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Abstract: Microbes colonize the human body during the first moments of life and coexist with the
host throughout the lifespan. Intestinal microbiota and their metabolites aid in the programming
of important bodily systems such as the immune and the central nervous system during critical
temporal windows of development, with possible structural and functional implications throughout
the lifespan. These critical developmental windows perinatally (during the first 1000 days) are
susceptible timepoints for insults that can endure long lasting effects on the microbiota-gut-brain
axis. Environmental and parental factors like host genetics, mental health, nutrition, delivery and
feeding mode, exposure to antibiotics, immune activation and microbiota composition antenatally,
are all factors that are able to modulate the microbiota composition of mother and infant and may
thus regulate important bodily functions. Among all these factors, early life nutrition plays a pivotal
role in perinatal programming and in the modulation of offspring microbiota from birth throughout
lifespan. This review aims to present current data on the impact of early life nutrition and microbiota
priming of important bodily systems and all the factors influencing the microbial coexistence with
the host during early life development.

Keywords: nutrition; early life; microbiota-gut-brain axis; brain development; breast milk;
infant formula

1. Introduction

Starting from the first moments of life, the human body is colonized by a wide variety
of microorganisms [1,2] that coexist with the host for mutual beneficial purposes [3]. These
microorganisms colonize the skin and various mucosal cavities (oral, nasal, vaginal and
pulmonary), yet the vast majority of them are located within the gastrointestinal (GI) tract
and are termed as the intestinal microbiota [4]. The composition of the intestinal microbiota
is believed to largely assemble after birth influenced by early life events such as delivery
mode [1], early life nutrition [5], and antibiotic exposure [6]. The microbiota continues to
expand and develop in accordance with the needs of the host across the lifespan.

The microbiota has been found to influence not only at a local level with respect to the
intestinal microenvironment but also beyond the GI tract, implicating the physiological
and structural aspects of the central nervous system (CNS). The communication pathways
which enable the interaction of intestinal microbiota with the CNS of the host is described
as the microbiota-gut-brain axis [7–10]. Although the gut-brain axis was initially a target
for research on hunger, satiety and digestion [11,12] most recent studies have focused on
cognition and behaviour; the impact of psychological stress on GI motility, permeability
and secretion, as well as the effect of afferent neuronal fibre stimulation in the gut on
certain psychopathologies [7,13]. The pathways of the gut-brain axis have emerged as
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novel targets for mental health conditions, as well as for obesity and GI disorders including
irritable bowel syndrome (IBS) [9,14,15].

To date, the majority of data on the microbiota-gut-brain axis has been gathered from
studies using animal model systems. Indeed, various germ-free (GF) animal studies have
shown that lifelong absence of microbiota not only alters gut physiological functions, but
also the behaviour of those animals [16–18]. Similar findings are now appreciated regarding
the effects of antibiotic-induced microbiota depletion on intestinal permeability, behaviour
and cognitive functions [19–21]. There are increasing studies in humans, both in early life
and throughout the lifespan validating such findings [9,22–24].

Despite intensive investigations, the mechanisms underlying the communication path-
ways between intestinal microbial systems and the host remains rather elusive. Moreover,
the full implication of such interactions on health and disease in critical temporal windows
across the lifespan are still being unravelled. The impact of early life nutrition on the
composition of the gut microbiota, the microbiota-mediated priming of CNS and immune
system and the response of the host during this crosstalk is intricate and complex. The
aim of this review is to summarize recent knowledge and highlight the effects of early
life nutrition on the gut-brain axis development, the shaping and maturation of the in-
testinal microbiota and the dialogue among these stakeholders during critical periods of
neurodevelopment.

1.1. Disruption of the Microbiota-Gut Brain Axis

Homeostasis of the intestinal microbial environment is likely to be affected multiple
times across the lifespan of the average individual due to antibiotic usage [25], inflamma-
tion [26], ageing [27], psychological stress [28], nutrition and lifestyle choices [29], as well as
other environmental factors (i.e., smoking, pollution, mode of birth) [1,30–33] (see Figure 1).
Early life modulation and priming of the microbiota has been found to influence brain
health and disease state later in life [34]. For instance, alterations in bacterial composition
in the gut during early life have been correlated with behaviours associated with autism
spectrum disorder [35–37]. Moreover, gut microbiota perturbations (i.e., via antibiotic expo-
sure) in early life has been associated with a higher risk of mental illness such as anxiety and
depression in humans [38], among others [39]. However, there are also epidemiological stud-
ies showing limited effects of antibiotic exposure in early life on mental health outcomes [40]
indicating there is more at play than just altered composition of the microbiota.
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and cognitive development of children from birth to at least 3 years. Mode of feeding in early life
and solid food introduction influence the microbial and cognitive development of the offspring from
birth up to at least 3 years of age.

Despite the underlying mechanisms of the intercommunication along the microbiota-
gut-brain axis remain incompletely understood, there is a variety of potential trajectories
(some of which are depicted in Figure 2) through which the intestinal microbiota may
influence the CNS [41,42]. Pathways associated with the reciprocal exchange of signals from
brain and microbiota include the vagus nerve, the hypothalamic-pituitary-adrenal (HPA)
axis, the immune system, as well as neurotransmitters and metabolites with neuroactive
properties produced by the microbiota in the intestines [9,41]. Nutritional components
are known to impact on these pathways and are able to modify offspring development
via these multiple trajectories providing links between microbiota, brain development
and nutrition.
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Figure 2. The effect of early life nutrition during lactation and solid food introduction on the gut
microbiota development in the intestinal and the central nervous system; Microbes become more
diverse and mature with solid food introduction compared to lactation. Microbes and metabolites
in the gut lumen (hormones, neurotransmitters, microbial metabolites, cytokines and nutritional
components from milk or solid food) affect the host physiology via the gut-brain axis; they modulate
the epithelial barrier, the homeostasis in the lamina propria and the brain. Nutrients, metabolites
and microbes in the gut lumen signal to dendritic cells and the enteric neurons which subsequently
exchange signals with the immune the circulatory and the central nervous system. The vagus nerve,
the immune and the enteric nervous system are all pathways of communication among the microbes,
the gut and the brain.
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1.2. Nutrient-Microbiota Interactions and Gut-Brain Axis

The intestinal surface interacts with a plethora of microorganisms, as well as with
food in the form of macro- and micronutrients that constitute substrate for host cells and
microbes [43]. Nutrients and metabolites are sensed by the intestinal epithelial cells, initiat-
ing a hormonal cascade that eventually leads to nutrient absorption and transportation
via the circulatory system to various tissues within the body [43]. Different pathways are
activated in order to digest the various nutrients in the gut [44]. For instance, fatty acids in
the gut are sensed by G-protein coupled receptors that mediate the production of incretins—
gastrointestinal hormones—such as GLP1 that promotes insulin release from pancreatic
cells [45]. While nutrients interact with microbiota, important secondary molecules are re-
leased to be later absorbed by the host. For example, prebiotic non-digestible dietary fibres
are fermented by microbiota which release secondary metabolites that regulate important
processes in the human body [46].

One category of highly potent by-products of fibre fermentation by the gut microbes
are short-chain fatty acids (SCFAs), which include acetate, butyrate and propionate [47].
These metabolites are absorbed in the intestine and are able to modulate the CNS [48,49]
and the immune system [50,51]. Apart from their ability to cross the blood-brain barrier
(BBB) and reach the brain, modulating structural and functional aspects of the CNS [47],
SCFAs produced by commensals also affect the immune response via regulation of dendritic
and T-cell function, as well as via inhibition of cytokine production [52] which affect brain
development. It is becoming clear that the roots of the microbial and nutritional reciprocal
relationship within the gut-brain axis and the balance between health and disease lie in
the early life priming of these bodily systems supported by the initial nutrient-microbiota
crosstalk [53].

2. Early Nutrition-Microbiota Crosstalk in Sensitive Time Windows of Development

Nutrition holds a central role in the early life maturation of many tissues within the
body, with both short- and long-term effects on development of the infant, in an organ-,
time- and intervention-dependent fashion, which is called nutritional programming [54].
Nutritional programming refers to the ability of highly potent molecules that are normally
present in the diet or are de novo synthesized in our body to modulate and support early
life development. There are multiple nutrients with epigenetic potential that are present in
the diet or produced via microbial metabolism in the human gut [55]. B complex vitamins,
SCFAs and polyphenols are among nutrients or microbial metabolites that are known to
exert epigenetic effects on the host and affect fetal programming in sensitive time frames of
development [55].

