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General Abstract 

Scyphomedusae are receiving increasing recognition as key components of marine 

ecosystems. However, information on their distributions and abundance beyond coastal 

waters is generally lacking. These data are required to identify the risks of detrimental 

impacts of jellyfish blooms on human activities. The present work looked at the 

opportunity to access new information on the distribution and abundance of 

scyphomedusae around Ireland by using existing infrastructures and sampling 

programmes. 

During the annual Irish groundfish survey of 2009, the jellyfish bycatch obtained was 

documented. With 140 sampling stations distributed over an area >160 000 km
2
, this new 

dataset provided original insights into the distribution of Pelagia noctiluca in Irish shelf 

waters at scale never reached before in a region of the Northeast Atlantic. The distribution 

of this species was marked by a high level of both intra- and inter-regional variations, 

with highest catch occurring off the Northwest of Ireland. 

Similarly, data collected during the Irish Sea juvenile gadoid fish survey in early June 

2007, 2008, 2009, and 2010, provided the first available quantitative, spatially explicit, 

information on the abundance of Aurelia aurita and Cyanea spp. (Cyanea capillata and 

Cyanea lamarckii) throughout the Irish Sea. Overall, scyphomedusae were present at 98% 

of the sampling stations (N = 200 sampling). The overall mean (± SD) abundance of A. 

aurita was 1.3 ± 3.9 g m
-3

 or 1.0 ± 3.0 ind. 100 m
-3

;  for C. capillata it was 0.3 ± 0.7 g m
-3

 

or 1.2 ± 4.2 ind. 100 m
-3

. However, the distributions and abundances of the different 

species exhibited spatial and inter-annual variability which differed in different regions of 

the basin. In addition, the analysis of CTD data revealed that the average size of A. aurita 

(as indicated by an individual condition index) varied between different hydrographical 

regions with larger individuals being found in stratified waters. It is suggested that these 

differences are linked to the differences in the timing and yields of the seasonal primary 

and secondary productions in the different regions of the Irish Sea. 

Furthermore, a seasonal monitoring of the abundance of scyphomedusae in the Irish Sea 

was implemented using ships of opportunities. The surface abundance of scyphomedusae 

was surveyed along a >100 km long ferry route between Dublin (Ireland) and Holyhead 

(Wales, UK) as well as three additional surveys conducted along the >200 km-long 

transect between Dublin and Liverpool. A total of 37 surveys were conducted between 

April and September in 2009 (N = 17) and 2010 (N = 20). The first formal description of 



 

vii 

the seasonal occurrence of A. aurita and C. capillata in a region of the Irish Sea is 

provided, and seasonal variations in the distribution of the species along the transect are 

described. In addition some of the jellyfish aggregations observed during the surveys 

were successfully linked with oceanographic features (i.e. fronts) indicated by automatic 

water sampling devices present on the survey-ship (FerryBox). The quality of surveys 

from ships of opportunity as a cost-effective tool to develop local knowledge on 

scyphomedusae and monitor their abundance across extended areas is discussed. 

Finally, in order to inform the movements of C. capillata in an area where many negative 

interactions with bathers occur, the horizontal and vertical movements of 5 individual C. 

capillata were investigated through acoustic tracking. Duration of tracking trials ranged 

from 2.7 to 7.7 h with horizontal distances travelled by the tracked jellyfish ranging from 

1.6 to 5.9 km. The horizontal movements of the 5 tracked individuals broadly followed 

the main currents (tidal flow). Each individual exhibited a variety of vertical movements, 

ranging from actively swimming up and down the water column to staying within a 

limited range of depth for several minutes. Results from this study demonstrated that the 

deployment of electronic devices on this highly venomous species is possible. 
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Chapter 1 – General Introduction 

 

1. Definitions 

Scyphomedusae are the sexually reproductive stage in the life cycle of Scyphozoa 

(Phylum Cnidaria). They produce haploid gametes (sperm or oocytes) which fuse with 

gametes of the opposite sex during fertilisation to form a new diploid zygote. This zygote 

develops into a planula larva, which settles on the sea bed and develops into a polyp. This 

sessile polyp stage, called a scyphistoma, will then grow, develop, and eventually 

strobilate to asexually produce ephyrae. These ephyrae will then be released in the water 

column and develop into medusae, therefore initializing a new cycle (Figure 1.1). 

However, the life-cycle of many scyphozoan species is more complex and plastic than 

this ‘typical’ picture. In particular, depending on the conditions, the scyphistoma can bud 

to asexually produce more polyps before undergoing strobilation; and in some cases, the 

planula can directly develop into an ephyra without producing a polyp (Arai, 1997; 

Lucas, 2001). 

 

 

Figure 1.1. Life-cycle of a Scyphozoa. 

In many scyphozoan species the planula larvae are released in the water column by females after 

internal fertilization. Figure adapted from Dr. E. J. Baxter original drawings. 
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The present work focuses only on the medusa stage, which is the most readily observed 

stage and which causes many socio-economic impacts (Purcell et al., 2007). Because a 

medusa stage is also present in the life cycle of some Hydrozoa and in all Cubozoa, the 

word ‘scyphomedusae’ will be used here to refer specifically to the medusae of 

Scyphozoa. Similarly, in the present work, the use of the word ‘jellyfish’ will be 

restricted to scyphomedusae; although in common language it often encompasses 

medusae of all taxa, as well as many other organisms characterized by a gelatinous body 

(e.g. siphonophores, ctenophores, salps). 

Scyphomedusae are arguably the most conspicuous members of the planktonic 

community, especially because of their size (few cm to 1-2 m) and the tendency of some 

species to occur in large and dense aggregations. These high densities of scyphomedusae 

are often referred to as ‘jellyfish swarms’ or ‘jellyfish blooms’. In fact, at times, these 

‘blooms’ can be so dense that descriptions of the sea looking “as if converted into a solid 

mass of jellyfish” (Cole, 1952;  cited in Russell, 1970) are not uncommon. Because of 

their venomous nature (i.e. they sting), jellyfish are considered as pests by humans, and in 

recent years, more and more attention have been given to their potential direct and 

indirect impacts on various aspects of human activities (see next section). 

 

2. Jellyfish stings, humans, and the economy 

Jellyfish stings are caused by stinging capsules (the nematocysts) localised in a particular 

type of cells called cnidocytes, specific to Cnidarians. These cells are present in high 

densities on the tentacles of the medusae but are also present on the bell and oral arms. 

The nematocysts are composed of a coiled filament that is fired in response to a 

mechanical or chemical stimulus (Arai, 1997). It is through these filaments that the 

venom of the jellyfish is injected to any prey, predator, or unfortunate bather that happens 

to come in contact with the animal.  

In most cases, the sting of scyphozoan jellyfish does not have as severe a consequence as 

the sting of the infamous gelatinous ‘stingers’ such as cubozoan jellyfish (also known as 

‘box jellyfish’) and some siphonophores (e.g. Physalia physalis, the Portuguese man-o-

war); it is nonetheless a source of concern. For example, in some years, high densities of 

the mauve stinger Pelagia noctiluca occur during summer months in the Mediterranean 

Sea (UNEP, 1984). Considering that millions of people converge toward this area for 

vacations every summer, blooms of P. noctiluca represent a serious health and safety 

issue, as much as a source of nuisance for the tourism industry (Mariottini et al., 2008). 
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Although epidemiological studies are scarce, Maretic et al. (1991) showed that, over the 

summer 1978, in Pula (Croatia), 52% of bathers were stung by a jellyfish, suggesting that 

“the total number of bathers stung every year along the Adriatic coasts amounts not to 

hundreds but to millions”. Most cases of stings by P. noctiluca are usually benign, 

however, in some cases bathers can have a worse reaction and require medical attention 

(Mariottini et al., 2008). At higher latitudes, the lion’s mane jellyfish Cyanea capillata 

can inflict even more severe stings than P. noctiluca. There are reported cases where, 

when stung by a lion’s mane jellyfish, people have experienced difficult and painful 

breathing, tachycardia and muscle spasms. Back stiffness and spasms are also reported 

symptoms, and anaphylactoid reactions have sometimes been observed (Lord and Wilks, 

1918; Jellyfish Action Advisory Group, 2010). In the Irish Sea, open water swimmers 

have described experiencing “excruciating pain” after being stung by a lion’s mane 

jellyfish. One of them, a mother of three children described the pain as worse than child 

birth (T.K. Doyle, pers. comm.). 

Given the risk linked to the presence of jellyfish in the water (or stranded on the beach), 

high abundances of jellyfish sometimes lead to beach closures. This was the case on the 

east coast of Ireland, in 2005, after mass strandings of lion’s mane jellyfish (T.K. Doyle, 

pers. comm.). In the Mediterranean Sea, closures due to swarms of P. noctiluca are not 

uncommon (V. Fuentes, pers. comm.). Beach closures are often a source of significant 

economic loss for coastal communities (e.g. Wiley et al., 2006) and even in cases where 

beaches are not officially closed, the discomfort caused by the presence of jellyfish can be 

enough to turn people away from infested areas (Galil, 2008). The specific cost related to 

these jellyfish related-events is currently under study, but considering the important 

mitigation measures taken by French and Spanish authorities in tourist areas (e.g. beach 

cleaning, installation of fixed nets, jellyfish ‘hoovering’ boats), they must be significant 

(ECOS, 2004). 

Other economic sectors can be affected by jellyfish outbreaks, starting with coastal 

industrial facilities that depend on sea water intake for their functioning. There are several 

reported cases of dense aggregations of medusae obstructing the cooling water intakes of 

coastal power plants, forcing production at the installation to be temporarily stopped 

(Purcell et al., 2007). Some of the most recent cases concerned a power plant in Scotland 

and another one in Israel in July 2011 (BBC, 2011a; b). Aquaculture is another economic 

sector for which jellyfish are a source of serious concerns. Although most documented 

fish kills involving gelatinous plankton were due to small (< 5 mm) hydrozoan species, 

some were due to scyphomedusae (Merceron et al., 1995; Hay and Murray, 2008; Baxter, 
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2011). For example, in 2007 Pelagia noctiluca was responsible for a major fish kill in 

Northern Ireland, causing > €1M of damage (Doyle et al., 2008). Furthermore, recent 

studies have demonstrated that even the common jellyfish, Aurelia sp., generally regarded 

as innocuous as it cannot sting humans, can seriously affect farmed fish (Helmholz et al., 

2010; Baxter et al., 2011). Considering the occurrence of this species in large numbers 

throughout Europe, these findings raise serious concerns for the aquaculture industry.  

Finally, blooms of scyphomedusae are a substantial problem for the fishing industry 

(Purcell et al., 2007). Indeed, jellyfish rapidly clog fishing nets, and the tentacles 

entangled on the ropes and nets are a hazard for fishermen. Furthermore, the incidental 

catch of jellyfish also causes increased labour and downtime costs due to the necessity to 

separate jellyfish from the rest of the catch and to clean the nets. In extreme cases, the 

catch of a large amount of jellyfish can even represents a risk of capsizing for the smallest 

fishing vessels (e.g. Ryall, 2009). However, the main fisheries’ concerns about jellyfish 

are related to the indirect effects that they can have on fish stocks through their position 

within the marine food-web.  

 

3. Jellyfish within marine ecosystems 

The role of jellyfish within marine ecosystems has been much clarified in recent decades. 

Like all organisms, scyphomedusae contribute to energy fluxes within the food web. 

Typically, they prey on micro and meso-zooplankton (mostly copepods and cladocerans) 

and other gelatinous organisms, and are preyed upon by a variety of predators (e.g. fish, 

turtles, birds) (Purcell, 1997; Arai, 2005). However, there is a persuasive argument that 

jellyfish differ from the other organisms present in the water column in that their life 

cycle presents the ‘boom and bust’ aspect typical of many small planktonic species, but is 

coupled with a biomass greater by orders of magnitude, reaching tonnes km
-2

 (Pitt et al., 

2009b). Moreover, in many cases, jellyfish blooms do not occur every year. Therefore, 

from a human point of view, the sudden development of such biomass is often seen as a 

temporary and anomalous perturbation, that can induce considerable qualitative and 

quantitative changes in the planktonic community and the rest of the system (Hay, 2006; 

Boero et al., 2008). 

For example, studies suggest that dense aggregations of jellyfish can at times consume a 

significant part of the zooplankton standing stocks and therefore, enter into competition 

with other zooplanktivores for food (e.g. Purcell, 1997). However, the impact of jellyfish 

predation is not the same among all members of the planktonic community. For example, 
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in the Prince William Sound in Alaska (USA), jellyfish seem to have a limited effect on 

the standing stocks of copepods (0.3% d
-1

), but significant effects on larvaceans (8.3% of 

standing stock d
-1

) (Purcell, 2003). Similarly, off Oregon (USA), high densities of 

Chrysaora fuscescens have been showed to remove >32% d
-1 

of the standing stock of 

euphausiid eggs, but <1% d
-1 

of copepod standing stock (Suchman et al., 2008). Such 

differential predation pressure on the different members of the planktonic community is 

most likely due to the difference in the concentration of the potential prey (encounter 

rate) and/or their escape capability (Purcell, 1997; Suchman, 2000). Consequently, it has 

been suggested that, by removing a significant percentage of the standing stocks of key 

zooplankton groups, jellyfish exert competition pressure upon fish species feeding 

preferentially on these same groups (Brodeur et al., 2008b; Suchman et al., 2008).  

In fact, this competition for food between jellyfish and fish could be an important 

structuring force in some ecosystems. For example, in the Benguela up-welling 

ecosystem and in Japan, jellyfish outbreaks have been observed to occur quickly after the 

anthropogenically-forced collapse of the zooplanktivorous fish populations. In these 

systems, jellyfish are thought to have benefited from the ecological niche left vacant by 

the removal of the planktivorous fish by fisheries (Richardson et al., 2009). In fact, 

acoustic surveys have revealed that the biomass of jellyfish is now higher than the 

biomass of fish in the Benguela ecosystem (Brierley et al., 2005; Lynam et al., 2006). 

With fish eggs and larvae also being part of the diet of some scyphomedusae (Purcell and 

Arai, 2001), such outbreaks have raised concerns that jellyfish may hamper the recovery 

of these fish stocks, even if mitigation measures are taken (Sommer et al., 2002). 

Additional concern about jellyfish outbreaks affecting ecosystem services comes from the 

perception that scyphomedusae are ‘trophic dead ends’ (Lynam et al., 2006). This notion 

implies that, because they have only few predators, jellyfish block the ‘natural’ energy 

transfer between secondary producers (zooplankton) and higher trophic levels, therefore 

jeopardising the productivity of the ecosystem and ultimately the resources people derive 

from it (i.e. mostly fish harvesting). However, despite their nutritional value compared to 

other food items being low (Doyle et al., 2007b), jellyfish do have many predators and 

the number of identified ‘jelly-eaters’ is rapidly increasing: a recent review identified at 

least 69 fish species feeding on pelagic coelenterates (Arai, 2005); a number raised to 124 

by another review published only four years later (Pauly et al., 2009). Even in the 

Benguela ecosystem, which is often presented as a case-study of an ecosystem that has 

already shifted to a jellyfish dominated state (Lynam et al., 2006; Richardson et al., 

2009), a recent study discovered that the three bearded goby (Sufflogobius bibarbatus) 
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feeds extensively on jellyfish. This small fish, which is in turn preyed upon by fish and 

birds occupying higher trophic levels, actually contributes to maintaining the productivity 

of the system at a certain level (Utne-Palm et al., 2010). The word ‘trophic dead-end’ 

seems therefore inappropriate. Nonetheless, it is true that jellyfish are likely to reduce the 

efficiency of energetic flows towards higher trophic levels (Brodeur et al., 2011).  

Scyphomedusae also directly and indirectly affect the lower trophic levels, and, in 

particular, they can alter the composition of microbial communities. Indeed, through 

sloppy-feeding and the production of mucus and exudates, jellyfish make available large 

quantities of organic and inorganic matter for these lower trophic levels (Pitt et al., 

2009b). For example, studies in the York River Estuary have shown that the ctenophore 

Mnemiopsis leydii and the scyphozoa Chrysaora quinquecirrha are important sources of 

dissolved inorganic nitrogen and phosphorus in that system (Condon et al., 2010). 

However, these recycled nutrients contribute only a limited fraction of the daily primary 

production of the system. Instead, because of the large quantities of dissolved organic 

matter (DOM) they produce, jellyfish blooms could give a competitive advantage to 

bacteria over phytoplankton for the intake of these inorganic nutrients (Condon et al., 

2010). In fact, recent incubation experiments with living animals have demonstrated that 

DOM produced by the scyphomedusa Chrysaora quinquecirrha is rapidly metabolised by 

heterotrophic bacteria. However, this consumed DOM is mostly used by bacteria for 

respiration rather than production. In other words, this organic matter is mostly 

metabolized into CO2 rather than biomass, and therefore only a small fraction of it can be 

channelled toward higher trophic levels through flagellates and other bacteria grazers 

(Condon et al., 2011). In addition to jellyfish exudates, dead jellyfish also represent 

organic matter that can fuel the bacterial community. In the Adriatic Sea, increased 

bacterial abundance, production, and changes of community composition have been 

observed when jellyfish homogenates from Aurelia sp. were added to natural 

communities in incubation experiments (Tinta et al., 2010). In Norway, the microbial 

community around dead Peryphilla peryphilla exhibited contrasting responses: while 

some species used jellyfish as a substrate, others were inhibited (Titelman et al., 2006). 

Such observations highlight how thousands of jellyfish can potentially cause large 

community changes at the bottom of the pelagic food web and raise questions regarding 

the consequences of these changes for the rest of the system (Condon et al., 2011). 

Furthermore, dead jellyfish can also play a role in benthopelagic coupling. Indeed, 

although a fast break-down and degradation of dead jellyfish can occur in the water 

column (Titelman et al. 2006), for some species (in particular Rhizostomeae) entire 
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individuals sink to the sea bed, and as such, constitute a flux of organic matter toward the 

benthos (Yamamoto et al., 2008). For example, in the Arabian Sea, depositions of the 

Rhizostomea Crambionella orsini were observed to depths of 3,300 m. Some patches 

were several centimetres thick and some metres wide, with the local standing stock of 

carbon estimated to be one order of magnitude higher than the annual carbon flux 

measured by sediment traps (Billett et al., 2006). Such inputs of organic material benefit 

not only the bacterial community present in the sediment (West et al., 2009), but also 

many scavengers (Yamamoto et al., 2008). Indeed, just like for fish, our knowledge of the 

number of identified benthic invertebrates feeding on jellyfish is expanding greatly. For 

example, within a year, interviews and consultation with recreational divers around 

Ireland led to the identification of 10 previously undocumented interactions between 

medusae and benthic scavengers (Doyle et al. in prep.). The recent application of 

molecular investigation methods such as stable isotope analysis, to jellyfish, has also 

revealed previously unsuspected roles (albeit indirect) of jellyfish in bentho-pelagic 

coupling through predation (Pitt et al., 2008). 

 

4. A critical need for broad-scale data 

As conceptual models of how jellyfish affect the pathways of energy in marine systems 

are emerging, one important challenge still lies ahead: the quantification of all of these 

ecological processes. Indeed, even qualitative evaluation of the part played by jellyfish in 

the functioning of the ecosystems remains limited by a lack of data on their abundance 

and broad-scale distributions (Pauly et al., 2009; Purcell, 2009). Furthermore, without 

reliable biomass estimates, it is difficult to extrapolate findings from laboratory or 

mesocosm experiments, and to reliably integrate jellyfish into numerical ecosystem 

models (Pauly et al., 2009). In addition, without knowledge of when and where jellyfish 

occur, and how widespread they are distributed, it is impossible to identify the other 

species that they truly interact with. For example, the seasonal patterns of occurrence of 

the common jellyfish Aurelia aurita exhibit huge variability in different places around the 

world (Lucas, 2001). Consequently, if gut contents analysis of A. aurita from a Swedish 

fjord show that the species can feed on fish larvae (Möller, 1984), there is no certainty 

that blooms of A. aurita actually do likewise in the Irish Sea. Developing knowledge of 

the broad-scale distributions and abundances of scyphomedusae is therefore critical to 

address such issues.  
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Over the past years, in addition to the classical sampling using net-tows, different 

techniques have been proposed to collect such broad-scale data (e.g. acoustic surveys or 

use of video profilers, but see review by Purcell, 2009). However, in many cases, the 

organisation of dedicated surveys is impossible due to logistical and resource limitations. 

Nevertheless, some alternatives exist. The main one consists in collaborating with 

fisheries agencies organising annual fish surveys. These surveys provide indeed the 

opportunity to access invaluable shiptime and to collect data across extended spatial 

scales (Hay et al., 1990; Brodeur et al., 1999; Graham, 2001). This is the approach used 

in the present work to collect data on the distribution of scyphomedusae in Irish waters. 

 

5. Scyphomedusae in Irish waters 

There are six species of Scyphozoa commonly found in the coastal waters around Ireland 

(Figure 1.2). Five species belong to the order Semaeostomae: the common jellyfish 

Aurelia aurita (up to ~ 25 cm in bell diameter), the blue jellyfish Cyanea lamarckii (up to 

~ 30 cm), the lion’s mane jellyfish Cyanea capillata (up to ~ 50 cm), the compass 

jellyfish Chrysaora hysoscella (up to ~30 cm), and the mauve stinger Pelagia noctiluca 

(up to ~ 15 cm). The last species, Rhizostoma octopus (up to > 50 cm in bell diameter), 

belongs to the order Rhizostomeae. Some deep water species of the order Coronatae (e.g. 

Periphylla periphylla) can be found in more offshore waters (Russell, 1970). 

Prior and subsequent to the pioneering studies conducted in the late 19
th
 – early 20

th
 

century by Maud Delap on specimens from Valentia Harbour (Co. Kerry) (e.g. Delap, 

1901; 1924), gelatinous species around Ireland had been the subject of little attention 

(Boyd et al., 1973). McGrath (1985; 1994) documented the occurrence of the siphonopore 

Velella velella in Irish waters, and Ballard and Myers (1997; 2000) studied the gelatinous 

plankton of Lough Hyne (Co. Cork) but it is only recently (2000s onwards) that broad-

scale research on scyphomedusae in Irish waters was established as researchers with a 

primary interest in sea turtles started mapping the distribution and availability of jellyfish 

as a food source (Doyle, 2006; Houghton et al., 2006c). Jellyfish stranding events were 

then documented through extended beach surveys around Ireland and Wales, and 

provided solid evidence for the existence of differences in the distribution of the different 

species of scyphomedusae in the region (Doyle et al., 2007a). While Aurelia aurita was 

found all around Ireland and Wales, C. hysoscella was more frequent off the South and 

West coast of Ireland. On the other hand, C. capillata was only found in numbers on the  
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Figure 1.2. Main scyphozoan species present in Irish waters. 

On the left, top to bottom: Aurelia aurita, Chrysaora hysoscella, and Rhizostoma octopus. On the 

right, top to bottom: Pelagia noctiluca, Cyanea capillata, and Cyanea lamarckii. Photos by 

Michelle Cronin, Oliver Buckley, Luke Harman, Anonymous, Damien Haberlin and Oliver 

Buckley, respectively. 

 

coasts of the Irish Sea, while blooms of R. octopus consistently occurred in only three 

specific shallow bays (Doyle et al., 2007a; Houghton et al., 2007). 
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In 2007, with a large fish kill caused by Pelagia noctiluca in Northern Ireland (see 

previous section and Doyle et al., 2008), and beach closures following the mass stranding 

of highly venomous lion’s mane jellyfish off Dublin, the question of the risk for further 

detrimental impact of jellyfish on human activities in Ireland was raised. Most of the 

jellyfish species present around Ireland had then already been subject to studies in other 

regions of the world (e.g. Grondahl, 1988; Brewer, 1989; Hay et al., 1990), and the 

findings of possible impact of A. aurita, C. capillata and C. lamarckii on the recruitment 

of juvenile fish in the North Sea (Lynam et al., 2005b) highlighted the need for an audit 

of the situation around Ireland and in the Irish Sea in particular. In addition, with 

suggestions that, in temperate zones, jellyfish populations may benefit from warming seas 

(Purcell, 2005), and evidence of an increasing trend in sea surface temperature around 

Ireland (McMahon and Hays, 2006; Cannaby and Hüsrevoğlu, 2009), the need to develop 

our knowledge on the ecology of jellyfish in Irish waters was made even more evident. 

 

6. Objectives of the present work 

The primary objective of the present work was to document the spatio-temporal at-sea 

distributions of scyphomedusae around Ireland, with the aim of providing a starting point 

to identify risks of detrimental impacts for human activities.  

The specific objectives were to: 

 Extend the current knowledge of the broad-scale distributions of scyphomedusae 

in Irish Waters to offshore waters (Chapters 2, 3 and 4). 

 Describe spatial and seasonal variations of scyphomedusae abundance in the Irish 

Sea (Chapters 3 and 4). 

 Investigate the trajectories and dive behaviour of individual jellyfish, to inform 

our understanding of the movement of jellyfish blooms (Chapter 5). 

More specifically, Chapter 2 reveals how investigation of bycatch data from non-

dedicated surveys can provide insights into the distribution of P. noctiluca around Ireland 

at a scale never accomplished before. Chapter 3 presents basin-wide inter-annual 

variations of the early-summer distributions and abundances of A. aurita and Cyanea spp. 

in the Irish Sea. Chapter 4 shows the results of two years of seasonal monitoring of 

jellyfish abundance along a >100 km-long transect across the Irish Sea and provide the 

first formal description of the seasonal dynamics (abundance and distribution) of A. 
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aurita and C. capillata in that region. Finally, results from the first-ever acoustic tracking 

of C. capillata are presented in Chapter 5, providing information on the horizontal and 

vertical movements of this species in an area where the risks of negative interactions with 

humans are high.  

Although they represent locally important biomass, aggregations of large barrel jellyfish 

(R. octopus) were not a subject of focus in the current work as they have been recently 

documented by others (Houghton et al., 2006c; Lilley et al., 2009). However, occasional 

sightings or catches of R. octopus and of other scyphozoan species are reported in 

Chapter 2, 3 and 4. 
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Fisheries bycatch data provide insights into the 

distribution of Pelagia noctiluca around Ireland 
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Chapter 2 – Fisheries bycatch data provide insights into the 

distribution of Pelagia noctiluca around Ireland 

This chapter was published in a similar form in the ICES Journal of Marine Science under the 

reference:  

Bastian T., Stokes D., Kelleher J. E., Hays G. C., Davenport J. & Doyle T. K. (2011) Fisheries 

bycatch data provide insights into the distribution of the mauve stinger (Pelagia noctiluca) around 

Ireland, ICES Journal of Marine Science 68:436–443. Doi:10.1093/icesjms/fsq178.  

TB, DS and JEK collected data. TB performed data analysis and wrote manuscript with 

contributions from all others. 

 

Abstract 

There is concern that jellyfish populations are proliferating in the Northeast Atlantic and 

that their socio-economic impacts will increase. Using information from the Irish 

Groundfish Survey, data are presented on the distribution of the mauve stinger, Pelagia 

noctiluca, over an area >160,000 km² around Ireland and the United Kingdom in 2009. 

The species accounted for 93% of the overall catch of gelatinous organisms, with an 

average catch biomass of 0.26 ± 2.3 kg ha
–1

. The study area was divided into four 

subregions (North, West, Southwest, and South), and the distribution and abundance of P. 

noctiluca displayed both inter- and intraregional variations. Individual bell diameters 

ranged from 1 cm to 13.5 cm (median 4.5 cm, SD 1.2 cm), and the size distribution also 

varied spatially. It is the first time that such detailed information has been made available 

for P. noctiluca in a part of the Northeast Atlantic where its impact on the salmon 

aquaculture industry can be considerable. Finally, the possibility of using annual datasets 

from this type of fisheries survey to develop time-series that, in the future, will allow 

investigation of relationships between long-term variations of P. noctiluca populations 

and climatic factors in the area is addressed. 

 

1. Introduction 

Concern about the role and place of jellyfish within marine ecosystems has increased 

during recent decades as an increasing number of cases of negative interactions with 

human activities have been reported (see review by Purcell et al., 2007). It has been 

suggested that, in different places, jellyfish abundance may have increased in response to 

eutrophication, overfishing, and/or climate change (Arai, 2001; Mills, 2001; Purcell, 

2005; Richardson et al., 2009). However, a global increase of jellyfish populations has 
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not yet been formally proven (Purcell et al., 2007; Boero et al., 2008; Haddock, 2008). It 

is also important to realize that some of the recent reports of the detrimental impacts of 

jellyfish may simply result from interactions between relatively new, quickly expanding 

coastal activities (e.g. aquaculture) and possible natural cycles in the outbreaks of some 

gelatinous organisms (Boero et al., 2008). 

In Irish and UK waters, the mauve stinger Pelagia noctiluca (Scyphozoa, 

Semaeostomeae, Pelagiidae) became a serious concern when it caused a major fish kill 

(~250,000 fish) in November 2007 in Northern Ireland’s only salmon farm, resulting in 

an economic loss in excess of €1 million (Boero et al., 2008; Doyle et al., 2008). The 

species also caused fish loss off Scotland in the same year (Hay and Murray, 2008), and 

its involvement in other fish kills in the past has been established (Merceron et al., 1995). 

Such catastrophic fish kills are relatively rare, but it is likely that P. noctiluca has also 

been responsible for some of the chronic zooplankton-related mortalities experienced by 

finfish farms annually (Hay and Murray, 2008). 

Pelagia noctiluca is a holoplanktonic oceanic species, found from the warm waters of the 

Gulf of Mexico and the Mediterranean Sea to the temperate waters of the North Sea 

(Russell, 1970; Graham et al., 2003; Licandro et al., 2010). A study of plankton samples 

collected around Scotland indicated that the abundance of oceanic species, including P. 

noctiluca, peaks in autumn off the north coast of Ireland (Fraser, 1968). However, apart 

from that work, our knowledge of P. noctiluca around Ireland and the UK remains mostly 

limited to reports of anecdotal sightings and stranding events (Russell, 1970; Doyle et al., 

2008). These historical records show that the species has been frequently (but irregularly) 

observed around Irish and UK coasts at least since the 19
th
 century, but are too scarce to 

investigate reliably the broad-scale distribution of the species or the potential factors 

driving interannual variability in the records, as has been done for other areas (Goy et al., 

1989; Kogovsek et al., 2010).  

In contrast, the species has been studied extensively in the Mediterranean Sea, where 

critical outbreaks and related economic detrimental impacts stimulated international 

research programmes during the 1980s (UNEP, 1984; 1991). There, the species appears 

to follow cycles of “years with Pelagia” followed by “several years without Pelagia”, the 

length and frequency of which differ in the various basins, and can be related to 

hydroclimatological and other environmental factors (Goy et al., 1989; Axiak and Civili, 

1991; Kogovsek et al., 2010). However, even in the Mediterranean where the impacts of 

P. noctiluca on public health and tourism are critical (CIESM, 2008; Mariottini et al., 
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2008), detailed information on its ecology, and in particular on its broad-scale 

distribution, is generally lacking.  

