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Abstract

Call control features (e.g., call-divert, voice-mail) are primitive options to which users
can subscribe off-line to personalise their service. The configuration of a feature subscrip-
tion involves choosing and sequencing features from a catalogue and is subject to constraints
that prevent undesirable feature interactions at run-time. When the subscription requested
by a user is inconsistent, one problem is to find an optimal relaxation, which is a general-
isation of the feedback vertex set problem on directed graphs, and thus it is an NP-hard
task. We present several constraint programming formulations of the problem. We also
present formulations using partial weighted maximum Boolean satisfiability and mixed in-
teger linear programming. We study all these formulations by experimentally comparing
them on a variety of randomly generated instances of the feature subscription problem.

1. Introduction

Information and communication services, from news feeds to internet telephony, are playing
an increasing, and potentially disruptive, role in our daily lives. As a result, service providers
seek to develop personalisation solutions allowing customers to control and enrich their
service. In telephony, for instance, personalisation relies on the provisioning of call control
features. A feature is an increment of functionality which, if activated, modifies the basic
service behaviour in systematic or non-systematic ways, e.g., do-not-disturb, multi-media
ring-back tones, call-divert-on-busy, credit-card-calling.

Modern service delivery platforms provide the ability to implement features as modular
applications and compose them “on demand” when setting up live sessions, that is, consis-
tently with the feature subscriptions preconfigured by participants. The architectural style
commonly found in platforms that are based on the Session Initiation Protocol (Rosenberg,
Schulzrinne, Camarillo, Johnston, Peterson, Sparks, Handley, & Schooler, 2002; Sparks,
2007) notably, the Internet Multimedia Subsystem (Poikselka, Mayer, Khartabil, & Niemi,
2006), consists of chaining applications between end-points. In this context, a personali-
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sation approach consists of exposing catalogues of call-control features to subscribers and
letting them select and sequence the features of their choice.

Not all sequences of features are acceptable, however, due to the possible occurrence of
feature interactions (Calder, Kolberg, Magill, & Reiff-Marganiec, 2003). A feature interac-
tion is “some way in which a feature modifies or influences the behaviour of another feature
in generating the system’s overall behaviour” (Bond, Cheung, Purdy, Zave, & Ramming,
2004). For instance, a do-not-disturb feature will block any incoming call and cancel the
effect of any subsequent feature subscribed by the callee. This is an undesirable interaction:
as shown in Figure 1, the call originating from caller X will never reach call-logging feature
of callee Y. However, if call-logging is placed before do-not-disturb then both features will
play their role.

Figure 1: An example of an undesirable feature interaction.

Distributed Feature Composition (dfc) provides a method and a formal architecture to
address feature interactions (Jackson & Zave, 1998, 2003; Bond et al., 2004). The method
consists of constraining the selection and sequencing of features by prescribing constraints
that prevent undesirable interactions. These feature interaction resolution constraints are
represented in a catalogue as precedence or exclusion constraints. A precedence constraint,
i ≺ j, means that if the features i and j are part of the same sequence then i must precede
j. An exclusion constraint between i and j means that they cannot be together in any
sequence. Note that an exclusion constraint between i and j can be expressed as a pair of
two precedence constraints i ≺ j and j ≺ i. Undesirable interactions are then avoided by
rejecting any sequence that does not satisfy the catalogue precedence constraints.

Informally, a feature subscription is defined by a set of features, a set of precedence
constraints specified by a user and a set of precedence constraints prescribed by the fea-
ture catalogue. The task is to find a sequence of the user-selected features subject to the
catalogue precedence constraints and the user-specified precedence constraints. It may not
always be possible to construct such a sequence, in which case the task is to find a relax-
ation of the feature subscription that is consistent and closest to the initial requirements of
the user (Lesaint, Mehta, O’Sullivan, Quesada, & Wilson, 2008b). In this paper, we show
that checking the consistency of a feature subscription is polynomial in time, but finding
an optimal relaxation of a subscription, when inconsistent, is NP-hard.

We present several formulations of finding an optimal relaxation of a feature subscrip-
tion using constraint programming. We present a simple constraint optimisation problem
formulation of our problem and investigate the impact of maintaining three different levels
of consistency on decision variables within depth-first branch and bound. The first one is
arc consistency (Rossi, van Beek, & Walsh, 2006a), which is commonly used. The second is
singleton arc consistency and the third is restricted singleton arc consistency (rsac). We
also present a formulation of our problem based on a soft global constraint, which we call
SoftPrec (Lesaint, Mehta, O’Sullivan, Quesada, & Wilson, 2009). We further present a

272



Approaches for Solving a Telecommunications Feature Subscription Problem

formulation based on the weighted constraint satisfaction problem framework (Rossi, van
Beek, & Walsh, 2006b). We also consider partial weighted maximum satisfiability (Biere,
Heule, van Maaren, & Walsh, 2009), and mixed integer linear programming. We present
the formulations using these approaches and discuss their differences with respect to the
constraint programming formulations.

Notice that finding an optimal relaxation of a feature subscription is a generalisation of
the well-known feedback vertex set problem as well as the feedback arc set problem (Garey
& Johnson, 1979). Given a directed graph G = 〈V,E〉 with set of vertices V and set
of edges E, the feedback vertex (arc) set problem is to find a smallest V ′ ⊆ V (E′ ⊆
E) whose deletion makes the graph acyclic. Although in this paper we focus only on a
particular telecommunication problem, the techniques studied here are also applicable to
other domains where the feedback vertex/arc set problem is encountered, e.g., circuit design,
deadlock prevention, vlsi testing, stabilization of synchronous systems (Festa, Pardalos,
& Resende, 1999, Section 5). There are also applications in chemistry when it comes to
sorting a list of samples of complex mixtures according to their compositions in the presence
of missing data, i.e., when not all components are measured in all samples (Fried, Hordijk,
Prohaska, Stadler, & Stadler, 2004).

The remainder of this paper is organised as follows. Section 2 presents the necessary
background required for this paper. We introduce the notion of feature subscription in
Section 3. In Section 4 we reformulate the original problem in order to relate it more easily
to well-known problems existing in the literature. In Section 5 we present an algorithm
for dealing with symmetries introduced when the original subscription is reformulated. We
introduce the notion of relaxation of an inconsistent subscription in Section 6 and prove
that finding an optimal relaxation of an inconsistent subscription is NP-Hard. In Section
7 we model the problem of finding such an optimal relaxation as a constraint optimisation
problem. In Section 8, we present two other constraint programming approaches based
on the notions of global constraints and weighted constraint satisfaction problems. In
Sections 9 and 10, the partial weighted maximum satisfiability and mixed integer linear
programming formulations of the problem are described. The empirical evaluation of all
these approaches is shown in Section 11. Finally our conclusions and future directions are
presented in Section 12.

2. Background

In this section we present a set of concepts on binary relations and constraint programming
that will be used in the next sections.

2.1 Binary Relations

A binary relation over a finite set X is an association of elements of X with elements of X.
Let R be a binary relation over a finite set X. A relation R on a set X is irreflexive if and
only if there is no x ∈ X such that 〈x, x〉 ∈ R. A relation R on a set X is transitive if and
only if for all x, y and z in X, [〈x, y〉 ∈ R]∧[〈y, z〉 ∈ R]⇒ [〈x, z〉 ∈ R]. The transitive closure
of a binary relation R on a set X is the smallest transitive relation on X that contains R.
We use the notation R∗ to denote the transitive closure of R. A relation R on a set X is
asymmetric if and only if for all x, y in X, [〈x, y〉 ∈ R]⇒ [〈y, x〉 6∈ R]. A relation R on a set
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X is total if and only if for any x, y in X, either 〈x, y〉 ∈ R or 〈y, x〉 ∈ R. A strict partial
order is a binary relation that is irreflexive and transitive. A strict total order is a binary
relation that is transitive, asymmetric and total. The transpose of a relation R, denoted R̂,
is the set {〈y, x〉|〈x, y〉 ∈ R}. The restriction of R on the set Y , denoted R↓Y , is the set
{〈x, y〉 ∈ R|{x, y} ⊆ Y }. Any binary relation R on set X can also be viewed as a directed
graph where the nodes correspond to the elements in X and ordered pairs in R correspond
to the edges of the graph.

2.2 Constraint Programming

Constraint Programming (cp) has been successfully used in many applications such as plan-
ning, scheduling, resource allocation, routing, and bio-informatics (Wallace, 1996). Prob-
lems are primarily stated as a Constraint Satisfaction Problems (csps), that is a finite set
of variables with finite domains, together with a finite set of constraints. A solution of a
csp is an assignment of a value to each variable such that all constraints are satisfied simul-
taneously. The basic approach for solving a csp instance is to use a backtracking search
algorithm that interleaves two processes: constraint propagation and labelling. Constraint
propagation helps in pruning values that cannot lead to a solution of the problem. Labelling
involves assigning values to variables that may lead to a solution.

A binary constraint is said to be arc consistent if for every value in the domain of every
variable, there exists a value in the domain of the other such that the pair of values satisfies
the constraint between the variables. A non-binary constraint is generalised arc consistent
if and only if for any value for a variable in its scope, there exists a value for every other
variable in the scope such that the tuple satisfies the constraint (Rossi et al., 2006a). A
csp is said to be Arc Consistent (ac) if all its constraints are (generalised) arc consistent.
A csp is said to be Singleton Arc Consistent (sac) if it has non-empty domains and for
any assignment of a variable the resulting subproblem can be made ac (Bessiere, Stergiou,
& Walsh, 2008). Mixed consistency means maintaining different levels of consistency on
different variables of a problem. It has been shown that maintaining sac on some variables
and ac on the remaining variables of certain problems, such as job shop scheduling and
radio link frequency assignment, can reduce the solution time (Lecoutre & Patrick, 2006).

Various generalisations of csps have been developed, where the objective is to find a
solution that is optimal with respect to certain criteria such as costs, preferences or priorities.
One of the most significant is the Constraint Optimisation Problem (cop). Here the goal
is to find an optimal solution that either maximises or minimises an objective function
depending upon the problem. The simplest cop formulation retains the csp limitation of
allowing only hard constraints but adds an objective function over the variables.

A depth-first branch and bound search algorithm is generally used to find a solution
of a cop having an optimal value. In the case of maximisation, branch and bound search
algorithm keeps the current optimal value of the solution while traversing the search tree.
This value is a lower bound on the optimal value of the objective function. At each node of
the search tree, the search algorithm computes an overestimation of the global value. This
value is an upper bound on the best solution that extends the current partial solution. If
the lower bound is greater than or equal to the upper bound, then a solution of a greater
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value than the current optimal value cannot be found below the current node, so the current
branch is pruned and the algorithm backtracks.

3. Configuring Feature Subscriptions

In Distributed Feature Composition (dfc) each feature is implemented by one or more
modules called Feature Box Types (fbt) and each fbt has many run-time instances called
feature boxes. For simplicity, in this paper we assume that each feature is implemented by
a single feature box and we associate features with feature boxes.
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Figure 2: DFC: Catalogues, subscriptions and sessions.