These sensitive time-periods are temporal windows of developmental opportunity
that, if missed, alterations in growth and normal functions of body systems are irre-
versible [56,57]. These periods include pre-conception, pregnancy, peri- and early postnatal
life that are characterized by rapid changes in maturation of neuronal, immune, endocrinal
and metabolic processes [58,59]. The quality and quantity of food received during these
sensitive periods are crucial indicators of weight gain and metabolic regulation [54,60], as
well as CNS development, microbiota composition and immune system priming of the
individual across the lifespan [42,56,61–63].

2.1. Nutritional and Microbial Regulation in Pre-Conception

Parental nutrition and health status prior to conception are crucial for the appropriate
structural development of the CNS of the offspring (see Figure 1). Certain micronutrients
with epigenetic potential, such as folate, are recommended to women who plan to get
pregnant or are already in early stage of pregnancy in order to prevent infant neural tube
defect and other congenital malformations [64]. However, vitamin kinetics and drug-
microbiota-nutrient interactions should be considered while receiving supplementation.
For instance, certain bacteria in the gut are able to produce de novo folate as a secondary
molecule of their metabolism [65]. Furthermore, exposure to oral contraceptives or anti-
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epileptic drugs might decrease the availability of folate in the body [66,67], thus risking
congenital malformations in the case of pregnancy.

Increasing research suggests that environmental influence on parental health can
modulate functional aspects of infant development, such as offspring’s behaviour later in
life [68,69]. Recent preclinical data revealed that paternal immune activation due to infec-
tion modulates offspring behaviour via epigenetic regulation of the paternal reproductive
cells, with persistent inheritable potential for at least two generations [70]. Modulation of
the maternal immune system by environmental factors, before and during pregnancy, is
able to induce persistent alterations in offspring health from early life throughout adult-
hood [71,72].

Expanding data point to the existence of critical temporal windows before conception,
regarding parental nutrition and microbial metabolites shaping the immune system of the
offspring [63,73–75]. In rodents, reduced parental exposure to bacteria prior to conception
could lead to allergic disease in the offspring via epigenetic regulation of immunomodula-
tory genes, that passes to the next generation [72]. Nutritional-microbial crosstalk is able to
exert inheritable changes in the germline and holds a central role in fetal programming of
central nervous and immune systems.

2.2. Nutrition-Microbial Input on Neurodevelopment in Pregnancy

The brain is subjected to multiple structural and functional, time-specific changes
during gestation such as axonal growth [76], synapse formation and dendritic and axonal
arborization [77]. After neuronal differentiation, synaptic connections among neurons
continue to develop during gestation [78]. During the early phase of the cascade of those
time-dependent and strictly controlled events, disruptions can determine the fate of brain
function later in life [78]. Therefore, this period is crucial for structural (brain connectivity)
and functional (cognitive development and behaviour) outcomes in the brain [79]. During
pregnancy, maternal factors (diet, lifestyle, mental health, antibiotic use) as well as environ-
mental factors (infection, air pollution, tobacco or radiation exposure) impact the health
of the pregnant mother [80,81] and affect fetal development via transplacental signals,
including signals from maternal intestinal microbes and nutrients [53] (see Figure 1).

2.2.1. Maternal Nutrition and Fetal Neurodevelopment

Maternal nutrition during pregnancy can modulate some of the multiple structural
and functional changes that are happening in the offspring brain perinatally [78]. In fact,
nutrient intake influences micro- and macro-structural aspects of the brain during various
time points of brain development [82,83] via regulation of neurotransmitter pathways,
synaptic transmission and signal-transduction pathways [61,84]. Such nutrients are the
ω-3 polyunsaturated fatty acids which have a known effect on brain plasticity, cognition
and brain health via regulation of hippocampal BDNF in rodents [82]. In humans, ω-3
fatty acid consumption in early life is associated with improved cognition, while decreased
levels of ω-3 fatty acids have been found in the brain of individuals with mental health
and neurodegenerative conditions [82,83].

Nutrient deficiencies in the mother during pregnancy may result in abnormal neu-
rodevelopment of the fetus, in humans, which leads to related adversities in the adult
offspring [85,86]. For instance, molecules affecting one-carbon metabolism like folate,
choline and betaine, have known epigenetic potential in nervous system development of
the offspring [87]. All of these molecules are present in green leafy vegetables, as well as in
beets, wheat and seafood [88], while folate can be synthesized as a secondary metabolic
product of certain bacteria in the gut [65]. Optimal nutrition is required to support brain
macro- and micronutrient requirements for its maximum developmental potential [83].

2.2.2. Maternal Nutrition and Offspring Gut Microbiota Development

Dietary habits during the period of gestation can shape the maternal intestinal micro-
biota [81,89] which result in altered microbial metabolites in the maternal intestines. For
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instance, dietary fibres in the maternal intestines are fermented by maternal microbes with
the subsequent release of microbial by-products known as SCFAs. The SCFAs are able to
pass from the gut lumen to the circulation and travel to the fetus via the placenta [90]. SCFA
and other microbial metabolites from the maternal intestines, are able to imprint in-utero
development with possible health outcomes on the offspring across lifespan [53,90].

Maternal weight and obesity have been associated with alteration in composition of the
gut microbiota, with obese individuals displaying altered microbial profiles compared to
normo-weight individuals [91]. Microbial signatures of overweight and obesity have been
found to pass from mothers to infants, with infants from obese mothers obtaining distinct
microbiota profile compared to infants from normo-weight mothers [92,93]. Moreover,
stool microbiota analysis has shown decreased abundance of the Bifidobacterium group
in babies of overweight mothers compared to babies born to normo-weight mothers [92]
emphasizing the possible role of Bifidobacterium on weight development and weight control
of the infant.

In a cohort of Hispanic mother-infant pairs, low levels of Bacteroides have been found
in neonatal meconium samples from infants with mothers exposed to a diet with increased
fat content (>40% of daily intake) during pregnancy, with those low levels of Bacteroides
persisted until 6 weeks of age [81]. The Bacteroides genus, part of the commensal bacteria
in the gut, is present in low amounts in the infant gut right after birth and it becomes
gradually more abundant after solid food introduction [94]. Low counts of Bacteroides in
adulthood have been previously associated with obesity and altered metabolic capability
of the host [94].

In preclinical studies, maternal dietary manipulations during pregnancy can modify
the offspring microbiota composition [95]. For instance, in rodents, microbial diversity and
composition of pups originating from dams exposed to a high-fat diet (HFD) (60% of daily
intake) during pregnancy was altered, with reduced abundance of Lactobacillus reuteri, Bifi-
dobacterium pseudolongum and Bacteroides uniformis present in the faeces of pups originating
from dams exposed to HFD compared with pups originating from dams exposed to normal
chow diet (13.4% of daily intake) [96]. Additionally, microbiota composition changes in the
offspring as a result of maternal HFD during pregnancy were accompanied by impairments
in social behaviour of the pups tested by the reciprocal social interaction and the three
chambers social interaction tests [96]. Moreover, maternal high-fibre diet (21% wt/wt,
1:1 ratio of oligofructose and inulin) in rats during pregnancy and lactation modified
the gut microbiota of the dam and the offspring [97], probably via a combined effect of
vertical transmission of maternal microbiota during birth, and breast milk microbiota in
the suckling pups.

Apart from maternal nutrition during pregnancy, there are other factors modulating
the offspring’s intestinal microbiota composition in early life such as mode of delivery,
type and duration of feeding (see Figure 1) which are discussed in separate sections below.
Maternal antibiotic exposure perinatally, as well as infant antibiotic exposure postnatally
are strong modifiers of offspring microbiota composition and have been recently discussed
elsewhere [6].

2.2.3. Maternal Microbial Signatures in Pregnancy Prime Fetal CNS

The composition of the maternal gut microbiota varies dramatically in response to
hormonal, immunological and metabolic changes that take place during pregnancy [98]. It
is known that there are tight molecular and cellular interactions between mother and fetus
via the placenta [99]. The maternal microbiota produces compounds that are transported
to the fetus via transplacental pathways leaving metabolic signatures to the developing
fetus [98] and these prenatal microbial signatures can tip the balance between health and
disease [53,100].

