results

presented earlier in figure 4.23 we can confirm that the experimental demonstration

using two independent modulators represents a 'worst case' scenario in terms of

receiver sensitivity penalty. Figure 4.24 also shows the experimental (closed

symbols) and predicted results (solid trace) for a phase optimised system together

with the estimated I dB penalty dispersion tolerances of a number of high bit rate

systems [36, 125].
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rate systems

It is clear from this figure that the 298 Gbit/s CoWDM signal has a similar

dispersion tolerance to a single 40 Gbit/s NRZ channel when the filter configuration

optimised for CoWDM is used. In contrast with this the 300 Gbit/s reported result is

severely impaired by the effects of dispersion with a tolerance of less than 1 pslnm

at the 1 dB receiver sensitivity penalty. These results indicate that CoWDM has a

distinctly improved dispersion tolerance with respect to other transmission

techniques with a similar throughput, further strengthening its position as a potential

candidate for use in medium and long haul transmission networks where dispersion

due to propagation in SMF can be a limiting factor

The results presented in this section also indicate that the phase relationship

between adjacent optical channels in the transmitter is not destroyed by the effects of

dispersion as the signal propagates through the fibre. This can be understood by

considering what happens at the optical receiver where the CoWDM tributaries are

detected. The target channel is detected in a bandwidth of < 80 GHz which means

that only the phase relationship to the nearest neighbour channels need be
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considered. Because of the low channel spacing (42.6 GHz) of CoWOM the phase

relationship between adjacent channels does not deviate sufficiently from that at the

output of the transmitter to destroy the alignment of the channels.

4.4.4 Summary

This section has presented a detailed investigation of the dispersion tolerance of the

CoWOM transmission fonnat. It was concluded that a 298 Gbit/s CoWDM behaves

similarly in tenns of dispersion tolerance to a single channel 42.6 Gbit/s NRZ

channel. This follows the emerging trend which shows the perfonnance of CoWDM

scaling with its tributary line rate (42.6 Gbit/s in this case) as opposed to its overall

bit rate (298 Gbit/s in this case). This trend augurs well for CoWOM as a potential

candidate for transmission systems which are pushing for higher and higher 150s by

reducing the interchannel spacing and increasing the bit rate. In section 4.4.3 it was

shown that it is possible to mitigate the impact of dispersion to a certain extent by

using phase precompensation in the transmitter. This benefit of this phase

precompensation technique was predicted in Chapter 3 where it was noted that

optimal alignment of the transmitter was dependent on the transmission link and the

demultiplexing filters used in any given system. Moreover the results of this section

imply that the dispersion values investigated do not affect phase relationship

between adjacent channels by enough to destroy the CoWOM condition. The next

section considers the impact of another set of fibre induced impainnents, namely

nonlinear effects on CoWDM.
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4.5 Nonlinear Tolerance of CoWDM

In chapter I the advent of the EDFA was listed as one of the primary technological

breakthroughs which allowed for the widespread development and deployment of

medium and long haul WDM systems. The EDFA provided a way of overcoming

fibre-induced losses across wide range of wavelengths. In the same way the

development of various dispersion compensation techniques including electronic

dispersion compensation (EDC) and pre-chirping have allowed system designers to

combat the effects of group-velocity dispersion (GVD) on the optical signal

propagating in the fibre. This leaves the impact of nonlinear effects on the

transmitted signal as one of the remaining most important impairments to consider

when considering fibre-based communication systems based on EDFA amplification

schemes. In such modem optical communication networks optical signals are

typically transmitted over increasingly long spans of fibre (-100 km) [126, 127] and

consequently the launch power required at the transmitter and at the input to each

fibre span has to be increased. Due to the fact that the response of any dielectric to

light becomes nonlinear for intense electromagnetic fields (39] the effects of fibre

nonlinearities must be taken into account when designing medium and long haul

links. As mentioned already many of these systems use some kind of dispersion

management strategy to reduce the impact of GVD and nonlinear effects and it is

desirable that any new transmission formats such as CoWDM are backwards

compatible with existing dispersion maps. This section describes the experimental

investigation which was carried out to assess the impact of fibre nonlinearities on

CoWDM.

4.5.1 Introduction to Nonlinear Effects in WDM Systems

The intensity of optical signals propagating in optical fibre based communication

systems result in the generation of a wide range of nonlinear effects. These

nonlinear effects which dominate optical communication systems are determined to
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a large extent by certain features of the system itself. Some of these features are

listed in table 4.2 below.

Factors affecting nonlinearities in WDM systems
Operational Wavelength

Amplifier Spacing
Total Link Length

Fibre Type
Launch Power

Dispersion
Channel Spacing

Bit Rate

Table 4.2. Facton affecting nonlinearities in WDM systems

In general system designers are limited in their ability to change many of the

characteristics listed above, for example most installed WDM systems use standard

SMF and the distribution of channels is fixed to that specified by the ITU-T grid

(100 GHz channel spacing). As this work is concerned with transmission formats

used in systems which attempt to achieve higher and higher ISD values by

increasing the bit rate and reducing the channel spacing we will consider the impact

of various nonlinear effects on the design of dispersion management techniques for

use in such systems.

Four-wave mixing (FWM) has been identified as one of the primary nonlinear

effects influencing tightly spaced WDM systems [128, 129, 130]. In a multi-channel

system FWM results in the generation of a new wave at a frequency related to the

frequencies at which the other waves are propagating within the fibre. This

relationship is described in equation 4.4 below, where {d'Ji represents the frequency

of the new wave and aJ" {dJ and {di represent the frequencies of the waves already

propagating in the fibre.

(4.4)
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In a multi-channel system iJ and k can vary depending on the number of

channels and consequently a large range of FWM components can be generated.

These FWM components are not a significant problem when they fall outside the

bandwidth of interest but in some cases they can occur where there already exists a

channel frequency leading to in-band crosstalk. The efficiency of FWM in optical

fibre depends on the chromatic dispersion of the fibre and is at a maximum near the

zero-dispersion wavelength resulting in severe system degradation [131, 132].

Self phase modulation (SPM) is a nonlinear phenomenon which occurs as a

result of the power dependence of the refractive index of optical fibre. It results in

the modulation of the phase of a signal as a result of its own intensity and leads to

spectral broadening of the propagating pulse. In a multi-channel system the effects

of cross phase modulation (XPM) where the nonlinear phase shift of a target channel

can also be affected by the intensity of neighbouring channels. This phase

modulation is also affected by the dispersion properties of the transmission fibre and

it should now be clear that the dispersion in a fibre link must be considered together

with the non-linear properties of the fibre during the system design stage. The

dispersion strategy used must attempt to achieve an overall cumulated dispersion

figure close to zero while making sure that the local dispersion is sufficiently high to

suppress inter channel nonlinear effects. This local dispersion value must also be

carefully chosen as a small local dispersion value with respect to the pulse width

results in an SPM dominated system and a high local dispersion value with respect

to the pulse width results in dominant intra channel effects.

There is an optimum local dispersion for all bit rates which minimises both

of these effects. To manage inter-channel FWM effectively the local dispersion

must remain relatively high and in order to minimise intra channel FWM the

accumulated dispersion must be kept low. Therefore the correct selection of a

dispersion map is vital. For systems operating at bit rates of 10 Gbit/s and lower it is

sufficient to simply use N (where N ~ I but small, e.g. -3) sections of standard SMF

followed by an appropriate length of DCF [133, 134]. At 40 Gbit/s the optimum

solution is a fibre map based on alternating pieces of '+' and '-' dispersion fibre, for

example using spans consisting ofSMF/inverse dispersion fibre (lDF). As we move
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to higher bit rates (~ 160 Gbit/s) the period of the optimum dispersion map becomes

much shorter as it becomes necessary to suppress fibre dispersion and fibre

nonlinearities to an even greater extent due to the reduced pulse width of the higher

bit rate systems. In [135] it was demonstrated that a short period dispersion map

allow for the doubling of the transmission distance for a 160 Gbit/s signal when

compared to a standard dispersion map designed for lower bit rates. Figure 4.25

below shows the typical configurations of the dispersion maps discussed above. The

dispersion map in figure 4.25 (a) is typical of that used in lower bit rate systems

where a SPan of SMF is compensated for by a piece of DCF. This is the map that

was used in section 3.2.1 to enable transmission of CoWDM over a total link length

of 80 km. Figure 4.25 (c) is a short period or dense dispersion map designed for use

with high bit rate systems. However due to the small lengths of alternating

dispersion fibre which must be concatenated in a low loss manner to form a fibre

SPan this dispersion map is complex and expensive to implement and is therefore not

seen as a practical dispersion management solution for optical communication

systems. Finally figure 4.25 (b) represents a dispersion map optimised for 40 Gbit/s

operation where the fibre spans are longer than in a dense dispersion map and can

therefore be implemented in a more cost effective manner.
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Figure 4.25. Ideal dispenion maps for various bit rate systems

In this investigation we consider the performance of a single banded -300 Gbit/s

CoWDM signal as it propagates through a fibre link which has a dispersion map

similar to that shown in figure 4.25 (b) above that has been optimised for 40 Gbit/s

NRZ signals. We look at the nonlinear effects arising from such a configuration and

present results from a single 42.6Gbit/s NRZ channel for comparison.

4.5.2 Experimental Setup and Procedure [136]

The experimental setup used for this study was the same as that described in section

4.2.1 except for the transmission link which was replaced with two 50 km spans of
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dispersion managed fibre and a 12 km span of standard SMF, as shown in figure

4.26 below.

