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Chapter 1

Introduction and Literature
Review

The aim of this thesis is to investigate complete stochastic volatility models for

financial asset prices quoted on the stock market. We are especially interested

in the Hobson and Rogers model [1]. A simplified version of the model has some

very attractive analytical features which will be discussed. The pricing of

options contracts on assets is one of the main uses of these models. In fact,

market option price data may be used to calibrate the parameters of such a

model. We initially look at the famous option pricing model of Black and

Scholes. Techniques used in its derivation are fundamental to modern option

pricing methods and we will show parallels between the work of Black and

Scholes and that of Hobson and Rogers. Modeling volatility is very important in

asset pricing theory. Early theories have presumed the volatility of the asset to

be constant. Empirical data shows this not to be the case. Nevertheless, these

early theories have formed the basis for more modern work. We will discuss

discrete and stochastic volatility models as well as their respective implications

for option pricing.

1



1. Introduction and Literature
Review 1.1 The Black-Scholes Model

1.1 The Black-Scholes Model

In 1973, Fischer Black and Myron Scholes published ‘The Pricing of Options

and Corporate Liabilities’ [2]. Here, under a number of assumptions about the

dynamics of asset prices, a deterministic formula for option prices is derived.

This model will be the starting point of this thesis. We look at the underlying

assumptions, including that of constant volatility, and provide a derivation of

the partial differential equation that describes the option price. This derivation

and its assumptions have, however, been the source of some controversy. We

present and discuss the original derivation. We solve the equation analytically

and discuss approaches taken by Carr, by Beck, by Björk and by Øksendal.

1.1.1 Assumptions and Standard Derivation

We assume that we have a market consisting of an asset or stock whose value is

denoted by X(t), a risk free asset, or bond, whose value is denoted by B(t) and

a European call option, or asset derivative, whose value is assumed to depend

on the asset value and time to expiry. The most basic assumption is that our

asset value follows Geometric Brownian Motion.

dX(t) = µX(t)dt + σX(t)dW (t) (1.1)

where µ and σ are constants and W (t) is a Brownian motion. This model

implies that the asset returns are log-normally distributed with mean (µ − σ2

2 )t

and variance σ2t. Financial terminology refers to σ as the ‘volatility’. It is well

known that this model is not accurate in that the implication of log-normally

distributed returns does not hold in reality. Historical market data has shown

that there is a greater probability of very positive or very negative values than

predicted by the model. This empirical data is said to have ‘fat tails’, a
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1. Introduction and Literature
Review 1.1 The Black-Scholes Model

reference to the shape of the distribution curve of asset returns. Black and

Scholes describe how to construct a portfolio consisting of assets and options

that replicates the value of a bond at expiry. A no-arbitrage argument then

shows that the portfolio value must always equal the value of the bond at the

time of writing. This allows us to derive a partial differential equation for the

value of the option which, in this case, can be solved explicitly giving the value

of the option. The argument is motivated by a discrete model of how the value

of a replicating portfolio changes in time.

1.1.2 The standard portfolio derivation

Construct a portfolio by selling a call option and holding Q(t) risky assets.1

Definition 1 (European Call Option). A European call option is a contract

where the holder of the option has the right but not the obligation to buy the

underlying asset X(t) at a specified future date T for a specified future (strike)

price K. At maturity the owner of the option will have to decide whether or not

to exercise the call option.

At maturity, the value of the option will depend on the value of the underlying

asset relative to the strike price.

1. X(T ) < K: In this case the option is valueless as the owner of the option

will not want to buy the asset for K if it can be bought on the market

more cheaply for X(T ). The option will not be exercised and is worth zero.

2. X(T ) > K: The option holder will exercise the option, buying the asset

at price K, then potentially immediately selling the asset on the market

for price X(T ). In this case the option is worth X(T ) − K.

1Standard notation such as that found in [3] uses ∆(t) to denote the number of assets held
in the portfolio. Since we prefer to reserve this label for time intervals we will use Q(t) instead.
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1. Introduction and Literature
Review 1.1 The Black-Scholes Model

The value of an European call option at maturity is therefore given by

max{X(T ) − K, 0} or (X(T ) − K)+.

Some implicit assumptions are made:

1. The derivative instrument is question can be bought and sold on a market.

2. The market is free of arbitrage.

3. The price process for the derivative asset, i.e. the option, is of the form

f
(
t, X(t)

)

where f is some smooth function.

The main idea is that the relative holdings of the option and asset in the

portfolio are varied with time in such a way that the overall portfolio value is

risk free and thus grows at the same rate as a bond. In other words there is

some relative weighting of positions in the asset and option such that random

fluctuations in the value of each will cancel each other out. Maintaining this

weighting is known as hedging. If a perfect hedge is created then the portfolio is

completely risk free as there is no random element.

To see that this is possible consider the following: If the value of an asset

increases then so does a call option written on that asset. We can justify this

statement by saying that if the asset value is higher then it is more likely that

X(T ) > K. If we buy an asset and sell an option it is clear that any increase in

the value of our asset position value will correspond to a decrease in value of our

option position and visa versa. Assume now that we know the relative

weighting Q(t) to maintain the risk free status. We have assumed that there are

no arbitrage opportunities in our market. This means that the value of a
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1. Introduction and Literature
Review 1.1 The Black-Scholes Model

risk-free portfolio from which funds are not withdrawn or added (self-financing)

must grow at the same rate as a risk-free bond. The value process of the

portfolio V (t) is given by

V (t) = −f
(
t, X(t)

)
+ QX(t). (1.2)

The work of Black and Scholes tells us this portfolio is risk free and

self-financing and thus replicates a bond by the choice2 Q = ∂f(t,X(t))
∂X

. In order

to check if the portfolio is risk free we compute the differential of the portfolio

using Itô’s formula. We are required to do this since the value of the option and

asset positions in the portfolio are random variables. We find that

dV
(
t, X(t)

)
= −ftdt − 1

2
fXX

(
dX(t)

)2
− fXdX(t) + QdX(t)

= −
(
ft + 1

2
σ2X2fXX

)
dt, (1.3)

using (1.1) and
(
dW (t)

)2
= t. We see that the above choice of Q had ensured

that the stochastic components of the portfolio have been eliminated. Since the

portfolio is deterministic and we have assumed there are no arbitrage

opportunities in our market, our portfolio must grow at the same rate as a

bond. The dynamics of a bond B(t) are given by

dB(t) = rB(t)dt

B(t) = e−r(T −t)

where we are assuming for now that the risk-free interest rate is constant and

that the bond takes the value 1 at some future time T ≥ t. The return on our

2In reality, due to the discrete nature of trading, this can never be the case.
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risk free portfolio is

dV
(
t, X(t)

)
= rV

(
t, X(t)

)
dt.

⇒ −
(
ft + 1

2
σ2X2fXX

)
dt = r

(
− f(t, X(t)) + fXX(t)

)
dt

⇒ ft + rXfX + 1
2

σ2X2fXX − rf = 0,

which is the Black-Scholes equation. We can solve this for f giving a formula

for the option price.

1.1.3 Problems with the standard derivation

The above derivation leaves a number of questions unanswered.

1. Why don’t we treat Q as a stochastic variable when computing

dV (t, X(t))?

2. In reality, assets and options are traded in discrete time, while the above

argument assumes continuous trading. What effect will this have on the

derivation?

3. We required that in order for dV
(
t, X(t)

)
= rV

(
t, X(t)

)
dt that the

portfolio be self-financing. How do we define self-financing mathematically

and does the Black-Scholes portfolio meet the self-financing requirement?

We will now present a more rigorous derivation and deal will all of the above

points simultaneously. We will consider a portfolio consisting of α(t, X(t))

options, Q(t, X(t)) risky assets and β(t, X(t)) bonds. We only consider

strategies that are ‘admissible’ as defined below. We will treat α, Q and β as

random variables. We will use a discrete argument to motivate a definition of

self-financing and discuss the self-financing requirement. We will conclude that

the Black-Scholes portfolio described above is not self-financing, invalidating the
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traditional derivation. We will discuss other approaches in the literature, and

provide necessary conditions for all risk free self-financing portfolios.

Definition 2 (Admissible Strategy). A strategy (α, β) is admissible if it is

bounded from below, i.e. there exists a constant C such that

V
(α,β)

t ≥ C,

for all t ≥ 0.

1.1.4 Self-financing condition

We now consider more carefully the concept of self-financing in the context of

the traditional portfolio consisting of a stock, an option on that stock and a risk

free bond, as considered in Section 1.1.2.

Definition 3 (Itô Process). An Itô Process is defined to be an adapted

stochastic process that can be expressed as the sum of an integral with respect to

Brownian motion and an integral with respect to time.

Xt = X0 +
∫ t

0
σsdBs +

∫ t

0
µsds.

Here, B is a Brownian motion and it is required that σ is a predictable

B−integral process, and µ is predictable and Lebesgue integrable.

Treating all our variables as Itô process’s, we recall the product rule for

stochastic variables [4], which follows from Itô’s formula, in the computation at

equation (1.3).

Lemma 1 (Product rule for Itô processes3). Given two Itô process’s

3We use notation from [5], Chapter 4.
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(X(t), Y (t)), let g(X(t), Y (t)) = X(t)Y (t). Now using Itô’s formula we obtain

d(g(X(t), Y (t))) = ∂g

∂X
dX + ∂g

∂Y
dY + 1

2
∂2g

∂X2 d[X, X]

+ ∂2g

∂X∂Y
d[X, Y ] + 1

2
∂2g

∂Y 2 d[Y, Y ]

= XdY + Y dX + d[X, Y ].

Proposition 2 (Self-financing condition). Consider a portfolio consisting of α

options, Q stocks and β bonds. The value of our portfolio is given by

V
(
t, X(t)

)
= α

(
t, X(t)

)
f
(
t, X(t)

)
+ Q

(
t, X(t)

)
X(t) + β

(
t, X(t)

)
B(t)

Such a portfolio is self-financing if

dα (f + df) + dQ (X + dX) + dβ (B + dB) = 0. (1.4)

Proof. Firstly we consider what is physically happening when we hedge our

portfolio. We will drop the arguments from here on. Preceding each time period

[t, t + ∆t], the values of α, Q, β (called the trading strategy) are calculated such

that the portfolio is risk free. During each time period [t, t + ∆t] the trading

strategy is fixed while the values of the option, asset and bond may change.

Noting the new values of f , X and B, a new trading strategy is constructed in

order to maintain a risk free portfolio. The value of the portfolio at time t + ∆t

and before hedging is given by

V−(t + ∆t) = α(t)f(t + ∆t) + Q(t)X(t + ∆t) + β(t)B(t + ∆t).

After hedging, the portfolio has the value

V+(t + ∆t) = α(t + ∆t)f(t + ∆t) + Q(t + ∆t)X(t + ∆t) + β(t + ∆t)B(t + ∆t)
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If no external funds are to be withdrawn or put into the portfolio during the

hedging process then the above expressions need to be equal. This leads to the

condition

f(t + ∆t)
(
α(t + ∆t) − α(t)

)
+ X(t + ∆t)

(
Q(t + ∆t) − Q(t)

)
+B(t + ∆t)

(
β(t + ∆t) − β(t)

)
= 0.

Note that in the above expression we have backward differences. Itô calculus

requires the use of forward differences. We can achieve this by adding and

subtracting the quantity

f(t)
(
α(t + ∆t) − α(t)

)
+ X(t)

(
Q(t + ∆t) − Q(t)

)
+ B(t)

(
β(t + ∆t) − β(t)

)

to the previous expression. Our final condition is

(
α(t + ∆t) − α(t)

)
f(t) +

(
α(t + ∆t) − α(t)

)(
f(t + ∆t) − f(t)

)
+
(
Q(t + ∆t) − Q(t)

)
X(t) +

(
Q(t + ∆t) − Q(t)

)(
X(t + ∆t) − X(t)

)
+
(
β(t + ∆t) − β(t)

)
B(t) +

(
β(t + ∆t) − β(t)

)(
B(t + ∆t) − B(t)

)
= 0.

This is the discrete form of the self-financing condition. Note that the above

equation uses asset/option/bond values at some time t and the changes in

quantities of each held only between t and the end of the next time period i.e.

we now only have forward differences. If we take the limit at ∆t → 0 we have

dα(t)f(t) + dα(t)df(t) + dQ(t)X(t) + dQ(t)dX(t) + dβ(t)B(t) + dβ(t)dB(t) = 0.

Collecting terms, and dropping the arguments for simplicity, gives us an
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expression for the continuous self-financing condition, namely

dα (f + df) + dQ (X + dX) + dβ (B + dB) = 0.

Therefore, by the product rule, we have the more traditional form,

αdf + QdX + βdB = 0.

1.1.5 Risk free condition

Proposition 3. [Risk free condition for general portfolio] Consider a portfolio

consisting of α options, Q stocks, and β bonds. The value of the portfolio is

given by

V
(
t, X(t)

)
= α

(
t, X(t)

)
f
(
t, X(t)

)
+ Q

(
t, X(t)

)
X(t) + β

(
t, X(t)

)
B(t).

Such a portfolio is risk free if

(
αXf + QXX + βXB

)
+ Q + αfX = 0. (1.5)

If such a portfolio is self-financing then this condition reduces to

Q + αfX = 0. (1.6)

Proof. Looking at the differential of the value of the portfolio we have

dV = αdf + QdX + βdB

+ dα(f + df) + dQ(X + dX) + dβ(B + dB).
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Using Itô’s formula we have

dα = αtdt + αXdX + 1
2

αXX(dX)2

=
(
αt + rXαX + 1

2
σ2X2αXX

)
dt + σXαXdW,

dβ = βtdt + βXdX + 1
2

βXX(dX)2

=
(
βt + rXβX + 1

2
σ2X2βXX

)
dt + σXβXdW,

dQ = Qtdt + QXdX + 1
2

QXX(dX)2

=
(
Qt + rXQX + 1

2
σ2X2QXX

)
dt + σXQXdW

df = ftdt + fXdX + 1
2

fXX(dX)2

=
(
ft + rXfX + 1

2
σ2X2fXX

)
dt + σXfXdW

dX = rXdt + σXdW,

dB = rBdt.

In order for our portfolio to be risk free, the coefficients of dW in dV should

sum to zero. This gives

XαfX + XαXf + QX + X2QX + XβXB = 0

⇒ QXX2 +
(
αfX + αXf + Q + βXB

)
X = 0

⇒
(
αXf + QXX + βXB

)
+ Q + αfX = 0 (1.7)

This is the risk free condition for a portfolio consisting of a bond, a stock and

an option. If this portfolio is self-financing, then using (1.4) we have

dV = αdf + QdX + βdB.

Now again if we set the sum of coefficients of dW in dV equal to zero we have

Q + αfX = 0.
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The first three terms on the left hand side of equation (1.7) have disappeared

which is equation (1.6).

With risk free and self-financing conditions clearly defined above we return to

our construction of a risk free, self-financing portfolio of options, assets and

bonds. For this type of portfolio to be self-financing we need

dα(f + df) + dQ(X + dX) + dβ(B + dB) = 0 (1.8)

and, furthermore, for it to be risk free we need

αfX + Q = 0. (1.9)

Proposition 4. A portfolio consisting of α options, Q stocks and β bonds is

risk free and self-financing if and only if the triple α, Q, β is chosen such that

Q = −αfX (1.10)

β = − 1
B

α(f − fXX) + k

B
(1.11)

and

α
(

− XrfX − 1
2

Xσ2fXX − ft + rf
)

− rk + kt = 0, (1.12)

where k = k(t) is any function that doesn’t depend on X.

Proof. Equation (1.10) is the risk free condition for a self-financing portfolio as

derived above. The second and third are found by solving (1.8). We require the

stochastic and deterministic parts of this equation to be simultaneously equal to
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zero: that the deterministic part vanishes gives

f
(1

2
X2σ2αXX + XrαX + αt

)
+ X2σ2fXαX

+X
(1

2
X2σ2QXX + XrQX + Qt

)
+ X2σ2QX

+B(1
2

X2σ2βXX + XrβX + βt) = 0 (1.13)

while the vanishing of the stochastic part gives

fαX + XQX + BβX = 0. (1.14)

We now have three constraints (1.9), (1.13), (1.14) on the triple (α, Q, β) and

we can attempt to solve these equations. Starting with (1.14) we make the

substitution m = α(f − XfX), such that

mX = αX(f − XfX) + α(−XfXX)

= fαX − XαfXX − XαXfX

= fαX + XQX .

by (1.9). Then (1.14) becomes

mX = −BβX = −(Bβ)X . (1.15)

Integrating both sides we have

m = α(f − XfX) = −Bβ + k(t).

The above equation tells us that the condition

β = − 1
B

α(f − XfX) + k(t)
B

(1.16)
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which is equation (2) as stated in the above proposition, is necessary for

self-financing. If we make this choice of β, then according to (1.9) our portfolio

has the value

V = αf + (−αfX)X − 1
B

α(f − XfX)B + k(t) ≡ k(t). (1.17)

With an expression for β determined, we substitute (1.14) into (1.13) to obtain

f
(1

2
X2σ2αXX + αt

)
+ X2σ2fXαX

+X
(1

2
X2σ2QXX + Qt

)
+ X2σ2QX

+B(1
2

X2σ2βXX + βt) = 0 (1.18)

and secondly use (1.9) to obtain

f
(1

2
X2σ2αXX + αt

)
+ X2σ2fXαX

+X
(1

2
X2σ2(−αfX)XX + (−αfX)t

)
+ X2σ2(−αfX)X

+B(1
2

X2σ2βXX + βt) = 0. (1.19)

Finally, from (1.16) we obtain

βt = −er(T −t) (f − XfX) αt + rer(T −t) (f − XfX) α − er(T −t) (ft − Xft,X) α

−er(T −t)(rk − kt),

and

βXX = 2Xer(T −t)fXXαX−er(T −t) (f − XfX) αXX+er(T −t)fXXα+Xer(T −t)fXXXα,
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so that equation (1.19) becomes

α
(

−XrfX − 1
2

X2σ2fXX − ft + rf
)

− rk + kt = 0,

which is equation (1.12) in the above proposition, concluding the proof.

All self-financing risk free portfolios must fall into the above regime and their

value must be deterministic since for any choice of α we have

V = αf − αfXX − α

B
(f − XfX)B + k(t)

B
B ≡ k(t) (1.20)

We are now ready to discuss in detail the traditional portfolio derivation of the

Black-Scholes equation.

1.1.6 Standard Portfolio Derivation Revisited

In the standard derivation of the Black-Scholes equation, as presented

previously, the portfolio V (t, X) is chosen that α = −1, Q = fX and β = 0. If

we assume that the portfolio is self-financing then, since (1.9) holds, we know

this portfolio is risk free. The self-financing assumption is claimed/assumed in

most textbooks without justification. In this portfolio the choice of β = 0

implies, by (1.10), that for self-financing we must have

k(t) = −f + XfX = V (t) (1.21)

and, by (1.12), with α = −1,

XrfX + 1
2

X2σ2fXX + ft − rf − rk + kt = 0. (1.22)
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The first equation tells us that our portfolio must be deterministic. We have no

dependence on X. Substituting the first equation into the second we find

−rk + kt = rf − rXfx − ft + (Xfx)t

= rf − rXfx − ft

which when substituted into 1.22 we have fXX = 0 which tells us that the value

of the option in our portfolio can be at most a linear function of the underlying

at all times. This contradicts the standard derivations where it is found that

fXX ̸= 0. We may actually show that the above portfolio is not self-financing.

Take the original self-financing statement

dα(f + df) + dQ(X + dX) + dβ(B + dB) = 0

and set dα = dβ = 0 since they are both constants. Then we see we must have

dQ = 0. But since Q = fX this cannot be true since dQ ̸= 0 in general. Finally,

if we only require the portfolio to be risk free (and not necessarily

self-financing), equation (1.5) tells us that

(
QXX

)
+ Q − fX = 0,

⇒ (QX)X = fX ,

⇒ Q = f

X
̸= fX .

The traditional Black-Scholes portfolio is not a risk free, self-financing portfolio.

Questions that arise are

1. If the traditional portfolio is neither self-financing nor risk free - why are

we able to successfully derive the Black-Scholes equation?

Given that in the traditional derivation the product rule for Itô processes
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(See Lemma 1 above) is not implemented correctly, the derivation

implicitly assumes self-financing. Once this assumption is made about a

portfolio, the Black-Scholes pde is derived. This consequence is stated

more formally in the following proposition:

Proposition 5. The following two conditions are equivalent:

(a) A portfolio consisting of stocks and bonds is self-financing.

(b) Denote by f(t, St) the value of such a portfolio. Then f(t, St)

satisfies the Black-Scholes p.d.e.

a)⇒b). Denote the position in the stock by α and that in the bond by β.

By a) we have that

df(t, St) = αdS + βdB

= (αµS + rβB)dt + ασSdW.

Using Itô’s lemma for the value process of the portfolio we independently

have

df = ftdt + fSdS + 1
2

σ2S2fSSdt

= (ft + µSfS + 1
2

σ2S2fSS)dt

+ σSfSdW.

By uniqueness of representation of an Itô process ([6] Proposition 5.3), we

have from the dB coefficients that

σSfS = ασS
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and using this result, comparing the dt coefficients we have

ft + 1
2

σ2S2fSS = rβB (1.23)

Rewriting our portfolio in terms of the above expression gives

rf = rfSS + ft + 1
2

σ2S2fSS (1.24)

which is the Black-Scholes p.d.e.

b)→ a) Again using Itô’s formula we have

df = ftdt + fSdS + 1
2

σ2S2fSSdt

= (ft + 1
2

σ2S2fSS)dt + fSdS.

Since we are assuming the Black-Scholes p.d.e. holds we can write

df = (rf − rfS)dt + fSdS

= rβdt + αdS

= βdB + αdS

which is the condition for self financing.

2. How do we create a risk free, self-financing portfolio consisting of stocks

and options to replicate a bond?

Proposition 6. The necessary weights, α and Q, needed to form a risk

free, self-financing portfolio of options and underlying stocks must be of

the form

(α, Q) =
(

B(t)
f − XfX

, − fXB(t)
f − XfX

)
, (1.25)

where the price process of the portfolio is given by V (t) = αf + QX and
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where, as usual, f denotes the value of the option, and X denotes the

prices process of the underlying stock. This hedging strategy allows a

derivation of the Black Scholes equation.

Proof. Firstly we know that any portfolio that replicates a bond is

automatically risk free and self-financing. The portfolio should contain a

number of options and stocks, but zero bonds. We’ll denote the positions

in each of these assets as usual by (α, Q, β). In order to have β = 0 we

should have k(t) = α(f − XfX) as required by equation (). Then we have

α = k(t)
f−XfX

and Q = −fXk(t)
f−XfX

. Thus our portfolio should have value

V (t) = k(t)
f − XfX

f − fXk(t)
f − XfX

X

= k(t)

f − XfX

f − XfX



which means we should choose k(t) = B(t) since we want to replicate a

bond. Finally our portfolio is given by

(α, Q, β) =
(

B(t)
f − XfX

, − fXB(t)
f − XfX

, 0
)

.

Now, since we know that the portfolio is self-financing, we know that

equation (1.12) from Proposition 4 is satisfied. Therefore we have

α
(

−XrfX − 1
2

X2σ2fXX − ft + rf
)

− rk + kt = 0

⇒ −XrfX − 1
2

X2σ2fXX − ft + rf = 0.

(1.26)
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3. When correctly taking account of the product rule for stochastic variables,

it is possible to derive the Black-Scholes equation using any portfolio

argument? Yes, this is possible as can be seen from the previous

argument, by using the following portfolio

(α, Q) =
(

B(t)
f − XfX

, − fXB(t)
f − XfX

)
.

Finally,

4. How do we create a portfolio to replicate an option/stock? We can’t create

a self-financing, risk free portfolio that replicates an option/stock since

options and stocks are intrinsically risky investments. We may though

create a self-financing but risky portfolio to replicate an option. The

approach by Øksendal [7] described below demonstrates this approach.

We now take a look at other attempts to derive the Black-Scholes equation and

see whether each approach meets the requirements of Proposition 4. For

instance, some authors consider a portfolio of a stock and bond to replicate an

option, some consider a stock and option to replicate a bond, another considers

the idea of a relative portfolio, and another considers a portfolio that by

construction replicates a bond or a stock. We would like to be able to see

clearly any logical flaws or merits within each and be able to relate all the above

approaches.
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1.2 Other derivations of the Black-Scholes

p.d.e.

1.2.1 Carr’s approach

Carr [8] reaches the same conclusions as we have done above. His arguments are

very similar to those presented above. He agrees that the traditional portfolio is

neither self-financing nor risk free. In the second half of his paper he provides

an alternative derivation of the Black-Scholes p.d.e. using the classical portfolio

in which α = −1 and Q = fX . He claims that we do not need to assume that

the portfolio is self-financing and risk free in order to derive the Black-Scholes

equation. His approach is not to compute the derivative of the hedged portfolio,

but instead to look at the financial ‘gain’ of the hedged portfolio, which he

defines as follows. Consider the following portfolio consisting of one written

derivative security f(t, X) and Q(t, X) shares held long, with value process

V (t, X) = −f(t, X) + QX.

Carr defines the gain as

g
(

V (t, X)
)

=
∫ t

0
−df +

∫ t

0
QdX

Note here again we are ignoring dividend payments for simplicity. Applying

Itô’s Lemma to compute df and choosing Q = −∂f(t,X)
∂X

yields

g
(

V (t, X)
)

=
∫ t

0

[
−∂f(u, X)

∂t
− 1

2
σ2X2 ∂2f(u, X)

∂X2

]
du.

Since this financial gain is deterministic for all time, the absence of arbitrage

requires that it be the same as the interest gain for a dynamic position on a
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bond B, giving

g
(

B(t)
)

=
∫ t

0
r

(
−f(u, X) + X

∂f(u, X)
∂X

)
du

Equating the gains leads to the Black-Scholes p.d.e.. Carr doesn’t require that

the above portfolio is self-financing, and we know that it is not. The gain

function measures only the rise in value of the portfolio due to the change in

option value and asset value. By showing that the gains of two hedged, but not

necessarily self-financing portfolios are always equal we can derive the

Black-Scholes equation. The point to note about this is that the ‘gain’ function

does not incorporate the physical process of hedging and so doesn’t tell the

whole story.

Carr then asserts that the portfolio given by V̂ (t, X) = αV (t, X) is

self-financing. We would agree with this statement as in this case we are not

holding the number of options constant and the self-financing condition may be

satisfied by determining the necessary value of α. Carr does not describe how to

determine α. The idea of ‘gain’ is also used by Davis [9].