For the past decade, scientists examined controversial data regarding the possibility
of a non-sterile environment during the course of gestation [75,101,102]. Recently, sparse
but viable microbiota have been identified in the fetal gut at mid-gestation in humans [75].
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However, this clinical study has been recently heavily criticised by other researcher of
the field [103,104] who claim that contamination of the samples during analysis is the
most probable explanation for the bacteria found in the fetal gut. Researchers who anal-
ysed meconium (the first faecal sample of the new-born) found low amounts of viable
bacteria present but confirmed that the main bacterial colonization of the gut happens at
the time of birth [105]. Even though it is difficult to assess the ‘in-utero sterility hypothe-
sis’ due to possibility of external contamination of samples, it is believed that microbes
and their metabolites in the maternal intestines influence in-utero CNS development and
function [106].

The assembly of fetal neuronal circuits can be perturbed in response to maternal and
environmental microbial disruptions during pregnancy. Recent data suggest that depletion
and partial reconstitution of the maternal microbiota during pregnancy modulate fetal
thalamocortical neurodevelopment in rodents -via transplacental metabolic signals-which
is linked to sensorimotor behaviour and pain perception postnatally [106]. Additionally,
microbial signatures of maternal stress during pregnancy are able to pass to the next
generation, modulate hippocampal development and gut function in adult male offspring
in mice [107]. Epidemiological studies focused on maternal infection has shown that
maternal immune activation (MIA) perinatally is associated with impaired fetal brain
development and higher risk of acquiring psychiatric disorders in adulthood [108,109].
Therefore, changes or perturbations of the maternal microbiota during gestation primes
fetal neurodevelopment during this critical period and might determine cognitive, sensory
and behavioural function of the offspring throughout the lifespan. Data present in the
current review are referred to term-born infants (unless otherwise specified), as the effect
of premature birth on the microbiota [110] and the brain development have been discussed
elsewhere [111].

2.3. Mode of Birth and Microbiota
2.3.1. Vaginal Delivery and Vertical Transmission of Microbiota

Today it is understood that the initial microbiota inoculation begins at birth while
the fetus passes through the birth canal and is exposed to maternal vaginal and faecal
microbiota [1]. This constitutes the first moment leading to extensive microbiota coloniza-
tion of the neonate; multiple studies have reported the impact of delivery mode on the
neonate’s first microbial exposure [1,101,112]. Dominguez-Bello and colleagues demon-
strated that there is vertical transmission of the maternal microbiota to the new-born in
vaginal delivery, meaning that the neonatal microbiota resemble the maternal vaginal and
faecal microbiota [1]. These vertically transmitted microorganisms have the potential to
affect the development of intestinal microbiota in the offspring during early life and may
relate to host health later in life [113].

2.3.2. Caesarean Section and the Missing Microbes

During Caesarean-section (C-section) the infant is not exposed to the maternal vaginal
and faecal microbiota and the vertical transmission is disrupted [1]. Interestingly, it is
understood that the intestine of C-section delivered new-borns is predominantly colonized
by bacteria present on the skin and in the environment [1,112]. In contrast with vaginal
delivery, the microbiota of C-section babies was found to display decreased diversity
and richness [114], with C-section being associated with significantly lower levels of
bacterial genera essential to brain development such as Bifidobacterium, Lactobacillus and
Bacteroides [112,115], and higher levels of Staphylococcus [1].

However, emergency C-section impacts the microbiota differently compared with
elective C-section, due to the fact that the neonate is partly exposed to the birth canal
in the early stages of labour [116–118]. In the case of emergency C-section, the newborn
microbiota resembles more closely the composition of vaginally-delivered babies [119].
Interestingly, elective and emergency C-section have been also found to alter microbial
diversity and richness in breast milk [120,121]. Even though depletion of specific microbiota
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in breast milk could be partly explained by administration of antibiotics to the mother
during C-section procedures, it has been recently proven that C-section is an independent
modifier of breast milk microbiota [121] indicating this can also contribute to the differences
seen between babies born via different modes.

Mode of delivery is a strong modifier of the relationship between maternal perinatal
nutrition and postnatal infant microbiota composition development [81]. In a clinical
study pre-pregnancy maternal weight impacts infants’ microbiota composition in babies
born vaginally to obese mothers, but not via C-section [93]. The disruption of vertical
transmission in this case might be beneficial for the microbiota composition development
of the offspring and prevent the ‘obese’ microbial signatures that could have passed with
vertical transmission and could relate to offspring health later in life.

Although mode of delivery has a widely known impact on the new-born microbiota,
its exact influence on microbiota shaping throughout the lifespan is still rather controversial
due to confounding factors (i.e., pre-existing conditions such as pre-eclampsia, emergency
or elective C-section and antibiotic use during surgery) [119]. Even though the impact of be-
ing born via C-section leaves microbial signatures up to four years of age in a recent human
cohort [118], other studies claim that the microbial composition of C-section individuals
recovers with of time, displaying a transient effect [112].

Ways of modulating gut microbiota such as faecal microbiota transplantation (FMT)
in both clinical and preclinical context, are being studied. It is evident that microbiota inter-
ventions like FMT could reinstate gut microbiota composition of individuals with clinical or
subclinical intestinal conditions such as diarrhoea, IBD and intestinal infections [122]. Most
studies on early life FMT are focused on the treatment of symptoms of IBD or recurrent
infections of C. Difficile [123]. The concept of FMT in C-section individuals is novel, in
order to reinstate the gut microbiota of those individuals to resemble more the microbes of
vaginally-delivered infants. Indeed, such an approach was taken in a recent small clinical
study where seven C-section delivered new-borns received FMT shortly after birth from
their mothers’ faecal microbes [124]. The FMT was able to restore the microbial differences
between C-section and vaginally-born infants up to 3 months of age [124]. Future studies
are needed to explore the feasibility and safety of such approaches in the future.

Most developmental studies investigating the mode of delivery focus on bacteria but,
recently scientists are shifting their interest on the effect of birth mode to the gut virome
(the assemblage of viruses present in the intestine) and phageome (the bacteriophage
community present in the intestine) [125,126] which may also contribute to the future
health of the offspring.

2.3.3. C-Section-Related Risks and Adversities

Early life disruption of microbiota by C-section has been associated with some well-
known disorders in childhood and adulthood. In clinical studies, C-section has been
correlated with immune disorders including asthma and allergies [127–129], along with
obesity [130] and type 2 diabetes [114,131]. In human epidemiological studies there have
been links between C-section and school performance [132,133] but this has not been
reproduced in other datasets [134]. Moreover, a small association between planned C-
section and visual-spatial cognitive delay in childhood has been reported [135]. In pre-
clinical studies, C-section is linked to neurodevelopmental structural changes that are
accompanied by early life behavioural alterations on infant vocalization during maternal
separation [136,137] as well as anxiety-like behaviour throughout lifespan [138].

It could be hypothesized that behavioural effects due to differential microbial coloniza-
tion as a result of C-section, are possibly extended to later stages of life, affecting multiple
aspects of social behaviour. However, more studies are needed to investigate the long-term
microbiota changes and behavioural effects of delivery mode, with shifting focus to the
missing microbes in C-section delivered individuals. Targeting the behavioural effects
with probiotic intervention strategies to potentially rescue behavioural deficits is a rather
promising avenue for those individuals.
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2.4. Shaping of Microbiota Composition and Neurodevelopment via Postnatal Early Life Nutrition

The brain is highly metabolically active in early life and its energy expenditure ac-
counts for half of the total daily resting energy metabolism [61]. At full term birth, the
brain weighs around 350 g, representing only around 10% of infant’s body weight, while
at one year of age the brain weight reaches 925 g which accounts for 70% of the adult
brain weight (~1300–1400 g) [78]. The high brain-weight to body-weight ratio, anatomical,
structural and functional brain changes, as well as the demanding metabolic rate of the
CNS, are indications that CNS development in critical time windows is sensitive to energy
and nutrient availability, which is believed to define the fate of development, physiology
and mental health later in life [61].

2.4.1. The Microbiota Expansion and the First Food after Birth

The new-born gut is mainly colonized by various species of Bifidobacterium, that are
also highly abundant among the commensals in the maternal breast milk. The offspring
gut microbiota modulates multiple levels of development, almost immediately following
birth. For instance, certain bacteria have been shown to stimulate gene expression of tight
junctions in mice, boosting the closure of the gaps between epithelial cells and promoting
gut barrier maturation postnatally, that is known to be immature in the early steps of
life [139]. In the intestine, Bifidobacteria have been found to boost gut barrier function,
and improve intestinal disease outcome by decreasing the intestinal permeability in ro-
dents [140]. In preclinical models, Bifidobacterium can alter structural characteristics of the
CNS and modify neurodevelopment in early postnatal life by promoting synaptic forma-
tion and microglial function postnatally [141], while in later stages of development these
bacteria have been found to rescue behavioural deficits such as anxiety- and depressive-like
behaviour [142,143]. Collectively, all these findings highlight the importance of Bifidobac-
terium in regulating multiple aspects of development following microbial colonization at
birth.