Dfc establishes a dialogue between endpoints by routing a set-up request encapsulat-
ing source and target addresses that are associated with source and target feature boxes
respectively. Addresses may change along the way and dfc routers evolve the connection
path accordingly. Starting from the feature box initiating the call, feature boxes are incor-
porated one after the other until a terminating box is reached. A router is used at each
step to locate the next box and relay the set-up request. As shown in the third row of
Figure 2, the routing method decomposes the connection path into a source and a target
region and each region is further partitioned into zones. A source (target) zone is a sequence
of feature boxes that execute for the same source (target) address. The first source zone
is associated with the source address encapsulated in the initial set-up request, i.e, zone of
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X in Figure 2. A change of source address in the source region, caused for instance by an
identification feature, triggers the creation of a new source zone. If no such change occurs
and the zone cannot be expanded further, routers switch to the target region. Likewise,
a change of target address in the target region, as performed by Time-Dependent-Routing
(tdr) in Figure 2, triggers the creation of a new target zone. If no such change occurs and
the zone cannot be expanded further as for Z in Figure 2, the request is sent to the final
box identified by the encapsulated target address.

Dfc routers are only concerned with locating feature boxes and assembling zones into
regions. They do not make decisions as to the type and ordering of feature boxes appearing
in a zone. They simply fetch this information from the pre-configured feature subscription
that is associated with the address and region of the zone and use it to construct the zone.
For instance, the zone of Z in Figure 2 results from the sequence of feature box types
subscribed to by Z in the target region.

Subscriptions are pre-configured from the feature catalogue published by the service
provider. The catalogue is a set of features. Features are classified as source, target or
reversible (i.e., a subset of features that are both source and target) based on whether
they can be subscribed to in the source region, the target region or both. For instance,
the catalogue shown in the first row of Figure 2 includes Originating-Call-Screening (ocs)
as a source feature, Terminating-Call-Screening (tcs), Time-Dependent-Routing (tdr),
and Call-Forwarding-Unconditional (cfu) as target features, and Call-Logging (cl) as a
reversible feature. A source feature is activated on behalf of a caller while a target feature
is activated on behalf of a callee.

Constraints are formulated by designers on pairs of source features and pairs of target
features to prevent undesirable feature interactions (Zave, 2003). A precedence constraint
imposes a routing order between two features. The order is specified with respect to the
direction of an outgoing call if the features are source (e.g., ocs must precede cl in Figure 2)
and with respect to the direction of an incoming call if the features are target (e.g., cl must
precede tcs). An exclusion constraint makes two features mutually exclusive, as for the
case of cl and cfu in Figure 2. We encode an exclusion constraint between two features fi
and fj as the pair of precedence constraints fi ≺ fj and fj ≺ fi. For the sake of simplicity,
we treat precedence constraints as ordered pairs, i.e., the precedence constraint fi ≺ fj is
also viewed as 〈fi, fj〉.

Definition 1 (Catalogue). A catalogue is a tuple 〈Fs,Hs,Ft,Ht〉 where:

• Fs is the finite set of source features,

• Ft is the finite set of target features,

• Fs ∩ Ft is the finite set of reversible features,

• Hs is the set of source precedence constraints over Fs, and

• Ht is the set of target precedence constraints over Ft.

The source (target) subscription associated with an address is a subset of source (tar-
get) catalogue features, a set of catalogue precedence constraints between source (target)
features, and a set of user precedence constraints between source (target) features. For
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instance, the target subscription of Y shown in the second row of Figure 2 includes the
target features tdr and tcs and the user precedence tdr ≺ tcs meaning that tdr should
appear before tcs in the connection path.

Definition 2 (Feature Subscription). Given a catalogue 〈Fs,Hs,Ft,Ht〉, a feature subscrip-
tion is defined to be a pair of tuples Ss = 〈Fs, Hs, Ps〉 and St = 〈Ft, Ht, Pt〉 where:

• Fs and Ft are the user selected source and target features respectively such that Fs ⊆
Fs, Ft ⊆ Ft and Fs ∩ Ft = Ft ∩ Fs, i.e., any reversible feature in Fs ∪ Ft appears in
both Fs and Ft;

• Hs is the set of source catalogue precedence constraints in Fs given by Hs = Hs↓Fs

∪{(f ≺ g) ∈ (Fs ∩ Ft)2 : g ≺ f ∈ Ht};

• Ht is the set of target catalogue precedence constraints in Ft given by Ht = Ht ↓Ft

∪{(f ≺ g) ∈ (Fs ∩ Ft)2 : g ≺ f ∈ Hs};

• Ps is the set of source user precedence constraints over Fs, which satisfies Ps ⊇ {(f ≺
g) ∈ (Fs ∩ Ft)2 : g ≺ f ∈ Pt};

• Pt is the set of target user precedence constraints over Ft, which satisfies Pt ⊇ {(f ≺
g) ∈ (Fs ∩ Ft)2 : g ≺ f ∈ Ps}.

Configuring a feature subscription involves selecting, parameterising and sequencing
features in each region consistently with the catalogue constraints and other integrity rules
(Jackson & Zave, 2003). In particular, the source and target regions of a subscription must
include the same reversible features in inverse order, i.e. source and target regions are not
configured independently.

Definition 3 (Consistency of Feature Subscriptions). We say that a feature subscription
S = 〈〈Fs, Hs, Ps〉, 〈Ft, Ht, Pt〉〉 is consistent if and only if there exists a strict total order Ts
on Fs and a strict total order Tt on Ft such that

1. Ts ⊇ Hs ∪ Ps

2. Tt ⊇ Ht ∪ Pt

3. for all f, g ∈ Fs ∩ Ft, f ≺ g ∈ Ts ⇔ g ≺ f ∈ Tt.

The following configuration services may be provided to users submitting a feature
subscription:

• (verification) Check the consistency of the subscription.

• (filtering) If the feature subscription is consistent, then compute its anti-subscription,
i.e., the set of features and precedence constraints that would make it inconsistent if
added.

• (partial completion) If the feature subscription is consistent, then compute the
transitive closure of each region, i.e., (Hs ∪ Ps)∗ and (Ht ∪ Pt)∗.
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• (completion) If the feature subscription is consistent, then compute a pair of strict
total orders on source and target features such that points 1, 2 and 3 of Definition 3
are respected.

• (relaxation) If the feature subscription is inconsistent, then suggest consistent sub-
scriptions obtained out of it by removing one more features or user precedences.

We formalise these tasks in the next section and describe their time complexities after
reformulating the original definition of feature subscription.

4. Reformulating the Original Definition of Feature Subscription

By definition, a catalogue includes two sets of features and two sets of precedence con-
straints. In this section, we reformulate a catalogue by merging its source and target
feature sets and by merging its source and target precedence sets. We transform feature
subscriptions accordingly and show that the consistency of a subscription is equivalent to
the acyclicity of its transformation. The new definitions are simpler and this reformulation
allows us to establish relations with the other well-known problems existing in the literature.

The principle of the reformulation of a catalogue is to inverse and merge the target
precedences with the source precedences. Specifically, a catalogue 〈Fs,Hs,Ft,Ht〉 is re-
formulated as 〈Fc,Hc〉 ≡ 〈Fs ∪ Ft,Hs ∪ Ĥt〉, where Ĥt is the transpose of Ht such that
∀〈i, j〉 ∈ Ft2 : 〈i, j〉 ∈ Ht ⇔ 〈j, i〉 ∈ Ĥt. The definitions of (consistent) feature subscription
are adapted as follows.

Definition 4 (Feature Subscription). A feature subscription S of catalogue 〈Fc,Hc〉 is a
tuple 〈F,H, P 〉, where F ⊆ Fc, H = Hc↓F , and P is a set of (user defined) precedence
constraints on F .

Definition 5 (Consistency of the Reformulated Feature Subscription). A feature subscrip-
tion 〈F,H, P 〉 of a catalogue 〈Fc,Hc〉 is defined to be consistent if and only if there exists a
total order T on F such that T ⊇ H ∪ P .

Definition 6 (Corresponding Subscription). Let 〈Fs,Hs,Ft,Ht〉 be an original catalogue
and 〈Fc,Hc〉 ≡ 〈Fs ∪ Ft,Hs ∪ Ĥt〉 be its reformulation. Given a feature subscription So =
〈〈F os , Ho

s , P
o
s 〉, 〈F ot , Ho

t , P
o
t 〉〉 of catalogue 〈Fs,Hs,Ft,Ht〉 and a feature subscription Sr =

〈F r, Hr, P r〉 of the catalogue 〈Fc,Hc〉, we say that Sr corresponds to So if the following
holds: F r = F os ∪ F ot , Hr = Ho

s ∪ Ĥo
t , and P r = P os ∪ P̂ ot .

Due to the composition of the source and target catalogues into a single catalogue, a
feature subscription is consistent if and only if both source and target regions are consistent
in the DFC sense.

Proposition 1 (Equivalence of Subscription Consistency). Let 〈Fs,Hs,Ft,Ht〉 be an orig-
inal catalogue and 〈Fc,Hc〉 ≡ 〈Fs∪Ft,Hs∪Ĥt〉 be its reformulation. A feature subscription
So = 〈〈F os , Ho

s , P
o
s 〉, 〈F ot , Ho

t , P
o
t 〉〉 of catalogue 〈Fs,Hs,Ft,Ht〉 is consistent if and only if

the corresponding subscription Sr = 〈F r, Hr, P r〉 of catalogue 〈Fc,Hc〉 is consistent.
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Proof. From Definition 6 we have F r = F os ∪ F ot , Hr = Ho
s ∪ Ĥo

t , and P r = P os ∪ P̂ ot .
(⇒) If Sr is consistent then there exists a total order T r on F r such that T r ⊇ Hr ∪ P r.
Let T os = T r ↓F o

s
and let T ot = T̂ r↓F o

t
. Both T os and T ot are total orders on F os and F ot

respectively. Since, T os ⊇ Ho
s ∪ P os , T ot ⊇ Ho

t ∪ P ot , and T os is equivalent to T̂ ot on F os ∩ F ot ,
So is also consistent.
(⇐) If So is consistent then there exist two total orders T os and T ot on F os and F ot respectively
such that T os ⊇ Ho

s ∪ P os , T ot ⊇ Ho
t ∪ P ot , and T os is equivalent to T̂ ot on F os ∩ F ot . We will

prove that T os ∪ T̂ ot is acyclic. This implies that Sr is consistent (see Definition 5), since
T r ⊇ Hr ∪ P r, where T r is any total order on F r extending T os ∪ T̂ ot . Note that, for
f, f ′ ∈ F os we have 〈f, f ′〉 ∈ T os ∪ T̂ ot if and only if 〈f, f ′〉 ∈ T os . We will prove that
T os ∪ T̂ ot is acyclic by contradiction. Assume that T os ∪ T̂ ot is not acyclic. Thus there exists
a cycle, and, in particular, a cycle of minimum cardinality, say, k. Therefore there exists
some f1, . . . , fk,∈ F r such that for all i = 0, . . . , k, 〈fi, fi+1〉 ∈ T os ∪ T̂ ot , where we define
fk+1 = f1 and f0 = fk. Suppose that fi ∈ F os \ F ot for some i ≥ 1. Then, we must have
〈fi−1, fi〉 ∈ T os and 〈fi, fi+1〉 ∈ T os which implies that 〈fi−1, fi+1〉 ∈ T os by transitivity of T os .
But then we still have a cycle if we omit fi, which contradicts the minimality of the cycle
length k. We have shown, for all i ≥ 1, that fi ∈ F ot and so 〈fi, fi+1〉 ∈ T ot . Transitivity of
T ot implies that 〈f1, fk+1〉 ∈ T ot , i.e., 〈f1, f1〉 ∈ T ot , which contradicts T ot being a strict total
order.

Proposition 2 (Complexity of Consistency Checking). Determining whether a feature sub-
scription 〈F,H, P 〉 is consistent or not can be checked in O(|F |+ |H|+ |P |).