1.2.2 Beck’s approach

Beck considers a portfolio of stocks and bonds aiming to replicate the value of

an option. He requires the portfolio to be self-financing and that its final value

must be the same as that of the option. Beck’s analysis shows that, in order for

a portfolio consisting of stocks and bonds to be self-financing, we require the

Black-Scholes equation to hold. The Black-Scholes equation has solution

V = N [d1]X − e−r(T −t)KN [d2] and so we can think of this as the self-financing

requirement. Now, by choice of β, the portfolio value is equivalent (by

construction) to the option value. We have V = f and so the value of the
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option is given by

f = N [d1]X − e−r(T −t)KN [d2]. (1.27)

This suggests that an option can always be replicated by holding N [d1] stocks

and KN [d2] bonds. Such a portfolio is automatically self-financing since its

form comes from the requirement of self-financing. Based on this result we see

that we can create a portfolio consisting of an option and a stock to replicate a

bond. By manipulation of the above formula we have

e−r(T −t) = B = − 1
KN [d2]

f + N(d1)
KN(d2)

X (1.28)

Using the option value formula we compute N(d1) = fX and

KN(d2) = f − fXX. Thus, this new portfolio is equivalent to choosing

− 1
f − fXX

,
fX

f − fXX
, 0


so that this portfolio fits into the regime we derived earlier.

1.2.3 Björk’s relative portfolio derivation

The derivation by Björk [5] is a portfolio argument that more naturally

incorporates the hedging and self-financing requirements. This is achieved using

the idea of a relative portfolio. For example, where Black and Scholes describe

the position in the option as the value of the option times the number of options

held, Björk describes the position in the option as its value as a fraction of the

total value of the portfolio. Let V (t) = V h(t) be the value process of a portfolio,

where h(t) is a vector which denotes the holding in each asset

X(t) = X0(t), X1(t), . . . , XN(t) where N + 1 is the number of traded assets in

the market. X0 denotes the risk free bond. Thus a self-financing portfolio is one
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in which

dV (t) = h(t).dX(t) (1.29)

i.e. the portfolio value is given by the dot product of h(t) and X(t)

Definition 4. For a given portfolio h, the corresponding relative portfolio u is

given by

ui(t) = hi(t)Xi(t)
V (t)

, i = 1, . . . , N. (1.30)

Thus
N∑

i=1
ui(t) = 1 (1.31)

The self-financing condition can now be expressed in terms of the relative

portfolio.

Lemma 7. A portfolio h is self-financing if and only if

dV h(t) = V h(t)
N∑

i=1
ui(t)

dXi(t)
Xi(t)

(1.32)

Björk’s next result is that a solution of (1.32) can always be realised as the

value process of a genuine portfolio.

Lemma 8. Assume there exists a scalar process Z and a vector process

q = (q1, . . . , qN) such that

dZ(t) = Z(t)
N∑

i=1
qi(t)

dXi(t)
Xi(t)

, (1.33)

N∑
i=1

qi(t) = 1. (1.34)

Now define a portfolio h by

hi(t) = qi(t)Z(t)
Xi(t)

. (1.35)
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Then the value process V h is given by V h = Z, h is self-financing, and the

corresponding relative portfolio u is given by u = q.

Proof. By definition the value process V h is given by V h(t) = h(t)X(t), so

equations (1.34) and (1.35) give us

V h(t) =
N∑

i=1
hi(t)Xi(t) =

N∑
i=1

qi(t)Z(t) = Z(t). (1.36)

Inserting (1.36) into (1.35) we see that the relative portfolio u corresponding to

h is given by u = q. Inserting (1.36) and (1.35) into (1.33) we obtain

dV h(t) =
N∑

i=1
hi(t)dXi(t)

which shows that h is self-financing.

We assume as before that the market consists of a stock, an option on that

stock, and a bond. The asset price dynamic follows

dX(t) = α(t, X(t))X(t)dt + σ(t, X(t))X(t)dWt. (1.37)

For simplicity we assume that α and σ are held constant as in the original

Black-Scholes model. W (t) is a Wiener process, σ is known as the volatility of

X(t) while α is the local mean rate of return. Also available on the market is

the risk free asset with price process B. The price process B is the price of a

risk free asset if it has the dynamics

dB(t) = r(t)B(t)dt
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where r(t) is the risk-free interest rate. The B-process is therefore given by

B(t) = B(0) exp
∫ t

0
r(s)ds

When r(t) is a deterministic constant one can interpret B as the price of a

bond. Now consider the dynamics of the price process of the option (or claim)

on the stock V (t) = f(t, X(t)) with payoff F (X(T )). By Itô’s formula we have

dV (t) = ftdt + fXdX + 1
2

fXX(dX)2

Substituting for dX from (1.37) we obtain

dV (t) = ftdt + αXfXdt + σXfXdWt + 1
2

σ2X2fXXdt

= αV (t)V (t)dt + σV (t)V (t)dWt

where the processes αV (t) and σV (t) are defined by

αV (t) =
ft + αXfX + 1

2σ2X2fXX

f
, (1.38)

σV (t) = σXfX

f
(1.39)

At this stage we must discuss the idea of arbitrage in greater detail than before.

An arbitrage opportunity on a financial market is a self-financed portfolio h

such that

V h(0) = 0

P (V h(T ) ≥ 0) = 1

P (V h(T ) > 0) > 0

An arbitrage possibility allows the investor to make a positive amount of money
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out of nothing without taking any risk. This might arise due to mispricing in

the market. One of the main assumptions in this derivation is that the market

is efficient in the sense that no arbitrage is possible.

Proposition 9. Suppose that there exists a self-financing portfolio h, such that

the value process V h has the dynamics

dV h(t) = k(t)V h(t)dt, (1.40)

where k is a continuous adapted process. The no arbitrage assumption implies

that k(t) = r(t) for all t.

Proof. Suppose that r < k at some time t = 0. Define ∆t as the time interval

between t = 0 and the first time at which r = k. By continuity of the functions

r(t) and k(t) (w.p.1), the interval ∆t will be well defined and of positive length.

During the time interval ∆t, the interest rate r(t) is strictly less than the

growth rate of the value process V h as denoted above by k(t). Then we can

borrow money from the bank at the rate r. This money is immediately invested

in the portfolio strategy h where it will grow at the rate k. At the end of this

time period sell the portfolio and pay off the bank with this cash. As k > r, the

cash owed to the bank will be less than the cash value of the portfolio. Thus the

net investment will be positive and we have an arbitrage. If on the other hand

r > k, we short the portfolio h short and invest this money in the bank, and

again there is an arbitrage. If we can find a value process of a self-financing

portfolio that satisfies the above form, then we know from this proposition that

in a no arbitrage market we always will have k(t) = r(t).

Now form a portfolio based on two assets: the underlying stock and the

derivative asset. Denoting the relative portfolio by (uX , uV ) and using equation
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(1.32) we obtain the following dynamics of the value V of the portfolio.

dV = V uX [αdt + σdWt] + uV [αV dt + σV dWt]. (1.41)

We now collect the dt and the dW terms to obtain

dV = V [uXα + uV αV ]dt + V [uXσ + uV σV ]dWt (1.42)

The only restriction on the relative portfolio is that we must have

uX + uV = 1,

for all t. Let us thus define the relative portfolio by the linear system of

equations

uX + uV = 1, (1.43)

uXσ + uV σV = 0. (1.44)

Using this portfolio we see that by its very definition the driving dW term in the

V -dynamics of equation (1.42) vanishes completely, leaving us with the equation

dV = V [uXα + uV αV ]dt. (1.45)

We have obtained a riskless portfolio, and because of the requirement that the

market is free of arbitrage, we may now use Proposition 9 to deduce that we

must have the relation

uXα + uV αV = r. (1.46)

This is the condition for the absence of arbitrage. It is easily seen that the
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system (1.43)-(1.44) has the solution

uX = σV

σV − σ
, (1.47)

uV = −σ

σV − σ
(1.48)

which, using (1.39), gives the portfolio more explicitly as

uX = XfX

XfX − f
, (1.49)

uV = −f

XfX − f
. (1.50)

Now substitute (1.38), (1.49) and (1.50) into the absence of arbitrage condition

(1.46). Then, after some calculations, we obtain the equation

ft + rXfX + 1
2

σ2X2fXX − rf = 0. (1.51)

Furthermore we must have the relation

V (T ) = F (X(T )).

This portfolio derivation makes an assumption about the dynamics of the

underlying portfolio. This assumption appears in equation (1.41) where the

dynamics of the relative portfolio are stated to be of this self-financing form.

Björk fails to show that this equation holds true.

Approaching the derivation from the point of view of a relative portfolio, it is

not necessary to state the actual size of the portfolio. We must remember that

the relative portfolio only defines the ratio of the value of each position with

regard to the overall value of the portfolio. It is equivalent to not choosing α.

Converting between the ‘real’ position and ‘relative’ position makes this clear.
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Let the real option position in Björk’s portfolio be denoted by h1. Björk gives

the (relative) position in the option as

−1
XfX − f

f = h1

V
f.

Now consider the position in the option in terms of the framework described

earlier in the chapter. The option position is given by α. In Björk’s relative

portfolio, the position in the option is given by

−1
XfX − f

f = h1f

V
= α

V
f.

Now since this is a relative position, we a free to define the overall value of the

portfolio as we like while maintaining the ratio of α/V . If we define

α = − 1
(XfX−f) then we have V = 1.

The stock position given by Björk (in relative terms) is

fX

XfX − f
X = h2

V
X.

For the same choice of α we have h2 = −αfX . It is clear that the value of V

determines the value of α necessary for self-financing and visa versa. This result

is not clear from Björk’s derivation and it is not clear for a given value of α (V )

how we should choose V (α).

To determine the correct weightings such that a portfolio is guaranteed to be

both risk free and self-financing, then the weights on that portfolio must be

explicitly of the form described in Proposition 6.
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1.2.4 Solving the Black-Scholes equation

So far we have considered derivations of the Black-Scholes equation using simple

portfolio arguments. It is instructive to take a more rigorous approach and use

results from martingale pricing theory in order to achieve the same results. One

very good reference is the book by Øksendal [7]. It is not necessary to present

the full derivation here but we will state the results. We will also refer to results

about completeness, change of measure and existence of arbitrage as derived in

this book. The main result given in Øksendal is that the ‘fair’ price of the

discounted claim is given by the expectation of the future payoff of the claim

and can be hedged using the underlying asset and risk free bonds. This relies on

the existence of a martingale measure. Such a measure will exist and is unique

if the number of sources of randomness is the same as the number of traded

underlying assets (completeness), as is the case in this situation.

We know from the arguments in [7] that for a given claim F we can find a

hedging portfolio of bonds and the underlying to hedge that portfolio. Using

some arbitrage arguments and the uniqueness property of the martingale

measure it is possible to conclude that the present value of the claim f(X, t) is

given by

f(X, t) = EQ

[
ξ(t, T )f(X(T ))

]
= ξ(t)EQ

[
F (X(T ))

]
.

where Q is the equivalent martingale measure and ξ is the numeraire, defined to

be B(T, t)−1 (where B(T, T ) = 1). We apply the Kolmogorov Backward

equation to f(X(t), T − t) = e−r(T −t)EQ[F ] which gives

− ∂

∂t
e−r(T −t)f = e−r(T −t)rX

∂f

∂X
+ e−r(T −t) 1

2
σ2X2 ∂2f

∂X2 .

⇒ rf − ft = rXfxx + 1
2

σ2X2fxx

⇒ ft + rXfxx + 1
2

σ2X2fxx − rf = 0
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We also have that f(F, 0) = F [X] = max(X − K, 0). We know that in order to

hedge this claim we can determine the hedging portfolio θ(t) given by

ξ(t, ω)(θ1(t), . . . , θn(t))σ(t, ω) = ϕ(t, ω)

such that

ξ(T )F (ω) = z +
∫ T

0
ϕ(t, ω)dWQ

Using a result from Dynkin [10] and Kolmogorov’s backward equation the

following theorem holds.

Theorem 10. Let Y (t) be an Itô diffusion in Rn of the form

dY (t) = b(Y (t))dt + σ(Y (t))dW (t), Y (0) = y

and Z(t) be the Itô diffusion in Rn given by

dZ(t) = σ(Z(t))dW (t), Z(0) = z.

Given some restrictions on b and σ as described in [7] and given that we have a

complete market we may write

h(Y (T )) = Ey
Q

[
h(Y (T ))

]
+
∫ T

0
ϕ(t, ω)dWQ,

where ϕ = (ϕ1, . . . , ϕm), with

ϕj(t, ω) =
n∑

i=1

∂

∂yi

(
Ey
[
h(Z(T − t))

])
y=Y (t)

σij(Y (t)), 1 ≤ j ≤ m.

(Note that in the above notation Ey[h(Z(t))] is the expectation of h(Z(t))

subject to Z(0) = y).
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1.3 Solution using Martingale Pricing Theory

The Black-Scholes market consists of the risk free asset B(t) and one risky asset

X(t) whose dynamics are given by

dX = µXdt + σXdW (1.52)

dB = rBdt.

Since we have the number of traded assets m equals the number of sources of

randomness, we have a complete market. The change of measure (where the

Girsanov kernel is given by u(t, ω)) exists and is given by the following equation

σX(t, ω)u(t, ω) = µX(t, ω) − rX(t, ω)

which has the solution

u(t, ω) = σ−1(µ − r).

The fair value of a claim with payoff F (X) is given by

f(F ) = f(X, T − t) = EQ

[
ξ(T )F

]
.

Under the new measure we have

dWQ = σ−1(µ − r)dt + dW

dX = µXdt + σXdW

= µXdt + σX(σ−1(r − µ)dt + dWQ)

= rXdt + σXdWQ
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Now the solution to equation (1.52) is given by

X(t) = x0 exp
( ∫ t

0

(
r − σ2

2
)
ds +

∫ t

0
σdWQ

)
.

At time t, a claim with a maturity date T ≥ t is given by

f(X, T − t) = ξ(T − t)EQ

f
(

xt exp
( ∫ T

t

(
r − σ2

2
)
ds +

∫ T

t
σdWQ

))
= ξ(T − t) 1√

2V σ2(T − t)

∫
R

f
(

x0 exp
[ ∫ T

t

(
r − σ2

2
)
ds + y

])

× exp
(

− y2

2σ2(T − t)

)
dy

since
∫ T

t σdW is normally distributed with mean 0 and variance σ2(T − t). In

the case of a European Call option we have

F (X, T ) = max(X − K, 0)

and so the above integral becomes

f(X, T − t) = ξ(T − t)√
2V σ2(T − t)

∫
R

max
(

x0 exp
[ ∫ T

t

(
r − σ2

2
)
ds + y

]
− K, 0

)

× exp
(

− y2

2σ2(T − t)

)
dy

Now since we have constant r and σ we have
∫ T

t

(
r − σ2

2

)
ds =

(
r − σ2

2

)
(T − t)

and we need only integrate where

K ≤ x0 exp
[(

r − σ2

2
)
(T − t) + y

]
⇒ log

(
K

x0

)
−
(
r − σ2

2
)
(T − t) ≤ y.
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Therefore we can write our integral as

f(X, T − t) = ξ(T − t)√
2V σ2(T − t)

∫ ∞

log

(
K
x0

)
−
(

r− σ2
2

)
(T −t)

(
x0 exp

[(
r − σ2

2
)
(T − t) + y

]
− K

)

× exp
(

− y2

2σ2(T − t)

)
dy

= ξ(T − t)√
2V σ2(T − t)

×
∫ ∞

log

(
K
x0

)
−
(

r− σ2
2

)
(T −t)

(
x0 exp

[(
r − σ2

2
)
(T − t) + y − y2

2σ2(T − t)

])
dy

− ξ(T − t)√
2V σ2(T − t)

∫ ∞

log

(
K
x0

)
−
(

r− σ2
2

)
(T −t)

K exp
(

− y2

2σ2(T − t)

)
dy

= I1 − I2

Let

y′ = y

σ
√

T − t
− σ

√
T − t

⇒ dy′ = 1
σ

√
T − t

dy

and our lower limit becomes

log
(

K
x0

)
−
(
r − σ2

2

)
(T − t)

σ
√

T − t
− σ

√
T − t =

log
(

K
x0

)
−
(
r + σ2

2

)
(T − t)

σ
√

T − t

= −
log

(
x0
K

)
+
(
r + σ2

2

)
(T − t)

σ
√

T − t
= −d1

We rewrite the exponent of the first integral as

(
r − σ2

2
)
(T − t) + y − y2

2σ2(T − t)
= r(T − t) − y′2

2
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and so our first integral becomes

I1 = x0 exp 1√
2V

∫ ∞

−d1
exp

[
− y′2

2

]
dy′ = x0 exp 1√

2V

∫ ∞

−d1
exp

[
− y′2

2

]
dy′

= x0 exp 1√
2V

∫ d1

−∞
exp

[
− y′2

2

]
dy′

= x0N [d1]

To evaluate the second integral we instead use the substitution

y′ = y

σ
√

T − t

⇒ dy′ = 1
σ

√
T − t

dy′

and our lower limit becomes

log
(

K
x0

)
−
(
r − σ2

2

)
(T − t)

σ
√

T − t
= −d2

Our second integral becomes

I2 = e−r(T −t)K
1√
2V

∫ ∞

−d2
exp

(
− y′2

2

)
dy′

= e−r(T −t)K
1√
2V

∫ d2

−∞
exp

(
− y′2

2

)
dy′

= e−r(T −t)KN [d2]

Combining these two results we have

f(X, T − t) = x0N [d1] − e−r(T −t)KN [d2].

A study of the Hobson and Rogers volatility
model

36 Gearóid Ryan



1. Introduction and Literature
Review 1.4 Analysis of the Solution

1.4 Analysis of the Solution

1.4.1 Implied Volatility

Now, assuming a value for the volatility of the underlying and the interest rate,

we can determine the option price for a given strike and time to maturity.

Conversely, we should also be able to determine the volatility of an asset if we

know the price of the option, strike price, time to maturity and interest rate.

This is known as implied volatility. It would seem reasonable, given options of

different strikes and maturities on the same underlying asset, that the

calculated implied volatility would be the same for each (as we are only dealing

with one asset). Empirical work shows this not to be the case. Typically the

volatility versus strike curve is known as a ‘volatility smile’, see Figure 1.1. The

appearance of the smile may be a result of incorrect assumptions such as the

assumption of constant volatility of log-normally distributed returns. To test

these assumptions we looked at returns from the Irish Stock Exchange Index, see

Figure 1.2 below. We plotted historical volatility and distribution of the returns.

There is now widely documented empirical evidence that risky financial asset

returns have leptokurtic tails [11]. In the case where the strike price is very

high, the call option is deep out of the money and the probability for this option

to be exercised is very low. Nevertheless, a leptokurtic right tail will give this

option a higher probability of being exercised than a normal distribution would

suggest. This higher probability leads to a higher call price and a higher

Black-Scholes implied volatility at high strike. Again because of the thicker tail

on the left, we expect the probability that an out of the money put option

finishes in the money to be higher than that for a normal distribution. Hence

the put option price should be greater than that predicted by Black and

Scholes. From the Black-Scholes formula we can determine the implied volatility
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of a market. If we use Black-Scholes to invert volatility estimates from these

option prices, the Black-Scholes implied volatility will be higher than historical

volatility. This results in a volatility smile, where implied volatility is much

higher at very low and very high strikes. Black and Scholes assume constant

volatility in their model. Yet, despite this invalid assumption, the Black-Scholes

implied volatility is commonly quoted in the pricing of options.
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Plot of Black Scholes implied volatilities (GOOG) on 20 August 2012
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T = 84 days

Strike. (underlying = 676.53)

Figure 1.1: Plot of implied volatility for different maturities. We see that the
implied volatility depends on maturity and strike price.

1.5 Non-constant volatility models

The ‘smile’ characteristic of observed implied volatilities was first observed after

the stock market crash of October 1987. The effect is evidence of a sudden

change in modelling assumptions in which a ‘correction’ of option prices due to

the non-lognormal behaviour of the underlying stock prices was applied.

Practitioners had begun to modify the volatility parameter used in the

closed-form Black-Scholes equation depending on how close the option was to

its at-the-money value and also its time to maturity. In other words, they
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Plot of log returns of ISEQ adjusted index from 7 April 1998 to 20 August 2012. 
Mean −1.5e−4, Variance 2.5e−4, Skew −0.95, Kurtosis 31.4. Data is plotted against

density function of normal distribution with same mean and variance.

Figure 1.2: Asset returns are assumed to be log-normally distributed. Here we
have plotted the log daily returns of the ISEQ index and placed them against a
plot of a normal distribution curve of the same mean and sample variance as our
data set. We see our marked data has a higher peak and fatter tails.

maintained the use of the Black-Scholes model, but corrected for its constant

volatility assumption. It represents the first attempt to relax this assumption.

This approach preserves the completeness of the model which, as discussed

above, implies a unique fair price for a derivative. It also allows for the

construction of hedging strategies.

In another approach, Dupire shows a link between the diffusion process and the

implied volatility surface and gives a closed form expression of the surface as a

function of market option prices. A difficulty with this approach is that option

prices for all strikes and maturities are not always available or reliable. This

introduces the need for interpolation and extrapolation techniques which are

another source of pricing risk within the model itself.

While the approach of using a volatility surface or smile is theoretically

inconsistent, its simplicity, and yet flexibility to match observed prices makes it

a very popular approach and is dominant even today. Indeed, more modern

pricing models are calibrated such that the volatility implied by those models
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Figure 1.3: Historical Volatility of the ISEQ Index over 1000 days. It is clear
that the assumption of constant volatility is incorrect.

matches the implied volatility smile. Such an example is the SABR model [12].

Of course the main use of option pricing models it to price OTC derivatives.

The construction of the volatility smile is a method of interpolation, which is

then used to price non exchange traded or exotic options. The important

considerations in the choice of model is that only the factors which influence the

price of the option are taken into account, and that the change in value of the

model price reflects changes in those underlying factors. For vanilla European

options, the Black-Scholes model meets these requirements. For path dependent

and non-vanilla option other models may need to be considered for accurate

valuations. For example in path dependant options, or options on a basket of

underlying indices, the correlation between volatility and the underlying, or

between the set of underlying indices will affect the pricing. In those cases we

need to consider a stochastic volatility model. Such models are calibrated to

market prices of vanilla options, and the calibrated parameters may be then

used in a simulation of the indices if taking a Monte Carlo pricing approach.

We will discuss stochastic volatility models in the next section.
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Sticking with deterministic volatility models for now, we can consider both

discrete time and continuous time examples. We will consider the GARCH and

CEV models.

1.5.1 CEV model

This type of model may be described by the s.d.e

dX = µXdt + σXγdWt.

For γ = 1 we recover geometric Brownian motion, but for γ > 0 we see an

increased volatility level for higher values of the underlying. We see a similar

structure in the the SABR model. A more recent variation of this volatility

specification was developed by Rubinstein [13]. Instead of assuming a particular

form of the volatility function, Rubinstein’s method effectively infers the

dependence of volatility on the level of the asset price from traded options at all

available strike prices.

1.5.2 GARCH model

A well-known and popular family of models are the ARCH models. ARCH

stands for Autoregressive Conditional Heteroscedasticity. It makes use of

information on past prices to update the current asset volatility. These models

were introduced by Robert Engle (1982) for general time-series modeling. In an

ARCH model, the variance that will prevail one step ahead of the current time

is a weighted average of past squared asset returns. ARCH can place a greater

weight on more recent squared returns than on more distant squared returns.

There are many variations on the basic ARCH model. A good survey is given

by Poon and Granger [14].
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Definition 5. Let the return of an asset be denoted by rt. Suppose that the

return behaves according to

rt = µ + ϵt (1.53)

where

ϵt =
√

htzt. (1.54)

and zt are N [0, 1] i.i.d random variables. In the ARCH formulation, ht follows

one of the following class of models.

ARCH(q):

ht = ω +
q∑

k=1
αkϵ2

t−k (1.55)

where αk ≥ 0, ω ≥ 0. For finite variance ∑αk < 1.

GARCH(p, q):

ht = ω +
q∑

k=1
αkϵ2

t−k +
p∑

j=1
βjht−j (1.56)

where αk ≥ 0, βk ≥ 0, ω ≥ 0. For finite variance ∑αj +∑
βk < 1.

For the results mentioned here on the finite variance conditions see [15]

Proposition 3.19. (As is well-known the conditions on αk, βk in this definition

could be relaxed but we will not go into that here.) Because ARCH models can

place greater weight on more recent squared returns than on more distant

squared returns, they are able to capture volatility clustering. This refers to the

observed tendency of high volatility or low volatility periods to group together.

For comparison with stochastic volatility models which will be discussed later, it

is important to note that the random source that affects the statistical behavior

of returns and volatility through time is the same. As a result, volatility can be

estimated directly from the time series of observed returns on an asset. In

contrast, the direct estimation of volatility from the returns process is very

difficult using stochastic-volatility models. It turns out that there is no easily
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computable formula, like the Black-Scholes formula for European option pricing

under a GARCH volatility process. We will later return to the GARCH model

for a comparison with the Hobson and Rogers model.

1.5.3 Stochastic Volatility Models

A generalisation of constant volatility models such as the Black Scholes model is

to assume that the volatility is stochastic, with a noise term which may have

some correlation with that of the underlying asset. This is especially important

when wanting to price an option with a path dependent payoff. A stochastic

volatility model has the ability to reproduce the volatility smile and skew seen

in the market. In fact, the GARCH model above is an example of a discrete

stochastic volatility model. We will discuss some of the other popular stochastic

models in this section. Consider the case of implementing a stochastic volatility

model to price an option on a single underlying asset. In the case that the noise

term of the volatility differs from that of the underlying asset, the number of

random sources is greater than the number of traded assets, and so it is

impossible to find a measure under which the discounted underlying asset is a

martingale. A risk-free portfolio cannot be created as is done in the

Black-Scholes framework. As such no closed form solution is possible. For the

purposes of calibration, and subsequent pricing of options, an approximate

closed form solution, or a numerical simulation, or both is required. There are

approximate closed form solutions to many of the popular stochastic volatility

models, and we provide a derivation below of the Heston closed form

approximation, taken directly from the book by Gatheral [16].
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1.5.4 Heston Model

We take the Heston model as an example of a model with a semi-analytical

solution. We give a complete derivation of the semi-analytical solution as the

model is very similar to that of the Hobson and Rogers model introduced in

Chapter 2. Using the Heston model, a valuation equation, analogous to the

Black-Scholes equation, can be derived, the difference being that it takes into

account an extra degree of freedom, coming from the dependence on the

volatility process. The market is defined by

dX = µXdt +
√

νXdW1,

dν = −λ(ν − ν̄)dt + η
√

νdW2.

The two increments of Brownian motion, dW1and dW2 have a correlation of ρ.

