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Creation of a Complex Butterfly Attractor Using a Novel 7 , ‘ (), 3=0.85, m=0 , , ,
Lorenz-Type System :
8 ]
A. S. Elwakil, S. Ozguz, and M. P. Kennedy
5 i
Abstract—A novel Lorenz-type system of nonlinear differential equa- 4r 1
tions is proposed. Unlike the original Lorenz system, where the chaotic dy-
namics remain confined to the positive half-space with respect to th&Z 3+ B

state variable due to a limiting threshold effect, the proposed system en-
ables bipolar swing of this state variable. In addition, the classical set of ™ |
parameters(a, b, c) controlling the behavior of the Lorenz system are re-
duced to a single parameter, namelya. Two possible modes of operation
are admitted by the system; switching between these two modes results in
the creation of a complex butterfly chaotic attractor. Numerical simulations
and results from an experimental setup are presented.

Index Terms—Chaos, chaotic oscillators, Lorenz system. RS

2|

|. INTRODUCTION

The classical Lorenz system is described by [1]

X = a(Y — X) (1a) of ]
Y=0b-2)X-Y (1b)
Z=XY-cZ (1c) 1t _

wherea, b, ande are constants and the two multiplier-type nonlineari-  9-
ties XY andX Z) are responsible for the generation of chaos. The prc
jection of the chaotic attractor observed form this system inthe Z
plane is widely-known as the butterfly attractor. The dynamics of th
above equations have been studied in detail by several researchers
for example [2]) and have been recently revisited in [3] and [4], wher
new sets of equations (Chen’s system), not topologically equivalent
the original system, have been proposed. Nevertheless, these new 4|
also rely on multiplier-type nonlinearities. Due to some unique feature
of butterfly chaos, attempts have been made to utilize it as a core ¢ .5t
gine for a number of chaos-based applications [5], [6].
In [7] and [8], attempts to remove the two multipliers from this -6
system were reported. It was particularly shown in [8] that the contr
bution to the chaotic dynamics of multiplying any two state variable
can be emulated via a bipolar voltage-controlled switching constar.

The resulting Systgm is also r.10t t°p°'°9,i°a”y equi.\lz’?llent to t'he LOI’e& . 1. Two-wing butterfly chaotic attractors obtained via numerical
system, but of similar qualitative dynamics. On arriving to this systeftegration of (2) witha = 0.55: () S(—, +) mode and (b}5(+, —) mode.
the procedure followed in [8] stressed the fact that the butterfly attractor
should lie only in the positive half-space with respect to thetate
variable, similar to the situation in the original Lorenz system, and i€tion between these two modes creates a conffiex-wing) but-
deed in the systems of [3], [4] and [7]. This constraint is inherited frofgrfly attractor. We validate our proposals via numerical simulations
(1b) due to the positive threshdidSimply removingy from (1b) is not and by constructing an experimental electronic circuit.
possible.

In this short brief, a novel Lorenz-type system, which is free from Il. PROPOSEDSYSTEM
the positiveZ constraint, is proposed. Not only has the threshold con-
stanth been removed from (1), but also the damping constardence,
the system is controlled via the remaining single paramet€he pro-

1k

3k

The following set of differential equations are proposed:

. . . L X=aY - X) (2a)
posed system acquires two possible modes of operation; the switching .
Yy =FKZ (2b)
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Fig.2. Complexfour-wing) butterfly attractor¢ = 0.55 andT» = 250T). 3 ; T T T T

The system described by (2) is a dual system with two compl 20-
mentary modes of operation. The first mode, in which= Y_ and
Z = 74 is denotedS(—, +) while the second mode, whefe = V..
andZ = Z_,is denotedS(+,—). It is clear from (2) that there 10
are two equilibrium points for this system given byo, yo, z0) =
(+1,41,0). Note that|zy| = 1 and hence from (2c¥|v=., = 0.
Therefore, the threshold effect performedh (1b) is now performed
by | X| in (2c). In particular, and considering tt% —, 4+) mode, for
|X| < 1, Z switches to the negative half-space while &1 > 1,7 10
switches to the positive-half space. Therefore, unlike (1b), where it
not the sign o7 but the sign of b — Z) which changes at the threshold,
(2c¢) guarantees a change of the signZgfultimately removing the 20l
constraint inherited from the Lorenz system. In conclusion, the thres
olding effect has been incorporated into one of the nonlinearities of t
system (2). 30—5 = o

To highlight the mechanism by which the proposed system fun X
tions, consider theS(—, +) mode in the rangé < X < 1 under (b)
steady-state conditions. In this cagds negative whilél” is positive.

