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ABSTRACT
In this paper, the performance of energy detector-based spec-
trum sensor networks is examined under the constraints of
the IEEE 802.22 draft specification. Additive white Gaus-
sian noise (AWGN) channels are first considered, and a closed
form solution for sample complexity is derived for networks
of any size. Rayleigh, Nakagami and Rice fading channel
models are also examined, with numerical results demon-
strating the effect of these models on the required sample
complexity for varying numbers of cooperating nodes.

Based on these results, the relationship between the sample
complexity for AWGN, Rayleigh and Nakagami channels is
examined. Through data fitting, an approximate model is
derived, allowing the sample complexity for Rayleigh and
Nakagami channels to be computed easily. The model is
shown to be accurate across a range of practical values.

Categories and Subject Descriptors
C.2.1 [Computer-communication networks]: Network
architecture and design—distributed networks, wireless com-

munication; G.3 [Probability and statistics]: Statistical
computing

General Terms
Performance, Theory

Keywords
Cognitive radio, spectrum sensing, cooperative networks,
energy detection, fading channels

1. INTRODUCTION
The past few decades have seen increasing utilization of the
electromagnetic spectrum for a variety of applications such
as radio, television, mobile telephony and wireless broad-
band. Typically, such services are assigned specific oper-
ating frequencies by national regulatory bodies. However,

the amount of usable bandwidth is limited, and the recent
trend towards wireless ubiquity has led to a decrease in the
available usable spectrum [2, 9].

Studies have shown that spectrum usage varies significantly
depending on time and/or location [7]. If exploited, this
variation could lead to the recovery of licensed, but unused,
frequencies, paving the way for more efficient spectrum us-
age. The platform by which this is to be achieved is known
as Cognitive Radio.

However, if the process of identifying unused frequencies,
known as spectrum sensing, is not stringent enough, there is
a risk of interfering with licensed signals (a television chan-
nel, for instance). This is an unacceptable situation for the
licensed user, particularly if a fee has been paid for broadcast
rights. Thus, spectrum sensing must be very reliable.

Cooperative spectrum sensing aims to increase the reliabil-
ity of the spectrum sensing process through the sharing of
information between cooperating nodes via a control chan-
nel. In energy detector-based networks, such information
typically includes an estimate of the energy of the channel
under investigation and, depending on the available control
channel capacity, an estimate of the signal to noise ratio
(SNR) of the channel under investigation.

Soft decision fusion is an idealized view of such networks: the
control channel is error-free and has infinite capacity, so both
channel energy and SNR estimates can be transmitted with
infinite precision; this data can then be optimally combined
to reach an overall decision about the state of the channel
under investigation. In this way, soft decision fusion can be
viewed as an upper bound on the performance of real energy
detector-based networks.

To date, soft decision networks have only been studied in
cases where the number of cooperating nodes and the num-
ber of samples are small [8, 5, 6]. In this work and, to the
best of the authors’ knowledge, for the first time, numerical
results are presented for the performance of such networks
in practical operating conditions, such as those proposed in
the IEEE 802.22 draft specification [12]. In such conditions,
both the number of cooperating nodes and the number of
samples are large. Thus, the practical performance limita-
tions of cooperative energy detection can be ascertained.



Additionally, the performance of soft decision fusion in fad-
ing environments is examined. Again, to the best of the
authors’ knowledge, previous work has demonstrated the ef-
fect of fading on cooperative networks, but only in cases
where the number of cooperating nodes and the number of
samples are much smaller than what may be encountered in
practice [3, 11]. A variety of fading channel models are con-
sidered, and numerical results, demonstrating performance
limits, are presented.

2. SYSTEM MODEL

2.1 Signal model
In a network of cooperating energy detector-based spectrum
sensor nodes, for a given channel, the received signal is typ-
ically represented as:

ri(t) =

{

ni(t) H0

si(t) + ni(t) H1,
(1)

where ri(t) is the received signal at the ith node, ni(t) is the
time-varying noise interference at the ith node, si(t) is the
transmitted signal at the ith node and H0 and H1 are the
null and alternative hypotheses, respectively.