The paucity of broad-scale data is a common issue in jellyfish studies (Purcell, 2009), 

mainly because of limited opportunities to access expensive ship time. In the case of P. 

noctiluca, the irregular nature of the species’ outbreaks mentioned above is an additional 

obstacle to organizing access to such resources. As a result, most studies on the species 

have been restricted to nearshore areas (see examples in UNEP, 1991), and only a few 

basin-wide studies have been conducted (in the Adriatic and Ligurian Seas, see Goy et al., 

1991; and Piccinetti and Piccinetti-Manfrin, 1991). Yet, considering the potential effect 

of the species on marine ecosystems, (e.g. competition with planktivorous fish and 

predation on fish eggs and larvae, see Sabatès et al., 2010; Malej, 1989; Giorgi et al., 

1991) and aquaculture (previous paragraphs in this section), it is critical to access 

information on its widespread distribution. 

Here we show how bycatch data from non-dedicated surveys such as the Irish Groundfish 

Survey (IGFS) can provide original insights into the distribution of P. noctiluca over 

extended spatial scales around Ireland and the UK. To our knowledge, it is the first time 

that such detailed information is available for the species in an area of the Northeast 

Atlantic on a scale equal to or larger than any known study from the Mediterranean Sea. 

We also discuss the possibility of using the annual dataset from the IGFS to develop a 

time-series that will, in future, allow investigation of relationships between long-term 

variations of P. noctiluca populations and climatic and other environmental factors, as 

has been done successfully for other species, in other parts of the world (Hay et al., 1990; 

Brodeur et al., 1999; 2008a; Graham, 2001; Lynam et al., 2005a).  

 

2. Methods 

The Irish Groundfish Survey (IGFS) is an annual demersal trawl survey conducted in 

autumn/winter by the Fisheries Science Services of the Irish Marine Institute, on the Irish 

continental shelf (Figure 2.1), using the RV “Celtic Explorer”. Its primary aim is to 

collect data on juvenile recruitment patterns for commercially exploited stocks of 

demersal fish. However, the IGFS encounters a certain level of bycatch of non-targeted 

species that provides the opportunity to collect additional information. The survey uses a 

semi-random, depth-stratified survey sampling design that yields about 170 fishing hauls. 

Each haul is carried out during daylight over a six-week period and is part of an 
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internationally coordinated survey effort under the International Bottom Trawl Working 

Group (IBTSWG) of ICES (see IBTSWG reports at www.ices.dk). 

Sampling is by a high headline, 4-panel demersal trawl (mesh size 200 mm at wings, 20 

mm at cod end) towed over the seabed for 30 min at a speed of ~4 knots (for more details 

see Anon., 1999). SCANMAR sensors monitor doors, wings, and headline opening 

throughout the operation, and the average value for each station, as well as the GPS 

positions of the start and the end of the transect, are recorded. Information on bottom 

depth is provided by vessel echosounder. 

 

 

 

Figure 2.1. Sampling stations during the Irish groundfish survey (IGFS) 2009. 

Sampling stations are represented by triangles, different shading depicting the temporal 

organization of the survey: first leg 26/09/2009 to 5/10/2009 (white), second leg 29/10/2009 to 

13/11/2009 (grey), third leg 14–30/11/2009 (black). The study area has been subdivided into four 

subregions referred to herein as N, W, SW, and S and based on the ICES Divisions VIa VIIb, 

VIIj2, and VIIg (see Table 1). The grey lines represent the 200 m and 1000 m isobaths, and the 

general directions of the Shelf Edge Current (SEC) and North Atlantic Current (NAC) are shown 

as labelled arrows. The system of projection used is the Irish National Grid.  

http://www.ices.dk/
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Table 2.1. Division of the study area of the IGFS 2009 into subregions. 

Characteristics of each subregion of the study area presented in Figure 2.1, where N is the number 

of valid sampling stations (i.e. stations retained for analysis) within each subregion during the Irish 

Groundfish Survey of 2009. The surface area of each subregion was calculated after projection in 

the Irish National Grid coordinates system. 

Subregion ICES Division Surface area (km
2
) N 

North (N) VIa 42,829 42 

West (W) VIIb 35,634 36 

Southwest (SW) VIIj2 50,444 32 

South (S) VIIg 35,713 30 

 

In 2009, for the first time, scyphozoan jellyfish bycatch was systematically identified to 

the level of species for each sampling station. The IGFS 2009 was organized in three legs, 

the first from 26 September to 5 October, the second from 29 October to 13 November, 

and the third from 14 to 30 November. Four subregions were defined within the study 

area: North (N), West (W), Southwest (SW) and South (S), each based, respectively, on 

ICES Divisions VIa, VIIb, VIIj2, and VIIg (cf. http://www.ices.dk/aboutus/icesareas.asp), 

but restricted to the extent of the sampling stations (Table 2.1 and Figure 2.1). 

Scyphozoan jellyfish were sorted by species, and the corresponding wet weight was 

measured using motion-compensated scales (POLs marine scales ± 2 g). Individual bell 

diameters were measured to the nearest 0.5 cm using a measuring board and the jellyfish 

placed with the external surface of the bell facing up. Large catches were subsampled by 

measuring only the first 150 individuals after successive equal divisions. This was done 

by placing two empty boxes under the box containing the jellyfish and tipping out the 

jellyfish sample into the two boxes, essentially splitting the sample into two with 

reasonable randomization. Measurements were completed within 2 h of the catch being 

brought on board.  

Following the method described by Brodeur et al. (1999), a standardized catch (kg ha
–1

) 

of each jellyfish species was calculated for each station by dividing the recorded wet 

weight of medusae by the width of the net multiplied by the distance towed (average per 

tow calculated from net-sensor records). When wing-spread information was missing as a 

result of sensor failure (N = 27), the average value of 20.97 m calculated from all other 

available data was used (SD = 1.59, N = 113). Distance covered was established using 

GPS coordinates of the start point, i.e. the point at which the trawl is on the seabed and 

stable, and the coordinates of the endpoint, i.e. 30 min thereafter.  

http://www.ices.dk/aboutus/icesareas.asp
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The bottom trawl used on the IGFS is not ideal for sampling jellyfish effectively, because 

they are likely to be distributed throughout the water column, or located in dense surface 

aggregations, although dead jellyfish can potentially be aggregated on the seabed (Billett 

et al., 2006; Yamamoto et al., 2008). However, because deployment and recovery is 

standardized as part of an international survey programme, i.e. it did not vary throughout 

the survey, the quantity of jellyfish sampled can be used as an index to reveal spatial and 

temporal patterns (Brodeur et al., 1999). The significance of the differences in catch-

biomass between the subregions was tested using Wilcoxon rank-sum tests.  

During the survey, an external temperature sensor and thermosalinograph (SEABIRD 

SBE38 and SBE21) continuously recorded temperature and salinity from 3 m below the 

surface (water intake on the hull). These data were used to describe the environmental 

context of each catch. Unfortunately, the sensors were only working well during the first 

leg of the cruise. 

 

3. Results 

In all, 140 valid hauls were conducted. The mean (± SD) distance travelled was 3.67 ± 

0.25 km. The mean (± SD) spread of the net wings was 20.97 ± 1.59 m, and the mean (± 

SD) height of the headline was 4.09 ± 0.29 m. Sampling depths ranged from 21 to 436 m 

(Figure 2.1). A total of 283.5 kg of gelatinous organisms was caught (mean per haul 2.0 ± 

16.5 kg). Overall, Pelagia noctiluca was the most abundant species recorded; it was 

present in 62.9% of the hauls, representing 92.9% of the overall wet weight of gelatinous 

species recorded during the survey. Other scyphozoan species were Aurelia aurita 

(present at 27.1% of the stations; 3.2% of overall wet weight), Rhizostoma octopus (four 

individuals present at four stations in the S subregion) and Periphylla periphylla (a single 

individual weighing 0.11 kg, in the SW subregion 51°36’N 11°06’W). All A. aurita were 

in poor condition and were likely dead or decaying animals, whereas R. octopus 

individuals were in excellent condition, with bright blue colouration around the bell (bell 

diameter 17–31 cm, wet weight 1.15–2.04 kg). Unidentified salps (Phylum Urochordata) 

were present in 22.1% of the hauls, contributing another 1.8% to overall gelatinous wet 

weight. Unidentified pieces of gelatinous material (most likely pieces of torn medusa 

bells) accounted for <1% of the overall wet weight recorded. The spatial and quantitative 

distributions of the catch of the overall gelatinous material, P. noctiluca, A. aurita, and 

salps are presented in Figure 2.2 and Table 2.2.  
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Figure 2.2. Distribution of gelatinous bycatch during the IGFS 2009. 

A close-up of the P. noctiluca bycatch data in the N subregion is presented in Figure 2.3. The 

200m isobaths is represented by a solid grey line. 

 

The distribution of P. noctiluca was heterogeneous, with an apparent North–South 

gradient in density (Spearman’s rank correlation on density and latitude rs = 0.62, p < 

0.001). The N subregion yielded the highest biomass overall (mean catch rate 0.82         

kg ha
–1

, SD = 4.2), with P. noctiluca present at 90.4% of the stations. The same species 

was present at 88.9% of the stations of the W subregion and at 53.1% of the stations in 

the SW. Just five individuals were caught in the S. Table 2.2 summarizes P. noctiluca 

catches for each subregion. The catches in the N were significantly higher than those in 

the SW (Wilcoxon rank-sum W = 934, p < 0.01), but the difference between the N and W 

subregions was not significant (W = 813, p = 0.57). The difference between the W and  
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Table 2.2. Gelatinous bycatch experienced during the IGFS 2009. 

Summary statistics based on standardised catch data (kg ha
–1

) for each subregions of the study 

area. N is the number of stations per subregion, Frequency refers to the frequency of occurrence of 

each species, and % catch is the contribution of each species to the overall catch of gelatinous 

organisms in each subregion. Mean, median and SD are calculated over all stations, including zero 

stations. Statistics for the N subregion are presented (a) with and (b) without the single large catch 

of 196 kg (27.1 kg ha
–1

) of P. noctiluca taken into account. Details for unidentified and rarely 

caught species (R. octopus) are not presented. 

Taxon and 

parameter 

Overall 

(N = 140) 

North (a) 

(N = 42) 

North  (b) 

(N = 41) 

West 

(N = 36) 

Southwest 

(N = 32) 

South 

(N = 30) 

Pelagia noctiluca     

Frequency 0.64 0.90 0.90 0.89 0.53 0.07 

% catch 93% >99% 98% 72% 19% 0.5% 

Mean 0.26 0.82 0.18 0.039 6.4 × 10
–4

 1.7 × 10
–4

 

Median  0.0067 0.027 0.026 0.022 4.5 × 10
–4

 0 

SD 2.3 4.2 0.37 0.054 0.014 8.3 × 10
–4

 

Maximum 27.1 27.1 1.7 0.3 0.065 0.0045 

       

Aurelia aurita       

Frequency 0.27 0.21 0.22 0.22 0.28 0.4 

% catch 3% 0.5% 2% 10% 22% 60% 

Mean 0.0084 0.0035 0.0036 0.0054 0.0072 0.020 

Median 0 0 0 0 0 0 

SD 0.024 0.0087 0.0088 0.014 0.019 0.044 

Maximum 0.23 0.043 0.043 0.058 0.096 0.23 

       

Salpa spp.       

Frequency 0.22 0.14 0.15 0.28 0.47 0 

% catch 1.8% <0.1% 0.1% 6.9% 51% 0 

Mean 0.0049 1.8 × 10
–4

 1.9 × 10
–4

 0.0037 0.017 0 

Median 0 0 0 0 0 0 

SD 0.027 5.2 × 10
–4

 5.3 × 10
–4

 0.013 0.053 0 

Maximum 0.30 0.0025 0.0025 0.073 0.30 0 

       

Total catch       

Mean 0.28 0.83 0.18 0.054 0.033 0.034 

Median 0.024 0.033 0.032 0.038 0.016 0.0095 

SD 2.3 4.2 0.36 0.052 0.057 0.058 

Maximum 27.1 27.1 1.7 0.31 0.30 0.23 

 

SW subregions was significant (W = 805, p < 0.01). It is of note too that space and time 

were highly correlated, so any North–South gradient could also be the results of delays in 
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sampling (Spearman’s rank correlation run on latitude and day of year, rs = 0.62,              

p < 0.001). 

Variation in abundance between stations was great within the N subregion, with catches 

of P. noctiluca ranging from zero to an exceptional 195 kg (27.1 kg ha
–1

) between two 

stations located 17 km apart (Figure 2.3). Based on the wet weight of a random sample of 

150 individuals (wet weight 1.27 kg), we estimated that this catch from ~30 km off the 

north coast of Ireland (55º37’N 07º32’W) contained >23,000 animals. Within the W and 

SW subregions, differences between stations were less pronounced and biomass was less 

(Table 2.2). The species was present over the full ranges of temperature (11.4–14.7°C) 

and salinity (34.13–35.58 psu) experienced during the survey (Figure 2.4). An overall 

positive correlation was found between P. noctiluca catches and subsurface temperature 

(rs = 0.34, p = 0.002) and salinity (rs = 0.22, p = 0.01). However, there were no consistent 

pattern across individual subregions, but low sample size caused by sensor failure during 

the second and third legs rendered reliable analysis impossible. P. noctiluca catch rate  

(kg ha
–1

) was not correlated with depth (rs = –0.02, p = 0.80; alternative values if the 

catch of 27 kg ha
–1

 is excluded, rs = –0.005, p = 0.96).  

The bell diameter of individual P. noctiluca varied from 1 cm to 13.5 cm, with a median 

of 4.5 cm (SD = 1.2, N = 4,116; Figure 2.5). Small individuals (<4.5 cm) had a very 

thin/fragile/flexible yellowish or transparent bell, sometimes with triangular 

yellow/brown coloured markings. Large individuals (>5 cm) were usually characterized 

by having a thicker transparent bell with clear warts on top, and dark mauve gonads. 

Samples in the N had significantly larger median bell diameters than samples from the 

other subregions (Wilcoxon rank-sum test: N–W W = 840, p < 0.01; N–SW W = 524,       

p < 0.001; W–SW W = 397, p < 0.01), with an overall median bell diameter of 5.0 cm for 

the N (N = 2,644), 4.0 cm for the W (N = 1,278), and 3.5 for the SW (N = 211). Median 

bell diameter was not correlated to sample size in any subregion (Spearman’s rank 

correlation: N rs = 6421.1, p = 0.1545; W rs = 5605.5, p = 0.8817; SW rs = 776.9,              

p = 0.855). However, because of the significant correlation between time and space 

mentioned above, it was not possible to determine whether the interregional variation in 

size was attributable to an evolution of population with time or to different sizes being 

associated with different areas.  

Based on the total wet weight of P. noctiluca at each station, divided by the number of 

individuals at each station, we calculated a mean (± SD) individual wet weight of 7.9 ± 

5.9 g for the overall survey. 
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Figure 2.3. Distribution of P. noctiluca in the North subregion. 

Jellyfish bycatch (kg ha
-1

) is represented by plain circles (see legend), sampling stations with no 

jellyfish bycatch are figured by crosses. Dark triangles represent the position of fin fish farms, and 

a dashed grey circle identifies the Northern Irish farm where a massive fish kill happened in 

November 2007. Sampling station number is indicated to facilitate comparison with Figure 2.4. 

Solid grey lines are the 100 m (light grey) and 200 m (dark grey) isobaths.  

 

 

Figure 2.4. Environmental context in which P. noctiluca occurred in the North subregion. 

Temperature and salinity (3 m subsurface) were measured at each station by means of an on-board 

temperature sensor and thermosalinograph. Sampling station number is indicated to facilitate 

comparison with Figure 2.3. 
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Figure 2.5. Size distribution of P. noctiluca caught during the IGFS in 2009. 

Data are for the N (light grey, N = 2,640), W (grey, N = 1,276) and SW (dark grey, N = 195) 

subregions. The distribution for the overall survey is also represented (in white, N = 4,116). The 

five individuals caught in the S subregion are not shown. 

 

4. Discussion 

Our results show that the broad-scale distribution of P. noctiluca in the Northeast Atlantic 

is marked by a high level of heterogeneity at both small (between consecutive stations) 

and large (between subregions) scales (Figure 2.2 and Figure 2.3).  

At the large scale, there was a clear north–south gradient, with largest catches in the N 

subregion, intermediate and small catches in the W and SW subregions, and an almost 

total absence in the S subregion (Figure 2.2). Drivers of this observed interregional 

variation are uncertain (especially given the delay between sampling in the N and the 

other subregions), but the highest densities in the N (Figure 2.2 and Figure 2.3) are most 

likely explained by the advection of a large pulse of oceanic water from the Rockall 

Trough (Figure 2.1) onto the continental shelf. The actual origin of P. noctiluca in the 

Rockall Trough area is uncertain, but with P. noctiluca generally considered to be a 

warm-water species (Russell, 1970), it is likely that either the Shelf Edge Current (a mid-

water current running northward along the slope of the European continental shelf from 

the Iberian Peninsula up to Norwegian waters, White and Bowyer, 1997) or the North 

Atlantic Current (the branch of the Gulf Stream flowing toward Europe, Schmitz and 

McCartney, 1993) is the ultimate driver of the northern limit of the species (Figure 2.1). 

Fraser (1968) showed that, in the north, the overflow of oceanic waters peaks in 

September/October, but in the other areas sampled here, the seasonality of oceanic 

inflows is more uncertain. However it is of note that historical records report the presence 
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of P. noctiluca off the southwest coast of Ireland in November and even December in 

some years (reviewed in Russell, 1970). Offshore, over the Rockall Trough (Figure 2.1), 

the presence of the species has been documented in September, October, and November 

2007 (Doyle et al., 2008; Baxter et al., 2010). The absence of the species in the south 

(except at two stations in the southwest of the survey area) likely reflects the relative 

isolation of the Celtic Sea from oceanic inputs at that time of year, as also indicated by 

the absence of salps in the catches there (Figure 2.2). 

At a smaller scale, the high level of heterogeneity between stations reflects how jellyfish 

can form large highly localized aggregations. This horizontal patchiness was most 

striking in the N, with one estimated catch of >23,000 P. noctiluca (27.1 kg ha
–1

) 

contrasting with its absence at the previous station, just 17 km away (Figure 2.3). Similar 

local heterogeneity in the catch of P. noctiluca has been documented in the Adriatic Sea 

using data from an ichthyoplankton survey (Piccinetti and Piccinetti-Manfrin, 1991), 

suggesting that this result is likely not a sampling artefact. The formation of such 

horizontal patchiness is usually a result of local hydrographic conditions (Graham et al., 

2001), such as a current frontal system (Vanhöffen 1896, cited in Russell, 1970), a 

convergence zone (Piccinetti and Piccinetti-Manfrin, 1991; Sabatès et al., 2010), or the 

presence of Langmuir cells (Larson, 1992; Doyle et al., 2008). Unfortunately, there are no 

data available on the configuration of local currents at the time of the survey at a scale 

that could allow investigation of such patterns. 

Within the N subregion, where catches of P. noctiluca were largest, analysis of 

environmental conditions at the different stations revealed that the species was found 

within a small temperature range (13.2–14.7°C), but within a relatively broad salinity 

range (34.13–35.58 psu; Figure 2.4). Therefore, although there was a large variation in 

individual catches (and similar variation in bell diameters between catches; Figure 2.5) in 

the N subregion, this variation could not be attributed to any particular environmental 

variable. Individual catches of P. noctiluca in the W and SW subregions were associated 

with lower temperatures but similar salinity values as in the N subregion, but because the 

timing of these hauls were from <4 to >9 weeks after the initial hauls, no broad-scale 

comparison between all stations sampled was possible. In the Mediterranean Sea, the 

species experiences much higher salinity (>37 psu) and temperatures (>23°C) (Piccinetti 

and Piccinetti-Manfrin, 1991; Yahia et al., 2003).  

The insights into the distribution of P. noctiluca provided by our data are of main interest 

to the aquaculture industry. Indeed, as mentioned in the Introduction, P. noctiluca has 
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already caused serious damage to the industry (Merceron et al., 1995; Doyle et al., 2008; 

Hay and Murray, 2008). Considering that the aquaculture industry generates thousands of 

jobs and several million euros each year within the EU, and is expected to expand to meet 

the decline in wild fisheries catch (FAO, 2000), the potential threats posed by                 

P. noctiluca blooms assume great importance.  

Worryingly, our data highlighted the presence of large aggregations of P. noctiluca in an 

area where many aquaculture facilities are concentrated (Figure 2.3). This provides an 

interesting snapshot at a given time that could serve as a basis to develop early warning 

systems. Indeed, the recent application of a particle-tracking model to jellyfish spatial 

dynamics (Moon et al., 2010) indicates the potential for developing forecasting systems 

to plot the trajectory of these large aggregations and to estimate the probability that they 

may impact on aquaculture facilities. Data such as ours could be useful in defining 

realistic initial conditions for such simulations. In the meantime, mitigation measures 

such as the development of cost-effective barrier systems to deflect jellyfish incursions, 

e.g. bubble nets, need to be considered. 

An additional use of jellyfish bycatch datasets collected over several years can be in 

supporting tools to investigate how climate and jellyfish occurrence/abundance are 

related (reviewed by Purcell, 2009). One of the best examples of such use comes from the 

Eastern Bering Sea, where more than 20 years of bycatch data from quantitative bottom-

trawl surveys have described how jellyfish abundance in that area is responding to 

successive regional climate shifts (Brodeur et al., 2008a). Those results demonstrate that, 

although bottom-trawl surveys are not designed to sample planktonic species, they can 

still provide useful indices of jellyfish biomass. We believe that the data from the IGFS 

have the potential to provide such time-series for P. noctiluca, provided that species-

specific records are maintained. Indeed, although other scyphozoan species tend to peak 

in summer (Doyle et al., 2007a; Houghton et al., 2007), some are found during autumn 

(Figure 2.2), and our results show that a catch of 0.18 kg ha
–1

 in the N subregion 

(56°20’N 7°37’W) consisted of >200 P. noctiluca, and that a similar catch (by weight) in 

the S subregion (51°38’N 7°24’W) was of a single R. octopus of 1.6 kg. The same 

happened, to a lesser extent, with catches of salps or A. aurita (Figure 2.2). 

To conclude, it appears that jellyfish bycatch data not only provide information on the 

distribution of P. noctiluca at a scale and a resolution that has not been possible before in 

the Northeast Atlantic, but also offer one of the best available options to record year-on-

year variations in the abundance of the species there. More generally, we believe that 
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such data can provide the necessary baseline to investigate how jellyfish populations are 

responding to changes in marine ecosystems (Richardson et al., 2009). For that reason, 

therefore, we urge that efforts to record jellyfish bycatch at a species level be maintained 

in future, and perhaps also extended to other national and international fisheries surveys.  
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Chapter 3 – Inter-annual and inter-regional distributions and 

abundances of Aurelia aurita and Cyanea spp. across the 

Irish Sea 

The chapter presents data from year 2007 – 2010, collected by TB (2009 and 2010), MKS Lilley 

(2007 and 2009), SE Beggs (2007 – 2010) and D Haberlin (2010). TB performed all data analysis 

and writing up of the results as presented here. 

 

Abstract 

Identifying interactions between scyphomedusae and other components of the ecosystem 

requires information on their distribution and abundance. Four years (2007-2010) of 

jellyfish bycatch from a juvenile gadoid fish survey were analysed. An average of 76 

stations distributed all across the Irish Sea basin were sampled each year, providing for 

the first time, spatially explicit information on the abundance of scyphomedusae for both 

the eastern and western part of the Irish Sea. Data from CTD profiles were extracted to 

investigate relationships between jellyfish abundance and environmental parameters 

(temperature, salinity, stratification index). Contrasting inter-annual variations of 

abundance were observed between different regions of the Irish Sea for Aurelia aurita 

and Cyanea species. No formal relationships could be found with environmental 

parameters. However, A. aurita were found to have a higher average biomass per 

individual in stratified waters than in mixed waters; potentially reflecting the difference 

of seasonal dynamics in the productivity of the different ‘marine landscapes’ of the Irish 

Sea. Such contrasting regional dynamics in jellyfish abundances should be considered 

when addressing potential interactions between scyphomedusae and other components of 

the ecosystem (e.g. fish larvae). 

 

1. Introduction 

Scyphozoan jellyfish are receiving increased recognition as key components of marine 

ecosystems (Pauly et al., 2009). Examples of ecological processes that they contribute to 

include: benthic-pelagic coupling (Pitt et al., 2008; Yamamoto et al., 2008), nutrient 

cycling (Pitt et al., 2009a), and control of invasive species outbreaks (Purcell and Cowan, 

1995; Hosia and Titelman, 2011). However, the primary concern about jellyfish is about 

their potential impacts on commercially important species (especially fish) through 

competition and predation (Lynam et al., 2005b). For example, most scyphozoan jellyfish 
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feed primarily on crustaceans (mostly cladocerans and copepods) and gelatinous 

zooplankton (e.g. ctenophores, hydrozoans, or other scyphozoans), but are also known to 

feed on fish eggs, fish larvae and small juvenile fish (Purcell, 1991; Purcell and Arai, 

2001; Barz and Hirche, 2007). Furthermore, as jellyfish populations may be increasing 

globally in response to climate change, overfishing, and modifications of coastal 

environments (e.g. eutrophication and the development of artificial structures), the 

impacts of jellyfish blooms (reviewed by Richardson et al., 2009) may be exacerbated. 

A recent study has demonstrated that the Irish Sea pelagic ecosystem has undergone deep 

modifications since the 1980s, with the mean overall jellyfish biomass increasing in the 

western part of the basin since 1994 (Lynam et al., 2011, see Appendix B). The most 

abundant jellyfish species found in the Irish Sea is the moon jellyfish, Aurelia aurita. 

However, other species can be very abundant locally. These species are the barrel 

jellyfish (Rhizostoma octopus), the lion’s mane jellyfish (Cyanea capillata), the blue 

jellyfish (Cyanea lamarckii), and the compass jellyfish (Chrysaora hysoscella) (Russell 

1970). As mentioned in Chapter 1, the analysis of stranding events around Ireland and 

Wales (during 2003-2006) suggested that different jellyfish species occurred in distinct 

environments within the Irish Sea (Doyle et al., 2007a; Houghton et al., 2007). This 

spatial component of the different species is therefore a key element if the potential for 

competition with, and predation on, other species is to be established. This is particularly 

pertinent for fish species which may have spatially restricted spawning and nursery 

grounds (Fox et al., 2000; Armstrong et al., 2001; Bunn et al., 2004).  

The Irish Sea is a complex environment, composed of different ‘marine landscapes’ 

(Golding et al., 2004). It is a semi-enclosed sea between Ireland and Great Britain. It 

opens into the Celtic Sea through Saint Georges Channel in the south, and onto the Malin 

Shelf through the North Channel in the north. The Irish Sea basin can be subdivided into 

two regions based on its bathymetry. The region east of the Isle of Man is relatively 

shallow with depths < 50 m, and is characterised by important river runoffs and the 

existence of a salinity front in Liverpool Bay. Conversely, the region west of the Isle of 

Man is characterised by a channel 100-150 m deep, running along a north-south axis 

between the St George’s Channel and the North Channel (Figure 3.1). This region 

becomes seasonally stratified during spring and summer. The eastern and western regions 

present contrasting environments, within which ecological processes (e.g. primary 

production, fish spawning) present contrasting dynamics. In particular, seasonal 

production differs between mixed and stratified regions (Gowen et al., 1995), while 

spawning of commercially important species (fish and crustaceans) concentrates in 
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specific spawning grounds (Heffernan et al., 2004), and fish larvae are not randomly 

distributed (Dickey-Collas et al., 1996; Bunn et al., 2004). In consequence, any 

investigation of the potential for interaction of jellyfish with fish requires analysis of the 

spatial distribution of jellyfish. 

Lynam et al. (2011) provided a solid analysis of the inter-annual variations and long-term 

evolution of the abundance of scyphomedusae in the western part of the Irish Sea. Their 

study was based on jellyfish bycatch data from the juvenile gadoid fish survey organised 

in the Irish Sea in late-May-early-June every year. Their analysis showed how the inter-

annual variability of the mean jellyfish abundance correlated with sea surface temperature 

(SST), salinity and secondary production. The objective of the present chapter is to use 

similar data to describe, for the first time, the distribution and abundance of the different 

scyphozoan species in both the western and eastern parts of the Irish Sea. In contrast to 

the 15 year time-series available for the western part (Lynam et al., 2011), only 4 years of 

species- specific data are available across the entire basin (i.e. eastern and western basins 

of the Irish Sea). The present work therefore focuses on describing the spatial aspect of 

the records, and demonstrates how it varies from year to year. In addition, relationships 

between jellyfish abundance and environmental conditions defining the different ‘marine 

landscapes’ that make up the water column of the Irish Sea (i.e. temperature, salinity and 

stratification) are considered. 

 

2. Methods 

2.1. Data collection 

Data on the distribution and abundance of scyphomedusae were collected during the 

annual juvenile gadoid fish survey organised by Agri-Food and Biosciences Institute, 

Northern Ireland (AFBI) in 2007, 2008, 2009 and 2010, using the RV Corystès. Each 

survey was organised as two legs. During the first leg (usually the last week of May), 

sampling stations located in the western Irish Sea were sampled. During the second leg, 

stations from the eastern half were sampled first (usually the first week of June) and then 

western stations were sampled a second time (second week of June) (Figure 3.1 and Table 

3.1). The number of stations varied slightly from year to year depending on logistical and 

natural constraints (e.g. mechanical breakdown, bad weather). Details on sampling dates 

and numbers of stations for each region are presented for each year in Table 3.1. 
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Figure 3.1. Sampling stations in the Irish Sea. 

Details on the temporal organisation of the survey, for each year between 2007 and 2010 are 

presented in Table 3.1. 

 

Sampling was by a 5 m
2
 Methot Isaacs Kidd-net (5 mm mesh size, see Methot, 1986) 

towed in a single v-shaped profile at different stations distributed throughout the Irish Sea 

(Figure 3.1). Deployment was down to 3 m from the bottom and towing speed was 

adjusted to keep sampling-time within 10 min. At shallow stations, two consecutive v-

shaped profiles were conducted within 10 min. A mechanical flowmeter (General 

Oceanics Model 2030R) was attached to the centre of the MIK net frame. Sampling was 

always at night time. 

The catch was sorted as soon as the net was on board. Since 2007, scyphozoan jellyfish 

have been identified to species or genus level, and the total wet mass and the number of 

individuals per species recorded. Large catches were subsampled and the overall count 

and species-specific weight deduced from the fraction subsampled. For each station, the 

catch biomass (g) and the number of individuals were standardised by the volume filtered 

(m
3
), calculated from flowmeter readings. 
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Table 3.1. Sampling effort in the Irish Sea between 2007 and 2010. 