Proof. We use Topological Sort (Cormen, Leiserson, & Rivest, 1990). In Topological Sort
we are interested in ordering the nodes of a directed graph such that if a directed edge
〈i, j〉 is in the set of edges of the graph then node i is less than node j in the order. In
order to use Topological Sort for detecting whether a feature subscription is consistent, we
associate nodes with features and edges with precedence constraints. Then, the subscription
is consistent if and only if for all edges 〈i, j〉 in the graph associated with the subscription,
i precedes j in the order computed by Topological Sort. As the complexity of Topological
Sort is linear with respect to the size of the graph (i.e., the sum of the number of nodes and
the number of edges of the graph) detecting whether a feature subscription is consistent is
O(|F |+ |H|+ |P |).

Definition 7 (Anti-subscription). Given a catalogue 〈Fc,Hc〉 and a consistent feature sub-
scription S = 〈F,H, P 〉, the anti-subscription is the tuple 〈Fa, Pa〉 defined as follows. f ∈ Fc
is an element of Fa if and only if the directed graph associated with the subscription ob-
tained after adding feature f , i.e., 〈F ∪ {f},Hc ↓F∪{f} ∪ P 〉, is cyclic; ∀ i, j ∈ F , i ≺ j is
in Pa if and only if the directed graph associated with the subscription obtained after adding
precedence i ≺ j, i.e., 〈F ∪ {i, j},Hc ↓F∪{i,j} ∪ P ∪ {i ≺ j}〉, is cyclic.

The definition of anti-subscription suggests one way of computing the anti-subscription
of a given subscription. In order to test whether a feature/precedence belongs to the anti-
subscription we check the consistency of the resulting subscription. As there are O(|Fc|)
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features and O(|Fc|2) precedences, the worst-case time complexity of computing an anti-
subscription is at most O(|Fc|2 × (|F |+ |H|+ |P |)).

Definition 8 (Partial Order of a Consistent Subscription). Given a consistent subscription
〈F,H, P 〉, the partial order of the subscription is the transitive closure (H ∪ P )∗ of the
relation H ∪ P .

The worst-case complexity of finding this transitive closure is O(|F |3).

Definition 9 (Total Order of a Consistent Subscription). A total order of consistent sub-
scription S is a topological sort of the directed graph 〈F,H∪P 〉, i.e., a total order extending
the relation H ∪ P .

The worst-case complexity of finding such a total order is linear in time with respect to
the size of the corresponding graph.

5. Symmetry Inherent in the Reformulation

One of the services provided to an end-user when configuring a feature subscription is
the computation of all compatible pairs of total orders on source and target features. In
this section, we show that when an original subscription, as defined in Section 3, is re-
formulated, as described in Section 4, symmetries are introduced. Two total orders in
the reformulated subscription are symmetric if they correspond to the same pair of to-
tal orders (on source and target features) in the original subscription. More formally,
let So = 〈〈F os , Ho

s , P
o
s 〉, 〈F ot , Ho

t , P
o
t 〉〉 be a subscription of the catalogue 〈Fs,Hs,Ft,Ht〉,

and Sr = 〈F r, Hr, P r〉 be the corresponding subscription of the catalogue 〈Fc,Hc〉 ≡
〈Fs ∪ Ft,Hs ∪ Ĥt〉, i.e., F r = F os ∪ F ot , Hr = Ho

s ∪ Ĥo
t , and P r = P os ∪ P̂ ot . A pair of

total orders 〈Ts, Tt〉 is compatible with So if Conditions (1), (2) and (3) of Definition 3
hold. There is a many-to-one relation between the set of total orders of Sr (see Definition
9) and the set of compatible pairs of total orders of So.

Let us consider the subscription So where F os = {1, 2, 3}, F ot = {2, 3, 4}, Ho
s = {1 ≺ 2},

Ho
t = {4 ≺ 3}, P os and P ot are empty. The corresponding Sr would have F r = {1, 2, 3, 4},

Hr = {1 ≺ 2, 3 ≺ 4}, and P r = ∅. Both So and Sr are consistent. The set of total orders
of Sr, and the set of compatible pairs of total orders of So are shown in Table 1. The
cardinality of the former set is six, while for the latter is only five. The last two total orders
of Sr correspond to the last compatible pair of total orders of So. This is due to the fact
that the union of a total order on source features and the transpose of a total order on
target features in So is not necessarily a total order. For example for the last pair of total
orders of So in Table 1, the union of 3 ≺ 1 ≺ 2 and 3 ≺ 4 ≺ 2 do not result in a total order,
since there is no order between 1 and 4.

The repetition of the computation of the symmetric pairs of total orders of the orig-
inal subscription from the total orders of the reformulated subscription is not desirable.
In order to compute a compatible pair of total orders only once, we use the algorithm
GetSolutions(Sr), as shown in Algorithm 1. This algorithm has two nested loops. In
the first loop it selects a total order on the set of reversible features and then extends this
total order to generate a set of total orders on source features and a set of total orders on
target features. In the second loop a total order on source features and a total order on

280



Approaches for Solving a Telecommunications Feature Subscription Problem

Table 1: Total orders on F r, F os , and F ot .
Sr So

F r F os F ot
1 ≺ 2 ≺ 3 ≺ 4 1 ≺ 2 ≺ 3 4 ≺ 3 ≺ 2
1 ≺ 3 ≺ 2 ≺ 4 1 ≺ 3 ≺ 2 4 ≺ 2 ≺ 3
1 ≺ 3 ≺ 4 ≺ 2 1 ≺ 3 ≺ 2 2 ≺ 4 ≺ 3
3 ≺ 1 ≺ 2 ≺ 4 3 ≺ 1 ≺ 2 4 ≺ 2 ≺ 3
3 ≺ 1 ≺ 4 ≺ 2
3 ≺ 4 ≺ 1 ≺ 2

3 ≺ 1 ≺ 2 2 ≺ 4 ≺ 3

target features are selected from the previously generated sets. Due to the fact that the
source features and the target features are ordered independently in GetSolutions(Sr),
no unnecessary ordering is imposed between the source features and the target features.

Algorithm 1 GetSolutions(Sr)
Require:

• Sr = 〈F r, Hr, P r〉 is a consistent subscription, where F r = F os ∪ F ot , F os is the set
of source features, F ot is the set of target features, and F or = F os ∩ F ot is the set of
reversible features in a corresponding subscription So.

• GetTotalOrders(〈F,O〉) generates the set of all total orders that extend a
given acyclic binary relation O defined on a set of features F .

• �, �R, �S , and �T are set to (Hr ∪ P r)∗, �↓F o
r
, �↓F o

s
, and �↓F o

t
respectively.

Ensure: PTOs is the set of pairs of compatible total orders on F os and F ot respectively.
1: PTOs ← ∅
2: RTOs← GetTotalOrders(〈F or ,�R〉)
3: for all �r ∈ RTOs do
4: STOs← GetTotalOrders(〈F os ,�S ∪ �r〉)
5: TTOs← GetTotalOrders(〈F ot ,�T ∪ �r〉)
6: for all �s ∈ STOs, �t ∈ TTOs do
7: PTOs ← PTOs ∪ {〈�s, �̂t〉}
8: return PTOs

The algorithm computes and saves all total orders on a given set of reversible features in
RTOs, and for a given total order on the set of reversible features it computes and saves all
the total orders on source and target features in STOs and TTOs respectively. However,
this is presented in the algorithm for the purpose of clarity. In practice, a total order is
computed lazily, i.e., a total order is only computed when is needed, thus avoiding the need
of keeping all the total orders generated in memory.

The amortised time complexity of computing all the total orders extending a given
acyclic binary relation is linear with respect to the number of total orders (Pruesse &
Ruskey, 1994). Assuming that there are τr total orders on F or and at most τs, and τt total
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orders on F os and F ot that are consistent with a given total order on F or respectively, the
time complexity of GetSolutions is O(τr × τs × τt). The computation of all the pairs of
compatible total orders could be impractical when the size of the resulting set is very large.
Therefore, in those cases the computation of the number of total orders could be restricted
to a pre-specified number, and a heuristic can be used to select �r in Line 3, and �s and
�t in Line 6 of Algorithm 1.

There may be some pairs of total orders on F os and F ot that are more desirable than
others. For instance, it would be more desirable to present an end-user those pairs of
total orders that are more easy to extend (in terms of the addition of a feature or a user
precedence). One way of doing this is to use the notion of anti-subscription (see Definition
7). Each pair of total orders can be associated with an anti-subscription. The size of the
anti-subscription is the sum of the number of features and precedences that are involved
in it. The pairs of total orders can be ordered in the increasing size of their corresponding
anti-subscriptions. The size of an anti-subscription in some sense reflects how constrained
a pair of total orders is with respect to the future addition of the number of features and
user precedences that an end-user may consider in his/her subscription in the future.

6. Relaxations of Feature Subscriptions

If an input feature subscription is not consistent then the goal is to relax it by dropping one
or more features or user precedence constraints to generate a consistent feature subscription
that is closest to the initial user’s requirements. Therefore, we introduce a function w :
F ∪ P → N that assigns weights to features and user precedence constraints, indicating
the importance to the user of the features and user precedences. These weights could be
elicited directly through data mining or analysis of user interactions. In the rest of the
paper a feature subscription is denoted by S = 〈F,H, P,w〉. The value of the subscription
S is defined by Value(S) =

∑
f∈F w(f) +

∑
ρ∈P w(ρ).

Definition 10 (Relaxation). A relaxation of a feature subscription 〈F,H, P,w〉 of a cata-
logue 〈Fc,Hc〉 is a subscription 〈F ′, H ′, P ′, w′〉 such that F ′ ⊆ F , H ′ = H↓F ′, P ′ ⊆ P↓F ′

and w′ is w restricted to F ′ ∪ P ′.

Definition 11 (Optimal Relaxation). Let RS be the set of all consistent relaxations of a
feature subscription S. We say that Si ∈ RS is an optimal relaxation of S if it has maximum
value among all consistent relaxations, i.e., if and only if there does not exist Sj ∈ RS such
that Value(Sj) > Value(Si).

Proposition 3 (Complexity of Finding an Optimal Relaxation). Finding an optimal re-
laxation of a feature subscription is NP-hard.

Proof. Given a directed graph G = 〈V,E〉, the Feedback Vertex Set Problem is to find a
smallest V ′ ⊆ V whose deletion makes the graph acyclic. This problem is known to be NP-
hard (Garey & Johnson, 1979). We prove that finding an optimal relaxation is NP-hard
by a reduction from the feedback vertex set problem. The feedback vertex set problem can
be reduced to our problem by associating the nodes of the directed graph V with features
F , the edges E with catalogue precedence constraints H. We set P to ∅ and define w by
w(f) = 1, for all f ∈ F . Thus, finding an optimal relaxation of S = 〈F,H, P,w〉 corresponds
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to finding a biggest set of nodes V ′′ such that the deletion of V − V ′′ from G results in an
acyclic graph. Therefore, we conclude that finding an optimal relaxation of an inconsistent
subscription is NP-hard.

The most challenging operation on feature subscriptions is to find an optimal relaxation
of a subscription that is not consistent, since it is NP-Hard. In the remainder of the paper
we focus only on this particular task.

7. Basic COP Model for Finding an Optimal Relaxation

In this section we model the problem of finding an optimal relaxation of a feature sub-
scription 〈F,H, P,w〉 of catalogue 〈Fc,Hc〉 as a constraint optimisation problem (Lesaint,
Mehta, O’Sullivan, Quesada, & Wilson, 2008c).