The value of an option with stochastic volatility is a function of three variables,

f(X, ν, t). We may now attempt to form a hedging portfolio as before in order

to replicate a bond. The difference now though is that we have a new source of

risk coming from the volatility. To overcome this we need to introduce into our

market a second derivative in order to hedge the volatility risk. Denote the

value of this derivative by f1(X, ν, t). We have that the value process of our

hedging portfolio is given by

Vt = f − QX − Q1f1,

where Q denotes the position in the asset and Q1 denotes the position an asset

which depends on the volatility of the underlying. We have two traded assets

and two sources of risk therefore the market is complete and there exists a

replicating portfolio for the derivative, which is self-financing. If we assume that

we have found the self-financing portfolio which replicates the derivative, then
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the change in the value of the portfolio in a time dt is given by

dVt =

∂f

∂t
+ 1

2
νX2 ∂2f

∂X2 + ρηνX
∂2f

∂X∂ν
+ 1

2
η2ν

∂2f

∂ν2

dt

−Q1

∂f1

∂t
+ 1

2
νX2 ∂2f1

∂X2 + ρηνX
∂2f1

∂X∂ν
+ 1

2
η2ν

∂2f1

∂ν2

dt

+

 ∂f

∂X
− Q1

∂f1

∂X
− Q

dX

+

∂f

∂ν
− Q1

∂f1

∂ν

dν.

To eliminate all randomness from the portfolio we must choose

∂f

∂X
− Q1

∂f1

∂X
− Q = 0

to eliminate the dX terms, and

∂V

∂ν
− Q1

∂V1

∂ν
= 0

to eliminate the dν terms. This leaves us with

dVt =

∂f

∂t
+ 1

2
νX2 ∂2f

∂X2 + ρηνX
∂2f

∂X∂ν
+ 1

2
η2ν

∂2f

∂ν2

dt (1.57)

−Q1

∂f1

∂t
+ 1

2
νX2 ∂2f1

∂X2 + ρηνX
∂2f1

∂X∂ν
+ 1

2
η2ν

∂2f1

∂ν2

dt

= rV dt

= r(f − QX − Q1f1)dt.
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Collecting all the f terms on the left hand side, and all the f1 terms on the

right hand side of equation (1.57) we find that

∂f

∂t
+ 1

2
νX2 ∂2f

∂X2 + ρηνX
∂2f

∂X∂ν
+ 1

2
η2ν

∂2f

∂ν2 − rf + rX
∂f

∂X

/∂f

∂ν

=

∂f1

∂t
+ 1

2
νX2 ∂2f1

∂X2 + ρηνX
∂2f1

∂X∂ν
+ 1

2
η2ν

∂2f1

∂ν2 − rf1 + rX
∂f1

∂X

/∂f1

∂ν
.

Notice that the left hand side of the above equation is a function of f but not f1

and the right hand side is a function of f1 but not f2. Since the two options

should have two different payoffs, the only way for this to be possible is for both

sides to be independent of the contract type. Both sides can only be functions

of the independent variables X, ν and t. Thus we have

∂f

∂t
+ 1

2
νX2 ∂2f

∂X2 + ρηνX
∂2f

∂X∂ν
+ 1

2
η2ν

∂2f

∂ν2 − rf + rX
∂f

∂X

= −
(

− λ(ν − ν̄) − ϕ(X, ν, t)
)

∂f
∂ν

for some function ϕ(X, ν, t) which is known as the market price of risk. Heston

makes the assumption that prices process, with the parameters fitted to option

prices, generates the risk-neutral measure so the market price of volatility risk ϕ

is set to zero.

We now discuss the Heston model in more detail and follow the derivation

provided in [16]. We will show a how semi-analytical solution may be found by

use of a Fourier Transform. This will be relevant later on when we examine

solutions of the Hobson and Rogers model. The valuation equation describing a

call option in terms of the Heston model is given by

−∂f

∂τ
+ 1

2
νf11 − 1

2
νf1 + 1

2
η2νf22 + ρηνf12 − λ(ν − ν̄)f2 = 0 (1.58)

where the subscripts refer to differentiation with respect to x and ν respectively,
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x := log(Xerτ /K), τ = T − t. According to Duffie, Pan and Singleton [17] the

solution of equation (1.58) has the form

K{exP1(x, ν, τ) − P0(x, ν, τ)},

where the first term in the brackets represents the expectation of the final index

level given that the option is in the money and the second term represents the

probability of exercise. Substituting the proposed solution into equation (1.58)

implies that P0 and P1 must satisfy the equation

−∂Pj

∂τ
+ 1

2
ν

∂2Pj

∂x2 −
(1

2
− j

)
ν

∂Pj

∂x
+ 1

2
η2ν

∂2Pj

∂ν2 + ρην
∂2Pj

∂x∂ν
(1.59)

+(a − bjν)∂Pj

∂ν
= 0,

for j = 0, 1, and τ > 0, where

a = λν̄, bj = λ − jρη,

subject to the terminal condition

lim
τ→0

Pj(x, ν, τ) =


1 if x > 0

0 if x ≤ 0
(1.60)

=: θ(x).

For any solution Pj of (1.59) and (1.60) define Pj(x, ν, 0) = θ(x). We will now

solve (1.59) subject to (1.60) using a Fourier transform technique. The Fourier

transform of Pj is given by

P̃j(u, ν, τ) =
∫ ∞

−∞
dxe−iuxPj(x, ν, τ)
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Also we have that

P̃j(u, ν, 0) =
∫ ∞

−∞
dxe−iuxθ(x) = 1

iu

The inverse transform is given by

Pj(x, ν, τ) =
∫ ∞

−∞

du

2π
eiuxP̃j(u, ν, τ) (1.61)

Substituting this into equation (1.59) gives

−∂P̃j

∂τ
+ 1

2
u2νP̃j −

(1
2

−j
)

uνP̃j + 1
2

η2ν
∂2P̃j

∂ν2 +ρηuν
∂P̃j

∂ν
+(a−bjν)∂P̃j

∂ν
= 0 (1.62)

Now define

α = −u2

2
− iu

2
+ iju

β = λ − ρηj − ρηiu

γ = η2

2

Then equation (1.62) becomes

ν

αP̃j − β
∂P̃j

∂ν
+ γ

∂2P̃j

∂ν2

+ a
∂P̃j

∂ν
− ∂P̃j

∂τ
= 0 (1.63)

Now substitute

P̃j(u, ν, τ) = exp{Cj(u, τ)ν̄ + Dj(u, τ)ν}P̃j(u, ν, 0)

= 1
iu

exp{Cj(u, τ)ν̄ + Dj(u, τ)ν}
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It follows that

∂P̃j

∂τ
=

ν̄
∂Cj

∂τ
+ ν

∂Dj

∂τ

P̃j

∂P̃j

∂ν
= DjP̃j

∂2P̃j

∂ν2 = D2
j P̃j

The equation (1.63) is satisfied if

∂Cj

∂τ
= λDj

∂Dj

∂τ
= α − βDj + γD2

j

= γ(Dj − r+)(Dj − r−) (1.64)

where we define

r±
j = β ±

√
β2 − 4αγ

2γ
=: β ± d

η2

Note that we have drop the subscript j in the parameters α and β for clarity of

notation. Integrating (1.64) with the terminal conditions C(u, 0) = 0 and

D(u, 0) = 0 gives

Dj(u, τ) = r−
j

1 − e−dτ

1 − ge−dτ

Cj(u, τ) = λ

r−
j τ − 2

η2 log

1 − ge−dτ

1 − g


where we define

g :=
r−

j

r+
j

Taking the inverse transform using equation (1.61) and performing the complex

integration gives the final form of the probabilities Pj in the form of an integral
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of a real valued function.

Pj(x, ν, τ) = 1
2

+ 1
π

∫ ∞

0
du Re

 exp

Cj(u, τ)ν̄ + Dj(u, τ)ν + iux

iu

,

where j runs from 0 to 1. This integration may be performed using standard

numerical methods.
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Chapter 2

The Hobson and Rogers Model

The Black-Scholes model is based on the assumption that the proportional price

changes of the asset form a Gaussian process with stationary independent

increments. Empirical research has shown that the volatility parameter is not

constant [18]. We have seen in Chapter 1 that the constant volatility

assumption is inconsistent with the market price of derivatives. Historically, two

approaches have been taken to adapt the model. The first is that of ‘level

dependent volatility’ introduced by Cox and Ross (1976) [19]. The basic

modelling assumption here is that the volatility is a function of the underlying

price of a firm. The second approach is to introduce a second stochastic process

for the volatility i.e. ‘stochastic volatility’. See, for example, Hull and White [3].

Hobson and Rogers present a model, a special case of which is the level

dependent volatility model, but which is also similar to the ‘stochastic volatility’

approach. This is achieved by making the volatility a function of past returns,

as in autoregressive models. It does not require a new source of randomness.

Having only one source of randomness is important in option pricing as it allows

a unique, preference independent price for the option to be determined. Such

models are said to be complete. One of the main objectives of the model is to
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reproduce the smiles and skews seen in market option prices and this model

produces the desired effect. Moreover, since past price movements influence the

volatility estimate, if there are large jumps in price, these will be reflected in a

large resulting volatility, which mirrors what would be expected to happen in

the market.

2.1 Description of Model

The main feature of this model is the specification of volatility in terms of past

returns. In this model, the returns, which are used as inputs to the volatility

function, are weighted such that more recent returns have a greater influence.

An exponential weighting is used as seen in equation (2.6) below. The

discounted log-price process is denoted by Zt, so that

Zt = log(e−rtPt),

where P (t) is the price process. As in GARCH models, this structure allows for

feedback so that shocks in the asset price will be reflected by shocks in

volatility. Hobson and Rogers assume that the volatility σ has the form

σ = σ(D(1)
t , ..., D

(n)
t ).

with D
(m)
t being given, for m ∈ N, by

D
(m)
t =

∫ ∞

0
λe−λu(Zt − Zt−u)mdu. (2.1)

The process D
(m)
t is known as the offset function of order m. The parameter λ

determines the rate at which past data is discounted. Also we see that the
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difference

Zt − Zt−u = log
(

e−rtPt

e−r(t−u)Pt−u

)
= log

(
e−ru Pt

Pt−u

)

can interpreted as the return on the asset between some previous time and

today. The model then assumes that

dZt = µ(D(1)
t , ..., D

(n)
t )dt + σ(D(1)

t , ..., D
(n)
t )dW P

t (2.2)

where W P
t is some P-Wiener process. We see in [1] that in the case n = 1 we

have

dDt = dZt − λDtdt, (2.3)

where Dt = D
(1)
t , giving

dDt = (µ(Dt) − λDt)dt + σ(Dt)dW P
t . (2.4)

Choosing n = 1 means that the volatility is a function of the first offset alone.

The motivation behind this choice is due to the simplicity it brings to the

calculation, but also that if we take
(
D

(1)
t

)2
=
(
Zt −

∫∞
0 λe−λuZt−udu

)2
we see

that this acts like a variance. We can think of the term on the right as a

weighted exponential mean, so that the offset function of order 1 gives us the

difference between today’s asset price, Zt, and the long run mean asset price.

We aim now to follow the arguments in [1] and derive a partial differential

equation for the price of a European Call option using a martingale approach.

It is assumed that the option price f is, as usual, a function of the underlying

price process and time and also a function of the first offset function. This

assumption will be discussed later on. The partial differential equation will be

derived by looking at the Itô operator applied to f(Pt, Dt, t). By using a change
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of measure we can use our assumption of no arbitrage to write down the p.d.e.

from this expression. Using (2.3) we first have

log(e−rtPt) ≡ Zt = Z0 + (Dt − D0) + λ
∫ t

0
Du du.

We now consider a change of measure which will show that the price process

e−rtPt is in fact a martingale relative to this measure. We will use the Girsanov

Theorem.

Theorem 11. Let W P
t , t > 0, be a d-dimensional standard P-Wiener process on

(Σ, F ,P) and let ϕ be any d-dimensional adapted column vector process. Choose

a fixed T and define the process L on [0, T ] by

dLt = φtLtdW P
t

L0 = 1,

i.e.

Lt = exp
[ ∫ t

0
φsdW P

s − 1
2

∫ t

0
∥φs∥2ds

]

Assume that

EP[LT ] = 1,

and define the new probability measure Q on FT by

LT = dQ
dP

, on FT .

Then

dW P
t = ϕtdt + dWQ

t ,

where WQ is a Q-Wiener process.

We now let φt = −1
2σ(Dt) − µ(Dt)/σ(Dt) and consider the process
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WQ
t ≡ W P

t −
∫ t

0 φtdu. Define a new measure Q on FT by

dQ
dP

= exp
[ ∫ t

0
φtdW P

u − 1
2

∫ t

0
∥φt∥2du

]

We can now rewrite (2.3) as

dDt = (µ(Dt) − λDt)dt + σ(Dt)(φ(St) + dWQ
t )

= (µ(Dt) − λDt)dt + σ(Dt)
(

−1
2

σ(Dt) − µ(Dt)/σ(Dt))dt + dWQ
t

)
= −

(1
2

σ(Dt)2 + λDt

)
dt + σ(Dt)dWQ

t .

where WQ is a Q-Brownian motion. We note that

d(e−rtPt) ≡ d(eZt) = eZtdZt + 1
2

eZtσ(Dt)2(dZt)2

= eZt

(
−σ(Dt)2

2
dt + σ(Dt)dWQ + σ(Dt)2

2
dt

)

where we have written dZ in terms of our new measure. We see now that the dt

terms cancel and thus

d(e−rtPt) = Pte
−rtσdWQ.

The absence of the drift terms shows us that e−rtPt is a martingale under Q so

that Q is an equivalent martingale measure. The equivalence property is

discussed in Appendix A of [1]. We may also write the above in terms of dPt

since

d(e−rtPt) = e−rt(−rPtdt + dPt)

and so

dPt = rPtdt + σ(Dt)PtdWQ.

Proposition 12. If we assume the process Zt = log(e−rtPt) follows the
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following process,

dZt = µ(D(1)
t ) + σ(D(1)

t )dW P

where P is some P-Brownian motion, then the price process Pt and the offset

process D
(1)
t obey the following stochastic differential equations under the risk

neutral measure Q, namely

dPt = rPtdt + σ(Dt)PtdWQ,

dDt = −
(1

2
σ(Dt)2 + λDt

)
dt + σ(Dt)dWQ,

where WQ is a Q-Brownian motion.

Next we introduce the theory of martingale pricing. We consider the primary

market to consist of the bank account and the underlying price process. The

task is to determine a reasonable price process f(Pt, Dt, T − t) and we

assume that the market is arbitrage free. The choice of T − t as the time

variable comes from [1]. Also, our data consists of option prices with varying

maturities. The third parameter of the function f is the time to maturity of the

option. The function does not describe how the option price changes with time,

it describes how the option prices changes as a function of maturity dates. This

may seem a simple point to make but it is one that is easily overlooked and may

otherwise be a source of confusion later on. The derivative should be priced in a

way that is consistent with the prices of the underlying assets. More precisely,

the extended market (the market with the derivative price process included)

should also be free of arbitrage possibilities. This requirement is equivalent,

under the first fundamental theorem of finance [20], that all price processes in

the market are martingales under some martingale measure. In the above

calculations we have found a measure under which the price process is a

martingale. It is shown in [5] that this measure is unique and so by the
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definition of a martingale measure we obtain

f(Pt, Dt, T − t)
Bt

= EQ
[

f(PT , DT , 0)
BT

∣∣∣∣Ft

]
= EQ

[
Φ(PT )

BT

∣∣∣∣Ft

]

where Bt is the bank account and Φ(X) = max{X − K, 0} where K is the strike

price of the European option. We thus have the following result.

Theorem 13. (Risk Neutral Valuation Formula) Assuming the existence of a

short rate, the arbitrage free price process for the claim f is given by

f(Pt, Dt, T − t) = BtE
Q
[

Φ(PT )
BT

∣∣∣∣Ft

]

where Q is the unique martingale measure.

We also have

Bt = B0 exp
[∫ t

0
r(s)ds

]

and so

f(Pt, Dt, T − t) = EQ
[
e−
∫ T

t
r(s)ds · Φ(PT )

∣∣∣∣Ft

]
= e−r(T −t)EQ

[
Φ(PT )

∣∣∣∣Ft

]

where in the last line we assumed that r(t) is a constant function. By the

Feynman-Kac formula [21] (Karatzas and Shreve 1988) f(Pt, Dt, T − t) satisfies

the following partial differential equation

rPtfP − rf − λDtfD − ft + σ(Dt)2

2
(
−fD + P 2

t fP P + fDD + 2PtfP D

)
= 0

Choosing T − t as the time variable in f resulting in a negative sign in front of

the time derivative. This is all consistent with [1]. We can, of course, see how

the above equation simplifies to the Black-Scholes equation if we remove the

A study of the Hobson and Rogers volatility
model

57 Gearóid Ryan



2. The Hobson and Rogers Model 2.1 Description of Model

dependence on Dt and reverse the sign on the time derivative.

Proposition 14. Under the Hobson and Rogers model, the price of a European

call option with strike price K and maturity T , with an underlying risk free rate

r obeys the following partial differential equation

rPtfP − rf − λDtfD − ft + σ(Dt)2

2

(
− fD + P 2

t fP P + fDD + 2PtfP D

)
= 0 (2.5)

with boundary conditions

f(PT , DT , 0) = max(PT − K, 0)

where Pt and Dt are the price process and first offset process respectively.

A transformed version of equation (2.5) has been solved numerically by Foschi

and Pascucci [22]. This transformation is outlined in the next section. Hobson

and Rogers show that taking σ(Dt) = η
√

1 + ϵ(Dt)2 as the specification of the

volatility function is enough to reproduce the smiles in the Black-Scholes

implied volatility. So far we have only considered the case n = 1, in which

D
(1)
t = Dt =

∫ ∞

0
λe−λu(Zt − Zt−u) du (2.6)

Thinking of this integral as a weighted sum of ‘returns’ we see that there is the

possibility that negative returns will be cancelled by positive ones. This

represents a loss of potentially important information. Choosing m = 2 removes

this possibility. We now derive the partial differential equation where we assume

our option f = f(Pt, D
(2)
t , T − t) i.e. is a function of the second offset only. The

general formula for dD
(m)
t is derived by Hobson and Rogers. We have

dD
(m)
t = mD

(m−1)
t dZt + m(m − 1)

2
D

(m−2)
t d⟨Z⟩t − λD

(m)
t dt
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and so for m = 2 we have

dD
(2)
t = 2D

(1)
t dZt + d⟨Z⟩t − λD

(2)
t dt.

Now we substitute for dZt and use the change of measure as before to find

dD
(2)
t =

(
σ2(1 − D

(1)
t ) − λD

(2)
t

)
dt + 2σD

(1)
t dWQ

where σ = σ(D(2)
t ).

Proposition 15. The Feynman-Kac formula for f = f(Pt, D
(2)
t , T − t) now

yields

σ2
(

(1 − D
(1)
t )fD(2) + (D(1)

t )2fD(2)D(2) + 1
2

P 2
t fP P + 2D

(1)
t fD(2)P

)
−ft + rPtfP − λD

(2)
t fD(2) − rf = 0

Proof. We have as usual that the fair price of a claim F is given by

f(F, T − t) = e−r(T −t)EQ[F ] and so by the Kolmogorov Backward equation we

can write

−∂f

∂t
= µ(X) ∂f

∂X
+ µ(D) ∂f

∂D
+ 1

2
σ(X)2 ∂2f

∂X2 + 1
2

σ(D)2 ∂2f

∂D2 + σ(X)σ(D) ∂2f

∂X∂D

as required, where µ(X), µ(D), σ(X) and σ(D) are defined by

dX = µ(X)dt + σ(X)dWQ

= rXdt + σXdWQ

and

dD = dD(2) = µ(D)dt + σ(D)dWQ (2.7)

=
(
σ2(1 − D

(1)
t ) − λD

(2)
t

)
dt + 2σD

(1)
t dWQ. (2.8)
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2.2 Transformation of the Hobson and Rogers

p.d.e.

Proposition 16. Using a transformation of variables given by

x = log( P

K
) − r(T − t), (2.9)

y = log( P

K
) − r(T − t) − D, and (2.10)

τ = −λ(T − t), (2.11)

then

f(P, D, T − t) → Ker(T −t)V (x, y, τ), (2.12)

the partial differential equation describing the price of a European call option as

given in Proposition 14 may be written as

σ(Dt)2

2λ
(Vxx − Vx) + (x − y)Vy − Vt = 0, (2.13)

with the boundary condition

V (xT , yT , 0) = (exT − 1)+. (2.14)

Proof. The Hobson and Rogers p.d.e. for the case of the first offset function is

given in Proposition 14 by

rPtfP − rf − λDtfD − ft + σ(Dt)2

2
(
−fD + P 2

t fP P + fDD + 2PtfDP

)
= 0, (2.15)

from equation (2.5). Using the stated transformation of variables we may
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rewrite the above partial derivatives as

fP = er(T −t)K
(

Vx

P
+ Vy

P

)
,

fP P = er(T −t)K
( 1

P 2 (Vxx + Vxy − Vx) + 1
P 2 (Vyy + Vyx − Vy)

)
,

fDP = er(T −t)K
(

− 1
P

Vxy − 1
P

Vyy

)
,

fD = −er(T −t)KVy,

fDD = er(T −t)KVyy,

ft = er(T −t)K (−rV + rVx + rVy + λVt) .

We substitute these partial derivatives into equation (2.15), and using the

identity x − y ≡ D we obtain

re−rt(Vx + Vy) − re−rtV + λ(x − y)e−rtVy + re−rtV + e−rt(−rVx − rVy − λVt)

+ e−rtσ(Dt)2

2
(Vy − Vx + Vxx + Vxy + Vyx + Vyy − Vy + Vyy − 2Vxy − 2Vyy) = 0,

(2.16)

which simplifies to

σ(x − y)2

2λ
(Vxx − Vx) + (x − y)Vy − Vt = 0. (2.17)

Now for the boundary conditions. Since f(PT , DT , 0) = max{PT − K, 0}, we

have f(PT , DT , 0) = KV (log( P
K

), log( P
K

) − D, 0). Therefore (PT − K)+ becomes

(Kex − K)+ and

KV (log( P

K
), log( P

K
) − D, 0) = K(ex − 1)+,

which leads to the final condition

V (xT , yT , 0) = (exT − 1)+.
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2.3 Relationship with GARCH models

We would like to make a direct comparison between the Hobson and Rogers

model and the standard autoregressive models such as ARCH and GARCH.

The idea is that if we can fit a GARCH model to a given data set and we know

approximately the relationship between GARCH and the Hobson and Rogers

model, we can then approximately calibrate the Hobson and Rogers model from

the calibrated GARCH model. In fact Hobson and Rogers refer directly to the

ARCH family of models in motivating the form of the offset function. The

results of this calibration should give us some idea of what to expect in more

accurate calibration procedures. We aim to write the volatility specification of

each model in terms of variance. Discretising the Hobson and Rogers model

leads to

dZt
∼= Zt+1 − Zt = µ(D(1)

t , ..., D
(n)
t )dt + σt(D(1)

t , ..., D
(n)
t )zt.

where the zt are N [0,
√

dt], i.i.d. random variables. Note that

Zt+1 − Zt = log
(

Pt+1

Pt

)
≃ rt + O(r2

t ),

where

rt = Pt+1 − Pt

Pt

. (2.18)

For the moment we take t to be measured in days, and σt to be the daily

volatility. This conforms to the notation used in autoregressive models. We will

return to the issue of time scaling in grater detail in a later section. For

simplicity, we assume in both models that the drift µ is zero. Thus

rt = σt(D(1)
t , ..., D

(n)
t )zt
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The general form of the autoregressive models with zero drift is given by

rt =
√

htzt = ϵt (2.19)

and

ht = ω +
q∑

k=1
αkϵ2

t−k +
p∑

j=1
βjht−j

where ht is the conditional volatility and zt is the Brownian motion increment.

For more details see Definition 5, Chapter 1. We can clearly see that the σ term

in the Hobson and Rogers model ‘looks like’ the
√

ht term of the GARCH

model. Firstly, we find the maximum likelihood parameters (ω, α, β) of the

GARCH(1, 1) model. We may then obtain an estimate of the parameters of the

Hobson and Rogers model by matching the expected values of the GARCH and

Hobson and Rogers volatility processes. We can expand the σ2 term of the

Hobson and Rogers model and the ht term of the GARCH(1,1) model in terms

of ϵt−i for all i and take the expectation of each process.

First dealing with GARCH we must substitute our definition of ht into ht−j

leaving us with a new ϵ term and another ht−j term. With each substitution we

move further back in time and may go as far back as we wish. Thus,

ht = ω + αϵ2
t−1 + βht−1

= ω + αϵ2
t−1 + β(ω + αϵ2

t−2 + βht−2)

= ω + αϵ2
t−1 + β

(
ω + αϵ2

t−2 + β(ω + αϵ2
t−3 + βht−3)

)
...

= ω(1 +
∞∑

i=1
βi) + α

∞∑
i=1

βi−1ϵ2
t−i.
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Taking the expected value, and noting that E[ϵ2
t ] = ht we have

E[ht] = ω(1 +
∞∑

i=1
βi) + α

∞∑
i=1

βi−1ht−1 (2.20)

Now we have expressed the volatility in terms of each ht which will be used

later on.

The volatility specification of the Hobson and Rogers model i.e. σHR, is given by

σ2
HR = a2 + b2D2

t , (2.21)

where we substitute our definition of the offset function Dt from equation (2.6).

We must now discretise the offset function which will allow us to make the term

by term comparison with GARCH. We apply the GARCH model to daily

closing prices as described later. Before we discretise the offset function we

consider the time scaling of the parameters. In the case that we choose to use

annual, daily or inter day data, we should scale λ appropriately.

Proposition 17. A time-scaled offset function, with time scaled by a factor k,

is given by

D̂r

(m)
=
∫ ∞

0
λ̂e−λ̂v(Ẑr − Ẑr−v)mdv (2.22)

where λ̂ = kλ, Ẑt = Zkt and v(u) = ku.

Proof. Recall that

D
(m)
t =

∫ ∞

0
λe−λu(Zt − Zt−u)mdu, (2.23)

with the units of u being years. If we let v(u) = u/k, where k is the scaling

constant, then

kdv(u) = du
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and we can rewrite (2.23) in terms of our new variable as

D
(m)
t =

∫ ∞

0
λe−λvk(Zt − Zt−(vk))mkv′(u)du

=
∫ ∞

0
λ̂e−λ̂v(Zt − Zt−(kv))mdv (2.24)

where λ̂ = kλ. Now, for simplicity of notation we define Ẑt = Zkt and

D̂t

(m)
= D

(m)
kt . Then (2.24) becomes

D̂t

(m)
=
∫ ∞

0
λ̂e−λ̂v(Ẑt − Ẑt−v)mdv (2.25)

We wish to work in units of days so we will choose k = 1/252. Discretising our

new offset function we have

Dt+1 =
∞∑

i=1
λ̂e−λ̂

∑t

j=t−i
∆j (Zt − Zt−i)∆i,

where ∆i is the time difference between successive quotes. Since we are working

only with end-of-day data, we have ∆j = 1 (day) for all j. The above equation

becomes

Dt+1 =
∞∑

i=1
λ̂e−λ̂i(Zt − Zt−i).