Number of valid jellyfish sampling stations (N) and dates (in dd/mm) between which sampling 

took place in the eastern and western Irish Sea each year. Note that the western Irish Sea was 

sampled twice a year (Leg 1 and Leg 2). 

  Leg 1  Leg 2 

  West  East  West 

Year  Dates N  Dates N  Dates N 

2007  29/05 – 01/06 24  03/06 – 08/06 27  10/06 – 14/06 25 

2008  27/05 – 01/06 27  01/06 – 06/06 26  06/06 – 10/06 23 

2009  26/05 – 30/05 25  02/06 – 06/06 26  06/06 – 11/06 30 

2010  11/05 – 15/05 30  09/06 – 11/06 14  05/06 – 09/06 29 

 

 

2.2. Environmental parameters 

During daytime, a Gulf-VII fast plankton sampler (280 µm mesh) was deployed at a 

network of stations slightly different than the one used for MIK sampling, but covering 

the same area (Figure 3.1). In 2008, 2009, and 2010, a CTD profiler (SeaBird – 

SBE19plus) recording temperature and salinity, was attached to the GULF VII sampler. 

As for the MIK net, deployment was in v-shaped profiles (w-shaped profiles at shallow 

stations), down to 3 m from the bottom. The speed was adjusted so that sampling 

occurred within 15 min. 

Data from CTD profiles were averaged by 0.5 m-depth bins. At each station, for each 

parameter, a ‘composite’ profile was calculated using the mean of the downward and 

upward value of each 0.5 m-depth bin. A running median filter (window width = 5 

points) was run on the data to eliminate possible spikes in the profile. Profiles were 

visually inspected and validated. Then for each station, several parameters were extracted 

from the resulting composite profile:  

 Maximum depth of the profile. 

 Near surface temperature and salinity, calculated as the mean of the values 

between 2 and 3 m from the surface. 

 Bottom temperature and salinity, calculated as the mean of the values from 2 m 

above the maximum depth of profile and the maximum depth of profiles. 
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In addition, a stratification index was calculated for each profile. The index proposed by 

Simpson (1981) was used. This index characterises the quantity of work (J m
-3

) required 

to bring complete vertical mixing of the water column and is defined as follows:  

 
0

)(
h

zdz
h

g
  

Where g is the acceleration of gravity (9.807 m s
-2

), h is the maximum depth of the 

profile, ρ is the density at depth z, and  the average density of the profile. 

The near surface salinity and Simpson stratification index were used to identify different 

types of water mass. Following Dickey-Collas et al. (1996), we used values of  ≤ 10 , 

and  ≥ 20, to discriminate between mixed, intermediate and stratified waters. A value of 

near surface salinity of 33.5 was used to discriminate between ‘high salinity’ and ‘low 

salinity’ waters, and delimit marine landscapes as suggested by Golding et al. (2004) 

(these authors used a winter salinity of 34 as a limit). 

In order to describe the environmental context of the catch, each jellyfish catch was 

associated with the data extracted from the closest CTD profile. For 48 sampling stations, 

the CTD was cast at approximately the same location where the jellyfish were caught. 

Sixty-nine jellyfish sampling stations were localised at mid-distance between two CTD 

stations; in this case we used the mean values calculated from the two profiles. Finally, 

for 95 jellyfish stations values from nearby stations (max distance = 21.7 km, 90% 

quantile = 6.5 km) were used. Twenty-five stations were excluded from the analysis 

involving environmental parameters due to the lack of corresponding CTD data. Elapsed 

time between CTD and jellyfish sampling ranged from < 1 hour to 4.5 days, with a 

median of 12.5 hours. 

 

2.3. Statistical analysis 

For each species, the existence of inter-annual differences of abundance across the entire 

basin was tested using Wilcoxon rank-sum tests. Similar procedures were used to test for 

differences between regions, and between years within each region. When comparing 

data from one year to data from another one, if an entire area had not been sampled both 

years, data from this area were excluded from the data of the year during which it had 

been sampled (e.g. the southern part of the eastern Irish Sea was not sampled in 2010, 
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therefore data collected in that area in other years were not taken into account when 

comparing these years with 2010). Statistics were performed on both volume-

standardised biomass data (g m
-3

) and density data (ind. 100 m
-3

). 

The existence of differences in the distributions of A. aurita and Cyanea spp. was tested 

using the modified Cramér-von Mises statistic proposed by Syrjala (1996). It is a non-

parametric inferential statistic to test for difference of spatial-distributions between two 

populations, and is particularly adapted to species that exhibit aggregative behaviour 

(Syrjala, 1996; Brodeur et al., 2002). The null hypothesis of the test is that the normalized 

distributions of the two populations (in our case species) are the same. The Syrjala-test is 

sensitive to differences in distribution, but is insensitive to differences in abundance 

between the two populations. The level of significance of the difference is determined by 

a randomization test. The Syrjala-test was also used to test for significant inter-annual 

differences in the distribution of each species. In this case, for each pair-comparison, the 

samples compared were restricted to stations sampled both years. A total of 999 iterations 

were used for the randomization procedure. 

Spearman’s rank correlation coefficient was used to investigate the possible existence of 

an association between A. aurita and Cyanea spp., since some studies have suggested 

significant interactions between A. aurita and C. capillata (Båmstedt et al., 1997; 

Hansson, 1997a). Correlation between jellyfish abundance (biomass and densities) and 

the available environmental parameters (see section 2.2.) were also investigated with 

Spearman’s rank correlations. 

All statistical analyses and computing were conducted in R (R Development Core Team, 

2011). The ‘oce’ package was used to calculate densities from CTD profiles (Kelley, 

2011). The Syrjala test was computed using the ‘ecespa’ package (De la Cruz, 2008). The 

detailed results of all statistical tests are reported in Appendix A. 

 

3. Results 

3.1. Catch summary 

Between 2007 and 2010, a total of 306 valid tows were conducted with scyphozoan 

jellyfish present in 95.4% of them. The mean volume filtered (X ± SD) was 4,671 ± 

1,788.95 m
3
 (range 1,412 – 11,720 m

3
). Depth in the sampling area was between 4 and 

130 m (mean = 61.4 m). The summary of catches for each year is presented in Table 3.2.  
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Considering the data from the second leg (entire Irish Sea in early June), the overall 

annual mass (wet weight) of  jellyfish catch was estimated to be 178, 312, 636, and 243 

kg in 2007, 2008, 2009 and 2010 respectively. Overall, Aurelia aurita represented 77.7% 

of the catches (wet weight) and Cyanea spp. (Cyanea lamarckii and Cyanea capillata) 

21.5%, however the contribution of each species varied greatly between regions and 

between years (Table 3.2). Large C. capillata and C. lamarckii can be easily 

distinguished by their colours (C. capillata is red-brown, C. lamarckii is blue). However, 

small medusae of both species can have a transparent yellowish coloration. Species 

identification has therefore to be based on the number of tentacles and the presence or 

absence on the muscle folds of pit-like intrusions from the gastrovascular cavity (Russell 

1970). Unfortunately, time and logistical constraints during the cruise did not allow for 

reliable observations of these characteristics, and results are therefore reported at the 

genus level. The only other scyphozoan caught was the compass jellyfish (Chrysaora 

hysoscella), but it was only marginally present (totals of 16 individuals in 2007, 131 in 

2008, 1 in 2009, and 1 in 2010).  

To avoid bias due to delay in sampling, only data from stations sampled during the 

second leg were considered for further analysis. The overall mean (X ± SD) volume 

standardised biomass of A. aurita in early June was 1.32 ± 3.92 g m
-3

 (median = 0.13       

g m
-3

, N = 200), and for Cyanea spp. it was 0.34 + 0.74 g m
-3

 (median = 0.09 g m
-3

,          

N = 200). 

 

3.2. Inter-annual variations of abundances and distributions of scyphomedusae 

across the study area 

Across the entire basin, significantly higher abundance (biomass and densities) of Cyanea 

spp. were found in 2007 compared with other years (Wilcoxon rank-sum test, detailed 

results presented in Appendix A), whereas A. aurita was significantly more abundant in 

2009 (Figure 3.2, Tables A.1 and A.2). 

The distribution of each species across the study area in early June significantly differed 

from one year to the next (Syrjala tests on density data, Table A.3 and Table A.4 for full 

details). Spearman’s rank correlation coefficient was used to investigate the association 

between the two species. The biomass (g m
-3

) of A. aurita was positively and 

significantly correlated with the biomass of Cyanea spp. only in 2007 and 2008. 



Chapter 3 – A. aurita and Cyanea spp. in the Irish Sea 

37 

 

Figure 3.2. Inter-annual variations of biomass of A. aurita and Cyanea spp. 

Data from the East and West (second sampling only) of the Irish Sea are combined here. Dashed 

lines were drawn between annual means (marked by black asterisks) to guide the eye. Statistical 

comparisons between years are presented in Tables A.1 and A.2 of appendix A. 

 

No significant correlation was found for any year when considering densities               

(ind. 100  m
-3

) (Table A.5). When comparing the distribution of the biomass of the two 

species, A. aurita was found to be significantly differently distributed across the Irish Sea 

from Cyanea spp. in 2008 and 2010; when densities were considered, the distribution of 

the two species was significantly different in every year except in 2009 (Table A.6). 

 

3.3. Inter-regional variations of jellyfish abundance 

Within the study area, the eastern and western regions exhibited contrasting inter-annual 

patterns in abundance and densities of Aurelia aurita and Cyanea spp. (Figures 3.3 and 

3.4). The differences in abundance between the eastern and western regions were more 

pronounced for A. aurita, however, their statistical significance varied from year to year 

(Tables A.7 and A.8). In the western part (data from early June only), the biomass per 

volume (g m
-3

) of A. aurita did not vary significantly between years, while for Cyanea 

spp. only the catches from 2007 were found to be significantly higher than those in other 

years. The densities (ind. 100 m
-3

) of both species were significantly different in 2007 

from all other years (lower for A. aurita, higher for Cyanea spp.; see Table 3.2 and details 

of statistics in Tables A9, A.10, A.11, and A.12). 

In the eastern part, most inter-annual variations were statistically significant for both 

species when considering volume-standardised biomass (g m
-3

) (Tables A.9 and A.11). 

Most inter-annual variations of density of A. aurita were also found to be significant; 
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however, inter-annual variations of density (ind. 100 m
-3

) of Cyanea spp. were non-

statistically significant (except when comparing 2007 with 2009, Table A.10 and A.11). 

For A. aurita, the northern part of the east basin exhibited a particular high degree of 

inter-annual variations with large quantities caught there in 2009, while in 2010 and 2008 

only small catches occurred in that region (Figures 3.3 and 3.4). In fact, the median 

density (ind. 100 m
-3

) of A. aurita in the eastern Irish Sea in 2009 was >22 times higher 

than the median density of 2008 (and 6.7 and 9.3 times higher than in 2007 and 2010 

respectively, see Table 3.2). 

In the western part, no significant change was observed that year compared with other 

years. Unfortunately insufficient sample size, did not allow for comparison of distribution 

patterns within each region using the Syrjala statistics as was done for distributions across 

the entire basin. 
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Table 3.2. Catches of A. aurita and Cyanea spp. in the Irish Sea between 2007 and 2010. 

Each year, the western region was sampled twice (see Table 2.1 for details). “Frequency pres.” is the frequency of occurrence of each species in the sampling events of 

each region; “% total catch” is the contribution of each species to the overall wet weight of scyphomedusae for each region. 
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Figure 3.3. Volume standardised biomass (g m
-3

) of A. aurita and Cyanea spp. in the Irish Sea 

in early June 2007-2010. 
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Figure 3.4. Densities (ind. 100 m 
-3

) of A. aurita and Cyanea spp. in the Irish Sea in early June 

2007-2010 
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3.4. Environmental context 

The distribution of near-surface temperatures, salinity, and limits of mixed and stratified 

waters during sampling in early June 2008, 2009 and 2010 are presented in Figure 3.5. 

The eastern and western parts of the Irish Sea exhibited contrasting inter-annual 

variability. For example, temperature was higher in the west in 2010 compared with 

2009, but no marked inter-annual difference was observed in the east. Conversely, 

important differences in salinity between 2009 and 2010 were observed in the east, but 

they were only moderate in the west (Figure 3.5). 

Significant correlations were found between the abundance (both density and biomass) of 

Cyanea spp. and the various environmental parameters tested (positive correlations with 

temperatures, negative with salinities and depth), except in the case of the stratification 

index. The abundance of A. aurita was found to be significantly correlated (negatively) 

only with near-surface temperatures. The density of A. aurita was also significantly 

correlated with depth (Table 3.3). 

 

3.5. Jellyfish condition 

In the absence of exhaustive individual bell diameter and wet weight data, an estimated 

average mass (wet weight) per individual (g ind.
-1

) was calculated for each station and for 

each species, by dividing the catch biomass by the total number of individuals in the 

catch.  

For both A. aurita and Cyanea spp. the ratio was greater to a highly significantly extent in 

the west region compared with the east (A. aurita: W = 5,277, p < 0.001, Nwest = 81,     

Neast = 69; Cyanea spp.: W = 5,973, p < 0.001, Nwest = 100, Neast = 87) (Figure 3.6). When 

considering water types, the ratio was found to be greater to a highly significantly level in 

high salinity stratified waters than in high salinity mixed waters (A. aurita: W = 572,        

p < 0.001, Nstratif = 45, Nmixed = 45; Cyanea spp.: W = 1,106.5, p = 0.001, Nstratif = 58,    

Nmixed = 58). In low salinity waters the ratio was also higher in stratified than in mixed 

(Figure 3.7), but the difference was not statistically significant. 

 

.
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Figure 3.5. Near surface temperature and salinity, and stratification index in the Irish Sea in early June 2008-2010. 

For the stratification index, only the 10 and 20 isolines were drawn as they are the values delimiting stratified and mixed waters. Lines were generated after natural 

neighbour joining interpolation (grey crosses mark the positions of sampling stations). 
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Table 3.3. Correlations between scyphomedusae abundance and condition index with environmental parameters. 

rho is Spearman’s rank correlation coefficient and p the associated p-value. Near surface and bottom salinity and temperatures are labelled as ‘surface’ and ‘bottom’ in 

the table. See material and methods for further details. 

 Aurelia aurita  Cyanea spp. 

 

Biomass 

(g m-3) 

Density 

(ind. 100 m-3) 

Condition index 

(g ind-1)  

Biomass 

(g m-3) 

Density 

(ind. 100 m-3) 

Condition index 

(g ind-1) 

  rho p rho p rho p  rho p rho p rho p 

Temperature Mean  0.060 0.387 0.092 0.185 -0.067 0.414  0.290 <0.001 0.362 <0.001 -0.003 0.963 

 Surface  0.173 0.012 0.150 0.030 0.246 0.002  0.392 <0.001 0.326 <0.001 0.241 0.001 

 Bottom  -0.026 0.706 0.019 0.785 -0.160 0.051  0.193 0.005 0.299 <0.001 -0.108 0.144 

Salinity Mean  -0.094 0.182 -0.128 0.068 0.267 0.001  -0.274 <0.001 -0.408 <0.001 0.059 0.431 

 Surface  -0.082 0.245 -0.107 0.128 0.223 0.007  -0.269 <0.001 -0.369 <0.001 0.007 0.929 

 Bottom  -0.093 0.187 -0.130 0.064 0.282 0.001  -0.260 0.000 -0.400 <0.001 0.072 0.336 

Stratification index  0.125 0.075 0.066 0.346 0.384 <0.001  0.130 0.063 -0.011 0.874 0.281 <0.001 

Depth (m)  -0.039 0.500 -0.121 0.036 0.316 <0.001  -0.249 <0.001 -0.366 <0.001 0.087 0.148 
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Figure 3.6. Inter-annual and inter-regional variations of the condition index (g ind
.-1

) of A. 

aurita and Cyanea spp. 

Years and region are indicated in x-axis. West 1 and West 2 refer to sampling of the western 

region of the Irish Sea during the first and the second leg of each year, respectively. Please note 

that to avoid too much distortion of the bottom graph, higher limit of y-axis of Cyanea spp. was 

limited: as a result the following 2 points from 2010 are not visible: a point at 1,849.2 g ind.
-1

 in 

the eastern region, and a point at 978.5 g ind.
-1

 in the western region (2
nd

 leg). 
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Figure 3.7. Variations in the condition index of A. aurita and Cyanea spp. in different water 

types. 

The definition of the different water types was based on the stratification and the near-surface 

salinity in early June each year; see material and methods for details. Please note that to avoid too 

much distortion of the bottom graph, higher limit of y-axis of Cyanea spp. was limited: as a result 

the following 2 points are not visible: a point at 978.5 g ind.
-1

 in intermediate highly saline waters 

and a point at 1,849.2 g ind.
-1

 for mixed and low salinity waters. 
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4. Discussion 

The distributions and abundances of Aurelia aurita and Cyanea spp. were found to vary 

differently between years and between regions, indicating the existence of regional 

specific dynamics, with catches from the eastern part of the Irish Sea basin exhibiting 

more year to year variability than the catches from the western part of the basin. Within 

the eastern part of the basin, contrasting dynamics were recorded between the north and 

south. 

With only four years of data, it would be unreasonable to try to establish definitive 

conclusions concerning the factors driving the inter-annual variations reported here. In 

the western Irish Sea, the catches of all scyphomedusae (without species-specific details) 

have been recorded since 1994 and analysis of the resultant 15 year time series (1994-

2009) showed that the annual mean catch (volume-standardised biomass) correlated 

positively with sea surface temperatures from the previous 18 months and with the 

copepod biomass of the previous year, but negatively with spring precipitation (Lynam et 

al., 2011; see Appendix B). These findings highlighted the importance of (i) food 

availability to the previous jellyfish generation, and (ii) environmental conditions that can 

influence polyp growth and the production of ephyrae.  

Considering the differences in the morphology of the eastern and western regions of the 

Irish Sea basin, it would not be surprising that environmental factors varied differently 

from year to year in each of these regions. In particular, the eastern region is much 

shallower and under a noticeably stronger influence of rivers runoff than the western 

region (Dickson and Boelens, 1988); two factors that can only add to the variability of the 

system. The data presented in the current work provide snap-shots of environmental 

conditions in each basin in early June 2008, 2009, and 2010, and confirm that 

environmental factors do not vary in the same way from year to year in the different 

regions of the basins (Figure 3.5). Comparable regional-specific inter-annual variations 

were documented in the North Sea, where jellyfish populations of hydrographically 

distinct regions of the basin responded differently to the North Atlantic Oscillation 

(Lynam et al., 2005a). 

Some differences were observed in the inter-annual variations of jellyfish abundances 

depending on whether abundances were considered in terms of biomass or densities 

(Figures 3.3 and 3.4, and Tables A.9 to A.12). Such discrepancies probably indicate that 

the factors that influence the rate of production of medusae (via polyp strobilation and 
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ephyral development), and those that influence the rate of individual medusan growth, are 

likely to be different.  

The ratio (wet weight / number of individuals) was used in the present study as an ‘index 

of condition’ reflecting the average wet weight per individual for each species, in each 

catch. Interestingly, for both species, the ratio was significantly higher in the western 

region than in the eastern region; suggesting that, at the time of the survey, individuals in 

the west were on average larger than in the east (Figure 3.6). Differences in the timing of 

the onset of the production season might help to explain these differences of size. Coastal 

areas in the western part of the basin (east coast of Ireland) are known to have a 

production season starting early in the year (March-April) followed by production in 

more offshore regions (May-June) (Gowen et al., 1995). Conversely, the spring bloom 

seems to occur in May in Liverpool Bay (eastern Irish Sea) (Foster et al., 1982), and data 

from the Continuous Plankton Recorder programme indicated a peak in the colour index 

(an index of phytoplankton abundance) in June, followed by a peak in copepod 

abundance in July in this region (Edwards and Johns, 2003). Therefore, if the production 

of medusae is in tune with the production season (following the classical match-mismatch 

hypothesis of Cushing, 1974), younger (and therefore smaller and lighter) medusae might 

be expected in the eastern region in comparison with the western region at the time of the 

survey.  

Within the western region (or more exactly within ‘highly saline waters’), the average 

wet weight per individual of both species was significantly higher in stratified waters than 

in mixed waters (Figure 3.7). Several studies have reported that the stratified region of the 

western Irish Sea supports a higher daily primary production and zooplankton biomass 

(or standing stock) than mixed regions (Fogg et al., 1985; Williams et al., 1994; Gowen et 

al., 1995). Such a difference might provide better feeding conditions for scyphomedusae 

in the stratified region, and may explain the higher wet weight per individual observed, as 

well as the significant correlation observed between the condition indices of both species 

and stratification indices (Table 3.3). Such links between food availability and 

stratification has been suggested by other authors for sprat larvae in the Irish Sea 

(Coombs et al., 1992). 

In terms of environmental conditions, the abundances of Cyanea spp. were significantly 

correlated with most environmental parameters (mean, near-surface, and near-bottom 

temperature and salinity), whereas the abundances of A. aurita were not, except for near-

surface temperature (Table 3.3). Considering the size (as indicated by the median of the 
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condition index) of the medusae caught during the early June cruise, it is likely that A. 

aurita (median condition index = 130.6 g ind
-1

) have been present in the water column for 

few months, but this is much less likely for most Cyaneidae medusae (median = 25.8       

g ind
-1

). The production of medusae of each species seems therefore to take place at 

different times, with medusae of Cyanea spp. produced closer to the sampling date (i.e. 

later in the year) than medusae of A. aurita. Therefore one could expect that the densities 

of A. aurita would be under the influence of environmental conditions that prevailed 

earlier in the season, and its biomass under the influence of local food conditions (Lynam 

et al., 2011) but also temperature which can affect the growth rate of medusae (Hansson, 

1997b); whereas for Cyanea spp. environmental conditions at the time of the survey may 

still reflect the conditions that influenced the production of medusae by the polyps. 

Alternatively, correlations with environmental parameters may simply reflect the 

correlations or the absence of correlation of jellyfish abundance with depth. 

Several diet and feeding studies have demonstrated that fish eggs and larvae can 

contribute to the diet of C. capillata and A. aurita (e.g. Titelman and Hansson, 2006; Barz 

and Hirche, 2007). For example, Möller (1984) reported an average of 4.4 herring larvae 

(Clupea harengus) present in the gastric pouch of juvenile A. aurita (6 to 50 mm in bell 

diameter) in a Swedish fjord in May 1979, and observed up to 49 larvae in the stomach of 

a single 68 mm medusa. Contrasting dynamics in the outbreak of medusae in different 

regions of the Irish Sea might therefore have serious implications for other components of 

the ecosystems, and in particular for fish populations. Indeed, the results of the present 

study show how the abundance of jellyfish is highly variable in the eastern part of the 

basin, a region in which are localised important spawning and nursery grounds for many 

fish species (Fox et al., 1997; 2009; Bunn et al., 2004). In fact, Heffernan et al. (2004) 

estimated that most Irish Sea spawning of commercially important species occurs in the 

eastern Irish Sea (56% of Plaice spawning occurs in the east of the Irish Sea, 59% of Cod, 

79% of  Haddock, and 88% of Whiting). However, fish spawning in the Irish Sea peaks in 

early to mid-March, and peak numbers of fish larvae occur in late-April (Bunn et al., 

2004). Without reliable knowledge of the abundance of jellyfish during these months it is 

difficult to say whether they have a significant impact on fish eggs and larvae. As 

mentioned above, it is likely that A. aurita medusae have been present in the water 

column for some months before the survey, but this is less likely for most Cyaneidae. 

Furthermore, with a diet composed mostly of meso-zooplankton, both A. aurita and 

Cyanea. spp. could potentially be in competition for food with zooplanktivorous fish 

(Purcell and Arai, 2001; Barz and Hirche, 2007). Conversely, some juvenile fish are 



Chapter 3 – A. aurita and Cyanea spp. in the Irish Sea 

50 

found living in association with scyphomedusae, and Cyanea spp. in particular  

(Nagabhushanam, 1965; Russell, 1970). By swimming along with the jellyfish, these 

juvenile fish probably escape from visual predators and, as they grow, start feeding on the 

jellyfish itself (Lynam and Brierley, 2006). This shows how the identity of the species 

involved, as well as their respective development stage, are critical elements in defining 

which type of interactions can take place between scyphomedusae and fish. A study of 

the diet of A. aurita and Cyanea spp. in the Irish Sea is needed to establish once and for 

all whether or not these species prey on fish eggs and larvae, and to determine the extent 

to which their diets overlap with those of planktivorous fish species (Barz and Hirche, 

2005; Brodeur et al., 2008b; Suchman et al., 2008; Pitt et al., 2009a). 

In summary, Aurelia aurita and Cyanea spp. can be found from one side of the Irish Sea 

to the other, both in inshore and offshore waters. However, their distributions and 

abundances exhibit contrasting inter-regional and inter-annual dynamics. Between 2007 

and 2010 the variability in the abundance of both species was greater in the eastern than 

in the western part of the basin, and this is likely linked to a greater variability of 

environmental conditions in the east. Such contrasting patterns of variability confirm the 

importance of including the spatial and temporal dynamic dimension in any effort aimed 

at addressing the ecological impact of jellyfish in the Irish Sea, and in particular their 

interaction with different developmental stages of fish. The data presented in this chapter, 

represent the first description of the distribution of the abundance of scyphomedusae 

throughout the entire Irish Sea. As such they could be used to estimate the early summer 

biomass of jellyfish in the system and inform numerical models (e.g. biomass in 

EcoPath). However, the inter-regional variations observed in the condition index 

highlight an important limitation of jellyfish bycatch datasets collected during annual 

fisheries survey organised at fixed dates: the potential risk that a delay in the timing of the 

production may result in a lower catch biomass that ends up being interpreted as a ‘low’ 

year of jellyfish abundance. The integration of density data in the index used to study 

long term patterns of inter-annual variations might help in limiting this bias in regions 

marked by a high degree of variability. In addition, monitoring of the seasonal dynamics 

of the abundance of A. aurita and Cyanea spp. could help to address this issue, and would 

also be essential before the bycatch data presented here could be extrapolated to estimate 

jellyfish abundance at peak season (see next Chapter). 
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Chapter 4 – Monitoring of the seasonal dynamics of 

scyphomedusae in the Irish Sea 

This chapter was accepted for publication in a similar form in Marine Biology under the reference: 
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press) Large-scale sampling reveals the spatio-temporal distributions of the jellyfish Aurelia aurita 

and Cyanea capillata in the Irish Sea. Marine Biology. Doi:10.1007/s00227-011-1762-z. 

TB and DH conducted the ferry surveys. DH conducted the camera trials (with help of TKD) and 

the picture analysis. JEP and TKD conducted the net tow trials. TB analysed the data and wrote 

manuscript with contributions of DH, TKD, JEP and all others. 

 

Abstract 

At-sea distributions of large scyphozoan jellyfish across the Irish Sea were studied using 

visual surface counts from ships of opportunity. Thirty-seven surveys were conducted 

along two > 100 km long transects between Ireland and the UK from April to September 

in 2009 and 2010. Five species were recorded but only Aurelia aurita and Cyanea 

capillata were frequently observed. The first formal description of the seasonal changes 

in the abundances and distributions of these two species in the study area is provided. The 

highest densities of these species were more likely to be found ~ 30 km offshore, but 

large aggregations were present both in coastal and offshore waters. Evidence for 

aggregations of medusae along physical discontinuities was provided by coupling 

jellyfish observations with simultaneous records of environmental parameters. The value 

of surveys from ships of opportunity as cost-effective semi-quantitative tools, to develop 

local knowledge on jellyfish abundance, distribution, and phenology is discussed. 

 

1. Introduction 

There is concern that climate change (Purcell, 2005; Brodeur et al., 2008a), overfishing 

(Lynam et al., 2006), eutrophication of coastal waters (Arai, 2001), and the development 

of artificial structures along coastlines (e.g. marinas, aquaculture facilities, see Lo et al., 

2008) can result in a proliferation of gelatinous organisms with dramatic impacts on 

human activities (Mills, 2001; Purcell et al., 2007; Richardson et al., 2009). However, the 

reality of suspected global patterns of increased abundance of jellyfish has not been 

formally established (Mills, 2001; Haddock, 2008), and the absence of long-term baseline 

data makes it difficult to address this topic (Purcell, 2009). 
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Some studies have established links between environmental parameters and the inter-

annual variability of jellyfish abundance (Goy et al., 1989; Brodeur et al., 2008a; 

Kogovsek et al., 2010; Lynam et al., 2011). However, because of the complexity of the 

physical and biological processes at play in marine systems, these relationships based on 

local or regional datasets do not necessarily apply to other locations. For example, Lynam 

et al. (2005a) have described how the abundance of scyphozoan jellyfish exhibits 

contrasting responses to the North Atlantic Oscillation in different regions of the North 

Sea basin, due to differences in local hydrographical conditions. Therefore, any attempt to 

address the likelihood of jellyfish populations increasing in a specific region requires the 

development of a local knowledge of their frequency of occurrence, their abundance, and 

their broad-scale distribution in that region. 

Previously, Doyle et al. (2007a) suggested that visual surveys using ships of opportunity 

(ShOps) could provide a cost-effective option to build up datasets of jellyfish abundance. 

Visual surveys from ShOps consist of conducting surface counts from an observation 

platform on a ship as it sails (or steams) along its regular route. A ShOp can be a research 

vessel cruising between sampling stations or a ferry-boat regularly crossing between two 

islands or two sides of a bay. Seabird and marine mammal observers use this approach on 

a regular basis (Warren et al., 2009), and it can be adapted to any easily identifiable 

object present on the surface of the sea e.g. algal rafts (Hobday, 2000; Hinojosa et al., 

2010), pieces of macro-litter (Hinojosa and Thiel, 2009), or large medusa stages of 

scyphozoan jellyfish (Doyle et al., 2007a; 2008). With the development of numerical 

models and on-board sensing equipment (e.g. FerryBox device, Balfour et al., 2007), it is 

now possible to couple such observations with environmental parameters. 

In order to investigate the seasonality and at-sea distributions of the main scyphozoan 

jellyfish species in the Irish Sea, frequent field surveys using ShOps were conducted 

between Ireland and Wales from mid-April to late-August – early-September in 2009 and 

2010. In addition, trials using camera still-images were conducted in order to test the 

reliability of the surface counts. Net tows were made to determine if surface counts 

reflected jellyfish biomass throughout the water column, as recommended by Purcell 

(2009). Results are discussed with regards to information on other environmental 

variables as provided by different sources of data (model outputs, in situ measurements, 

published data), and highlight some of the original advantages associated with the use of 

ShOps to monitor jellyfish relative abundance. 
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2. Methods 

2.1. Study area 

The Irish Sea is a semi-enclosed sea separating the islands of Great Britain and Ireland 

(Figure 4.1). In the north, the North Channel links the Irish Sea to the Atlantic Ocean, 

while in the south the St George’s Channel links the Irish Sea to the Celtic Sea. The 

western Irish Sea is characterised by a net northward flow (annual average of 2.5         

km
3
 days

-1
, Dabrowski et al. 2010), that varies in intensity seasonally.  