Soon after birth, microbiota in the infant gut is nurtured and shaped by the dietary and
bioactive components of milk that are discussed below (see Section Bioactive Components
of Breast Milk and Figure 2). Breastfeeding, breast milk from donors and infant formula
are the three options currently available for early life nutrition [144]. The nutritious and
bioactive interchange of the first food with microbiota in the infant gut inextricably and
constantly modulate the microbiota composition of the infant which might relate to several
aspects of infant development [145]. Early life nutrition determines the fate of microbial
colonization, as well as the development of the GI tract, the immune and the central
nervous system of the infant [146].

2.4.2. Breastfeeding and Composition of Breast Milk
Breastfeeding

Breastfeeding is considered the gold standard for infant nutrition as it is tailored
to provide various micro- and macronutrients for the demanding development of the
new-born in a time-dependent manner [145,147]. Beyond its nutritional benefits, breast-
feeding exerts other protective benefits for the developing child; it is known to enhance
neurodevelopment and to boost the immune system in early life, but is also associated with
decreased risk of childhood obesity and type 2 diabetes [146,148]. Furthermore, exclusive
breastfeeding is highly recommended for the first 6-months of life, it is convenient and
inexpensive, and it strengthens the bonding between mother and baby [149,150].

Maternal Characteristics, Breast Milk and Child Development

Breast milk composition is highly affected by maternal characteristics such as mental
health [151], nutrition and lifestyle choices [152,153], protein intake, the return of men-
struation, and nursing frequency [154]. Maintaining a healthy maternal body and mind
during lactation influences the quality of breast milk which in turn is crucial for infant
development [155].
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The perinatal period is a time that women are highly sensitive to psychosocial and
psychological stress as well as anxiety, which may induce perinatal depression to suscep-
tible mothers [156]. Maternal exposure to stress and depression perinatally can lead to
changes in mood, inadequate food consumption and lifestyle choices (lack of physical
activity, alcohol consumption, smoking and substance abuse) and might affect lactation
and the quality and composition of the breast milk [80,151].

Changes in breast milk composition due to maternal psychopathologies could eventu-
ally impact the neurodevelopmental outcome of the infant [151]. For example, in humans,
postpartum depression has been found to modulate the concentration of polyunsaturated
fatty acids (PUFAs) in breast milk, which in turn, are associated with increased risk of
mental health conditions of the offspring [157,158]. Moreover, maternal mental health con-
ditions (such as perinatal stress and postpartum depression) were assessed in an African
population by Perceived Stress Scale questionnaires on days 3, 9, and 14 postpartum.
Breast milk and saliva were collected on the same days as the questionnaires. Positive
correlations were found in this study, between maternal stress and breast milk interleukin-8
at day 3, and with macrophage inflammatory protein-1-alpha (MIP-1α) at day 14 post-
partum [159]. Cytokines in breast milk are able prime the CNS, immune system [160]
and might modulate the microbiota composition of the new-born during critical temporal
windows of development.

During the demanding period of lactation, the maternal energy requirements are
increased; even though this depends on the stage of lactation [150], the general recommen-
dations for the lactating mother (normo-weight) during exclusive breastfeeding, suggest
consumption of extra 650 kcal/day [153]. However, if those extra calories are not con-
sumed, the energy drawn from internal maternal stores to maintain lactation [150]. Breast
milk composition is affected by maternal energy consumption and food choices during
lactation [152,153]. However, the ability to produce milk is independent of certain maternal
factors such as maternal weight, BMI, body composition and gestational weight [161].
Nowadays, various popular diets like vegetarian and vegan, might lack certain vitamins
and calcium and therefore lactating women with these dietary choices might require
supplementation during the breastfeeding period [150,162].

Non-maternal characteristics but situations linked to pregnancy such as premature
birth (delivery before the beginning of the 37th week of gestation) cause changes in human
milk composition. Breast milk of mothers with premature delivery contained significantly
higher amounts of protein and immunological components compared to milk from full-
term mothers [163]. Interestingly, protein content of the human milk was associated with
the maternal BMI but not the maternal diet [154]. The composition of the human milk is
also affected by the breastfeeding frequency, as the higher the nursing frequency the higher
levels of lactose and lower levels of fat and protein are found in human milk [147,154].

Human milk composition is dynamic, varies within a feeding, diurnally, over the
different stages of lactation, and between mothers [151]. Breast milk composition changes
dramatically over the first month of life in order to match the new-born’s needs in macronu-
trients and immunity, but only subtle changes are identified in breast milk composition
after the first month of lactation [147]. So far, three separate stages of lactation have been
determined according to the composition of breast milk, which are summarized in Table 1
and Figure 3.
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Table 1. Main components of human milk on the three stages of lactation and the effect on infant health. The cessation of
breastfeeding is specific to each mother-infant dyad; it is decided according to the needs of the infant and upon the choice of
the mother.

Stages of Lactation Duration Components Effect on References

Stage 1: Colostrum 1–5 days postnatally

Very rich in immunoglobulins, lactoferrin,
leukocytes, growth factors, vitamins A
and E, proteins and fat low quantities

of lactose

Immune system
development [147,151]

Stage 2: Transitional
milk 1–2 weeks postnatally

Richer in lactose and fat compared to
colostrum, richer in proteins and fat

compared to mature milk

Nutritional
needs of the

baby
[147,151]

Stage 3: Mature milk 1st month–end of
lactation

Richer in lactose and water compared to
colostrum and transitional milk Nutritional

needs of the
baby

[151]

Richer in vitamins B1 and B6 compared to
colostrum and transitional milk [147,151]

1 
 

 

Figure 3. Main nutritional and bioactive components in the different stages of lactation. The quantity of the main nutritional
components stays consistent in mature milk, after the 1st month of lactation until the cessation of breastfeeding.

Macro- and Micronutrient Composition of Breast Milk

Breast milk is composed of a distinct combination of constituents that leads to specific
metabolic and physiological responses in children, regulating intestinal function, immunity
and brain development [60]. The components of human milk are derived from three pri-
mary sources: maternal diet, maternal macro- and micro-nutrient stores and the production
of nutrients in the lactocyte (milk-producing cell located at the mammary gland) [147].

Macronutrient composition of breast milk varies within mothers and across lactation
and it highly depends on maternal diet [152]. However, macronutrient composition differs
according to the stage of lactation with early milk being richer in protein and fat com-
pared to term milk [147]. Micronutrients in human milk such as vitamins and minerals
depend highly on maternal diet and internal stores [152]. The most abundant macro- and
micronutrients in breast milk can be found in Table 2.

Bioactive Components of Breast Milk

Multiple bioactive milk components have been found to modulate the immune system
via gut microbiota [63,164], enhance CNS development and promote gut health in early
life [151,165]. These promiscuous molecules are produced in the mammary gland, or by
cells present in the human milk like immune cells, while some are transported into the
mammary gland via circulation. Three of the most abundant bioactive components in
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human breast milk including milk fat globule membranes (MFGM), human milk oligosac-
charides (HMOs) and breast milk microbiota are summarized in Table 3. Some bioactive
components of breast milk, like the MFGM, may act as macronutrients too, providing the
infant with energy or acting as building blocks for growth of various tissues.

Table 2. Macro and micronutrients present in human milk, their effect on infant health and their expression in different
stages of lactation.

Category of
Molecule

Breastmilk
Component

Subcategory of
Molecule Effect on References Population

Highly Present in
which Stage of

Lactation

Macronutrients

Casein

Proteins

Immune system
development, general

growth and
development

[166] Humans:
multiple

More abundant in
colostrum compared

to mature milk

α-Lactalbumin [167] Humans:
multiple

Lactoferrin [168] Humans:
multiple

Immunoglobulins [169] In vitro, mice &
humans

Lysozyme [147] Humans:
multiple

Serum albumin [166] Humans:
multiple

Palmitic and
oleic acid

Heterogenous
mixture of

proteins, lipids,
fatty acids and

cholesterol

General growth and
development [170] Humans:

multiple
Richer in colostrum
compared to mature

milk and richer in
evening compared to

morning feedings

Milk fat globule
membranes:

MFGM

Cognition,
neurodevelopment,

boost immune system
against infections

[165,171,172] In vitro, mice
and humans

Lactose Carbohydrates Growth and
development [147] Humans:

multiple

More abundant in
mature milk and

when milk is
expressed more

frequently

Micronutrient

Vitamins A
and E Vitamins Growth and

development [147,151]
Humans:

multiple, mice
and rats

Higher in colostrum
compared to mature

milk

B complex
vitamins Micronutrients

Epigenetic potential,
neurotransmitter

synthesis,
neurodevelopment,

protection from
neural tube defect

[15] In vitro, mice
and humans

B1 and B6 higher in
mature milk
compared to

colostrum

Iron, copper
and zinc Metals Neurodevelopment,

haematopoiesis [147,151] In vitro, mice
and humans

Higher in colostrum
compared to mature

milk
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Table 3. Bioactive components of human milk and their effect on infant health.