2.2 Energy detection
At each energy detector, a test statistic is computed from
discrete samples of the channel under investigation:

Yi =

Mi
∑

n=1

| ri[n] |2, (2)

where Yi is the test statistic at the ith node in the network
(i.e. the band energy assuming a 1Ω reference resistor), Mi

is the number of samples at the ith node and ri[n] = ri(nTs),
where Ts is the sample period.

Without loss of generality, let it be assumed that the noise
power at each node is normally distributed with zero mean
and unity variance. This is equivalent to the received sig-
nal ri(t) being normalized with respect to the noise power.
While it can be argued that the estimate of this noise power
is subject to uncertainty [13], for the purposes of this work,
it is assumed that such uncertainties are negligible.

From (2), the distribution of the energy of the received signal
at node i will be:

Yi ∼
{

χ2

2ui
H0

χ2

2ui
(2γi) H1,

(3)

where χ2

2ui
and χ2

2ui
(2γi) are the central and noncentral

chi square distributions, respectively, ui = Mi

2
is the time-

bandwidth product at the ith node and γi is the noncentral-
ity parameter at the ith node, equal to the signal to noise
ratio at the ith node [14;, 10, p. 45-47].

It is assumed that the number of samples is equal at each
node. Thus, Mi = M ∀i and ui = u ∀i, where M is the
number of samples at every node and u is the common time-
bandwidth product. It is also assumed that the SNR at
every node is equal, i.e. γi = γ ∀i. This is not a generally
applicable assumption, but is allowable here as this work is
concerned only with the worst case SNR limits, as specified
in IEEE 802.22, i.e. SNR = −21dB [12].

It has been shown that, at low SNR, the number of samples
required to reliably detect a signal becomes large [13]. Thus,
invoking the central limit theorem, the test statistic becomes
approximately normally distributed:

Yi ∼
{

N (M, 2M) H0

N (M(1 + γ), 2M(1 + γ)2) H1.
(4)

2.3 Cooperative networks
After each detector has estimated the energy of the band un-
der investigation, the test statistics are transmitted across a
control channel to a designated master node or a fixed con-
trol center, called the fusion center, where they are summed
together according to:

Y =

N
∑

i=1

Yi, (5)

where Y is the network test statistic.

As the sum of normal random variables is also a normal
random variable [4, p. 362], Y is normally distributed:

Y ∼
{

N (MN, 2MN) H0

N (MN(1 + γ), 2MN(1 + γ)2) H1.
(6)

The fusion center makes its decision by comparing the net-
work test statistic to a threshold:

D ∼
{

H0 Y ≤ T
H1 Y > T,

(7)

where D is the fusion center decision and T is the threshold
to which the test statistic is compared. Thus, the fusion
center decision probabilities are defined as:

Qf = Q

(

T − MN√
2MN

)

, (8)

Qm = 1 − Q

(

T − MN(1 + γ))
√

2MN(1 + γ)2

)

, (9)

where Qf and Qm are the probabilities of false alarm and
missed detection, respectively, at the fusion center, and Q(·)
is the Q function, equivalent to the standard Gaussian com-
plementary cumulative distribution function.

Using (8), the threshold T can be expressed as:

T =
√

2MNQ−1(Qf ) + MN, (10)

where Q−1(·) is the inverse Q function. Thus, for a given
value of Qf , Qm can be calculated using:

Qm = 1 − Q





Q−1(Qf ) −
√

MN
2

γ)

(1 + γ)



 . (11)

Rearranging (11), and using the approximation 1+γ ≈ 1, the
sample complexity for AWGN channels can be determined:

M0 =
2

N

(

Q−1(Qf ) − Q−1(1 − Qm)

γ

)2

, (12)



where M0 is the sample complexity for an AWGN channel,
i.e. the number of samples required per node to reliably
sense a channel at a given SNR. This equation is analogous
to the sample complexity for a single energy detector derived
by Tandra and Sahai [13].

From (12), it can be seen that the AWGN channel sam-
ple complexity is inversely proportional to the size of the
network, i.e. increasing cooperation decreases the number
of samples required to reliably sense a channel at a given
SNR.

