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Abstract
Background: The question of how a circle or line segment becomes covered when random arcs
are marked off has arisen repeatedly in bioinformatics. The number of uncovered gaps is of
particular interest. Approximate distributions for the number of gaps have been given in the
literature, one motivation being ease of computation. Error bounds for these approximate
distributions have not been given.

Results: We give bounds on the probability distribution of the number of gaps when a circle is
covered by fragments of fixed size. The absolute error in the approximation is typically on the
order of 0.1% at 10× coverage depth. The method can be applied to coverage problems on the
interval, including edge effects, and applications are given to metagenomic libraries and shotgun
sequencing.

Background
The question of how a circle becomes covered when ran-
dom arcs are marked off has arisen repeatedly in bioinfor-
matics. As an example, a prokaryotic chromosome is
typically circular and the clones extracted from it for
genomic libraries or shotgun sequencing projects are ran-
domly positioned arcs. The number of uncovered gaps is
of particular interest: a genomic library ideally has no
gaps, while one might seek to stop the undirected part of
a shotgun sequencing project when a small number of
gaps remain (we call this the 'stopping problem'). Cover-
age problems also arise in the culture-independent meth-
ods of metagenomics, since the number of clones coming
from each genome in a mixed community is random.
Accordingly, the question of the number of gaps has been

treated by many authors, in both mathematical and bio-
logical contexts.

We refer the reader to [1] for a review of the mathematical
literature on circle covering problems and the exact distri-
bution of the number of gaps when all arcs are of equal
length. Driven by practical considerations, approximate
distributions for the number of gaps have been given in
the genomics literature: see for example [2-4]. These
approximate distributions are easier to compute than the
exact distributions. Some address modified coverage
problems with particular biological relevance, such as the
'edge effects' which arise when certain arc positions can-
not occur. Bounds for the probability of completely cov-
ering the circle are given in [5], but to the knowledge of
the authors no bounds have been given for the distribu-
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tion of the number of gaps. In this paper we give bounds
for the probability distribution of the number of gaps in
circle covering problems. The method can be applied to
coverage problems on the interval, including edge effects.
Applications are given to metagenomic libraries and the
stopping problem in shotgun sequencing.

Results
Proposition 1 Suppose that n arcs, each of length s, are placed
uniformly and independently at random on a circle of circum-
ference 1. Then the number of gaps has approximately the Pois-
son distribution with parameter m = n(1 - s)n-1. The error in the
approximation is given in Proposition 2.

Proposition 2 In the setting of Proposition 1, let W denote the
number of gaps and let Y denote a Poisson random variable
with parameter m. Then for any nonnegative integer w,

|P(W ≤ w) - P(Y ≤ w)| ≤ ε

where

and x+ = max(x, 0).

Corollary 1 In the setting of Propositions 1 and 2, the proba-
bility that the circle is completely covered is approximately e-m

and the absolute error in this approximation is at most ε.

Proposition 3 Suppose that N arcs, each of length S, are
placed uniformly and independently at random on an interval
of length 1 (so that the whole of each arc lies on the interval).
Then the number of gaps (excluding the gap at each end) has
approximately the Poisson distribution with parameter m = n(1

- s)n-1, where s = and n = N - 1. The error in the approx-

imation is just as in Proposition 2, again taking s = and

n = N - 1.

Corollary 2 In the setting of Proposition 3, the probability that
no gaps exist except end gaps of length at most d is approxi-
mately e-M, where

and the absolute error in this approximation is at most

Discussion
We have given bounds on the probability distribution of
the number of uncovered gaps when arcs of fixed length
are placed randomly on a circle or interval. As discussed in
[6], one motivation for such approximations is the issue
of computational overflow arising when the exact solu-
tion is applied. Typically they involve simple, well-known
probability distributions and this aids both computation
and further mathematical analysis. Our own motivation
in beginning this work was seeing certain quite poor
approximations used in practice, both locally and in the
literature. For a cautionary example we take s = 10-2 and n
= 750, values which arise when 0.3% of the clones in a
metagenomic library consisting of 2.5 × 105 40-kilobase
fosmid inserts are from the genome of interest, and the
genome of interest has length 4 megabases. Here ad-hoc
approximations using elementary probability theory can
indicate a 95% probability that the library completely
covers that genome, while the true probability is 66%
(neglecting biologically related bias; calculations are to
the nearest integer and are not given).