Here we are using the first offset function. Given the value of the underlying

up to time t we can now calculate the offset at time t + 1. Notice that Zt − Zt−i

can be written as

Zt − Zt−i = log
(

Pt

Pt−i

)
= log

(
Pt

Pt−1

)
+ log

(
Pt−1

Pt−2

)
+ . . . + log

(
Pt−(i−1)

Pt−i

)

≃ rt−1 + rt−2 + . . . + rt−i

=
i∑

k=1
ϵt−k.

Substituting the above equation into our discretised offset function and the
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Figure 2.1: Plot of log asset price vs. ∑20
i=1 λ̂e−λ̂Zt−i

offset function into σHR as given by equation (2.21) we have

σ2
t+1,HR = a2 + b2

( ∞∑
i=1

λ̂e−λ̂
i∑

k=1
ϵt−k

)2

. (2.26)

We may simplify this expression by interchanging the order of the double

summation and gathering together the coefficients for each ϵ term. We write

the double summation as

∞∑
i=1

λ̂e−λ̂i
i∑

k=1
ϵt−k = λ̂

{
ϵt−1(e−λ̂ + e−2λ̂ + . . .)

+ϵt−2(e−2λ̂ + e−3λ̂ + . . .)
...

+ϵt−i(e−iλ̂ + e−(i+1)λ̂ + . . .) + . . .
}

= λ̂
{

ϵt−1
e−λ̂

1 − e−λ̂
+ ϵt−2

e−2λ̂

1 − e−λ̂
+ . . . + ϵt−i

e−iλ̂

1 − e−λ̂
+ . . .

}

= λ̂

1 − e−λ̂

∞∑
j=1

ϵt−je
−jλ̂
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The double summation has now become

λ̂

1 − e−λ̂

∞∑
j=1

ϵt−je
−jλ̂.

We substitute this back into our expression (2.26) for σ2
t+1,HR to obtain

σ2
t+1,HR = a2 + b2

 λ̂

1 − e−λ̂

∞∑
j=1

ϵt−je
−jλ̂

2

.

Then

E[σ2
t+1,HR] = a2 + E

c
∞∑

j=1
ϵt−je

−jλ̂

2
= a2 + E

[
c
(

ϵ2
t−1e

−2(1)λ̂

+2ϵt−1ϵt−2e
−3λ̂ + ϵ2

t−2e
−2(2)λ̂

+2ϵt−1ϵt−3e
−3λ̂ + 2ϵt−2ϵt−3e

−5λ̂ + ϵ2
t−3e

−2(3)λ̂

+ . . .
)]

where

c = b2λ̂2

(1 − e−λ̂)2
.

Taking the expectation of each of the above terms we have

E[σ2
t+1,HR] = a2 + c

(
ht−1e

−2(1)λ̂ + ht−2e
−2(2)λ̂ + ht−3e

−2(3)λ̂ + . . .
)

. (2.27)
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Here we have made use of E[ϵ2
t ] = ht and

E[ϵtϵt−1] = E
[
E[ϵtϵt−1|Ft]

]
= E

[
ϵt−1E[ϵt|Ft]

]
= E

[√
ht−1zt−1E[ϵt|Ft]

]
= E

[√
ht−1zt−1

√
ht E[zt|Ft]︸ ︷︷ ︸

0

]
= 0.

Finally we have

E[σ2
t+1,HR] = a2 + b2 λ̂2

(1 − e−λ̂)2

∞∑
i=1

ht−ie
−2iλ̂. (2.28)

In comparison, the GARCH model gives us (equation (2.20) above),

E[ht] = ω(1 +
∞∑

i=1
βi) + α

∞∑
i=1

βi−1ht−i. (2.29)

Note that the above GARCH model applies to a daily data and volatilities,

whereas in the Hobson and Rogers model σ refers to an annualised volatility. In

the numerical computation of the offset function we use end of day prices, and

so set k = 1/252 (day−1) and ∆ = 1 (day). In order to directly compare with

equation (2.28) we need to apply a conversion factor to convert to annual

volatilities. We define the annual volatility ĥt = 252 × ht, and so the above

equation becomes

E[ĥt] = 252

ω(1 +
∞∑

i=1
βi) + α

∞∑
i=1

βi−1ht−i

. (2.30)

We can then clearly see that

a2 = 252ω(1 +
∞∑

i=1
βi). (2.31)

A study of the Hobson and Rogers volatility
model

68 Gearóid Ryan



2. The Hobson and Rogers Model 2.3 Relationship with GARCH models

Comparing the coefficients of ht−i in the cases of i = 1 and i = 2 gives us

λ̂ = − log(β)
2

. (2.32)

Finally we have

b2 = 252α(1 − e−λ̂)2e2λ̂

λ̂2
. (2.33)

2.3.1 Numerical Results

The data used was daily closing price data from the S&P500 from 3/2/2002 to

23/5/2003. GARCH(1,1) parameters were found using MATLAB and garchfit().

The calibration the GARCH(1,1) model gives

ω = 2.069 × 10−5,

α = 0.0766

β = 0.8316.

Correspondingly we have, using equations (2.31), (2.32) and (2.33),

a = 0.176

λ̂ = 0.0922

⇒ λ = 23.23

b = 4.602

Now the Hobson and Rogers model is given by

σ2
HR = a2 + b2D2

t .
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Note that this is an annualised volatility. From the calibration of this model

using a finite difference method in Chapter 3 we find for λ = 23.23

a = 0.2214,

b = 3.0027.

Clearly the GARCH and Hobson and Rogers parameters do not coincide but are

the same order of magnitude. It will be shown in Chapter 3 that the optimum

choice of λ in the Hobson and Rogers model, for the above offset function, is

given by λ = 30 which is also in approximate agreement with the GARCH

comparison. The following table compares the coefficients of each model.

Table 2.1: Table of GARCH ht−k coefficients
Coefficient HR GARCH

ht−1 η2γ
(

λ
1−e−λ

)2
e−2λ α

ht−2 η2γ
(

λe
1−e−λ

)2
e−4λ βα + α

... ... ...

Remark. Discretisation of the second order offset function (setting m = 2)

gives

σ2
t+1,HR = a2 + b2

 ∞∑
i=1

λ̂e−λ̂i

(
i∑

k=0
ϵt−k

)22

.

2.4 Extensions of the model and Literature

Review

We first discuss a discrete model by Jeantheau [23] in which the goal is to

investigate the link between ARCH and the Hobson and Rogers model.

Jeantheau uses a discrete version of the Hobson and Rogers model to motivate a

new class of discrete models which are conditionally heteroscedastic and may be

seen as an alternative to ARCH. Its diffusion approximation is shown to be a
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complete stochastic volatility model. The diffusion approximation also provides

a numerical scheme, different from the Euler scheme, to approximate the

Hobson and Rogers model. Looking at the specification of volatility in the

GARCH model, Jeantheau shows that we can write

σ2
n = ω̃

1 − β̃
+ α̃

∑
i≥1

β̃i−1(Z̃n−i+1 − Z̃n−i)2

Let us now describe Jeantheau’s discrete model. Construct a process Zn, n ∈ Z,

such that the offset functions satisfy

D(m)
n = (1 − β)

∞∑
i=1

βi−1(Zn − Zn−i)m.

The log of the price process now satisfies the discrete time version of (2.2), that

is to say

Zn+1 − Zn = µ(D(1)
n , . . . , D(d)

n ) + σ(D(1)
n , . . . , D(d)

n )ηn+1

where ηn, n ∈ Z, is defined as in the GARCH model. If d = 2 then it is shown

that the discrete processes Zt, D
(1)
t and D

(2)
t converge in distribution to the

complete stochastic volatility model given by

dZt = µ(D(1)
t , D

(2)
t )dt + σ(D(1)

t , D
(2)
t )dWt

dD
(1)
t = (µ(D(1)

t , D
(2)
t ) − λD

(1)
t )dt + σ(D(1)

t , D
(2)
t )dWt

dD
(2)
t = (2D

(1)
t µ(D(1)

t , D
(2)
t ) + σ2(D(1)

t , D
(2)
t ) − λD

(2)
t )dt + 2D

(1)
t σ(D(1)

t , D
(2)
t )dWt

Remark. If we set β = 1 − λ∆, the second equation is the Euler scheme of the

stochastic differential equation satisfied by the offset function of order 1.

However, this is not the case for the offset function of order 2.

Remark. The assumption needed for convergence is also satisfied when
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β∆ = exp(−λ∆), which is the choice inspired by the offset functions. In section

4 of [23] the case of

σ2(D(2)
n ) = ω + αD(2)

n

is considered. This results in the system of equations

D
(1)
n+1 = βD(1)

n + (ω + αD(2)
n )1/2ηn+1,

D
(2)
n+1 = βD(1)

n + (ω + αD(2)
n )η2

n+1 + 2βD(1)
n (ω + αD(2)

n )1/2ηn+1 (2.34)

Jeantheau then goes on to prove this result and the following two propositions:

Proposition 18. The system (2.34) admits a unique strictly stationary and

positive recurrent solution with E[D(2)
n ] < ∞ if and only if α + β < 1. In this

case we have

E[σ2(D(2)
n )] = ω(1 − β)

1 − (α + β)

Proposition 19. If E[ln(β + αη2
n)] < 0, the system (2.34) admits a unique

strictly stationary and positive recurrent solution. Moreover, there exists a

δ ∈ (0, 1], such that E[(D(2)
n )δ] < ∞

Finally we refer to the paper of Hubalek, Teichmann and Tompkins entitled

‘Flexible Complete Models with Stochastic Volatility Generalising Hobson and

Rogers’ [24]. They investigate whether complete stochastic volatility models like

the Hobson and Rogers model can produce appropriate smiles or not.

Furthermore they suggest the following generalisation of the Hobson and Rogers

model with remains complete but which, they claim, fits the features of actual
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market data much better:

dZt = −1
2

σ1(Dt)2dt + σ1(Dt)dWt,

dDt = µ(Dt)dt + σ2(Dt)dWt,

Z0 = z, D0 = d

with the following specification

σ1(d) = η(1 + ϵβd2)

σ2(d) = ξη

µ(s) = −η2

2
− λd

for fixed ϵ > 0. A solution of this generalised Hobson and Rogers model is then

calculated.
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Chapter 3

Calibration of the Hobson and

Rogers model

In this chapter we study parameter estimation and numerical solutions of the

Hobson and Rogers model. We revisit the work of Foschi and Pascucci [22] and

examine how they numerically solve a transformed version of the Hobson and

Rogers partial differential equation (2.16). The paper of Foschi and Pascucci

provides a flexible calibration procedure in order to determine the parameters of

the Hobson and Rogers model, specifically (λ, a, b) in the expression

σ2(Dt) = a2 + b2D2
t .

where

Dt = D
(1)
t = Zt −

∫ ∞

0
λe−λuZt−udu

and Zt is the log price. They use a finite-difference method to solve the partial

differential equation (2.13) with initial condition (2.14) and then a non-linear

least squares routine to vary the parameters of the model, to find those that

give a best fit to market data. In this chapter we revisit the calibration
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procedure used by Foschi and Pascucci for the above volatility specification.

Then, in Section 3.6, we define new, more general volatility specifications not

previously calibrated. One such specification is suggested in [25]. We carry out

calibrations for a range of values of λ guided by our results from Chapter 2. We

find that the choice λ = 1 as chosen in [22] is not necessarily optimal. We have

found that the optimal values depend of the volatility specification being used

and on the error metric specified in the calibration routine. This is discussed in

more depth later.

Another aspect we investigate in this chapter is the time dependence of the

volatility smile. Through extensive numerical investigations we have found that

the implied volatility surface fluctuates daily. We conclude that the changing

surface is a consequence of market sentiment. Since the volatility specification

has no explicit time dependence it doesn’t have the ability to reproduce this

behaviour. In order to overcome this difficulty, we modify the dataset such that

the average daily implied volatility is constant, and calibrate our model to this

new dataset. The procedure is explained in detail in Section 3.7.3. The main

results of this chapter are that using the optimal value of λ and adjusted data,

we can provide an improved calibration routine where we see an order of

magnitude reduction in residual errors.

The market data used, kindly provided by Paolo Foschi, is a set of S&P500

index option prices. This procedure can be carried out using the lsqnonlin()

routine from MATLAB. This function requires the spatial derivatives of the

option prices and market option prices, as well as the partial differential

equation as inputs. It then provides the best fit parameters with errors. The

primary MATLAB code used is very much based on code also provided by Paolo

Foschi for which we are very grateful. We have used the finite difference scheme

which was provided and the procedure for cleaning the data. We have reworked
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the functions which calculate the value of the offset1. We found the method used

in the non linear least squares routine to be unreliable. We found that speed of

finding an optimum set of parameters is greatly increased by allowing MATLAB

to determine the necessary Jacobian matrix in order to determine step size and

direction when stepping through the parameter space. Details are provided in

Section 3.6. Finally, modifications had to be made to take account of the extra

parameters in the more general offset functions. Important sections of the code

are provided in the Appendix. The full code is also available upon request.

3.1 The work of Foschi and Pascucci revisited

We start with the transformed equation (2.13) derived in the previous chapter,

namely

LV := a(Vxx − Vx) + (x − y)Vy − Vτ = 0, (3.1)

where a = σ2(Dt)/2λ, and with boundary condition

V (xT , yT , 0) = (exT − 1)+. (3.2)

The functional form of σ(Dt) is specified below. The function V (x, y, τ)

represents the price of an option under the following transformation

f(Pt, Dt, T − t) → Ker(T −t)V (x, y, τ), (3.3)

1The MATLAB script written to compute the offset values is called compute_trend() and
the corresponding code can be found in the Appendix.
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where

x = log
(

Pt

K

)
− r(T − t),

y = log
(

Pt

K

)
− r(T − t) − D and

τ = −λ(T − t).

As usual, Pt is the price of the underlying, Dt is the Hobson-Rogers first offset

function, T − t is the time to maturity. The risk-free interest rate is r. The

offset function is defined, as before, by

D
(m)
t =

∫ ∞

0
λe−λu(Zt − Zt−u)mdu,

where Zt = log(e−rtPt) is the log-discounted price of the underlying. In the case

of m = 1 we have

Dt = D
(1)
t =

∫ ∞

0
λe−λu(Zt − Zt−u)du

=
∫ ∞

0
λe−λuZtdu −

∫ ∞

0
λe−λuZt−udu

= Zt −
∫ ∞

0
λe−λuZt−udu.

In their paper, Hobson and Rogers choose

σ2(Dt) = a2 + b2D2
t .

We will review this choice and examine other choices. We follow and describe in

detail here the finite-difference scheme provided in [22], using m = 1 in the

offset function and pointing out any adjustments we make to the original

implementation as we go.
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3.2 Finite-Difference Operators

In the numerical approximation of the above p.d.e. the parts σ2(Dt)
2λ

(Vxx − Vx)

and D∆uV := (x − y)Vy − Vτ are treated separately. We consider the uniform

grid

G = {(i∆x, j∆y, n∆τ ) | i, j, n ∈ Z, n ≥ 0}.

We use the following central difference approximation for ∂x

∂xV (x, y, τ) ∼= D∆xV (x, y, τ) = V (x + ∆x, y, τ) − V (x − ∆x, y, τ)
2∆x

,

and three-point scheme for ∂xx

∂xxV (x, y, τ) ∼= D2
∆x

V (x, y, τ) = V (x + ∆x, y, τ) − 2V (x, y, τ) + V (x − ∆x, y, τ)
∆2

x

.

This leads to the approximation

∂xxV (x, y, τ) − ∂xV (x, y, τ) ∼= D2
∆x

V (x, y, τ) − D∆xV (x, y, τ) (3.4)

= d1V (x − ∆x, y, τ) + d2V (x, y, τ) + d3V (x − ∆x, y, τ),

with d1 = 1/∆2
x + 1/(2∆x), d2 = −2/∆2

x and d3 = 1/∆2
x − 1/(2∆x).

The second main derivative is given by

Du⃗V = (x − y)Vy − Vτ

=
(

∂V

∂x
,
∂V

∂y
,
∂V

∂τ

)
.(0, x − y, −1)

= ∇V.u⃗,

where u⃗ = (0, x − y, −1) and with the directional derivative Du⃗V approximated
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by either

Y +
u⃗ V = Ṽ (x, y, τ) − Ṽ ((x, y, τ) − ∆τ (0, x − y, −1))√

1 + (x − y)2∆τ

=
Ṽ (x, y, τ) − Ṽ

(
(x, y − ∆τ (x − y), τ + ∆τ

)
√

1 + (x − y)2∆τ

or

Y −
u⃗ V = Ṽ ((x, y, τ) + ∆τ (0, x − y, −1)) − Ṽ (x, y, τ)√

1 + (x − y)2∆τ

(3.5)

=
Ṽ
(
(x, y + ∆τ (x − y), τ − ∆τ

)
− Ṽ (x, y, τ)√

1 + (x − y)2∆τ

Note that we divide by the norm of the vector (0, x − y, −1)∆τ as standard

when calculating the directional derivative. An alternative approach is given iin

[22]. Details of this approach can be found in [26]. In dealing with a fixed

uniform grid, the coordinates (x, y, t) and (x, y + ∆τ (x − y), t − ∆τ ) may not

both be grid points. To fix this problem we use linear interpolation between

grid points in the y-direction. In the above approximations

Ṽ (x, y, τ) = (1 − γ)V (x, ỹ, τ) + γV (x, ỹ + ∆y, τ),

where ỹ = [y/∆y]∆y, with
[

·
]

denoting the integer part, and γ = (y − ỹ)/∆y.

Also

Ṽ (x, y, τ) = (1 − γ)V (x, ỹ, τ) + γV (x, ỹ + ∆y, τ)

= (1 − γ)V (x, y, τ) + γV (x, y + ∆y, τ) (since ỹ = [y/∆y]∆y = y),

= V (x, y, τ) (since γ = (y − ỹ)/∆y = 0).
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The discrete operators L+
G and L−

G are defined by

L±
G = a

(
D∆2

x
V − D∆xV

)
+ Y ±

u⃗ V.

L+
G and L−

G are the explicit and implicit schemes for the discretisation of the

operator L in (3.1). We will work through the details of the finite difference

scheme in a later section. Firstly we will look at the boundary conditions.

3.3 Boundary Conditions

The finite difference scheme discretises the system in a bounded region. We

define the region in the cylinder

Q = {(x, y, τ) : |x| < µ, |y| < ν and -λT<τ<0},

for some suitable large µ, ν. This corresponds to the initial-boundary value

problem in the domain

{(P, D, t) : |P | < Keµ+r(T −t), |D| < ν, and 0 < t < T}.

The conditions on the boundary of Q, defined by

∂P Q = ∂Q ∩ {(x, y, τ) | −λT < τ < 0},

are set as follows:

V (x, y, 0) = (ex − 1)+, for x ∈ [−µ, µ], y ∈ [−ν, ν].
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We set

(∂xxV − ∂xV )(±µ, y, τ) = 0, for y ∈ (−ν, ν), τ ∈ (−λT, 0). (3.6)

This last condition is needed as the x boundary and the numerical

approximation on this boundary requires points from outside the region.

Effectively we are setting

d1V (x − ∆x, y, τ) = −
(
d2V (x, y, τ) + d3V (x + ∆x, y, τ)

)
at the lower boundary

and d3V (x + ∆x, y, τ) = −
(
d1V (x − ∆x, y, τ) + d2V (x, y, τ)

)
at the upper

boundary. This is a common approximation. Let us now introduce some

shorthand notation. Fix i0, j0 ∈ N ∪ {0}, we denote

V n
i,j = V (i∆x, j∆y, n∆τ ), i, j ∈ Z, |i| ≤ i0, |j| ≤ j0.

Applying the notation to the operator (3.4) for |i| ≤ i0 − 1 gives

D∆2
x
V n

i,j − D∆xV n
i,j = (d1V

n
i−1,j + d2V

n
i,j + d3V

n
i+1,j).

Similarly we apply the notation to the operator in (3.5). We have, for

(x, y, τ) = (i∆x, j∆y, n∆τ ),

Ṽ
(
x, y + ∆τ (x + y), τ − ∆τ

)
= (1 − γ)V n−1

i,j+k + γV n−1
i,j+k+1

where

k =
⌊

(x − y)∆τ

∆y

⌋
=
⌊(

i
∆x

∆y

− j
)

∆τ

⌋
and γ = (x − y)∆τ

∆y

− k (3.7)

are the lower integer part and fractional part of (x − y)∆τ /∆y respectively.

Now applying the Y −
∆τ

operator to V n
i,j leads to
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Figure 3.1: Setup of finite difference grid.

Y −
∆τ

V n
i,j = 1

∆τ

(1 − γ)V n−1
i,j+k + γV n−1

i,j+k+1 − V n
i,j

. (3.8)

In Section 3.4 we show that with an appropriate choice of grid size, no

boundary conditions need to be imposed in the y direction. This is rigorously

proved in [22]. Applying the discrete operator L−
G to V n

i,j reads

ai,j

(
D∆2

x
V n

i,j − D∆xV n
i,j

)
+ Y −

∆τ
V n

i,j = 0, |i| ≤ i0 − 1, |j| ≤ j0, (3.9)

where ai,j = a(i∆x, j∆y). The condition (3.6) is equivalent to

Y −
∆τ

V n
i,j = 0, i = ±i0, |j| ≤ j0. (3.10)

3.4 Numerical Scheme

With the numerical operators now defined, we work through the finite difference

procedure. The discretisation of equation (2.13) is formulated here as a block

diagonal linear system. We define I = 2i0 + 1, J = 2j0 + 1 and denote by

V n ∈ RIJ the column vector containing the values V n
i,j for |i| ≤ i0 and |j| ≤ j0.
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The values in the vector are sorted by their index pairs (j, i) in lexicographic

order. Now consider the application of the discrete operator Y −
∆τ

to the vector

V n. Note that Y −
∆τ

V n
i,j is a linear combination of the corresponding element in

V n and two elements, V n−1
i,j+k and V n−1

i,j+k+1 of V n−1. Thus, applying Y −
∆τ

to V n is

equivalent to the difference of two linear operators, ∆−1
τ I and ∆−1

τ Z applied

respectively to V n and V n−1, where I denotes the identity operator in RIJ .

Specifically Y −
∆τ

V n
i,j is given by

− 1
∆τ

(V n − ZV n−1), (3.11)

where Z ∈ RIJ×IJ such that the entry corresponding to the index i, j of ZV n−1

is given by

(1 − γ)V n−1
i,j+k + γV n−1

i,j+k+1. (3.12)

The selection of i0 and j0 is a numerical choice which specifies indirectly the

number of grid points. We choose ∆x such that

i0∆x = max
(

log( S
K

) − r(T − t)
)

. In our MATLAB script the notation is

slightly different with the index running from 0 to 2 × (i0 + 1) instead as this is

easier to implement. At the edge of our grid the boundary condition (3.10)

allows us to define the exterior values V n
−i0−1,j and V n

i0+1,j in terms of interior

points. We may also choose j0 such that j0∆y > max
(

log( S
K

) − r(T − t) − D
)

.

For a given V n
i,j the maximum j index upon which V n

i,j depends is j + k + 1 at

the time n − 1, (see (3.8)). Let us look at how this subscript behaves. For

∆τ < 1 the quantity j + k + 1 is increasing linearly in j and linearly in i since

j + k + 1 = j +
⌊

(x − y)∆τ

∆y

⌋
+ 1

= j +
⌊

(i∆x − j∆y)∆τ

∆y

⌋
+ 1

= j +
⌊

i∆x∆τ

∆y

− j∆τ

⌋
+ 1.
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Given a grid of interest on which we want perform the finite difference scheme,

we need to know how big this grid needs to be to include all dependencies V n
i,j

which may not lie inside the original grid. The original grid is the grid defined

by the full range of our market data. As described above, at the edges defined

by ±i0∆x our finite difference scheme is defined such that the numerical

derivatives do not depend on exterior points. Here we examine what happens at

the boundary ±j0∆y. As we move forward in time in our numerical scheme, the

point V n
i,j will depend upon V n−1

i,j+k+1 and V n−1
i,j+k. Looking at how k varies across

the grid, its minimum value can be expressed as

min (k) = (−x0 − j0∆y)∆τ /∆y (3.13)

A numerical check shows that for a grid of 101 × 81 and with the given market

data, that min (k) ∼ −2.88, and this occurs on the +j0 boundary. Similarly we

have max (k) ∼ 0.02 and this occurs on the −j0 boundary. In the case of k

falling between integers, the interpolation scheme described above is used and

so the minimum dependence at the +j0 boundary is j − 3 while at the −j0

boundary it is j + 1. Both of these results show that V n
i,j can be computed from

points entirely within the grid at time n − 1. This further shows that there is no

need for boundary conditions at ±j0. We now refer back to equation (3.9) and,

following Foschi and Pascucci, we use algebraic manipulation to rewrite the

system as one that is computationally easier to solve. We have

ai,j

(
D∆2

x
V n

i,j − D∆xV n
i,j

)
+ Y −

∆τ
V n

i,j = ai,j

(
D∆2

x
− D∆x

)
V n

i,j + 1
∆τ

ZV n−1 − IV n


=

[
− I + ai,j∆τ (D∆2

x
− D∆x)

]
V n

i,j + ZV n−1

= 0.
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Let A ∈ RIJ×IJ be the diagonal matrix with elements ai,j. Let the matrices

D =



D̆ 0 · · · 0

0 D̆ · · · 0
... ... . . . ...

0 0 · · · D̆


and D̆ =



0 0 0 · · · 0

d1 d2 d3 · · · 0

0 . . . . . . . . . ...

0 · · · d1 d2 d3

0 · · · 0 0 0



be tridiagonal matrices of order IJ and I respectively. Thus the matrix D · V n

represents the operator (D∆2
x

− D∆x)V n with the boundary condition (3.6)

(∂xxV − ∂xV )(±µ, y, τ) = 0 built in. We rewrite the operator

−I + ai,j∆τ (D∆2
x

− ai,jD∆x) as −I + ∆tA · D, which can be rewritten as

Ā1 · V n = Ā2 · V n−1, 1 ≤ n ≤ N, (3.14)

with Ā1 = {−I + ∆tA · D} and Ā2 = −Zn. We note here that the above

expressions differ from those of Foschi and Pascucci in that firstly, we have a

fixed grid size for all time-steps, thus no subscript n and, secondly, we define Ā1

and Ā2 with the sign change discussed in Section 3.3. For each n, the system

(3.14) can be written as a linear system:



I 0 0 · · · 0

−Ā2 Ā1 0 · · · 0
... . . . . . . ...