2.4 Fading channels
In practical situations, the received signal at the local node
will be subject to fading due to the presence of scatterers
in the propagation channel. In such cases, the average the
probability of missed detection can be found by integrating
(11) over the probability density function (PDF) of the sum
of the SNR at each local node:

Qmavg =

∫

∞

0

Qm(x)f(N, x, γ̄)δx, (13)

where f(N, x, γ̄) is the PDF of the sum of the SNR at each
node, x is the variable of integration representing the sum of
the SNR at each node and γ̄ is the average SNR at every
node [3, 11]. It should be noted here that, as Qf does not
depend on the local SNR, Qfavg = Qf , i.e. the probability
of false alarm is unaffected by fading.

2.4.1 Rayleigh fading
The Rayleigh fading model is used to analyze ionospheric,
tropospheric and urban multipath channel effects. Under
this model, the attenuation of the signal is Rayleigh dis-
tributed, and so the SNR at every node becomes exponen-
tially distributed1 [10, p. 847]. The PDF of the sum of N
exponential random variables fRay(N, x, γ̄) is given by [11]:

fRay(N, x, γ̄) =
xN−1e

−
x
γ̄

Γ(N)γ̄N
. (14)

The average probability of missed detection for a Rayleigh
fading channel can now be evaluated by substituting (14)
into (13) and evaluating numerically.

2.4.2 Nakagami-m fading
The Nakagami-m fading model has been shown to be the
best model for signals in urban multipath environments [10,
p. 841]. Under this model, the PDF of the sum of the SNR
at each node fNak(N, x, γ̄) follows a Gamma distribution:

fNak(N, x, γ̄) =

(

m

γ̄

)mN
xmN−1e

−
mx
γ̄

Γ(mN)
, (15)

where m is the Nakagami parameter, indicating fading sever-
ity. When m = 1 it is equivalent to the Rayleigh channel,
while m < 1 indicates more severe fading and m > 1 in-
dicates less severe fading [11]. The average probability of
missed detection can be evaluated using (13), as before.

1Earlier, it was assumed that the SNR at every node was
equal. The proposition of a distribution of SNR values at
each node does not violate this assumption as the distribu-
tion function is the same at each node and all nodes have
the same average SNR value.

2.4.3 Rice fading
The Rice fading model is used to model situations where one
path has a much stronger signal than the others, typically
when a receiver has line of sight to a transmitter [10, p.
841]. To the best of the authors’ knowledge, there is no
closed form solution for the PDF of the sum of the SNR
at each node under Rice fading. However, it is possible to
calculate the PDF numerically [4, p. 362] using:

fRice(N, x, γ̄) = F−1(F(fRice(1, x, γ̄))N ), (16)

where F represents the Fourier transform, F−1 represents
the inverse Fourier transform, fRice(N, x, γ̄) is the PDF of
the sum of the SNR at each node and fRice(1, x, γ̄) is the
PDF of the SNR at a single node, given by:

fRice(1, x, γ̄) =
K + 1

γ̄
e
−K−

(K+1)x

γ̄ I0

(

2

√

K(K + 1)x

γ̄

)

,

(17)

where K is the Rice factor, i.e. the ratio of the power of the
strongest path to that of the other paths, and I0 is the 0th

order modified Bessel function of the first kind [1]. When
K = 0, the Rice channel is equivalent to the Rayleigh chan-
nel. Again, the average probability of missed detection can
be evaluated using (13).

3. PERFORMANCE LIMITS
The IEEE 802.22 draft specification states that the probabil-
ities of missed detection and false alarm at SNR = −21dB
must be less than or equal to 10%, i.e. Qmavg ≤ 0.1 and
Qfavg ≤ 0.1 [12]. Using (13), it is possible to numerically
evaluate the sample complexity under such constraints. Fig-
ure 1 shows the variation of sample complexity with network
size for the various channel types. As expected, the AWGN
channel sample complexity is inversely proportional to the
network size while, for each of the fading channels, it can be
seen that, as the network size increases, the degradation in
receiver sensitivity decreases, i.e. cooperation can overcome
the effect of fading.