 

Figure 4.1. Study area for visual enumeration of scyphomedusae in the Irish Sea in 2009 and 

2010. 

Ferry-routes A and B are represented by black lines. Black dots denote positions where oblique net 

tows were performed during a research cruise between 16 and 21 June 2009. The 100 m isobath is 

represented by a thin grey line. Projection on the Irish National Grid was used to map the close-up 

of the study area. 
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From spring to early-autumn a counter-clockwise cold pool gyre forms in the western part 

of the Irish Sea (Horsburgh et al., 2000; Hill et al., 2008). This gyre and the development 

of a strong thermal stratification at the entrance of the North Channel cause a significant 

decrease of the northward flow from June to September. The flow only resumes with the 

breakdown of the stratification. From time to time, the net flow can be reversed to a 

southwards direction under the effects of winds, in particular during the first few months 

of the year  (Dabrowski et al., 2010).  

 

2.2. Data collection 

The methodology used for the surveys was adapted from Doyle et al. (2007a). An 

observer placed on the outside deck of a ferry visually identified jellyfish to species level 

and estimated their numbers per 5-min intervals using six categories of abundance: 0, 1 – 

10, 11 – 50, 51 – 100, 101 – 500 and > 500. The scyphozoan species present in the Irish 

Sea (Aurelia aurita, Rhizostoma octopus, Chrysaora hysoscella, Cyanea capillata and 

Cyanea lamarckii) have medusae that grow large enough (> 10 cm in bell diameter) and 

differ sufficiently in shape and colour that medusae swimming at the surface can be 

identified relatively easily. The number of individuals for which there was any doubt on 

the species identification was recorded in a separate category. Sampling was for 15 min 

(i.e. three 5-min counts per sampling period) with 5-min breaks between successive 

 

 

Figure 4.2. Using ships of opportunity to monitor the surface abundance of scyphomedusae. 

(a) Schematic of the survey setting showing how the width of field of view can be derived from 

the height of the deck where the observer stands, the height of the observer  and the angle of the 

field of view (adapted from Doyle et al. (2007)). (b) Picture of individual A. aurita (white dots) 

and C. capillata (red larger dots) at the surface captured during one of the survey (picture by D. 

Haberlin). 
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Table 4.1. Dates of ferry surveys across the Irish Sea in 2009 and 2010. 

Please note that two surveys were conducted on each sampling day along ferry-route A. 

Route Year Date of survey 

Ferry Route A 2009 20 Apr; 03 May; 22 May; 22 Jun; 10 Jul; 25 Jul; 13 Aug; 11 Sept 

 2010 22 Apr; 12 May; 21 May; 12 Jun; 24 Jun; 12 Jul; 29 Jul; 15 Aug; 

31 Aug 

Ferry Route B 2009 07 Aug 

 2010 16 Jun; 29 Jul 

 

samples. A longer break (20 – 25 min) was taken at about mid-cruise to avoid potential 

bias due to observer tiredness. The position of the break was slightly shifted from two 

consecutive surveys (way over and way back), to avoid leaving any area totally un-

sampled. GPS positions were taken every 5 min using a handheld GPS. Sea state 

(Beaufort scale) and glare (as defined by Houghton et al., 2006b) were recorded at least 

every 15 min. An inclinometer and basic trigonometry were used to evaluate the width of 

the field of view surveyed. Consistency between observers (N = 4) was informally tested 

every time a new observer was involved. A formal trial where two observers conducted 

independent counts was completed on the 20 August 2010, in parallel with the camera 

trial (see section 2.6). All surveys were planned based on a maximum of a 3-day weather 

forecast of relatively low wind (sea-state 0 – 3 maximum) and no or moderate cloud 

coverage. 

Between April and September 2009 and 2010, 34 individual surveys (16 and 18 per 

season, respectively) were conducted on-board MS Ulysses, one of the ferries linking 

Dublin (Ireland) and Holyhead (Wales, UK) (ferry-route A, Figure 4.1). The two ports are 

~ 105 km apart and both an outward (Dublin-Holyhead crossing) and a return leg 

(Holyhead-Dublin crossing) were conducted on each day of survey (~ 3.5 h each way). 

Details are presented in Table 4.1. The observation deck was 27.5 m above the waterline 

(company information) and the field of view was estimated to be 50.2 m wide. 

Three additional surveys were conducted on the 7
 
August 2009, 16 June 2010, and 29 

July 2010 on board the Liverpool Viking, a ferry linking Dublin (Ireland) to Liverpool 

(England, UK) (ferry-route B, Figure 4.1). In this case, because the return journey is at 

night-time, jellyfish were only recorded on the way over, leading to 3 transects of ~ 200 

km. Because of the transect length (journey ~ 6.7 h), the protocol was adapted so that a 

20-min break was taken after four 15-min sampling-periods and a longer break of 1 h was 

taken at the middle of the crossing. The observation deck was 18.75 m above the 
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waterline (company information) and the field of view was calculated to be 43.3 m wide. 

These additional surveys were conducted to explore the potential of linking jellyfish 

observations with in situ environmental data provided by the ‘FerryBox’ carried by the 

Liverpool Viking (see section 2.5). 

 

2.3. Seasonal trend 

The lower and higher limit of the categories of abundance, the distance travelled (derived 

from GPS positions), and the width of the field of view were used to estimate a minimum 

and maximum density for each 5-min interval (reported in individuals per 1,000 m
2
). 

Note that the last category is an open one (> 500) and therefore the maximum densities 

are by definition underestimated.  

 

2.4. Distribution patterns 

To investigate distribution patterns across the transect, the section surveyed (ferry-route 

A) was first divided into 10 sections of 10.5 km each (using Dublin 53.34°N 6.20°W, as 

the 0 km point). Each 5-min count was then allocated to its corresponding section based 

on the position of the mid-point between the start and end-point of the 5-min period, 

compared with the start and end-point of each 10.5 km section. To guarantee that each 

section had at least one observation, data from each survey day (two surveys) were 

pooled. This pooling procedure was used because individual 5-min counts were based on 

the time since departure of the ferry and therefore the exact position where the n
th
 count 

occurred varied between different surveys. The change in the spatial distribution of 

jellyfish along the transect was characterised by considering the number of 5-min counts 

of each category of abundance for each of the 10.5 km-wide transect sections. Finally, the 

position of the average density of medusae through the season was addressed by 

considering the position of the ‘centre of jellyfish density’ along the transect. This 

parameter was defined by the following expression: 
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where Di is the position of the centre of density for the i
th
 day; mj is the distance from the 

closest coast of the middle point of the j
th
 section; dj is the average density (number of 

jellyfish per 1,000 m
2
) within the j

th
 section; and k is the number of sections. Effectively, 



Chapter 4 – Seasonal dynamics of scyphomedusae 

58 

Di is the average of the distance from the coast of the central point of each 10.5 km 

section, weighted by the average density of jellyfish in each section. Densities per section 

were calculated using the mid-points of the class of abundance recorded for each 5-min 

counts, rather than presenting several values of Di based on the minimum and maximum 

density estimates. Points of coordinates 53.343°N, 6.204°W and 53.331°N, 4.619°W 

were used as references to calculate distance from the coast (one point on each side of the 

transect). 

 

2.5. Environmental data 

Daily surface and bottom temperatures and salinity along ferry-route A (Figure 4.1) were 

provided by the National Oceanography Centre (NOC), Liverpool, UK (http://noc.ac.uk/). 

The data were from outputs of the Irish Sea high resolution POLCOMS model (1/40 

degree in longitude and 1/60 degree in latitude) extracted for 63 points distributed along 

ferry-route A (more details can be found on the NOC website). The daily means of these 

63 points from 1 January 2008 to 1 October 2010 were considered to describe general 

conditions along the transect.  

Along ferry-route B (Figure 4.1), in situ environmental data were collected by a FerryBox 

carried by the ship as part of the FerryBox project (http://www.ferrybox.org), meaning 

that data were collected simultaneously with the jellyfish surveys (for details on the 

FerryBox device see Balfour et al., 2007). Surface temperature, salinity, and chlorophyll, 

which were sampled every 10 s along the route, were considered for our study. GPS 

coordinates associated with sampling values were corrected for the 5-min lag between 

sampling (water intake) and sensor measurement due to the large sea chest of the ferry. A 

moving median with a width of 2 min was applied to smooth the series. Chlorophyll data 

must be considered with caution as they have not undergone quality control. The 

FerryBox data are also managed at NOC. 

 

2.6. Camera trial 

To address the accuracy of visual counts, a camera trial was conducted at the same time 

as visual surveys on a portion of 19.64 km of ferry-route A on the 15 August 2010. A 

digital still SLR camera (Canon 350D) was mounted on a tripod on the observation deck 

of the survey ship and pointed towards the water at an oblique angle (51°), aligning the 

lower edge of the field of view with the outside edge of the ship’s wash. This was done to 

http://noc.ac.uk/
http://www.ferrybox.org/
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provide the camera with a relatively constant composition and focus within the field of 

view. The camera was connected to a laptop and a remote capture tool was used to 

automatically take a picture (3,456 x 2,034 pixels) every 3 s and to store it on the hard 

drive of the computer. The camera, computer and GPS were synchronised before the 

survey, subsequently allowing every image taken within each 5-min sample-period to be 

easily identified by time.  

The horizontal and vertical angles of view of the camera (alpha) were estimated to be 

63.3° and 44.7° respectively, using the following equation:  

f

d

2
tan2 1   

with d the sensor dimension (22.2 mm length  x 14.8 mm height) and f the effective focal 

length (35 mm) (Marcos et al., 2008). The dimensions of the photographed area were 

calculated using trigonometry, specifically using the following equation: d = h  tan α , 

where d is the horizontal distance from the camera, h is the height of the camera and α is 

the angle in radians. The resultant image surface area was ~ 1,286 m
2
 and the number of 

individual jellyfish in each slide was counted. Counts were then pooled in each 5-min 

time-period and compared with visual counts corresponding to the same time interval.  

 

2.7. Net tow trials 

In order to compare surface densities as estimated by visual surveys with sub-surface 

densities, opportunistic pelagic trawls were conducted during a zooplankton/algal raft 

cruise in June 2009 with concomitant visual surveys from the same vessel (RV Celtic 

Voyager). In total, 13 pelagic trawls were conducted using a 4 m
2
 Methot Isaacs Kidd 

(MIK) frame net with a 5 mm mesh (Methot, 1986). Five trawls were conducted in the 

Irish Sea, three in Dingle Bay and five in Galway Bay (Figure 4.1). The net was towed in 

a single oblique profile through the water column to various depths depending on the 

locality. In the Irish Sea, tow depths varied between 24 and 65 m (bottom depth 94 –   

117 m); in Dingle Bay depth was between 9 and 12 m (bottom depth 36 – 45 m) and in 

Galway Bay all nets were deployed to a depth of between 19-24 m (bottom depth 32 –   

47 m). An impellor flowmeter recorded the volume filtered during each tow. The distance 

travelled and volume filtered averaged 1.23 ± 0.55 km and 3,851 ± 852 m
3
 (range 2,924 – 

5,562 m
3
), respectively. All jellyfish in the catch were counted and identified to species.  
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Table 4.2. Numbers of individual R. octopus, C. lamarckii, and C. hysoscella observed during 

ferry surveys in 2009 and 2010. 
 

Species Year Date (nDublin-Holyhead-nHolyhead-Dublin) 

Rhizostoma octopus 2009 20 Apr (22-12); 03 May (1-5); 22 May (1-1)  

 2010 22 Apr (2-2); 21 May (1-0); 24 Jun (0-1); 29 Jul (2-1) 

Cyanea lamarckii 2009 22 Jun (70-9); 10 Jul (3-0); 25 Jul (22-6); 13 Aug (0-15) 

 2010 - 

Chrysaora hysoscella 2009 10 Jul (56-36); 25 Jul (12-5); 11 Sep (0-1) 

  2010 - 

 

 

3. Results 

3.1. Surveys along ferry-route A 

A total of 34 individual surveys were conducted between Dublin and Holyhead in 2009 

(N = 16) and 2010 (N = 18), details are presented in Table 1. The mean (X ± SD) speed of 

the ship was 35.7 ± 6.5 km h
-1

 or 19.3 ± 3.5 knots, N = 798. The mean (X ± SD) surface 

area surveyed in each 5-min count was 149,418 ± 27,192 m
2
, N = 798. The mean (X ± 

SD) number of 5-min observations per survey was 23.5 ± 3.6, N = 34. Bad conditions or 

unexpected events caused gaps in the records for five surveys in 2010: 12 May (only     

12 and 18 5-min records), 21 May (only 15 5-min records on Dublin-Holyhead crossing), 

12 June (only 18 5-min records on Dublin-Holyhead crossing), and 29 July (only           

15 5-min records on Holyhead-Dublin crossing).  

During the 2 years of monitoring, five scyphozoan species were observed: Aurelia aurita, 

Chrysaora hysoscella, Cyanea capillata, Cyanea lamarckii, and Rhizostoma octopus. 

During both years, A. aurita and C. capillata were frequently observed throughout the 

season, whereas the other species were encountered on a more irregular basis. The 

proportion of individuals that were too small or too deep to be confidently identified was 

usually low (< 10 individuals per survey in 27 out of 34 surveys), except for 2 days in 

2009 (22 June and 10 July) when more than 100 individuals (with up to 45 individuals in 

one 5-min time-period) could not be successfully identified in Dublin Bay. However, the 

identification of A. aurita and large C. capillata was very reliable, so further analyses 

were only conducted for these two species. Information on the sightings of other species 

is presented in Table 4.2. 
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3.2. Seasonal abundance of Aurelia aurita 

In 2009, A. aurita was observed for the first time on 22 June with more than 100 

individuals counted per 5 min on seven occasions on each crossing. An overall mean 

density of 0.26 – 1.49 ind. 1,000 m
-2

 was calculated for this day, using respectively the 

lowest and highest limit of the count categories for each 5-min records of the day (Figure 

4.3). The maximum abundance of A. aurita was observed on 25 July with a mean density 

of 0.67 – 1.53 ind. 1,000 m
-2

 for the Dublin-Holyhead crossing. However, because the 

highest category is open (> 500), the maximum count underestimates the true maximum 

abundance present at the peak period (see section on camera trials). By 13 August 2009, 

numbers of A. aurita had dramatically decreased with only two 5-min counts in the      

50–100 category and no observations in the two highest categories, leading to an overall 

mean density of 0.015 – 0.04 ind. 1,000 m
-2

 for the day. In 2010, A. aurita was first 

detected on 21 May with two single individuals observed on the Holyhead-Dublin 

crossing. The maximum abundance was observed on 29 July with a mean density of 0.76 

– 1.23 ind. 1,000 m
-2

 for the Dublin-Holyhead crossing. The season extended later in 

2010 than in 2009 with relatively high abundances still being observed on 15 August 

(mean density of 0.32 – 0.68 ind. 1,000 m
-2

 for the day). The overall mean density was 

down to 0.007 – 0.039 ind. 1,000 m
-2

 by 31 August (Figure 4.3), with only four 5-min 

periods with more than 10 individuals counted. 

 

3.3. Seasonal abundance of Cyanea capillata 

In 2009, C. capillata was first detected on 22 June (six counts in the 1–10 category on the 

outward leg and eight on the return leg) and the mean density along the transect was 

0.0018 – 0.018 ind. 1,000 m
-2

 (Figure 4.3). In 2010, two individuals were sighted as early 

as 12 May. In both years, the maximal abundance was observed during the mid-August 

survey (13 August 2009 and 15 August 2010) and the maximum daily mean density was 

significantly higher in 2010 (0.074 – 0.265 ind. 1,000 m
-2

) than in 2009 (0.013 –       

0.055 ind. 1,000 m
-2

) (Wilcoxon’s rank-sum test, W = 587.5, N2009 = 51, N2010 = 47,          

P < 0.001). In 2009, densities of C. capillata had decreased by 11 September with only 

few individuals observed. In 2010, the monitoring ended on 31 August and at that time, 

C. capillata densities had started declining but were still at a relatively high level (daily 

mean 0.049 – 0.170 ind. 1,000 m
-2

). Cyanea capillata usually did not form dense 

aggregations like A. aurita: 75% of observations were 1-10 individuals per 5-min count, 

whereas for A. aurita only 38.5% of observations fell in that category and all other  
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Figure 4.3. Seasonal occurence of A. aurita and C. capillata between Dublin and Holyhead in 

2009 and 2010. 

Vertical bars show the range between the low and high mean daily estimates of density for each 

day of sampling. Lines were drawn through the middle point of vertical bars for visual aid (middle 

points marked by circles for A. aurita and by triangles for C. capillata). Data from 2009 are 

marked by open symbols and dashed lines, while data from 2010 are marked by solid lines and 

symbols. Note additional y-axis for C. capillata highlighting higher densities in 2010 than in 2009; 

for A. aurita densities were of the same order both years. 

 

observations in the higher categories. However, on three occasions, > 100 individuals of 

C. capillata were counted during a 5-min count (12 July 2010, 29 July 2010, and           

15 August 2010 – for A. aurita, such counts occurred 66 times), showing that density of 

C. capillata can also be locally high (maximum density estimates of 3.21 ind. 1,000 m
-2

 

for the > 100 individual 5-min count on 29 July 2010). 

 

3.4. Spatial patterns and seasonal changes in the distributions of Aurelia aurita and 

Cyanea capillata 

Aurelia aurita and C. capillata were not homogenously distributed along the transects. 

The details of the distribution of 5-min categories in the different sections of the ferry- 

route A are presented in Figure 4.4a. High numbers of A. aurita (> 500 ind. per 5-min 
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Figure 4.4. Spatial patterns and season changes in the distribution of A. aurita and C. 

capillata between Dublin and Holyhead in 2009 and 2010. 

(a) The total number of 5-min counts of each category of abundance for each species, for each 10.5 

km section of the Dublin-Holyhead transect (ferry-route A), in 2009 and 2010; (b) the % of 5-min 

counts with at least one medusa sighting; and (c) the distance from the coast of the centre of 

density of A. aurita (black dots) and C. capillata (grey triangles) for each day of survey, in 2009 

(dashed lines) and 2010 (solid lines). Please note that in (a) the 0-count category is not 

represented; and that in (c) the first value for A. aurita in 2010 (open circle) was due to the 

detection of only 2 individuals on that day. 

 

count) were encountered at least once in most sections of the transect (all except for the 

central section extending from 53 to 63 km offshore). The section with the highest 

number of > 500 ind. counts (N = 5) was the section from 21 to 32 km off Dublin (section 

3 on Figure 4.4a). Counts of 51 – 100 C. capillata per 5 min occurred in every section 

from 10 to 70 km offshore (from the Irish coast). The counts of > 100 C. capillata 

occurred in section 21 – 32 km off the Irish coast, and the section 32 – 42 km off the 

Welsh coast (sections 3 and 7 on Figure 4.4a).  

In order to illustrate how each species was distributed across the study area and how this 

pattern of distribution changed with time (e.g. over the season), the proportion of 5-min 

sampling-periods during which at least one jellyfish was observed, was considered for 
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each survey-day (Figure 4.4b). In 2009, C. capillata was first observed in only 28.0% of 

the 5-min counts (N = 49, 22 June), but this proportion went up to 43.1% in mid-August 

(N = 51). In contrast, in 2010, C. capillata was present in up to 85.1% of 5-min sampling-

periods (N = 47, 15 August), almost consistently found in every patch of water observed. 

Aurelia aurita was already widely distributed (88.0% of N = 50 5-min counts) when first 

observed in 2009 (22 June); whereas in 2010, the species was initially observed during 

only 1 of the 42 sampling-periods (21 May), and then progressively spread across the 

transect to be found in up to 77.1% of the sampling-period in mid-July (N = 48). In both 

years, the distribution of A. aurita increased earlier than C. capillata. In 2010, the centre 

of density of both species exhibited a progressive displacement from coastal areas to 

more offshore areas throughout the season (Figure 4.4c). In 2009, this pattern was not as 

marked, though for both species the centre of density during the last survey of 2009 was 

further offshore than during any other survey of the year. 

 

3.5. Environmental conditions along ferry-route A 

The mean daily water temperature (both surface and bottom) along ferry-route A 

followed an annual cycle marked by a progressive increase from early-March to mid-

August before decreasing from late-August to late-February of the following year (Figure 

4.5a). There was a slight decrease in both the minimum and maximum temperatures 

observed each year during the period considered (2008 – 2010). Indeed, the minimum 

mean daily surface temperature was 8.1°C in 2008, 7.5°C in 2009, and 7.1°C in 2010, 

while the maximum mean daily surface temperature was 16.1°C in 2008, 16.0°C in 2009, 

and 15.5°C in 2010. A slight difference between overall mean daily surface and bottom 

temperatures formed from 10 April to the first week of October in 2009. The same pattern 

occurred in 2010, at least until the end of August. The overall difference along the 

transect was low with a mean maximum difference between surface and bottom 

temperatures of only 0.9°C in 2009 (14 August) and 1.2°C in 2010 (8 July). The highest 

difference was found in the middle of the transect (deepest section) where surface 

temperature was up to 3.10°C warmer than bottom temperatures in 2009 (1 August) and 

3.5°C in 2010 (9 July). The salinity along the transect  (Figure 4.5b) was characterised by 

a rapid increase in the late-summer and early-autumn months (+0.4 from 11 August to     

1 November 2008 and +0.3 between 17 October and 20 November 2009). Salinity did not 

return to the initial level after the seasonal increase in either year. However, salinity 

started to decrease after mid-April in 2010. 
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Figure 4.5. Mean daily temperature and salinity between Dublin and Holyhead. 

Surface and bottome (a) temperature and (b) salinity from 1 January 2008 to 1 September 2010. 

Surface temperature and salinity are illustrated by continuous black lines, bottom temperature and 

salinity by dashed grey lines. Data are daily means from high resolution model outputs along 

ferry-route A (N = 63 points, material and methods for details). 

 

3.6. Distribution patterns along ferry-route B in relation to environmental 

parameters 

A total of three surveys between Dublin and Liverpool (ferry-route B) were conducted     

(7 August 2009, 16 June 2010 and 29 July 2010) (Figure 4.1 and Table 4.1). The mean 

speed (X ± SD) of the ship was 32.5 ± 5.2 km h
-1

 or 17.5 ± 2.8 knots, N = 150. The mean 

(X ± SD) surface area surveyed in each 5-min count was 117,395 ± 19,768 m
2
, N = 150. 

As with ferry-route A, the main jellyfish species present were A. aurita and C. capillata. 

Other species encountered were: R. octopus (one individual recorded on 16 June 2010, at 

position 53.5181°N, 3.4319°W) and C. lamarckii (three times 1 – 10 individuals on         

7 August 2009; five times 1 – 10 and one time 11 – 50 individuals on 16 June 2010; four 

times 1 – 10 individuals on 29 July 2009). The number of individuals that could not be 

identified was low in August 2009 (six times 1 – 10 individuals and two times 11 – 50) 

and July 2010 (one 1 – 10 count and one 11 – 50 count). In June 2010, the numbers of 

individuals that could not be identified was much higher; with unidentified individuals in 

60% of the 5-min counts (N = 48), and five counts with more than 50 individuals (among 

which, one of more than 100 individuals). This high number of unidentified individuals 
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Figure 4.6. Distributions of A. aurita, C. capillata, and variation of environmental parameters 

between Dublin and Liverpool. 

The density of A. aurita, temperature and chlorophyll are illustrated in black; the density of         

C. capillata and salinity in grey. In July 2010, large numbers of Cyanea sp. that could not be 

identified to species level occurred; they are illustrated by a dashed dark grey line. Crosses in the 

top panel indicate the mid-position of 5-min time periods of sampling. Regions with high medusae 

densities are highlighted by vertical grey areas. Please note changes in y-axis scale for densities of 

C. capillata (June 2010) and chlorophyll (August 2009). Jellyfish densities were calculated using 

the mid-point of the category of abundance for each 5-min count. 

 

can mainly be explained by the presence of many small Cyanea spp. individuals for 

which it was not possible to visually determine whether they were C. lamarckii and/or C. 

capillata. 

For each survey, variations of surface densities of A. aurita and C. capillata along the 

transect were considered in parallel with the in situ surface temperature, salinity, and 

chlorophyll measured by the FerryBox device (Figure 4.6). In August 2009, A. aurita was 

mostly present on the western part of the transect, with highest densities ~ 20 km offshore 

(101 – 500 ind. per 5 min, or 0.90 – 4.47 ind. 1,000 m
-2

). The temperature and salinity 

records indicated that the position corresponded to a decrease in temperature followed by 

a decrease in salinity as the ship entered a relatively less saline water-mass. Interestingly, 

the peaks of A. aurita corresponded to small peaks in chlorophyll concentration. In July 

2010 (Figure 4.6), a similar pattern of a very high density of A. aurita localised in a 
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region of a physical discontinuity ~ 13 km offshore (with a marked temperature change) 

was observed. In addition, on the same day, surface densities of A. aurita decreased with 

the entrance of the ship into the colder central waters. In June 2010 (Figure 4.6), the 

species was present both in coastal and central waters, although far more abundant in 

coastal areas (and in particular just 2.6 km offshore, at the end of Dublin Bay). The 

association with physical discontinuities was not as marked as during the other surveys. 

Numbers of C. capillata observed in August 2009 were low compared to numbers 

observed in 2010 (Figure 4.6). While individuals were regularly encountered all along the 

crossing, the highest densities (up to 0.100 – 0.456 ind. 1,000 m
-2

 in a 5-min count) were 

observed on the eastern side of the transect. The increase in C. capillata densities seemed 

to follow the progressive change in environmental conditions as the ferry entered the 

waters of Liverpool Bay (indicated by increase of chlorophyll and temperature and 

decrease of salinity, Figure 4.6). Cyanea capillata were far more abundant in 2010 as 

already shown by the seasonal survey along route A (Figure 4.3). During the two Dublin-

Liverpool surveys conducted that year, the highest densities of C. capillata were also 

found on the eastern side of the transect, in the region corresponding to an increase of 

temperature and chlorophyll (Figure 4.6). In July 2010, C. capillata was observed in the 

estuary of the River Mersey, right up to Liverpool city itself. On the western part of the 

transect, a relatively large aggregation of C. capillata was localised ~ 37 km offshore in 

June 2010 (> 50 individuals per 5-min count, or a density range of 0.39 –                     

0.76 ind. 1,000 m
-2

). This was precisely the limit between coastal and more central waters 

as shown by the change in temperature and salinity (Figure 4.6). The numbers were only 

limited while cruising in central waters. The large aggregation of smaller individuals of 

Cyanea spp. for which it was not possible to confidently identify the species (C. capillata 

and/or C. lamarcki), was located in the middle of the central waters and was not 

associated with any noticeable change in temperature, salinity or chlorophyll. 

 

3.7. Camera trial 

The camera trial was conducted along a distance of 19.64 km with 805 images recorded. 

At the same time two people conducted 8 independent 5-min visual surveys (Figure 4.7). 

In total, 207 individuals of C. capillata and 5,869 A. aurita were counted from the 

photographs. Visual counts by two different observers were 230 and 286 for C. capillata, 

and 1,373 and 1,197 for A. aurita. The maximum count of A. aurita in one picture was 

1,308 individuals which corresponded to an estimated density of 1.02 ind. m
-2

. Within the 
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Figure 4.7. Comparison of surface counts of jellyfish by two observers with numbers derived 

from image analysis. 

Please note that the y-axis scale is logarithmic. 

 

picture, clusters of up to 24.2 ind. m
-2

 could be observed. For C. capillata, up to 20 

individuals were counted in one still image (0.016 ind. m
-2

). Visual counts by different 

observers were in close agreement with counts from camera records for C. capillata 

(Wilcoxon rank-sum test: Wobserver1-observer2 = 25.5, P = 0.53; Wobserver1-camera = 40.5, P = 0.40; 

Wobserver2-camera = 45.5, P = 0.17). In the case of A. aurita, the counts based on the camera 

pictures were very similar to the “live-counts” for low densities, with less agreement 

when A. aurita densities were high (Figure 4.7). However, these differences were not 

statistically significant (Wilcoxon rank-sum test: Wobserver1-observer2 = 35.5, P = 0.75; 

Wobserver1-camera = 31.5, P = 1; Wobserver2-camera = 29.0, P = 0.79). 

 

3.8. Net tow trials 

A total of 13 oblique tows were conducted with concomitant surface counts, in three 

different regions (Figure 4.1). Jellyfish catches were dominated by medusae of A. aurita 

(bell diameter 5–36 cm). Some C. larmarckii and C. hysoscella were recorded. When few 

or no jellyfish were observed from the surface, few or no jellyfish were caught in the net 

(Figure 4.8). Only one large surface aggregation was observed and no large jellyfish catch 

was recorded. The data were too few and variable to confidently establish a relationship 

between surface counts and sampled biomass; however, at low jellyfish abundances, the 

correspondence was approximately 1 ind. 1,000 m
-2

 to 1 ind. 1,000 m
-3

 (Figure 4.8). 
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Figure 4.8. Comparison of densities of A. aurita from oblique net tows with surface densities 

from visual counts. 

Net tows and visual counts were conducted simultaneously. Location of sampling stations is 

figured in Figure 4.1. Please note break on x-axis. 

 

4. Discussion 

Purcell (2009) encouraged greater implementation of large-scale sampling methods for 

assessing the broad-scale distribution of jellyfish for the effective management of our 

oceans. Here, 37 transects (> 100 km each) were conducted across the Irish Sea over two 

sampling seasons (June–September 2009 and 2010). Such extensive temporal and spatial 

coverage (overall total of 79 h of observations, 4,170 km travelled and 136.8  10
6 

m
2 

surveyed) provides a unique opportunity to investigate the seasonality of the surface 

abundances and distributions of the two main scyphozoan jellyfish species of the Irish 

Sea. 

Aurelia spp. are cosmopolitan jellyfish that can form very dense aggregations under a 

broad range of environmental conditions (see review by Lucas, 2001). In Europe, the 

different populations of A. aurita exhibit a large degree of variability in their dynamics 

and in particular regarding the timing of occurrence of the medusa stage (Lucas, 2001). 