/tom CoWDM Tx

EDFA
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Figure 4.26. Experimental setup
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The fully compensated transmission link consisted of two spans of 50 km

Coming~ Vascade~ RIOOO fibre and an additional 12.1 km ofComing~ SMF-28e~

optical fibre to enable adequate compensation for the residual chromatic dispersion.

The 50 km Vascade~ fibre consisted of two sections, a 33 km long 4+0' section

spliced to a 17 km long 4_0' section. A pair of variable optical attenuators and

EOFAs was used to control the launch power of the signal into each span of

Vascade~ fibre. The optical amplifiers were kept at a constant launch power of 19

dBm throughout the experiment and the optical attenuators were used to control the

launch power of the optical signals. Power monitors before each fibre span allowed

for the measurement of the optical power being launched. The preamplified receiver

was as described in chapter 3. For comparison a 42.6 Gbitls NRZ single channel

operation was also investigated by disabling the comb generator, but with the same

receiver.

The Coming~ Vascade~ R) 000 dispersion-managed fibre solution consists

of large effective area, low attenuation positive dispersion Vascade~ LI000 optical

fibre (+0) followed by negative dispersion Vascade~ Slooo optical fibre (-0). Two

spans (50 km each) were engineered to have an overall dispersion of Omap = -1.98
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ps/nm/km and an overall dispersion slope of 0.0034 ps/nm2/km by adjusting the

relative lengths of the +D1ocal and -D1ocal fibres to 33 krn and 17 km respectively.

The average of the equivalent effective areas of the spans was 75f.1m2
• The Corning~

Vascade~ RIOOO fibre was designed for use in ultra long haul systems and high bit

rate applications [137]. Because of the large effective area of the Vascade~ fibre an

increased nonlinear threshold level compared to standard SMF was expected.

In order to investigate the impact of nonlinear effects on the CoWDM

transmission format the receiver sensitivity of the system was measured as a

function of the increasing signal launch power into the fibre. In addition this

procedure was carried out for the single channel condition in order to provide a

reference measurement. The pulse patterns of received single channel and CoWDM

signal were also captured and analysed to determine the nature of the nonlinear

effects which were present in the system.

4.5.3 Results

Firstly in order to provide a reference measurement single channel 42.6 Gbit/s NRZ

transmission over the 112 krn of dispersion managed fibre was carried out. Figure

4.27 shows receiver sensitivity as a function of launch power for both a single NRZ

42.6 Gbit/s channel (squares) and a 298 Gbit/s multi channel CoWDM signal

(triangles). The circles represent all 7 CoWDM tributaries at launch power of 6.2

dBm.
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Figure 4.27. Receiver sensitivity per channel as a function of launch power per

channel for single channel (squares) and for CoWDM (triangles). Circles

represent sensitivity of each CoWDM tributary at a launch power of 6.2 dBm

There are two distinct regions to the single channel plot, firstly below -5 dBm

launch power where the system behaves in a linear fashion with a receiver

sensitivity approaching -30 dBm. At the low power end of this region the system is

noise limited and there are no nonlinear effects in evidence. However, above 5 dBm

launch power the receiver sensitivity begins to degrade sharply as a result of the

introduction of nonlinear effects. At even higher launch powers the system quickly

becomes limited by these nonlinear effects and an error floor is introduced.

This shape of the CoWDM plot shows similar features to the single channel

results, it has a flat region between -5 dBm and +5 dBm where the average receiver

sensitivity value per tributary is -31.5 dBm and is limited by noise at the lower

launch powers and a region above +5 dBm where the receiver sensitivity degrades

rapidly due to the introduction of nonlinear effects at high launch powers. In the
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CoWDM case the launch power values were adjusted to consider the launched

power per tributary (power value reduced by 8.4 dB). The receiver sensitivity value

for each CoWDM tributary at a launch power of 6.2 dBm is also shown (open

circles). Due to the fixed output power configuration of the amplifiers, both curves

were limited at low powers by the maximum amplifier gain (20 dB). Both curves

also become limited by non-linearity at per channel launch powers above +5 dBm.

Significantly the receiver sensitivity penalties arising from these nonlinear effects

are shown to be almost identical for both configurations.

The effect of the nonlinear impairments can also be seen in the degradation

of the CoWDM received eye diagram as the launch power is increased. Figure 4.28

below shows the received eye diagrams for three different launch power values. The

received eye diagram for -8 dBm launch power is clean and open (no nonlinear

effects). The middle received eye (3 dBm launch power) is still quite open at the

centre but there is an increase in the noise on the ~ones' (nonlinear effects beginning

to cause errors). However at the higher launch power values such as +7 dBm there

is a significant amount of noise on both the ~one' and ~zero' rails and a marked

reduction in the size of the eye opening (nonlinear effects severely impacting on

performance).
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Figure 4.29. Nonlinear signal distortion for a single channel (left trace) and a

CoWDM signal (right trace) over 112 km with a launch power of +8 dBm per

channel

In both cases, as shown above in figure 4.29 the pulse patterns are dominated by a

reduction in the amplitude of isolated 'ones' and in a significant distortion of

consecutive 'ones', both features which are consistent with self phase modulation

limited performance. SPM results in these features because it induces pulse

broadening which is a consequence of the time varying dependence of the nonlinear

phase shift in the fibre. New frequency components are generated as the pulse

travels in fibre which results in pulse broadening. This is significant as it provides

further evidence that CoWDM is being affected by the same nonlinear impairment

(SPM) that is known to affect lower bit rate single channel and WDM systems with

a similar dispersion map as the one used here. The effects of both inter and intra

channel are reduced because the phase matching condition which is required for

FWM is not met due to the high Diocal values of the fibre. Intra channel FWM

manifests itself as amplitude fluctuations and the appearance of ghost pulses in

'zero' bit slots, which are not seen in the pulse patterns shown above. Here again we

see the CoWDM transmission format, behaving in a similar fashion with respect to

transmission impairments as a lower bit rate single channel or widely spaced WDM

signal on this particular dispersion map which has been designed for 40 Gbit/s

signals.
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The receiver sensitivity curves for all 7 tributaries before and after

transmission are shown in figure 4.30 below, and despite the penalty arising from

the nonlinearities all channels remained error free. The receiver sensitivity curves

below were obtained at a launch power per channel of6.2 dBm.

• Ch-3
• Ch-2
• Ch-1
• ChO
• Ch +1
• Ch +2
• Ch +3
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Figure 4.30. Receiver sensitivity curves for back-to-back condition (closed

symbols) and for transmission (open symbols) over 112 km ofCorning@

Vascade~ fibre

The average receiver sensitivity for the back-to-back condition was -22.8 dBm with

a spread of approximately 1.3 dB between the values. For the transmitted case

which represented an ISD of I bit/s1Hz over 112 km of dispersion managed fibre the

average receiver sensitivity at a BER of 10-9 was -20.2 dBm (2.6 dB penalty with

respect to the back-to-back) and the spread was 3.1 dB.

At lower launch powers the transmitted CoWDM signal was characterised in

terms of the output OSNR, revealing a I dB receiver sensitivity penalty for an

OSNR (total power of 298 Gbit/s signal divided by noise power in 0.1 nm
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CoWDM system was limited by the same nonlinear processes that degrade the

performance of a single channel, namely self phase modulation. No evidence of

ghost pulse formation or timing jitter, impairment features characteristic of higher

bit rate systems affected by nonlinearities were observed on the pulse patterns,

highlighting the fact that CoWDM is behaving according to its tributary line rate of

42.6 Gbit/s. In was also shown that the receiver sensitivity values per channel scaled

almost exactly together for the single channel and CoWDM configurations.

Consequently we may conclude that the combination of CoWDM and a dispersion

managed fibre such as CorningOO Vascadeoo R I000 will enable transmission of high

ISD signals with no additional nonlinear impairments when compared to lower ISD

NRZ systems. In addition to this the compatibility of a high bit rate (298 Gbit/s)

CoWDM signal with dispersion managed links designed for 40 Gbit/s signal has

been demonstrated strengthening CoWDM's position as a transmission format of

choice for upgrading existing links with such a dispersion management strategy.
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4.6 Conclusion

Modem optical communication systems require optical transmission formats that are

simple and cost effective to implement, robust in the face of fibre impairments and

capable of operating at high bit rates while maintaining good spectral density. This

chapter has provided details on a range of investigations which were carried out in

order to verify CoWOM as a transmission format with such characteristics.

In section 5.2 the receiver sensitivity of a I bit/slHz ISO 298 Gbit/s CoWOM

signal was evaluated in the back-to-back condition and the signal was subsequently

transmitted over 80 km of standard SMF. Error free performance was observed for

all seven CoWOM tributaries, despite a residual dispersion at the receiver of -7

pslnm. This result was obtained using the CoWOM transmitter and simple

preamplified receiver outlined in chapter 3. Comparisons with single channel results

using the same optical receiver show there to be no additional penalties arising from

the use of the CoWOM format in a standard EOFA amplified 80 km SMF link.

Another feature of modem optical communications systems is that they

typically use RS FEC codes in order to improve system margin. The investigation

of the performance various types of FEC code in combination with CoWOM was

described in section 4.3. It was shown that the coding gain of a single stage RS

(255,239) code (-6 dB) when used with a 298 Gbit/s CoWOM signal was

approximately the same as that for a single 42.6 Gbit/s NRZ channel confirming the

compatibility of CoWOM with standard FEC codes. This similarity in the

performance of FEC was experimentally demonstrated for a range of both single­

stage and concatenated RS FEC codes implying that the error statistics governing the

high bit rate, high ISO CoWOM signal are the same as those for a single channel

42.6 Gbit/s NRZ system. This significant result is the first from a series of

investigations which show the characteristics of CoWOM in relation to impairments

to be consistent with those of a single NRZ channel at the tributary line rate (42.6

Gbit/s in this case).