Recalling (2a), it is clear that” will eventually exceed\ changing Fig. 3. Observations from altered versions of (2):Zapymmetrical left-half

the sign ofX from negative to positive. Consequently,will grow to  tWo-wing attractor and (b) complex four-wing withi = sgn(Y") instead of

hit the threshold valu& = 1 and exit to the rang& > 1. When this * = sgn(X).

happensZ will become positive and hendé becomes negative. Thus,

Y will start to decrease until it is less than turningX back negative was used to force the switching. The conditibn > 7's should hold

and forcingX to re-enter the rangeé < X < 1. Similar action takes in order to allow the system to spend sufficient time in one mode before
place in the negativé( half-space and in the dual systefi+, —). switching to the other. If one considers the pulse train as a sequence of
This alternating sign change mechanism provides necessary stretchiimgry data, then the one’s and zero’s will be encrypted bythe, +)

and folding to generate chaos. Note that such mechanism is not pasd S(+, —) modes, respectively.

sible in the system§(+, +) or S(—, —) whereX andY decay with It is clear that the complex four-wing attractor is symmetrical with
time while Z diverges unbounded. respect taX = 0 andZ = 0 while the two-wing attractors of Fig. 1

InFig. 1(a) and (b), projections of the butterfly attractorinfhie Z  are symmetrical with respect f6 = 0. Thus, one asks if it is possible
plane are shown for the two mod&6—, +) andS(+, —) respectively. to obtain two-wing attractors which are symmetrical with respect to
Here,a was set to 0.55. The characteristic equation of the systemh= 0. The answer to this question is affirmative, as shown in Fig. 3(a),
both modes is identical and given by* 4+ a)\? —aK? = 0. The set of which represents a two-wing attractor corresponding to the left-half of
eigenvalues corresponding to Fig. 1 are thug.05, 0.25 £+ j0.6795)  the four-wing attractor in Fig. 2. To obtain theg&esymmetrical dy-
at both equilibrium points. Since the eigenvalue pattern is independeamics, (2b) has to be modified to reéd;' = FKZ+m,wherem is
of the mode in which the system operates, this suggests that one aamonstant. The case = 0 enables us to observe the full complex at-

utilize an external source to force switching to occur betwgen, +) tractor while the case. = —1 enables us to observe only its two-wing
and S(+, —). The result in this case is the compl@fur-wing) but- left-half (see Fig. 3(a)). Withn = 1, the mirror image of Fig. 3(a)
terfly attractor shown in Fig. 2. Here, a pulse train with pefflgd = aroundX = 0 is obtained corresponding to the right-half two-wing

250Ts, whereT s is the normalized time constant of (2) (héfe,= 1), attractor.
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Fig. 4. Experimental realization of the proposed system.
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Fig. 5. Experimental observations. (a) Two-wing attractor for§iie-, +) mode (Y axis: 0.35 V/div,Y" axis: 0.3 V/div). (b) For the5(+, —) mode (X axis:
0.35 V/div,Y" axis: 0.3 V/div). (c) Complex (four-wing) butterflyX{ axis: 0.35 V/divY" axis: 0.4 V/div). (d)Z -symmetrical right-half two-wing attract¢m = 1)
(X axis: 0.2 V/div,Y" axis: 0.5 V.div).
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It is worth noting that the switching constafitin (2d) can be con- CFOAS in MOS technology are already available [11]. We have also
trolled by the state variabl® instead of X. The resulting complex tested this modified version and obtained similar results.
butterfly in this case is shown in Fig. 3(b). It is also worth noting that
unlike the Lorenz-type systems of [3], [4] and [8], it is not possible to
control the damping along thg direction in (2) and hence obtaining
smooth wing transitions is not possible.

IV. CONCLUSION

In this brief, a novel Lorenz-type chaotic system was introduced. The
system has two modes of operation; forced switching between which
results in the creation of a complex butterfly attractor which is sym-
metrical with respect to all coordinates. We emphasize the fact that
this complex (four-wing) butterfly is a composite attractor formed of
two two-wing butterfly attractors. In turn, each two-wing attractor is
by itself a composite attractor formed of two one-wing attractors. Con-
sequently, the four-wing attractor is a compound structure; its basic
building block is the chaotic attractor corresponding only to one of its

In this section, we validate our numerical finding by constructing agings. This building block attractor has a single equilibrium point and
electronic circuit realizing (2). satisfies the conditions proposed in Section IV of [8]. Its dynamics are

Consider the circuit shown in Fig. 4 which involves three capacitotherefore captured by of [8, eq. (18)]. It is possible to confine the tra-
(Cx, Cy, Cz),the voltages across which correspond to the three stajestories of the complex attractor to any of its separate wings in the
of the system respectively. The bilateral MOS analog switches in tbkectronic circuit of Fig. 4 by using the displacement volt&ge and
box labeledB are controlled via the outputs of two comparators whichontrolling the polarity of the voltage sourcés andVx.
change state following the sign dfc. Hence, this part of the circuit
realizesK in (2d). The rest of the MOS switches in the circuit are
Comro!led by an exteral voltage S.OUﬁ.Ze' A reference voltagd’s [1] E. N. Lorenz, “Deterministic nonperiodic flow,J. Atmos. Scivol. 20,
(see Fig. 4) is used for the whole circuit. no. 1, pp. 130-141, 1963.