Variables and Domains. We associate each feature i ∈ F with two variables: a Boolean
variable bfi and an integer variable pfi. A Boolean variable bfi is instantiated to 1 or 0
depending on whether feature i is included in the subscription or not, respectively. The do-
main of each integer variable pfi is {1, . . . , |F |}. Assuming that the computed subscription
is consistent, an integer variable pfi corresponds to the position of the feature i in a se-
quence, which is consistent with the optimal relaxation. We associate each user precedence
constraint (i ≺ j) ∈ P with a Boolean variable bpij . A Boolean variable bpij is instantiated
to 1 or 0 depending on whether i ≺ j is respected in the computed subscription or not,
respectively. A variable v is associated with the value of the subscription, the initial lower
bound of which is 0 and the initial upper bound is the sum of the weights of all the features
and user precedences.

Constraints. A catalogue precedence constraint (i ≺ j) ∈ H that feature i should be
before feature j can be expressed as follows:

bfi ∧ bfj ⇒ (pfi < pfj).

Note that the constraint is activated only if the selection variables bfi and bfj are instantiated
to 1. A user precedence constraint (i ≺ j) ∈ P that i should be placed before j in their
subscription can be expressed as follows:

bpij ⇔ (bfi ∧ bfj ∧ (pfi < pfj)).

Note that if a user precedence constraint holds then the features i and j are included in the
subscription and also the feature i is placed before j, that is, the selection variables bfi and
bfj are instantiated to 1 and pfi < pfj is true.

The value of the subscription is equal to the sum of the weights of the included features
and included user precedences. This constraint can be expressed as the following:

v =
∑
i∈F

bfi × w(i) +
∑

(i≺j)∈P

bpij × w(i ≺ j). (1)

Enforcing arc consistency on Equation (1), in general, is exponential (Zhang & Yap, 2000).
Therefore, cp solvers perform only bounds consistency on this constraint, which is equivalent
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to enforcing arc consistency on the the following pair of constraints, which can be seen as
a decomposition of Equation (1):

v ≥
∑
i∈F

bfi × w(i) +
∑

(i≺j)∈P

bpij × w(i ≺ j). (2)

v ≤
∑
i∈F

bfi × w(i) +
∑

(i≺j)∈P

bpij × w(i ≺ j). (3)

In order to reason about the complexities of enforcing different consistency techniques we
always assume that the two inequality constraints are used instead of the equality constraint.

Objective. The objective is to find an optimal relaxation of a feature subscription.

We have investigated the impact of maintaining three different levels of consistency
within branch and bound search. The first is arc consistency and the rest are mixed consis-
tencies. In the following sections we shall describe these consistency techniques and present
their worst-case time complexities when enforced on any instance of feature subscription, if
formulated as described above. The results for the complexities that are presented below
are based on the assumption that only the Boolean variables associated with the inclu-
sion/exclusion of features and user precedences are the decision variables. We remark that
if the problem is arc-consistent after instantiating all the Boolean variables then it is also
globally consistent.

7.1 Arc Consistency

Let e be the sum of the number of user precedences and the number of catalogue precedences,
let n be the sum of the number of features and the number of user precedences, and
let d be the number of features. The complexity of achieving arc consistency (ac) on a
(catalogue/user) precedence constraint is constant with respect to the number of variables.
A catalogue precedence constraint is made arc-consistent when any of the Boolean variables
involved in the constraint is initialised or any of the domains of the position variables is
modified. Thus, a catalogue precedence constraint can be made arc-consistent at most
(1 + 1 + (d− 1) + (d− 1)) times, which is effectively 2d times. A user precedence constraint
can be made arc-consistent at most 2d + 1 times. Since there are, in total, e precedence
constraints, the worst-case time complexity of imposing arc consistency on all the precedence
constraints is O(e d), which is also optimal. In addition, arc consistency is also enforced
on the linear inequalities (2) and (3), the complexity of which is linear with respect to the
number of Boolean variables. Whenever a Boolean variable is instantiated the constraint
is revised and since there are n Boolean variables, it can be made arc-consistent at most n
times. Therefore, the worst-case time complexity of enforcing arc consistency on the linear
inequalities is O(n2), which is optimal. Thus, the worst-case time complexity of enforcing
ac on an instance of basic cp model for finding an optimal relaxation is O(e d+ n2).

7.2 Singleton Arc Consistency

Maintaining a higher level of consistency can be expensive in terms of time. However, if
more values can be removed from the domains of the variables, the search effort can be
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reduced and this may save time. We shall investigate the effect of maintaining Singleton
Arc Consistency (sac) on the Boolean variables and ac on the remaining variables and
denote it by sacb. We have used the sac-1 (Debruyne & Bessiere, 1997) algorithm for
enforcing sac on the Boolean variables. Enforcing sac on the Boolean variables in a sac-1
manner works by traversing a list of 2n variable-value pairs. For each instantiation of a
Boolean variable x to each value 0/1, if there is a domain wipeout while enforcing ac then
the value is removed from the corresponding domain and ac is enforced. Each time a value
is removed, the list is traversed again. Since there are 2n variable-value pairs, the number
of calls to the underlying arc consistency algorithm is at most 4n2. Thus the worst-case
time complexity of sacb is O(n2 (e d+ n2)).

sacb does not have an optimal worst-case time complexity. In sacb arc consistency can
be enforced on a subproblem obtained by restricting a Boolean variable to a single value at
most 2n times, and each time arc consistency is established from scratch. However, one can
take the incremental property of arc consistency into account to obtain an optimal version
of sacb. Following the work of Lecoutre (2009) an arc consistency algorithm is said to be
incremental if and only if its worst-case time complexity is the same when it is applied once
on a given network P and when it is applied up to m times on P where between any two
consecutive executions, at least one value has been deleted. Here m is the sum of the domain
sizes of all the variables involved in the problem P . The idea behind an optimal version
is that we do not want to achieve arc consistency from scratch in each subproblem, but,
instead, benefit from the incremental property of the underlying arc consistency algorithm.
This results in the asymptotic complexity of O(e d + n2) for enforcing arc consistency 2n
times. Thus, the time complexity of an optimal version of sacb would be O(n (e d+ n2)).

7.3 Restricted Singleton Arc Consistency

The main problem with sac-1 is that deleting a single value triggers the loop again. The
Restricted Singleton Arc Consistency (rsac) avoids this by considering each variable-value
pair only once (Prosser, Stergiou, & Walsh, 2000). We investigate the effect of enforcing
(rsac) on the Boolean variables and ac on the remaining variables, and denote it by rsacb.
The worst-case time complexity of rsacb is O(n (e d+ n2)).

8. Other CP Models

In this section we present two more cp approaches. The first approach uses a global con-
straint that achieves a higher level of consistency by taking into account the cycles of the
precedence constraints. In the second approach we model the problem as a weighted con-
straint satisfaction problem.

8.1 Global Constraint

A global constraint captures a relation between several variables. It takes into account the
structure of the problem to prune more values. For instance, if a user has selected a set of
features, F = {1, 2, 3, 4} and if these features are constrained by the catalogue precedences
1 ≺ 2, 2 ≺ 1, 3 ≺ 4 and 4 ≺ 3, and if three features are required to be included in the
subscription then one can infer that the problem is inconsistent without doing any search.
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This is possible by inferring cycles from the precedence constraints and using them to prune
the bounds of the objective function.

The soft global precedence constraint SoftPrec was proposed by Lesaint et al. (2008a).
It holds if and only if there is a strict partial order on the selected features subject to the
relevant hard (catalogue) precedence constraints and the selected soft (user) precedence
constraints, and the value of the subscription is within the provided bounds. As shown
by Lesaint et al. (2008a), achieving ac for SoftPrec is NP-complete since there is no
way to determine in polynomial time whether there is a strict partial order whose value is
between the given bounds. Therefore, ac is approximated by pruning the domains of the
variables based on the filtering rules that follow from the definition of SoftPrec. The
time-complexity for achieving this pruning is O(|F |3), which is polynomial. The upper
bound of the value of the subscription is pruned based on the incompatibilities that are
inferred between pairs of features, and the dependencies between user precedences and
their corresponding features. The pruning rules of SoftPrec are used within branch and
bound search to find an optimal relaxation of a feature subscription.

Let 〈F,H, P,w〉 be a subscription. Let bf be a vector of Boolean variables associated
with F . We say that feature i is included if bf(i) = 1, and i is excluded if bf(i) = 0. We
abuse the notation by using bf(i) to mean bf(i) = 1, and ¬bf(i) to mean bf(i) = 0. A similar
convention is adopted for the other Boolean variables. Let bp be a |F |2 matrix of Boolean
variables. Here bp is intended to represent a strict partial order on the included features F ′

which is compatible with the catalogue constraints restricted to F ′.

Definition 12 (SoftPrec). Let S = 〈F,H, P,w〉 be a feature subscription, bf and bp be
vectors of Boolean variables, and v be an integer variable, SoftPrec(S, bf, bp, v) holds if
and only if

1. bp is a strict partial order restricted to bf, i.e.,

∀i, j ∈ F : bp(i, j)⇒ bf(i) ∧ bf(j) (restricted),
∀i, j ∈ F : bp(i, j)⇒ ¬bp(j, i) (asymmetric),
∀i, j, k ∈ F : bp(i, j) ∧ bp(j, k)⇒ bp(i, k) (transitive),

2. bp is compatible with H restricted to bf, i.e.,

∀(i ≺ j) ∈ H : bf(i) ∧ bf(j)⇒ bp(i, j),

3. v =
∑

i∈F bf(i)× w(i) +
∑

(i≺j)∈P bp(i, j)× w(i ≺ j).

The set of constraints in this cp model only contains SoftPrec. The decision variables
in this model are bf and bp. A solution of SoftPrec is a consistent relaxation of the
subscription 〈F,H, P,w〉. Notice that the feedback vertex set problem (Garey & Johnson,
1979) can be expressed in terms of SoftPrec by associating vertices with features and arcs
with catalogue precedence constraints. Therefore, achieving generalised arc consistency on
SoftPrec is NP-hard.
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8.2 Weighted CSP Model

The classical csp framework has been extended by associating weights (or costs) with
tuples (Larrosa, 2002). The Weighted Constraint Satisfaction Problem (wcsp) is a specific
extension that relies on a specific valuation structure S(k) defined as follows.

Definition 13 (Valuation Structure). S(k) is a triple ({0, . . . , k},⊕,≥) where: k ∈ {1, . . . ,∞}
is either a strictly positive natural number or infinity, {0, 1, . . . , k} is the set of naturals less
than or equal to k, ⊕ is the sum over the valuation structure defined as: a⊕b = min{k, a+b},
≥ is the standard order among naturals.

A wcsp instance is defined by a valuation structure S(k), a set of variables (as for
classical csp instances) and a set of constraints. A domain is associated with each variable
and a cost function with each constraint. More precisely, for each constraint C and each
tuple t that can be built from the domains associated with the variables involved in C, a
value in {0, 1, . . . , k} is assigned to t. When a constraint C assigns the cost k to a tuple
t, it means that C forbids t. Otherwise, it is permitted by C with the corresponding cost.
The cost of an instantiation of variables is the sum (using operator ⊕) over all constraints
involving variables instantiated. An instantiation is consistent if its cost is strictly less
than k. The goal of the wcsp problem is to find a full consistent assignment of variables
with minimum cost. A wcsp formulation for finding an optimal relaxation of the input
subscription 〈F,H, P,w〉, when inconsistent, is outlined below.

The maximum acceptable cost is

k =
∑
i∈F

w(i) +
∑
ρ∈P

w(ρ).