0 · · · −Ā2 Ā1 0

0 · · · 0 −Ā2 Ā1


·



V 0

V 1

...

V N−1

V N


=



V i

0
...

0

0


,

or

ĀV̄ = V i
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where V i is the initial data i.e. I · V 0 = V i. Note that n = 0 corresponds to the

maturity date of the option, and n = N corresponds to the time of writing of

the option.

Example 1.

In order to reinforce these ideas, let us work through a toy example. We consider

three time steps, and a 3 × 3 spatial grid. The initial conditions are given by

V (x, y, 0) = (ex − 1)+.

This example is for demonstration purposes so the region in which the finite

difference scheme is evaluated here is chosen for ease of demonstration and is

not supposed to reflect values corresponding to the financial world. Let our x

and y values range from 0 to 2, with ∆x = 1, ∆y = 2, and ∆τ = 0.5. We set

i0 = j0 = 1 such that our grid points lie on the integers running from −1, 0, 1.

Correspondingly we have I = J = 3. At expiry we have n = 0 and our initial

values (value at maturity) are given by the above equation. We have

V 0 =


0 0 0

1.72 1.72 1.72

6.38 6.38 6.38

 .

Then

V 1 = Ā−1
1 · Ā2 · V 0 by (3.14)

= Ā−1
1 · (−Z) · V 0

Let us first deal with the Z · V 0 component. We need to compute the Z
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operator which depends on our (x, y) values through k, see equation (3.12).

ZV n−1 = (1 − γ)V n−1
i,j+k + γV n−1

i,j+k+1.

Now k =
⌊

(i∆x−j∆y)
∆y

∆τ

⌋
so we can determine j + k for each point in our 3 × 3

grid. We have

k̄ =


k−1,−1 k−1,0 k−1,1

k0,−1 k0,0 k0,1

k1,−1 k1,0 k1,1

 =


0 −1 −1

0 0 −1

0 0 −1

 .

and consequently j + k, j + k + 1 values are given by


(−1, 0) (−1, 0) (0, 1)

(−1, 0) (0, 1) (0, 1)

(−1, 0) (0, 1) (0, 1)

 .

We construct the Z matrix using the information given in the above array.



1 − γ−1−1 0 0 γ−1−1 0 0 0 0 0

0 1 − γ0−1 0 0 γ0−1 0 0 0 0

0 0 1 − γ1−1 0 0 γ1−1 0 0 0

1 − γ−10 0 0 γ−10 0 0 0 0 0

0 0 0 0 1 − γ00 0 0 γ00 0

0 0 0 0 0 1 − γ10 0 0 γ10

0 0 0 1 − γ−11 0 0 γ−11 0 0

0 0 0 0 1 − γ01 0 0 γ01 0

0 0 0 0 0 1 − γ11 0 0 γ11



.
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We must now determine γ for the above matrix, which is given by equation (3.7)

γ = (x − y)∆τ

∆y
− k,

and so is a function of (i, j). We calculate γ for each (i, j) and store it in the matrix γ̄.

γ̄ =


0.25 0.75 0.25

0.5 0 0.5

0.75 0.25 0.75

 .

Finally we have

Ā2 · V 0 =



−V 0
−1−1(1 − γ−1−1) − V 0

−10γ−1−1

−V 0
0−1(1 − γ0−1) − V 0

00γ0−1

−V 0
1−1(1 − γ1−1) − V 0

10γ1−1

−V 0
−1−1(1 − γ−10) − V 0

−10γ−10

−V 0
00(1 − γ00) − V 0

01γ00

−V 0
10(1 − γ10) − V 0

11γ10

−V 0
−10(1 − γ−11) − V 0

−11γ−11

−V 0
00(1 − γ01) − V 0

01γ01

−V 0
10(1 − γ11) − V 0

11γ11



= −



0

1.71828

6.38906

0

1.71828

6.38906

0

1.71828

6.38906



.

Next we determine (Ā1)−1. We have from before

Ā1 = {−I9 + ∆tA · D}
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which is a 9 × 9 matrix whose diagonal elements are

diag =



−1

(0.5a21d2 − 1)

−1

−1

(0.5a22d2 − 1)

−1

−1

(0.5a32d2 − 1)

−1



,

and upper diagonal given by

upper =



0

(0.5a21d3)

0

0

(0.5a22d3)

0

0

(0.5a32d3)
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and lower diagonal given by

lower =



(0.5a21d1)

0

0

(0.5a22d1)

0

0

(0.5a32d1)

0



.

The inverse of the above matrix, (Ā1)−1, is too cumbersome to be shown here but is

easily determined using software. For simplicity, setting aij = 1 for all (i, j). We find

Ā1 =



−1 0 0 0 0 0 0 0 0

0.75 −2. 0.25 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0.75 −2. 0.25 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0.75 −2. 0.25

0 0 0 0 0 0 0 0 −1



,
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and finally

V 1 = Ā−1
1 · Ā2 · V 0 =



V 1
1,1

V 1
2,1

V 1
3,1

V 1
1,2

V 1
2,2

V 1
3,2

V 1
1,3

V 1
2,3

V 1
3,3



=



0

1.65777

6.38906

0

1.65777

6.38906

0

1.65777

6.38906



To determine V n we iteratively apply the same operators (which do not need to be

recomputed at each iteration) :

V n = Ā−1
1 · Ā2 · V n−1 (3.15)

3.5 Implementation of the calibration

procedure.

The calibration of the Hobson and Rogers model is the estimation of the volatility

function σ from observed market prices of European options. We assume σ = σ(·; α)

depends on a vector α = (α1, . . . , αp) of real positive parameters and denote by

V (x, y, t; α) the solution to the problem (3.1)-(3.2) corresponding to

a = σ2(x − y; α)
2λ

.

Let f̂i be the observed option value at the point zi = (xi, yi, ti), for i = 1, 2, . . . , M ,

and let fi(α) be the price given by (3.3) in terms of the solution V (xi, yi, τi; α) of the

p.d.e. (3.1) for a given α at the observation point zi. If the point zi does not belong
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to the grid G, the value of fi(α) is approximated by linear interpolation between the

nearest points on the grid in the y−direction.

The objective of the calibration is to minimise some measure of error of the model by

choice of α. We have considered a number of error metrics. These are ‘Root Mean

Square Error’(RMSE), ‘Mean Absolute Error’(MAE), ‘Root Mean Square Relative

Error’(RMSRE), and ‘Mean Relative Absolute Error’(MRAE). These are defined as

follows,

RMSE =

√√√√ 1
N

N∑
i=1

(
fi − f̂i

)2
,

MAE = 1
N

N∑
i=1

|fi − f̂i|,

RMSRE =

√√√√√ 1
N

N∑
i=1

(
fi − f̂i

f̂i

)2

and,

MRAE = 1
N

N∑
i=1

|fi − f̂i|
f̂i

We also consider the error metric

RMSEoriginal =

√√√√ 1
N

N∑
i=1

(
vi − v̂i

)2
,

where v and v̂ corresponds to the option prices in the transformed space. This

appears to be the error metric used by Foschi and Pascucci in their calibration

algorithm. For a chosen error metric for the calibration, we determine the optimal

parameter set α. As a final step, we calculated the residual error as defined be each of

the above metrics for the optimal α. Another point to note is that the parameter

space over which we calibrate also includes λ. We find that given a volatility

specification, and an choice of error metric, that different values of λ are optimal.

Typically we find that 0 < λ < 10. Details follow in a later section.

We will now go through in detail how we implement the calibration procedure in

MATLAB. There are two main parts to the overall algorithm. The first is an

algorithm to solve the transformed equation (3.1) subject to the boundary condition
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(3.2) and the second is the algorithm to apply the non-linear least-squares routine.

3.5.1 The Dataset and MATLAB code.

The dataset was kindly provided by Paolo Foschi. The data is a set of European

option quotations on the S&P 500 index from the Chicago Board Options Exchange.

We now examine in detail the MATLAB algorithm used in [22] to calibrate the p.d.e.

to the data. An outline of the calibration algorithm can be found in the Appendix.

The first step is to convert the raw data into a usable format. The objective here is to

have each option price associated with its corresponding underlying price, offset,

strike, and time to maturity. In determining the offset we must choose a value of λ.

In Section 3.6.1 we will discuss choices of λ and suggest how to determine the

‘best’ value of λ for a given dataset. Recall that the offset function is given by

Dt = D
(1)
t =

∫ ∞

0
λe−λu(Zt − Zt−u)du.

Unless otherwise stated, the MATLAB functions referred to in the following text are

partly new work and their code can be found in the Appendix. The function names

are the same as those MATLAB functions used by Foschi and Pascucci which allows

for easier integration with Foschi and Pascucci’s finite difference scheme.

The compute_trend() function is used to compute the offset at each time. It outputs

a column vector where the ith row gives the value of the offset function at time i. The

next step of the algorithm is to apply the transformations of equation (3.3) to our

data. Recall that our new variables are defined as follows

f(P, D, T − t) → Ker(T −t)V (x, y, τ)
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where

x = log( P

K
) − r(T − t)

y = log( P

K
) − r(T − t) − D, and

τ = −λ(T − t).

The choice of λ is discussed in Section 3.6.1. Our raw data is now correctly

parameterised and we use the function calibrate()2 to choose α = (α1, . . . , αp) such

that the solution of the p.d.e. (2.13) is as close as possible to the market data. We

use the built-in MATLAB function lsqnonlin() which attempts to minimise the

squared sum of residuals by varying the vector α, as described in the algorithm above.

We perform a number of calibrations, looking at different specifications of the

volatility function, including that as originally specified in [1].

3.6 Choice of volatility function

A key question is to decide upon the functional form of the volatility function.

Naturally we start with that proposed by Hobson and Rogers in their original paper

[1]. It is specified by

σ2
HR = min

{
α1 + α2(Dt − α3)2,

√
5
}

.

This is the function also used in the calibration paper of Foschi and Pascucci [22].

Note that the above formulation is slightly more general than that analysed by

Hobson and Rogers, who do not include a linear term, corresponding to ‘V ol3’ below.

We label the above volatility specification as ‘V ol0’. We also work with a number of

2The structure of this function remains mostly unchanged from that provided by P.
Foschi. Alterations are made where we have modified the use of the nonlinear least squares
function (internal MATLAB function) and where we have adapted the function to allow the
use of more general volatility specifications.
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other functional forms, namely

V ol1 : σ2 = α1 + α2D2
t

α4 + α5D2
t

,

V ol2 : σ2 = α1 + α2(Dt − α3)2

α4 + α5(Dt − α6)2 ,

V ol3 : σ2 = α1 + α2D2
t

The indices on the α coefficients are chosen for ease of comparison post calibration i.e.

α2 will always correspond to the coefficient of D2
t in the numerator. The function

evaluate()3 was written to compute the residual vector used in the calculation of each

of the error metrics defined above.

Foschi and Pascucci in [22] provide a p.d.e., the solution of which gives the Jacobian

of the option price values with respect to the parameters in the volatility

specification. This is then used by the lsqnonlin() function to determine step size and

direction which searching the parameter space for the optimal parameter values. This

method has benefits in that it allows quicker computation of the Jacobian. We have

found, though, that convergence is quicker and more reliable if MATLAB is allowed

to compute the Jacobian using it own internal functionality. The slower computation

is compensated by the quicker convergence.

The evaluate() function uses the functions HR_calibrate()4 and kolmogorov()5 to

compute the solution to the p.d.e. on the grid, subject to initial conditions and

boundary conditions. These functions are also given in the appendix.

3.6.1 Choice of λ

The one parameter that isn’t determined by the calibration process is λ, which

determines the rate of decay of the discount factors found in the offset function. We

have previously attempted to quantify λ by making a direct comparison between the

3Adapted from work of P. Foschi
4Adapted from work of P. Foschi
5Provided by P. Foschi
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offset function and a GARCH model. One approach we have decided to investigate is

to see which λ minimises each of the error metrics, for each of the volatility functions

defined above.

We found that there is an optimal choice of λ in the case of volatility specifications

V ol0 and V ol2. This optimal choice of λ is given in each of the results tables. We

perform a joint calibration procedure, recalibrating the model for a range of λ values.

We define optimal in the sense that this choice of λ minimises the chosen error metric.

A discussion on this can be found in Chapter 2, Section 3 in which the GARCH

model suggests we that the optimal choice is given by λ ≃ 23.

In the case of V ol1 and V ol3, optimal lambda values occurred for 0.001 < λ < 0.1. In

both these cases the residual errors from the calibration were large when compared

with those found by choosing either V ol0 or V ol2. For example, the RMSEoriginal for

the optimal λ in the case of V ol1 was found to be of the order of ≃ 7 × 10−3 while in

the case of V ol0 or V ol2 the same metric was of the order of ≃ 4.4 × 10−3 for an

optimal choice of λ. We found this as a result of extensive numerical testing. It is

notable that in both these specifications we only have a D2
t term. By squaring the

offset we lose information about the direction of price movements. The extra Dt term

in V ol0 and V ol2 provides this information. These results have led us to drop V ol1

and V ol3 from our investigations from here on. Notably, by doing this, we are

eliminating the specification suggested originally by Hobson and Rogers in [1].

An interpretation of the results can be found in Section 3.7.4.

Note that in [22] the authors take λ = 1. In a later section we will describe a

calibration method using ‘adjusted data’. In that case the optimal choice of λ is given

by 1 < λ < 5. See Figure 3.3.
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Figure 3.2: Original data set: A plot of RMSEoriginal from the calibration routine
vs. λ. We find that for V ol0 and V ol2 the optimal choice is given by λ ≃ 4.
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Figure 3.3: Adjusted data set: A plot of RMSEoriginal from the calibration routine
vs. λ. We find that for V ol0 and V ol2 the minimum occurs at λ ≃ 4 and λ ≃ 5
respectively.

3.7 Calibration Results

The overall aim of our model is to incorporate the information we have about the

value of the offset function, in order to provide more accurate option valuations. It is

common practice in the financial industry to trade options based on their

Black-Scholes implied volatility as opposed to actual option price. As such, the
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calibration of stochastic volatility models is typically implemented such that the

implied volatility smile produced by the model matches the implied volatility smile of

the market and this also forms the basis for testing the validity of a given model. This

process is known as ‘roundtripping’. In our calibration routine we try to minimise

over the set of error metrics defined earlier, as opposed to implied volatility. We

present the results of the calibration of the parameters in the volatility specifications

V ol0 and V ol2. We then convert model and market prices into implied volatilities and

compare the resulting data sets. This section also contains some statistics relating to

these comparisons.

3.7.1 Initial Results

We now present the values found by the above calibration procedure for each of the

above volatility specifications calibrated to each of the metrics defined above.
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Table 3.1: Best fit parameters for the V ol0 volatility specification for each of the
error specifications.

V ol0 RMSEoriginal RMSRE(%) RMSE MAE MRAE

λ 4 1 3 4 1
α1 0.04 ± 4.5E − 07 0.04 ± 2.0E − 07 0.04 ± 4.0E − 07 0.04 ± 1.6E − 07 0.04 ± 7.3E − 08
α2 4.94 ± 2.6E − 04 2.52 ± 4.3E − 04 4.1 ± 2.3E − 04 4.52 ± 6.3E − 05 2.53 ± 6.4E − 05
α3 0.07 ± 1.1E − 03 0.09 ± 1.3E − 03 0.08 ± 1.2E − 03 0.08 ± 6.6E − 04 0.11 ± 7.8E − 04

Table 3.2: Best fit parameters for the V ol2 volatility specification for each of the
error specifications.

V ol2 RMSEoriginal RMSRE(%) RMSE MAE MRAE
λ 4 1 4 4 2
α1 130.82 ± 1.8E06 150.3 ± 7.4E07 148.87 ± 7.7E06 258.55 ± 1.8E − 01 361.7 ± 2.8E − 03
α2 2542.13 ± 3.5E07 4606.31 ± 2.3E09 3617.91 ± 1.9E08 3133.11 ± 8.3E − 01 7186.31 ± 6.0E − 01
α3 0.11 ± 1.2E − 02 0.05 ± 1.4E − 02 0.09 ± 7.5E − 03 0.22 ± 3.4E − 03 0.09 ± 7.9E − 04
α4 9525.34 ± 1.3E08 7451.84 ± 3.7E09 9902.49 ± 5.1E08 24248.12 ± 2.8E01 19204.14 ± 4.0E00
α5 −0.5 ± 1.2E − 01 −0.6 ± 4.4E − 01 −0.52 ± 1.9E − 01 −0.48 ± 4.3E − 03 −0.56 ± 7.9E − 03

Table 3.3: Residual error values for each of the error metrics. The volatility
specification here is V ol0. Each column denotes a specific metric, while each row
presents the residual error under each of those metrics.

V ol0 RMSEoriginal RMSRE(%) RMSE MAE MRAE

RMSEoriginal 0.0044 0.0047 0.0044 0.0045 0.0044
RMSRE(%) 13.11% 12.67% 12.96% 13.55% 13.2%

RMSE 13.99 15.4 13.94 14.61 14.26
MAE $2.78 $3.15 $2.81 $2.75 $2.82

MRAE .071 .0742 .0709 .0709 .0704

Table 3.4: Residual error values for each of the error metrics. The volatility
specification here is V ol2.

V ol2 RMSEoriginal RMSRE(%) RMSE MAE MRAE

RMSEoriginal 0.0044 0.0046 0.0044 0.0044 0.0044
RMSRE(%) 13.19% 12.65% 13.04% 13.78% 13.18%

RMSE 13.81 14.84 13.77 14.42 13.99
MAE $2.75 $2.96 $2.77 $2.72 $2.76

MRAE .0703 .0731 .0705 .0705 .07

For comparison, in [22] it was found that the optimal parameter choice and resulting

residuals are given in the Table 3.5.

Before analysing the results there are a number of differences to note in the

calibration procedures and in how the results are presented. In the MATLAB code

that underlies the calibration results from [22] it seems that the calibration was

implemented such that the residual being minimised was a root mean square error of
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Table 3.5: Calibration results of Foschi and Pascucci. Note that the parameter
λ pre calibration. These parameters may be compared with those in column 1 of
Table 3.1 and the diagonal elements of Table 3.3

V ol0

RMSE $1.857 λ∗ 1
MAE $1.463 α1 0.0272 ± 8.51 × 10−5

RMSRE 5.19% α2 0.7114 ± 2.11 × 10−3

MRAE 3.34% α3 0.0616 ± 10−4

the option values in the transformed space. We note that this approach may not give

the same results as the case where the residuals are defined in terms of the

untransformed variables. In the case of the relative errors i.e. RMSRE and MRAE,

the approaches are equivalent due to cancellation of the conversion factors between

the transformed and untransformed variables.

The second point to note is that only a single the error metric is used in the

calibration algorithm of Foschi and Pascucci [22]. In contrast, we calibrate a new set

of parameters, including λ, for each error metric in the untransformed variable space,

and using the untransformed model and market option prices, we calculate RMSE,

MAE, RMSRE and MRAE. It is clear for instance that the choice of error metric

used in the calibration will affect the model prices and the value of each of the four

measures of error. Choosing RMSRE as the error metric in the calibration for

example, will mean the calculated RMSRE post calibration, will be minimised with

respect to RMSRE calculated via other optimization error metrics. It is possible to

see this effect in Tables 3.3 to 3.11 by looking at the diagonal entries in each of these

arrays and noting that the diagonal element is less than or equal to any other entry in

a given row. In some cases the differences across a given row are significant. It is up

to the user of the model to decide which error metric to choose in the calibration.

Another point to note is that in calculation of the relative errors, [22] remove options

from the market data set with value less than $10. This is to reduce percentage bias

which would appear for smaller option values. Indeed an examination of the market

data vs our own model prices confirmed this effect to be significant. In our calibration

we exclude options below the $10 barrier for all calibrations. We will come back to
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this issue in Chapter 5, where we will also discuss the parameter ranges in which we

found the model to be weak. The model is particularly weak for longer maturities,

and deep out of the money options. This may be an artifact of bad or unclean data

and these topics will be discussed.

In the results of [22] a calibration with respect to three alternative models is

presented. These consist of the standard model as presented in V ol0, with a single

calibration, a V ol0 model with daily recalibration, and a third model based on a

spline interpolation scheme. The second model in this list may be comparable to the

model in which we calibrate to adjusted data. As will be discussed later, the adjusted

dataset is constructed such that daily variability is eliminated, allowing us to avoid

daily recalibration. We describe how to convert back to unadjusted prices. Where

adjusted data was used in our calibrations, the measures of fit used in the

optimization routine were calculated with respect to unadjusted data.

Finally, we calibrate to mid-option prices and do not consider ‘outside’ errors, where

the error is defined as the maximum distance between the bid and ask prices if the

model price is outside the bid-ask range, and is take as zero otherwise. Clearly this

will lead to a fit that appears to be better. It may be prudent when performing a

calibration to calibrate to either the bid or ask depending on the makeup of your

current portfolio. For example, if the model is to be used to value a portfolio, the

value of the asset to you may be best represented by the cost of selling that asset if

holding a long position, or buying that asset if holding a short position. The model

should reflect the cost of liquidating the position and so should be calibrated to the

appropriate bid or ask prices. This fine tuning may be more relevant to those who

wish trade more frequently and is a modelling choice.

Now, analysing the results, we can see that our parameters compare well with the

calibrated paymasters reported in [22] in the case of V ol0. We note that α1 and α3

are particularly close, while α2 is a factor of two or four larger depending on whether

comparing with V ol0 or V ol2. The parameters are still of the same order of

magnitude which is reassuring. When comparing these results note that we have

A study of the Hobson and Rogers volatility
model

101 Gearóid Ryan



3. Calibration of the Hobson and
Rogers model 3.7 Calibration Results

different values of λ associated with each. The λ in our model is the result of a

further manual calibration as discussed in the previous section. We found λ = 4 to be

optimal in this case whereas in [22] the authors take λ = 1.

A higher value of λ will reduce the value of the offset value process at any given time

due to larger discounting within the offset function. Since α2 is the parameter that

scales the offset value in our model, a higher value of α2 would compensate for a

reduced offset value. A distribution of the errors between market and model prices

can be found in Figure 3.4 and the corresponding statistics for V ol0 and V ol2 in

Tables 3.6 and 3.7. It shows us that both these models overestimate the option

implied volatilities by between 0.24% and 0.34%. Surprisingly here, while V ol2 has a

lower RMSEoriginal when looking at option prices, when looking at implied volatilities

V ol0 fares better. We also note that if the error distribution is fitted to a normal

distribution we see a standard deviation in both models of ≃ 3.4%. This is something

that is worrying and suggests that we need to find ways to improve the model.

Figure 3.4: Distribution of differences between market implied volatility and
model implied volatility in the case of V ol0, with a fitted normal density function.
See Table 3.6 for the mean and standard deviation of this fit.

In Figure 3.5 we graph market and model option prices as a function of moneyness

where moneyness is defined as log(Ft/K)/
√

T − t, where Ft = er(T −t)Pt. The

moneyness variable is intended to allow us to compare option implied volatilities as a
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Table 3.6: Parameters for normal distribution fitted to a distribution of errors
between market and model implied volatilities in the case of V ol0

V ol0 Parameter Estimate Std. Error
µ 0.24% 0.058%
σ 3.5% 0.041%

Table 3.7: Parameters for normal distribution fitted to a distribution of errors
between market and model implied volatilities in the case of V ol2

V ol2 Parameter Estimate Std. Error
µ 0.34% 0.055%
σ 3.3% 0.039%
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Figure 3.5: Market and model implied volatilities as a function of moneyness.
Here we have four plots where we have separated data based on the value of the
offset function at time of quotation. V ol0 is used in the above model data with
λ = 4.

function of a single variable. This is useful as our dataset comprises of options over a

range of maturities and underlying asset values. Our modelling assumption is that

option prices are functions of the spot price Pt, interest rate r(t), time to maturity

(T − t), strike K and offset value Dt. Since the moneyness variable uniquely

incorporates the set of variables (Pt, r(t), T − t, K), the remaining variation, or spread

in implied volatility can only be due to the effect of Dt. A quick visual check shows
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Figure 3.6: Plots of the RMSE (volatility) as a function of time to maturity and
moneyness.

that the implied volatility spread in market data is larger than that of the model

data, especially when the value of the offset function is close to zero. There are two

possibilities here to explain this difference. Either our modelling assumption i.e. the

spread in implied volatility is explained by the value of Dt is inaccurate, or, there is

another explanatory variable that we are not taking into account. Later on we

consider the possibility of a ‘calendar’ spread i.e. a spread due to the calendar time

dependence of the market quotes/market implied volatilities. Taking account of this

‘calendar’ spread dramatically reduces our error and we describe this approach in

Section 3.7.2.

We can also look at the error as a function of time to maturity and moneyness as is
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Figure 3.7: Here we plot model Black implied volatilites as a function of money-
ness.
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Figure 3.8: Here we plot market implied volatilities and model implied volatil-
ities. For each option, we take the underlying asset value, strike price, time to
maturity and value of offset and calculate the Black implied volatility based on
the model price given those parameters. † Since we have a time axis here we
define moneyness in this case to be log(er(T −t)S/K)

done in [22]. See Figure 3.6. In this figure we are looking at four datasets. One for

each of V ol0 and V ol2, and within those, errors for the original dataset and adjusted

dataset. Again, the reasons for adjusting our market data are discussed in Section

3.7.3. In general it can be seen that V ol2 is marginally preferable if we bucket the

errors per moneyness, and consistently better than V ol0 if we bucked the errors per
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Figure 3.9: Here we make a color map of the absolute value of differences between
market and model implied volatilities. We see the largest errors for deep into the
money and out of the money options. In general, deep in the money options are
overvalued by the model. Blue represents agreement between model and market,
while red indicates disagreement. The scale is in implied volatility.

maturity. There are a few points to note here. We see that there is a large variation

across the range of moneyness and maturity for each dataset. For short term options,

in the case of calibration to non-adjusted data, the error is of the order of 6% while

for long term options (0.5 years) we see an error of 4%. Note that the error units here

are actual implied volatilities. We see also that the RMSE of volatility grows with

moneyness.

Another approach to see if our model is working is to see if the model reproduces the

smile seen in market data. In [24] it is reported that the Hobson and Rogers model

fails to produce the ‘smile’ effect. In contrast, our results show good replication of the

market smile. See Figure 3.7. Figure 3.8 shows the market smiles and the model

smiles for our dataset. In this graph we have interpolated the market and model data

and drawn a best fit surface to fit this data. Figure 3.9 shows a top down view of a

best fit surface generated from the absolute value of differences between market and

implied volatilities as a function of moneyness. The model is most accurate for at the

money options, with deep in the money options tending to be overpriced.