Fibre induced dispersion which results in pulse spreading can severely limit

the transmission distance of optical signals, particularly at high ISO values where
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the interchannel spacing is reduced and at high bit rates where the optical pulses are

increasingly narrow. Section 4.4 contained a detailed investigation of the effects of

fibre dispersion on CoWDM. It was shown that the experimental receiver sensitivity

penalty due to dispersion for a 298 Gbit/s CoWDM signal scales with that of a single

42.6 Gbit/s NRZ channel and is significantly lower than other reported systems with

similar overall bit rate. In addition to this the impact of phase precompensation at

the transmitter was evaluated and it was shown how such a scheme could be used to

improve the dispersion tolerance of the CoWDM signal as predicted earlier in

chapter 3.

Finally in section 4.5 the impact of fibre nonlinearities at high launch powers

was investigated in detail. A CoWDM signal was transmitted over a total of 112 km

(100 km Coming Vascade RI000 and 12 km ofSMF) for a range of launch powers.

Error free transmission for all tributaries at a launch power of 6.2 dBm confirmed

CoWDM's compatibility with dispersion managed fibre solutions designed for use

with standard widely spaced 40 Gbit/s WDM systems. The nonlinear impairments

at high launch powers for both 298 Gbit/s CoWDM and 42.6 Gbit/s single channel

operation were also investigated. The measured receiver sensitivity penalty for both

configurations was shown to scale together at high launch powers and this result

combined with examinations of the received pulse patterns suggested that CoWDM

and the single NRZ channel were being affected by the same nonlinear effects,

namely self phase modulation. No evidence of ghost pulses or timing jitter (typical

impairment effects for high (> 160 Gbit/s) systems) were seen in the received

CoWDM pulse patterns.

The set of conclusions derived from the results presented in this chapter

confirms CoWDM's compatibility with existing infrastructure and shows behaviour

with respect to impairments consistent with that of a lower bit rate single channel.

This is promising in the consideration of CoWDM as a transmission format for high

ISD modem optical communication systems given the required set of characteristics

listed at the start of this section. In the next chapter we will look at some advanced

investigations including the enhanced transmission performance of CoWDM where

the signal is simultaneously subjected to all the major transmission impairments.
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Chapter 5

Extended CoWDM Experimental Investigations

5. 1 Introduction

We have already shown in chapter 4 that the CoWDM transmission format is an

attractive solution for low complexity (NRZ and no transmitter prefiltering), high

spectral density (up to I bit/slHz) optical communication systems. However in order

to continue to satisfy the ever increasing demands of the bandwidth hungry

applications mentioned in chapter I future optical networks will have to deliver even

higher overall capacities over transmission distances approaching several thousands

of kilometres. In this chapter we look at how the basic CoWDM transmission

format can be extended in terms of capacity, ISD and transmission distance in order

to demonstrate it as a suitable candidate for such future networks.

In section 5.2 the standard I bit/slHz, single polarisation, NRZ CoWDM

signal is combined with polarisation multiplexing resulting in a 2 bit/slHz signal

with an overall capacity of 596.4 Gbit/s from a single laser. Modem long-haul

optical communication systems are capable of transmitting data over several

thousands of km of optical fibre [138, 139, 140, 141]. In order to demonstrate

CoWDM's compatibility with the infrastructure typical of many installed long haul

terrestrial systems we present the results of a recirculating loop transmission

experiment where a 280 Gbit/s CoWDM signal was transmitted over 1,200 km with

the Q-factor of all the measured tributaries above the FEC threshold level.

Increasing the overall throughput of the system can also be achieved by using

additional available bandwidth. Thusfar CoWDM from a single wavelength source

has occupied a relatively narrow slice (approximately 2.3 nm) of the C-band. In

section 5.4 we demonstrate the scalability of CoWDM by expanding the single

wavelength source CoWDM configuration with a bank of 5 distributed feedback

188



(DFB) lasers which were used to generate a multi-banded CoWDM signal to achieve

1.5 Tbit/s overall capacity.

5.2 CoWDM and Polarisation Division Multiplexing [142J

5.2.1 Overview

Terabit capacity architectures have been studied for future optical networks in recent

years, in order to meet increasing bandwidth demands from end-customers. As we

have already discussed in chapter 1 such capacities can be achieved, whilst

maintaining manageable network architectures, with techniques such as optical time

domain multiplexing (OTDM) and wavelength division multiplexing (WDM). By

using multi-level modulation formats such as RZ-DQPSK it has been shown that

capacities as high as 4.3 Tbit/s in a single polarisation with an ISD of 1.14 bit/slHz

can be achieved in a WDM configuration [56].

Further increasing the lSD's of such systems is necessary for cost-effective

increase in system capacity. In a fixed bandwidth system simply reducing the

channel spacing becomes limited by high levels of crosstalk. Another solution to

this problem is known as polarisation division multiplexing (PDM), a technique

which allows for two optical channels to be transmitted at the same wavelength in a

fibre by orthogonally polarising the signals at the input to the fibre, thus achieving

even higher lSD's and increasing the overall system capacity of modem optical

communication systems. Despite the fact that random polarisation changes occur

within the transmission fibre the signals are still orthogonal to each other at the

output and can be polarisation demultiplexed using standard techniques [82]. In a

WDM system this has the effect of doubling system capacity within a fixed spectral

bandwidth. A schematic of polarisation division multiplexed channels is shown in

figure 5.1. Because of the fact that the there is a doubling in the number of channels
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there is an inherent 3 dB reduction of the receiver sensitivity when considering a

PDM system.

Figure 5.1. Polarisation division multiplexing

PDM was first proposed as a means of doubling the system capacity of optical

communication systems in the late 1980's with a number of groups carrying out

investigations on the topic [143, 144]. Despite field implementation difficulties due

to the effects of PMD [145] and nonlinear depolarisation in installed fibre links,

PDM is now used in ultra high capacity laboratory transmission experiments [34,

146, 147]. Tracking of the state of polarisation which is necessary for longer

transmission distances because of the presence of PMD has to date made

implementation of PDM in the field prohibitively complex and expensive to

implement [148, 149]. Indeed even in a lab environment impairments in polarisation

division multiplexed systems can arise due to misalignments of the polarisers of

polarisation beam splitters which results in coherent crosstalk from one polarisation

to the other. The impact of these misalignments can be quantified in if we consider

that the maximum tolerable limit for the eye closure due to coherent crosstalk is

approximately 1 dB which corresponds to a 20 % reduction in the upper rail of an
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eye pattern. Ifwe have two PDM channels, A and B which are ideally orthogonal to

each other we can write the intensities (Wm-2
) of the two channels as

/A = AA- and /8 = BB- (5.1 )

Misalignment of the PBS which is used in the receiver to spilt the polarisations or

polarisers will cause a small coupling coefficient'k' which is related to the angle of

misal ignment (J by

k = sin«(J) (5.2)

It was shown in [150] that the coherent crosstalk from an orthogonally multiplexed

channel can be written as

2k~/A/8 (5.3)

which for a 1 dB eye opening penalty (EOP) (or 200/0 of the original/A so k = 0.1)

equates to a misalignment of approximately 6°.

Polarisation multiplexing can be combined with the CoWDM transmission

format using either of the configurations shown in the schematic below.
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modulator

Comb

(a)

PBS
to receiver

Comb

(b)

to receiver

Figure 5.2. Schematic of polarisation multiplexing with CoWDM

The schematic shown in figure 5.2 (a) was emulated with the experimental setup

described below. It generates an identical pair of 'n' data modulated channels which

are then polarisation multiplexed. In contrast with this the schematic shown in

figure 5.2 (b) carries out the polarisation multiplexing stage on a 'per-channel' basis.

This is more difficult to implement in a lab environment due to increased inventory

requirement in terms of polarisation multiplexing stages, but may be more suited to

monolithic integration.
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In this section we show how the capacity ofa single-source CoWOM system

from 298.2 Gbit/s to 596.5 Gbit/s by introducing POM at the transmitter. This was

achieved by generating a band of seven non-return-to-zero (NRZ) encoded channels

at 42.6 Gsymbol/s. A total ISO of 2 bit/51Hz was consequently obtained without the

use of multi-level formats within the band. This offers the potential of overall ISOs

in the region of 1.8 bit/51Hz for a multi-banded (multi-Terabit/s) system which is

discussed in detail in Chapter 5.4.

5.2.2 Experimental Configuration

The experimental configuration described in this section is presented in figure 5.3.

The CoWOM transmitter was as described in chapter 3 and consisted of a comb

generator module, a phase preserving data encoding section, and the enhanced phase

stabilisation circuit was used to maintain the optimum relationship in the transmitter

throughout the experiment. In order to implement polarisation multiplexing a

polarisation multiplexer and a polarisation demultiplexer were incorporated in the

system at the transmitter and receiver stages respectively. The polarisation division

multiplexer is shown in figure 5.3 (a), which resulted in a doubling of the ISO from

I bit/51Hz to 2 bit/51Hz within the fixed spectral width available. The multiplexer

consisted of a sequence of polarisation controllers (PC) and a polariser, followed by

a 45°-launch of the signal with respect to the principal axis of the polarisation

maintaining (PM) fibre, in order to equally excite the fast and slow axes of the fibre.

The polariser was used to ensure that the energy was confined to the same state of

polarisation before being launched to the PM fibre. This was necessary as the rest of

the transmitter was not polarisation maintaining and PMO in the transmitter would

have resulted in fluctuations in the SOP of the signal before the multiplexing stage.