Breastmilk Component Subcategory of
Molecule Effect on References Population Stage of Lactation

Epidermal growth
factor (EGF)

Growth factors

Intestinal maturation, immune system
imprinting during weaning [164] Mice

Present as long as
the lactation lastsEnterocyte stimulation for nutrient

absorption [173] Pigs, human

Tight junction and cell death regulation
in response to gut inflammation [174] Rats

Brain-derived
neurotrophic factor

(BDNF)

Normal growth, development and
function of neurons in the CNS* and

PNS*
[175] Rats

Present in breast
milk up to 90 days

postnatally

Increase intestinal motility by
stimulation of the ENS* [176] In vitro and rats

(ex vivo)

Glial-derived
neurotrophic factor

(GDNF)

Normal growth, development and
function of glial cells in the CNS* and
PNS*, supports neuronal health and

development

[175] Mice and rats

Erythropoietin (EPO)

Hormones

Protective effect on intestinal tight
junction, prevent anaemia and reduces

the risk of necrotizing enterocolitis
[177] In vitro

Adiponectin
Regulates metabolism and suppresses

inflammation [178,179]
Humans: Hispanic,
mice and humans,
humans: Hispanic

Regulates body weight later in life [178,179] Mice and humans,
humans: Hispanic

Ghrelin and leptin Control appetite, body composition and
metabolism [180,181]

Humans: multiple,
Humans: Caucasians,

humans: multiple

Prolactin Stimulating milk production [151] Humans: multiple,
mice and rats

Oxytocin

Production stimulated in PVN* by skin
to skin contact with the mother [151,182] Humans: multiple

Low levels in breast
milkSociability [183] Mice and Humans:

multiple

Breast milk microbiota Microbiota

Modulate the gut-brain axis, boost gut
barrier function, improve the

development of intestinal diseases, are
able to rescue behavioural deficits, as

well as anxiety-like and depressive-like
behaviour, in preclinical models,

regulate cytokine and tryptophan levels
in mice, shape neurodevelopment,
promote synaptic formation and

microglial action

[141–143] Rats, mice, humans:
multiple, mice

Through the course
of lactation

Human-milk
oligosaccharides

(HMOs)
(lacto-N-tetraoze,
2-Fucusyllactose)

Carbohydrates +
prebiotics

(concentration varies
depending on stage

of lactation)

Modulate the microbiota-gut-brain axis [151,184–187] In vitro, mice, rats and
humans: multiple

Through the course
of lactation

Protect from infection in the gut by
reducing colonization of pathogens and
promoting the viability and diversity of

commensals

[184] Mice, rats and humans:
multiple

Improve cognitive development [187] Humans: Hispanic

Inducing maturity of epithelial cells and
improve gut barrier function [151,184–187] In vitro, mice, rats and

humans: multiple

Macrophages
Cells

Protection against infection, T-cell
activation [169] Humans: Indo-Aryan

and In vitro, mice
More abundant in

colostrum than
mature milk

Stem cells Regeneration and repair [188] Humans: Caucasian,
Indo-Aryan

CNS*: central nervous system, PNS*: peripheral nervous system, ENS*: enteric nervous system, PVN*: paraventricular nucleus.

Milk Fat Globule Membrane

Milk fat globules (MFG) are lipid droplets surrounded by a phospholipid tri-layer
and are secreted locally by the mammary lactocytes [165,189]. The tri-layer surrounding
the MFG, called milk fat globule membrane (MFGM), has a unique complex structure
consisting of phospholipids, glycolipids, carbohydrates and proteins, as well as associ-
ated transmembrane growth factors on its surface, all of which have bioactive proper-
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ties [165,189]. MFGM and its associated proteins are present in higher concentrations in
the colostrum compared to mature milk [190]. MFGM composition varies across different
stages of lactation, and it is influenced by maternal factors such as body composition, diet,
gestation period, infant sex, and environmental factors such as infections [189].

The lipid to protein weight ratio in MFGM is approximately 1:1, highlighting the
protein presence at the MFGM [172]. Among many MFGM-associated proteins that have
been identified in human milk, lactadherin, butyrophilin and mucins stand out as they are
able to resist gastric digestion, and exert protective effects on the new-born [189]. MFGM-
associated bioactive components may influence the microbial composition of infants, which
in turn, can induce protective effects on the CNS and the immune system via the gut-brain
axis [189]. For instance, MFGM proteins lactadherin and mucin-1 have antimicrobial
properties and modulate the binding of bacteria in the infant gut [190]. These proteins
selectively promote the growth of commensals and obstruct the propagation of pathogens
in the neonatal intestine [191].

The MFGM in human milk has been linked to cognitive and health benefits in
humans [171] and rodents [192,193]. Sphingomyelin, phosphatidylcholine, and phos-
phatidylethanolamine are all highly present components of the MFGM, with choline as a
common precursor of the neurotransmitter acetylcholine which is involved in the motor
neuron activity of the autonomic nervous system [194], and is implicated in CNS functions
such as arousal, attention and memory [195,196]. Nonetheless, acetylcholine together
with folate and betaine are essential for early life CNS development as have been dis-
cussed in Sections 2.1 and 2.2.1. Sphingomyelins in the MFGM are especially important
for myelination and have been shown to improve the neurobehavioral development of
low-birth weight infants [197]. Recent studies have shown that MFGM supplementation
ameliorated the visceral sensitivity and cognitive impacts of early life stress, in maternally
separated rats compared to controls [193] and was able to partly improve spatial learning
and memory [192]. The functional properties of the MFGM on infant cognitive and general
development and health have been recently extensively reviewed elsewhere [165].

Human Milk Oligosaccharides and Sialic Acid

Human milk oligosaccharides (HMOs) such as 2-fucosyllactose and lacto-N-tetraose,
are indigestible glycans that pass through the GI tract. HMOs composition is affected
by maternal characteristics such as maternal BMI and geography [198], genetics [199]
and diet [200]. In a recent study, a short-term dietary intervention in lactating mothers
induced significant alterations in the HMO composition, showing that dietary choices
during lactation impacts HMOs rapidly [200]. Upon reaching the intestines, HMOs are
fermented by microbiota serving as prebiotics and, promoting microbial growth in a strain-
specific manner [201]. For instance, Bifidobacterium infantis has a very specific preference
to metabolize lacto-N-tetraose, but is also able to grow sufficiently in other HMOs [202],
while various strains of Bacteroides have been found to digest only specific types of HMOs
in vitro [203]. Therefore, the presence of different HMOs in human milk may induce
different effects on the microbiota of each infant, depending on the strains that are already
present in the gut, as well as in microbiota supplied by the breast milk [204].

More than 200 separate types of HMOs are present in maternal milk which have a
protective action on the infant gut. They induce maturation of epithelial cells and improve
gut barrier function, protecting the infant gut from infections and, promoting the viability
and diversity of commensals [185]. A few clinical studies validated that HMOs presence
promotes the growth of Bifidobacterium in the intestine, a genus that is abundant in the
gut of breastfed infants [205–207]. Moreover, HMOs have protective properties against
specific opportunistic pathogenic bacteria such as Salmonella, Listeria, and Campylobacter, by
preventing those pathogens from attaching to the intestinal wall, hence forcing them to be
excreted from the GI tract [184].

HMOs’ action can also improve infant health and neurodevelopment via microbiota-
gut-brain axis. It has been recently suggested that there is a link between 2-fucosyllactose
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consumption, frequency of breastfeeding and cognitive development in 1-month old
breastfed infants [187]. Moreover, HMO consumption has been linked to improved neu-
rodevelopment and cognition in both clinical [208] and preclinical studies [209–211]. In
rodents, 2-fucosyllactose supplementation improves hippocampal learning and memory
formation [209], as well as enhances cognition all the way through adulthood [210].