In order to improve accuracy of the model we suggest the use of D
(2)
t , the second

A study of the Hobson and Rogers volatility
model

106 Gearóid Ryan



3. Calibration of the Hobson and
Rogers model 3.7 Calibration Results

order offset function. The second order offset function has not previously been used in

the literature and no attempt has been made to validate this type of model. We

tackle this problem in Chapter 4.

A major problem with the calibration method is the choice of a good set of starting

parameters. The non-linear least squares function requires an initial set of parameters

(α1, α2, . . . ) with which to being its search of the optimal parameters. It was found

that a bad initial choice would lead to convergence to a local minimum of the RMSE

which could be an order of magnitude greater than the global minimum. This

problem could only be overcome through extensive manual testing of different starting

vectors. It may be the case that in the calibration of V ol1 and V ol3 we were unable to

find such a set of good starting parameters which then resulted in the failure of the

calibration routine.

3.7.2 Uniqueness of Implied Volatility

As mentioned earlier, for a given moneyness, there is a large spread in implied

volatility values in the market data. This might suggest an opportunity for arbitrage.

See Figure 3.10. Closer examination of the data shows this not to be the case. We

find that the implied volatility surface is a function of time of quotation. The spread
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Figure 3.10: Implied Volatility as a function of moneyness
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of implied volatilities in the dataset is explained by making the following observation

about the dataset: the data consists of prices of options with fixed maturity dates,

recorded over some time period. For instance, a similar data set may be constructed

by recording the prices, on a particular day, of options due to expire in 30 days, 60

days and 90 days, then on each consecutive day for 30 days, recording the prices of

these specific options. After this period of only 30 days the dataset will consist of

option prices with expiry dates ranging from 1 to 90 days. In summary, our dataset

which we use to calibrate our model, actually consist of different options whose prices

are recorded from 15th November 2002 to 23rd May 2003.

In an effort to understand the variation in implied volatilities for a given moneyness

and maturity we looked at option prices that were recorded from 15th November to

3rd December 2002. We can see from Figure 3.11, four bands of prices. We can see
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Figure 3.11: Implied Volatility as a function of maturity only. Note that the
banded structure is a result of the dataset being constructed from different (in
terms of calendar date of maturity) options. See Figure 3.13 to view this graph
after the correction for time dependence has been made.(Marked implied volatil-
ities recorded from 15th November to 3rd December 2002.)

that the dataset consists of 4 options recorded over this time period. The right of

each band consists of the oldest recorded prices, moving to newer prices to the left.

Within each band we can see that the range of implied volatilities for a given

maturity vary with the time/date of quotation. The variation due to time affects each
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band/option equally. We can make the obvious conclusion from this visual analysis

that the reason we are seeing non-unique implied volatilities in the market prices is

that the market implied volatilities are a function of time. This may be due to

changing market sentiment or some other external factor. We do not have a time

parameter in our volatility specification and this will surely damage the validity of the

calibration procedure.

Effectively, up until now, we have been trying to calibrate our model to a surface that

changes over time which will clearly impair our results. Unfortunately our model can’t

account for this as there is no explicit time dependence parameter. A better approach

is to somehow take account of this time dependence by adjusting our data before

calibration. Now when we use the model to determine option prices we will need to

readjust back using a ‘daily adjustment index’. A method is given in the next section.

3.7.3 Daily adjustment index

A simple approach to resolving the above issue is to ‘correct’ market prices, according

to some daily volatility index. This index should reflect overall shifts in market option

prices from one day to the next. We define this index to be the average market

implied volatility on a particular day, for each day in the data set. The adjusted

option price dataset is then used to calibrate the model. The model would then

produce option prices, which would then have to be converted back to the real world

prices, again by use of the volatility index.

In order to adjust the market data we have to determine for a given change in

volatility, the corresponding necessary change in option price i.e. ∂V
∂σ . To determine

the change in V for a given change in σ we expand the Black Scholes closed form

option price V (σ) using a Taylor series, holding all the other parameters constant. We
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have

V (σ + ∆σ) = V (σ) + V ′(σ)∆σ + 1
2!

V ′′(σ)(∆σ)2

+ 1
3!

V ′′′(σ)(∆σ)3 + O((∆σ)4) (3.16)

where

V ′(σ) = P

√
T − t

2π
e−

d2
1
2 ,

V ′′(σ) = P

√
T − t

2π
e−

d2
1
2

d1d2
σ

V ′′′(σ) = P

√
T − t

2π
e−

d2
1
2

1
σ2

[
(d1d2)2 − d2

1 − d2
2 − d1d2

]

(Here σ refers to the daily average implied volatility and ∆σ is the difference between

the average and the constant volatility as referred to above.)

The adjustment procedure is as follows:

• For each day, determine the Black-Scholes implied volatility for each quoted

option price.

• Determine the average implied volatility σi for each day i .

• Determine ∆σi such that the σi + ∆σi = const. (This constant is arbitrary and

we choose const. = 0.25 or 25% volatility).

• For each day i, adjust option prices using equation (3.16), substituting σi for σ.

– Now we have a dataset of option prices in which the implied volatility is

constant over time.

• Calibrate the model to the adjusted dataset determining the best fit

parameters, as described in Section 3.5. The resulting parameters are shown in

Tables 3.8 and 3.9.

If we wanted to price a particular option today using the above procedure we would

determine the average implied volatility in the market today, and the corresponding
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∆σi for the day i on which the option is quoted. Given the parameters for our model

(Pt, D
(1)
t , t) we refer to the option price surface as output by our model. This surface

corresponds to prices of adjusted data and so the price of our option according to this

surface is the adjusted price. To determine the real price we effectively invert

equation (3.16) to determine V (σ) using

V (σ − ∆σ) = V (σ) − V ′(σ)∆σ + 1
2!

V ′′(σ)(∆σ)2 − 1
3!

V ′′′(σ)(∆σ)3 + O((∆σ)3)

(Here σ refers to the adjusted volatility value and ∆σ refers to the difference between

the adjusted volatility value and today’s average.) We can see the results of adjusting

the volatility surface in two ways. Firstly we compare Figure 3.7.3 and Figure 3.7.3.

In each of these figures we have plotted a sample of daily volatility surfaces. It can be

seen in the original plot that different days produce very different volatility surfaces,

while after the correction this difference is greatly reduced. Secondly in comparing

Figure 3.16 and Figure 3.17 we see plots of the volatility smile as calculated using

subsets of the original data set corresponding to market data recorded over 10 day

intervals. These plots show how the smile changes with the calendar date. We see

again that the calendar time variation has been greatly reduced.

Note also that the residual error computed in calibrating the model to the adjusted

data can be equated to the residual error when calibrating with the real market data.

It can be seen from comparison of the ‘unadjusted’ results in Tables 3.3 and 3.4, with

‘adjusted’ results in Tables 3.10 and 3.11, that the residual errors computed using the

adjusted data are almost 50% smaller than those of the real data. The results will be

discussed in detail in the following section.
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Figure 3.12: Implied Volatility as a function of moneyness. Note that here we
use the adjusted prices. The band structure that can be seen in Figure 3.10 has
disappeared.
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Figure 3.13: This is the corrected data corresponding to Figure 3.11.

3.7.4 Results of calibration with time corrected data.

Tables 3.8 and 3.9 gives the results of the calibration procedure where we have used

the adjusted data. Here, the volatility specification will be appended by a superscript

‘A’. The results here may be compared with Tables 3.1 and 3.2. Firstly looking at the

residual errors associated with these results we see that the residual error for V ol0 is

significantly smaller than that for the non adjusted data, with a similar result for

V ol2. This is to be expected since, by the adjustment process, we have reduced the
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Figure 3.14: Market Implied Volatilities before correction for time dependence.

Figure 3.15: Market Implied Volatilities after correction for time dependence:
Here we see market implied volatility surfaces. We graph the market implied
volatility every 10 trading days from 15th November 2002 to 23rd May 2003.
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Figure 3.16: We see here the original dataset of market implied volatilities as a
function of moneyness (left) and maturity (right). Each colour corresponds to a
different day. We see that the average implied volatility does depend on the day
the data is taken. For example we can see that the lower band in Figure 3.10
corresponds to the indigo colour in the above graph. The band corresponds to
data taken from the month preceding 23rd May i.e. the most recently recorded
data only.

Figure 3.17: Marked implied volatility data before and after daily time depen-
dence ‘correction’. Here we see the corrected data. The average market implied
volatility is now 0.25. The band structure from Figure 3.16 has disappeared.
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spread of implied volatilities for a given moneyness. The adjustment process allows a

better calibration to take place. In terms of λ, we are seeing similar values to the

previous calibration in the case of V ol0, and in the case of V ol2, a slightly higher

value of λ. A higher value of λ puts greater weight on more recent market data in

calculating the value of the offset. The parameters in the case of V ol0 are similar for

the adjusted and non-adjusted data set. We see much larger difference in the case of

V ol2. The new α1 parameter is close to zero, and we see α2 become very dominant.

We also see a much larger term in the denominator. If we were to rescale V ol2 such

that the denominator had a value ≃ 1 we would find that the α2 parameter then is of

the same order of magnitude to the case where we calibrated to the non-adjusted

data. This suggests that the results are in line with the previous calibration. Of

course in this case the α1 parameter disappears completely.

Figure 3.18: Distribution of differences between market implied volatility and
model implied volatility in the case of V ol2, with a fitted normal density function.
Here we used the adjusted data set. See Table 3.13 for the mean and standard
deviation of this fit.

Table 3.8: Best fit parameters for the V ol
(A)
0 volatility specification for each of

the error specifications.
V ol

(A)
0 RMSEoriginal RMSRE(%) RMSE MAE MRAE

λ 4 1 4 4 1
α1 0.04 ± 4.1E − 07 0.03 ± 9.6E − 07 0.04 ± 4.7E − 07 0.04 ± 2.5E − 07 0.04 ± 3.0E − 08
α2 3.69 ± 7.4E − 05 1.26 ± 1.1E − 04 3.36 ± 7.6E − 05 3.38 ± 2.9E − 05 1.78 ± 4.9E − 07
α3 0.09 ± 9.3E − 04 0.18 ± 2.5E − 03 0.1 ± 1.0E − 03 0.1 ± 6.8E − 04 0.15 ± 1.3E − 04
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Table 3.9: Best fit parameters for the V ol
(A)
2 volatility specification for each of

the error specifications.
V ol

(A)
2 RMSEoriginal RMSRE(%) RMSE MAE MRAE

λ 5 2 5 5 3
α1 0.03 ± 6.6E03 0. ± 4.2E06 0. ± 8.0E04 0.01 ± 5.3E03 0. ± 1.3E05
α2 61.88 ± 7.0E02 80.95 ± 1.7E05 92.17 ± 5.4E03 141.6 ± 1.2E01 159.24 ± 1.3E00
α3 0.72 ± 7.1E − 01 0.8 ± 1.2E − 01 0.69 ± 7.0E − 01 0.63 ± 2.0E − 01 0.67 ± 7.7E − 02
α4 2261.37 ± 2.2E04 2248.34 ± 4.6E06 3005.62 ± 1.5E05 3464.69 ± 3.1E01 3584.02 ± 2.9E00
α5 −0.43 ± 2.9E − 02 −0.55 ± 1.1E − 01 −0.43 ± 4.4E − 02 −0.46 ± 9.4E − 03 −0.51 ± 5.7E − 03

Table 3.10: Residual error values for each of the error metrics. The volatility
specification here is V olA

0 .

V ol
(A)
0 RMSEoriginal RMSRE(%) RMSE MAE MRAE

RMSEoriginal 0.0022 0.0029 0.0022 0.0022 0.0023
RMSRE(%) 5.64% 5.38% 5.55% 5.62% 5.37%

RMSE 3.28 4.97 3.27 3.29 3.55
MAE $1.37 $1.8 $1.37 $1.36 $1.46

MRAE .0313 .0325 .0309 .0311 .0303

Table 3.11: Residual error values for each of the error metrics. The volatility
specification here is V olA

2 .

V ol
(A)
2 RMSEoriginal RMSRE(%) RMSE MAE MRAE

RMSEoriginal 0.0021 0.0025 0.0021 0.0021 0.0022
RMSRE(%) 5.45% 5.31% 5.4% 5.49% 5.24%

RMSE 2.97 3.95 2.97 2.98 3.13
MAE $1.29 $1.55 $1.29 $1.29 $1.33

MRAE .0299 .0312 .0298 .03 .0295

Table 3.12: Parameters for normal distribution fitted to a distribution of errors
between market and model implied volatilities in the case of V ol0 using the ad-
justed data set.

V ol0 Parameter Estimate Std. Error
µ 0.21% 0.04%
σ 2.5% 0.028%

We can make a similar analysis to that done above with respect to the errors between

model and market prices. Once again we see that the model on average overestimates

the implied volatility. In the case of V ol0 we only see a slight improvement with the

adjusted data set, but in the case of V ol2 we see a reduction in the mean error by a

factor of 0.5. Naturally, both standard deviation values are much smaller, as we’re

removed the ‘calendar’ spread as described above. Visually, we see from Figure 3.18

the model and market prices are matching consistently across all ranges of offset

values and the spread between the two is also similar which was the desired effect

A study of the Hobson and Rogers volatility
model

116 Gearóid Ryan



3. Calibration of the Hobson and
Rogers model 3.7 Calibration Results

Table 3.13: Parameters for normal distribution fitted to a distribution of errors
between market and model implied volatilities in the case of V ol2 using the ad-
justed data set.

V ol2 Parameter Estimate Std. Error
µ 0.16% 0.03%
σ 1.9% 0.022%
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Figure 3.19: Here we plot the market and model implied volatilities for a number
of ranges of offset values. This figure may be compared with Figure 3.5. We see
better agreement between both datasets across all values of Dt.

from adjusting due to the calendar effect. We can refer back to Figure 3.6 to see the

explicit dependence of the RMSE on time to maturity, moneyness and offset. Once

again we see that V ol2 out performs V ol0 for larger values of moneyness, but in

general, the RMSE is consistent across the full range of each of the above parameters

which is a welcome result. In terms of maturity, V ol2 gives significantly better results

as was the case for the non-adjusted data. Errors reduce here as maturity increases.

We also notice that a smile is still evident in the model implied volatilities.
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Figure 3.20: Here we make a color map of the differences between market and
model implied volatilities where we have calibrated using adjusted data. The
scale is in percentage implied volatility.

3.8 Out of sample testing

As a further test, we calibrated our market data sets in the case of V ol0 andV ol2 with

the optimal λ parameters found in the previous calibration, using only market

quotations up to 15th November 2002 to 14th February 2003. Using the calibration

results we then measured the error when using the calibrated parameters on a

different data set, namely data quoted between 15th February 2003 and 23rd May

2003. Table 3.14 gives the results of the initial calibrations, while Figure 3.22 shows

the RMSE as a function of moneyness and time to maturity, when the out of sample

dataset is used.

We consider first the non adjusted data. Overall we see that the errors have increased

as expected. The specific residual data can be found in Table 3.15. In terms of

moneyness and maturity we see a similar pattern of error magnitude to that of the

calibration to the full market data set, though V ol
(A)
0 suffers more than the other

volatility specifications. The parameters used to generate this data can be found in

Table 3.14.

A study of the Hobson and Rogers volatility
model

118 Gearóid Ryan



3. Calibration of the Hobson and
Rogers model 3.9 Discussion

−0.4 −0.2 0 0.2 0.4
0

0.2
0.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

MoneynessTime To Maturity

Im
pl

ie
dV

ol
at

ili
ty

−0.4 −0.2 0 0.2 0.4
0

0.2
0.4
0.2

0.3

0.4

0.5

0.6

Figure 3.21: Here again we make the visual comparison between the market smile
(top) and the model smile (bottom), where we have used the adjusted dataset to
calibrate the model. Again we can see that the model reproduces the smile seen
in the market data.

3.9 Discussion

In this chapter we have revisited the work of Foschi and Pascucci and implemented a

calibration routine using MATLAB code provided by Paolo Foschi. We have made

some minor changes to the code as follows: In the implementation we have changed

the way in which the value of the offset is computed. We have also changed the

method by which the non linear routine finds the optimal fitting parameters.

We examine a number of volatility specifications in addition to the ones suggested in

[1] and [22]. We have found that the best choice of volatility functions should be of

the form

σ2 = α1 + α2(Dt − α3)2

α4 + α5(Dt − α6)2 ,
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Table 3.14: Table of calibrated parameters for a subset of original market data
set. Data corresponds to 15th November 2002 to 14th February 2003. These
parameters are then used in the out-of-sample testing.

V ol0 V ol2 V ol
(A)
0 V ol

(A)
2

λ 1 1 1 1
α1 0.04 250 0.037 15.69
α2 2.1 6216.1 1.68 11.64
α3 0.1326 0.132 0.145 0.33
α4 5632.82 1590.6
α5 -0.920 -0.3861

Table 3.15: Results from out of sample testing. In these tests the error metric
used was RMSRE. This table presents the results from each of the volatility
specifications.

V ol0 V ol2 V ol
(A)
0 V ol

(A)
2

MAE $3.88 $4.09 $1.804 $1.74
RMSEoriginal 0.00595 0.00631 0.00281 0.00286
RMSRE(%) 19.23% 18.99% 8.22% 7.30%

RMSE 27.07 29.45 5.41 5.34
MRAE 0.104 0.105 0.0433 0.0408

a form which was suggested first in [25].

For the first time we examine the dependence of the model on λ and conclude that

the optimal choice of λ depends on the volatility specification being used.

We calibrate using the dataset used in [22] but note the calendar time dependence of

the volatility smile, independent of other underlying variables. We make adjustments

to the dataset in order to minimise this effect and implement the calibration routine,

again testing all volatility specifications on this new dataset. The model fit is much

better on this adjusted dataset and this improvement can be translated back into the

calibration of real market data.

In the non adjusted dataset we find the RMSE of implied volatility for V ol0 and V ol2

to be ≃ 12.6% while in the adjusted data set we find an error of ≃ 5.6% for V ol0 and

≃ 5.4% for V ol2. The results suggest that significant improvements can still be made

to the model. These improvements will be described in the next chapter. Firstly we

will look at using the second offset function D
(2)
t and consider our option and
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Figure 3.22: Plots of RMSE as a function of time to maturity, moneyness and
offset values, for the out-of-sample market data set. Here we compare errors for
V ol0 and V ol2 using adjusted and non adjusted market data sets. All market date
used here dates from 15th February 2003 to 23 March 2003. The model data here
is generated using parameters calibrated to data quoted between November 2002
and 15th February 2003.

volatility to be a function of both D
(1)
t and D

(2)
t . The second offset function has the

advantage that it doesn’t allow for cancellation. (due to the squared term). In

considering D
(2)
t we have to determine a new partial differential equation and

implement a new higher order numerical procedure. Secondly we will investigate more

closely the role of λ and consider a variable λ and a generalised offset function.
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Chapter 4

Calibration of a more general

model

4.1 Introduction

In this chapter we aim to extend the Hobson and Rogers model to include dependence

on both first and second order offset functions. It has been shown in Chapter 3 and

noted in other articles [24] that the smiles produced by the Hobson Rogers model are

‘too shallow’. We also note from empirical tests carried out by us that a quadratic

dependence of the volatility on the first offset function alone may not be suitable.

Finally, we justify the introduction of the second order offset function into our model

by noting that the first order offset function loses price information in the summation

due to cancellation. This is overcome with using m = 2. Here we derive a partial

differential equation which describes the price of a European Call option under the

new assumption. We then describe how to extend the numerical scheme as described

in Chapter 3 to numerically solve this equation.
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4.2 Derivation of the p.d.e.

Proposition 20. Under the Hobson and Rogers model, the price of a European call

option with strike price K, maturity T , underlying risk free rate r, and dependence on

the first and second order offest functions, namely D
(1)
t and D

(2)
t , obeys the following

partial differential equation

rPfP − λD
(1)
t fD(1) − λD

(2)
t fD(2) − ft

+σ2
(

− (D(1)
t − 1)fD(2) + PfP D(1) − 1

2

(
fD(1) + PfP P + fD(1)D(1)

)

+2
(
(D(1)

t )2fD(2)D(2) + PfP D(2) + D
(1)
t fD(1)D(2)

))
= 0 (4.1)

with boundary conditions

f(PT , D
(1)
T , D

(2)
T , 0) = max (PT − K, 0).

Proof. We use the result in [1] to write down a stochastic differential equation for

D
(m)
t , namely

dD
(m)
t = mD

(m−1)
t dW P

t + m(m − 1)
2

D
(m−2)
t ⟨dZt⟩2 − λD

(m)
t dt,

where W P
t is some P-Wiener process. Now for m = 2 we have

dD
(2)
t = 2D

(1)
t dZt + (σ2 − λD

(2)
t )dt

= 2D
(1)
t

(
µ(D(1)

t , D
(2)
t )dt + σ(D(1)

t , D
(2)
t )dW P

t

)
+ (σ2 − λD

(2)
t )dt

=
(
2µD

(1)
t + σ2 − λD

(2)
t

)
dt + 2σD

(1)
t dW P

t . (4.2)

We wish to write this expression using the risk neutral measure Q as derived in the

previous chapter, namely

dW P
t = φtdt + dWQ

t ,
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where

φ(t) = −1
2

σ(D(1)
t , D

(2)
t ) − µ(D(1)

t , D
(2)
t )/σ(D(1)

t , D
(2)
t ).

Using this measure we rewrite equation (4.2) as

dD
(2)
t =

(
2µD

(1)
t + σ2 − λD

(2)
t

)
dt + 2σD

(1)
t dW P

t

=
(
2µD

(1)
t + σ2 − λD

(2)
t

)
dt + 2σD

(1)
t

(
φtdt + dWQ

t

)
=

(
2µD

(1)
t + σ2 − λD

(2)
t

)
dt + 2σD

(1)
t

((
− 1

2
σ − µ

σ

)
dt + dWQ

t

)

=
(
2µD

(1)
t + σ2 − λD

(2)
t − σ2D

(1)
t − 2D

(1)
t µ

)
dt + 2σD

(1)
t dWQ

t

= −
(
λD

(2)
t + σ2D

(1)
t − σ2

)
dt + 2σD

(1)
t dWQ

t .

To remind the reader, we write expression for dP and dD
(1)
t under the risk neutral

measure as follows:

dPt = rPtdt + σPtdWQ,

dD
(1)
t = −

(1
2

σ2 + λD
(1)
t

)
dt + σdWQ.

We now use the above results and the Feynman-Kac formula to write a p.d.e. that

describes the option price f(Pt, D
(1)
t , D

(2)
t , T − t). We have

∂f

∂t
+ Af = 0, (4.3)

where

Af(t, x) =
4∑

i=1
µi

∂f

∂xi
(x) + 1

2

4∑
i,j=1

Ci,j(t, x) ∂2f

∂xi∂xj
(x),

where

Ci,j(t, x) = σiσj .

We let the indices i = 1, 2, 3 correspond to (Pt, D
(1)
t , D

(2)
t ) respectively. Equation (4.3)
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written out term by term becomes,

rP
∂f

∂P
−
(1

2
σ2 + λD

(1)
t

)
∂f

∂D(1) −
(
λD

(2)
t + σ2D

(1)
t − σ2

) ∂f

∂D(2)

+1
2

σ2P 2 ∂2f

∂P 2 + 1
2

σ2P
∂2f

∂P∂D(1) + 1
2

2σ2PD
(1)
t

∂2f

∂P∂D(2)

+1
2

σ2P
∂2f

∂D(1)∂P
+ 1

2
σ2 ∂2f

∂(D(1))2 + 1
2

2σ2D
(1)
t

∂2f

∂D(1)∂D(2)

+1
2

2σ2PD
(1)
t

∂2f

∂D(2)∂P
+ 1

2
2σ2D

(1)
t

∂2f

∂D(2)∂D(1) + 1
2

(2σD
(1)
t )2 ∂2f

∂(D(2))2 − ∂f

∂t
= 0.

Upon factorising and simplifying the notation we have

rPfP − λD
(1)
t fD(1) − λD

(2)
t fD(2) − ft

+σ2
(

− 1
2

(
fD(1) + PfP P + fD(1)D(1)

)
−(D(1)

t − 1)fD(2) + PfP D(1)

+2
(
(D(1)

t )2fD(2)D(2) + PfP D(2) + D
(1)
t fD(1)D(2)

))
= 0. (4.4)

The boundary condition comes from the definition of the European Call option and is

given by f(PT , D
(1)
T , D

(2)
T , 0) = max (PT − K, 0).

To implement a numerical scheme for the above equation would seem difficult so, as

done in the paper by Foschi and Pascucci [22], we try to find a transformation of the

variables (f, P, D
(1)
t , D

(2)
t , t) to reduce the above p.d.e. to a simpler form.

Proposition 21. By use of the transformation

f(P, D
(1)
t , D

(2)
t , T − t) → Ker(T −t)V (x, y, z, τ) ,

x = log(Pt

K
) − r(T − t),

y = log(Pt

K
) − r(T − t) − D

(1)
t ,

z = (D(1)
t )2 − D

(2)
t

2
and

τ = −λ(T − t),

the partial differential equation describing the price of a European call option as given
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in equation (4.1) may be written as

σ2

2λ
(Vxx − Vx − Vz) + (x − y)Vy − zVz − Vt = 0. (4.5)

with boundary condition

V (xT , yT , zT , 0) = (exT − 1)+.

Proof. Using the above transformation of variables we have

fP = er(T −t)K

(
Vx

P
+ Vy

P

)
,

fP P = er(T −t)K

( 1
P 2 (Vxx + Vxy − Vx) + 1

P 2 (Vyy + Vyx − Vy)
)

,

fD(1)P = er(T −t)K

(
− 1

P
Vxy − 1

P
Vyy + 1

P
(Vyz + Vxz)

)
,

fD(1) = −er(T −t)K(Vy − yVz),

fD(1)D(1) = er(T −t)K(Vyy − 2yVyz + y2Vyy),

fD(2) = −1
2

er(T −t)KVz,

fD(2)D(2) = 1
4

er(T −t)KVzz,

fP D(2) = − 1
2P

er(T −t)K(Vyz + Vxz) and

ft = er(T −t)K (−rV + rVx + rVy + λVt) ,

which, when substituted into equation (4.4) gives

σ2

2λ
(Vxx − Vx − Vz) + (x − y)Vy − zVz − Vt = 0. (4.6)

As usual, the boundary condition f(PT , D
(1)
T , D

(2)
T , 0) = max (PT − K, 0)+ may be

written under the above transformation as

V (xT , yT , zT , 0) = (exT − 1)+

Note here that the functional form of σ = σ(D(1)
t , D

(2)
t ) has not been specified. We
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also note that the form of this equation is very similar to the previous case where we

only consider dependence on D
(1)
t ,i.e.