In this experiment, a 100m-long PM fibre section was used, with an arbitrary net

differential delay of 137 ps, which therefore decorrelated the patterns by

approximately 5.8 bits. No additional phase control was performed at this stage.
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• Single-channel NRZ (with comb-generator otT and polarisation multiplexing

and demultiplexing stages bypassed) at 42.6 Gbit/s shown in figure 5.4.

• All 7 tributary channels (polarisation multiplexing and demultiplexing

stages bypassed) at 298 Gbit/s shown in figure 5.5 (left panel).

• All 7 tributary channels (polarisation multiplexing bypassed) at 298 Gbit/s

shown in figure 5.5 (right panel).

• All 14 tributary channels (polarisation multiplexing and demultiplexing

stages included) resulting in the full 596 Gbit/s capacity shown in figure 5.7.

For single channel (closed squares in figure 5.4 ), a receiver sensitivity, at a BER of

10.9, of -28.4 dBm was obtained, as expected given the noise figures of the

amplifiers used for this experiment. The optical spectrum of the single NRZ channel

is shown on the left side of figure 5.4. The data modulation of the 27_1 data pattern

is observable on the spectrum.
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Figure 5.4. Single channel NRZ 42.6 Gbitls received spectrum (left) and

receiver sensitivity curve (right)
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In figure 5.5 the receiver sensitivity curves are shown for single polarisation

7 channel CoWDM when the polarisation demultiplexing stage is bypassed (left of

figure) and included (right of figure). An average receiver sensitivity improvement

of -0.7 dB from -20.66 dBm to -21.38 dBm at a BER of 10-9 was observed when the

polarisation demultiplexing stage was incorporated in the receiver. This was due to

a reduction in spontaneous-spontaneous beat noise in the orthogonal polarisation.

This is as expected if we consider the Q factor ofa system as

Q= VI -Vo

0'1 - 0'0
(5.4)

where vo and VI are the mean levels for '0' and 'I' bits respectively and 0'0 and 0'1

represent the noise powers of the '0' and' I' bits respectively. If we just look at the

signal-spontaneous and spontaneous-spontaneous noise terms and assume that both

shot and thermal noise terms are negligible we get

.2/
spon-spon = n/241 (on both ones and zeros)

sig-spon = 2s1tif (only on data ones)

(5.5)

(5.6)

where 41 is the bandwidth ofa signal with power's' and with noise power 'n'. The

electrical variances are given by

(5.7)

(5.8)

where B is the receiver bandwidth. The contribution from signal-spontaneous noise

is in one polarisation only and remains the same for both system configurations.
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Spontaneous-spontaneous noise however exists in two polarisations so its effect is

more noticeable when the polarisation demultiplexing stage is not included before

the receiver. With the polarisation demultiplexing stage the spontaneous­

spontaneous noise contribution is reduced by a factor of2. If we now consider the Q

factor for both setups

(5.9)

and simplify we get a ratio of 0.8 for Q2-PoI~ . This improvement in performance
/QI-Pol

by using a polariser at the output of the transmission link has been previously

demonstrated in [151] at 5 Gbit/s and from equation 5.9 above it is evident that the

improvement is bit rate independent. It is worth noting however that the spread of

receiver sensitivity values across the seven tributary channels remained

approximately the same (1.3 dB without demultiplexing stage and 1.5 dB with

demultiplexing stage).
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The eye diagrams in figure 5.6 show a clear open centre with the noise pushed to the

eye crossing. The eye diagram in 5.6(b) is slightly more open than 5.6(a) verifying

the improvement in performance observed when the polarisation demultiplexing

stage was included.
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Figure 5.7. -log(BER) as a function of total received power for all 14 CoWDM

tributaries incorporating polarisation multiplexing (left). Received spectrum

(.Olnm bw) for channel # I, polarisation 1 (right)

Figure 5.7 above shows the receiver sensitivity curves for all 14 tributary channels

(7 in each polarisation state) from the 2 bit/slHz polarisation multiplexed CoWDM

signal.

The spread in receiver sensitivities of approximately 5.5 dB can be attributed to a

number of features of the experimental implementation described in detail later in

this section. For comparison if we consider an EDFA NF of5.2 dB to determine the

theoretical limit of the receiver sensitivity a 596.5 Gbit/s NRZ signal would be

expected to have a receiver sensitivity of approximately -20 dBm.
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In order to compare these results figure 5.8 shows the receiver sensitivity

curves for single 42.6 Gbit/s NRZ signal (squares), single polarisation I bit/s/Hz

CoWDM (circles) and polarisation multiplexed CoWDM on the same axes. The

average total receiver sensitivity was increased by -7dB between the single channel

case and the single polarisation CoWDM result. This is close to the expected

increase of 8.4 dB given the sevenfold increase in the number of channels, and the

slight variation was attributed to the effect of the tight filtering in the receiver on the

single NRZ signal. A further increase of 4.2 dB in the average receiver sensitivity

was obtained with CoWDM and PoIMUX. 3 dB of this increase can again be

explained by the doubling of the channel count from 7 to 14, leaving a penalty of

only 1.2 dB arising from PoIMUX, taking into account the noise filtering benefits of

the PBS, and with small penalty « 0.5 dB) if such effects are neglected. As we

have already seen this penalty could easily be attributed to slight misalignments of

the angle of polarisation of the signal at the receiver or PMD in the system.

Importantly, in addition to such low overall penalties, there are no signs of an error­

floor for any of the 14 tributary channels shown in figure 5.8.
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Figure 5.8. Receiver sensitivity curves for back-to-back single channel (closed

squares), single polarisation CoWDM (closed circles) and polarisation

multiplexed CoWDM (open and closed triangles)

This net 1.2 dB penalty is consistent with polarisation multiplexing penalties

reported in other experiments [152], and was primarily due to small misalignments

of the manual polarisation controllers. Some penalty may also be attributed to

residual PMD in the system, predominantly from the fibre amplifiers that were

employed in the experiment. This is because PMD causes the output polarisation to

vary with frequency which results in crosstalk at the receiver. It was shown in [148]

that when the DGD is equal to 20 % of the filtered rise time of the signal a 20 %

reduction in the upper rail occurs which corresponds to a I dB EOP. The PMD

figure of the EDFA used in our receiver was 0.7 ps which amounts to only

approximately 6% of the risetime of the pulse so the EOP penalty arising from PMD

for a CoWDM signal is approximately 0.2 dB. This is small when compared to that

which would affect a 160 Gbit/s OTDM signal, which due to the reduced rise time

(-1-2 ps) would suffer from a large 2.75 dB EOP which would make the signal

unrecoverable without using FEC [153]. Figure 5.9 below shows the maximum
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is narrow. Figure 5.10 below shows an overview of the receiver sensitivity results

for each system configuration which was investigated. It is clear that the three

channels with the highest spread for each polarisation (channels -2, 0 and +2) passed

through the path in the transmitter containing the piezo fibre stretcher, which may

serve to introduce additional PMD because of the added length of fibre which the

signal travels through. A slight variance in the uniformity of the outputs from the

PBS would also have resulted in small differences between receiver sensitivity

values measured at port I and port 2, with port I better by an average of 1.5 dB in

each case.

-6- • Single Pol. CoWDM
-8- D. Pol. Mux. Pol.2

-10 - • Pol. Mux. Pol.1

E -12- • Single Channel NRZ

m
~ -14- D. D.

:f -16- • 6. • 6.:e • 6.
(I) -18 - • •c i •Q)

CJ) -20 - • • • •'- • •~ -22 - •
.~

-24 -
0::

-26 -

-28 - •
-30 , I I I . I . I . I

-3 -2 -1 0 1 2 3

Tributary ..

Figure 5.10. Receiver sensitivities for each tributary

The introduction of PM amplifiers in the transmitter would improve the tolerance to

PMD effects and therefore reduce the spread in the receiver sensitivities. It is

reasonable to eXPeCt that much of the spread in receiver sensitivities in figure 5.10

could also be significantly reduced to a negligible level by the use of an integrated

phase modulator or a fully integrated 7 channel data modulator array.
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due to slight polarisation misalignment and PMD from the receiver amplifiers and

the piezo fibre stretcher.

5.3 Long Haul Transmission Experiment using CoWDM [155J

5.3.1 Overview

In recent years there have been a number of efforts to increase the capacity per laser

of long haul optical transmission networks. Proposed solutions include the use of

multilevel modulation formats such as DQPSK and high speed transmitters based on

OTDM technology [156, 157, 158]. Techniques utilizing multi-level modulation,

however, tend to be impaired by a reduced OSNR tolerance, whilst those based on

OTDM are polarization mode dispersion (PMD) limited due to the reduced bit

period. We have shown in chapters 3 and 4 that the CoWDM transmission format

can achieve high ISD values with a simple transmitter and receiver configuration (as

high as I bit/s/Hz using NRZ modulation and no transmitter pre-filtering) which

lowers implementation complexity and cost. CoWDM also operates at a low symbol

rate with respect to the overall line rate giving good tolerance to the effects of fibre­

induced dispersion and PMD. The results presented in chapter 4 also indicate that

CoWDM is compatible with standard dispersion maps designed for long haul

systems. Consequently the CoWDM transmission format can be considered as a

strong candidate for use in long-haul terrestrial transmission systems. Currently

installed LH terrestrial (>600 km) systems are typically composed of-I00 km spans

of SSMF which may have high PMD values [159]. The purpose of the simulation

and experimental work described in this section is to investigate the transmission

performance of a CoWDM signal in such a transmission link. This work

simultaneously confirms the potential and verifies the performance features of

CoWDM in a long haul link. Both experimental and simulation results are presented

which show the measured Q-factor of all seven 40 Gbit/s CoWDM tributary

channels resulting in a total signal bandwidth of 280 Gbit/s to be above the FEC
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5.3.2 Long Haul Transmission Simulations

Simulations of the CoWDM transmission experiment for a range of transmission

distances (800, 1200 and 1600 kIn) were performed using VPI Transmission Maker

version 7.2. In order to investigate the non-linear performance of a 7 x 40 Gbit/s

tributary CoWDM signal at high launch powers the effect of PMD in the loop was

not included. Other simulation parameters included (i) perfect post dispersion

compensation at the receiver, (ii) seven independent data modulators in the

transmitter and (iii) 512 bit data sequences in order to reduce the computational

complexity. The loop configuration which was simulated consisted of four spans

consisting of 100 km SMF followed by a piece of OCF as shown in figure 5.13. The

simulations performed also considered different combinations of pre and post

dispersion compensation.