We stress the similarity between our approximations and
those already given in the literature. In [2,3,7] simplifying
assumptions are made which give a binomial distribution
for the number of gaps. Our approximation is a Poisson
distribution, and it is well known in probability theory
that the binomial distribution converges to the Poisson
distribution in certain limits; one such convergence is
proved in [8]. Indeed, these different approximations are
generally numerically close. The contribution of the
present paper is therefore to provide an approximation
with error bounds.

We refer the reader to [2] for a simple modification to cov-
erage problems when a certain minimum overlap is
required between arcs, and give a worked example in
Additional file 2. Note that in [2] the expected number of
gaps is calculated approximately; as shown in Additional
file 1, the exact value for the expected number of gaps is m
= n(1 - s)n-1. This is the parameter of the Poisson distribu-
tion in Proposition 1. Our approximating Poisson distri-
bution therefore has the same expectation as the exact
distribution, although its variance differs (the exact vari-
ance of the number of gaps is given in Additional file 1).

Our results may be applied to the stopping problem. Sup-
pose we desire p% probability that no more than w gaps
remain at the end of the undirected part of a shotgun
sequencing project. By inverting Proposition 1 (see Addi-
tional file 2 for details) we obtain an approximate value
for the number of clones, and hence coverage depth,
required. Here again, our contribution is not the estimate
but rather the lower bound given by Proposition 2 for the
probability that no more than w gaps remain (neglecting
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biologically related bias). Other solutions to the stopping
problem have been proposed: see for example [6] and [3]
for alternative strategies and further discussion of the
stopping problem.

The practical relevance of our approximations clearly
depends on the size of the error bound. Figure 1 plots the
error bound against coverage depth for arc lengths s = 10-

1, 10-2, 10-3 and 10-7 (the curves for s = 10-4, 10-5 and 10-6

are almost indistinguishable from the s = 10-7 curve at this
scale). We emphasise that s is the relative arc length – so
for genomic applications, s is the actual arc length divided
by the length of the genome. These arc lengths are
intended to represent the full range of typical genomic
projects: for example the smallest, s = 10-7, would corre-
spond to covering the largest known eukaryote genome,
the amoeba Chaos chaos [9], with 400 kilobase bacterial
artificial chromosome (BAC) inserts. A lookup table of
relative arc lengths for recent shotgun sequencing projects
is given in [4]. It can be seen that for these relative arc
lengths, error bounds on the order of 0.1% are achieved at

10× coverage. Further discussion of Figure 1 is given in
Additional file 1; it should also be remarked that the error
bound at 5× coverage is considerably larger. For the par-
ticular experimental parameters relevant to the user, the
spreadsheet in Additional file 3 may be used to obtain val-
ues for the approximation and error bounds.

The validity of coverage problems in general for genomic
applications depends of course on the extent to which
they capture the actual problem. For example, a given
genome might contain one gene which is toxic to the E.
coli host in a BAC library. Since library fragments will not
contain this gene, the corresponding coverage problem is
on the interval rather than the circle. With a priori knowl-
edge of an unclonable region we may therefore apply
Proposition 3 rather than Proposition 1; without such
information we may choose either to neglect this effect or
to model it (for example using Propositions 1 and 3 and
conditional probability). Pathological cases certainly
exist, for example the highly repetitive maize genome for
which as many as 80% of arc positions may not be cloned

Error boundsFigure 1
Error bounds. Error bound for the approximate distribution of the number of gaps when a circle is covered by random arcs. 
The error bound (given as an absolute error, measured in percentage points) is plotted against coverage depth, for arc lengths 
s = 10-1, 10-2, 10-3 (progressively smaller dashes) and 10-7 (solid).
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[7]. The approach should therefore be chosen using the
best available information. Certain other biases are not so
dependent on the particular target genome, for example
the inevitable small variations in clone length and posi-
tion bias. These have been discussed in [3,4,10] using
empirical data and simulations and the consensus is that
they may be neglected. The interested mathematical
reader may check that by first conditioning on the frag-
ment lengths, our method gives a lower bound for P(W ≤
w) in Proposition 2 when the arc lengths are random,
although we do not pursue this.

Another modelling issue arises in metagenomics, which is
the culture-independent study of a mixed community of
genomes. In a metagenomic library the number of clones
n from a genome in the community is random, having a
binomial distribution (in the absence of bias). If the com-
position of the community is known then, from the cen-
tral limit theorem of probability, n is well approximated
by its average and this value may be used in Proposition 1
(see Additional file 2). Further, since the distribution of n
is concentrated at a few values around its mean, it is typi-
cally computationally inexpensive to obtain satisfactory
bounds for the distribution of the number of gaps by an
application of conditional probability.
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