σ(Dt)2

2λ
(Vxx − Vx) + (x − y)Vy − Vt = 0.

As a result, the implementation of the numerical scheme for solving this new p.d.e. is

similar to that of the previous one.

4.3 Numerical Scheme

The numerical scheme is broadly similar to the one described in Chapter 3, except

now that we have an extra dimension. The parts σ2(Dt)
2λ (Vxx − Vx − Vz) − zVz of and

Y (V ) := (x − y)Vy − Vt of (4.5) are treated separately. We consider the uniform grid

G =
{

(i∆x, j∆y, k∆z, n∆t) | i, j, k, n ∈ Z, n ≥ 0
}

.

To remind the reader we again define the operators. We use the following central

difference approximation for ∂x

∂xV (x, y, z, t) ∼= D∆xV (x, y, z, t) = V (x + ∆x, y, z, t) − V (x − ∆x, y, z, t)
2∆x

, (4.7)

and three-point scheme for ∂xx

∂xxV (x, y, z, t) ∼= D2
∆x

V (x, y, z, t)

= V (x + ∆x, y, z, t) − 2V (x, y, z, t) + V (x − ∆x, y, z, t)
∆2

x

. (4.8)

We combined the Vy and Vt operators as in Chapter 3 so that
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(x − y)Vy − Vt
∼= Y −

u⃗ V (x, y, z, t) (4.9)

= lim
∆t→0

Ṽ
(
(x, y + ∆t(x − y), z, t − ∆t

)
− V (x, y, z, t)√

1 + (x − y)2∆t
, (4.10)

In the above approximations

Ṽ (x, y, z, t) = (1 − γ)V (x, ỹ, z, t) + γV (x, ỹ + ∆y, z, t),

i.e. we linearly interpolate the values V (x, y, z, t) that are not on the grid. We have

ỹ = ⌊y/∆y⌋ ∆y, with ⌊·⌋ denoting the integer part, and γ = (y − ỹ)/∆y. We also have

the new operator

∂zV (x, y, z, t) ∼= D∆z V (x, y, z, t) = V (x, y, z + ∆z, t) − V (x, y, z − ∆z, t)
2∆z

. (4.11)

Moving to more compact notation now, we denote as before

V n
i,j,k = V (i∆x, j∆y, k∆z, n∆t), i, j, k ∈ Z, |i| ≤ I, |j| ≤ J, k ≤ K, n ≤ N.

Here I, J, K, N specify the grid size for a given grid spacing. Numerically, we chose

I, J, K, N and calculated the corresponding ∆x, ∆y, ∆z, ∆t. The boundaries of the

grid correspond to ±I∆x, ±J∆y, [0, K∆z], [0, N∆t]. (In the numerical scheme, t = 0

corresponds to expiry.). Applying the above notation to the operator D2
∆x

− D∆x for

|i| ≤ (I − 1) gives

D∆2
x
V n

i,j,k − D∆xV n
i,j,k = (d1V n

i−1,j,k + d2V n
i,j,k + d3V n

i+1,j,k),
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where as before, d1 = 1/∆2
x − 1/(2∆x), d2 = −2/∆2

x and d3 = 1/∆2
x + 1/(2∆x).

Similarly, we apply the notation to the operator in (4.9), to obtain

Ṽ
(
(x, y + ∆t(x − y), z, t − ∆t

)
− V

(
x, y, z, t

)
√

1 + (x − y)2∆t
= d4

{
(1 − γ)V

(
x, y + s∆y, z, t − ∆t

)

+ γV
(
x, y + (s + 1)∆y, z, t − ∆t

)
− V

(
x, y, z, t

)}

= d4

{
(1 − γ)V n−1

i,j+s,k + γV n−1
i,j+s+1,k − V n

i,j,k

}

where d4 =
(
1 + (x − y)2∆t

)− 1
2 and

s =
⌊

(x − y)∆t

∆y

⌋
=
⌊(

i
∆x

∆y
− j

)
∆t

⌋
and γ = (x − y)∆t

∆y
− s.

Note that we choose J such that J ≤ max(j + s + 1). We return to this in Section 4.4.

Finally, for |k| ≤ (K − 1) we have

D∆z V (x, y, z, t) = d5
(
V n

i,j,k+1 − V n
i,j,k−1

)
,

where d5 = 1/(2∆z). Before we explicitly state the mechanics of the numerical scheme

we first provide a rough outline how the scheme will work. We firstly write equation

(4.5) in matrix form. We will specify later how to construct the matrices. Let A be

the matrix that applies σ2/2λ to the relevant terms in our matrix equation. We have

A.
(
D2

∆x
− D∆x − D∆z

)
.V + Y −

∆t
.V n − z.D∆z .V n = 0

⇒ A.
(
D2

∆x
− D∆x − D∆z

)
.V n − z.D∆z .V n = − Y −

∆t
.V n

= −d4.M.V n−1 + d4V n

⇒
( 1

d4

)
.A.
(
D2

∆x
− D∆x − D∆z

)
.V n −

( 1
d4

)
z.D∆z .V n − I.V n = −M.V n−1

⇒
{

I −
( 1

d4

)
.A.
(
D2

∆x
− D∆x − D∆z

)
+
( 1

d4

)
z.D∆z

}
.V n = M.V n−1

⇒
{

I −
( 1

d4

)
.A.
(
D2

∆x
− D∆x − D∆z

)
+
( 1

d4

)
z.D∆z

}
.V n = M.V n−1
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⇒ V n =
{

I −
( 1

d4

)
.A.
(
D2

∆x
− D∆x − D∆z

)
+
( 1

d4

)
z.D∆z

}−1
.M.V n−1

where M is a matrix constructed such that M.V n−1
i,j,k = (1 − γ)V n−1

i,j+s,k + γV n−1
i,j+s+1,k .

In the above we also have the term
(

1
d4

)
which is a value calculated at every point in

the grid, converted into a matrix form and then applied to the above expressions. I is

the IJ × IJ identity matrix.

We that the calculation of V n only requires calculation of a matrix inverse and two

matrix multiplications. The difficulty arises in the construction of the above matrices.

In the case of the M.V n−1 calculation, we have no dependence on the z grid point.

For each ‘layer’ in our three dimensional grid (corresponding to a fixed k∗∆z), we

store the values of V n−1
i,j,k∗ in lexicographic form in a column matrix of dimension I × J

by 1, i.e.

V n−1 = (V n−1
1,1,k∗ , V n−1

2,1,k∗ , V n−1
3,1,k∗ , . . . , V n−1

I−1,J,k∗ , V n−1
I,J,k∗)T .

We then construct M , which doesn’t depend on k, such that when we apply M.V n−1

(dot product) we get a column matrix of dimension I × J by 1 whose i + j(I − 1)th

component has value (1 − γ)V n−1
i,j+s,k + γV n−1

i,j+s+1,k. In the construction of M we must

calculate the value s for each i, j. Where the index i, j + k + 1 refers to a point

outside the grid we simply set j + k + 1 = J . This setting does not affect our

calculations if we choose a large enough grid size.

For example, let us say we choose a grid size equal to J , and spacing ∆y such that our

grid points range from −j0∆y to +j0∆y. This notation is convenient for the following

explanation but as mentioned in Chapter 3, the notation used in the MATLAB script

is slightly different due to easier usage. Going back to the current example, we firstly

choose a j0 (= (J − 1)/2). Then, based on the range of D(1) values which we would

like our grid to cover, we calculate the appropriate ∆y. Now, as mentioned in Chapter

3, the index in the y−direction will vary between min(j, j + k) and j + k + 1. On the

+j0 edge of our grid the maximum value of k is −0.11. As a result, points on the +j0

boundary will at most depend on the Vj0+1 values at the previous time step, and so a

dependence on values outside the grid. We will discuss how we deal with this below.
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We do not encounter a problem on the −j0 edge as the minimum value of k is +0.11

and so only depends on interior grid points. As we move from −j0 to +j0 the

contribution from k does not decrease quickly enough to cause a boundary problem

and so the numerical scheme does not depend on points outside the grid. As a result,

as in Chapter 3, we do not need to impose boundary conditions at the −j0 edge.

On the +j0 edge we will at most have a dependency on points at the index point

j0 + N , where N is the number of time steps. Or, after implementing the numerical

scheme, we only use grid values in the range (−j0, j0 − N) then effectively we are

eliminating all grid values that have at some level depended on values of V outside

the original grid. If we do this we do not need to impose boundary conditions on the

+j0 edge.

Now considering the construction of I −
(

1
d4

)
.A.
(
D2

∆x
− D∆x − D∆z

)
+
(

1
d4

)
z.D∆z ,

we note that we have no dependence the y grid point. For each ‘layer’ in our three

dimensional grid (corresponding to a fixed j∗∆y), we store the values of M.V n−1
i,j∗,k in

lexicographic form in a column matrix of dimension I × K by 1, i.e.

V n−1 = (V n−1
1,j∗,1, V n−1

2,j∗,1, V n−1
3,j∗,1, . . . , V n−1

I−1,j∗,K , V n−1
I,j∗,K)T .

We then construct I −
(

1
d4

)
.A.
(
D2

∆x
− D∆x − D∆z

)
+
(

1
d4

)
z.D∆z , which doesn’t

depend on j, such that when we apply

{
I −

( 1
d4

)
.A.
(
D2

∆x
− D∆x − D∆z

)
+
( 1

d4

)
z.D∆z

}
.
(
M.V n−1

i,j∗,k

)

(dot product) we get a column matrix of dimension I × K by 1 whose i + k(I − 1)th

component has value

1 − ai,j∗,k√
1 +

(
i∆x − j∆y

)2

[
d1V̂ n−1

i−1,j∗,k + d2V̂ n−1
i,j∗,k + d3V̂ n−1

i+1,j∗,k − d5
(
V̂ n−1

i,j∗,k+1 − V̂ n−1
i,j∗,k−1

)]

+ 1√
1 +

(
i∆x − j∆y

)2
k∆zd5

(
V̂ n−1

i,j∗,k+1 − V̂ n−1
i,j∗,k−1

)
,
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where V̂ n = M.V n, and ai,j,k is the value of σ(x, y, z)2/2λ at the grid point, i.e. the

components of the matrix A above. To create

I −
(

1
d4

)
.A.
(
D2

∆x
− D∆x − D∆z

)
+
(

1
d4

)
z.D∆z we use the following matrices, all of

dimension IK × IK:

A =



a1,j∗,1 0 0 0 0

0 a2,j∗,1 0 0 0

0 0 a3,j∗,1 0 0

0 0 0 . . . 0

0 0 0 0 aI,j∗,K



where the entries are stored in a diagonal lexicographic form. The matrix (1/d4)

consists of
1√

1 +
(
1∆x − j∗∆y

)2

on the diagonal, and zeros elsewhere. Each sub matrix in the above pattern is of

dimension I2 and there are K of these. The matrix D2
∆x

− D∆x − D∆z is of form



. . . . . . . . . 0 0 . . . . . . . . . 0 0 . . . . . . . . . 0 0 0 . . .

. . . 0 d5 0 0 0 d1 d2 d3 0 0 0 d5 0 0 0 . . .

. . . 0 0 d5 0 0 0 d1 d2 d3 0 0 0 d5 0 0 . . .

. . . 0 0 0 d5 0 0 0 d1 d2 d3 0 0 0 d5 0 . . .

. . . 0 0 0 . . . . . . . . . 0 0 . . . . . . . . . 0 0 . . . . . . . . .


.
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The spacings in D2
∆x

− D∆x − D∆z are calculated using the value of I.

z =



1∆z 0 0 . . . 0

0 . . . 0 . . .

0 0 1∆z
. . .

... . . . . . . 2∆z

. . .

2∆z

3∆z

. . .

(K − 1)∆z
. . . . . . ...

. . . K∆z 0 0

. . . 0 . . . 0

0 . . . 0 0 K∆z


Each sub matrix in the above pattern is also of dimension I2 and there are K of

these. The matrix corresponding to Dz is easily obtained from the D2
∆x

− D∆x − D∆z

matrix. Once the above matrices have been created and combined as described above,

we calculate the inverse of I −
(

1
d4

)
.A.
(
D2

∆x
− D∆x − D∆z

)
+
(

1
d4

)
z.D∆z and apply it

to M.V n−1 to determine V n for each j. We finally convert the resulting j, IK × 1

matrices back into a three dimensional grid for later analysis.

4.4 Boundary Conditions

As in Chapter 3, we set the x boundary condition to D2
∆x

− D∆x = 0. To implement

this we modify the matrix D2
∆x

− D∆x − D∆z such that rows

{1, I + 1, 2I + 1, . . . , K(I − 1) + 1} and rows {I, 2I, . . . , KI} are set equal to zero. We

saw in the discussion in the previous section that we do not need to impose boundary

conditions on the y boundary if we remember to discard surface values that depend

on points external to the grid. In the case of the z boundary, we set D∆z = 0. When
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looking at the dependence of option prices on D
(2)
t , our market data doesn’t suggest

any particular boundary condition. This may be due to lack of market for extreme

values of moneyness. Certainly, for options close to being at-the-money, an

assumption that D
(2)
t is a constant function of moneyness seems to be a fair choice

and also the easiest to implement. Also note that this choice recovers the

Black-Scholes p.d.e. when we convert back to the standard units of price and time.

This boundary condition is implemented by removing the d5 term from rows 1 to I

and rows (I − 1)K + 1 to IK.

4.5 Calibration

We calibrate using a series of volatility specifications using the daily adjusted data.

The optimal value of λ is again found by a manual search. We use the following

volatility specifications:

V ol1 := α1 + α2(D(1)
t − α3)2 + α4D

(2)
t

V ol2 := α1 + α2D
(2)
t

V ol3 := α1 + α2(D(1)
t − α3)2 + α4D

(2)
t

1 + α5(D(1)
t − α6)2 + α7D

(2)
t

V ol4 := α1 + α2(D(2)
t − α3)2

V ol5 := α1 + α2D
(2)
t

1 + α3D
(2)
t

As is done in Chapter 3, we determine the optimal parameter sets α, and optimal λ,

that minimises each of the error metrics, RMSE, RMSRE, MRAE, MAE and

RMSEoriginal. We use a grid size of 101 × 81 × 21 with N = 15.
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4.6 Results

The results obtained are presented in the following tables. We found the residual

errors generated by the use of V ol1 and V ol3 to be significantly better than that of

the other volatility specifications. The errors of these other specifications was of the

order of 5 times greater than that of V ol1 and V ol3. Focusing then on these volatility

specifications, we determined the optimal range of λ to be 3 < λ < 5. Note that both

of these volatility specifications are generalisations of V ol0 and V ol2 from the

previous Chapter. Tables 4.1 and 4.2 below gives the calibrated parameters while

Tables 4.3 and 4.4 give the residual errors for each error metric.

In comparison to the residual errors of our models in Chapter 3, we see an

improvement. Where in Chapter 3 the minimum RMSRE was 5.31% (V ol
(A)
2 ), here

we find an error of 3.57% when using V ol3. Note that while are using the adjusted

data set in our calibration, we used untransformed option values when calculating

these errors. While in Chapter 3, each of the volatility specifications resulted in an

over estimation of implied volatility, typically by ≃ 0.2%, this is not the case here. We

see from Tables 4.5 and 4.6 that the errors are centered around zero with the average

error for V ol1 being −0.019% and that of V ol3 0.025%. While this is an order of

magnitude reduction, a better measure of model validity is the standard deviation of

the errors. We see here that the standard deviation is 2.2% and 1.9% for V ol1 and

V ol3 respectively. This compares with 2.5% and 1.9% for the corresponding volatility

specifications in Chapter 3. Analysing the RMSE of implied volatility as a function of

moneyness and time to maturity, we see from Figure 4.1 that V ol3 performs no better

than V ol1 in terms of moneyness, but offers better performance consistently when we

compare options of equal time to expiry.

It is notable that the calibrated parameters of V ol1 and V ol3 are of different orders of

magnitude. One explanation of this may be that since D
(2)
t is of a higher order than

D
(1)
t , due to the squared term, larger parameters values are required in order to

compensate, such that the units of each of these terms match. It would be interesting
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to investigate volatility specificaitons in which a
√

D
(2)
t term was used.

We also note that the confidence intervals are quite large. These 95% confidence

intervals are calculated using MATLAB’s nlparci() function which takes the residuals

from the calibration routine as an input. In practice we have found that the model is

much more sensitive its parameters than these confidence intervals would suggest. We

note that in all calibrations the α7 parameter converges to zero. This is the parameter

that scales the D
(2)
t term in the denominator of the volatility specificaiton, which

suggests this term is unnecessary in our model. This term may contribute to the large

confidence intervals that we see. On the other hand we typically see a large coefficient

for the corresponding term in the numerator which confirms that the inclusion of the

D2
t helps to fit the model to the market data.

Table 4.1: Calibrated parameters for V ol1.
V ol1 RMSEoriginal RMSRE(%) RMSE MAE MRAE

λ 3 3 3 4 3
α1 0.04 ± 6.6E − 07 0.02 ± 3.2E − 06 0.04 ± 5.8E − 07 0.04 ± 8.6E − 08 0.03 ± 4.1E − 07
α2 3.14 ± 5.3E − 05 2.03 ± 1.1E − 04 3.02 ± 4.8E − 05 3.63 ± 7.3E − 06 2.46 ± 1.9E − 05
α3 0.11 ± 9.7E − 04 0.17 ± 2.1E − 03 0.12 ± 9.4E − 04 0.1 ± 3.3E − 04 0.14 ± 7.4E − 04
α4 0.27 ± 3.5E − 04 0.15 ± 4.0E − 04 0.19 ± 4.0E − 04 0.08 ± 2.2E − 04 0.09 ± 2.0E − 04

Table 4.2: Calibrated parameters for V ol3.
V ol3 RMSEoriginal RMSE(%) RMSE MAE MRAE

λ 4 3 4 4 4
α1 0.01 ± 2.37E02 0.01 ± 4.47E02 0. ± 2.59E03 8.56 ± 3.08E02 0. ± 1.39E05
α2 52 ± 7.87E02 125 ± 2.58E05 64 ± 8.51E02 9779 ± 5.03E01 16496 ± 6.99
α3 0.42 ± 1.32E − 01 0.36 ± 1.35E − 01 0.43 ± 1.83E − 01 0.46 ± 2.62E − 02 0.39 ± 6.76E − 03
α4 22.4 ± 3.21E02 50.36 ± 1.03E05 9.45 ± 2.46E01 952.9 ± 1.76E01 789.97 ± 3.40E01
α5 285 ± 3.80E03 186 ± 3.70E05 393 ± 5.07E03 71293 ± 8.33E01 65950 ± 7.38
α6 −0.57 ± 0.009 −0.82 ± .08 −0.56 ± .102 −0.54 ± 0.0047 −0.63 ± 0.0069
α7 0. ± 1.88E05 0. ± 2.15E06 0. ± 4.01E05 0.33 ± 5.68E04 0.14 ± 4.50E05
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Table 4.3: Residual errors for V ol1. Each column provides the results per error
metric used in the optimization algorithm, while each row give the value of each
error calculated using the optimal parameter set from the associated error metric.

V ol1 RMSEoriginal RMSRE(%) RMSE MAE MRAE
RMSEoriginal 0.0015 0.0016 0.0015 0.0015 0.0015
RMSRE(%) 3.61% 3.58% 3.56% 3.61% 3.52%

RMSE 1.35 1.52 1.34 1.36 1.4
MAE $.84 $.93 $.84 $.84 $.87

MRAE .0195 .0194 .0192 .0195 .0191

Table 4.4: Residual errors for V ol3.
V ol3 RMSEoriginal RMSRE(%) RMSE MAE MRAE

RMSEoriginal 0.0014 0.0014 0.0014 0.0014 0.0014
RMSRE(%) 3.47% 3.57% 3.47% 3.47% 3.48%

RMSE 1.24 1.28 1.24 1.24 1.25
MAE $.79 $.82 $.79 $.79 $.79

MRAE .0186 .0189 .0186 .0185 .0186

Table 4.5: Implied volatility errors for V ol1

V ol1 Parameter Estimate Std.Error
µ −0.019% 0.037%
σ 2.2% 0.02%

Table 4.6: Implied volatility errors for V ol3

V ol3 Parameter Estimate Std.Error
µ 0.025% 0.031%
σ 1.9% 0.02%

4.7 Out of sample results

Again we have calibrated each model to a subset of the original market data set and

measured the errors against an out of sample data set. While V ol3 performs better

than V ol1 in the original calibration, that difference has been reversed in the case of

the out-of-sample errors. Overall the RMSE values are larger as can be seen from

Table 4.8.

Table 4.7: Calibrated parameters for market data observed between November
2002 and 15th February 2003.

α1 α2 α3 α4 α5 α6 α7
V ol1 0.0315 2.64 0.133 5.739E − 10 n/a n/a n/a
V ol3 3.33 113.168 0.227 29.19 217.66 −0.734 8.57E − 04
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Figure 4.1: Differences in implied volatility between market and model in the
case of V ol3. Here, the RMSRE error metric was used with λ = 3.

Table 4.8: Residual errors for out-of-sample fitting of V ol1 and V ol3. The model
was tested against option price data recorded between the months of February
and May 2003.

Out-of-sample Errors V ol1 V ol3
RMSE 0.842 0.925

RMSEoriginal 0.00149 0.00161
RMSRE(%) 3.81% 3.86%

MAE $1.40 $1.64
MRAE 0.0203 0.0210

4.8 Discussion

In this chapter we have introduced the second order offset function, derived the

corresponding p.d.e. which we have numerically solved using an extension for the

finite difference scheme described in Chapter 3. We test a range of volatility

specifications, and optimise the associated parameter set of each along with λ. We

optimise with respect to the adjusted dataset in the untransformed space, and all

errors are measured with respect to the unadjusted prices. We find a significant

increase in model fit to market data. Comparing with the original model in Chapter 3
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Figure 4.2: Distribution of differences between market implied volatility and
model implied volatility in the case of V ol1, with a fitted normal density function.
See Table 4.5 for the mean and standard deviation of this fit.
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Figure 4.3: Distribution of differences between market implied volatility and
model implied volatility in the case of V ol3, with a fitted normal density function.
See Table 4.6 for the mean and standard deviation of this fit.

where RMSRE was found to be of the order of 13%, the model and fitting method

presented in this chapter reduces the RMSRE to the order of 3%. Neither do we see

any major loss in quality of fit when fitting against an out-of-sample dataset. We can

conclude from these results that the inclusion of D
(2)
t , along with the data adjustment

technique, whereby we make use of a daily adjustment index to modify the dataset

pre-calibration, and adjust back afterwards, that significant modelling gains can be
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Figure 4.4: Volatility smile for V ol3.

Figure 4.5: Differences in implied volatility between market and model in the
case of V ol3.

made. We have also seen from a quick analysis of the distribution of the errors, that

there is no systematic overestimation of implied volatilities that we found in Chapter

3. This can be seen from Figures 4.2 and 4.3. Another point to consider is the speed

of the calibration. While we see much better results, the time taken to calibrate this

model is an order of magnitude longer than when calibrating any of the models in

Chapter 3. This will impact the model’s usefulness. Ideally we would like to minimise

the number of model parameters while maintaining the accuracy of the model.
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Chapter 5

Further results, Summary and

Future Work

5.1 Introduction

In this chapter we aim to tackle a number of smaller topics related to the previous

work. The first area we cover is the idea of a generalised offset function. In the

standard offset function, past information is weighted exponentially, with the greatest

emphasis being on more recent data. We study a more generalised offset function in

which the past information is discounted at an arbitrary rate. Secondly, we adapt

Gatheral’s approach [16] to the Heston model in an attempt to derive a

semi-analytical closed form solution to the Hobson and Rogers p.d.e. While this

approach is not successful, it may point the way towards a solution. Thirdly, we look

more closely at actual option prices returned by the model. We note in particular that

the model is less effective for large option strike values. Finally, we look at the specific

effect of each parameter on the implied volatility smile, essentially calculating the first

order sensitivities of the volatility smile to a change in these parameters. Such an

analysis is intended to determine if particular parameters are responsible for specific

features of the surface. This knowledge would allow users of the model to determine
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how to adjust the model to specific market conditions. We finish this chapter with a

summary of the thesis and recommendations for future work in this area.

5.2 A generalised offset function

We now consider the more general offset function defined by

G
(m)
t = 1

R(t)

∫ ∞

0
r(u)

(
Zt − Zt−u

)m
du

where r(t) > 0 and integrable on [0, ∞) and

1
R(t)

∫ t

0
r(u)du = 1.

This approach is also used in [27].

Proposition 22. The offset process G
(m)
t satisfies the coupled s.d.e.’s

dG
(m)
t = mG

(m−1)
t dZt + m(m − 1)

2
R(t)G(m−2)

t d ⟨Z⟩t − r(t)
R(t)

Gt.

Proof. Let s = t − u. Then

R(t)G(m)
t = −

∫ −∞

t
r(s)(Zt − Zs)mds

=
m∑

i=0

(
m

i

)
(Zt)i

∫ t

−∞
r(s)(−Zs)m−ids.
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Now,

d
(
R(t)G(m)

t

)
=

m∑
i=0

(
m

i

){(∫ t

−∞
r(s)(−Zs)m−ids

)
×
(
i(Zt)i−1dZt + i(i − 1)

2
(Zt)i−2d ⟨Z⟩t

)

+(Zt)ir(t)(−Zt)m−idt

}

= m
m∑

i=1

(
m − 1
i − 1

)(∫ t

−∞
r(s)(−Zs)(m−1)−(i−1)ds

)
(Zt)i−1dZt

+m(m − 1)
2

m∑
i=2

(
m − 2
i − 2

)(∫ t

−∞
r(s)(−Zs)(m−2)−(i−2)ds

)
(Zt)i−2d ⟨Z⟩t

+r(t)
m∑

i=0

(
m

i

)
(Zt)m(−1)m−idt (5.1)

Note that

m∑
i=0

(
m

i

)
(Zt)m(−1)m−i = (Zt)m

m∑
i=0

(
m

i

)
(−1)m−i

= (Zt)m(1 − 1)m

= 0

We may rewrite (5.1) as

Gtr(t)dt + R(t)dG
(m)
t = mR(t)G(m−1)

t dZt + m(m − 1)
2

R(t)G(m−2)
t d ⟨Z⟩t

and so

dG
(m)
t = mG

(m−1)
t dZt + m(m − 1)

2
R(t)G(m−2)

t d ⟨Z⟩t − r(t)
R(t)

Gt.