100 km SMF DCF EDFA

Figure 5.13. Simulated loop configuration

X4

Amplification of the signal was simulated by 4 EDFAs each with a noise

figure of5.5 dB and both forward (1450 nm) and backward (1450nm and 1435nm)

Raman pumping. The full list of parameters relating to these components is

presented in table 5.1 and 5.2. These parameters were chosen to represent the

experimental system as accurately as possible. For example the slight variations in

207



the dispersion of the SMF reflected the actual transmission fibre which was used for

the experimental work.

Table 1 SMF DCF
Length 100 km -

Dispersion 1712 to 1718 ps/nm -1649 to -1672 pslnm
Loss 20dB 7.6 to 8.2 dB
PMD 0.04 PS 0.5 PS

Table 2 Raman Amplifiers
Gain (co) 4.5 dB

Gain (contra) 11.5 dB

Raman Efficiency 0.42 W 1km-1

SMF

Span 1

Span 2

Span 3

S n4

2.7 10-20

2.7 10-20

2.7 10-20

2.7 10-20

1715

1718

1714

1712

Table 5.1 & 5.2: Simulation parameten

Simulations were performed for transmission distances of 800 km (triangles), 1,200

km (squares) and 1,600 km (circles) and the Q-factor was evaluated for the worst

tributary in each case and is shown as a function of total launch power in figure 5.14.

The red dashed line at 9.1 dB represents the FEe threshold for a standard

concatenated RS code with 6.7% overhead and the dashed green line at 15.5 dB

represents a BER of 10-9
• The values of the simulated pre-compensation for 800 km,

1200 km and 1600 km were -140 pslnm, -280 pslnm and -280 pslnm respectively

and the signal was perfectly post compensated before the Q-factor was evaluated.

Again these values were chosen to reflect the experimental loop configuration which

had a residual dispersion of 140 pslnm.
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5.3.3 40 Gbitls CoWDM

In the experimental work described elsewhere in this thesis a 42.6 GHz sine wave

was used to generate the seven channel optical comb which was subsequently

modulated with 42.6 Gbit/s data in a phase preserving modulator array to give the

CoWDM signal. In this section however due to the unavailability of a 42.6 Gbit/s

pattern generator (this work was carried out in France and the shipping of the 42.6

PPG and ED was not feasible) the bit rate of the tributary signals was limited to 40

Gbit/s, and in order to achieve CoWDM a 40 GHz clock signal was used to generate

the optical comb. However the interleaver and filter configurations in the

transmitter and in the pre-amplified optical receiver remained the same (i.e.

optimised for a bit rate of 42.6 Gbit/s). Therefore in order to quantify the effect this

change in the bit rate would have on the system a comparison between CoWDM

generated at the different bit rates was carried out before travelling to France. The

experimental setup used was as described in Chapter 4 and an overview diagram is

presented in figure 5.15.

Comb Generator
@40GHz

1
CoWDMTx CoWDMRxI

@ 40Gbitls
I I
I I
I .
I I
I I
I I

~ ceo :I •
I •
I •

',._-- -----.'
40 km SMF + DCF

Figure 5.15. 40 Gbitls CoWDM experimental setup

A DFB laser centred at 1547.2 nm was used as input to the comb generator and each

of the seven resultant tributaries was encoded with 40 Gbit/s NRZ PRBS (27_1) data
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(a)

-18

(b) ,

Figure 5.17. (a) Receiver Sensitivity curves for all seven 40 Gbit/s CoWDM

tributaries over 40 km with an injected power of 7 dBm, (b) Received eye

diagram for tributary 3 (worst channel) and (c) Received eye diagram for

tributary -1 (best channel)

The average receiver sensitivity for the transmitted CoWOM signal was ­

23.9 dBm with a spread of only 1 dB across the seven tributaries. The receiver

sensitivity penalty at a BER of 10-9 arising from transmission therefore was only 0.4

dB which can be attributed to the additional components in the transmission system.

It is also worth noting that none of the 40 Gbit/s tributaries show any sign of an error

floor either in the back-to-back case or for transmission. If we compare the 40

Gbit/s receiver sensitivities to those measured for the 42.6 Gbit/s back-to-back

configuration we can see a 2.7 dB average improvement in the average receiver

sensitivity at a BER of 10-9
• The expected improvement due to the decrease in bit

rate from 42.6 to 40 Gbit/s is approximately 0.3 dB. The remaining 2.4 dB

improvement can be attributed to a number of experimental features including

improved performance of components such as the OFF, data amplifiers and data

modulators in the transmitter at the lower frequency.
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were selected and designed for optimal performance at a channel spacing of 42.6

GHz, and therefore it was more difficult to identify the correct filter position for the

40 GHz spaced CoWDM signal when performing the experiment. Experimentally

the AMZI at the receiver was aligned to achieve sYmmetry of the data modulation

features of the target channel. Trace (a) from the OSA of a target channel shows

how the first and second set of modulation features on the target channel are level.
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Figure 5.19. Optical spectra for tributary 3 for both (a) 40 GHz and (b) 42.6

GHz channel spacing

Therefore despite using a non-optimised filter configuration the 40 GHz spaced

CoWDM system was shown to operate error free over both back-to-back and a 40

km SMF link. The transmission experiment using the 40 GHz channel spacing

resulted in an almost negligible 0.4 dB penalty from the back-to.back case

5.3.4 Experimental Setup

For the experimental work described in this section most of the equipment required

to implement the CoWDM transmitter and receiver was relocated from the lab in

Cork, Ireland to a lab in France Telecom, Lannion, France and was operated in non­

ideal conditions. For example the CoWDM transmitter unit which would normally
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• Amplifier 1 (PRBS7)
o Amplifier 1 (PRBS31)
... Amplifier 2 (PRBS7)
b. Amplifier 2 (PRBS31)
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Figure 5.21. -Iog(BER) vs total received power for both data amplifiers at

different pattern lengths

The closed symbols represent the setup where the pattern was a PRBS

sequence with 27_1 bits and the open symbols are for 231 _1 bits.

Figure 5.22 below shows the 40 Gbit/s NRZ electrical eye diagrams from the

data and data-bar outputs of the OFF in the transmitter. The same OFF as was

described in chapter 3 was used for this work. The 40 GHz clock signal which acted

as the drive signal for the comb generator is shown in figure 5.23.
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Figure 5.24. Transmitted CoWDM spectrum

At this point, a simple phase stabilisation circuit was used to provide

feedback to the electrically driven piezo fibre stretcher, allowing for full control and

stabilisation of the relative optical phase between the two arms. The 280 Gbit/s

signal was then pre-compensated (-342 ps/nm) before entering the recirculating

loop, shown in figure 5.20 (c), which comprised 4 spans, each of 100 km of SMF,

followed by a slope matched dispersion compensating module (DeM) which

compensated for both the dispersion and the slope of the 100 km SMF spans. This

loop is the same as described in [160]. An EDFA (NF of 5.5 dB) and a VOA

preceded each fibre span in order to control the signal launch power, and the

remaining span loss was compensated using forward (1450 nm, gain = 4.5 dB) and

backward (1450 nm and 1435 nm, gain = 11.2 dB) Raman amplification (pump

power = 5 W) in each span ofSMF. After the 4 spans the signal was launched into a

polarisation scrambler synchronously modulated with the loop round-trip period,

which minimised the loop induced polarization effects [161, 162]. A dynamic gain
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equalizer (DGE) suppressed the ASE noise away from the narrow bandwidth (-2.3

nm) CoWDM signal, whilst a pair of EDFAs overcame these loop specific insertion

losses. This suppression of the ASE prevents the noise from being amplified as it

propagates through the loop which would have a negative impact on the

performance of the system. A pair of acousto..optical (AO) switches and a 3 dB

coupler were used to switch the transmitted signal out of the loop to the receiver

after a preset number of circulations. The residual chromatic dispersion and

differential group delay (DGD) of the loop were approximately 140 ps/nm and 1.6

ps per loop respectively.

The preamplified receiver was similar to the one described in chapter 3 and

is shown in figure 5.25. It included a concatenated tuneable band-pass filter (0.64

nm bandwidth) and an AMZI with a FSR of 85.2 GHz to select each individual

tributary. A fixed amount of post-compensation was added at this stage to

compensate for the residual dispersion at each transmission length. This post­

compensation was not exact and therefore some residual dispersion existed after

transmission. In the case of the 800 km transmission experiment this post dispersion

consisted of approximately 3.4 km of SMF giving an overall estimated residual

dispersion of -4 ps/nm. In the 1200 km case the post dispersion consisted of 2.57

km of SMF and a DCM with a value of -135 ps/nm. This resulted in an approximate

residual dispersion value of -13.3 ps/nm. It must be stressed that these figures are

estimates only and the post-dispersion in each case was selected to give the optimum

BER performance at the receiver.