As can be seen, the Rice fading channel, with K = 5, has
a sample complexity close to that of the AWGN channel,
which is to be expected as the Rice channel models situations
where the receiver has a line of sight to the transmitter.
The Nakagami-2 channel, i.e. m = 2, also has a sample
complexity close to that of the the AWGN channel, while the
Rayleigh (equivalent to m = 1 and K = 0) and Nakagami-
0.5 channels highlight the effect of increasing fading severity.

Of particular interest is the number of nodes it takes to
achieve a sample complexity close to that of the AWGN
channel. Figure 2 shows the variation of normalized sample
complexity M/M0, i.e. the ratio of fading channel sample
complexity to AWGN sample complexity, for various net-
work sizes. As can be seen, for heavily faded Nakagami
channels, e.g. m = 0.5, networks with around fifty nodes
should be sufficient to achieve a sample complexity close to
that of AWGN. When the fading is not as severe, e.g. m = 1
(equivalent to a Rayleigh channel), approximately twenty
nodes are required, while in very lightly faded Nakagami
channels, e.g. m = 2, as few as ten nodes are required. As
Nakagami channels are primarily used to model urban envi-
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Figure 1: Log-log plot of sample complexity against
network size for SNR = −21dB, Qmavg = 0.1, Qf ≤ 0.1.
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Figure 2: Log-log plot of normalized sample com-
plexity against network size for SNR = −21dB,
Qmavg = 0.1, Qf ≤ 0.1.

ronments, where the population density is high, it is likely
that such numbers of nodes will be available.

Rice fading models situations where the receiver has a line
of sight to the transmitter. Such scenarios can occur in
less populated or rural environments, where there is a lower
likelihood of large numbers of nodes being available for co-
operation. However, as can be seen in Figure 2, as few as
five nodes are required for the sample complexity to be very
close to that of AWGN for the Rice channel with K = 5.
The worst case Rice channel occurs when there is no line of
sight, i.e. K = 0, and is equivalent to the Rayleigh fading
channel. Thus, at worst, twenty nodes will be required to
achieve a sample complexity close to that of AWGN.

4. SAMPLE COMPLEXITY MODELS
The results shown in Figure 1 are useful for determining the
sample complexity required for a given network size, but
only under the specified constraints. Thus, a generalized
model of sample complexity is desirable. However, it is not
possible to average the AWGN channel sample complexity
in a similar fashion to (13) as the integral is not valid at
x = 0. Thus, it is proposed that the sample complexity be
approximated.

4.1 Rayleigh fading
For Rayleigh faded channels, the following model is pro-
posed:

M̂Ray =

(

ae
b
n + γ

(

c +
d

ne

)

+ f +
g

nh

)

M0, (18)

where M̂Ray is the approximate sample complexity for a
Rayleigh faded channel, a = 1.13257, b = 2.89472, c =
1.26362, d = 1.07861, e = 13660.7, f = −0.133695, g =
2.66148 and h = 5.28098.

The accuracy of the model can be verified by examining
the residual2, MRay − M̂Ray. As can be seen in Table 1,
the mean of the absolute value of the residuals is less than
four samples with a standard deviation of fewer than five
samples, while the average absolute percentage error, 100×
|MRay − M̂Ray|

MRay

, is 0.9% with a standard deviation of 1.23%.

The five largest residual and percentage error values are
shown in top and bottom halves of Table 2, respectively.
As can be seen, the largest residuals occur where the per-
centage errors are small and the largest percentage errors
occur when the residuals are small.

4.2 Nakagami fading
For Nakagami faded channels, the following model is pro-
posed:

M̂Nak =

(

ae
b

mn + γ

(

c +
d

(mn)e

)

+ f +
g

(mn)h

)

M0,

(19)

where M̂Nak is the approximate sample complexity for a
Nakagami faded channel, a = 0.953638, b = 3.16447, c =
1.39815, d = 0.679112, e = 3.59613, f = 0.0973942, g =
0.322522 and h = 9.07618.