In the case of m = 1 we have

dGt = dZt − r(t)
R(t)

Gtdt.

Proposition 23. The price of a European call option, denoted by f = f(P, G, T − t),
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obeys the following partial differential equation,

−ft + rPfP + − r(t)
R(t)

GtfG + σ2

2

(
P 2fP P + fGG − fG + 2σ2PfP G

)
= 0,

with boundary conditions f(PT , GT , 0) = max(PT − K, 0).

Proof. Applying the same change of measure as used in Section 2.1, dW P = ϕ + dWQ,

where ϕ = −(µ/σ) − 1
2σ, we may write the s.d.e. for our underlying variables as

dGt = (µ − r(t)
R(t)

Gt)dt + σ(ϕ + dWQ)

= −
( r(t)

R(t)
Gt + σ2

2

)
dt + σdWQ (5.2)

dPt = rPtdt + σPtdWQ. (5.3)

With this we can now write down a p.d.e. for f = f(Pt, Gt, T − t). We now drop the

subscript t, denoting a process, so that its use from here will denote a partial

derivative with respect to time. We have by the Feynman-Kac theorem, using

equations (5.2) and (5.3), that

−ft + rPfP − r(t)
R(t)

GtfG + σ2

2

(
P 2fP P + fGG − fG + 2σ2PfP G

)
= 0,

with boundary conditions f(PT , GT , 0) = max(PT − K, 0).

By the same transformation used in Section 2.2 we have

σ(x − y)2

2

(
Vxx − Vx

)
− r(T − τ)

R(T − τ)
Vy − λVτ = 0, (5.4)

where we have used

x = log( P

K
) − r(T − t),

y = log( P

K
) − r(T − t) − G,

τ = −(T − t),
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and

f(P, G, T − t) → Ker(T −t)V (x, y, τ).

Note that (5.4) belongs to the subclass of Hormander pde’s today known commonly

as Kolmogorov or Ornstein-Uhlenbeck type [28][29]. In particular the pde (5.4) with

boundary condition V (x, y, 0) = (ex − 1)+ is studied in [30], where conditions are

given for the existence and uniqueness of solutions.

Assuming that G may be easily evaluated, the solution of equation (5.4) poses no

extra numerical difficulty in the finite difference scheme. To implement the above

scheme the only change needed from the scheme in Chapter 3 is the once off

pre-evaluation of the integral G at every point on the finite difference grid. This

relatively simple extension will allow an examination of different forms of r(t).

Currently, with r(t) = e−λt, historic log ‘returns’ Zt/Zt−i are (negatively)

exponentially weighted for increasing i. This approach is analogous to the GARCH

discrete model as described in Chapter 2, but unlike GARCH, assumes continuously

decreasing weights. The generalisation described here will allow for arbitrary weights

to be used. In fact we may consider any functional form of r(t) that satisfies

1
R(t)

∫ t

0
r(u)du = 1.

5.3 Fourier transform approach to solution of

the Hobson and Rogers p.d.e.

We now attempt to solve the Hobson and Rogers p.d.e. using Fourier transform

methods. We take an approach parallel to the derivation of the Heston semi-analytical

closed form solution as shown in Chapter 2. We firstly take the original Hobson and

Rogers p.d.e. and apply a slightly different change of variables. We use the mapping

f(P, D, t) → er(T −t)KV
(
x, y, τ

)
.
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where

x = log(P/K) − r(T − t),

y = D,

τ = −λ(T − t)

Under this transformation of variables our p.d.e. becomes

−Vτ + yVy − σ(y)2

2λ
(Vy + Vxx − Vx + 2Vxy + Vyy) = 0.

Now, keeping in line with the Heston approach, we assume that the solution of this

equation is of the form

V (x, y, τ) = K
(
exΠ1(x, y, τ) − Π0(x, y, τ)

)
.

Using this as a trial solution we substitute it into the above p.d.e., resulting in the

following p.d.e.s for Π1 and Π2,

−σ(y)2

2λ
(∂xΠ1 + 3∂yΠ1 + ∂yyΠ1 + 2∂xyΠ1 + ∂xxΠ1) + y∂yΠ1 + ∂τ Π1 = 0,

and

−σ(y)2

2λ
(∂yΠ0 + ∂yyΠ0 − ∂xΠx + 2∂xyΠ0 + ∂xxΠ0) + y∂yΠ0 + ∂τ Π0 = 0.

These equations may be combined, with j = 0, 1, as

−σ(y)2

2λ
((2j + 1)∂yΠj + ∂yyΠj + (2j − 1)∂xΠj + 2∂xyΠj + ∂xxΠj)

+y∂yΠj + ∂τ Πj = 0.
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We now apply the Fourier transform in the x-direction to this p.d.e. The Fourier

transform is defined by

Π̃j(u, y, τ) =
∫ ∞

0
e−iuxΠj(x, y, τ)dx.

Transforming the above p.d.e. we now have

−σ(y)2

2λ

(
(2j + 1)∂yΠ̃j + ∂yyΠ̃j + (2j − 1)iuΠ̃j + 2iu∂yΠ̃j − u2Π̃j

)
+y∂yΠ̃j + ∂τ Π̃j = 0,

which we may rewrite as

−σ(y)2

2λ

(
αΠ̃j + β∂yΠ̃j + ∂yyΠ̃j

)
+ y∂yΠ̃j + ∂τ Π̃j = 0. (5.5)

where

α = −u2 + (2j − 1)iu,

β = (2j + 1) + 2iu.

The main difference between this p.d.e. and that of Heston is the presence of the

σ(y)2 term whose functional form is unspecified. To find a general solution,

independently of σ we will need to find a solution Π̃j that solves

αΠ̃j + β∂yΠ̃j + ∂yyΠ̃j = 0. (5.6)

As a trial solution we set Π̃j = eΛyR(u, τ). This gives us

αΠ̃j + β∂yΠ̃j + ∂yyΠ̃j = eΛyR(u, τ)(α + βΛ + Λ2).

The choice of

Λ± = −β ±
√

β2 − 4α

2
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ensures that the expression multiplying our σ(y)2 term evaluates to zero. We have

Π̃j = (A exp{Λ+y} + B exp{Λ−y})R(u, τ).

where A and B are arbitrary constants. We may now consider variations of our trial

solution such that equation (5.6) holds true, while solving the second part of our

p.d.e., namely

y∂yΠ̃j + ∂τ Π̃j = 0. (5.7)

Continuing with the trial solution derived so far, we see that remaining part of our

p.d.e. can be written as

y∂yΠ̃j + ∂τ Π̃j = R(u, τ)y∂y(A exp{Λ+y} + B exp{Λ−y})

+A exp{Λ+y} + B exp{Λ−y}∂τ (R(u, τ))

= R(u, τ)y
(
AΛ+Π̃j + BΛ−Π̃j

)
+A exp{Λ+y} + B exp{Λ−y}∂τ (R(u, τ)) (5.8)

We need to find a solution such that (5.7) evaluates to zero. We may choose

R(u, τ) = C(u)e−gτ where g is an arbitrary constant. Then, using equation (5.8), we

require

R(u, τ)y
(
AΛ+Π̃j + BΛ−Π̃j

)
− gR(u, τ)

(
A exp{Λ+y} + B exp{Λ−y}

)
= 0

=⇒ R(u, τ)y
(
AΛ+Π̃j + BΛ−Π̃j

)
− gΠ̃j = 0

=⇒ C(u)e−gτ y
(
AΛ+ + BΛ−

)
− g = 0

Since our equation has a y-dependence, we can only have a solution if

A = −(BΛ−)/Λ+ and g = 0 thus no dependence of our solution on time to maturity.

Clearly isn’t appropriate and so forces us to abandon the approach. This approach in

fact shows it is not possible to find a solution by eliminating the coefficient of σ(y)2 as

the first step. Another possible approach is to initially find a solution such that the

expression in equation (5.7) evaluates to a function of the form (σ(y)2/2λ)R(u, y, τ),
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5.4 A further analysis of model vs. option
prices

again allowing cancellation of the σ(y)2 term. The non-linearity of our p.d.e makes it

difficult to find such a function, but a careful choice of the functional form of σ(y)

may be key in finding an overall solution.

5.4 A further analysis of model vs. option

prices

In our calibrations, we removed all option prices of value less than $10. We did this

firstly to remove percentage bias when calculating percentage errors. For small option

prices, the percentage error can be large even while the absolute error remains low.

This can be seen clearly in Figure 5.1. Secondly, the inclusion of options that were

deep out of the money resulted in larger errors in model fit. A conclusion can be

drawn that the models presented here do not reproduce well the value of

out-of-the-money options. We can see this directly by looking at actual option data as

a function of strike only. Figure 5.2 presents absolute percentage errors for a selection

of option prices from the full market data set. We see a large variability in the model

error. On closer examination, (bottom left panel) we see that the errors grow and

drop off periodically. It turns out that the dataset is arranged such that option prices,

quoted simultaneously, with equal time to maturity, are listed in order of increasing

strike. See Table 5.1 below for a sample set of data. The panel in Figure 5.2 shows us

that model error grows with increasing strike i.e. as we move further

out-of-the-money. The strikes in our dataset range from $600 to $900. The error here,

for large strikes, may reflect the inability of our model to capture prices in this region,

or may reflect noise due to the lack of liquidity of deep out-of-the-money options, and

possibly other factors. See Table 5.2. In general, it may be a good strategy to only

calibrate to liquid options, or if including a full range of strikes in the calibration, to

place a greater weight, in the calibration routine, on those options of higher liquidity.

Another solution is to use put-call parity to imply call option prices from put option

prices of equal strike and maturity, for low strike values. Since puts will be more
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prices

Table 5.1: Model vs Market option prices with absolute relative error as defined
by (f − f̂)/f̂ , where as usual f denotes model prices and f̂ denotes market prices.
The graphical representation of this data can be seen in Figure 5.2. We observe
that the error increases for increasing strike. This data represents two sets of
option data, quoted simultaneously, but with different times to maturity.

Time to Maturity Strike Market Price Model Price
Absolute

Percentage
Relative Error

0.171 600 $224.229 $224.01 0.0982%
0.171 625 $200.15 $199.84 0.155%
0.171 650 $176.52 $175.89 0.3539%
0.171 675 $153.34 $152.32 0.6684%
0.171 700 $130.73 $129.33 1.0757%
0.171 725 $109.09 $107.1 1.8241%
0.171 750 $88.44 $86.01 2.746%
0.171 775 $69.32 $66.48 4.0937%
0.171 800 $52.16 $49. 6.067%
0.171 825 $37.25 $34.16 8.2854%
0.171 850 $25.02 $22.32 10.7558%
0.171 875 $15.69 $13.58 13.4783%
0.171 900 $9.28 $7.7 17.0377%
0.345 600 $225.95 $226.52 0.2543%
0.345 650 $180.22 $181.05 0.4617%
0.345 675 $158.25 $158.83 0.3625%
0.345 700 $136.97 $137.29 0.233%
0.345 725 $116.58 $116.68 0.0855%
0.345 750 $97.31 $97.2 0.1154%
0.345 775 $79.48 $79.11 0.4742%
0.345 800 $63.14 $62.69 0.7244%
0.345 825 $48.72 $48.17 1.1388%
0.345 850 $36.36 $35.74 1.6955%
0.345 875 $26.16 $25.55 2.3275%
0.345 900 $18.02 $17.52 2.77%
0.345 925 $11.96 $11.53 3.5532%
0.345 950 $7.65 $7.26 5.0778%

liquid in this region, this strategy may result in a better model fit.
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Figure 5.1: A comparison of percentage errors versus absolute errors, plotted
as a function of moneyness. The model used here was V ol3, with the RMSRE
calibrated parameters. Each line in the above plots represents a set of options,
quoted simultaneously, with the same time to maturity, but over a range of strikes.

5.5 Impact of volatility parameters on implied

volatility surface

In models such as the SABR model, or the Heston model, we can attribute the model

parameters to specific features relating to market dynamics. For example, the SABR

model [12], is given by

dFt = σtF
β
t dWt,

dσt = ασtdZt,

where Wt and Zt are two correlated Wiener processes with correlation coefficient

−1 < ρ < 1, and Ft is a forward price. Here, the α parameter directly corresponds to

the volatility of volatility. The β parameter controls the relationship between

volatility and price, in that β < 1 implies an inverse relationship between forward

price and volatility. The value of β will determine the ‘skewness’ of the implied

volatility surface. Finally, ρ is the correlation between the forward price process and

volatility process. Within the models presented here, we would like to determine if we
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Figure 5.2: Error analysis for the calibrated V ol3 model. The top panel shows the
absolute percentage error from a selection of option quotes picked randomly from
the full data set. The data is ordered such that options quoted simultaneously,
of equal maturity, and increasing strike are placed beside each other. The panel
on the bottom left shows a close-up. On the bottom right panel we see the
distribution of the absolute percentage errors.

can attribute any of the parameters of our volatility specification to particular

features of the volatility smile. If it were possible to do this, it may lead to a more

intuitive and quicker calibration procedure. It would also help in understanding the

degree of flexibility the model has to fitting various volatility surface structures.

Ideally, we would like to be able to associate three parameters to control the smile,

skew, and overall volatility level, combined with another parameter which might

describe the volatility term structure. To perform this analysis, we have taken the

V ol1 model, namely

σ
(
D

(1)
t , D

(2)
t

)
= α1 + α2(D(1)

t − α3)2 + α4D
(2)
t ,

from Chapter 4, and calculated the implied volatility smiles for options with fixed

maturity equal to 0.1, over a range of strikes. In the calculation of the implied

volatilities, we have taken the calibrated parameters, and applied a shift of ±10% to

each of the four parameters individually. From the resulting model prices, we

calculated the implied volatility smiles which we plotted as a function of moneyness.
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Table 5.2: Table of call prices from our market data set versus the implied call
prices from put quotes. It is possible, due to lack of liquidity or the impact of
transaction costs, that call prices for deep out of the money options may not
reflect the true value of those options. In that case calibration to these options
prices would lead to a poor model fit. Here we show that put-call parity does not
hold in our market data set. A better calibration strategy may be, in the case of
out of the money call options, to calibrate to the put-implied call option values
calculated via put-call parity.

call price put-implied call price
$271.8 $273.7
$246.8 $248.8
$222.1 $224.
$197.8 $199.5
$173.5 $175.
$149.4 $151.1
$139.9 $141.6
$130.5 $132.2
$125.8 $127.4
$121.2 $122.9
$112. $113.6
$102.7 $104.5
$94. $95.7
$85.2 $86.9
$80.7 $82.7
$76.7 $78.2

Essentially, we are calculating the first order sensitivities of the volatility smile to

each of the volatility parameters. These smile sensitivity plots are presented in Figure

5.3. We don’t expect to see any change in the case of α1. This is due to the calibrated

α1 parameter being very close to zero, and so a 10% shift will not alter the model

prices. The parameters α2 and α3 have the greatest affect on the volatility smile. The

α2 parameter corresponds to the scaling constant being applied to the shifted offset

function value in our model, while the α3 specifies the shift. These two parameters

appear to control the overall level of the implied volatility surface. Finally α4 has an

affect that can be noticed only for deep in-the-money and out-of-the-money options.

This might possibly indicate a relationship between D
(2)
t and the skewness of the

distribution of returns. We also examined the dependence of the implied volatility as

a function of time to maturity, for fixed strike, which resulted in the same conclusions
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Figure 5.3: Sensitivity of the implied volatility surface to shifts in parameters of
the V ol3 model. ∆0 corresponds to the unshifted parameters.

as above. This means it is not possible to associate any of the parameters of the

model with a specific term structure.

5.6 Summary and Future Work

In this section we provide a summary of the thesis, conclusions that may be reached,

and point out a number of directions for future work in this area.

We started in Chapter 1 by presenting a detailed analysis of the derivation of the

Black-Scholes p.d.e. We found the original portfolio derivation, as presented in

standard text books, to be lacking in some respects. We presented a more rigorous

self-financing condition, and demonstrated how a risk free, self-financing portfolio

may be used in order to derive the Black-Scholes p.d.e. using a portfolio argument.

The derivation presented overcomes the shortcomings in the original derivation. For

completeness, and to form a basis for work in later Chapters, we also demonstrate the

derivation of the Black-Scholes p.d.e. via a martingale approach, and present a

worked solution.
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Chapter 2 sees the introduction of the Hobson and Rogers model. We present the

original derivation of the model. We also discretise the model which allows a direct

comparison with the GARCH model. The direct comparison is useful to indicate the

typical parameters we should expect to obtain in the calibration of the Hobson and

Rogers model. A significant difference between the two modelling approaches is that

while GARCH considers daily returns, the Hobson and Rogers model takes as input,

returns defined by the ratio of today’s price, to some historic price not necessarily

quoted on the preceding day. Despite this, we demonstrate how to overcome this

difficulty to make a direct comparison between these two models.

Chapter 3 follows the approach used in [22] to implement a numerical scheme to solve

the Hobson and Rogers p.d.e. under transformed variables. We attempt to reproduce

the results from [22] and we also explore a number of other functional forms of the

volatility specification. Firstly, we show that the choice of λ, the parameter which

controls the weighting of past data in the offset function, is an important parameter

in fitting the model to market data. We found that the choice of λ depends on the

volatility specification being used. We also consider the choice of error metric used in

the calibration. The choice of metric is important as it places more emphasis on

in-the-money options in the case of relative error, and out-of-the-money options in the

case of absolute error. We also note that it is important to minimise the residual using

the untransformed option price. Analysis of the market data and the dependence of

the volatility surface on time has shown that calendar time has a significant impact on

implied volatility levels. Since the volatility specification has no time dependence, it

will not be able to capture this calendar time dependence. This will result in a poorer

model fit. To counteract this problem we implement a scheme to modify the market

data used in our model by use of a daily adjustment index. We calibrate to adjusted

data, and then readjust back. Overall we see a significant improvement in model fit.

In Chapter 4 we extend the volatility specification to now depend on the second order

offset function. Our option price now depends on both the first and second order

offset functions, along with underlying price and time to maturity. We derive the
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corresponding p.d.e. and apply a very useful transformation of variables which allows

us to easily implement a numerical scheme. The finite difference scheme from Chapter

3 is adapted to include the extra dimension of D
(2)
t . Again we explore a number of

volatility specifications which include D
(2)
t and again see a significant improvement in

model fit across all error metrics.

Finally, in Chapter 5, we present some additional calculations and analysis. We have

derived the p.d.e. associated with a generalised offset function and from this result it

is clear that, from a numerical point of view, it would not be difficult to implement

this generalisation. We attempt to solve the Hobson and Rogers p.d.e. in a similar

fashion to the derivation of the solution to the Heston model. We make some further

analysis of model prices, and discuss the possibility of errors that may arise due to

pricing out-of-the money options. We also conduct a first order sensitivity analysis of

the model containing the V ol3 volatility specification.

Suggestions for further work in this area would be to numerically explore the more

generalised offset functions, and to consider alternative functional forms of

σ(D1
t , . . . , Dn

t ). A semi-analytical closed form solution, if found, would offer a

significant increase in usability by making this model very quick to calibrate. By

careful choice of σ(D1
t , . . . , Dn

t ) it should be possible to find such a solution.
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Appendix A

Matlab Code

Note that the code structure is based on that kindly provided by Paolo Foschi and a

proportion of the original code remains unchanged. Details of changes and on the

implementation of the 3D finite difference scheme can be found in Sections 3.5.1 and

4.3 respectively.

Listing A.1: Calibration: Sets calibration options, calls the underlying

calibration routine and returns the relevant residual error.

1 function [p,residuals,jacobian] = calibrate3d(xs,ys1,ys2,

ts, us, p0,lambda,conversion_factor,error_measure,SI )

2

3 mu = max(abs(xs))+0.01; I=101;

4 ni = max(abs(ys1))+0.01; J=81;

5 chi=max(abs(ys2))+0.01; K=21;

6 T = max(abs(ts))+0.01; N=15;

7 dx = mu/(I-1)*2; dy = ni/(J-1)*2; dz=chi/(K-1)*2;

dt = T/(N-1);

8 MAX_EVALS = 200;

9
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10 options = optimset('Jacobian', 'off', ...

11 'LevenbergMarquardt', 'on',...

12 'Algorithm','interior-point', ...

13 'Display','iter',...

14 'Diagnostics','on',...

15 'LargeScale','off', ...

16 'OutputFcn', @outfun, ...

17 'MaxFunEvals', MAX_EVALS, ...

18 'TolX', 1e-4 );

19

20 [p,resnorm,residuals,exitflag,output,lambda,jacobian] =

...

21 lsqnonlin( @my_eval, p0,[],[], options );

22

23 function [res] = my_eval( p)

24

25 x = ((1:I)-1)*dx-mu;

26 y = ((1:J)-1)*dy-ni;

27 z = ((1:K)-1)*dz-chi;

28 t = -((1:N)-1)*dt;

29

30 U= HR_evaluate3d(p, mu,ni,chi,T, I,J,K,N, ...

31 lambda, sigma_max, @payoff_call);

32

33 vs = interpn(x,y,z,t, U, xs,ys1,ys2,ts,'linear' )

;

34

35 if error_measure == 1
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36 res = vs-us;

37 elseif error_measure == 2

38 res = (vs-us)./us;

39 elseif error_measure == 3

40 res = (vs-us).*conversion_factor;

41 elseif error_measure == 4

42 res = (((vs-us).*conversion_factor).^2)

.^0.25;

43 elseif error_measure == 5

44 res = (((((vs-us).*conversion_factor).^2)

.^0.5)./us).^0.5;

45 end

46

47 function u0 = payoff_call(x,y)

48 u0 = max(exp(x)-1,0);

49 end

50

51 function stop =outfun( p, optimValues, state )

52 stop = false;

53 end

54

55 end

56 end
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Listing A.2: Calibration: Setup of grid.

1 function U=HR_evaluate3d( p, mu,ni,chi,T, I,J,K,N,

lambda, sigma_max, ...

2 payoff )

3 dx = mu/(I-1)*2; dy = ni/(J-1)*2; dz=chi/(K-1)*2;

dt = T/(N-1);

4 [yy,xx,zz] = meshgrid(((1:J)-1)*dy-ni, ((1:I)-1)*dx-mu,

((1:K)-1)*dz-chi );

5 dd1= xx-yy;

6 dd2 = (xx-yy).^2-zz./2;

7 sigma2 = calculate_sigmas(p,dd1,dd2,lambda,sigma_max);

8 U=newkolmogorov3d( -mu, -ni,-chi, dx,dy,dz,dt, I,J,K,N,

...

9 sigma2, -sigma2, @(x,y) (x-y), payoff );

10 end

Listing A.3: Implementation of 3d finite difference scheme

1 function [U] = newkolmogorov3d( x0, y0,z0, dx,dy,dz,dt, I

,J,K,N, a, b,c, u0)

2

3 [yy,xx,zz] = meshgrid( ((1:J)-1)*dy+y0, ((1:I)-1)*dx+x0 ,

((1:K)-1)*dz+z0);

4 Z = makeZ( I,J, x0,y0, dx,dy,dt, c );

5 n=I*K;

6 D1=sparse(1:I*K,1:I*K,0);

7 D1 = D1+ sparse(2:n,1:n-1,1,n,n) - sparse(1:n,1:n,2) +

sparse(1:n-1,2:n,1,n,n);

8 D1 = D1 / (dx*dx);
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9 D1(1,1)=0;

10 D1(1,2)=0;

11 D1(n,n-1)=0;

12 D1(n,n)=0;

13

14 count=I;

15

16 while count<=I*(K-1)

17 D1(count,count+1) = 0;

18 D1(count,count) = 0;

19 D1(count,count-1) = 0;

20 count=count+1;

21 D1(count,count+1) = 0;

22 D1(count,count) = 0;

23 D1(count,count-1) = 0;

24 count=count+I-1;

25 end

26

27 D1=sparse(D1);

28 D2=sparse(1:I*K,1:I*K,0);

29 D2 = D2+ sparse(2:n,1:n-1,-1,n,n) + sparse(1:n-1,2:n,1,n,

n);

30 D2 = D2 / (2*dx);

31 D2(1,1)=0;

32 D2(1,2)=0;

33 D2(n,n-1)=0;

34 D2(n,n)=0;

35 count=I;
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36

37 while count<=I*(K-1)

38 D2(count,count+1) = 0;

39 D2(count,count-1) = 0;

40 count=count+1;

41 D2(count,count+1) = 0;

42 D2(count,count-1) = 0;

43 count=count+I-1;

44 end

45

46 D2=sparse(D2);

47 AA=cell(J,1);

48

49 for j=1:J

50 AA{j}=sparse(1:I*K,1:I*K,0);

51 end

52

53 BB=cell(J,1);

54 for j=1:J

55 BB{j}=sparse(1:I*K,1:I*K,(1+(x0+mod(0:I*K-1,I)*dx-(y0

+(j-1)*dy)).^2).^0.5);

56 end

57

58 zvalues= sparse(1:I*K,1:I*K,z0 + ceil((1:I*K)/I)*dz );

59

60 for j=1:J

61 da = squeeze(a(:,j,:));

62 da=sparse(diag(da(:)));
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63 DZ=sparse(I+1:n-I,2*I+1:n,1,n,n)+sparse(I+1:n-I,1:n

-2*I,-1,n,n);

64 DZ=DZ/(2*dz);

65 AA{j}=sparse(eye(n)-BB{j}*dt*da*(D1-D2-DZ)+zvalues*DZ

);

66 end

67

68 clear a b c da db D1 D2

69 U = zeros(I,J,K,N);

70 U(:,:,:,1) = u0( xx, yy );

71 vv = U;

72 for n=2:N

73 for k=1:K

74 layer=vv(:,:,k,n-1);

75 vv(:,:,k,n) = reshape(Z*layer(:), I,J );

76 end

77 for j=1:J

78 temp=squeeze(vv(:,j,:,n));

79 vv(:,j,:,n) =reshape( AA{j}\ temp(:),I,1,K);

80 end

81 end

82 U=vv;
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Listing A.4: Calculation of offset

1 function m = exptrend5( t, z, lambda,power )

2

3 lookback = 100;

4 number_of_elements=size(z);

5 number_of_elements=number_of_elements(1,1);

6 m=zeros(number_of_elements,1);

7 for i=(lookback+1):number_of_elements

8 term=zeros(lookback,1);

9 count=1;

10 weight=zeros(lookback,1);

11 while count <= lookback

12 weight(count)=lambda/252*exp(-lambda*(t(i)-t(i-

lookback+count-1)))*count;

13 count=count+1;

14 end

15 weight=weight/sum(weight);

16 count=1;

17 while count < lookback

18 j=i-count;

19 term(count)=weight(count)*(z(i)-z(j))^power;

20 count=count+1;

21 end

22 m(i,1)=sum(term);

23 end
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