Each of the seven 40 Gbitls tributary WDM channels was detected using two

high speed photodiodes (PO), one feeding a phase-locked loop clock recovery unit

(CRU) specially optimised for NRZ signals, whilst the other was electrically

demultiplexed to 10 Gbitls. Due to the loop operation, error rate measurements were

effectively averaged over all four 10 Gbitls tributaries at each signal burst sent to the

error detector. A typical received back-to-back CoWDM eye diagram is shown in

figure5.25, where the crosstalk terms are positioned at the eye crossing and the eye

is open at the centre, as expected for a CoWDM signal.
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configuration of the transmitter where odd and even channels traverse different paths

through the data encoding stage and the perfonnance of the components (data

amplifiers and modulators) on one ann of the interferometer is slightly improved

with respect to the other. The worst tributary in both cases is # -I, yet even at 1,200

km the Q-factor remains over I dB away from the FEC limit.
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Figure 5.27. Measured Q-factor for each tributary channel for 800 km and

1,200 km

Figure 5.28 shows a received eye diagrams for the best and worst channel for

both transmission distances. The eyes appear degraded in tenns of OSNR relative to

the back-to-back eye shown in figure 5.26 but are recoverable to an error rate of less

than 10.15 using FEC. The characteristic shape of the CoWDM eye is still just about

visible.
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Figure 5.29. Measured Q-factor as a function of total launch power for 800 km

and 1,200 km

The optimum total signal launch powers for 800 km and 1,200 km are +4 dBm and

+3 dBm respectively. It is also clear that for a wide range of launch powers (10 dB

for 800 kIn and 6 dB for 1,200 km), Q-factor measurements are above the FEC

threshold of 9.1 dB (represented in figure 5.29 by the dashed line, enabling a post­

FEC BER <10-15), illustrating robust performance with an aggregate capacity of261

Gbit/s. For comparison, the simulation results shown in figure 5.14 for these two

distances are presented alongside the experimental results in figure 5.30.
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Figure 5.30. Measured and simulated Q-factor as a function of launch power

for 800 km (triangles) and 1,200 km (squares)

A 3.6 dB difference in the performance at the optimum launch powers

between the experimental results and the simulations is evident. Some of this

difference can be explained by the 1 dB pattern dependent receiver sensitivity

penalty arising from the frequency response of the data amplifiers. The simulations

were carried out using a 512 long bit pattern in order to decrease the computational

complexity. The remaining 2.6 dB penalty can be attributed to the differences in the

phase optimisation, and non-optimal post-dispersion compensation in the

experiments. The phase was individually optimised for each of the seven tributaries

in the simulations whereas the experimental setup was limited to two modulators

with phase control on one of the arms. As demonstrated in chapter 4, figure 4.24,

the two modulator case represents a worst case scenario when compared to the seven

modulator case. In addition the -4 pslnm estimate value of the residual dispersion in

the 800 km transmission case would account for approximately 1.7 dB penalty in

line with figure 4.23 shown in chapter 4.

It was observed that the predicted optimum input power to the SMF closely

agrees with the experimentally measured values for both 800 km and 1,200 km.

This feature of the results, together with the fact that the 3 dB penalty between the
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simulated and measured Q factor values can be well explained by the pattern

sensitivity and the non-optimal residual dispersion suggests that the numerical model

accounts for all dominant impairments of the system, and that the estimated residual

DGD of the loop (2.26 ps and 2.77 ps for 800 km and 1,200 km respectively) did not

significantly affect the CoWDM signal. This tolerance to the effect of PMD is in

marked contrast to alternative approaches achieving similar capacities per

wavelength source which are significantly limited by simiiaF levels of PMD [163 l.
In figure 5.31 the achieved OSNR (right axis, open symbols), defined as the

total signal power divided by the noise power normalised to a 0.1 nm bandwidth, is

compared to the measured Q-factor (left axis, closed symbols) of tributary # -I

(worst tributary in figure 5.27) as a function of the total launch power into the SMF

for both 800 km (triangles) and 1,200 km (squares) distances.

I I I I I I I I 40
22- • 800 km a-factor t:::. 800km OSNR

- 38
20- • 1,200 km Q-factor 0 1,200 km OSNR 0

0 D. D. -36D.
18 - g 0

t:::. - 34
16- t:::. 0 iii'

t:::. 0
- 32 ~iii'

'0 1.- t:::. 0
E- D. -30 c

~ 0
0 --ts 12 - D. i • • • • • s;2
J! i • • - 28 a:::

I
10 - - • • • • z0 - • • (J)- -- 'f:s

~
.. - • ... - . 26 0FEe Limit • •8-

fj •Q - 2.
6- •

-22.-
I I . I I I I I I 20

-6 -i -2 0 2 • 6 8 10 12

Total Launch Power (dBm)

Figure 5.31. Measured Q-factor and OSNR as a function of launch power for

800 km and 1,200 km
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The optimum launch powers for 800 km (+4 dBm) and for 1200 km (+3 dBm)

correspond to OSNR figures of 33 dB and 31.4 dB respectively. At low launch

powers it is evident from the overlaying OSNR and Q-factor traces that the system is

OSNR limited with a required OSNR -26 dB (BER= 10-4), again reflecting the

observed -3 dB penalty when compared to analytical predictions for an OSNR

limited 42.6 NRZ system [164]. At higher launch powers, as the OSNR continues

to increase with increasing launch power, non-linear effects in the transmission fibre

result in the degradation of the measured Q-factor for the 280 Gbit/s signal. We

have shown previously in chapter 4 that, for a strongly dispersion managed system,

self-phase modulation within the individual tributaries is the primary non-linear

effect responsible for this degradation, thus exhibiting similar behaviour to a

conventional 100 GHz spaced 40 Gbit/s NRZ WDM system. From the shape of the

OSNR and Q-factor curves as the launch power is increased shown in figure 5.31 it

is possible to infer that this system is exhibiting similar behaviour to conventional

100 GHz spaced 40 Gbit/s NRZ WDM systems.

5.3.6 Summary

In this section the successful transmission of a 280 Gbit/s CoWDM signal over

distances of 800 km and 1,200 km has been presented. Transmission was performed

in a 100 km span recirculating loop with hybrid Raman/EDFA amplification and

long data pattern lengths, yielding a bit rate-distance product of 313 Gbit-Mm/s, for

a single wavelength source. Comparison of optimum launch power values between

experimental results and the results of simulations performed without taking the

effect of PMD into consideration suggest that CoWDM was not significantly

affected by the PMD (2.77 ps DGD) in the experimental system. This is a

significant advantage of the CoWDM format as a similar amount of PMD would

represent a significant difficulty for a 300 Gbit/s OTDM system for example. Many

installed fibre links are affected by the effects of PMD which must be taken into

account when considering upgrades to the system. The Q-factor for each of the 7

tributaries was measured to be above the FEC limit after transmission, confirming
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the compatibility ofCoWDM with dispersion managed, hybrid amplified, terrestrial

fibre spans.

5.4 Multi-banded CoWDM [165J

5.4.1 Introduction

High spectral density point-to-point transmission systems have been developed over

the years to meet the growing capacity demands on telecommunication networks. In

addition to requiring high point-to-point capacity these networks must also be

capable of switching and routing large amounts of data across networks in a cost

effective fashion which often contain a large number of routing nodes. In numerous

applications, this is achieved by band switching [166, 167, 168, 169, 170] where

high capacity bands are required. Such bands can be formed either by a number of

channels each at very high bit rates (160+ Gbit/s), or by a larger number of closely­

spaced dense WDM channels, each at lower bit rates (-40 Gbit/s). Recent

developments in this area are based on OTDM technology, where single-channel

bands of 160+ Gbit/s are implemented by OTDM multiplexing, which require

polarisation interleaving of adjacent bands to achieve the required high spectral

density values [171].

In this section we look at how CoWDM, as has been presented throughout

this work can be modified to achieve ultra-high overall capacities while retaining its

key advantages such as high ISD and low implementation complexity. The multi­

banded approach also allows for the possibility of switching CoWDM on a band by

band basis which makes CoWDM an attractive solution for high capacity transparent

optical networks of the future.
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5.4.2 Multi-banded CoWDM

In previous chapters a comb generator based on a single DFB laser was used to

generate the 7 channel optical comb with an inter-channel spacing of 42.6 GHz

which was subsequently data modulated to form the CoWDM signal. In the multi­

banded CoWDM configuration the increase in capacity was achieved by replacing

the single wavelength source with a bank of ~n' lasers spaced by an appropriate

frequency (depending on the number of wavelength channels, ~m' generated by the

comb generator in the system, m= 7 in this case) thus creating ~n' bands of ~m' phase

locked channels. These channels would then be individually data encoded using a

bank of ~n x m' independent data modulators. A schematic of this setup is shown in

figure 5.32 below.

combiner

Comb

Comb

to transmission

Comb

Figure 5.32. Schematic of a multi-banded CoWDM setup
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The square filter placed after the comb generator allows for the reduction of the size

of the unwanted sidebands beyond the comb and thus reduces the size of the guard

band necessary between adjacent bands. Figure 5.33 shows a simulated multi­

banded CoWDM spectrum containing a total of 49 lines generated using a bank of 7

independent DFB lasers multiplexed together and launched into the comb generator.

A guard band of 85.2 GHz separates the bands in this simulation.