When considering the detrimental impacts that large aggregations of Aurelia spp. can 

have on human activities (e.g. aquaculture, Baxter et al., 2011), and concerns over 

potential competition of the species with fish for zooplankton resources (Purcell and Arai, 

2001; Richardson et al., 2009; Lynam et al., 2011); addressing the question of when and 

where large aggregations of A. aurita occur is critical. By monitoring at-sea surface 

abundances, the present study provides some answers to these questions for the Irish Sea 

for the first time. The findings of medusae being present from late-May to late-August–

early-September (Figure 4.3) are in agreement with the general seasonality of the species 
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in other locations around the UK (Russell, 1970). However, the first observations of adult 

medusae have sometimes been reported to occur as early as April, this discrepancy with 

the present study may be due to the methodology underestimating the youngest (smallest) 

medusae. Cyanea capillata on the other hand, is considered a boreal species and is 

present on both sides of the Atlantic. The seasonality of its occurrence in the Irish Sea as 

described in the results (Figure 4.3) is consistent with previous observations of large 

medusae not being recorded in UK waters before June, and with a peak period from July 

to September (Russell, 1970). However, bycatch data from juvenile-gadoid fish-surveys 

in the north-western Irish Sea show the presence of the species as early as mid-May in 

2010 (see Chapter 3). Comparisons of our data with the analysis of beach strandings in 

the same region by Doyle et al. (2007a), suggest that strandings of A. aurita occur 

throughout the season when the species is present, whereas standings of C. capillata 

seems to concentrate only at the end of the season (Doyle et al. (2007a) described that 

90% of C. capillata strandings occurred from 26 June to 17 September in the period 

2003–2005). However, this comparison should be considered with caution as the records 

are from different years and as we show here that abundance and seasonality can vary 

from year to year.  

Indeed, the seasonal pattern of occurrence of C. capillata was comparable in 2009 and 

2010, but the species was far more abundant in 2010 (Figure 4.3). The factors responsible 

for the inter-annual variability in the abundance of C. capillata are unclear but several 

factors could be involved:  

(1) Temperature. In 1965, Verwey (cited in Russell, 1970) suggested that the 

occurrence of high abundances of C. capillata on the Dutch coast in 1963 was due to 

the preceding cold winter. As the Irish Sea and the North Sea are the southern limit of 

the distribution area of C. capillata in Western Europe, one might expect that 

unusually cold conditions would lead to higher abundances there. The winter of 2009–

2010 was actually marked by a noticeably negative North Atlantic Oscillation Index 

(NAOI, NOAA, 2011), which translated into an unusually cold (Dungan et al., 2010) 

and dry winter over north-western Europe. However, although a decrease in daily 

surface and bottom water temperature along the transect was observed between 2008 

and 2010, it was only moderate (Figure 4.5a)  

(2) Salinity. A higher salinity was experienced in 2010 compared with 2009 and 2008 

(Figure 4.5b). The salinity in the Irish Sea is mostly controlled by (a) the inputs of 

more saline waters from the Celtic Sea (St George’s Channel) or from the North 
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Channel (Figure 4.1), and (b) the river runoffs (Holt and Proctor, 2003). The increase 

in salinity observed late in the summers of 2008 and 2009 probably corresponded to 

the inflow from the North Channel being resumed after the breakdown of the seasonal 

stratification. The salinity may have been maintained to higher levels in 2010 as a 

result of the relative dryer winter (less precipitation resulting in weaker river runoffs) 

typical of a negative NAOI. However, C. capillata can be found in waters of much 

lower salinity (e.g. 7.0–15.5 psu in the central Baltic Sea, Barz and Hirche, 2005), and 

it is unlikely that the moderate increase of salinity that affected the area could be the 

only cause of the dramatic change in the abundance of C. capillata from 2009 to 2010.  

(3) Hydrographical conditions. In the absence of information on polyps and ephyrae, it 

is impossible to say whether the observed C. capillata are local populations or if they 

were advected there (Barz and Hirche, 2005). In spring and summer, the formation of 

the seasonal gyre in the Western Irish Sea strongly affects the oceanography of the 

area: the overall northward flow is stopped and the cyclonic current associated with 

the gyre significantly increase the retention time in the region (Dabrowski et al. 2010). 

The study area is at the extreme southern limit of the gyre and it is likely that a slight 

change in the position of the gyre may modify its retention effect. Similarly, the 

resumption of the northward flow after the breakdown of the seasonal stratification 

could play an important part in the timing of the end of the season as recorded by the 

methods presented here (i.e. a decrease in jellyfish abundance could be due to 

advection to the north rather than the senescence of jellyfish). In contrast, the recorded 

decline of A. aurita is unlikely to be linked to this phenomenon as it occurred before 

the breakdown of the stratification in 2009 and 2010. However, strong wind events 

could also overwhelm the effect of the gyre and advect medusae away from the study 

area (Lynam et al., 2011). 

Collection of additional data is required to elucidate the factor(s) that drive the 

differences in abundance of C. capillata from year to year, but also those that drive the 

end of the season for both species. It will also help determine whether 2010 had an 

exceptionally high abundance of C. capillata or if 2009 was unusually low, as in the 

absence of reliable baseline data it is impossible to conclude on this aspect (Brewer, 

1989). Our observations, however, illustrate how sustained long-term data collection by 

regular surveys from ships of opportunity, coupled with other data (e.g. hydrographic 

models, FerryBox), could help in investigating the links between climate, oceanographic 

conditions, and jellyfish abundance. Additionally, the use of ferry-survey data can be 

used to validate and complement existing fisheries bycatch datasets (Brodeur et al., 
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2008a; Bastian et al., 2011) by providing the possibility of detecting phenological 

changes in the dynamics of jellyfish populations; something that fisheries surveys that are 

run once a year (sometimes before or after peak jellyfish season) cannot do (Lynam et al., 

2011).  

Furthermore, detailed information on the seasonality of presence of medusae is critical to 

address the role of these organisms in the dynamics of the ecosystem. Lynam et al. (2011) 

provided a description of the average seasonality of primary production together with 

copepod and cnidarian abundances (using phytoplankton colour index, copepod biomass 

and cnidarian index, respectively) in the Irish Sea using data from the Continuous 

Plankton Recorder survey (CPR, for details see Richardson et al., 2006). Comparisons of 

these CPR records with the data presented here, show that the peak season of A. aurita 

(June to early-August) matched the peak period of copepod biomass in the Irish Sea, and 

that C. capillata peaked after A. aurita (Figures 4.3, and 4.9 adapted from Lynam et al. 

2011 with permission from authors). This chronology is coherent with A. aurita feeding 

mostly on meso-zooplankton (mostly cladocerans and copepods, Barz and Hirche, 2005) 

and C. capillata feeding on meso-zooplankton and gelatinous organisms, especially A. 

aurita (Båmstedt et al., 1997; Hansson, 1997a; Barz and Hirche, 2007). Although it has 

been previously suggested that C. capillata could control populations of A. aurita 

(Båmstedt et al., 1994), in this case it is unlikely as the season of A. aurita was shorter in 

2009 when there were far fewer C. capillata than in 2010 (Figures 4.3 and 4.9). 

Furthermore, records of cnidarian occurrence in CPR samples, as presented by Lynam et 

al. (2011), showed that sub-surface gelatinous zooplankton is abundant in the Irish Sea 

from May to October (monthly average over 18 years from 1991 to 2008, see Figure 4.9). 

The present study on the other hand, described a significant decrease in the abundance of 

the large scyphomedusae as early as mid-August for A. aurita, and early-September for 

C. capillata (Figures 4.3 and 4.9). These findings highlight the importance of restricting 

the use of CPR data as a proxy of scyphomedusae distribution or inter-annual abundance, 

to regions and months for which correlations have been clearly demonstrated (Lynam et 

al., 2010; 2011).  

Beyond this overall average picture across the study area, our results highlighted that 

medusae were not homogeneously distributed across the Irish Sea. There were differences 

in speed and extent of the spatial spread, both between species and between years (Figure 

4.4b). The centre of density of each species exhibited a progressive displacement from 

coastal to more offshore areas, and large aggregations of both A. aurita and C. capillata 
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Figure 4.9. Seasonality of different components of the ecosystem of the Irish Sea. 

Monthly phytoplankton colour-index, copepod biomass (mean from 1989 to 2008) and cnidarian 

frequency (mean from 1991 to 2008) are illustrated by solid black lines and are adapted (with 

permission from author) from data of the Continuous Plankton Recorder for the Irish Sea 

presented in Lynam et al. (2011). The variation of densities of Aurelia aurita and Cyanea capillata 

in 2009 (dashed lines) and 2010 (solid lines) are displayed in dark and light grey respectively. 

Jellyfish information is presented here only to facilitate comparison of seasonality with CPR 

records. Note that to that purpose, jellyfish data were transformed so that they all fit on the same 

axis (by dividing each individual mid-density value by the sum of values of the corresponding year 

and species), and therefore no comparison of abundance between year and species should be made. 

Actual values of density for A. aurita and C. capillata are presented in Figure 4.3. 

 

were more likely to be found in the section between 20 and 30 km offshore, along ferry-

route A (Figure 4.4c). Furthermore, the observation of the highest densities occurring at 

physical discontinuities (Figure 4.6) may reflect the effect of such discontinuities acting 

as barriers, stopping large numbers of medusae that probably originated in coastal areas 

(where polyps are more likely to be found) from being advected to more offshore waters. 

In addition, Aurelia sp. are known to actively swim against the shear flow present at 

physical discontinuities; a behaviour that can lead to the formation of aggregations of 
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Aurelia sp. in these highly productive regions (Floodgate et al., 1981; Rakow and 

Graham, 2006).  

Another interesting finding of the current study was the existence of groups of several C. 

capillata very close to each other, with more than 100 individuals counted in 5 min on 

several occasions, and up to 20 individuals counted in a single still image during the 

camera trial. For A. aurita, the use of a camera revealed local densities as high as        

24.2 ind. m
-2

. This is much higher than the maximum density that could be calculated 

using categorical counts during an average 5-min period (i.e. 500 individuals over 

149,419 km
2
 = 0.003 ind. m

-2
). The generalisation of the use of digital cameras can 

therefore significantly improve the accuracy of the counts (Figure 4.7) and the frequency 

and spatial resolution at which data are collected. By doing so it will also facilitate the 

comparison between surveys conducted on different ships, in different areas. Indeed, the 

current method based on categorical counts during a set period of time makes the density 

estimate dependent on the speed of the ship from which the survey is conducted. The use 

of digital camera also opens the way for new fine-scale investigations on the surface 

aggregation patterns across large areas (albeit only in day time with current technology). 

Such information could then be used to inform dynamic spatial ecosystem models or to 

map prey-fields for the predators of gelatinous plankton, such as the endangered 

leatherback turtle Dermochelys coriacea or the ocean sunfish Mola mola (Houghton et 

al., 2006a; 2006c). It will also have implications for marine planning as it can help to 

identify areas where the probability of negative interactions of jellyfish with human 

activities is high.  

Different methods are currently available for acquiring broad-scale data on jellyfish 

distribution and biomass (e.g. acoustic surveys, jellyfish by-catch on fish-surveys, aerial 

surveys, see Purcell, 2009). Each of these methods presents different advantages and 

limitations with regards to (1) the spatial and temporal scale they cover, (2) the species 

they sample, (3) their cost and the ease of implementation, and (4) the type of data they 

provide. The main limitations of ferry-surveys are: lack of control over the route 

surveyed; dependency on good weather conditions; the restriction to large, easily 

identified species present at the surface during daytime (albeit bioluminescent species can 

be surveyed by night-time); and the lack of information on the densities and biomass of 

jellyfish in the water column. Our net tows were insufficient to reliably convert surface 

counts of jellyfish into densities in the water column. This last point is critical to address 

in future work so that results from visual surveys can be converted into quantitative 

abundance and biomass (Purcell, 2009; Lilley et al., 2011). Furthermore, the vertical 
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distributions of jellyfish could differ due to diel vertical migrations, ontogenetic and/or 

seasonal changes (Hays, 1995; Barz and Hirche, 2005). Recent progress in understanding 

the diving behaviour of jellyfish by the use of miniaturised time-depth loggers may 

provide useful ways to address these issues (Hays et al., 2008; 2011; Lilley, 2010; and 

Chapter 5 of present work). 

Ultimately, the choice of method should ideally only be driven by the aim of the study. 

However, the available resources are often a key constraint. In this context, visual surveys 

from ShOps provide a reliable cost-effective tool to monitor the relative spatial and 

temporal distributions of jellyfish across continuous transects (the price of return ticket on 

ferry-route A in 2010 was ~ €30, while dedicated ship-time on an Irish research vessel 

costs ~ €8,000 per day). Moreover, the method could easily be implemented at much 

smaller spatial scales than that of the present study (e.g. a small ferry frequently 

commuting between two sides of a bay or a harbour). We believe that, over several years, 

data from these surveys can constitute invaluable local baselines and time-series to 

investigate the drivers of the inter-annual variations of jellyfish populations, even in 

regions with limited research capacities and resources. 

 

Acknowledgements 

Many thanks are expressed to Clare O’Neill and Michael John Howarth at the National 

Oceanography Centre in Liverpool (UK) for providing environmental data for the Irish 

Sea; and to Christopher P. Lynam for authorisation to and help in adapting figures from 

Lynam et al. 2011. Much gratitude is expressed to Jane E. Kelleher and Mary-Catherine 

Gallagher for their assistance in the field, as well as Louise Allcock, Emmett Clarkin, 

Nicholas Fleming, Niall McGinty, and Paul McEvilly who were involved in the 

zooplankton/algal raft cruise and much appreciation is expressed to the skipper and crew 

of the RV Celtic Voyager.  

 

 



 

76 

Chapter 5  
 

 

 

Acoustic tracking of Cyanea capillata 
 



Chapter 5 – Acoustic tracking of C. capillata 

77 

Chapter 5 – Acoustic tracking of Cyanea capillata 

This study was conceived and realised with TK Doyle. TB performed all the data analysis and 

writing up. 

 

Abstract  

Scyphomedusae are generally perceived to passively drift with the currents. However, 

several studies have suggested that in some cases, scyphomedusae exhibit active 

behaviours that can affect their distributions. A full understanding of the distribution 

patterns of scyphomedusae at both large and local scales therefore requires an 

appreciation of the degree to which they are able to move independently of currents. In 

Ireland, the lion’s mane jellyfish, Cyanea capillata, is a serious risk to recreational open 

water swimmers. The horizontal and vertical movements of this highly venomous species 

were investigated in the vicinity of a popular swimming spot in Dun Laoghaire           

(Co. Dublin, Ireland) using acoustic tracking techniques. Acoustic transmitters were 

deployed for several hours (range 2.7 – 7.7 h) on 5 individual C. capillata. Individual 

jellyfish travelled between 1.64 and 5.9 km, and exhibited a variety of vertical behaviours 

during the tracking. The mean vertical speed calculated from > 2-min long continuous 

upward and downward movements was 1.22 m min
-1

 (SD = 0.86, N = 33). The horizontal 

movements of the tracked individuals broadly followed the local currents (as indicated by 

drogue deployments), which were driven by the tidal cycle, resulting in a “back and 

forth” movement of the jellyfish in the study area. However, at times, the speed of travel 

of the tracked individuals differed from the speed of travel of surface drogues. The 

present study demonstrates that, although challenging, the deployment of acoustic 

transmitters on C. capillata is feasible and opens the way to more detailed studies on the 

movements of this ‘problematic’ species.  

 

1. Introduction 

The understanding of the distribution patterns of scyphomedusae (Chapters 2 to 4) and 

the development of efficient strategies to mitigate their potential detrimental impacts on 

human activities requires an understanding of their movements. Indeed, although 

hydrographical parameters often play an important role in re-distributing and aggregating 

scyphomedusae (see review by Graham et al., 2001; and discussion of previous chapters), 
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several studies have suggested that scyphomedusae can exhibit swimming behaviours that 

can also actively affect their distributions (Albert, 2011). 

For example, in Saanicht Inlet (British Columbia, Canada), Aurelia aurita exhibited daily 

migrations that are oriented toward the sun (Hamner et al., 1994). In marine lakes of 

Palau, Mastigias sp. also exhibited oriented swimming behaviours (Hamner and Hauri, 

1981), but with a different orientation of swimming in each lake. Shanks and Graham 

(1987) artificially deflected individual Stomolopus meleagris from their natural 

swimming trajectory and observed that all of them quickly re-orientated either towards 

the bearing they were originally heading on, or its reciprocal course (i.e. ± 180º). With 

regard to vertical movements, the existence of synchronous and asynchronous diel 

vertical migrations have been documented in several species (Madin et al., 1996; Arai, 

1997; Schuyler and Sullivan, 1997; Kaartvedt et al., 2007). In addition, Albert (2009) 

suggested that Aurelia labiata can modify its swimming behaviour to avoid becoming 

damaged or stranded on rocks in Roscoe Bay (Canada). It has also been suggested 

(Albert, 2007) that some species could use tidally synchronous vertical migrations to 

maintain their position within a certain area (i.e. by adjusting their depth during the ebb 

and flow to avoid being dispersed offshore), but to date, this hypothesis has not been 

validated (Albert, 2010). 

For several decades the use of electronic loggers has allowed investigations of detailed 

horizontal and vertical movements of many marine vertebrates (see reviews by Kooyman, 

2004; and by Block, 2005). Recently, miniaturization of these devices has allowed their 

deployment on pelagic invertebrates (e.g. Gilly et al., 2006; Hays et al., 2008). Few 

studies of this type have so far been conducted on jellyfish. Seymour et al. (2004) used 

acoustic tracking techniques to investigate the horizontal movements of a species of box 

jellyfish (Cubozoa) (see also Gordon and Seymour, 2009); while Hays et al. (2008; 2011) 

have pioneered the deployment of small archival tags on scyphomedusae, allowing them 

to collect detailed vertical movements of Chrysaora hysoscella and Rhizostoma octopus 

(one data point collected per minute). Finally, in Japan, Honda et al. (2009) used a mixed 

approach by deploying satellite pop-up archival tags and acoustic tags on Nemopilema 

nomurai, which allowed them to investigate both the horizontal and vertical movements 

of this ‘giant’ jellyfish that can reach a diameter of 2 m and a mass of 200 kg.  

Along the coasts of the Irish Sea, the lion’s mane jellyfish, Cyanea capillata, is a source 

of concern for many recreational open water swimmers, with several reported cases of 

people requiring medical attention after being stung (Tom Doyle, pers. comm.). To 
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investigate horizontal and vertical movements of this highly venomous species in the 

vicinity of a heavily used swimming area (the Forty Foot, Dun Laoghaire, Co. Dublin), 

acoustic tracking of individual specimens of C. capillata was undertaken in July 2010. 

 

2. Methods 

2.1. Device attachment 

Electronic tags measuring pressure and acoustically transmitting data every 2 s were used 

for this study (VEMCO V9 continuous transmitters: each 9 mm in diameter, 45 mm in 

length, weighing 3.5 g in water). The acoustic tag was attached with fishing line to a 

cable tie which was then attached to the oral arms of C. capillata by a snorkeler. Cyanea 

capillata are extremely fragile and because of the skirt-like folds of oral arm tissues, they 

have no obvious attachment point such as the single solid peduncle found near the bell in 

R. octopus, N. nomurai, or C. hysoscella. Therefore, the snorkeler had to carefully feel his 

way around the oral arms to identify and separate out an individual arm before wrapping 

a cable tie around it (Figure 5.1). It was critical to avoid any pull on the jellyfish oral 

arms, bell, or even on the transmitters once attached, as such force could easily tear or rip 

the jellyfish. This attachment procedure was further complicated by the highly venomous 

 

Figure 5.1. Images of C. capillata in and out of the water, and the acoustic tag. 

Note separation of the oral arms (right-hand picture); the acoustic transmitter was attached to one 

of these, using a nylon cable tie. Pictures of C. capillata by Damien Haberlin and Vanessa Mazza. 

Picture of the acoustic tag is from californiafishtracking.ucdavis.edu. 

Bell 

Gonads 

Tentacles 

Oral arm 

9 mm 
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nature of the species. All snorkelers wore wetsuits, gloves, hoods and a mask; any 

exposed skin was covered by plain petroleum jelly (Vaseline
®
). 

Before deployment, a float was attached to the tag to make the jellyfish easily identifiable 

when right at the surface. Once deployed, the buoyancy of the float was adjusted in-situ 

so that the float was only slightly buoyant in the top 2 m of water. After deployment, one 

or two snorkelers observed the animal for several minutes to visually check that the tag 

and float were not hampering its movement. The signal transmitted by the tag was 

detected using a hydrophone hand-held in the water from a 5.1 m RIB. The hydrophone 

was linked to a receiver (VEMCO VR100), allowing real time visualisation and 

automatic recording of the data (depth) and of the strength of the signal (in dB) emitted 

by the acoustic tag. 

 

2.2. Horizontal movements 

During each tracking trial, a directional hydrophone was used to re-locate the animal. 

When in the water, the hydrophone received the signal sent by the tag and the strength of 

this signal was read on the acoustic receiver. At each relocation trial, the boat was moved 

toward the direction from which the strongest signal was received (at a given distance 

from the tag, the signal strength is maximum when the directional hydrophone points in 

the direction of the tag). When the depth information transmitted by the tag indicated that 

the jellyfish was at the surface, the animal was searched for until visually observed. Its 

position was then recorded using a handheld GPS (Garmin). When the signal indicated 

that the jellyfish was at depth, triangulation was used to estimate the position of the 

jellyfish. In practice, this was accomplished by moving the boat until a strong signal was 

received (> 80 dB). Then, GPS coordinates were recorded, and a compass bearing toward 

the direction pointed by the directional hydrophone was taken. The boat was then moved 

off by a few hundred metres in a different direction and a new GPS point and compass 

bearing recorded. For each relocation trial, 2 to 4 points with bearing readings were taken. 

The intersection point of the lines drawn from these different points in the direction of 

corresponding bearings was taken as the jellyfish’s estimated position. When the lines did 

not exactly intersect due to imprecisions inherent in measurements from a RIB             

(i.e. continuously moving and rocking platform, time lapse between successive positions), 

the coordinates of the middle-point between the two points where the strongest signal was 

recorded were used as an estimate of the position of the jellyfish. For each relocation trial, 
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the intermediate time between the first and final points of the relocation trial was used as 

a time-stamp for the estimated jellyfish position. 

To compare the horizontal movements of the tracked individuals with local currents, a 

drifting cruciform drogue (drifter) was deployed close to the jellyfish immediately after 

deployment of the tag. A handheld GPS was attached to the drogue and was set to 

automatically record its position every minute. At times, when the jellyfish and the 

drogue had drifted apart and there was a real danger of losing sight of the latter, the 

drogue was recovered and redeployed next to the jellyfish. This also ensured that the 

movements of the drogue reflected the hydrographical conditions next to the jellyfish 

rather than several hundred metres away. 

Distances between successive GPS positions were calculated using the haversine formula 

(implemented in the R ‘geosphere’ package from Hijmans et al., 2011). This was also 

used to calculate distances between the jellyfish and the drogue. Horizontal travel speed 

was calculated by dividing these distances by the elapsed time between the time-stamps 

of successive positions. 

 

2.3. Vertical movements 

The tag transmitted depth reading every 2 s. Noise in the signal was filtered by deleting 

all records with a signal strength < 60 dB (60 dB was arbitrarily chosen after 

consideration of the high number of impossible depth records occurring below this value 

in the depth vs. signal-strength scatterplot). As depth readings could only be recorded 

when the hydrophone was in the water (which was not possible when the boat was on the 

move), the record was non-continuous. Depth records were therefore visually analysed 

rather than using automatic algorithms. Obvious long descent or ascent movements were 

extracted, and a vertical speed was calculated for each of them by fitting a line through 

the points using a least square procedure (the slope of fitted line was taken as the vertical 

speed). Depth readings from the echo-sounder of the RIB were taken on several occasions 

during tracking trials to estimate the depth of the seabed. 

Five tracking trials were conducted between the 5
th
 and 23

rd
 July 2010 in the vicinity of 

Dun Laoghaire (Co. Dublin, Republic of Ireland). Details of sampling dates, time and 

locations of tag deployment and recovery are presented in Table 5.1. 
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Table 5.1. Acoustic tracking of C. capillata in July 2010. 

 

ID 
Size 

(cm) 
Date 

 Deployment  Recovery  
Duration 

(h) 

N 

relocations 

Distance 

travelled 

(km) 

Mean vertical 

speed  

(m min
-1

)  Time Lat Lon  Time Lat Lon  

J05 26 05-Jul  11:10 53.2898 -6.1073  17:54 53.3043 -6.1490  6.73 10 4.10 0.78 (N = 10) 

J12 48 12-Jul  12:29 53.2886 -6.1062  15:56 53.2603 -6.1007  3.45 4 5.66 1.61 (N = 5) 

J20 25 20-Jul  16:40 53.3052 -6.1282  19:21* 53.3084 -6.1509  2.68 4 1.64 0.53 (N = 7) 

J21 35 21-Jul  11:06 53.2877 -6.1091  18:48* 53.3102 -6.1401  7.70 5 5.94 1.63 (N = 3) 

J23 35 23-Jul  10:47 53.2883 -6.1081  15:20 53.2728 -6.0916  4.55 7 2.81 1.97 (N = 8) 

* tag was not recovered, this is the last relocation position  
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3. Results 

Five individual Cyanea capillata were followed, each for several hours (ranged from 2.68 

to 7.7 h), with a minimum of 4 relocations for each individual (max = 10). The total 

horizontal distance travelled varied between 1.64 and 5.94 km, with a mean speed (± SD) 

of 0.24 ± 0.12 m s
-1

. Details for each tracked individual are presented in Table 5.1, and 

Figure 5.2 presents the successive estimated positions of each jellyfish.  

 

3.1. Horizontal movements 

Overall, the tracked individuals and drogues moved in the same direction (i.e. with the 

current), with a marked change in the direction of travel being observed for both the 

jellyfish and the drogues at the times corresponding to the turn of tide. However, in all 

trials the jellyfish and the drogue progressively drifted apart (Figure 5.2). The speed of 

this drift between the jellyfish and the drogue was highly variable (Table 5.2). 

Nevertheless, the jellyfish and the drogue exhibited comparable travel speeds at the 

beginning and the end of each trial, sometimes for several hours, suggesting that part of 

the divergence of their trajectories may be due to divergent small-scale hydrographical 

features. In fact, on the 23/07, the trajectories of the drogue suggest the presence of small 

eddies in the study area (Figure 5.2). However, each tracking also showed that, at times, 

the drogue travelled twice as fast as jellyfish (Figure 5.3). It was not possible to 

consistently link this with any obvious parameters (e.g. state of tide). 

 

Table 5.2. Measures of drift between the trajectories of jellyfish and drogues. 

 

Date 

bloa  

Drogue 

deployment 

Max drift 

distance (m) 

Time since drogue 

deployment (h) 

Time since beginning 

of tracking (h) 

05-Jul 1 442 2.50 2.58 

 
2 382 1.20 3.87 

 
3 366 2.68 6.73 

21-Jul 1 1,006 4.57 4.57 

 
2 2,689 1.60 6.70 

 
3 769 0.70 7.70 

23-Jul 1 751 0.88 0.80 

 
2 1,299 1.15 2.23 

 
2 505 1.80 2.88 

  3 82 0.25 3.32 
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Figure 5.2. Acoustic tracking of five C. capillata in July 2010. 

Time of tag deployment and recovery is indicated. On 05/07, 21/07, and 23/07, drogues, each 

equipped with a GPS, were deployed near the jellyfish position and repositioned during the trial. 

Grey arrows show the GPS tracks of these drogues. Note the close up on the drogue trajectory on 

the 23/07 showing the presence of small scale eddies in the tracking areas. A black star marks the 

location of the Forty Foot, a famous place in Ireland for open-water swimming.  
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Figure 5.3. Speed of travel of jellyfish and drogues during tracking trials. 

Open circles are for speed of jellyfish, black crosses for speed of the drogue. Black chevrons 

indicate times when the drogue was initially deployed and then manually moved closer to the 

jellyfish during the trials. Variation of water height during the tidal cycle of each day is shown 

(light grey dotted line) as an indication of tidal state (tidal cycle simulated using tide table for 

Dublin and the rule of twelfths). 
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3.2. Vertical movements 

Every tracked jellyfish exhibited a range of vertical movements (Figure 5.4). On several 

occasions, v-shaped movements (i.e. from the surface to the bottom and back to the 

surface) were observed. Some of the tracked individuals (12 July, 23 July) spent long 

periods of time at the surface. Conversely, sometimes, the animals spent several minutes 

close to the bottom before swimming upwards again. 

Thirty-three > 2 min-long (range 2 – 18 min) upward or downward continuous moves    

(n = 16 and 17 respectively) were extracted from the time-depth records. The variations 

of depth between these movements ranged between 2.2 to 8.3 m. Least squares procedure 

was used to fit a line through each of these individual movements and to deduce the 

associated vertical speed (i.e. the slope of the line, all R
2
 values associated with fitted 

lines > 0.80). The overall mean vertical speed was 1.22 m min
-1

 (range = 0.29 – 3.98 m 

min
-1

, median = 0.93 m min
-1

, SD = 0.86). Upward movements were significantly faster 

(median speed = 1.47 m min
-1

, SD = 0.75, N = 16) than downward movements (median 

speed = 0.55 m min
-1

, SD = 0.92, N = 17) (Wilcoxon rank-sum test, W = 69, p = 0.015). 

Large individuals exhibited greater vertical speeds than smaller ones (Table 5.1). 

 

4. Discussion 

Understanding the movements of individual scyphomedusae is a necessary step towards 

an understanding of their spatial dynamics. In that regard, the present work was the first 

attempt to record the movements of the lion’s mane jellyfish in the vicinity of an area 

where swimmers often encounter this highly venomous species. 

The deployments of loggers on Cyanea capillata represent additional difficulties 

compared with other jellyfish species. Unlike box-jellyfish (Seymour et al., 2004; Gordon 

and Seymour, 2009), C. capillata cannot be caught by a landing-net and brought to the 

surface without damaging the individual. The deployment of the tag on C. capillata 

therefore had to be done underwater. This has also been the case for studies on other 

scyphozoan species, but in C. capillata, the absence of an easily accessible body-part 

(peduncle in Rhizostoma octopus, base of the oral arms for Chrysaora hysoscella) around 

which to attach the device, and the potential serious consequences of being stung by        

C. capillata, makes this operation even more complicated (Figure 5.1). These difficulties, 

added to the necessity of good weather to operate from a RIB, account for the small 

sample size of the present study. However despite these limitations, the data collected 

provided valuable information. 
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Figure 5.4. Dive records of the five C. capillata tracked in July 2010. 

