
Title Behavioral modeling of low-frequency noise in switched-capacitor
circuits using Python

Authors Kalogiros, Spyridon;Salgado, Gerardo;McCarthy, Kevin;O'Connell,
Ivan

Publication date 2022-08-05

Original Citation Kalogiros, S., Salgado, G., McCarthy, K. and O'Connell, I. (2022)
'Behavioral modeling of low-frequency noise in switched-
capacitor circuits using Python', 2022 20th IEEE Interregional
NEWCAS Conference (NEWCAS), Quebec City, QC, Canada, 19-22
June, pp. 446-449. doi: 10.1109/NEWCAS52662.2022.9842076

Type of publication Conference item

Link to publisher's
version

10.1109/NEWCAS52662.2022.9842076

Rights © 2022, European Union. Published by IEEE. Personal use
of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Download date 2024-05-19 21:59:43

Item downloaded
from

https://hdl.handle.net/10468/13772

https://hdl.handle.net/10468/13772

Behavioral Modeling of Low-Frequency Noise in

Switched-Capacitor Circuits Using Python

Spyridon Kalogiros1,2, Gerardo Salgado1,2, Kevin McCarthy2 and Ivan O’Connell1,2
1Microelectronic Circuits Centre Ireland, Tyndall National Institute, Cork, Ireland

2University College Cork, Department of Electrical and Electronic Engineering, Cork, Ireland

email: spyridon.kalogiros@umail.ucc.ie

Abstract—In precision circuits validating the performance in

the presence of low-frequency noise is particularly challenging

especially at transistor level, as long simulations are required to

observe the low frequency performance. However, running such

system-level simulations is rarely practical at transistor level as

these simulations can take days to weeks to complete. This work

presents a high-level model in Python for generating low-

frequency noise which can be used for validating the low-

frequency performance of a design in a timely manner.

Simulation times can be reduced from days to minutes, enabling

designers to achieve a high-level simulation coverage. With

Python and NumPy this can be achieved using open-source

software tools at no cost.

Keywords—Python, System-Level Design, Behavioral
Modeling, Flicker Noise, Switched-Capacitor Integrators

I. INTRODUCTION

In the design of precision switched capacitor circuits it is
essential to simulate and verify the resultant performance in
the presence of low-frequency noise sources such as flicker
or 1/f noise. To accurately simulate low frequency noise in
the kHz range requires simulations ms long, whereas to
simulate low frequency in the 10’s Hz region requires
simulations that run 100 ms. However, for circuits operating
from a MHz clock this requires 100000 or more clock cycles
and this increases with increasing clock frequency. While
transistor-level simulations do provide the necessary
accuracy and precision, running system simulations of these
durations results in simulation times of days and weeks [1].
This makes it extremely difficult to achieve a reasonable level
of simulation coverage in a reasonable timeframe. Hence,
many designs are often sent for fabrication without having a
satisfactory level of simulation coverage in relation to their
performance in the presence of 1/f noise, which often results
in unnecessary redesigns. To address this, MATLAB and
Simulink have gained broad adoption at the system level [2].
The Schreier Toolbox [3] is widely adopted at the system
level in the design and verification of Delta-Sigma Modulator
architectures. However, MATLAB is a commercial tool,
which means that not every designer has access to it,
especially outside an academic environment. Python, which
has recently become one of the most popular programming
languages [4], is being widely adopted in the test and
measurement space due its robustness and vast repository of
packages [5]. This has seen it being adopted as the language
of choice in the area of Analog IC Design, one such example
is the Berkley Analog Generator [6]. The absence of any
license fees is an important aspect in democratising analogue
IC Design and enabling designers to undertake rapid low-cost
system design and verification.

This paper presents a high-level noise model for a
Switched-Capacitor Integrator in Python, which enables the
designer to accurately model low frequency 1/f noise for the
first time in a timely manner. This paper is organized as
follows. Section II presents an algorithmic analysis in Python

of low-frequency noise modeling on a single-ended
Switched-Capacitor Integrator, pointing out the main low-
frequency component, the flicker (1/f) noise. Section III
introduces modeling in Python of a Delta-Sigma Modulator,
example which contains Switched-Capacitor Integrators in
the loop filter, where low-frequency noise is also present.
Finally, Section IV summarizes the main points of this work.