We associate each feature i ∈ F with an integer variable pfi. The domain of each integer
variable, D(pfi), is {0, . . . , |F |}. If pfi is instantiated to 0, it indicates that i is excluded
from the subscription.

A unary cost function Ci : D(pfi) → {0, w(i)} assigns costs to assignments of variable
pfi in the following way:

Ci(a) =
{

0 if a > 0
w(i) if a = 0

A catalogue precedence constraint (i ≺ j) ∈ H is associated with a binary cost function
Hi≺j : D(pfi)×D(pfj)→ {0, k} that assigns costs to assignments of variables pfi and pfj in
the following way:

Hi≺j(a, b) =
{

0 if a = 0 ∨ b = 0 ∨ a < b
k otherwise

A user precedence constraint (i ≺ j) ∈ P is associated with a binary cost function Pi≺j :
D(pfi)×D(pfj)→ {0, w(i ≺ j)} assigns costs to assignments of variables pfi and pfj in the
following way:

Pi≺j(a, b) =
{

0 if a 6= 0 ∧ b 6= 0 ∧ a < b
w(i ≺ j) otherwise

Note that if a user precedence constraint holds then the features i and j are included in the
subscription and also the feature i is placed before j, that is, the integer variables pfi and
pfj are instantiated to any value greater than 0 and pfi < pfj is true.
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9. Boolean Satisfiability

The Boolean Satisfiability Problem (sat) is a decision problem an instance of which is an
expression in propositional logic. The problem is to decide whether there is an assignment
of true and false values to the variables that will make the expression true. The expression
is normally written in conjunctive normal form. The Partial Weighted Maximum Boolean
Satisfiability Problem (pwmsat) is an extension of sat that includes the notions of hard and
soft clauses. Any solution should respect the hard clauses. Soft clauses are associated with
weights. The goal is to find an assignment that satisfies all the hard clauses and minimises
the sum of the weights of the unsatisfied soft clauses. In this section we present Boolean
satisfiability formulations for finding an optimal relaxation of a feature subscription.

9.1 Atom-based Encoding

In an atom-based encoding, each atom, like f ≺ g, is associated with a propositional variable
and the asymmetricity and transitivity properties of the precedence relation are explicitly
encoded. An atom-based encoding of finding an optimal relaxation of a feature subscription
〈F,H, P,w〉 is outlined below.

Variables. Let PrecDom be the set of possible precedence constraints that can be defined
on F , i.e., {i ≺ j : {i, j} ⊆ F ∧ i 6= j}). For each feature i ∈ F there is a Boolean
variable bfi, which is true or false depending on whether feature i is included or not in the
computed subscription. For each precedence constraint (i ≺ j) there is a Boolean variable
bpij , which is true or false depending on whether the precedence constraint holds or not in
the computed subscription. If bpij is true, then, roughly speaking, it means that features i
and j are included, and i precedes j.

Clauses. Each weighted-clause is represented by a tuple 〈w, c〉, where w is the weight of
the clause c. Note that the hard clauses are associated with weight >, which represents an
infinite penalty for not satisfying them.

Each catalogue precedence constraint, (i ≺ j) ∈ H, must be satisfied if the features i
and j are included in the computed subscription. This is modelled by adding the following
hard clause:

〈>, (¬bfi ∨ ¬bfj ∨ bpij)〉.

The precedence relation should be transitive and asymmetric in order to ensure that
the subscription graph is acyclic. To ensure asymmetricity, the following clause is added
for every pair {i ≺ j, j ≺ i} ⊆ PrecDom:

〈>, (¬bpij ∨ ¬bpji)〉. (4)

Both bpij and bpji can be false. However, if one of them is true the other one should be
false.

To ensure transitivity, for every {i ≺ j, j ≺ k} ⊆ PrecDom, the following clause is added:

〈>, (¬bpij ∨ ¬bpjk ∨ bpik)〉. (5)

Note that Rule (5) need only be applied to 〈i, j, k〉 such that i 6= k since precedence con-
straints are not reflexive because of Rule (4).
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Each precedence constraint (i ≺ j) ∈ PrecDom is only satisfied when its corresponding
features i and j features are included. This is ensured by considering the following clauses:

〈>, (¬bpij ∨ bfi)〉 〈>, (¬bpij ∨ bfj)〉.

We need to penalise any solution that does not include a feature i ∈ F or a user precedence
constraint (i ≺ j) ∈ P . This is done by adding the following clauses:

〈w(i), (bfi)〉 〈w(i ≺ j), (bpij)〉.

The cost of violating these clauses is the weight of the feature i and the weight of the user
precedence constraint i ≺ j respectively.

Reducing the Variables and Clauses. It is straightforward to realise that the atom
based encoding described in the previous section requires Θ(n2) Boolean variables and
Θ(n3) clauses, where n is the number of features1. We now describe two techniques which
can reduce the number of variables and clauses. The subscription contains a cycle if and
only if the transitive closure of H ∪ P contains a cycle. Therefore, instead of associating
a Boolean variable with each possible precedence constraint, it is sufficient to associate
Boolean variables only with the precedence constraints in the transitive closure of H ∪ P .
Reducing the Boolean variables will also reduce the transitive clauses, especially when the
input subscription graph is not dense. Otherwise, Rule (5) will generate |F | × (|F | − 1) ×
(|F | − 2) transitivity clauses and Rule (4) will generate (|F | × (|F | − 1))/2 asymmetricity
clauses. For example, for the subscription 〈F,H, P,w〉 with F = {1, 2, 3, 4, 5, 6}, H = {1 ≺
2, 2 ≺ 1, 3 ≺ 4, 4 ≺ 3, 5 ≺ 6, 6 ≺ 5}, and P = ∅, Rules (4) and (5) will generate 120
transitivity clauses and 15 asymmetricity clauses respectively. Since any relaxation of the
given subscription respecting the clauses generated by Rule (4) is acyclic, the 120 transitivity
clauses and 12 asymmetricity clauses are redundant. Thus, if PrecDom is instead set to be
the transitive closure of H ∪ P , then Rules (4) and (5) would not generate any redundant
clauses. We further reduce the number of transitivity clauses 〈>, (¬bpij ∨¬bpjk ∨ bpik)〉 by
considering only those where none of j ≺ i, k ≺ j, and i ≺ k are in H, especially when the
input subscription graph is not sparse. The reason for this is that these transitivity clauses
are always entailed due to the enforcement of the catalogue precedence constraints. This
reduction in the number of clauses might reduce the memory requirement and also might
have an impact on the efficiency of unit propagation, which in turn may reduce the runtime.

9.2 Symbol-based Encoding

Another sat approach based on a symbol-based encoding of partial order constraints is
presented by Codish et al. (2009). Partial order constraints (Codish, Lagoon, & Stuckey,
2008) are basically propositional formulae except that propositions can also be statements
about a partial order on a finite set of symbols. In a symbol-based encoding the transitivity
and asymmetricity properties of a precedence relation are enforced implicitly.

Here also a Boolean variable bfi is associated with each feature i ∈ F indicating whether
i is included or excluded. A Boolean variable bpij is associated with each precedence

1. Given a function g(n), Θ(g(n)) denotes the set of functions f(n) such that there exist positive constants
c1, c2 and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0 (Cormen et al., 1990).
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constraint (i ≺ j) ∈ H ∪ P . For each catalogue constraint (i ≺ j) ∈ H the following clause
is added: 〈>, (¬bfi ∨ ¬bfj ∨ bpij)〉. For each precedence constraint i ≺ j ∈ (H ∪ P ) the
following clauses are added: 〈>, (¬bpij ∨ bfi)〉 and 〈>, (¬bpij ∨ bfj)〉. For each precedence
constraint i ≺ j ∈ (H ∪ P ) the propositional constraint bpij ⇒ Ji ≺ jK is encoded2. This
intuitively means that if bpij is true then i precedes j. Two different ways of encoding
a precedence constraint Ji ≺ jK are presented by Codish et al. (2009), which are called
the unary encoding and the binary encoding. A brief description of them is presented in
Section 9.2.1 and Section 9.2.2, which will provide a basis for their theoretical comparisons.

Advanced techniques for encoding the objective function have also been proposed by
Codish et al. (2009). However the encoding of the objective function is orthogonal to
the way the precedences are encoded. As our purpose is to compare the encoding of the
precedence constraints, we omit the details of the encoding of the objective function for the
symbol-based encoding proposed by Codish et al. (2009). Instead, we assume that in this
approach the objective function is encoded as it is done in the atom-based case. Therefore,
in the pwmsat setting the following soft clauses are added for features and user precedences:
〈w(i), bfi〉 and 〈w(i ≺ j), bpij〉.

9.2.1 Unary Encoding

In the symbol-based unary encoding (Codish et al., 2009) each feature is associated with
an ordered set of Boolean variables that represents the unary encoding of its position. The
unary encoding of a non-negative integer m ≤ n is an assignment of values to a sequence of
n Boolean variables 〈m1, . . . ,mn〉 such that m1 ≥ m2 ≥ · · · ≥ mn. The integer-value of such
a representation is the number of variables mi taking value 1. For example, the sequence
11100000 represents the number m = 3 using n = 8 variables. For each pair of consecutive
variables in the sequence, say mk and mk+1, a clause 〈>, (¬mk+1∨mk)〉 is introduced to the
encoding in order to enforce that if mk+1 is assigned 1 then its predecessor in the sequence,
mk, must be assigned 1. Let i and j be two non-negative integer variables that can be
assigned values less than or equal to n. Let 〈i1, . . . , in〉 and 〈j1, . . . , jn〉 be the sequences of
n Boolean variables that represent the unary-encodings of i and j respectively. The unary-
encoding of i ≺ j is denoted by 〈i1, . . . , in〉 ≺ 〈j1, . . . , jn〉, which means that the number of
variables assigned the values 1 in the sequence 〈i1, . . . , in〉 is less than the number of variables
assigned the values 1 in the sequence 〈j1, . . . , jn〉. Notice that 〈i1, . . . , in〉 ≺ 〈j1, . . . , jn〉 holds
if and only if ¬in holds, j1 holds, and 〈i1, . . . , in〉 � 〈j2, . . . , jn, 0〉 holds. Here 〈j2, . . . , jn, 0〉
encodes an integer between 0 and n − 1, which is the predecessor of 〈j1, . . . , jn〉. The
inequality 〈i1, . . . , in〉 � 〈j2, . . . , jn, 0〉 can be encoded as follows: ∀1 ≤ k ≤ n−1, ik ⇒ jk+1.
The resulting weighted clauses for bpij ⇒ Ji ≺ jK are 〈¬bpij ∨ ¬in〉, 〈¬bpij ∨ j1〉, and
∀1 ≤ k ≤ n − 1, 〈>, (¬bpij ∨ ¬ik ∨ jk+1)〉. Overall, the symbol-based unary encoding
requires Θ(n2) propositional variables (n per feature) and involves Θ(k n) clauses (n per
precedence constraint), where k = |H ∪ P |.