Depths of seabed as indicated by RIB echo-sounder are shown by grey ticks and dotted lines. 
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The first finding of the present work was that individual C. capillata moved in the 

direction of the prevailing currents (Figure 5.2), and these were mostly driven by the tidal 

cycle. As a result, we observed that the tracked C. capillata were moving along the shore 

in a direction predictable from the time of the day and the state of the tide. In addition, 

during each tracking trial we recorded a change in the predominant direction of the 

jellyfish horizontal movement, and the timing of this change was closely matched with 

the turn of the tide (Figure 5.2). This suggests that, in Dublin Bay, the tidal cycle drives 

C. capillata in a “back and forth” movement with the likely consequence of greatly 

increasing the residency time of the species within the area (although records over a 

complete tidal cycle would be necessary to precisely document and assess the retention 

effect of this tidal flow). Interestingly, after acoustically tracking several Chironex 

fleckeri (Cubozoa, box jellyfish), Gordon and Seymour (2009) concluded that the travel 

rate of this species was influenced by the tidal flow in estuarine habitats, but not in 

coastal non-estuarine habitats. As box jellyfish are active visual predators, Gordon and 

Seymour (2009) suggested that their horizontal travel-rate may reflect their feeding 

activity rather than the effect of the currents (and therefore that differences between 

estuarine and coastal habitats may be due to prey availability changing with tidal state in 

estuarine habitats, but remaining relatively the same throughout the tidal cycle in coastal 

areas). Box jellyfish like C. fleckeri have a robust and quite solid bell and are capable of 

rapid swimming (Shorten et al., 2005), and are therefore more likely to be able to achieve 

greater independence of hydrographical conditions than scyphomedusae like C. capillata, 

which have a far more flexible and fragile bell. However, the fact that in the present 

work, the jellyfish and the drogue were found to drift apart, and that the travel speed of 

the drogue was at times twice that of the scyphomedusae, may suggest that C. capillata 

has some ability to limit horizontal displacements away from the main tidal flow. For 

example, the most extreme case of divergence between jellyfish and drogue in this study 

was 1,300 m in 1.15 h, quite a significant displacement. Interestingly, individual            

C. hysoscella tracked in Ventry harbour (Co. Kerry, Ireland) (Lilley, 2010) were found to 

travel significantly more slowly than drifters deployed at the same time. However, 

Lilley’s study was based on visual tracking of surface floats tethered to the jellyfish, and 

the author could not exclude the possibility that the observed differences in horizontal 

speed may be due, at least to some degree, to the drag caused by the tether (Lilley, 2010). 

Acoustic tracking technology such as that used in the present study, greatly reduces the 

problem of the drag, nevertheless, a larger sample size would be necessary to reliably test 

for differences between the horizontal speed of C. capillata and the speed of the local 
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currents. Tracking of the giant jellyfish Nemopilema nomurai tracked in the Sea of Japan, 

suggested that horizontal movements of the species were driven by the currents (Honda et 

al., 2009). 

The second finding of the present study was that the tracked individuals exhibited a 

variety of vertical behaviours (Figure 5.4). In situ-observations of different species of 

Scyphozoa have revealed that scyphomedusae spend 93-100 % of their time actively 

swimming (Costello et al., 1998); a behaviour probably linked to the importance for 

feeding and respiration of the flow created by each pulsation of the bell (Costello and 

Colin, 1995). More specifically, Costello et al. (1998) described how C. capillata could 

swim upwards for long periods and how, once at the surface the animals often stopped 

swimming and passively sank, but sometimes orientated themselves downwards and 

actively swam to the bottom. The types of behaviours observed in the current study 

ranged from v-shaped dives to extended times spent either at the surface or at the bottom 

(Figure 5.4). The mean vertical speed of C. capillata was of the same order of magnitude 

as that reported for other scyphozoan species of comparable size studied in the wild 

(Table 5.3). The differences between upward and vertical speeds reported here perhaps 

reflect the active upward swimming vs. passive downward sinking patterns described by 

Costello et al. (1998). Interestingly, a variety of different types of vertical movements 

have also been reported for other scyphozoan species whose swimming behaviours have 

been investigated in the wild. For example, several day-long records of the vertical 

movements of R. octopus, obtained via archival time-depth loggers, revealed the 

existence of different types of behaviours and important degrees of inter-individual 

variations in the time-budgets of these respective behaviours (Lilley, 2010; Hays et al., 

2011). Such inter-individual variations were also observed in the vertical movements of 

several N. nomurai equipped with archival satellite tags in Japan: some individuals 

exhibited clear diurnal dive patterns, one other individual spent several days at depth, 

while another spent several days close to the surface (Honda et al., 2009). Finally, 

asynchronous vertical migration patterns have been clearly demonstrated in a population 

of P. periphylla of the Lurefjord (Norway) (Klevjer et al., 2009). Future work on C. 

capillata should therefore involve increasing the length and the quality of vertical 

movement records so that time-budgets for each type of behaviour, for each individual, 

can be calculated, and the existence of patterns related to tidal or diurnal cycles can be 

investigated. The issue of collecting non-continuous records could be overcome by using 

a hydrophone that can remain permanently in the water (Honda et al., 2009), or by 
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combining the use of acoustic pingers with the use of archival tags (although the weight 

of a multi-tag assemblage might become an issue).  

To summarise, despite many limitations, the present study demonstrated that, although 

challenging, the deployment of acoustic transmitters on C. capillata is possible, and 

opens the way to more detailed study on the movements of this venomous species. 
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Table 5.3. Vertical swimming speed of different scyphozoan species. 

 

Species 

(Number of individuals) 

Bell diameter 

(cm) 

Vertical speed (m min
-1

) Method Reference 

Mean*  SD Range (min – max) 

Cyanea capillata 

(N = 5) 

25 – 48 1.22  

 

0.86 0.29 – 3.98 Acoustic tag This study 

Chrysaora hysoscella 

(N = 15) 

19 – 33 1.14 0.64 0.39 – 2.32 Archival time depth 

recorder (TDR) 

Hays et al. (2008) 

Rhizostoma octopus 

(N = 6) 

~ 60 
Range of 

medians:  

0.72 – 1.33  

- Max ascent 3.17 m min
-1

 

Max descent 3.16 m min
-1

 

Archival time depth 

recorder (TDR) 

Lilley (2010) 

Peryphilla peryphilla 

(N = 701) 

3 – 6 0.618 1.07 90% of individual speed 

between +1.56 m min
-1

 (up) 

and -2.22 m min
-1

 (down) 

Echogram analysis Klevjer et al. (2009) 

Nemopilema nomurai 

(N = 14) 

60 – 160 

 

6.73  2.39 1.8 – 10.2 m min
-1

 Direct observation Honda (2009) 

* save in the case of Rhizostoma octopus, for which only the median vertical speed for each tracked individual was available.  
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Chapter 6 – General Discussion 

 

 

As worldwide concern about jellyfish outbreaks and their consequences on human 

activities have risen, our limited knowledge of the ecology of scyphomedusae and other 

gelatinous organisms has become increasingly obvious. In recent years, much progress 

have been made in identifying the ecological processes that scyphomedusae contribute to 

(see Chapter 1), and one of the main challenges is now to refine and quantify the nature 

of these contributions. The necessary first step in doing so is to evaluate the abundance of 

scyphomedusae and investigate their distribution patterns across extended spatial scales 

(Purcell, 2009). However, the cost involved in organising dedicated surveys is a major 

obstacle in achieving this goal. A solution to overcome this problem is to use the 

opportunities provided by existing programmes, such as annual fisheries surveys and 

other such ships of opportunity (e.g. Hay et al., 1990; Brodeur et al., 1999).  

The present work shows how, by recording jellyfish bycatch at species level during the 

Irish groundfish survey (IGFS), detailed information on the distribution of P. noctiluca 

was made available for an area > 160,000 km
2
 around Ireland (Chapter 2); a scale never 

reached before for this species in the Northeast Atlantic (and only rarely in the 

Mediterranean Sea). Furthermore, the data collected during the IGFS revealed how this 

species, although unequally distributed, was present all over the continental shelf North 

and West of Ireland during the last quarter of 2009 (and again in 2010: T. Bastian; pers. 

obs.). These findings complement the results from opportunistic plankton tows, visual 

surface counts (Doyle et al., 2008), and reanalysis of samples from the CPR programme 

(Baxter et al., 2010; Licandro et al., 2010), that previously demonstrated the widespread 

presence of the species off the Irish continental shelf in autumn 2007 and 2008. This 

demonstrates the extent to which P. noctiluca is a common member of the autumnal 

planktonic community of the waters off the North and West coast of Ireland. Considering 

the risk posed by the species for farmed fish in coastal waters (Doyle et al., 2008; Hay 

and Murray, 2008), its widespread presence over the shelf represents a legitimate source 

of concern for the Irish aquaculture industry. It also calls for further investigations of the 

species’ role in the ecosystem, especially in terms of interactions with fish (Malej, 1989; 

Giorgi et al., 1991; Sabatès et al., 2010). Furthermore, in November 2010, jellyfish 

bycatch data were recorded during the second leg of the annual French groundfish survey 
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(EVHOE cruise) and revealed the presence of P. noctiluca at all sampling stations         

(T. Bastian; pers. obs.). The species is therefore most likely present throughout the waters 

over the western-European continental shelf. This example highlights how a potential 

coordinated effort to record jellyfish bycatch during fish surveys could greatly improve 

our knowledge of their worldwide distribution. In the case of P. noctiluca, such effort 

could provide useful time-series data to investigate the existence of possible links 

between the annual abundance of the species in the Northeast Atlantic and 

hydroclimatological factors (as has been demonstrated in the Mediterranean Sea).  

The data from a different annual fish survey (Irish Sea juvenile gadoid fish survey, 

hereafter referred to as the ISS) was used to investigate the abundance of scyphomedusae 

across the Irish Sea (Chapter 3). The bycatch dataset from the 2007-2010 ISS provided 

the first available description of the distribution of Aurelia aurita and Cyanea spp. across 

the entire Irish Sea basin, both in coastal and offshore waters. It revealed how, in some 

areas of the basin, both species are already present high abundance as early as late-May – 

early-June. The analysis of this dataset also demonstrated how variable the distributions 

of A. aurita and Cyanea spp. can be from one year to the other, and how inter-annual 

variations of abundances differ in different regions of the basin. In particular, it was 

observed that between 2007 and 2010, the eastern half of the basin experienced a higher 

inter-annual variability than the western part of the basin. With major spawning grounds 

of commercially important fish species localised in the eastern part of the basin, the 

impact of such inter-annual variability on the abundance of potential predators of fish 

eggs and larvae should be further investigated. 

Interestingly, in the western part of the basin, jellyfish bycatch data have been recorded 

since 1994 (but without species-specific details until 2007), and the analysis of the 

available time-series revealed that the inter-annual variations in the mean catch of 

scyphomedusae correlate positively with sea surface temperatures and copepod 

abundance of the previous year, and negatively with precipitations of previous months 

(Lynam et al., 2011; in Appendix B). As the time series of the eastern part of the basin 

expands, it will be interesting to test whether the regional differences in the inter-annual 

dynamics of A. aurita and Cyanea spp. are due to regional-specific dynamics of these 

environmental factors.  

In addition to providing a time-series to investigate the drivers of the inter-annual 

variations of the abundance of scyphomedusae in the Irish Sea, the data collected during 

the ISS present an extra advantage: they can be considered as actual quantitative 
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estimates of scyphomedusae biomass at sampling sites. This was not the case for data 

from the IGFS. Indeed, because of the type of fishing gear used during the IGFS cruise 

(demersal trawl), the catch-rates (or catch-biomass) of P. noctiluca reported in Chapter 2 

were only indices of the abundance of medusae and not an actual measure of their 

biomass in the area. These limitations do not apply to the ISS during which sampling is 

by MIK net, one of the most suitable devices for quantitative sampling of medium-sized 

scyphomedusae such as Aurelia aurita and juvenile Cyanea spp.. Moreover, data on the 

abundance and distributions of 0-group gadoid fish, fish larvae and other zooplankton are 

also collected during the ISS. Consequently, data from this survey represent a unique 

opportunity to investigate the links between the abundances of scyphomedusae and the 

other components of the Irish Sea ecosystem. This seems to be a critical point to address 

considering the potential negative (through competition and predation) or positive (acting 

as a shelter from visual predator, or food supply) impacts that scyphomedusae can have 

on fish (Purcell and Arai, 2001; Lynam and Brierley, 2006) and will therefore be the focal 

point of future studies.  

Furthermore, Behrends and Schneider (1995) suggested that outbreaks of Aurelia aurita 

in the Kiel Bight in 1993 resulted in significantly reduced stocks of copepods, plus 

substantial modifications of the composition of the copepod communities. More 

precisely, they suggested that high densities of A. aurita resulted in reductions in the 

stocks of Pseudocalanus and Paracalanus spp. and Oithona similis, but little change in 

stocks of Centropages hamatus and Acartia spp. Now, these copepod species are 

precisely those for which early-life-history-stages of Irish Sea Cod, Whiting, and 

Haddock exhibit differential preferences that allow them to limit the competition 

pressures that could exist amongst them for access to zooplanktonic prey (Rowlands et 

al., 2008). Therefore, if Behrends and Schneider (1995) are correct, and the planktonic 

community changes they observed in the Kiel Bight were indeed directly due to the effect 

of jellyfish (rather than simply a bottom-up effects of the same environmental parameters 

that lead to the proliferation of jellyfish), then the possibility should be considered that, in 

addition to generating predation pressure on fish larvae (e.g. Möller, 1984), jellyfish 

outbreaks can also affect the fish community in more complex ways such as by altering 

the conditions of intra-guild competition amongst the early-life-stages of different species 

of fish. Interestingly, the highest densities of A. aurita recorded in the Irish Sea (up to 

27.5 ind. 100 m
-3

) are very similar to densities that Behrends and Schneider (1995) 

considered as bloom densities in the Kiel Bight (up to 24 ind. 100 m
-3

). 
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Another point highlighted by the analysis of the 2007-2010 Irish Sea jellyfish bycatch 

data was the differences in pattern descriptions depending on whether the abundances of 

scyphomedusae were reported as biomass or as densities. In particular, in 2010, the 

significantly higher biomass of Cyanea spp. in the eastern part of the basin than in 2007-

2009, was not due to significant higher numbers of individuals than the previous years, 

but to individuals being larger on average. These findings imply that bycatch data 

collected only as biomass could be misleading and that it is critical that the number of 

individuals present in the catch is also recorded. Moreover, the average wet weight per 

individual was different in different hydrographical regions of the Irish Sea, with 

significantly larger A. aurita occurring in stratified than in mixed waters (Figure 3.6). It is 

suggested here that these variations could be linked to the differences in timing and yields 

of primary and secondary production in different regions of the Irish Sea. 

The question of seasonal alterations in population dynamics of jellyfish, and of their 

inter-annual variations is important to address as it is undoubtedly a potential source of 

bias in time series built on bycatch dataset collected at fixed dates every year (Lynam et 

al., 2011). Accordingly, a monitoring programme using ships of opportunity was 

implemented (Chapter 4), in order to reveal the seasonal variability in the abundance of 

scyphomedusae in the Irish Sea, and complement the ‘snapshots’ of jellyfish distributions 

provided by the analysis of the Irish Sea bycatch dataset (Chapter 3). The data collected 

during summers 2009 and 2010, along the ~100 km long transect between Dublin and 

Holyhead, are the first available records of the seasonal abundance and distribution of 

medusae at such a scale and resolution anywhere in the Irish Sea (Chapter 4). This 

seasonal monitoring demonstrated how both the abundances and surface distributions of 

jellyfish change through the season. In particular, it revealed how, early in the season, the 

distributional areas of A. aurita and C. capillata are relatively limited, but then 

progressively spread throughout the transect during the summer. In addition, by coupling 

these surface counts with freely available records of environmental parameters, it was 

possible to link some high density patches of jellyfish with the presence of 

hydrographical features (e.g. the front between two distinct water-masses). In terms of 

changes in the timing of jellyfish occurrence, the surveys suggested that A. aurita was 

slightly delayed in time in 2010 compared with 2009 (Figure 4.3). 

However, if the data from the seasonal monitoring (Chapter 4) are compared with data 

collected during the ISS (Chapter 3), it becomes clear that the seasonal dynamics 

observed on the Dublin-Holyhead transect, do not reflect the seasonal dynamics of the 

scyphomedusae throughout the Irish Sea. Indeed, during the ferry-survey monitoring, no 
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A. aurita were observed before mid-June in 2009 (and only 2 in 2010), whereas bycatch 

data from the ISS clearly demonstrated the presence of high densities of A. aurita in 

several areas of the Irish Sea in late-May – early-June. Two possibilities could explain 

this result. The first one would be that the seasonality of occurrence of A. aurita in the 

regions sampled by the ferry-surveys differs from that of other regions of the Irish Sea. 

This could either result from a delayed production of scyphomedusae in that area (Lucas, 

2001), or instead from the fact that jellyfish presence in this area would be dependent on 

their advection from another location (Barz and Hirche, 2005). The second possibility is 

that the vertical distributions of scyphomedusae change through the season and affect 

their detectability during the ferry surveys. Such seasonal changes in the vertical 

distributions of A. aurita and C. lamarckii have been observed in the Bornholm Basin of 

the Baltic Sea and in the Southern North Sea, respectively (Barz and Hirche, 2005; 2007). 

When examined in detail, data from the ISS show that, in 2009 and 2010, no A. aurita 

and only a few Cyanea spp. were caught at the sampling stations located close to the 

Dublin-Holyhead ferry route (Figure 3.4). This supports the first hypothesis (i.e. that the 

occurrence of these two species between Dublin and Holyhead is indeed delayed in the 

season compared with other regions of the basin). It would therefore be valuable to 

investigate the seasonal occurrence of jellyfish in other regions of the Irish Sea by using 

different Ferry Routes (e.g. between England or Northern Ireland and the Isle of Man). 

The question of the vertical distribution of scyphomedusae remains nonetheless critical to 

address as it is, indeed, the main source of potential bias in using visual surface counts as 

a proxy of jellyfish overall abundance (Sparks et al., 2001). Unfortunately, the net tow 

trials presented in Chapter 3 were inconclusive, due to the lack of large aggregations in 

the areas where they were conducted. The ideal situation would have been to be able to 

conduct visual surveys simultaneously with MIK net deployments during the ISS, but as 

the sampling protocol of the ISS requires that fishing is only conducted at night-time, this 

was impossible. Therefore, access to dedicated ship time to address this question in the 

future seems necessary. In the meantime, successful deployments of miniaturized 

electronic devices on medium size scyphomedusae offer new possibilities to investigate 

the horizontal and vertical behaviours of jellyfish (Chapter 5). This should provide 

opportunities to test for patterns that can bias visual surface counts (e.g. diel vertical 

migration, tidally synchronous movements, ontogenic changes of behaviour). 

To summarise, with access to jellyfish bycatch data, the study of jellyfish distributions in 

Irish waters switched from occasional samplings restricted mostly to coastal waters, to 

systematic regular widespread offshore sampling. Now that access to such information is 
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possible, it is hoped that the data collection will continue and lead to the creation of time-

series of the abundance of scyphomedusae in Irish waters. These are critically required to 

identify the drivers of the regional and inter-annual patterns described here and to address 

the concerns of society about jellyfish (Haddock, 2008; Richardson et al., 2009; Purcell, 

2012). However, it must be stressed that the understanding of the mechanisms by which 

environmental factors drives the abundance of scyphomedusae will necessarily require an 

understanding of how these factors influence the different stages of the scyphozoan life-

cycle (Brewer and Feingold, 1991; Mills, 2001; Boero et al., 2008; Prieto et al., 2010). 

Finally, the approach presented in the present work (i.e. the collection and analysis of 

scyphomedusae bycatch data) is arguably the most straightforward and cost-effective way 

of collecting data on jellyfish abundance. These are urgently required to develop a 

reliable ecosystem approach to fisheries management (Pauly et al., 2009) and therefore, 

the record of jellyfish bycatch should be generalized to other fish surveys worldwide. 
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Inter-annual variations in the abundance of scyphomedusae 

throughout the Irish Sea. 

  

Table A.1. Inter-annual variations of abundance of Cyanea spp. across the entire Irish Sea. 

Wilcoxon rank-sum test on abundance expressed in volume-standardised biomass (b, grey cells) 

and in densities (d, bottom-left diagonal). 

d \ b 2007 2008 2009 2010 

2007 
- 

W = 1670 

N07 = 52 ; N08 = 43 

p < 0.001 

W = 1969 

N07 = 52 ; N09 = 50 

p < 0.001 

W = 806 

N07 = 43 ; N10 = 37 

p = 0.923 

2008 W = 1496  

N08 = 43 ; N07 = 52   

p = 0.005 

- 
W = 1312 

N08 = 50 ; N09 = 56 

p = 0.580 

W = 480.5 

N08 = 42 ; N10 = 43 

p < 0.001 

2009 W = 1754  

N09 = 50 ; N07 = 52  

p = 0.002 

W = 1302 

N09 = 56 ; N08 = 50 

p = 0.535 

- 
W = 720.5 

N09 = 49 ; N10 = 43 

p = 0.009 

2010 W =1123 ;  

N10 = 37 ; N07 = 43 

p = 0.002 

W = 866 

N10 = 43 ; N08 = 42  

p = 0.748 

W = 1154  

N10 = 43 ; N09 = 49  

p = 0.436 

- 

 

 

Table A.2. Inter-annual variations of abundance of A. aurita across the entire Irish Sea. 

Wilcoxon rank-sum test on abundance expressed in volume-standardised biomass (b, grey cells) 

and in densities (d, bottom-left diagonal). 

d \ b 2007 2008 2009 2010 

2007 
- 

W = 1389 

N07 = 52 ; N08 = 43 

p = 0.041 

W = 84 

N07 = 52 ; N09 = 50 

p = 0.003 

W = 822.5 

N07 = 4 ; N10 = 37 

p = 0.797 

2008 W = 1330  

N08 = 43 ; N07 = 52   

p = 0.110 

- 
W = 830 

N08 = 50 ; N09 = 55 

p < 0.001 

W = 758 

N08 = 42 ; N10 = 43 

p = 0.197 

2009 W = 757  

N09 = 50 ; N07 = 52  

p < 0.001 

W = 800 

N09 = 55 ; N08 = 50 

p < 0.001 

- 
W = 1272 

N09 = 49 ; N10 = 43 

p = 0.056 

2010 W =780.5 ;  

N10 = 37 ; N07 = 43 

p = 0.888 

W = 733 

N10 = 43 ; N08 = 42  

p = 0.130 

W = 1304  

N10 = 43 ; N09 = 49  

p = 0.030 

- 
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Inter-annual variations in the distribution patterns of 

scyphomedusae throughout the Irish Sea. 

 

Table A.3. Inter-annual variations in the distribution of Cyanea spp. in the Irish Sea. 

The upper-right diagonal (grey cells) present the result of the Syrjala test (Ψ value and associated 

p-value) conducted on volume-standardised biomass (b, g m
-3

), the lower-left diagonal (white 

cells) present results from test conducted on densities (d, ind. 100 m
-3

). The null hypothesis of the 

Syrjala test is that the distribution between years is the same. 

d \ b  2007 2008 2009 2010 

2007 

- 
Ψ = 3.41 

p = 0.002 
 

Ψ = 1.17 

p = 0.0599 

 

Ψ = 0.76 

p = 0.008 
 

2008 Ψ = 2.54 

p = 0.001 - 
Ψ = 7.83 

p = 0.001 
 

Ψ = 2.05 

p = 0.005 
 

2009 Ψ = 1.17 

p = 0.061 
Ψ = 5.74 

p = 0.001 - 
Ψ = 4.00 

p = 0.002 
 

2010 Ψ = 0.76 

p = 0.022 

Ψ = 0.32 

p = 0.1449 

Ψ = 2.02 

p = 0.007 - 

 

 

Table A.4. Inter-annual variations in the distribution of A. aurita in the Irish Sea. 

The upper-right diagonal (grey cells) present the result of the Syrjala test (Ψ value and associated 

p-value) conducted on volume-standardised biomass (b, g m
-3

), the lower-left diagonal (white 

cells) present results from test conducted on densities (d, ind. 100 m
-3

). The null hypothesis of the 

Syrjala test is that the distribution between years is the same. 

d \ b 2007 2008 2009 2010 

2007 

- 

Ψ = 5.17 

p = 0.058 

 

Ψ = 1.16 

p = 0.553 

 

Ψ = 2.23 

p = 0.176 

 

2008 Ψ = 6.74 

p = 0.017 - 
Ψ = 2.91 

p = 0.009 
 

Ψ = 1.19 

p = 0.062 

 

2009 Ψ = 2.27 

p = 0.261 
Ψ = 2.30 

p = 0.027 - 

Ψ = 1.95 

p = 0.169 

 

2010 Ψ = 5.69 

p = 0.039 

Ψ = 1.04 

p = 0.1139 
Ψ = 2.70 

p = 0.037 - 
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Testing for potential association between A. aurita and 

Cyanea spp. 

 

Table A.5. Correlations between the annual abundance of Cyanea spp. and A. aurita. 

Spearman’s rank correlation test run on abundance expressed in biomass (first line) and denstities 

(second line). 

 2007 2008 2009 2010 

 rho p rho p rho p rho p 

Biomass (g m
-3

) 0.230 0.049 0.416 < 0.001 0.180 0.110 -0.018 0.877 

Densities (ind. 

100 m
-3

) -0.007 0.954 0.206 0.075 0.158 0.163 -0.007 0.954 

 

 

Table A.6. Comparison of annual distribution patterns of Cyanea spp. and A. aurita. 

The result of the Syrjala test (Ψ value and associated p-value) conducted on volume standardised 

biomass (g m
-3

) are presented in the first line; results from the test conducted on densities (ind. 100 

m
-3

) is in the second line. The null hypothesis of the Syrjala test is that the distributions of the two 

species are the same. 

 2007 2008 2009 2010 

Biomass 

(g m
-3

) 

Ψ = 0.51 

p = 0.586 
Ψ = 9.00 

p = 0.001 

Ψ = 1.51 

p = 0.3157 
Ψ = 5.69 

p = 0.001 

Densities 

(ind. 100m
-3

) 
Ψ = 3.53 

p = 0.033 

Ψ = 6.46 

p = 0.004 

Ψ = 7.2 10-10 

p = 0.8392 
Ψ = 5.93 

p = 0.002 
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Inter-regional differences in the abundance of Cyanea spp. 

and A. aurita. 

 

Table A.7. Inter-regional differences in the annual abundance of Cyanea spp. 

Comparison of differences in the volume-standardised biomass (first line) and densities (second 

line) of Cyanea spp. in the eastern and western Irish Sea using Wilcoxon rank-sum tests (H0: the 

abundances are the same in both region). 

 2007 2008 2009 2010 

Biomass 

(g m
-3

) 

W = 371 

NE= 27 ; NW = 25 

p = 0.549 

W = 290 

NE = 26 ; NW = 23 

p = 0.865 

W = 342 

NE = 26 ; NW = 30 

p = 0.435 

W = 359 

NE = 14 ; NW = 29 

p < 0.001 

Densities 

(ind. 100m
-3

) 

W = 464 

NE = 27 ; NW = 25 

p = 0.020 

W = 395 

NE = 26 ; NW = 23 

p = 0.056 

W = 476 

NE = 26 ; N2 = 30 

p = 0.160 

W = 348 

NE = 14 ; NW = 29 

p < 0.001 

 

 

Table A.8. Inter-regional differences in the annual abundance of A. aurita. 

Comparison of differences in the volume-standardised biomass (first line) and densities (second 

line) of Aurelia aurita in the eastern and western Irish Sea Wilcoxon rank-sum tests (H0: the 

abundances are the same in both region). 

 2007 2008 2009 2010 

Biomass 

(g m
-3

) 

W = 292.5 

NE= 27 ; NW = 25 

p = 0.413 

W = 137 

NE = 26 ; NW = 23 

p < 0.001 

W = 436 

NE = 26 ; NW = 29 

p = 0.324 

W = 94.5 

NE = 14 ; NW = 29 

p = 0.005 

Densities 

(ind. 100m
-3

) 

W = 389.5 

NE = 27 ; NW = 25 

p = 0.344 

W = 171 

NE = 26 ; NW = 23 

p = 0.009 

W = 496 

NE = 25 ; NW = 30 

p = 0.042 

W = 125.5 

NE = 14 ; NW = 29 

p = 0.044 
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Inter-annual dynamics in the abundance of A. aurita and in 

each region of the Irish Sea. 

 

Table A.9. Inter-annual variations of A. aurita biomass (g m
-3

) in each region of the Irish Sea. 

Wilcoxon rank-sum tests on volume-standardised biomass of A. aurita from the eastern (top-right 

diagonal, grey cells) and western (bottom-left diagonal, white cells) half of the Irish Sea (H0: no 

difference between years). 

W\E 2007 2008 2009 2010 

2007 
- 

W = 506 

N07 = 27 ; N08 = 26 

p = 0.005 

W = 170.5 

N07 = 27 ; N09 = 26 

p = 0.001 

W = 178 

N07 = 18 ; N10 = 14 

p = 0.048 

2008 W = 194  

N08 = 17 ; N07 = 24 

p = 0.800 

- 
W = 78 

N08 = 26 ; N09 = 26 

p < 0.001 

W = 91.5 

N08 = 19 ; N10 = 14 

p = 0.113 

2009 W = 239  

N09 = 23 ; N07 = 24 

p = 0.436 

W = 314 

N09 = 29 ; N08 = 23 

p = 0.726 

- 
W = 237.5 

N09 = 19 ; N10 = 14 

p < 0.001 

2010 W = 228 ;  

N10 = 23 ; N07 = 24 

p = 0.309 

W = 325 

N10 = 29 ; N08 = 23 

p = 0.882 

W = 399  

N10 = 29 ; N2 = 29 

p = 0.743 

- 

 

 

Table A.10. Inter-annual variations of A. aurita densities (ind.100 m
-3

) in each region of the 

Irish Sea. 

Wilcoxon rank-sum tests on densities of A. aurita from the eastern (top-right diagonal, grey cells) 

and western (bottom-left diagonal, white cells) half of the Irish Sea (H0: no difference between 

years). 

W\E 2007 2008 2009 2010 

2007 
- 

W = 494 

N07 = 27 ; N08 = 26 

p = 0.010 

W = 164.5 

N07 = 27 ; N09 = 25 

p = 0.002 

W = 160 

N07 = 18 ; N10 = 14 

p = 0.198 

2008 W = 86  

N08 = 17 ; N07 = 24 

p = 0.002 

- 
W = 86 

N08 = 26 ; N09 = 25 

p < 0.001 

W = 84.5 

N08 = 19 ; N10 = 14 

p = 0.063 

2009 W =86 

N09 = 24 ; N07 = 24 

p < 0.001 

W = 311 

N09 = 30 ; N08 = 23 

p = 0.547 

- 
W = 205.5 

N09 = 18 ; N10 = 14 

p < 0.003 

2010 W = 129 ;  

N10 = 23 ; N07 = 24 

p = 0.002 

W = 316 

N10 = 29 ; N08 = 23 

p = 0.753 

W = 454  

N10 = 29 ; N09 = 30 

p = 0.778 

- 
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Inter-annual dynamics in the abundance of Cyanea spp. in 

each region of the Irish Sea. 

 

Table A.11. Inter-annual variations of Cyanea spp. biomass (g m
-3

) in each region of the Irish 

Sea. 