II. MODELING OF FLICKER NOISE CORNER IN SWITCHED-

CAPACITOR INTEGRATORS

Switched-Capacitor Integrators, as illustrated in Fig. 1(a)
below, are the key building block in many discrete time
precision circuits and in particular Delta-Sigma ADCs. From
a noise perspective, there are the wideband noise sources
which include the sampled thermal noise and the amplifier
thermal noise, as shown in Fig. 1(b). These are often lumped

together and treated as √
𝑘𝑇

𝐶
 noise [7]. In addition, there is

shaped flicker noise resulting from the trapping/detrapping
phenomena with the MOS transistors, which also needs to be
considered. However, to date, this is typically modelled as an
offset within the operational amplifier at the system level.

(a)

(b)

Figure 1: (a) Single-ended Switched-Capacitor Integrator (b) Noise

equivalent circuit

A. Thermal Gaussian Noise Generation

The sampled thermal noise can be modelled using a
random Gaussian (or normal) distribution, with a standard

deviation of √
𝑘𝑇

𝐶𝑖𝑛
 and a mean of zero. The NumPy Python

package has such a function built in, normal(mean, std_dev,
N) [8], which takes 3 parameters and returns an array of
length N, with a mean of mean and a standard deviation of
std_dev. Hence, a differential Switched-Capacitor Integrator
can be modelled as having an input referred sampled thermal

mailto:spyridon.kalogiros@umail.ucc.ie

noise standard deviation of 𝜎 = √
4𝑘𝑇

𝐶𝑖𝑛
 , where 𝐶𝑖𝑛 is the

sampling capacitor. To build an equivalent single-ended
model of the switched capacitor integrator in Python requires
that the added thermal noise voltage is divided by 2 to
maintain the same Signal to Noise Ratio as the differential
circuit. Hence, the added thermal noise is now modelled as:

𝑠𝑖𝑔𝑚𝑎_𝑁𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = √𝑁𝑡ℎ
2̅̅ ̅̅ ̅̅ = √

4𝑘𝑇

𝐶𝑖𝑛
 /2 ≃ √

𝑘𝑇

𝐶𝑖𝑛
 (1)

The first part of the proposed Python code, to generate
an array of random white thermal noise, Nthermal, is shown
in Fig. 2 below, for a 1 pF sampling capacitor:

Figure 2 Proposed Python script (part 1): Thermal noise generation

The resulting array of created thermal noise is plotted in
Fig. 3(a). A histogram of the array of the generated values is
shown in Fig. 3(b) confirming the normal distribution shape.

 (a) (b)

Figure 3 (a) Gaussian thermal noise [Nth] (b) Histogram

B. Shaped Low-Frequency Noise Generation
As discussed in the previous section, the normal NumPy

function produces a normal distribution which results in
white noise, with a flat frequency spectrum. However, to
approach the -10 dB/dec. of flicker noise roll-off, it is
required that the added noise is shaped and that the Power
Spectral Density (PSD) varies with frequency and is no
longer flat. To achieve this, it’s necessary to filter the random
noise, such that it’s shaped. One such filter to achieve this is
the Low-Pass Filter proposed in [9] and given by:

𝐻(𝑧) =
𝑎

𝑏−𝑐𝑧−1 (2)

which can be rewritten as:

𝑁𝑟𝑎𝑛𝑑𝑜𝑚

𝑁𝑓𝑙𝑖𝑐𝑘𝑒𝑟
=

𝑎

𝑏−𝑐𝑧−1 (3)

where Nrandom is the random white noise and Nflicker is

the resultant shaped low-frequency noise. This can be further

rewritten, in time domain, as:

𝑁𝑓𝑙𝑖𝑐𝑘𝑒𝑟[𝑖] =
1

𝑏
(𝑎𝑁𝑟𝑎𝑛𝑑𝑜𝑚[𝑖] + 𝑐𝑁𝑓𝑙𝑖𝑐𝑘𝑒𝑟[𝑖 − 1]) (4)

making it a lot easier to implement the filter in time

domain in Python. The coefficients a, b and c and are all set

to 1. However, the resultant magnitude of the noise is

determined by the magnitude of the random input noise,

Nrandom. Sampled thermal noise is always expressed in terms

of the total integrated noise in μV. Low-frequency flicker

noise is typically expressed in terms of a noise corner, below

which the shaped 1/f noise dominates and above which the

white thermal noise dominates. Therefore, the standard

deviation, sigma_Nrandom, of Nrandom, the unfiltered random

noise used to realise the 1/f noise, is given by:

𝑠𝑖𝑔𝑚𝑎_𝑁𝑟𝑎𝑛𝑑𝑜𝑚 =
𝑠𝑖𝑔𝑚𝑎_𝑁𝑡ℎ𝑒𝑟𝑚𝑎𝑙

𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟
 (5)

The scaling_factor is used to scale sigma_Nthermal to
achieve the desired corner frequency and can be shown as:

𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐹𝑁𝑦𝑞

2∗𝐹𝑐𝑜𝑟𝑛𝑒𝑟
 (6)

where 𝐹𝑐𝑜𝑟𝑛𝑒𝑟 is the desired 1/f noise corner frequency and

𝐹𝑁𝑦𝑞 is the Nyquist
𝐹𝑠

2
 frequency. The denominator of

equation (6) is formed in a way to further improve the
normalization and the proper placing of the corner frequency.
For instance, a selected 𝐹𝑁𝑦𝑞 of 10 MHz and Fcorner of 5

kHz create a scaling factor equal to 10 MHz / 10 kHz, or
equivalently, 1000. This, in turn, will divide the
sigma_Nrandom at a value equal to sigma_Nthermal/1000,
or equivalently, from 64 μV to 64 nV, changing the spectral
crossing point of both Nrandom and Nthermal FFTs to the
desired one. The second part of Python code, to realize flicker
noise, is shown in Fig. 4 below:

Figure 4 Proposed Python script (part 2): Flicker noise generation

The code shown in Fig. 4, results in the Nflicker noise
being generated from the converted input noise using the
transfer function of (2) and it is illustrated in Fig. 5 below:

Figure 5 Random input and generated flicker noise

from numpy import sqrt, log10, zeros
from numpy import pi, sin, round
from numpy.random import normal
from numpy.fft import fft, fftfreq

N = 2**21 # Αrray size and No. of frequency bins
k = 1.38e-23 # Boltzmann’s constant
T = 300 # Absolute Temperature (°K)
C = 1e-12 # Sampling Capacitor 1 pF

mean_Nthermal = 0
sigma_Nthermal = round(sqrt(k*T/C), 6)
Nthermal = normal(mean_Nthermal, sigma_Nthermal, N)

Nflicker = zeros(N)
Fs = 20e6
fft_freq = fftfreq(N, 1/Fs)
Fnyq = max(fft_freq)
Fcorner = 5000
scaling_factor = round(Fnyq/(2*Fcorner))
sigma_Nrandom = sigma_Nthermal/scaling_factor
Nrandom = normal(0.0, sigma_Nrandom, N)
a = 1
b = 1
c = 1

for i in range(1, N):

 Nflicker[i] = (a*Nrandom[i]+c*Nflicker[i-1])/b

 (a) (b)

Figure 6 (a) Input noise histogram (b) Generated flicker noise histogram

Fig. 6 above clearly shows that the generated flicker noise is
not Gaussian.

Illustrated in Fig. 7 below are the FFTs of the thermal and
flicker noise, on the same plot. The FFT of the random input
noise which is converted to flicker is also plotted. The figure
shows clearly that, firstly, the random input & thermal noise
FFTs are flat across the range of frequencies as expected, and
secondly, the desired flicker noise corner frequency (here in
this example equal to 5 kHz) is modelled properly due to the
equations (5) and (6) that force the average of flicker noise
FFT to cross the average of thermal noise FFT at this spectral
point:

Figure 7 FFTs of the generated thermal, input and flicker noise

III. MODELING OF FLICKER NOISE CORNER IN DELTA-SIGMA

MODULATORS

To simulate the robustness of the proposed Python

model, a Second-Order Delta-Sigma Modulator is modelled

in Python based on the modulator structure that is proposed

in [10], since Switched-Capacitor Integrators are broadly

used to implement the loop filter. A single-bit version of the

Delta-Sigma Modulator from [10], which is used in the

present analysis, is illustrated in Fig. 8 below:

Figure 8 Wideband Second-Order Delta-Sigma Modulator

The architecture contains the loop filter coefficients

𝑘1, 𝑘2 the feedforward coefficient 𝑘3, the quantizer gain 𝑘𝑞,

and the dynamic range scaling methodology for proper loop

stability is also shown. A Delta-Sigma Modulator like the one

above can be transferred into a Python environment by using

the differential equations that are forming it [11]. Starting

from the Switched-Capacitor Integrators, their generic

transfer function in z domain is illustrated on Fig. 1. In time

domain, integrator 1 and 2 equations can be expressed from

the modulator of Fig. 8 as follows:

𝐼𝑛𝑡1[𝑛] = 𝐺𝐼𝑛𝑡1(𝑉𝑖𝑛[𝑛] − 𝑉𝑜𝑢𝑡[𝑛 − 1]) + 𝐼𝑛𝑡1[𝑛 − 1] (7)

𝐼𝑛𝑡2[𝑛] = 𝐺𝐼𝑛𝑡2(𝐼𝑛𝑡1[𝑛]) + 𝐼𝑛𝑡2[𝑛 − 1] (8)

A third important differential equation is the input of

the ADC unit, the quantizer, which can be expressed below:

𝑄[𝑖] = 𝑘𝑞 ∗ (𝑘1 ∗ 𝐼𝑛𝑡1[𝑖] + 𝑘2 ∗ 𝐼𝑛𝑡2[𝑖] + 𝑘3 ∗ 𝑉𝑖𝑛[𝑖]) (9)

To implement the modulator in Python, the Python

code of Fig. 9 below is added as a third part (after Fig. 4),

injecting also the flicker and thermal noise quantities:

Figure 9 Proposed Python script (part 3): Second-Order Feed-Forward

Delta-Sigma Modulator implementation

ampl = 0.7
VrefP = 1.2
VrefN =-1.2
Ncycles = 2**7
BW = (Ncycles/N)*Fs
Tin = 1/BW
Ts = 1/Fs
samples_per_period = round(Tin/Ts)
Vin = zeros(N)
diff_in = zeros(N)
Int1 = zeros(N)
Int2 = zeros(N)
comp_in = zeros(N)
comp_out = zeros(N)
dac_out = zeros(N)

Gint1 = 1.0; Gint2 = 1.0

k1 = 2/Gint1; k2 = 1/(Gint1*Gint2); k3 = 1; kq = 1/k3

for i in range(N):

 Vin[i] = ampl*sin(2*pi/samples_per_period*i)

 if (i>=1):
 diff_in[i] = Nthermal[i] + Nflicker[i] + Vin[i] -

dac_out[i-1]
 Int1[i] = Gint1*diff_in[i] + Int1[i-1]
 Int2[i] = Gint2*Int1[i] + Int2[i-1]
 comp_in[i] = kq*(k1*Int1[i] + k2*Int2[i] +

k3*Vin[i])

 if (comp_in[i]>0):
 comp_out[i] = 1.0
 else:
 comp_out[i] =-1.0

 if (comp_out[i]==-1.0):
 dac_out[i] = VrefN
 else:
 dac_out[i] = VrefP

freq_Xaxis = fft_freq[:N//2]
comp_out_fft = fft(comp_out[:N])/N
Nflicker_fft = fft(Nflicker[:N])/N
Nthermal_fft = fft(Nthermal[:N])/N

comp_out_dB = 20*log10(abs((comp_out_fft[:N//2])))

Nflicker_dB = 20*log10(abs((Nflicker_fft[:N//2])))

Nthermal_dB = 20*log10(abs((Nthermal_fft[:N//2])))

 The first group of lines consist the initialization of the

necessary parameters. The first step is the generation of an

input sine wave of a 0.7 V amplitude and a frequency around

the 1 kHz range, a band that is affected by the low-frequency

flicker noise. The input signal is generated with a formula that

places its frequency directly on a frequency bin to avoid

spectral leakage on the FFT plot, and that is the following:

𝐵𝑊 = (
𝑁𝑐𝑦𝑐𝑙𝑒𝑠

𝑁
) ∗ 𝐹𝑠 (10)

where 𝑁𝑐𝑦𝑐𝑙𝑒𝑠 is the number of periods of the signal, N the

total number of frequency bins and Fs the sampling

frequency.

A sampling frequency of 20 MHz is introduced (from

Fig. 4) and a total number N of frequency bins equal to 221 is

selected (from Fig. 2), a number that in transistor-level

designs takes significant amount time to simulate. The code

of Fig. 9 continues with the calculation of the input signal’s

period Tin, the sampling period Ts, the number of samples

that are taken per one input signal’s period and the

initialization of the modulator’s main signal arrays. Finally,

the Delta-Sigma Modulator’s closed-loop system is

simulated with all the differential equations in a for loop

which is executed for N times.