As can be seen in Table 1, the mean of the absolute value of
the residuals3 is less than eighty three samples with a stan-
dard deviation of fewer than two hundred and eighteen sam-
ples, while the average absolute percentage error is 2.911%
with a standard deviation of 2.961%.

The five largest residual and percentage error values are
shown in top and bottom halves of Table 3, respectively.
As can be seen, again, the largest residuals occur where the
percentage errors are small and the largest percentage errors
occur when the residuals are small.

4.3 Rice fading
For Rice faded channels, a sufficiently accurate approxima-
tion could not be found due to the non-linear variation of
MRice with K. However, at worst (K = 0), Rice fading is
equivalent to Rayleigh fading and, at best (K → ∞), it is
equivalent to AWGN. Thus, 1 ≤ MRice ≤ MRay.

2MRay was calculated numerically using (13) for each unique
pair {N, SNR} in the sets N ∈ {1, 2, 3, 4, 5, 10, 20, 50} and
SNR ∈ [−21dB, 0dB] (in 1dB intervals).
3MNak was calculated in a similar fashion to MRay

for each unique triplet {N, SNR, m} in the sets N ∈
{1, 2, 3, 4, 5, 10, 20, 50}, SNR ∈ [−21dB, 0dB] (in 1dB in-
tervals) and m ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}.



Table 1: Residual statistics for the approximate
channel models.

Channel type Rayleigh Nakagami

Mean absolute residual 3.737 82.369

Standard deviation 4.171 217.777

Mean absolute percentage error 0.9% 2.911%

Standard deviation 1.23% 2.961%

Table 2: Largest residuals and percentage errors
(PE) for the approximate Rayleigh channel model.

N SNR MRay Residual PE

2 −17dB 78821.9 17.443 0.022%

2 −21dB 495625 −17.334 −0.004%

2 −16dB 49807 16.758 0.034%

2 −18dB 124777 16.462 0.013%

5 −21dB 79045.1 16.041 0.020%

2 0dB 42.197 2.688 6.371%

3 0dB 19.071 1.068 5.602%

4 0dB 11.958 0.570 4.765%

2 −1dB 62.724 2.814 4.486%

5 0dB 8.633 0.352 4.077%

Table 3: Largest residuals and percentage errors
(PE) for the approximate Nakagami channel model.

N SNR m MNak Residual PE

1 −21dB 1.25 2.52 × 106 −3452.3 −0.137%

1 −21dB 2 991250 2162.29 0.218%

1 −20dB 1.25 1.59 × 106 −2138.19 −0.134%

1 −21dB 1 4.79 × 106 1353.32 0.028%

1 −20dB 2 625805 1339.53 0.214%

50 −3dB 2 1.674 −0.191 −11.391%

50 −3dB 1.75 1.680 −0.190 −11.305%

50 −4dB 2 2.443 −0.274 −11.209%

50 −3dB 1.5 1.687 −0.189 −11.191%

50 −4dB 1.75 2.451 −0.273 −11.123%

5. CONCLUSION
An expression for the sample complexity of cooperative en-
ergy detector-based networks operating on AWGN channels
was derived and shown to be inversely proportional to net-
work size. Numerically generated sample complexity data
were presented for a variety of fading environments. In all
cases, it was demonstrated that sample complexity decreases
as cooperation increases and that the number of nodes re-
quired to overcome multipath effects is realistic.

Through data fitting, sample complexity models were de-
rived for cooperative networks operating on Rayleigh and
Nakagami faded channels with the constraint Qmavg = 0.1,
Qf ≤ 0.1. These models were shown to be highly accurate

across a range of practical SNR values and network sizes.
For Rice channels, it was noted that sample complexity is
upper bounded by Rayleigh channel sample complexity and
lower bounded by the AWGN channel sample complexity.

As soft decision type networks were considered, the results
presented here provide an upper bound for the performance
of real energy detector-based networks, which have non-
idealities such as finite control channel capacity, requiring
the quantisation of local sensing data, parameter estimate
uncertainties, and transmission errors in the control chan-
nel. The incorporation of such factors into these models is
expected be the focus of future work.
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