HMO-associated sialic acid is another bioactive component of breast milk, that is
more abundant in the early stages of lactation compared to term milk [212,213]. Sialic
acid is known to promote cognition and neurodevelopment in animal models, and it is
associated with gangliosides homeostasis in the CNS [212,214,215], as well as modulation
of the microbiota in the gut [215]. Sialylated HMO supplementation improves learning
and memory in piglets [216] and is associated with increased sialic acid concentration in
brain regions linked to those cognitive changes [217]. Interestingly, sialylated HMO supple-
mentation led to better cognitive outcomes compared to free sialic acid supplementation
in rats [218]. Sialylated milk oligosaccharides are prebiotics that influence the microbiota
composition in the infant [219] and the mouse intestine and reduce stress-induced anxiety
like behaviour [220]. The beneficial effects of sialylated and non-sialylated HMOs present
in breast milk are evident in the gut [185] and the brain [209–211] via the modulation of
the microbiota-gut-brain axis signalling.

Breast Milk Microbiota

Even though breast milk was initially considered sterile, microbial metabolites were
detected in the colostrum, which is the first milk produced after birth [201]. Intestinal micro-
bial composition analysis of exclusively breast-fed neonates has shown greater abundance
of Bifidobacterium and Bacteroides genera, compared to formula-fed infants [201,221–224].
This finding has led to two possible conclusions: that there is probable bacterial trafficking
via breast milk to the neonate and/or that breast milk is a better substrate for particular
commensals than commercial infant formula [201].

Various mechanisms have been proposed for microbiota transmission via breastfeed-
ing such as (1) contact with maternal skin, (2) retrograde flow from the infant oral cavity
to the ductal tissue and (3) enteromammary trafficking [201]. In order to investigate the
first hypothesis, lactating women were advised to clean the areolar skin area before milk
expression [120,225]. However, even after cleaning, enteric- and skin-related microbes were
evident in the breast milk [120,225] justifying that there is another pathway of microbial
flow in breast milk. The second hypothesis, called retrograde flow hypothesis, entails the
flow of microbes from the infant oral cavity to the mammary gland. Even though retro-
grade flow of milk from the oral cavity to the ductal tissue is evident [226], certain microbes
present in breast milk (such as Actinomyces, Bifidobacterium and Lactobacillus) are not present
in the neonatal oral cavity before the onset of breastfeeding [225]. Therefore this hypothesis
could justify the presence of some microbes in the ductal tissue from the neonatal oral
cavity, but could not justify the complex composition of microbes found in breast milk [201].
Additionally, there are bacterial DNA traces present in the colostrum before the beginning
of breastfeeding [120]. The third hypothesis, termed enteromammary trafficking includes
the engulfment of intestinal maternal bacteria by mucosal intestinal dendritic cells, translo-
cation of these cells via the circulatory or the lymphoid system to the mammary gland and,
finally, transportation of microbiota via breast milk to the neonate [201]. Genomic data
from three clinical studies suggest that there are common traces of Bifidobacterium longum,
Bifidobacterium pseudocatenulatum and Streptococcus thermophilus in maternal stool, maternal
blood, breast milk and infant stool samples highlighting the maternal-breast milk-infant
link in the onset of infant microbiota [227–229]. Of the three hypotheses the latter is most
plausible, as it also explains the presence of microbes already in the colostrum, even before
the onset of breastfeeding [201].

Breast milk has a dynamic microbial assembly composed of mammary skin-, mater-
nal gut- and neonatal oral-associated viable microorganisms with more than 200 differ-
ent genera present [120], including Lactobacilli, Staphylococci, Streptococci and Bifidobacte-
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ria [201,225,230]. The microbial assembly of breast milk is highly influenced by maternal
and infant factors such as maternal pregestational BMI, weight and diet, stage of lacta-
tion, mode of delivery as well as antibiotic exposure, infant gender and method of milk
expression [121,231,232].

For instance, a maternal Mediterranean diet led to increased abundance of Lactobacilli
compared to Western diet, in the mammary glands of a non-human primate model [232].
In another recent human study maternal diet modified the HMO composition in breast
milk and the metagenomic (but not taxonomic) landscape of milk bacteria as a response
to dietary-related alterations of the HMOs in human milk [200]. These alterations in milk
microbiota, link maternal nutrition to metabolic capacity of milk microbiota that are seeded
to the infant gut. Maternal diet during lactation changes the metabolic capacity of her
gut and breast milk microbiota that are subsequently seeded to the infant gut during
lactation, leaving microbial and metabolic signatures during critical temporal windows of
development [200].

As long as breastfeeding is maintained, breast milk microbiota is an endless supply
of colonizing bacteria for the infant gut and exert their effects via the gut-brain axis on
modulation of intestinal, neurological and behavioural functions in early life that could
possibly imprint the CNS and immune system throughout the lifespan [5,121,233]. Diet
remains the major regulator of both maternal and infant intestinal microbiota [63] as well
as breast milk microbiota [121,200]. Some breastfeeding-related protective mechanisms on
infants are also partially attributed to microbiota present in breast milk itself [121].

2.4.3. Infant Formula

Infant formula is a manufactured food designed for feeding children under 12 months
of age. There are multiple reasons why infant formula feeding is a necessary alternative
such as inability to breastfeed due to health issues or socioeconomic reasons (mother
not present due to work, single parents etc). However, infant formula feeding is not
recommended unless there is no other alternative, with breastfeeding being the first choice
and breast milk from donors following in second place [234]. Infant formula production is
highly regulated and is produced to resemble breast milk as much as possible with close
attention paid to nutrient composition, bioactive components, taste and texture [60].

Macronutrients in Infant Formula

The macronutrient composition of infant formula has changed rapidly over the last
decade. The majority of the constituent protein is derived from bovine milk, which is
generally lower in quality compared to human milk proteins, primarily due to the lim-
ited amount of essential amino acids present in bovine milk [186]. The protein content
of bovine-based infant formula ranges between 2–3 g/100 mL [235], which is approxi-
mately two to three times higher compared to protein present in breast milk (ranges from
1.4–1.6 g/100 mL in colostrum, 0.8–1.0 g/mL in mature milk) [161]. Although the quantity
of protein is very different between human milk and bovine-based infant formula, the most
abundant proteins present are quite similar; casein and whey protein with ratio fluctuating
from 2:1 to 4:1 in colostrum and 1:1 in mature breast milk [166] compared with ratio ranging
between 5:1 to 4:1 in bovine-based infant formula [60,235]. Apart from standardizing the
protein content to 1.8 g/100 kcal in infant formula [235], companies that produce formula
now add proteins with bioactive effects, such as lactoferrin [236]. However, other types of
proteins have been used in infant formula to cover the nutritional needs of the baby such
as goat milk protein or plant-based proteins from soy bean or green peas [186]. While the
gap between infant formula and breast milk is closing, not only in terms of protein content
but also regarding carbohydrates, bioactive components (such as lactoferrin, HMOs and
hormones), there is still a long way to go [186]. More research is needed to evaluate the
mechanisms that the various components of infant formula impact on the health of children
from infancy to adulthood, compared to breastfed infants. More detailed information about
macronutrient composition in infant formula can be found in Table 4.
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Table 4. Macronutrients in infant formula and their effect in infant health.

Category of
Molecule

Formula
Component Effect on Associated with References Population

Protein
Whey protein and
casein (cow-based

formula)

General growth
and development

Weight gain in infancy and
higher adiposity later in life [237] Humans:

Caucasian

Allergies in milk protein [60] Humans: multiple,
mice and rats

Higher secretion of insulin
due to stimulation of
β-pancreatic cells by

amino-acids

[237] Humans:
Caucasian

Fat

Mixed vegetable
oils (DHA & ARA)

Adipocyte
stimulation and fat

storage

High consumption ofω-6
fatty acids might induce

adiposity in early life
[186,238] Humans: multiple,

mice and rats

MFGM (cow-based
formula)

Fat storage and
general

metabolism

Decreased fat accumulation,
concentrations of leptin,

glucose and lipids in plasma
[239] Mice

Cognitive
development

Improves cognition of
formula-fed infants [171] Humans:

Caucasians

Carbohydrates Lactose General growth
and development Low gastrointestinal tolerance [240] Humans: multiple

Prebiotics, Probiotics and Synbiotics in Infant Formula

Health benefits of HMOs present in human milk on the intestine, the diversity of
commensals, the immune and the central nervous systems incentivised infant formula-
producing companies to supplement formulas with prebiotics in order to narrow the gap
between human milk and infant formula [241]. Prebiotics supplementation is predomi-
nantly done with addition of short-chain galacto-oligosaccharides (scGOS) and long-chain
fructo-oligosaccharides (lcFOS) which are both efficiently metabolized by Bifidobacterium,
contrary to the HMOs present in human milk that are only partly metabolized by this
genus [242]. Two other HMOs that have been more recently added to infant formula are
2-fucosyllactose and Lacto-N-neotetraoze [243]. Consumption of fortified infant formula
with these two prebiotics led to a similar composition of faecal microbiota between formula-
fed and breastfed infants at 3 months of age [243], but this effect disappeared by 12 months
of age [187].