9.2.2 Binary Encoding

In the symbol-based binary encoding each feature is associated with an ordered set of
Boolean variables that represents the binary log encoding of its position. The binary encod-

2. Ji ≺ jK is a Boolean formula that is satisfiable if and only if i precedes j.
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ing of a non-negative integer a ≤ n is a sequence of values assigned to k variables v1, . . . , vk,
where k = dlog2 ne. The value of such a representation is

∑
1≤m≤k 2k−m × vm . For exam-

ple, the sequence 101 represents the number 5 using 3 variables. A precedence constraint
is encoded using a lexicographical comparator (Apt, 2003). Given two numbers in binary
encoded form 〈i1, . . . , ik〉 and 〈j1, . . . , jk〉, a precedence constraint 〈i1, . . . , ik〉 < 〈j1, . . . , jk〉
holds if and only if there exists m > 0 such that im < jm and for all l < m, il = jl. The re-
sulting encoding is not in conjunctive normal form. Therefore, the Tseitin transformation3

(Tseitin, 1968) is used to obtain the corresponding formula in conjunctive normal form.
For a given precedence constraint, the Tseitin transformation introduces Θ(log n) variables
and clauses, since log n is the length of the formula associated with the given precedence
constraint. Overall, the symbol-based binary encoding requires Θ(n log n) propositional
variables and involves Θ(k log n) clauses, where k = |H ∪ P |.

9.3 Comparison of the Encodings

Unit Propagation (up) is a central component of a search-based sat solver. Given a unit
clause l, unit propagation applies the following rules: (1) every clause containing l is re-
moved, and (2) ¬l is removed from every clause that contains this literal. These rules are
applied until a fixed-point is reached. The application of these two rules leads to a new set
of clauses that is equivalent to the old one. Unit propagation detects inconsistency when
an empty clause is generated.

Let ae, seu, and seb denote the atom-based encoding, the symbol-based unary encoding,
and the symbol-based binary encoding respectively. The difference between these encodings
is the way they encode acyclicity. In ae acyclicity is encoded explicitly by adding transitivity
and asymmetricity clauses. In seu and seb acyclicity is encoded implicitly by associating
each feature with a set of Boolean variables that represent its position (an integer value)
and a precedence constraint is expressed in terms of these positions. The Boolean variables
denoting the inclusion (or exclusion) of features and user precedences are called problem
variables. These variables are common to all the encodings. An optimal relaxation can
be expressed in terms of the problem variables. In order to show that unit propagation
on one encoding is stronger than unit propagation on another encoding, we need to map
the decisions of one encoding to the other one. Unfortunately, it is not possible to map
the decisions between the atom-based and the symbol-based encodings. For example, an
assignment of a position variable in the symbol-based encodings cannot be expressed in
terms of the assignments to the variables of ae. Nevertheless, in the following, we prove that
unit propagation in ae is stronger than unit propagation in seb when a set of assignments
are restricted to the problem variables.

Proposition 4. Given a set of assignments restricted to the problem variables, if unit
propagation detects inconsistency in seb then it also detects inconsistency in ae, but the
converse is not true.

3. Given a propositional formula, the Tseitin transformation obtains an equivalent formula in conjunctive
normal form by associating a new variable with every subformula of the original formula and applying
the following equivalences: (i) s0 ⇔ (s1∨s2) ≡ {(¬s0∨s1∨s2), (s0∨¬s1), (s0∨¬s2)}, (ii) s0 ⇔ (s1∧s2) ≡
{(s0 ∨ ¬s1 ∨ ¬s2), (¬s0 ∨ s1), (¬s0 ∨ s2)}, and (iii) s0 ⇔ ¬s1 ≡ {(¬s0 ∨ ¬s1), (s0 ∨ s1)}.
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Proof. The atom-based and the symbol-based binary encoding differ only on the encod-
ing of the acyclicity, i.e., the encoding of the transitivity and asymmetricity properties of
the precedence relation. In the symbol-based binary encoding transitivity and asymmetric-
ity properties are implicitly captured by the clauses corresponding to the propositional
constraints of the form bpij ⇒ Ji ≺ jK. Therefore, in order to prove that if up detects incon-
sistency in seb then it also detects inconsistency in ae, it is sufficient to show that if bpij is
falsified due to violation of Ji ≺ jK in seb under unit propagation, the same happens in ae.
The clauses corresponding to Ji ≺ jK are not defined in terms of the problem variables and
none of these clauses are unary4. Therefore, up can not falsify bpij in seb. This trivially
implies that, when only a set of problem variables are instantiated, up in ae detects any
inconsistency that is detected by up in seb.

Now we show that there exists a case where an inconsistency is detected by up in
ae but it is not detected in seb. Let F = {i, j, k} be a set of features, H = ∅, and
P = {i ≺ j, j ≺ k, k ≺ i} be a set of user precedence constraints. In all the encodings we
have a Boolean variable per user precedence constraint: bpij , bpjk and bpki and we assume
that bpij , bpjk and bpki are set to true. In ae the unit resolution of bpij and bpjk with
the transitive clause ¬bpij ∨ ¬bpjk ∨ bpik yields bpik, and the unit-resolution of bpik with
¬bpki ∨ ¬bpik yields ¬bpki, which results in an empty clause when resolved with bpki. In
seb, an ordered set of Boolean variables is associated with each feature. As there are 3
features, two Boolean variables are required per feature. Therefore each feature i, j and
k is associated with 〈i1, i2〉, 〈j1, j2〉, and 〈k1, k2〉 respectively that are used to encode a
precedence constraint. For each precedence constraint, say i ≺ j, a set of clauses that
encode the propositional constraint bpij ⇒ (¬i1 ∧ j1) ∨ ((i1 ⇔ j1) ∧ (¬i2 ∨ j2)) are also
added. The formulae associated with j ≺ k and k ≺ i are encoded similarly. Although
bpij and bpjk are set to true, up does not infer ¬bpik, since none of the clauses obtained
by applying Tseitin transformation is unary. Therefore, unlike ae, seb does not detect the
inconsistency.

Thus, we can infer that if unit propagation detects inconsistency in seb then it also
detects inconsistency in ae, but the converse is not true.

Given a set of assignments restricted to the problem variables, if unit propagation detects
inconsistency in seu then it also detects inconsistency in ae, and the converse is also true.
This follows directly from the explanation of the symbol-based unary encoding and the
atom-based encoding. Notice that both encodings detect cycles consisting of two features
of the form i ≺ j and j ≺ i. If the cycles involve more than two features i ≺ j, j ≺ k, k ≺ i
both of them will infer i ≺ k which will result in a cycle consisting of two features i and k.

10. Mixed Integer Linear Programming

In linear programming the goal is to optimise an objective function subject to linear equal-
ity and inequality constraints. When some variables are forced to be integer-valued, the
problem is called Mixed Integer Linear Programming (mip) problem. The standard way

4. When there are only 2 features, the clauses corresponding to Ji ≺ jK in seb are unary, in which case
inconsistency can be detected by up if it exists. However, the same inconsistency will be detected in the
atom-based encoding.
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of expressing these problems is by presenting the function to be optimised, the linear con-
straints to be respected and the domain of the variables involved. Both the basic cop
formulation and the atom-based pwmsat formulation for finding an optimal relaxation of a
feature subscription 〈F,H, P,w〉 can be translated into a mip formulation. The translation
of the pwmsat formulation into mip is straightforward. For this particular formulation we
observed that cplex was not able to solve even simple problems within a time limit of 4
hours. In this paper, we only present the mip formulation that corresponds to the basic
cop formulation as presented in Section 2.2.

Variables. For each i ∈ F , we use a binary variable bfi and a real variable pfi. A binary
variable bfi is equal to 1 or 0 depending on whether feature i is included or not. A real
variable pfi, 1 ≤ pfi ≤ |F |, if bfi is set to 1, is used to determine the position of the feature
i in the computed subscription. For each user precedence constraint (i ≺ j) ∈ P , we use
a binary variable bpij . It is instantiated to 1 or 0 depending on whether the precedence
constraint i ≺ j holds or not.

Linear Inequalities. If the features i and j are included in the computed subscription
and if (i ≺ j) ∈ H then the position of feature i must be less than the position of feature j.
To this effect, we need to translate the underlying implication (bfi ∧ bfj ⇒ (pfi < pfj)) into
the following linear inequality:

pfi − pfj + n ∗ bfi + n ∗ bfj ≤ 2n− 1 . (6)

Here, n is a constant that is equal to the number of features, |F |, selected by the user.
When both bfi and bfj are 1, Inequality (6) will force (pfi < pfj). Note that this is not
required for any user precedence constraint (i ≺ j) ∈ P , since it can be violated.

A user precedence (i ≺ j) ∈ P is equivalent to the implication bpij ⇒ (pfi < pfj)∧bfi∧bfj ,
which in turn is equivalent to the conjunction of the three implications (bpij ⇒ (pfi < pfj)),
(bpij ⇒ bfi) and (bpij ⇒ bfj). These implications can be translated into the following
inequalities:

pfi − pfj + n ∗ bpij ≤ n− 1 (7)

bpij − bfi ≤ 0 (8)

bpij − bfj ≤ 0 . (9)

Inequality (7) means that bpij = 1 forces pfi < pfj to be true. Also, if bpij = 1 then both
bfi and bfj are equal to 1 from Inequalities (8) and (9) respectively.

Objective Function. The objective is to find an optimal relaxation of a feature sub-
scription configuration problem 〈F,H, P,w〉 that maximises the sum of the weights of the
features and the user precedence constraints that are selected:

Maximise
∑
i∈F

w(i)× bfi +
∑

(i≺j)∈P

w(i ≺ j)× bpij .

11. Experimental Results

In this section, we shall describe the empirical evaluation of finding an optimal relaxation of
randomly generated feature subscriptions using constraint programming, partial weighted
maximum Boolean satisfiability and integer linear programming.
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11.1 Problem Generation and Experimental Settings

In order to compare the different approaches we generated and experimented with a variety
of random catalogues and many classes of random feature subscriptions. All the random
selections below are performed with uniform distributions. A random catalogue is defined
by a tuple 〈fc, Bc, Tc〉. Here, fc is the number of features, Bc is the number of binary
constraints and Tc ⊆ {≺,�,≺�} is a set of types of constraints. Note that i ≺� j means
that in any given subscription both features i and j cannot exist together. A random
catalogue is generated by selecting Bc pairs of features randomly from fc(fc − 1)/2 pairs
of features. Each selected pair of features is then associated with a type of constraint
that is selected randomly from Tc. A random feature subscription is defined by a tuple
〈fu, pu, w〉. Here, fu is the number of features that are selected randomly from fc features,
pu is the number of user precedence constraints between the pairs of features that are
selected randomly from fu(fu − 1)/2 pairs of features, and w is an integer greater than 0.
Each feature and each user precedence constraint is associated with an integer weight that
is selected randomly between 1 and w inclusive.

We generated catalogues of the following forms: 〈50, 250, {≺,�}〉, 〈50, 500, {≺,�,≺�}〉
and 〈50, 750, {≺,�}〉. For each random catalogue, we generated classes of feature subscrip-
tions of the following forms: 〈10, 5, 4〉, 〈15, 20, 4〉, 〈20, 10, 4〉, 〈25, 40, 4〉, 〈30, 20, 4〉, 〈35, 35, 4〉,
〈40, 40, 4〉, 〈45, 90, 4〉 and 〈50, 5, 4〉. Note that 〈50, 250, {≺,�}〉 is the default catalogue and
the value of w is 4 by default, unless stated otherwise. For each catalogue 10 instances of
feature subscriptions were generated and their mean results are reported in the paper5. We
remark that only 4 randomly generated instances were consistent out of the 270 generated
instances. These consistent instances are instances of the feature subscription class 〈10, 5, 4〉
of catalogue 〈50, 250, {≺,�}〉.

All the experiments were performed on a pc pentium 4 (cpu 1.8 ghz and 768mb of
ram) processor. The performances of all the approaches are measured in terms of search
nodes (#nodes) and runtime in seconds (time). The time reported is the time spent in
both finding the optimal solution and proving optimality. We used the time limit of 14,400
seconds (i.e., 4 hours) to cut the search. No initial bounds were computed for any of the
approaches.