7 x 7 channel CoWDM bands
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Figure 5.33. Simulated multi-banded (49 channels) optical comb

5.4.3 Experimental Setup

Figure 5.34 shows a schematic of the experimental set-up for multi-banded CoWDM

transmission, where each band is derived from an independent DFB laser. As shown

in figure 5.34, five lasers, separated by 340.8 GHz (chosen to allow for optimum

tradeoff between ISO and interference arising from overlapping side-modes), were

passively multiplexed, and seven phase locked channels per laser were generated by

two consecutive Mach-Zehnder modulators (as shown in Chapter 4), each driven
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with a 42.6 GHz clock, with amplitude of 2.1 Vx (comb generator), resulting in a

total of 35 channels ranging from 1548.4 to 1562.9 nm as shown in 0.2 nm

resolution in figure 5.35. The experiment was restricted to five bands of CoWDM

because of the DFB lasers which were available.

PC Mux

Comb
Generator

Data
Encoding

Transmission
Section

Receiver

Figure 3.34. Multi-banded CoWDM experimental setup
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A flatness of less than 0.7 dB over the entire comb spectrum was achieved

using the same feedback loop as described in chapter 3 over all 35 channels. For the

purpose of flattening the comb it was sufficient to monitor a single band so no

adjustment was made to the control circuit described earlier in the thesis. A

dispersion compensated optical amplifier was introduced to maintain an adequate

signal-to-noise ratio. The dispersion compensated amplifier also prevented

dispersion from affecting the edge channels of the increased bandwidth CoWOM

signal.

A guard-band of 127.8 GHz between bands minimised the inter-band cross­

talk arising from the finite side-mode-suppression ratio in the comb generator of 11

dB. This guard band value was selected to be a multiple of the channel spacing as

this meant that no tuning of the AMZI at the receiver was necessary when going

from band to band. The presence of these guard bands resulted in a marginal

decrease in the ISO of the system to 0.83 bit/s/Hz. As mentioned in chapter 1 the

ISO ofa system where the channel spacing is not constant can be defined as

ISD = Total Capacity bit/sIHz
Total Bandwidth

(S.IO)

In this case the overall capacity of the system is 35 x 42.6 Gbit/s = 1.49

Tbit/s and the total employed bandwidth is 1.79 THz resulting in the ISO figure

quoted above of 0.81 bit/slHz. In an ideal system a filter after the comb generator

would reduce the impact of unwanted sidebands and the size of these guard bands

could be reduced significantly which would result in the ISO approaching the limit

value for a single polarisation NRZ CoWOM system of 1 bit/s/Hz.

In a real system, five phase-preserving arrays of seven modulators would be

used to individually data encode each of the channels. The relative phase between

adjacent channels needs only to be controlled within any given band, and not across

the entire multi-banded spectrum. In our experimental setup the phase was

stabilised using the circuitry described in Chapter 3. For simplicity within this

demonstrator, adjacent channels were separated by a dis-interleaver with FSR of
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85.2 GHz, followed by PRBS 27_1 NRZ data encoding at 42.6 Gbit/s using two

LiNb03 Mach-Zehnder modulators (data encoding section in figure 5.34). In this

way, the dominant cross-talk from adjacent channels was fairly included. Delay

lines and a feedback controlled piezo fibre stretcher were used to maintain optimum

performance, while polarisation controllers ensured co-polarised signals at the

output of the interferometer, which were passively multiplexed by a simple

wavelength independent coupler. The transmitted spectrum, consisting of 35 x 42.6

Gbit/s channels is shown in figure 5.36.
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Figure 5.36. Optical spectrum before transmission

The transmission section shown in figure 5.37 consisted of a pre­

compensated unrepeated link of 80.4 km SMF-28e. Variable optical attenuators and

EDFAs were used to control launch powers and to overcome the link losses.
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Figure 5.37. Transmission link

Finally, as described in Chapter 3 a simple pre-amplified receiver was used,

which comprised a Mach-Zehnder dis-interleaver with FSR of 85.2 GHz and a 0.64

nm tunable filter, as described previously, along with a commercially available 42.6

GHz clock recovery module and photodiodes.

5.4.4 Multi-banded Results

The spectrum after transmission, prior to filtering, is plotted in figure 5.38, and

shows no evidence of non-linear effects, when compared to the spectrum before

transmission shown in figure 5.36. Moreover, it shows a compact, square-like

encoding shape for each band, without the use of pre-filters to minimise inter-band

spectral overlap. The effects of the data modulation can also be seen on the

spectrum.

233



-30 res = 0.01 nm

...0
I !

·70

!~~I~~'~~PI
I

1550 1555 1560

Wavelength (nm)

1565

Figure 5.38. Optical spectrum after transmission over 80.4 kin

The non-uniformity (-5 dB) in the received power levels for both back-to-back and

transmission cases is attributed to the wavelength sensitivity within the comb

generation module, imbalances between data modulators in the transmitter, and

residual gain variation in the transmission amplifiers.

The performance of each individual channel for the five bands before and

after transmission was analysed by measuring the receiver sensitivity at a BER of

10-9 and the corresponding values are presented in figure 5.39 below.

234



O~----------------------,

-2 -

E
~-

CD -8-
't'

; -10-
oS;

-12 -:e
II) •c: -14 -

c7J
c

Q) -16 -
>
.~ -18 -

a: -20-

-22-

-24

o back-to-back
• 80.4 km

I I I

o 5 10 15 20 25 30 35 40

Channel Number

Figure 5.39. Receiver sensitivity values for all 35 channels in back-to-back

configuration (open squares) and after 80.4 km transmission (closed triangles)

The receiver sensitivity values for each tributary as a function of the peak power in

the received OSA spectrum is plotted in figure 5.40. The grey dashed arrow is a

guide to the eye and shows the dominant trend of increasing receiver sensitivity with

increasing peak power as measured on the OSA.
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tributaries

The receiver sensitivity curves for all 35 tributaries are plotted in figure 5.41 top

panel (back-to-back case) and figure 5.41 bottom panel (after transmission over 80.4

km). It is clear from examining these figures that all of the tributaries run error free

and there is no evidence of an error floor. There is a noticeable difference in the

performance between the odd and even tributaries, especially after transmission.

The difference between the average receiver sensitivity values is approximately I dB

in the back-to-back case and 1.3 dB after transmission with the even tributaries

outperforming the odd.
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Figure 5.41. Receiver sensitivity curves for all 35 tributaries in the back to back

configuration (top panel) and after transmission (bottom panel)
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Clearly the observed spread in receiver sensitivity of approximately 5.7 dB across

the 35 channels is highly correlated to the received power variations described

above. The average receiver sensitivity for the back-to-back case was measured to

be -15.5 dBm and a relatively small penalty of 0.7 dB was observed for the 80.4 km

transmission case (average Rx sensitivity = -14.8 dBm).

In fact certain channels experienced an improved performance after

transmission, for example a 1.2 dB improvement in average receiver sensitivity after

transmission for the 1562-nm-band was observed. This was primarily due to the

wavelength-dependent amplifier gain tilt which favoured higher wavelengths. Note

that, despite running at a bit rate of 42.6 Gbitls which is the standard ITU-T G.975.1

FEC line rate, multi-banded CoWDM did not require FEC to achieve error-free

performance, as we have previously demonstrated for the single banded case in

Chapter 4.

Further detailed results are shown in figure 5.42, where receiver sensitivity

curves and received eye diagrams (5 psldivision grid) for three randomly chosen

channels (4, 16 and 30), for back-to-back, are presented.
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multi-banded CoWDM is an attractive candidate as a cost effective solution for both

high capacity point-to-point transmission, and band switched WDM networks

requiring high ISD and low implementation complexity and cost.

5.5 Conclusion

This chapter has described a set of advanced experimental investigations carried out

using the CoWDM transmission format. In section 5.2 the compatibility of

CoWDM with standard polarisation multiplexing and demultiplexing techniques was

confirmed and resulted in an increase in the achievable ISD to 2 bit/s/Hz for a NRZ

signal at 42.6 Gbit/s. In this section it was shown that the generation and

transmission of a -0.6 Tbit/s CoWDM signal from a single wavelength source could

be achieved without using advanced filtering techniques and with NRZ data

modulation. Section 5.3 was concerned with the performance ofCoWDM in a long­

haul transmission link which was implemented using a re-circulating loop with

characteristic features typical of currently installed standard long-haul links. The

primary result from this work was the transmission of a 280 Gbit/s CoWDM signal

over a total distance of 1,200 km of standard SMF. The recirculating loop consisted

of 100 km spans and was amplified using a hybrid Raman/EDFA amplification

scheme. The measured Q-factors for all seven tributaries were above the FEC

threshold and comparison with simulated results showed that CoWDM has a high

relative tolerance to the effects of PMD in the loop compared to other high bit-rate

solutions.

Finally in section 5.4 multi-Tbit/s CoWDM operation was achieved by

combining a multi-banded comb generator with the CoWDM transmission format

which gave a total capacity of 1.5 Tbit/s that was transmitted error free over 80.4 km

of standard SMF without the need for FEC codes. This work verified the ease of

scalability in terms of capacity of CoWDM, as it showed that by simply using

additional DFB's in the comb generator extra capacity is easily obtained. The

compatibility of CoWDM with techniques such as polarisation multiplexing and
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hybrid amplification schemes has strengthened its position as a potential candidate

for use in high ISD medium and long-haul optical networks. In addition to this the

high capacity achievable by using the multi-banded approach outlined in this chapter

coupled with the potential for band switching applications makes CoWDM attractive

as a transmission format for modem optical networks where routing of optical

signals throughout the network must be taken into account.
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Chapter 6

Conclusions and Future Work

6. 1 Introduction

The purpose of this chapter is to review the major findings of the thesis, present the

conclusions of the work and suggest possibilities where further work might be

carried out to extend the topics covered in this thesis. In section 6.2 the major

technical highlights presented in the thesis are reviewed. Section 6.3 contains the

conclusions relating to these technical highlights and reviews the position of

CoWOM as a candidate transmission format for modem high ISO optical networks.