Illustrated in Fig. 10 below is the FFT of the modulator

output in the presence of both thermal and flicker, using a 20

MHz clock. It is also showing the standard 40 dB/dec. noise

shaping associated with a second order modulator. The

presence of the thermal noise is clearly evident by the flat

spectrum between 1 kHz to 30 kHz, whereas the 1/f noise is

clearly evident below 1 kHz, causing the rising noise floor.

In total, three main regions of interest are shown on the output

FFT, the 1/f noise, the flat thermal noise and the quantization

noise shaping. The same flicker noise corner of 5 kHz is also

simulated in this example:

Figure 10 Modulator output FFT with FFTs of flicker and thermal noise

IV. CONCLUSIONS

The low-frequency nature of flicker noise requires that

hundreds of thousands of clock cycles are required to observe

the impact at low frequencies, which is rarely feasible at

transistor level. The open-source nature of Python eliminates

any license constraints associated with commercial tools,

while also helping to democratizing the design of CMOS

designs. This enables designers to add low-frequency noise

to their design and ultimately observe how the noise

propagates through the system. The approach of using

equation (2) to shape the white noise, results in a 20 dB/dec.

roll-off compared to the 10 dB/dec. resulting from flicker

noise. This deviation is deemed acceptable, as it over-

estimates the impact of flicker noise at lower frequencies,

ensuring that a systems robustness is fully tested and

validated. This increases designers’ confidence that their

design will achieve the system-level specifications.

ACKNOWLEDGEMENTS

This publication has emanated from research supported in

part by a research grant from Science Foundation Ireland

(SFI) and is co-funded under the European Regional

Development Fund under Grant Number 13/RC/2077

REFERENCES

[1] E. Chang, N. Narevsky, K. Settaluri and E. Alon, "BAG:
A Process-Portable Framework for Generator-based
AMS Circuit Design," 2019 IEEE Custom Integrated
Circuits Conference (CICC), 2019, pp. 1-20

[2] Gerardo Molina Salgado, Daniel O’Hare, Ivan
O’Connell, "Recent Advances and Trends in Noise
Shaping SAR ADCs", Circuits and Systems II: Express
Briefs IEEE Transactions on, vol. 68, no. 2, pp. 545-549,
2021

[3] https://www.mathworks.com/matlabcentral/fileexchang
e/19-delta-sigma-toolbox

[4] https://statisticstimes.com/tech/top-computer-
languages.php

[5] E. Alon, K. Asanović, J. Bachrach and B. Nikolić,
"Invited: Open-Source EDA Tools and IP, A View from
the Trenches," 2019 56th ACM/IEEE Design
Automation Conference (DAC), 2019, pp. 1-3

[6] J. Han, W. Bae, E. Chang, Z. Wang, B. Nikolić and E.
Alon, "LAYGO: A Template-and-Grid-Based Layout
Generation Engine for Advanced CMOS Technologies,"
in IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 68, no. 3, pp. 1012-1022, Mar. 20121

[7] R. Schreier, J. Silva, J. Steensgaard and G. C. Temes,
"Design-oriented estimation of thermal noise in
switched-capacitor circuits," in IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 52, no. 11,
pp. 2358-2368, Nov 2005

[8] https://numpy.org/doc/stable/reference/random/generate
d/numpy.random.normal.html

[9] G. M. Salgado, D. O'Hare and I. O'Connell, "Modeling
and Analysis of Error Feedback Noise-Shaping SAR
ADCs," 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), 2020, pp. 1-5, doi:
10.1109/ISCAS45731.2020.9180995.

[10] J. Silva, U. Moon, J. Steensgaard and G.C. Temes,
“Wideband Low-Distortion Delta-Sigma ADC
topology”, ELECTRONICS LETTERS 7th June 2001
Vol. 37 No. 12, pp. 737-738

[11] Shanthi Pavan, Richard Schreier, Gabor C. Temes,
Understanding Delta-Sigma Data Converters“, Second
Edition, IEEE Press, Wiley, 2017.

https://statisticstimes.com/tech/top-computer-languages.php
https://statisticstimes.com/tech/top-computer-languages.php
https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html