11.2 Evaluation of Constraint Programming Formulations

For the basic constraint optimisation problem model as presented in Section 7 we first inves-
tigated the effect of Maintaining Arc Consistency (mac) within branch and bound search.
We also studied the effect of maintaining different levels of consistency on different sets of
variables within a problem. In particular we investigated, (1) maintaining singleton arc
consistency on the Boolean variables and mac on the remaining variables (see Section 7.2),
and (2) maintaining restricted singleton arc consistency on the Boolean variables and mac
on the remaining variables (see Section 7.3); the former is denoted by msacb and the lat-
ter by mrsacb. All the branch and bound search algorithms were tested with two different
variable ordering heuristics: dom/deg (Bessiere & Regin, 1996) and dom/wdeg (Boussemart,
Hemery, Lecoutre, & Sais, 2004). Here dom is the domain size, deg is the original degree

5. All the generated instances are available on http://4c.ucc.ie/~lquesada/FeatureSubscription/page/

instances.htm.
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of a variable, and wdeg is the weighted degree of a variable. All the experiments for the
basic constraint optimisation problem formulation were done using choco6 (version 2.1)
a Java library for constraint programming systems. Some results for all the three branch
and bound search algorithms with the dom/deg variable ordering heuristic are presented in
Table 2 and with the dom/wdeg variable ordering heuristic are presented in Table 3.

Table 2: Average results of mac, mrsacb and msacb with dom/deg heuristic.
MAC MRSACb MSACb

〈fu, pu〉 time #nodes time #nodes time #nodes
〈20, 10〉 0.2 1,691 0.0 45 0.0 44
〈25, 40〉 9.8 70,233 0.5 174 0.6 156
〈30, 20〉 5.6 29,076 0.6 179 0.7 157
〈35, 35〉 125.2 479,650 7.3 1,269 8.1 1,083
〈40, 40〉 1,716.9 5,307,530 68.8 9,830 75.1 8,466

Table 3: Average results of mac, mrsacb and msacb with dom/wdeg heuristic.
MAC MRSACb MSACb

〈fu, pu〉 time #nodes time #nodes time #nodes
〈20, 10〉 0.1 701 0.0 42 0.0 41
〈25, 40〉 3.3 20,096 0.5 164 0.6 145
〈30, 20〉 2.4 10,511 0.5 161 0.6 142
〈35, 35〉 76.9 248,447 5.5 932 6.3 798
〈40, 40〉 889.0 2,255,713 45.9 6,105 52.9 5,184

Tables 2 and 3 clearly show that maintaining (r)sac on the Boolean variables and ac
on the integer variables dominates maintaining ac on all the variables. To the best of
our knowledge this is the first time that such a significant improvement has been observed
by maintaining a partial form of singleton arc consistency during search. As the problem
size increases the difference in terms of the number of nodes visited by mrsacb and msacb
increases. Note that mrsacb usually visits more nodes than those visited by msacb, but the
difference between them is not that significant. This suggests that the level of consistency
enforced by rsac on the instances of feature subscription problem is very close to that
enforced by sac. Despite visiting more nodes, mrsacb usually requires less time than msacb.
On average, all the three search algorithms perform better with the dom/wdeg heuristic
than with the dom/deg heuristic. Note that in the remainder of the paper the results that
correspond to the basic cop model are obtained using mrsacb with the dom/wdeg variable
ordering heuristic.

We remark that the underlying algorithms in mac and mrsacb that enforce ac and
rsacb respectively have an optimal worst-case time complexity. However, the underlying
algorithm of msacb that enforces sacb does not have an optimal worst-case time complexity.
Implementing an algorithm to enforce sacb that has an optimal worst-case time complexity
is not only cumbersome but also has a higher space requirement. The works of Bessiere et al.
(2004, 2005) provide evidence that when an optimal algorithm for enforcing sac is used as
a preprocessor it is very expensive both in terms of running time and space. Therefore,

6. http://choco.sourceforge.net/
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maintaining it during search, as in our case, could be even more expensive. Indeed there
exists other sub-optimal but efficient algorithms for enforcing singleton arc consistency on
constraints networks, as proposed by Lecoutre et al. (2005) and, it remains to see whether
any of these efficient algorithms can reduce the running time of msacb.

Notice that sacb can prune more values than rsacb. However, in practice, the difference
between their pruning on the instances of feature subscriptions is not much, which is evident
based on the number of nodes and time shown in Tables 2 and 3. We recall that rsacb
enforces partial sacb. At a given node in the search tree, rsacb enforces arc consistency
at most one time for each assignment of a value to each Boolean variable, whereas sacb
can enforce arc consistency at most n times in the worst-case. Here n is the sum of the
Boolean variables associated with features and user precedences. Nevertheless, in practice,
we observed that it was much less. For example, for any instance of feature subscription of
the class 〈40, 40〉 arc consistency was enforced at most 7 times for any variable-value pair,
which is much less than n = 80. This also justifies the use of a non-optimal version of
algorithm to enforce sacb.

Our wcsp formulation for finding an optimal relaxation of a feature subscription was
also tested. For this purpose toulbar2 (a generic solver for wcsp) was used7. In general the
results in terms of time were poor. We remark that a solution of the wcsp model is a total
order on the features whose position variables are assigned values greater than 0. Due to
holes (when a feature is excluded) different assignments of the position variables may lead
to the same total order. Thus, more search effort could be spent for the wcsp formulation.
We recall that in the basic cop model the decision variables are only the Boolean variables
that indicate the inclusion/exclusion of features and user precedences and not the position
variables. Therefore, an optimal solution of the basic cop model may not necessarily be
a total order on the included features. Nevertheless, it can be obtained by computing a
topological sort on the included user precedences and the catalogue precedences defined
over the included features.

In order to remove the symmetries the wcsp formulation, as described in Section 8.2,
can be augmented. One way could be to associate costs with the values (greater than 0)
of the position variables in such a way that there is a unique assignment of values to the
variables, which is optimal for a given strict partial order. Our preliminary investigation
suggested that the number of nodes were reduced but at the expense of increasing the time.
In our current setting, the wcsp approach has been used as a black box. Indeed, certain
improvements can be made which may improve the performance in terms of time. For
example, stronger soft consistency techniques can be applied similar to the singleton arc
consistency for the cop model, which is more efficient for feature subscription problem.

We also investigated the impact of using the global constraint SoftPrec. This global
constraint was implemented in choco. The results obtained by using it are denoted by
sp. Five variants of SoftPrec have been investigated by Lesaint et al. (2009). The
results presented in this paper correspond to the variant that was observed to be the best
in terms of time, which Lesaint et al. (2009) denoted by sp4. The results in Tables 6-
8 show that SoftPrec always outperforms mrsacb on average. However, Lesaint et al.
(2008a) theoretically showed that the pruning achieved by maintaining rsac on the Boolean

7. http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
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variables of the cop model and ac on the remaining variables is incomparable with the
pruning achieved by using SoftPrec.

11.3 Evaluation of the Boolean Satisfiability Formulations

The evaluation of the atom-based pwmsat encoding of feature subscription was carried out
on three different solvers: (a) sat4j8 (version 2.1.1), an efficient library of sat solvers in
Java that implements the minisat specification (Eén & Sörensson, 2003); (b) minisat+9

(version 1.13+), a pseudo-Boolean solver implemented on top of minisat (Eén & Sörensson,
2006); and (c) clasp10 (version 1.3.0), an answer set solver that supports Boolean constraint
solving (Gebser, Kaufmann, & Schaub, 2009). As the two last solvers are pseudo-Boolean
solvers, the pwmsat instances were translated into linear pseudo-Boolean instances by
associating each clause with a linear pseudo-Boolean constraint, and defining the objective
function as the weighted sum of the soft clauses in the pwmsat model (de Givry, Larrosa,
Meseguer, & Schiex, 2003).

The results of the evaluation are summarized in Table 4. We remark that the results for
the sat4j solver, especially for the dense catalogues, are roughly 10 times faster in terms of
time when compared to those presented by Lesaint et al. (2008c). This is simply due to the
advances in the version of the sat4j that has been used to obtain the results. Despite that,
sat4j is significantly outperformed by both minisat+ and clasp. We observed up to a one
order-of-magnitude gap in those cases where the catalogue is sparse. clasp and minisat+
seem to be incomparable in our instances. Even though clasp performed better on our
toughest category of instances 〈45, 90〉, clasp spent 27% more time solving the whole set of
instances. We also noticed that clasp seems to be more sensitive to the number of features
in sparse instances. While we observed a gap of one order-of-magnitude between categories
〈45, 90〉 and 〈50, 4〉 in the 〈50, 250, {≺,�}〉 catalogue with sat4j and minisat+, the gap
observed with clasp was not that significant.

Table 4: Results for the atom-based encoding using different SAT solvers.
〈50, 250, {≺,�}〉 〈50, 500, {≺,�,≺�}〉 〈50, 750, {≺,�}〉

〈f, p〉 sat4j clasp minisat+ sat4j clasp minisat+ sat4j clasp minisat+
〈30, 20〉 0.6 0.1 1.2 0.5 0.0 0.7 0.8 0.2 0.7
〈35, 35〉 2.7 0.8 3.0 0.7 0.1 1.3 2.5 0.8 2.0
〈40, 40〉 18.2 6.9 8.0 1.2 0.1 2.0 8.0 3.2 4.5
〈45, 90〉 1,156.4 111.1 119.6 3.6 0.4 5.7 46.7 13.8 25.5
〈50, 4〉 90.8 79.0 11.9 3.7 0.6 3.8 147.1 43.8 12.8

We now compare the atom-based encoding with the symbol-based unary and binary
encodings as described in Section 9.2. In order to do a fair comparison between these
encodings we need to solve the same instances of feature subscription on the same machine
using the same solver. As we did not have access to the instances of feature subscription
for seu and seb encodings, we use the results of the experiments run by Daniel Le Berre11

for all the three encodings: ae, seu and seb on the same instances of feature subscription

8. http://www.sat4j.org/

9. http://minisat.se/MiniSat+.html

10. http://www.cs.uni-potsdam.de/clasp/

11. http://www.cril.univ-artois.fr/~leberre/
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using sat4j solver (version 2.1.0) on a pc pentium 4 (cpu 3 ghz). Codish et al. (2009) have
also made these results public.

Table 5 presents results for feature subscriptions of different sizes of different catalogues
for three encodings: ae, seu, and seb. The experimental results show that ae is, in general,
more efficient than seb, which is consistent with the fact that unit propagation on ae
is strictly stronger than unit propagation on seb. Note that ae is up to two orders-of-
magnitude faster than seb. Notice that seb never outperforms both seu and ae on any
class of feature subscription.