Prebiotic supplementation of infant formula led to significantly altered microbiota
composition in infants compared to non-supplemented control infant formula [244] and
has been recently reviewed elsewhere [245]. However, it is worth mentioning that counts
of Bifidobacterium [246,247] and Lactobacillus [247] were found to increase with prebiotic
supplementation. On the other hand, a decrease of specific pathogens (such as Escherichia
coli, Enterococcus and Clostridium) was evident in faecal samples of 3-month-old infants
receiving prebiotic supplemented infant formula compared to infants that received non-
supplemented one [243,245]. Supplementation of infant formula with prebiotics led to
weight gain compared to non-supplemented one, but had no effect on height or head
circumference in children, which are indications of growth [244,248].

In order to maximize the advantages of prebiotics, combined prebiotic mixtures with
different genera of bacteria (largely Bifidobacterium and Lactobacillus strains), have been
developed in order to create infant formula as close as possible to human milk [186,249].
Even though supplementation of infant formula with prebiotics is becoming more and more
common, there are difficulties in mimicking the structural and physiological complexity of
HMOs [186].
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Supplementation of infant formula with synbiotics (prebiotic and probiotics) is an
intricate process which has difficulty in mirroring the unique combination and complexity
of ingredients present in breast milk [244,249]. The prevailing ideology of synbiotics
supplementation is that prebiotics can be specifically tailored for the probiotics within
the same mixture, therefore the synergistic effect of the two would possibly exert health
benefits that are similar to the ones of breast milk microbiota and HMOs in breast milk [244].
Most synbiotics contain a mixture of GOS and FOS together with strains of Bifidobacterium and
Lactobacillus [186] (see Table 5). So far, limited clinical data collected has shown that there was
no effect of synbiotic supplementation in infant formula on child development [244,250–252].
Hence, more research is needed to examine the possible effect of synbiotic fortification in
infant formula on short- and long-term infant growth and health. Of note a promising
study in rural Indian new-borns revealed significant reduction on sepsis and death levels
of new-borns who were treated with a synbiotic mixture of Lactobacillus plantarum and
FOS compared to untreated controls [253].

Table 5. Components of infant formula in order to simulate the synbiotic potential of human milk.

Category of
Molecule Formula Component Effect on Associated with References Population

HMOs

Short-chain galacto-
oligosaccharides

(scGOS) and long-chain
fructo-oligosaccharides

(lcFOS)

Highly metabolized by
Bifidobacteria,

contrary to the HMOs
present in human milk

that are only partly
metabolized by
Bifidobacteria

Weight gain but had
no effect on height or
head circumference,
significantly altered

microbiota
composition in infants

[242] Humans: multiple

2-fucosyllactose (2’FL)
and Lacto-N-neotetraoze

(LNnT)

Similar composition of
faecal microbiota

between formula-fed
and breastfed infants

at 3 months of age

[243] Humans: multiple,
mice and In vitro

Synbiotics

GOS and FOS together
with strains of

Bifidobacteria and
Lactobacilli

No effect on child
development [250–252] Humans: Asian,

Caucasian

Infant Formula, Risks and Health Concerns

Infant formula-fed infants have a faster growth curve that correlates with higher
weight gain, advanced adiposity, and a higher risk of childhood obesity compared to
age-matched breastfed infants [201]. Interestingly, infant formula consumption leaves a
signature on glucose metabolism and insulin sensitivity, that persists to adulthood [254].
High insulin levels in formula-fed infants and its respective advanced adiposity in early
life are correlated with high protein levels (2.9–4.4 g/100 kcal) found in high-protein infant
formulas [255]. The timing at which formula is introduced to the infant is also a determinant
of health in the neonatal period and adulthood; introduction of infant formula before the
third month of life is correlated with increased risk of rapid growth at six months and high
body mass index in adulthood [256]. Allergies are also prevalent among infants consuming
infant formula, mainly due to sensitivity against casein or β-lactalbumin present in bovine
milk [60].

Neonatal nutrition is a determining component of health in the early days and its
effect remains throughout life. Improvement of structural and functional properties of
formulas to minimize the differences between breastfed and formula-fed infants is strongly
supported by research on infant formula. More independent research is important to reach
conclusive results regarding the short- and long-term effects of the components of infant
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formula on human health, as well as the causation of the differences between formula-fed
and breast-fed infants [186]. It is important to understand and distinguish correlation and
causation, as well as the complexity of factors influencing these early life experiences.

3. Microbiota Changes and Neurodevelopment: From Infancy to Childhood
3.1. Microbiota Maturation and Brain Development during Weaning

In humans, the gradual introduction of solid food and the progressive termination of
breastfeeding starts between 4–6 months after birth and is called weaning [257]. During
this period, in order to cover the nutritional needs of the baby, parents might choose to
complement the diet with infant formula or introduce solid food progressively. Solid food
introduction is a major modifier of microbiota composition in the gut and it dictates the
beginning of intestinal microbiota maturation [258]. This microbiota maturation is gradual,
reaching a more diverse, yet stable composition [245].

Introduction of solid foods during the transition from a milk-based to a more complex
adult-like diet, changes the richness and diversity of the microbiota landscape [245,258].
During this change in food substrates, counts of milk-related bacteria are reduced and gen-
era able to digest more complex nutrients are expanding. For instance, certain genera such
as Lachnospiraceae, Ruminococcaceae, Blautia, Bacteroides, and Akkermansia are blooming [258],
while Bifidobacterium, Veillonellaceae, Lactobacillaceae, Enterobacteriaceae, and Enterococcaceae
counts are gradually decreased [258]. As long as the early feeding mode (breast- or formula
feeding) continues to be present, the microbiota landscape displays an in-between state of
the infant and the adult compositions [34].

Throughout those substrate changes during weaning, the microbiota’s metabolic
capacity also shifts in the infant gut with increasing genes linked to complex polysaccharide
metabolism such as starch [259]. Nutrition is a major modulator of microbiota colonization
and propagation in the intestine [63], and therefore, their respective microbial signals are
crucial for healthy development of neuronal circuits in the brain, as well as for behavioural
imprinting [9]. The nutritional changes during the solid food introduction period coincides
with the sensitive developmental period around weaning (see Figure 2). However, more
clinical studies are needed to investigate the microbial changes during weaning and their
long-term effects in humans.

Increased emphasis is being placed on the role of the microbiota in gating immuno-
logical changes to weaning [164]. The implications this has for brain function is currently
unknown. However, given that microbiota maturation in the infant gut coincides with post-
natal brain development [9,59] such as synapse propagation and pruning [78] it is highly
likely to be relevant. Neurons are highly plastic in response to environmental stimuli dur-
ing windows of opportunity, such as the postnatal period, resulting in irreversible changes
that persist throughout life [79]. It is hypothesized that the intestinal microbiota has a role
in structural and functional aspects of brain development and maturation [42,106]. Indeed,
the total absence of microbiota in GF animals led to structural alterations in the brain,
with GF animals having lower density and length of dendritic spines as well as enlarged
amygdala and hippocampi compared to conventional mice [260].

3.2. Solid Food Introduction and Establishment of Nutritional Habits

Dietary habits of the mother during pregnancy and food choices early in life are known
to be essential for the establishment of odours and taste preferences in later life [261]. The
olfactory system, which includes the olfactory bulbs in the brain that are responsible for
taste and smell perception, is functional already at the 24th week of gestation [262]. The
amniotic fluid is full of nutrients from maternal diet and stores and, it is the first ‘food’ the
fetus is able to detect different tastes and flavours from [263]. Behavioural mechanisms,
such as programming of food preferences and eating behaviour start very early in life and
have been recently discussed elsewhere [264].

During the initial years after birth the seeded microbiota continues to develop and
mature with multiple factors such as nutrition, environmental and maternal factors, dictat-
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ing its propagation in critical temporal windows of development. For instance, perinatal
factors such as delivery mode or gestational age at birth have been recently unravelled as
determinants of the gut microbiota composition up to four years of age in humans [118].
These findings suggest that events that disturb normal microbial seeding perinatally might
leave signatures in the first steps of life, and it is therefore hypothesized that early life
microbial perturbations possibly prime developmental processes which tip the balance
between health and disease.