In the case whefWp andVx are positive valued supplies, the cir- [2] C. Sparrow,The Lorenz Equations: Bifurcations, Chaos, and Strange
cuit will operate in theS(—, +) mode. Otherwise, if they are neg- Attractors  NewYork: Springer-Verlag, 1982.

. . . ; _ [3] G.Chen and T. Ueta, “Yet another chaotic attractoni” J. Bifurcation
ative valued supplies, the system will operate in ${e-, —) mode. Chaos vol. 9, no. 7, pp. 1465-1466, 1999.

If a symmetrical square wave s.ignal generator is used to supply bott}4] 1. Ueta and G. Chen, “Bifurcation analysis of Chen’s attraction? J.

Vp and Vg, then the system will alternate equally between the two Bifurcation Chaosvol. 10, no. 8, pp. 1917-1931, 2000.

modes. Note that the nonlinearit¥ | is realized in Fig. 4 by means of  [5] Kf- M. Cuogﬂo, Ad- \r/] Oppenheim, a_nr:i S. Il-i Stogatz, “Synchronization

a full-wave rectifier circuit [9] composed of the four diodes and the as-  ©f Lorenz based chaotic circuits with applications to communications,”
iated The di E ]t' F;f tinh tin this circuiti d q IEEE Trans. Circuits Syst. Ihol. 40, pp. 626-633, Oct. 1993.

sociated op amps. The distortion effectinherentin this circuitis reducedig; 5 A Gonzales, G. Han, J. P. de Gyvez, and E. Sanchez-Sinencio,

by choosing an appropriate value fGt. All op amps in the circuit are “Lorenz-based chaotic cryptosystem: A monolithic implementation,”

current feedback op amps (CFOAS) which facilitate significantly the IEEE Trans. Circuits Syst, vol. 47, pp. 1243-1247, Aug. 2000.

circuit structure by offering current output signals from their terminals [7] E.H.Baghiousand P. Jarry, “Lorenz attractor from differential equations

denoted [10]. Apart from the op amps involved in the full-wave rec- ‘é"gf_‘gigevl"ggeé“near terms|ht. J. Bifurcation Chaosvol. 3, no. 1, pp.

tifier part, the rest of the op amps are configured as voltage to currenfg) A s. Elwakil and M. P. Kennedy, “Construction of classes of circuit-

converters. independent chao_tic oscillators using passive-only nonlinear devices,”
It can be verified that for the choice &fx = Cy = O, = IEEE Trans. Circuits Syst, bol. 48, pp. 289-307, Mar. 2001.

C,Ri = Ry = Rs = R,R. = R/a and by defining the quanti- [9] C. Toumazou, F. J. Lidgey, and S. Chattong, “High-frequency current

. i . i oo R o - conveyor precision full-wave rectifier,Electron. Lett. vol. 30, pp.
tiesX = Vx/Vr,Y = V3 /Vr, Z = V7 /Vr and normalizing time 745-746, 1994.

with respect taRC', Fig. 4 realizes equation set (2). [10] A.M. Soliman, “Applications of the current feedback operational ampli-

IIl. EXPERIMENTAL VERIFICATION
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An experimental setup of the circuit was constructed using a CD4016 fliggsé" Analog Integr. Circuits Signal Progvol. 11, no. 11, pp. 265-302,

chip for the MOS analog switches while the comparators are LM31%; 4

chips. The CFOAS are AD844 chips and all elements were biased from
+5 V supplies.

] S.A.Mahmoud and A. M. Soliman, “Novel MOS-C balanced-input bal-

anced-output filter using the current feedback operational amplifier,”
J. Electron, vol. 84, no. 5, pp. 497-485, 1998.

In Fig. 5(a), theV’x — V; phase projection for the system in the
S(—,+) mode is shown. The corresponding parametersiare: 5.1
k2, C = 1nF R, = 9.27 k2 andVp = Vr = 0.3 V. These values
correspond ta: = 0.55 (recall (2)). By settinglr = —0.3 V, the
system switches to th&(+, —) mode, as shown in Fig. 5(b). Now, by
connecting a square wave generator to BgtrandVz, we observe the
complex (four-wing) butterfly shown in Fig. 5(c). Here, the frequency
of the source is 150 Hz whereas the center frequency of the circuit
(wp = 1/RC) is approximately 31 kHz.

Finally, note that the op amp with the input voltalde can be used
to add the constant toY” in order to realize th&-symmetrical attrac-
tors, as discussed in Section 2. Setfing = Vk = 0.3V (m = 1),
the right-half two-wing attractor, shown in Fig. 5(d), was observed.

It is worth noting that the box labeled (see Fig. 4) which contains
the four diodes can be directly replaced with analog switches similar
to those in boxB and controlled by the same comparator outputs. This
replacement is expected to suite monolithic integration of the circuit;
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