Table 5: Mean results in terms of time obtained using ae, seu, seb encodings in sat4j.
〈50, 250, {≺,�}〉 〈50, 500, {≺,�,≺�}〉 〈50, 750, {≺,�}〉

subscription ae seu seb ae seu seb ae seu seb

〈10, 5〉 0.05 0.12 0.17 0.07 0.29 0.15 0.07 0.31 0.16
〈15, 20〉 0.12 0.69 0.32 0.13 0.95 0.30 0.14 1.12 0.47
〈20, 10〉 0.15 0.76 0.36 0.17 1.24 0.42 0.18 1.32 0.79
〈25, 40〉 0.41 1.70 1.87 0.27 1.75 1.23 0.35 2.44 5.90
〈30, 20〉 0.58 1.66 1.22 0.31 2.21 1.49 0.47 3.58 9.16
〈35, 35〉 1.40 3.46 7.12 0.57 3.15 3.35 1.33 7.19 49.65
〈40, 40〉 9.20 9.06 21.03 0.91 3.73 5.31 3.22 15.67 153.75
〈45, 90〉 484.16 161.37 1,844.01 2.34 8.85 22.11 24.64 64.79 1205.12
〈50, 4〉 30.72 7.09 11.97 2.39 4.91 8.77 61.57 41.87 618.66

Although the results reported in Tables 1, 2 and 3 of the works of Codish et al. (2008,
2009) suggest that seb is much better than ae, the results shown in Table 5 contradict this
conclusion. The results obtained by using seb are significantly outperformed by those ob-
tained by using ae. This apparent conflict could be for one of several reasons. The results
reported by Codish et al. (2008) were based on different instances for different encodings
and the instances used for the symbol-based encoding were very much easier and in fact
some large size instances with 50 features were already consistent. Also, the experiments
for different encodings were conducted on different machines. Codish et al. (2008, 2009)
obtained the results for the symbol-based encoding and the atom-based encodings using
different solvers. The experiments for seb were done using a solver, which has been imple-
mented on top of minisat, while for ae the results were obtained using the sat4j solver.
It is apparent from Table 4 that the use of different solvers can make a huge difference in
terms of runtime. In fact, we have observed a huge improvement for ae when tested with
the minisat+ solver. This latter fact suggests that the speed up observed by Codish et al.
(2008, 2009) could be mostly because of the use of minisat. Also, notice that the results
depicted in Table 5 are in accordance with the fact that unit propagation in the atom-based
encoding is strictly stronger than unit propagation in the symbol-based binary encoding.

Although unit propagation on ae encoding is equivalent to unit propagation on seu
encoding when assignments are restricted to problem variables, empirically it is not always
possible to observe this due to the exploration of the search trees in different orders. Table 5
shows that ae and seu are incomparable in terms of time. Therefore, it is not possible
to conclude superiority of any of the two approaches. We have also been informed that
the instances of the symbol-based encodings also include the computation of the objective
function, and the comparison of the value of the objective function with an upper bound as
described by Codish et al. (2009). However, they are not needed when applying the pwmsat
solver of sat4j. These extra clauses may indeed prevent the symbol-based approaches to
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perform at their best. Nevertheless, most of the clauses of the symbol-based encodings are
coming from the encoding of the precedence constraints.

Finding an optimal relaxation of a feature subscription using a sat solver can be de-
composed into three tasks: (a) the encoding of the strict partial order, (b) the encoding
of the objective function, and (c) the underlying search algorithm of the sat solver. Im-
proving any of these tasks can improve the whole approach for solving the problem. In this
paper we have focused on task (a), which is mainly about the encoding of the precedence
constraints. We remark that (a), (b) and (c) are orthogonal tasks, so any of the techniques
for tasks (b) and (c) can certainly be used with any of the techniques for task (a). The
different encodings of precedence constraints can be fairly compared when the same (or the
best suited) techniques of tasks (b) and (c) are used. Codish et al. (2008, 2009) propose
several techniques for (b) and (c), e.g., the encoding of the sum constraint and the use of
dichotomic search for the optimisation aspect. It may be possible to improve the results of
atom-based encoding further by using these techniques.

11.4 Comparison between CP, SAT and MIP-based approaches

The performances of using constraint programming (cp), partial weighted maximum sat-
isfiability (sat) and mixed integer linear programming (mip) approaches are presented in
Tables 6, 7 and 8. The mip model of the problem was solved using ilog cplex12 (version
10.1). For the cp approaches the results are presented for mrsacb and the global constraint
denoted by sp. For the sat approaches we use the results obtained by using clasp and
minisat+. All the approaches solved all the instances within the time limit. Since in gen-
eral finding an optimal relaxation is NP-hard, we need to investigate which approach can
do it in reasonable time. The best approach in terms of time is represented in bold letters
for each class of feature subscription.

Table 6: Catalogue 〈50, 250, {≺,�}〉.
MIP CP SAT

MRSACb SP CLASP MINISAT+
〈fu, pu〉 #nodes time #nodes time #nodes time #nodes time #nodes time
〈30, 20〉 208 0.4 161 0.5 115 0.2 5,258 0.1 3,938 1.2
〈35, 35〉 905 2.0 932 5.6 744 2.8 11,565 0.8 9,757 3.0
〈40, 40〉 2,616 9.1 6,105 45.9 2,707 12.3 37,331 6.9 20,368 8.0
〈45, 90〉 9,818 77.4 104,789 1,256.1 103,065 971.3 310,595 111.1 133,303 119.6
〈50, 4〉 1,754 6.1 26,494 218.1 9,133 36.5 196,684 79.0 26,087 11.9

The results presented in Table 6 suggest that the mip approach performs better than the
cp and sat approaches for the hardest feature subscription instances of the sparse catalogue
〈50, 250, {≺,�}〉, in particular for 〈45, 90〉 and 〈50, 4〉 classes of feature subscriptions, and for
the remaining classes of feature subscription of the catalogue 〈50, 250, {≺,�}〉, the sat ap-
proach based on the clasp solver is the winner. For the dense catalogue 〈50, 750, {≺,�}〉,
the mip approach is significantly slower than the other approaches. Notice that the re-
sults for the mip approach have improved significantly when compared with the results
presented by Lesaint et al. (2008c). This is because of the usage of real-valued variables
for the positions of features. The results presented in Tables 7 and 8 for the catalogues

12. http://www.ilog.com/products/cplex/
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Table 7: Catalogue 〈50, 500, {≺,�,≺�}〉.
MIP CP SAT

MRSACb SP CLASP MINISAT+
〈fu, pu〉 #nodes time #nodes time #nodes time #nodes time #nodes time
〈30, 20〉 48 0.4 66 0.2 53 0.1 2,066 0.0 4,298 0.7
〈35, 35〉 112 1.1 158 1.0 111 0.4 2,999 0.1 6,838 1.3
〈40, 40〉 160 1.8 229 1.8 188 1.0 4,005 0.1 8,897 2.0
〈45, 90〉 573 18.2 687 9.6 620 6.1 7,265 0.4 19,791 5.7
〈50, 4〉 258 1.5 768 6.2 954 3.6 8,887 0.6 16,511 3.8

Table 8: Catalogue 〈50, 750, {≺,�}〉.
MIP CP SAT

MRSACb SP CLASP MINISAT+
〈fu, pu〉 #nodes time #nodes time #nodes time #nodes time #nodes time
〈30, 20〉 3,761 9.3 578 2.2 168 0.4 4,633 0.2 5,125 0.7
〈35, 35〉 13,485 67.9 1,997 11.4 396 1.9 9,285 0.8 12,611 2.0
〈40, 40〉 28,461 229.0 5,229 36.7 993 5.8 20,905 3.2 22,284 4.5
〈45, 90〉 43,958 539.1 19,190 207.8 2,902 29.7 60,676 13.8 60,531 25.5
〈50, 4〉 163,686 1,644.4 31,580 253.1 5,569 28.2 130,920 43.8 45,802 12.8

〈50, 500, {≺,�,≺�}〉 and 〈50, 750, {≺,�}〉, respectively, suggest that the sat approaches
perform significantly better than the mip and cp approaches. In particular, the sat ap-
proach based on the clasp solver is the winner for all the classes except for the 〈50, 4〉 class
of feature subscription of catalogue 〈50, 750, {≺,�}〉, where it is outperformed by the cp
approach based on the global constraint and the sat approach based on minisat+.

Even though mrsacb and SoftPrec are outperformed by at least one of the other
approaches in all the cases, they are never the worst with respect to the total time required
for solving all the instances as shown in Figure 3. In particular the cp approach based
on SoftPrec is very competitive in those cases where the catalog is dense. Figure 3 also
shows that the pseudo-Boolean solvers clasp and minisat+ perform better in terms of
total time when compared with the other approaches. It should be noted that clasp and
minisat+ are implemented in C++ and use restarts, while mrsacb and SoftPrec are
implemented in the Java-based choco solver and they do not use restarts. Both clasp
and minisat+ perform poorly when compared with respect to the number of nodes visited
during search. This shows that the time spent by clasp and minisat+ at each node is
considerably less than the time spent by the remaining approaches. There is of course the
opportunity to improve the per-node speed of the cp approaches by implementing them
in a C++ based solver. We also remark that both clasp and minisat+ consume more
memory than the cp-based approaches and the mip approach. To illustrate this, we also
computed the sum of the problem sizes of all the instances for all the approaches. Here,
the problem size of an instance is the sum of the number of variables, the domain sizes
of all the variables, and the arity of all the constraints. Figure 4 depicts the plot for the
total problem size for each approach. The total problem size for clasp and minisat+ is
roughly two orders-of-magnitude more than the other approaches. We, therefore, conclude
that clasp and minisat+ do not offer scalability.
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Figure 4: Total problem size of all the instances for different approaches.
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12. Conclusions and Future Work

In this paper we have focussed on the task of finding an optimal relaxation of feature sub-
scription when the user’s preferences violate the technical constraints defined by a set of
distributed feature composition rules. We reformulated the problem of finding an optimal
relaxation, and showed that it is a generalisation of the Feedback Vertex Set problem, which
makes the problem NP-hard. We developed cpbased methods for finding an optimal relax-
ation of feature subscription. In particular we presented three models: a basic constraint
optimisation problem model, a model based on a global constraint, and a weighted csp
model. For the basic cop model, we studied the effect of maintaining arc consistency and
two mixed consistencies during branch and bound search. Our experimental results suggest
that maintaining (restricted) singleton arc consistency on the Boolean variables and arc con-
sistency on the integer variables outperforms mac significantly. The former approach was
outperformed empirically by the cp approach based on the SoftPrec global constraint.

We also compared the cpbased approaches with the sat-based approaches and a mixed
integer linear programming approach. In the partial weighted maximum satisfiability case
we presented an atom-based encoding and investigated two symbol-based encodings. When
the set of assignments are restricted to problem variables unit propagation on the atom-
based encoding is strictly stronger than the unit propagation on the symbol-based binary
encoding, and the former is equivalent to the unit propagation on the symbol-based unary
encoding. Empirically, the atom-based encoding is better than the symbol-based binary
encoding, and it is incomparable with the symbol-based unary encoding. Overall, the
results suggest that when the catalogue is sparse mip is better in terms of runtime on hard
instances. When the catalogue is dense the sat approach based on clasp is better in terms
of runtime. The sat approach based on minisat+ and the cp approach based on the global
constraint are also very competitive on the dense catalogues. Overall, the pseudo-Boolean
solvers clasp and minisat+ perform better in terms of total time when compared with
the other approaches.

The approaches considered in this paper are mostly one-stage approaches in the sense
that the exploration is started without any approximation of the optimum value. In the
future we would like to consider a two-stage approach where, at the first stage, a heuristic
is used to compute an approximation of the optimal solution, and at the second stage, the
exploration is carried out taking the approximate value as an initial lower bound. The
cp approach based on wcsp was explored the least. It may be possible to improve its
performance by using different models that overcome the problem of symmetric solutions
and stronger consistency techniques similar to singleton arc consistency in the case of the
basic cop model. In the current settings the performance of all the approaches in terms of
time includes the time taken to prove the optimality of the solution. In the future, we would
like to compare all the presented approaches and also local search methods in terms of their
anytime profiles (i.e. solution qualities over time). It would be interesting to investigate the
impact of restarts on all the approaches.
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