4. Early Life Microbiota: Another Component in the Vicious Cycle of Malnutrition

Malnutrition is an umbrella term and in its whole spectrum includes undernutrition
(wasting, stunting, underweight), overweight and obesity and remains a global health
challenge up until today [265]. Apart from extreme undernutrition, moderate caloric and
nutrient restriction during pregnancy (self-imposed maternal dieting or teenage pregnancy)
is common in developing and developed countries [266]. The consistently decreased ex-
posure to proper quantity and quality of food during pregnancy can lead to irreversible
changes in crucial body systems such as the CNS [267], cardiovascular [268], haemopoi-
etic [269] and immune system [270] of the developing fetus.

The nutrient availability for the developing fetus depends on the concentration of
those nutrients in maternal circulation and the blood flow in the placenta that will distribute
them to the embryo [271]. After birth, the most prominent factors for the onset of severe
acute early life malnutrition are the abnormal or early cessation of breastfeeding, premature
weaning and low-quality of breast milk due to disturbed maternal nutritional and general
health status [272].

4.1. Undernutrition and CNS Development

During pregnancy, even mild or moderate caloric restriction could have a dramatic
impact on the fate of CNS development. In a non-human primate model, moderate
caloric restriction in the mother led to decreased cerebral development, neurotrophic
factor suppression, impaired axonal growth and glial maturation in the offspring [273].
In the same study, decreased maternal nutrient availability resulted in downregulation
of transcriptome pathways related to brain development and cell proliferation of the
embryo, while pathways related to cerebral catabolism and cell death were significantly
upregulated [273].

In rodents, reduced maternal protein intake during pregnancy (5 or 10% protein as
compared to 20% protein) caused not only impairments in brain development and growth
rate of the pups, but also in protein and fatty acid metabolism, in the brain and on a
whole-body level [274]. In another similar rodent study, dam exposure to a low-protein
diet during pregnancy through 4 weeks postnatally, resulted in decreased BDNF gene
expression levels in the hippocampus of the offspring accompanied by impaired spatial
learning and memory [275]. Moderate nutritional/caloric restriction during pregnancy
impacts brain metabolism [274], and gene and protein expression of key-regulators for
CNS health, and affects cerebral development of the embryo which leads to behavioural
adversities later in life, in preclinical models [275].

In humans, insufficient early life energy, protein iron and iodine intake leads to
impaired behavioural and cognitive function that persist to adulthood. Deficiency of B
vitamins, zinc, betaine and choline are able to induce irreversible changes in the brain
and lead to neurological deficits on the developing child [87,276]. During the infamous
period of the Dutch famine in the mid-1940s, when exposure to nutrients was widely
insufficient, the malnutrition cases were extremely high [276]. Birth cohorts and later
follow-up studies showed that pre- and perinatal malnutrition increased the prevalence
of congenital disease of the CNS in early life, schizophrenia and schizophrenia spectrum
personality disorders in adults that were exposed to the famine as infants. Malnutrition or
undernutrition during crucial developmental time-windows, for instance during synapse
formation, could lead to impaired brain growth with no or possible minimal recovery
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after nutritional rehabilitation at a later time-point [86,277]. Recovery is possible only
after nutritional rehabilitation before the end of the critical period of synapse formation,
proliferation and brain growth [278].

4.2. Undernutrition and Microbiota

Optimal nutrition in early life is crucial for the expansion of the microbiota, immune
system development, and the balance of host-microbe interactions. Exposure of 3-week-old
mice to reduced dietary protein resulted in decreased binding of intestinal immunoglob-
ulin A (IgA) with commensal bacteria, interfering with normal mucosal processes in the
mouse intestine [63]. This disrupted relationship between IgA and gut commensals led
to adaptation of bacteria to nutrient limitation and modulated the host-microbial home-
ostasis by reducing the binding of commensals on the intestinal mucosa [63]. In another
similar preclinical study, dietary intervention with tryptophan-deficient diet in mice led to
vitamin B3 deficiency which modulates the production of antimicrobial peptides in the in-
testine [279]. This dietary intervention led to altered microbiota composition accompanied
by inflammatory colitis attributed to the microbial composition changes [279]. Therefore,
postnatally and during time-windows of opportunity such as weaning, undernutrition
regulates important homeostatic host-microbe interactions.

In severely malnourished children it is difficult to identify whether the changes in
gut microbiota composition present as a consequence of the diet or the condition or the
combination of both [272]. A common complication in severely malnourished children is
enteric septicaemia with increase prevalence of Salmonella, Shigella and Staphylococcus aureus
populations in faecal samples [280]. These bacteria were able to grow in blood cultures,
suggesting that in the presence of a leaky gut, a common outcome in undernourished
populations, the pathogens possibly survive and migrate to other previously sterile tissues
via the systemic circulation [280].

Microbiota composition in malnourished children is disturbed with almost depleted
Bifidobacterium and an inverted aerobes:anaerobes ratio in faecal samples resembling a
non-mature microbiota [181,281]. Nutritional intervention alone is unable to inverse the
unhealthy aerobes:anaerobes ratio, suggesting that diet alone is unable to modulate the
unhealthy microbiota after it has been established in critical temporal windows during
early life [281]. Interestingly, antibiotic treatment with cefdinir and amoxicillin has shown
promising results in systemic treatment of malnourished children, by decreasing the inci-
dence of diarrhoea and mortality while promoting weight gain [280]. Antibiotic treatment
accompanied by therapeutic diet and probiotic supplementation with Lactobacillus del-
brueckii effectively reduced mortality of malnourished children [280]. The combination
of antibiotics together with high-quality protein and high-fibre diet (prebiotic) as well as
supplementation with probiotic bacteria might be a more targeted approach to malnutri-
tion [272].

Recent approaches have focused on targeting the microbiome for undernourished
children via societal strategies such as educational support highlighting the importance
of the microbiota on high-risk communities [282] and promotion of microbiota-directed
complementary foods that aim at the maturation of the stunted-like, immature microbiota,
present in the intestine of those individuals [282,283]. Even though studies on undernu-
trition usually focus on general child development, links between microbiota and brain
developmental changes induced by malnutrition have also been highlighted [61].

Poverty and food insecurity are major risk factors for malnutrition [284]. However,
malnutrition is a complex condition and very difficult to reproduce in controlled, hygienic
environments [285]. It is hypothesized that apart from the decreased nutrient availability,
severe acute malnutrition has a microbial component [285]. The decreased availability of
nutrients might lead to altered microbiota composition and increased inflammation in the
gut that subsequently modulates the intestinal environment, the absorption of nutrients
and magnifies the microbial dysbiosis in the gut [282,284]. Therefore, the vicious cycle of
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malnutrition has another intestinal microbial component that could partly act as a target
for prevention of symptoms of the disease.

5. Conclusions

Microbes are co-existing and co-evolving with humans across the lifespan and it
is believed that the beginning of this mutualistic relationship starts at birth. However,
increasing data has shown that microbial signatures modulate embryonic development,
imprint the CNS and the immune system and fine-tune the balance between health and
disease. Both neurodevelopment and microbial composition in early life are plastic and
influenced by parental (genetics, diet, internal stores, pathophysiology of the parents,
delivery mode, feeding mode, establishment of nutritional habits) and environmental
(infections, antibiotics, pollution) factors.

Early life nutrition plays a central role in the onset of multiple developmental processes
in the brain and the alimentary canal via nutritional programming and modulation of
the microbiota-gut-brain axis during the first steps of life, regulating the equilibrium
between health and disease later in life. Understanding the link between the triad of
perinatal nutrition, neurodevelopment and gut microbiota is of great importance in order
to unravel the mechanisms of diseases that are believed to be rooted in early life. Although
important data has recently described some of the early life nutritional programming and
the microbial contribution on the imprinting of the CNS, principal mechanisms remain
elusive. Perturbations that challenge the balance of this relationship during critical temporal
windows of development might disturb gut homeostasis and host-microbial interactions,
as well as structural and functional alterations in the CNS. More research is essential on
the impact of nutrition on the shaping of the gut microbiota and neurodevelopment of the
offspring to untangle the intertwined pieces of this complex puzzle that is microbiota-gut-
brain axis and, to possibly prevent, diagnose and mitigate conditions that are rooted in this
sensitive period.
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