Wilcoxon rank-sum tests on volume-standardised biomass of Cyanea spp. from the eastern (top-

right diagonal, grey cells) and western (bottom-left diagonal, white cells) half of the Irish Sea (H0: 

no difference between years). 

W\E 2007 2008 2009 2010 

2007 
- 

W = 520 

N07 = 27 ; N08 = 26 

p = 0.003 

W = 550 

N07 = 27 ; N09 = 26 

p < 0.001 

W = 56 

N07 = 18 ; N10 = 14 

p = 0.007 

2008 W = 306  

N08 = 17 ; N07 = 24 

p = 0.007 

- 
W = 331 

N08 = 26 ; N09 = 26 

p = 0.905 

W = 8 

N08 = 19 ; N10 = 14 

p < 0.001 

2009 W =416 

N09 = 24 ; N07 = 24 

p = 0.009 

W = 293 

N09 = 30 ; N08 = 23 

p = 0.355 

- 
W = 6 

N09 = 19 ; N10 = 14 

p < 0.001 

2010 W = 368 ;  

N10 = 23 ; N07 = 24 

p = 0.051 

W = 273 

N10 = 29 ; N08 = 23 

p = 0.269 

W = 429 

N10 = 29 ; N09 = 30 

p = 0.934 

- 

 

 

Table A.12. Inter-annual variations of Cyanea spp. densities (ind. 100m
-3

) in each region of 

the Irish Sea. 

Wilcoxon rank-sum tests on densities of Cyanea spp. from the eastern (top-right diagonal, grey 

cells) and western (bottom-left diagonal, white cells) half of the Irish Sea (H0: no difference 

between years). 

W\E 2007 2008 2009 2010 

2007 
- 

W = 441 

N07 = 27 ; N08 = 26 

p = 0.111 

W = 495 

N07 = 27 ; N09 = 26 

p = 0.011 

W = 150 

N07 = 18 ; N10 = 14 

p = 0.377 

2008 W = 48  

N08 = 17 ; N07 = 24 

p < 0.001 

- 
W = 350.5 

N08 = 26 ; N09 = 26 

p = 0.826 

W = 100 

N08 = 19 ; N10 = 14 

p = 0.236 

2009 W =53 

N09 = 24 ; N07 = 24 

p < 0.001 

W = 296 

N09 = 30 ; N08 = 23 

p = 0.384 

- 
W = 91 

N09 = 19 ; N10 = 14 

p = 0.130 

2010 W = 72 ;  

N10 = 23 ; N07 = 24 

p < 0.001 

W = 359 

N10 = 29 ; N08 = 23 

p = 0.645 

W = 514 

N10 = 29 ; N09 = 30 

p = 0.234 

- 
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Abstract 

Climate change and overfishing may lead to ecosystem instability and may benefit non-

exploited organisms such as jellyfish. In the Irish Sea, an increase in jellyfish abundance 

was evident (r
2
 = 0.29, p = 0.03) in a 16-year time-series (1994–2009) collected during 

juvenile fish surveys. Jellyfish abundance correlated positively with sea surface 

temperature (SST) over the preceding 18 months (r = 0.65, pACF < 0.001) and copepod 

biomass in the previous year (r = 0.56, pACF = 0.03), and negatively with spring 

(February-May) precipitation (r = −0.57, pACF = 0.02). Principal components regression 

indicated that climatic indices explained 68% of the interannual variability in jellyfish 

abundance (p = 0.003), where the components were based on the North Atlantic 

Oscillation Index, SST and precipitation. The frequency of cnidarian material present in 

Continuous Plankton Recorder (CPR) samples has also increased since 1970, with a 

period of frequent outbreaks between 1982 and 1991. Prior to this period, the herring 

stock in the northern Irish Sea declined rapidly to a low level, potentially stimulating 

structural change in the ecosystem. In 1985 there was a step decrease in CPR copepod 

biomass and in 1989 a step increase in the phytoplankton colour index, suggesting a 

cascading regime shift during the 1980s. Subsequent overexploitation of gadids, coupled 
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with warm temperatures and the poor recruitment of cod, led to the rapid decline in cod 

biomass from 1990. While the biomass of sprats has decreased in the last decade, the 

herring stock has recovered partially. Reductions in demersal fishing pressure since 2000, 

intended to stimulate cod recovery, appear to have facilitated further rises in haddock 

biomass. Since the 1980s regime shift, sea temperatures have increased, the fish 

community has altered and jellyfish abundance has risen such that jellyfish and haddock 

may now play an increasingly important role in the ecosystem.  

 

Introduction 

There is widespread interest in the consequences for the oceans of global climate 

change and human actions (e.g. fishing and the accidental introduction of alien species). 

The past few decades have seen profound changes in the biota of marine systems (Hays et 

al. 2005) with, for example, the removal of top predators (Rogers & Ellis 2000; Myers et 

al. 2007) and major changes in the distribution and phenology of marine plankton 

(Beaugrand et al. 2003; 2008; Edwards & Richardson 2004). Accompanying these 

changes, there has been widespread concern that the oceans may increasingly be 

dominated by jellyfish (ctenophores and medusae), because many gelatinous zooplankton 

species are able to increase in abundance rapidly and adapt to new conditions brought 

about by ecosystem regime shifts (Bakun & Weeks 2006; Daskalov et al. 2007). Hence, 

there is an increasing awareness of the many negative socio-economic implications of 

jellyfish-dominated ecosystems (Richardson et al. 2009). It has been hypothesised that 

jellyfish may increase in abundance for at least two different reasons (Purcell 2005; 

Daskalov et al. 2007). Firstly, they may benefit indirectly from commercial “fishing 

down the food chain”, whereby humans target the largest and most valuable fish species 

at the apex of the ecological pyramid and, having depleted those stocks, then move down 

to the next trophic level, and so on. The endpoint of “fishing down the food chain” may 

be an ocean dominated by jellyfish (Pauly et al. 1998, 2002). Secondly, changing 

environmental conditions (including: temperature, salinity, light availability, current flow 

and vertical mixing) and climatic fluctuations (wind patterns and air pressure) may be 

beneficial to jellyfish in certain instances (Purcell 2005, 2007; Molinero et al. 2007, 

2008; Brodeur et al. 2008; Gibbons & Richardson 2009; Purcell et al. 2009). Although 

empirical evidence for these scenarios is limited, jellyfish-dominated ecosystems are 

often debated because outbreaks of medusae frequently cause clogging of fishing nets and 

power station intakes, as well as stinging bathers and causing mass mortalities of fish in 

aquaculture (Purcell et al. 2007; Doyle et al. 2008). However, perhaps the greatest 

concern is the proposed self-enhancing feedback loop termed “the never-ending jellyfish 

joyride” (Richardson et al. 2009), wherein jellyfish become established so strongly that it 

may be impossible for fish abundance to recover to pre-exploitation levels, even if 

commercial fishing is reduced.  

 Given such unease about the prevalence of jellyfish, it is perhaps surprising that 

there are relatively few robust long time-series of jellyfish abundance. This gap in data 

partly reflects the fact that jellyfish were historically not a focus for research or 

monitoring. More fundamentally, it can be difficult to gain quantitative estimates of the 

abundance of a patchily distributed population by scientific surveys, which are all too 

often restricted in spatial scale and therefore tend to hit or miss hotspots of abundance. 

Nevertheless, some time-series have shown major changes in jellyfish abundance and 

statistical links with climatic indices (Lynam et al. 2004; Purcell 2005; Brodeur et al. 

2008; Molinero et al. 2008; Gibbons & Richardson 2009). As environmental conditions 

are changing at unprecedented rates in many ecosystems, e.g. Sea of Japan, Antarctica, 

and the NE Atlantic (Brander 2007), there is an urgency to understand jellyfish 

population dynamics in these areas. Indeed, the regional seas of the NE Atlantic have  
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Figure 1. Survey area in the western Irish Sea showing MIK survey haul locations and mean 

spatial distribution of jellyfish log10(1+g) where the catch weight per haul is volume standardised. 

Also shown is the location of rain station (black triangle). 

 

been warming for the past 15 years at a rate not experienced in recent centuries (Hobson 

et al. 2008), yet it is unclear how these changes have impacted upon jellyfish. Here, we 

analyse a hitherto unexploited dataset on jellyfish abundance collected from extensive 

fisheries surveys in the Irish Sea. This unique dataset, from a region experiencing such 

profound environmental changes, offers the potential to provide new insights into how 

global climate change may impact upon jellyfish. 

 

Material and methods 

Jellyfish sampling 

Annual surveys for pre-recruit gadid fish in the Irish Sea were conducted by 

AFBI (Agri-Food and Biosciences Institute, Northern Ireland) using their research vessels 

MRV Lough Foyle (1994–2004) and Corystes (2005–2009). Night surveys were 

conducted using a 5 m
2
 Methot Isaacs Kidd (MIK) frame net with a 5 mm mesh designed 

to sample juvenile pelagic 0-group gadoids (Methot 1986). The net was towed in a 

double-oblique profile through the water column to within 4 m of the seabed, with a 

second double-oblique profile at stations where the depth prevented initial tow durations 

of >15 min. An impellor flowmeter recorded the volume filtered during each tow. 

Volume filtered averaged 4113.2 m
3
 (range 699–11 719 m

3
). For two tows with non-zero 

jellyfish catch and where the flow was not recorded, we assumed the mean volume 

filtered from the other tows. All jellyfish in the catch were separated from fish, 

crustaceans and ctenophores and then weighed. From 2007, jellyfish were identified to 

genus where possible and the catch weights for separate taxa were also quantified. 

Jellyfish catches were dominated by medusae (bell diameter 0.5 to 36 cm) of Aurelia 

aurita, Cyanea capillata and C. lamarckii. In scarce abundance were Chrysaora 

hysoscella (bell diameter up to 15 cm) and various small hydrozoans (bell diameter <3 

cm) including Cosmetira, Leuckartiara and Bougainvillia spp.  
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The survey was conducted annually between May and June between 53 and 55 

°N. The longitudinal range was initially 4.5 – 7 °W (1994–2005), but later this was 

extended to 3 – 7 °W (2006–2009). To provide comparable data between years, we 

restricted the analysis to the area well sampled in all years (longitude >4.75
 
°W, latitude 

<54.25
 
°N; Figure 1). Annually, the number of samples from this area averaged 48 (range 

13–82). Large catches (many tens of kg) were subsampled quantitatively. For example, if 

the jellyfish catch filled 20 baskets evenly, then one basket would be weighed and that 

weight multiplied by 20. For each haul, the total jellyfish weight was volume standardised 

by multiplying by (volume filtered ∕ mean volume filtered). The sample distributions of 

the volume-standardised weights were normalised by a log10(1 + value) transformation 

and annual means and standard deviations were calculated from the transformed values. 

 

Biological and climate covariate data 

Official fisheries catch statistics for the years 1973–2008 and stock and 

recruitment indices were downloaded from the website of the International Council for 

the Exploration of the Sea (ICES; www.ices.dk) using the STATLANT and Stock 

Summary databases respectively. Specifically, data for gadids (cod Gadus morhua and 

haddock Melanogrammus aeglefinus) were investigated because the western Irish Sea 

area is a particularly important spawning area for those stocks (ICES 2009a). Stock 

assessments for cod are computed using B-ADAPT software and for haddock from single 

fleet SURBA analysis; there is no currently accepted analytical assessment for whiting 

(Merlangius merlangus) in the Irish Sea (ICES 2009a). The assessment framework for 

Irish Sea herring is currently being evaluated to address issues of stock identity (i.e. 

mixing with Celtic Sea fish), so no SSB or recruitment data are available (ICES 2009b). 

To address the lack of data on planktivores from ICES assessments, we investigated 

acoustic (38 khz) survey data for the northern Irish Sea (3 to 7 °W and 53.3 to 55 °N, 

ICES 2009b) for the years 1998 to 2009 conducted annually, between 7 and 18 days in 

the period 27 August - 29 September by AFBI. The biomass of sprat (Sprattus sprattus) 

was computed from the difference between the total clupeoid biomass detected and the 

estimated herring (Clupea harengus) biomass (all ages) from the same survey. 

Plankton data were gathered by the Continuous Plankton Recorder (CPR) and 

supplied by the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) (Batten et al. 

2003; Reid et al. 2003). The CPR sampler is towed at a fixed depth of ~7 m, has a square 

mouth opening of 1.61 cm
2
, and carries silk bands with a mesh of 270 µm with which 

plankton are filtered and sandwiched before preservation in a solution of borax-buffered 

formaldehyde (Batten et al. 2003). The greenness of the CPR silk (the Phytoplankton 

Colour Index, PCI) is an accepted measure of the biomass of diatoms and dinoflagellates 

(Richardson et al. 2006). The CPR primarily samples copepods and data for the most 

abundant copepod species in the Irish Sea (Acartia spp., Para-pseudocalanus, Temora 

longicornus, Metridia lucens, Calanus finmarchicus, C. helgolandicus, and Centropages 

typicus; Pitois & Fox 2006) were considered for analysis here. The presence of cnidarians 

on the CPR silk, excluding those siphonophores with rigid bells that are included in the 

CPR ‘total siphonophores’ category, was determined by SAHFOS through the visual 

identification of cnidarian tissue and/or nematocysts (Gibbons & Richardson 2009). The 

resulting index of the frequency of cnidarian occurrence (1971-2008) in CPR samples 

was used to compare with the shorter jellyfish time-series from the fisheries survey. 

There are some important caveats with using CPR data in this way: although the presence 

or absence of cnidarian tissue can be identified from the samples, a more detailed 

quantification of the amount of material is not possible. Moreover, the CPR samples a 

relatively small volume, nominally 3 m
3
 per sample (over ~18.5 km towed), with a small 

mouth opening and it is likely to undersample large scyphozoan jellyfish, such that the 
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CPR sampler is likely more indicative of the presence of smaller organisms (i.e. 

Hydrozoa and Ctenophora, siphonophores without rigid bells and detached tentacles from 

those siphonophores with rigid bells) (Gibbons & Richardson 2009). Indeed in the North 

Sea, correlations between CPR frequency of cnidarian occurrence and the abundance of 

Aurelia and Cyanea spp. was found to be significant in only one of four regions and for 

Aurelia only (Lynam et al. 2010). Nevertheless, visual and genetic analyses have 

identified the scyphozoan Pelagia noctiluca in CPR samples gathered in the Atlantic 

Ocean to the west of Ireland (Baxter et al. 2010; Licandro et al. 2010), indicating that 

scyphozoan medusae are sampled by the CPR among other gelatinous zooplankton. Since 

it is unclear which species are sampled by the CPR, we use the summer data (May-

August) only as this is when scyphozoan medusae such as Aurelia and Cyanea spp. are 

abundant.  

 Raw CPR data collected in the Irish Sea (3 to 7 °W and 52 to 55 °N) between 

1961 and 2008 (except cnidarian data which were only available to 2007) were extracted 

from the CPR database. Following preliminary analysis of the spatial and temporal 

distribution of the data, the latitudinal range was reduced to 53.25 to 53.75 °N and the 

year range from 1971 in order to maintain a consistent sampling pattern throughout the 

time series (Figure S1). Samples were collected further north of 53.75 °N in 1993 to 1995 

only, and prior to 1989 samples were taken sporadically further south of 53.25 °N. Each 

sample within the subset is therefore located between the latitudinal bounds of the 

fisheries survey area. The sampling effort along the longitudinal gradient was constant 

throughout, and in order to maintain high sample size the survey area was not restricted 

further (Figure S1).  

The CPR is known to sample zooplankton species with varying efficiency, due 

largely to differing organism sizes and vertical distributions, and therefore copepod 

abundance data were compensated for under-sampling by the CPR using conversion 

factors reported by Pitois & Fox (2006). Copepod abundance data was converted into 

biomass (mg m
-3

) using the dry weight values for each species (Pitois & Fox 2006). 

Monthly means of copepod biomass and phytoplankton colour were calculated and 

missing monthly means were determined from these using the standard ‘interpolation’ 

method for CPR data (Richardson et al. 2006, and therein Colebrook 1975). The 

interpolation method is considered robust, i.e. based on an adequate estimate of the 

seasonal cycle, if ≥8 months are sampled. In the data subset, ≥8 months were sampled in 

every year since 1971, with the exception of 1988 when no samples were available and in 

1974 and 1979 when only 7 months were sampled. From 1990 onward ≥10 months were 

sampled each year with on average 8 samples per month. The distribution of the monthly 

mean copepod biomass estimates were normalised by log10(1+value) transformation prior 

to calculation of annual means.  

Monthly sea surface temperature (SST) values were downloaded from the UK 

Met Office Hadley Centre’s HadSST2 dataset (http://hadobs.metoffice.com/hadsst2/). 

The data are based on quality-controlled, in situ measurements of SST from ships and 

buoys: data for the period 1850–1997 are taken from the International Comprehensive 

Ocean-Atmosphere Data Set (ICOADS), and those from 1998 on are from the US 

National Oceanic and Atmospheric Administration's (NOAA) National Centers for 

Environmental Prediction – Global Telecommunications System (NCEP–GTS). SST 

anomalies were determined by subtraction of the calculated climatology for the period 

1970–2000 prior to spatially averaging over a grid of 1 × 1 or 5 × 5 degrees (Rayner et al. 

2006). The station-based winter (December–March) North Atlantic Oscillation Index 

(NAOI; Hurrell et al. 2003) was obtained from the US National Center for Atmospheric 

Research (http://www.cgd.ucar.edu/cas/jhurrell/indices.html). The NAO describes an 

atmospheric pressure dipole, most pronounced in winter, with a high-pressure system in 
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the south, centred on the Azores, and a low-pressure system over Iceland. The normalised 

difference between the two pressures recorded at the two stations is an index used to 

measure the strength of the NAO. When the NAO index is positive, the pressure field 

results in strong westerly winds blowing warmer air towards northern Europe during 

winter, warming and mixing Irish Sea surface waters. Any associated increase in 

precipitation will likely result in increased river flow and increased run-off of nutrients to 

coastal areas. Monthly rainfall data, recorded at a station at Dublin airport, latitude 53.36 

°N, longitude 06.32
 
°W (Figure 1, triangle) were downloaded from the European Climate 

Assessment & Dataset (Eca&D) website http://eca.knmi.nl/ (Klein Tank et al. 2002) and 

considered as a proxy for river flow and salinity in the coastal zone. Precipitation effects 

on jellyfish have been considered in this way previously by Wilcox et al. (2008) and 

Purcell et al. (2009). 

 

Statistical analyses 

Sample variability in the annual means of (volume-standardised and log10-

normalised) jellyfish catch weights was assessed in terms of Coefficients of Variation 

(CV = sample standard deviation ∕ sample mean) and Relative Standard Errors in the 

mean (RSE = sample standard deviation ∕ (sample mean × number of samples
1/2

) ). The 

RSE were plotted against the number of hauls per year, and a log-linear regression model 

was fitted in order to determine the number of hauls required to yield a RSE of 5% of the 

sample mean (Figure 2). 

Annual means of jellyfish catch weights (log10(1+g), volume standardised) were 

investigated for temporal trend using linear regression analyses. The regression model 

assumptions of linearity, homogeneity of variance, normality and independence of 

residuals were tested following procedures outlined in Krzanowski (1998). A cube 

transformation of the annual values was made to stabilize the spread of the studentised 

residuals from the regression model (Fox 1997). In addition, the Shapiro–Wilk statistic 

(Dunn & Clark 1974) was used to test residuals for normality and was assessed at the 

0.05 level of significance. Generalised Durbin–Watson statistics and their bootstrapped 

 

Figure 2. Relative standard error as a function of sampling effort (number of hauls) for mean 

annual catch weight log10(1 + g, volume standardised) of jellyfish in the western Irish Sea (r
2
 = 

0.38, p = 0.011). The sampling effort at the intersection of the horizontal and vertical lines 

indicates that 62 hauls are required to reduce the relative standard error to 5%. 
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significance values were used to assess residual autocorrelations (Fox 1997). Global 

validations of linear model assumptions were made following the procedures of Pena & 

Slate (2006). The significance level for each test was chosen to minimise corresponding 

Type II error (Krzanowski 1998). Significance correction methods, which were 

developed to aid decision-making, such as the Bonferroni adjustment for multiple tests 

for significance, were not utilised because application of these methods to statistical 

inference is controversial (see review by Perneger 1998); we adopt the view of Perneger 

(1998) that such adjustments are at best unnecessary, and at worst deleterious to sound 

statistical inference. 

Exploratory correlation analyses were made between annual mean jellyfish catch 

weights and ecosystem and climatic variables (phytoplankton colour, copepod and fish 

biomass, SST, rainfall and NAOI) in order to determine likely influences on jellyfish 

populations. For all correlations, the effective degrees of freedom were corrected for 

autocorrelation using the modified Chelton Method with the Chatfield autocorrelation 

estimator, and the number of lags to be considered in computing autocorrelation was 

taken as one-fifth the length of the time-series (Pyper & Peterman 1998); significance 

values thus corrected for autocorrelation are labelled pACF. Regime shifts in time-series 

were investigated using a statistical procedure (supremum F statistic) that identifies, 

using regression model residuals, whether or not a single change-point has occurred at 

some unknown location (year), where the null hypothesis was no step change in mean 

level of the time-series (Zeileis et al. 2003). Subsequently, the most parsimonious model 

(i.e. fewest number of breakpoints required) to minimize the residual sum of squares was 

chosen using the Bayesian Information Criterion (BIC; Zeileis et al. 2003). Fisheries 

landings and biomass indices were used to explore the hypothesis that a change in the 

ecosystem instigated by fisheries might alter the abundance of jellyfish. The hypothesis 

that a change in jellyfish biomass might alter fish recruitment was tested through Ricker 

stock-recruitment modelling (Chen & Irvine 2001).  

Principal components regression (PC regression) was adopted to investigate 

relationships between jellyfish (where the response variable was annual mean volume-

standardised catch weights) and climate and ecosystem indices; whereby Principal 

Components Analyses (PCA) were conducted to extract the dominant modes of temporal 

variability from a suite of inter-related variables and the resulting principal components 

were used as explanatory variables. A notable benefit of such an approach is that stepwise 

selection of explanatory variables in multiple regression analyses is robust since the 

independence of the variables is certain and variable selection is unbiased (Graham 

2003). Covariate selection for PC regression were made using a backwards stepwise 

procedure. Two PC regression analyses were conducted; the first using climatic data 

alone to model jellyfish catch weights and the second including data on climate, plankton 

and finfish in order to explore potential interactions between finfish (cod and haddock), 

plankton and jellyfish. 

All analyses were made using the R software (R Development Core Team 2009) 

and additional packages used were: Flexibly reshape data (‘reshape’; Wickham 2007), 

Testing for Structural Change in Linear Regression Models (‘strucchange’; Zeileis et al. 

2002), Global validation of linear models assumptions (‘gvlma’; Pena & Slate 2006), 

Testing Linear Regression Models (‘lmtest’; Zeileis & Hothorn 2002) and Companion to 

Applied Regression (‘car’; Fox 2002). 
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Results 

Irish Sea jellyfish 

Between 2007 and 2009, the jellyfish catches were dominated by Aurelia aurita 

each year (66%, 92% and 86% by weight respectively). The remainder of the catch 

comprised Cyanea spp. (C. lamarckii and C. capillata) and other species composed <2% 

by weight each year. The spatial pattern in jellyfish catch weights is shown in Figure 1. In 

all samples between 1994 and 2009, the median catch weight of jellyfish was 476 g per 

haul and the 10
th
 and 90

th
 percentiles were 2 g and 6885 g per haul respectively. The 

maximum measured catch weight in a haul was 124700 g and five hauls where the 

jellyfish catch burst the net were assumed to have caught 125000 g of jellyfish. Once 

volume-standardised the median jellyfish catch was 525 g per haul and the 10
th
 and 90

th
 

percentiles were 3 g and 8843 g respectively. The average coefficient of variation (CV) in 

the annual (volume-standardised and log10 normalised) jellyfish catch weights was 49% 

(range 25–120%) and the average relative standard error was 7% (range 4%–29%). A 

log-linear regression model of the relative standard error against the number of hauls per 

year was significant (r
2
 = 0.38, n = 16, p = 0.011) and suggested that 62 hauls were 

required per year to yield a relative standard error of 5% of the sample mean weight 

(Figure 2). 

Annual means of jellyfish catch weights were investigated for temporal trend 

using linear regression analyses. An increasing linear trend was evident in annual catch 

weights (r
2
 = 0.26, n = 16, p = 0.04), but a pattern in the studentised residuals of 

decreasing magnitude vs. fitted values was detected. Once this pattern was stabilised, by a 

cube transformation of the response variable, all model assumptions were satisfied and 

the final regression statistics were: r
2
 = 0.29, n = 16, p = 0.03 (Figure 3). The inclusion of 

vessel type as a factor in the regression did not suggest that the increase in jellyfish catch 

weights was attributable to a step change in 2005 because the term was not significant (p 

= 0.48).  

 

Climatic influences on jellyfish 

Fluctuations are common in time-series of jellyfish abundance and inspection of 

the time-series shows great interannual variability (Figures 3 and 4a). In order to explore 

potential causes for the underlying mechanism at play, we performed exploratory 

correlative analyses with climatic data (Figure S2). Various monthly lags of the jellyfish 

catch weight to the temperature anomaly and total precipitation data were considered to 

determine the period over which to average the climate data (Figure S3), prior to testing 

for significance with a correction for autocorrelation (Table 1). The jellyfish catch weight 

in the sampling period of May-June, correlated positively with SST in those months 

(mean SST anomaly = +0.70 °C with range −0.39 °C to +1.77 °C) and the preceding 16 

months (Figure S3a): the overall mean monthly SST anomaly between 1994 and 2009 

was +0.61 °C (minimum −0.84 °C in January 1994 and maximum +2.41 °C in May 

2007). Jellyfish catch weights also correlated negatively with precipitation between 

February and May (i.e. a dry period; mean precipitation 220 mm, range 127 – 335 mm) 

and positively with precipitation in the previous year between July and December (i.e. a 

wet period; mean precipitation 431 mm, range 318 – 591 mm) (Figure S3b). The winter 

(Dec-Mar) NAOI index was positively correlated with SST in the first half of the year 

(Jan-Jun) suggesting an underlying influence of this atmospheric variable (Table 1). Prior 

to regression analyses of jellyfish catch weights, a PCA was conducted with the following 

climatic variables: NAOI with and without a 1-year lead, average SST for the preceding 

year, SST for January–June of the current year, and average precipitation in the months 

February–May of the current year (Table 2a). The final model, determined using 
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backward elimination, included the first, second and third principal components and it 

explained 68% of the variability in the jellyfish catch weight data (Table 3a, Figure 3). 

 

 

Figure 3. Temporal patterns in mean catch weights per haul of jellyfish in the western Irish Sea 

(see Figure 1), where black circles with error bars are the back-transformed log10(1+g) means with 

95% confidence intervals. The straight black line shows the regression through the observations 

(regression equation y = (1.033x – 2050)
⅓
). The solid grey line shows the modelled catch weights 

and the two grey dashed lines represent the 95% confidence interval from the PC regression. 
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Table 1. Linear correlation matrix showing R (top right) and pACF values (bottom left, shaded) determined using the modified Chelton method. Climate (NAOI, SST 

and Rainfall) data extends over the period 1950-2009. However, correlations with biota are limited to the minimum time-series series length: jellyfish sampling period 

1994-2009, copepod biomass and phytoplankton colour index 1971-2008, sprat biomass 1998-2009, cod SSB 1968-2009 and haddock SSB 1992-2009. Entries 

emboldened if pACF < 0.05. Asterisks also indicate significance: *** if pACF < 0.01, ** if pACF < 0.05, * if pACF < 0.1 

pACF \ R 
Jellyfish 

weight 

Copepod 

biomass 

Phyto-

plankton 

Index 

Sprat 

Biomass 
Cod SSB 

Haddock 

SSB 
NAOI 

NAOI 

year 

before 

SST 

Jan-Jun 

SST (18 

months) 

Rainfall 

Feb-May 

Jellyfish weight - 0.23 0.43 −0.55* −0.68*** 0.55** −0.14 0.26 0.42 0.65*** −0.57** 

Copepod biomass 0.421 - −0.19 −0.67** 0.39 −0.11 −0.06 −0.13 −0.29 −0.30 −0.28* 

Phytoplankton 

Index 
0.107 0.503 - 0.18 −0.57 −0.35 0.16 0.04 0.46* 0.50 −0.03 

Sprat biomass 0.066 0.024 0.606 - 0.75** −0.38 0.03 −0.23 −0.09 −0.31 0.33 

Cod SSB 0.004 0.275 0.108 0.025 - −0.68* 0.04 −0.08 −0.41 −0.61 −0.09 

Haddock SSB 0.026 0.682 0.170 0.311 0.091 - −0.45* −0.27 0.57* 0.86*** −0.36 

NAOI 0.601 0.737 0.337 0.932 0.860 0.060 - 0.36* 0.48*** 0.29 −0.13 

NAOI year before 0.337 0.429 0.807 0.467 0.692 0.274 0.055 - 0.05 0.30 0.03 

SST Jan-Jun 0.106 0.266 0.079 0.788 0.236 0.058 0.005 0.786 - - −0.09 

SST(18 months) 0.006 0.333 0.102 0.356 0.139 0.005 0.148 0.133 - - −0.06 

Rainfall  

Feb-May 
0.021 0.094 0.864 0.294 0.591 0.144 0.308 0.840 0.492 0.672 - 
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Table 2. Principal component analysis using (a) climatic data for 1994-2009, (b) climatic and 

biological data (finfish and plankton) for the period 1994–2008. The PCs are subsequently used as 

regressors of jellyfish catch weights. 