Finally in section 6.4 a number of areas where additional work could be carried out

are introduced and briefly discussed.

6.2 Technical Findings/Achievements

The demand for higher bandwidth services continues to increase and modem optical

communication networks are under increasing pressure to provide a flexible reliable

and cost efficient service. This requirement for higher per-fibre capacities at lower

per transmitted bit cost has led to the development of high information spectral

density systems. There are a number of enabling technologies which allow for

increased spectral density in fixed bandwidth WOM systems but many of these such

as mutli-Ievel modulation formats and POM require an increased level of

implementation complexity.

This thesis has investigated a novel transmission format, CoWOM for use in

high ISO systems, which has a number of distinct advantages over previously

reported approaches. This section reviews the main technical findings of this work
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The technical highlights presented in this work are reviewed below.

I. It was shown theoretically in chapter 2 that by constraining the channel

spacing of a standard WDM system to be equal to the bit rate and by

maintaining a fixed phase relationship between adjacent channels in the

transmitter the level of crosstalk in the system could be controlled and

minimised. This novel transmission technique is called CoWDM and formed

the subject of the majority of this work.

2. A CoWDM transmitter and an alignment strategy for optimising the

transmitters performance was proposed and experimentally implemented in

chapter 3. This lead to the first error free back-to-back demonstration of a

298 Gbit/s CoWDM system.

3. In order to provide an optical comb source for the CoWDM transmitter a

technique for optical comb generation (7 x 42.6 Gbit/s channels) based on a

pair of cascaded LiNb03 amplitude modulators was demonstrated in chapter

3. This work was extended to an 11 channel comb (bandwidth = 426 GHz)

by using a pair of Versawave electro-optic polarisation modulators.

4. The importance of the optical phase relationship between the channels in the

transmitter was experimentally demonstrated and a phase selection and

stabilisation circuit was implemented in chapter 3.

5. The first transmission of a 298 Gbit/s CoWDM signal with an ISD of 1

bit/slHz over 80 km of SMF was demonstrated in chapter 4. All seven

tributary channels were measured to be error free after transmission and no

sign of an error floor was detected. Received eye diagrams and spectra were

presented.

6. The error free transmission distance was extended to 112 km of dispersion

managed fibre later in chapter 4 which confirmed CoWDMs compatibility

with standard existing dispersion maps designed for widely spaced 40 Gbit/s

NRZ WDM systems. This demonstration also revealed that the nonlinear

processes limiting CoWDM at high launch powers are the same as those that
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would degrade a single NRZ channel operating at the tributary line rate (-40

Gbit/s).

7. An investigation of the effect of fibre induced dispersion on CoWDM

showed that the effects of dispersion on the CoWDM signal also scale with

the tributary line rate (42.6 Gbit/s) rather than the overall bit rate (298

Gbit/s).

8. In chapter 4 it was also shown that standard RS FEC codes were compatible

with the CoWDM transmission format. Furthermore both single and

concatenated FEC code performances were shown to be similar for a single

channel NRZ signal and a multi-channel CoWDM signal implying that the

error statistics governing a single NRZ channel are the same as those for a

CoWDM signal.

9. A CoWDM signal with an ISD of2 bit/51Hz and a capacity of 596 Gbit/s was

demonstrated in chapter 5 where CoWDM was combined with polarisation

division multiplexing. All 14 tributaries were measured to be error free

without using FEC. Residual penalties affecting this system were attributed

to features of the implementation

10. In chapter 5 CoWDM was successfully transmitted over 1,200 km of SMF

with all tributaries above the FEC threshold. This experiment was carried

out in France Telecom labs Lannion, France, and used a recirculating loop

configuration with hybrid Raman/EDFA amplification. This represented an

overall bandwidth distance product of 313 GbitMm/s from a single laser.

Comparison of the experimental results with simulations indicated that

CoWDM was robust against PMD in the loop.

11. A multi-banded CoWDM signal giving a total capacity of approximately 1.5

Tbit/s was transmitted error free without the use of FEC over 80.4 km in

chapter 5. This high capacity was achieved using only 5 DFB lasers

arranged in a multi-banded configuration.
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6.3 Conclusions

The primary conclusion of this thesis is that Coherent Wavelength Division

Multiplexing (CoWDM) is a promising transmission format for use in modem

optical communication networks. These networks are under increasing demand to

deliver high bandwidth services in a cost effective fashion. One way to achieve this

is by increasing the ISD of fixed bandwidth systems by either increasing the bit rate

per channel or decreasing the channel spacing. We have shown that a CoWDM

based solution to this problem can achieve up to 1 bit/sIHz in a single polarisation

without the use of advanced modulation formats, transmitter pre-filtering or other

complicated techniques. In terms of capacity we have demonstrated error free

transmission of a -0.3 Tbit/s signal from a single wavelength source, which can be

doubled to -0.6 Tbit/s by using polarisation division multiplexing in the transmitter.

In addition to this the tolerance of CoWDM to impairments such as fibre induced

nonlinearities, dispersion and PMD have been shown to scale with the tributary line

rate (-42 Gbit/s) instead of the overall bit rate (-0.3 Tbit/s) giving it a distinct

advantage over other high bit rate solutions such as OTDM which can be severely

limited by these impairments at such bit rates. Modem optical communication

networks are also transmitting signals over increasingly long distances with the

metro and core networks beginning to merge, and transmission distances over

thousands of kilometres required in the LH network. Any novel transmission format

has to not only be capable of transmission over such distances but must also be

compatible with existing installed infrastructure (fibre type, amplification scheme

etc.) so that any upgrade of the system remains cost effective. The experimental

work performed with France Telecom resulted in the transmission above FEC

threshold of a -0.3 Tbit/s CoWDM signal over 1,200 km of SMF using a hybrid

EDFAlRaman amplification scheme. Such a scheme is typical of many installed

networks confirming CoWDMs potential for use in these networks. The total

capacity of a CoWDM signal is scalable by adding more wavelength sources to the

comb generator as was demonstrated in the multi-banded CoWDM experiment
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where a total capacity of 1.5 Tbit/s was achieved using a bank of 5 DFB lasers as

input for the comb generator.

In summary we believe that as a transmission fonnat CoWDM provides an

attractive combination of high lSD, scalable capacity and high tolerance to fibre­

induced impainnents without using complicated expensive techniques. These

features, together with demonstrated compatibility with existing infrastructure and

transmission over LH distances makes CoWDM a very promising candidate for

optical communication networks of the future.

6.4 Future Work

This section considers some of the areas which future work could be carried out in

relation to CoWDM and the other topics covered in this thesis.

6.4.1 Information Spectral Density/Capacity Increase

Thus far we have demonstrated up to 2 bit/51Hz ISD by combining polarisation

division multiplexing (PDM) with a I bit/51Hz standard NRZ CoWDM signal. In

addition to this there are a number of additional techniques which can be applied to

further increase the ISD of the CoWDM signal. The most obvious of these is to

implement CoWDM with advanced modulation fonnats instead of NRZ. By

moving to a modulation fonnat such as DQPSK, where two bits are encoded per

symbol the ISD can be doubled. By using these advanced modulation fonnats

together with PDM ISDs of up to 4 bit/slHz should be achievable in combination

with CoWDM. Figure 6.1 below summarises the increase in the ISD achieved using

CoWDM with respect to other reported results.
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Figure 6.1. ISO evolution showing potential for up to 4 bit/51Hz ISO using

CoWOM with POM and multi-level modulation formats

By increasing the ISO of a fixed bandwidth WDM system the capacity is also

inherently increased and because a comb generator is used as a source for CoWOM

very high bit rate distance product results can potentially be achieved. By

combining all the techniques discussed in this thesis (namely CoWDM, advanced

comb generation and POM) together with a multi-level modulation format such as

DQPSK it should be possible to achieve record ISO and bit rate distance product

values. For example a system based on the CoWOM transmission format with an II

channel comb generator, DQPSK modulation format and POM should be able to

achieve almost 2 Tbit/s from a single wavelength source which could then be

transmitted over several thousand kIn of fibre with FEC.
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6.4.2 Integration

In chapter I we saw how large numbers of discrete components integrated together

using PIC technology can be used to achieve high ISD values at 40 Gbit/s in a cost

effective package. One of the next stages in the development of CoWDM as a

candidate transmission format for high ISD optical communication systems is to

dramatically reduce the size of the transmitter to a scale where it can be packaged in

a similar fashion to a PIC solution. For this to happen it is necessary to use EAMs

instead of MZMs in both the comb generation and the data encoding sections as they

can be much more easily integrated onto a PIC. There are a number of advantages

to reducing the size of the transmitter module. Firstly the amount of fibre in the

transmitter would be significantly reduced with all the optical signals routed in

waveguides on the PIC. Because of this it may no longer be necessary to actively

control the optical phase relationship between the channels once it was set at an

optimised value. In addition to this the smaller packaged device would potentially

reduce power consumption and be less susceptible to temperature fluctuations. The

comb generator module, if packaged might also be of interest as a stand-alone

optical source for some DWDM systems given its good flatness and high SMSR

values. We have shown that an optical comb generator based on two cascaded

amplitude modulators is capable of generating up to II flat optical lines which could

subsequently be modulated at a reduced bit rate of 10 Gbit/s. Such a solution may

have application as an optical source in the 100 Gbit Ethernet application space

which has been attracting a lot of research attention in recent years [172, 173, 174,

175].
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