PCA loadings and  

variability by 

component 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

(a)  Loadings 

(1994-2009 ) 

    
     

NAOI −0.15 0.72 −0.45 0.34 −0.38 - - - - 

NAOI (1 

year lead)       
0.37 −0.31 −0.73 0.29 0.39 - - - - 

SST (Jan-

Jun) 
−0.44 −0.62 −0.11 0.36 −0.54 - - - - 

SST (1 year 

lead)    
−0.65 0.10 0.12 0.38 0.64 - - - - 

Precipitatio

n (Feb-

May)  

0.48 0.04 0.49 0.72 −0.05 - - - - 

Standard 

deviations 
1.44 1.15 1.00 0.73 0.29 - - - - 

Proportion of 

variance 
0.41 0.26 0.20 0.11 0.02 - - - - 

 (b)  Loadings 

(1994-2008) 

         

NAOI −0.10 0.61 0.01 0.18 0.00 0.55 −0.46 0.23 −0.10 

NAOI (1 

year lead)       
0.14 0.03 0.76 −0.33 −0.05 0.37 0.15 −0.28 0.23 

SST (Jan-

Jun) 
−0.46 0.07 −0.34 0.07 −0.25 0.22 0.11 −0.72 0.13 

SST (1 year 

lead)    
−0.41 −0.37 0.20 −0.08 −0.23 0.21 0.03 0.14 −0.73 

Precipitatio

n (Feb-

May)  

0.37 −0.07 −0.09 0.00 −0.90 0.00 −0.13 0.11 0.10 

Phytoplankt

on colour 

index 

−0.26 0.21 −0.28 −0.81 −0.07 0.01 0.16 0.32 0.14 

Copepod 

biomass   
−0.22 0.51 0.24 0.31 −0.22 −0.27 0.62 0.18 −0.05 

Cod SSB 0.44 −0.07 −0.34 0.07 0.13 0.56 0.57 0.07 −0.15 

Haddock 

SSB 
−0.39 −0.41 0.04 0.29 −0.03 0.27 0.07 0.42 0.58 

Standard 

deviations 
1.87 1.46 1.17 0.91 0.78 0.53 0.45 0.29 0.17 

Proportion of 

variance 
0.39 0.24 0.15 0.09 0.07 0.03 0.02 0.01 0.00 
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Table 3. Principal component regression of (a) jellyfish catch weight (1994–2009) on the principal 

component of climate variables only, (b) jellyfish catch weight (1994–2008) on climatic and biotic 

data. 

(a)  Estimate SE t p 

Intercept            2.501 0.100 25.056 0.000 

PC1 Climate      −0.219 0.072 -3.045 0.010 

PC2 Climate −0.271 0.090 -3.022 0.011 

PC3 Climate −0.264 0.103 -2.567 0.025 

r
2
 = 0.68; p = 0.003   

F statistic: 8.33 on 3 and 12 DF 

(b)      

Intercept            2.468 0.118 20.878 <0.001 

PC1Climate+biota  −0.244 0.066 -3.722 0.003 

r
2
 = 0.52; p = 0.003    

F statistic: 13.85 on 1 and 13 DF 

 

 

PC1 explained 41% of the variance in the climatic indices and the greatest 

loading on PC1 was SST Jan-Jun (−0.65) followed by precipitation (+0.48). PC2 (26% of 

variance) largely reflected the NAOI and SST with 1 year lead (loadings = +0.72 and 

−0.62 respectively). PC3 (20% of variance) was dominated by the NAOI with 1 year lead 

(−0.73) followed by precipitation (+0.49), (Table 2a). The regression coefficients are all 

negative (Table 3a) so the model indicates high jellyfish catch weights in warm, dry years 

(PC1) following a low winter NAOI (PC2) with a high NAOI in the previous year (PC3). 

 

Planktonic interactions with jellyfish, seasonality and long term change 

Notably in CPR data, copepod biomass has decreased since 1971, while the 

phytoplankton colour index and cnidarian frequency of occurrence have increased (Figure 

4a-c). Statistical breakpoints analyses suggest a regime shift in the mid-1980s that 

cascaded through the plankton: structural change tests indicated nonstationarity in mean 

cnidarian frequency (sup(F) = 8.8, p = 0.048) and BIC analysis suggested two 

breakpoints (ΔBIC0 breaks = 9.8, ΔBIC1 break = 8.7, ΔBIC2 breaks = 0, ΔBIC3 breaks  = 4.9), the 

first a step increase in 1982 (95% confidence interval, CI, 1978-1983) and the second a 

step decrease in 1990 (CI, 1988-1998) albeit to a higher mean level than during the 

1970s; for copepod biomass, a single breakpoint in 1985 (CI, 1982-1992, sup(F) = 24.5, p 

< 0.001; ΔBIC0 breaks = 12.4, ΔBIC1 break = 0, ΔBIC2 breaks = 2.8) was detected and followed 

by a period of reduced biomass; in phytoplankton colour data, the breakpoint occurred in 

1989 (CI, 1985-1994; sup(F) = 27.8, p < 0.001; ΔBIC0 breaks = 14.4, ΔBIC1 break = 0, ΔBIC2 

breaks = 1.0) and was followed by increased phytoplankton colour scores.  

The analysis of seasonality in the frequency of occurrence of cnidarian material 

on the CPR silk showed that during the mid-period (1983-1990) the index was elevated 

between May-August, i.e. the typical scyphozoan jellyfish period (Figure 4d). However, 

no clear changes in the mean seasonal pattern of cnidarians were evident between the 

differing regimes. The biomass of copepods was elevated between May and September 

during each regime (pre- and post-1985, Figure 4e). In contrast, the mean seasonal pattern 

of phytoplankton post-1990 differs from the earlier regime in that the standing stock 

remained at higher levels during the winter months and the bloom (from March) appears 

more rapid, sustaining high levels for a longer period (Figure 4f). 
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Figure 4. Planktonic regime shift in CPR data with cascading breakpoints in: (a) cnidarian 

frequency of occurrence; (b) copepod biomass; (c) in phytoplankton colour index and their 

associated seasonal cycles (d-f). Also shown: jellyfish catch weights (g) back-transformed from 

the annual means of the log10(1+g) values (dashed line in a) and sprat biomass determined from 

the AFBI acoustic survey (dashed line in b). 

 

Jellyfish catch weights per haul (volume corrected, see previous section) 

correlated positively and significantly with the frequency of occurrence of cnidarian 

material in CPR samples during May-August (1994-2007; r = 0.58, n = 14, pACF = 0.037; 

Figure 4a). Although no relationship was found with either annual phytoplankton colour 

or copepod biomass without lag, a positive predictive relationship was evident between 

the annual biomass of copepods and jellyfish catch weights in the following year (r = 

0.56, n = 16, pACF = 0.027, Figure 4ab). Furthermore, a marginal negative correlation 

between jellyfish abundance and the relative biomass of copepods during the summer  

(May-August mean / annual mean, 1994-2008) was evident (r = −0.49, n = 15, p = 

0.082), suggesting a weak predation effect. Similar correlations, over a longer time period 

(1971-2007), between the highly variable CPR cnidarian frequency of occurrence index 

(average CV = 80%) and either annual copepod biomass (with or without 1 year lead) or 

summer copepod biomass were not significant (pACF > 0.05). However, for a subset of 

data following the numerous cascading breakpoints in planktonic indices (see above), the 

CPR cnidarian frequency of occurrence during the summer correlated negatively with the 



Appendix B – Lynam et al. (2011) 

131 

 

relative biomass of copepods during the summer (1990-2007, r = −0.61, n = 18, pACF = 

0.009) and positively with the biomass of copepods in the previous year (copepods 1990-

2006 versus CPR cnidarian occurrence index 1991-2007: r = 0.54, n = 17, pACF = 0.044) 

indicating a potential feedback mechanism between jellyfish and copepods in the recent 

regime where copepod biomass may be limiting. 

 

Fisheries impacts and interactions between fish and the ecosystem 

Fisheries impacts on the Irish Sea ecosystem have been great; official fisheries 

catch statistics show that annual landings of all finfish and shellfish exceeded >100 

thousand tonnes (kt) between 1972 and 1975 and again between 1987 and 1988. During 

the former period, landings of herring were elevated due to the operation of an industrial 

fishery on juveniles in the western Irish Sea. Following the decline of herring in the late 

1970s and the closure of the industrial fishery in 1978, landings of gadids (mainly cod 

and whiting) increased until the decrease in the cod stock from 1990 (Figure 5). After 

which, total landings of finfish and shellfish reduced to ~70 kt within five years and 

stayed near that level until 2003. Subsequent management action has limited landings of 

cod and effort by the fleets targeting cod (Figure S4) such that total fish and shellfish 

landings have stayed <50 kt since 2005. Notably, shellfish landings increased gradually 

from 1950 and landings of Nephrops have been around 9 kt since 1990 making this 

species the current most landed species. 

Acoustic survey estimates during the autumn (August-September) indicate that the 

biomass of sprats averaged ~250 kt between 1998 and 2005, when herring biomass (all 

ages) was of the order 10 kt. However, between 2006 and 2009 sprat biomass has 

averaged 160 kt and herring biomass 30 kt. The biomass of sprat correlates negatively 

with the annual biomass of copepods between 1998 and 2008 in the recent regime (r = 

−0.67, n = 10, pACF = 0.024), indicating predatory effects on secondary production in this 

period of limited copepod biomass (Figure 4b). Cod biomass decreased dramatically 

during the 1990s, and recruitment has been below average for the past 17 years (ICES 

2009a, Figure 5). In contrast, biomass and recruitment for the haddock stock have trended 

upward over the period 1992–2009. Jellyfish catch weights correlated significantly with 

each gadid biomass measure: jellyfish vs. cod: r = –0.68, pACF = 0.004; and vs. haddock 

r= +0.55, pACF = 0.026 (for both, n = 16, Table 1). The correlation between jellyfish and 

sprat biomass was weak r = –0.55, pACF = 0.066. 

No correlative relationship was found between jellyfish catch weights and age-0 

survival, log(recruitment/spawning biomass), of either haddock or cod. Simple Ricker 

models of either cod or haddock age-0 survival indicate no significant relationships 

between spawning stock biomass and survival of either species (both p > 0.05). The 

addition of a jellyfish catch weights term to each Ricker model did not improve the fit 

and the term was not significant in either case. Annual mean SST (Jan-Jun) did not 

correlate with the biomass of either fish species (pACF > 0.05), but it did correlate 

negatively with cod larval survival (r = –0.49, n = 42, pACF = 0.002). The larval survival 

of either cod or haddock did not correlate with any other climatic variable and no 

relationship was evident between survival and annual phytoplankton colour or annual 

copepod biomass (all pACF > 0.05).  

A principal components regression of jellyfish catch weights was made in order 

to explore the relative predictive strength of climate change and variability in the biota of 

the Irish Sea (Tables 2b and 3b). The final model, chosen through backward selection, 

retained only the first principal component (Table 3b) and explained 52% of the 

variability in jellyfish abundance (p = 0.003). In this alternative PCA, PC1 explained 39% 

of the variance in the 9 time-series (5 climate indices plus 2 measures of fish biomass and  
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Figure 5. Fish and shellfish in the Irish Sea: (a) landings (‘000 t) of the principle species fished: 

herring, gadids and Nephrops. Note the gadids group includes landings of cod, whiting and 

haddock. There has been a great reduction in herring landings following large annual catches of 

>30000 t in the early 1970s (peaking at 48000 t in 1974) to <5000 t today. Gadid landings have 

reached record lows in recent years following the decline of the cod stock. (b) Stock trajectories, 

and (c) recruitment variability for cod (circles) and haddock (triangles). 

 

2 planktonic indices), and the greatest loading on PC1 was SST(Jan-Jun) (−0.46) 

followed by cod SSB (+0.44) and SST in the previous year (−0.41) (Table 2b). PC2 (24% 

of variance) largely reflects the NAOI, copepod biomass and haddock SSB (loadings = 

+0.61, +0.51 and −0.41 respectively). Climate and biotic relationships on jellyfish were 

not separated by the model due to the covariance between the variables in the period 1994 

to 2008 (e.g. acute angle between arrows representing precipitation and cod biomass and 
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also between SST and haddock biomass in Figure S5). There was no improvement to the 

PC regression model fit when including fish and plankton data in the PCA relative to the 

climate data only PCA (Table 3a vs. 3b). Notably, the SST (Jan-Jun) variable had the gre-

atest loading in each PCA on PC1, a component present in both PC regressions, 

indicating that this variable is the most predictive of jellyfish catch weights. 

 

Discussion 

Monitoring of long term change in jellyfish populations 

Our results show strong correspondence between jellyfish abundance (survey 

catch weights) in the Irish Sea and climate indices, with an increasing trend in jellyfish 

abundance in recent years (Figure 3). Given the current concern over jellyfish in marine 

systems it is surprising that relatively few time-series of jellyfish abundance exist. 

Plankton samplers are not designed to sample large jellyfish and, for this reason, jellyfish 

collected as bycatch during fisheries surveys provide some of the best jellyfish time-

series (Lynam et al. 2004; Brodeur et al. 2008). Here, for the first time, we analysed 

jellyfish data collected during fisheries surveys in the Irish Sea. An important initial 

question regarding plankton sampling is often: how many samples are required for robust 

estimation of mean abundance? As the variability between samples increases, larger 

sample sizes are generally required for estimating mean abundance. Planktonic species 

are particularly challenging to sample because their patchy distribution leads to large 

intersample variability in abundance. Our analysis suggests that ideally at least 62 MIK 

samples should be collected annually to maintain the strength of the jellyfish time-series.  

We use the reported catch weight of all jellyfish species (largely Aurelia and 

Cyanea spp.) combined and show that the time-series agrees with an independent time-

series (index of cnidarian occurrence) from the Continuous Plankton Recorder (CPR) 

sampler (Figure 4a). Therefore, the time-series presented here and the relationships with 

the climate are considered robust. In terms of long-term change, we can only focus on the 

CPR index of cnidarian occurrence which, notwithstanding the caveats regarding this data 

(see methods), indicates that jellyfish outbreaks have been more frequent since 1982: with 

great outbreaks in 1984 and 1986 and lesser outbreaks in 1991 and 2004. Given the trend 

in jellyfish catch weights in survey data since 1994 and indications of greater outbreaks 

historically, might this trend continue? As there were great changes within the plankton 

during the 1980s, including decreases in secondary production (copepod biomass, Figure 

4b), the carrying capacity for jellyfish and finfish may have been reduced in the Irish Sea. 

Further study and ecosystem modelling may shed light on this important issue. 

Gibbons & Richardson (2009) used the large CPR database to assess trends in 

gelatinous zooplankton abundance in European shelf seas and in the North Atlantic. 

Gibbons & Richardson (2009) found that SST correlated positively with gelatinous 

zooplankton abundance in the North Atlantic Ocean, but not in European shelf seas as a 

whole, potentially because of the amalgamation of many signals from differing 

ecosystems (including both North and Irish Seas). Attrill et al. (2007) and Attrill & 

Edwards (2008) also studied the CPR frequency of occurrence data for cnidarians in the 

North Sea and found no relationships to SST, but strong relationships to current inflows 

into the northern North Sea and weaker positive relationships with the NAOI. Lynam et 

al. (2010) also report that jellyfish abundance, from fisheries survey data, in the north 

western North Sea was related positively to the NAOI, while jellyfish abundance in the 

south eastern North Sea was elevated during low NAOI years with particularly cold sea 

temperatures. So, jellyfish populations appear linked to climatic indices but the processes 

at play can differ by region. 
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Possible mechanistic links between the climate and increasing jellyfish catches 

In order to understand the processes behind the correlations we must appreciate 

the complex lifecycle of the true jellyfish (those of the order Scyphozoa). Scyphozoan 

medusae release planula larvae following the summer feeding period (May-August) and, 

although some medusae may overwinter, the medusa generally dies in the autumn 

(Russell 1970). The larvae settle on to hard substrate in coastal waters (including piers 

and rocks, see Holst & Jarms 2007) and develop into scyphistomae (benthic perennial 

polyps), which release many ephyrae (young medusoids) during the following spring. Sea 

temperature is presumably linked to jellyfish reproduction (through the sexual medusa 

stages, settlement of larvae, and/or the asexual development of the benthic polyp) and this 

would explain the lagged correlations between medusa abundance and SST (Figure S3a). 

However, the varied processes that impact on jellyfish reproduction are complex, and the 

direct effects of temperature can be positive (increased strobilation rates and hence the 

production of young medusoids) and negative (increased mortality of the benthic polyp, 

Liu et al. 2009). In addition, cold temperature stress will trigger strobilation (e.g. Holst et 

al. 2007; Purcell et al. 2009) and a winter minimum threshold may be required to initiate 

this process, which could impose a thermal limit on the spatial distributions of jellyfish 

species (Doyle et al. 2007). 

A likely temperature-stimulated mechanism for retention of jellyfish exists in the 

Irish Sea in the form of entrainment within the western Irish Sea gyre: a cyclonic, near-

surface gyre present annually (Dickey-Collas et al. 1997; Horsburgh et al. 2000). The 

gyre forms around a cold, dense pool flanked by strong near-bed density gradients and it 

is generally present from May until October (Horsburgh et al. 2000). The gyre stimulates 

high phytoplankton and zooplankton abundances and benefits the feeding of Nephrops 

and sprats (Gowen et al. 1998; Coombs et al. 1992). During June and early July, 

temperature provides the controlling influence on the density structure in the western 

Irish Sea. However in April and May, salinity contributes significantly to the density 

structure as a result of freshwater input along the Irish coast, which in 1995 had its 

maximum effect on stratification about 40 km offshore (Holt & Proctor 2003). The 

salinity structure in the western Irish Sea is primarily determined by a competition 

between river runoff, stimulated by precipitation, and the inflow of more saline water 

from the Celtic Sea to the south and the Malin shelf to the north (Holt & Proctor 2003). 

Thus, the correlation between jellyfish catch weights and precipitation can be considered 

in terms of a direct effect of river runoff on jellyfish and as a proxy for salinity in the 

coastal zone, where polyp beds of jellyfish are likely to be found. However, given that the 

greatest monthly correlation between precipitation and jellyfish catch weights was for 

February (Figure S3b), it is unlikely that the correlation represents an indirect effect on 

jellyfish via gyre formation. Indeed the greatest precipitation event in February occurred 

in 2002, a year when jellyfish abundance was particularly low (Figures 3 and S3). At low 

salinities, strobilation rates and the number of ephyrae produced by the polyps of Aurelia 

aurita (the dominant jellyfish species in the Irish Sea) and Cyanea lamarckii may 

decrease and be delayed (Purcell 2007; Purcell et al. 2009). In contrast, C. capillata 

polyps are generally tolerant to a range of salinities (Holst & Jarms 2010). While the gyre 

may serve to aggregate medusae, strong periodic wind events may disperse medusae 

through significant flushing of the Irish Sea: an event lasting two days in February 1994 

removed 8% of the volume of the Irish Sea through the North Channel, which combined 

with the series of depressions in that month indicate that ~25% of the volume of the Irish 

Sea was removed, roughly 4–5 times the typical long-term mean (Young et al. 2001). 

Such great events have the potential to overwhelm the retention effect of the gyre and 

advect significant numbers of medusae in addition to fish eggs and larvae out of the Irish 

Sea. 



Appendix B – Lynam et al. (2011) 

135 

 

The increasing trend in jellyfish catch weights is unlikely due to phenological 

change since the CPR index of cnidarian occurrence indicates little change in jellyfish 

seasonality across the breakpoints in 1982 and 1990 (Figure 4d). Similarly, no change 

was evident in the seasonality of copepod biomass before and after the breakpoint in 

1985. Phenological change has been observed in CPR plankton samples from the North 

Sea (notably dinoflagellates, meroplankton and copepods; Edwards & Richardson 2004). 

Despite evidence of seasonal variability in gelatinous zooplankton abundance over time, 

with a succession of spring-species and autumn-species dominance within communities 

(Molinero et al. 2008), there is, as yet, no clear evidence published for gradual 

phenological change in any scyphomedusa population. The reduction in copepod biomass 

in the Irish Sea, together with the increase in SST since 1990, is likely to have contributed 

to the more rapid increase in the spring phytoplankton bloom in the recent regime (Figure 

4f). 

 

Climate influences on fish stocks and interactions with jellyfish 

Sea temperature is known to impact on cod physiology and recruitment success 

(Pörtner et al. 2008), but the direction of the relationship changes spatially: from positive 

in relatively cold waters (such as the Barents Sea) to negative in warmer waters (such as 

the North and Irish Seas, Drinkwater 2005). Similarly, relationships between jellyfish 

abundance and climatic indices vary spatially and this is explicable in terms of local 

processes (Attrill & Edwards 2008; Lynam et al. 2010). In contrast to cod, haddock 

biomass has increased concomitantly with rises in jellyfish catch weights and SST. 

Unfortunately, given the shortness of the haddock time-series, we cannot say whether or 

not this increase is partly due to a release from competition with other fish or to reduced 

predation by adult fish following the dramatic declines in cod and whiting in the Irish Sea 

(ICES 2009a). Indeed, recent annual egg production estimates of spawning stock biomass 

(SSB)  indicate that haddock SSB (~ 9 kt) in 2008 was greater than that of cod (~5 kt) in 

the Irish Sea (Armstrong et al. 2010). However, the estimates are still low when 

compared to the historical SSB of cod, which peaked at ~20 kt in 1982 (ICES 2009a). In 

the North Sea, haddock tend to be found in warmer water than cod, which may indicate 

that they have a preference for warmer environments (Hedger et al. 2004). Haddock 

typically exhibit greater recruitment variability than cod and this is likely to increase the 

probability that the haddock stock experiences a strong year class relative to temperature-

depressed cod (Fogarty et al. 2001). An interaction with jellyfish that may benefit 

juvenile gadids is that of increased refugia from predation and cannibalisation for young 

fish that shelter within the jellyfishes umbrella (Lynam & Brierley 2007). In the North 

Sea, the survival of whiting larvae has been linked to the abundance of Cyanea spp. in 

this way and the spatial distribution of cod, haddock, whiting and Norway pout 

(Trisopterus esmarkii) has been shown to correlate with the abundance of jellyfish in 

some years but not in others, potentially indicating the transitory nature of such 

relationships (Hay et al. 1990; Lynam & Brierley 2007). Nevertheless, in the northern 

Benguela upwelling system the bearded goby (Sufflogobius bibarbatus) has been found 

not only to associate with medusae, to avoid predation by piscivorous fish, but also to 

consume jellyfish (Utne-Palm et al. 2010). Jellyfish are also predators of fish eggs and 

larvae and competitors with juveniles and adult fish for zooplankton resources (Möller 

1984; Purcell & Arai 2001). In the western Irish Sea, sprat eggs are spawned between 

April and June (Coombs et al. 1992) and larvae are likely to fall prey to predation by 

medusae and other predators during the summer. In contrast, larval herring are abundant 

between October-January and therefore have a temporal refuge from jellyfish predation. 

Given that jellyfish share similar diets with planktivorous fish, competition between 
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sprats and jellyfish for copepods is likely (Purcell & Arai 2001; see also Figures 4a and 

4b). 

 

Regime shifts and fisheries impacts on the ecosystem  

There have clearly been major changes in the fisheries of the Irish Sea (Figures 

5a and S4) and fisheries have been proposed to have altered the ecosystem over the 

course of the 20
th
 century (Rogers & Ellis 2000). The herring fishery was once of great 

economic importance in the Irish Sea, particularly during the 1970s when the 

‘Mornington’ mixed industrial fishery operated in the western Irish Sea: the fishery 

targeted herring juveniles from the late 1960s and at its peak it caught 10 thousand tonnes 

of herring per year. However, the fishery was closed due to management concerns in 

1978 (ICES 2009b) and restrictions on all fleets targeting herring existed between 1979 

and 1981. Although fishing continued during the 1980s, the fishery off the northern Irish 

coast declined substantially and ceased in the early 1990s. Sprats are currently the 

dominant planktivore in the Irish Sea (ICES 2009b), and while the biomass of sprats has 

decreased over the last decade there is evidence of a recent increase in the Irish Sea 

herring spawning stock biomass. 

If an expanded niche in resources were created in the western Irish Sea, through 

the removal of planktivores (herring and sprat, Figure 5a), jellyfish would be likely 

candidates to utilise those resources because they are able to grow and reproduce rapidly 

and consume zooplankton at high rates (Purcell & Arai 2001; Bakun & Weeks 2006). 

Thus the increase in the CPR cnidarian frequency of occurrence index and its variability 

after 1982 may be linked indirectly to the overexploitation of herring. Whether or not the 

great exploitation of the herring stock triggered a regime shift, which through a cascade 

of events led to a reduction in copepod biomass after 1985 (Figures 4 and 5), we cannot 

say. Indeed, an exploratory analysis of stock assessment data has indicated a decrease in 

stock productivity (recruit per spawner ratio and subsequently surplus production) from 

1972 onward following high levels during the 1960s (ICES 2007), which could indicate 

that herring themselves were responding to some environmental influence. Although no 

data are available for the Irish Sea, we note that copepod biomass to the west of Scotland 

and west and south of Ireland during the 1960s was elevated relative to the 1970s (Pitois 

& Fox 2006), which may have improved feeding conditions for adult herring and, if also 

replicated in the Irish Sea, may have led to improved larval survival there. While jellyfish 

may have played a predatory role in the depletion of copepods during the 1980s, without 

an abundance index we cannot say how extensive this would have been. Other 

planktivorous species such as sprats and also non-commercial species such as Norway 

pout, poor cod (Trisopterus minutus) and lesser spotted dogfish are likely to have played 

an important role in restructuring the food web. 

In the North Sea, outbreaks of Aurelia aurita and Cyanea capillata occurred 

following the decline of the herring stock to low levels (Lynam et al. 2005) and in the 

Black Sea, trophic cascades and outbreaks of jellyfish have been reported to have been 

triggered by overfishing (Daskalov et al. 2007). Taken together with this study, we 

suggest that the decline and collapse of planktivorous stocks is a likely stimulant of 

structural change in the plankton and may lead indirectly to outbreaks of jellyfish, which 

can subsequently impact on the structure of the planktonic food web. However, climatic 

influences and other biological process (e.g. density dependence) will play roles in 

regulating jellyfish abundance (Purcell 2005; Brodeur et al. 2008). We attempted to 

explore the relative effects of biotic and abiotic factors on the jellyfish catch weights 

since 1994 and found no improvement to the PC regression model fit when including fish 

and plankton data in the initial PCA. The net result was to lose the effect of the NAOI 



Appendix B – Lynam et al. (2011) 

137 

 

from the model (Table 3a) and replace the term with cod and haddock SSB (Table 3b), 

which co-vary with the precipitation and SST variables respectively (Figure S5). Thus the 

NAOI effect may operate on jellyfish catch weights through an indirect pathway, 

potentially through sea temperature or zooplankton (Table 3b and Figure S5). 

Following the cold anomalies in 1986 and 1987, the NAOI has been in a 

sustained positive phase and sea surface temperature has been rising. This, combined with 

a reduced predatory impact of copepods following the step decrease in biomass in 1985, 

is likely to have stimulated the step-increase in the phytoplankton colour index in 1989. 

Jellyfish populations are known to display ‘boom and bust’ dynamics (Brodeur et al. 

2008) and the reduction in CPR cnidarian frequency in the Irish Sea from 1990 may be a 

correction due to an overabundance of jellyfish or, alternatively, a change in the species 

composition recorded by the CPR. Interestingly, a predatory impact on copepods by 

sprats and a weak seasonal influence by jellyfish on copepods is only detectable in this 

later period of reduced copepod biomass. Similarly we have shown that a predictive 

relationship between copepod biomass and jellyfish in the next year becomes evident 

after 1990, but not throughout the entire time-series. Thus, a negative feedback loop may 

exist whereby the jellyfish population is limited through predation on zooplankton prey, 

for which it must compete with planktivorous fish (such as sprats; Coombs et al. 1992). 

Given that the herring population is currently showing signs of expansion (ICES 2009b), 

the self-enhancing feedback loop “the never-ending jellyfish joyride” (Richardson et al. 

2009) may not be strong enough or simply not present in the Irish Sea. Similarly in the 

North Sea, a negative correlation between Aurelia aurita abundance and herring survival 

was detected, yet the herring stock responded to management action and recovered 

(Lynam et al. 2005). While in the Black Sea, planktivorous fish biomass began to recover 

following management action despite elevated levels of jellyfish (Daskalov et al. 2007). 

The decline in the Irish Sea cod stock from 1990 was due largely to overfishing 

on a stock that experienced low recruitment after 1986, which is due partly to the rise in 

sea temperature but is likely also due to the shift to reduced biomass of copepods (Figure 

4b): a similar mechanism was proposed for North Sea cod by Beaugrand et al. (2003). 

Beaugrand et al. (2008) identify an unstable period in the North Sea ecosystem in the 

1980s followed by a regime shift in the early 1990s, which was characterised by rising 

temperatures and poor recruitment of cod. Through causal modelling of CPR data, Kirby 

& Beaugrand (2009) demonstrate that the North Sea ecosystem, following the regime 

shift, favours jellyfish in the plankton and decapods and detritivores (echinoderms) in the 

benthos.  

Since 2000, the cod spawning grounds in the western Irish Sea have been closed 

to groundfish trawling between mid-Feb to the end of April (ICES 2009a), which is 

unlikely to have had any direct beneficial effect on jellyfish. The directed demersal 

fishery for Nephrops also operates in the western Irish Sea and is particularly intensive in 

summer when medusae are abundant. The mesh size in use in the fishery varies between 

70 mm and 89 mm and can catch larger medusae. Fishermen targeting Nephrops have 

described how their boats (600 horse power) can be slowed down as a result of catching 

medusae, which clog the net and require the trawl to be emptied to avoid bursting the nets 

(Ivan Wilde, Pers. Comm. 2010).  

 

Conclusion 

In summary, the overexploitation of herring during the late 1970s was followed 

by a period of ecosystem instability during the 1980s in which the frequency of 

occurrence of cnidarian material in the CPR sampler rose to high levels, indicating 

outbreaks of jellyfish. The period of instability stimulated a restructuring of the 
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ecosystem leading ultimately to a decrease in copepod biomass and an increase in the 

phytoplankton colour index since 1990. Although overfishing is often held responsible 

for marine ecosystem degeneration and outbreaks of jellyfish (Daskalov et al. 2007), 

temperature can bring about similar effects (Kirby & Beaugrand 2009) and can explain 

much of the variability in Irish Sea cod larval survival and in jellyfish catch weight data 

since 1994. While it is not possible to disentangle completely the specific effect of 

climate change on the jellyfish population in the Irish Sea from wider ecosystem changes 

and/or changes in fishing practice, we have explored alternative hypotheses and conclude 

that it appears that within the current 16-year jellyfish time-series, the strongest driver of 

long-term changes in jellyfish abundance is climate variation (Table 3a). In contrast, the 

restructuring of the ecosystem during the 1980s preceded the great rises in temperature 

(Figures 4 and S2). Whether the processes linking present climate influences to jellyfish 

are direct (effect on metabolism, growth and/or reproduction), indirect (via ecosystem 

interactions), or a mixture of both is deserving of further study in experimental and in situ 

conditions. Competition between planktivorous finfish (sprats and herring) and jellyfish 

would appear likely during the summer when medusae prey upon zooplankton: but given 

that the herring stock has increased in recent years, jellyfish interactions with herring are 

not likely to be as important for the stock as the management of fishing mortality is. 

Nevertheless, the Irish Sea is in a new dynamic regime, with lower copepod biomass, 

relative to that in existence prior to the decline of the herring stock and the system may 

not sustain a high biomass of herring and cod in addition to jellyfish, sprats and haddock. 

Hence, we urge continued monitoring of jellyfish abundance and further work 

investigating potential interactions with zooplankton and finfish. The move to ecosystem-

based fisheries management requires extensive ecological knowledge and an 

understanding of the risks posed by any indirect effects, such as trophic cascades, of our 

utilisation of the sea’s resources. 
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