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Abstract

Infant formula is often produced as an agglomerated powder using a spray drying
process. Pneumatic conveying is commonly used for transporting this product within a
manufacturing plant. The transient mechanical loads imposed by this process cause
some of the agglomerates to disintegrate, which has implications for key quality char-
acteristics of the formula including bulk density and wettability. This thesis used both
experimental and modelling approaches to investigate this breakage during conveying.

One set of conveying trials had the objective of establishing relationships between the
geometry and operating conditions of the conveying system and the resulting changes
in bulk properties of the infant formula upon conveying. A modular stainless steel
pneumatic conveying rig was constructed for these trials. The mode of conveying and
air velocity had a statistically-significant effect on bulk density at a 95% level, while
mode of conveying was the only factor which significantly influenced D[4,3] or wetta-
bility. A separate set of conveying experiments investigated the effect of infant formula
composition, rather than the pneumatic conveying parameters, and also assessed the
relationships between the mechanical responses of individual agglomerates of four
infant formulae and their compositions. The bulk densities before conveying, and the
forces and strains at failure of individual agglomerates, were related to the protein
content. The force at failure and stiffness of individual agglomerates were strongly
correlated, and generally increased with increasing protein to fat ratio while the strain
at failure decreased.

Two models of breakage were developed at different scales; the first was a detailed
discrete element model of a single agglomerate. This was calibrated using a novel
approach based on Taguchi methods which was shown to have considerable advantages
over basic parameter studies which are widely used. The data obtained using this
model compared well to experimental results for quasi-static uniaxial compression of
individual agglomerates. The model also gave adequate results for dynamic loading
simulations. A probabilisticmodel of pneumatic conveyingwas also developed; thiswas
suitable for predicting breakage in large populations of agglomerates and was highly
versatile: parts of the model could easily be substituted by the researcher according to
their specific requirements.
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Nomenclature and Abbreviations

The following table lists and briefly defines all the nomenclature and abbreviations
used in the text in alphabetical order†, along with the chapter or section and the page
on which they first appear, where the reader may find a more detailed description.
Greek letters are grouped at the end of the table. The variables used in the MATLAB
code given in Appendices C and E are not included in this table.

Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

2B 2.2.1 29 A smooth, semi-reflective steel finish
316L 2.2.1 29 Low-carbon austenitic stainless steel grade

a
i) 3.2.3
ii) G.6

i) 71
ii) 280

i) Scale parameter of Weibull PDF; ii) Desig-
nation of any numerator in l’Hôpital’s rule

A 3.1.1 50
Label assigned to a stage 1 infant formula
containing 28.8% fat

a 0 2.2.4 35 Model offset

a 1 2.2.4 35
Linear model parameter for mode of convey-
ing

a 2 2.2.4 35
Linearmodel parameter for length of vertical
rig section

a 22 2.2.4 35
Quadratic model parameter for length of ver-
tical rig section

a 31 2.2.4 35
Linear model parameter for air velocity in
dense phase

a 32 2.2.4 35
Linear model parameter for air velocity in
dilute phase

a 331 2.2.4 35
Quadratic model parameter for air velocity
in dense phase

Continued on next page
†Note that a distinction is made between equivalent symbols in text and mathematical fonts, e.g., i/i

or n/n.
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

a 332 2.2.4 35
Quadratic model parameter for air velocity
in dilute phase

a 4 2.2.4 35
Linear model parameter for number of
passes through rig

a 5 2.2.4 35
Linear model parameter for radii of
90° bends

a 55 2.2.4 35
Quadratic model parameter for radii of
90° bends

a 61 2.2.4 35 Linear model parameter for plug length
a 62 2.2.4 35 Linear model parameter for solids feed rate

a 662 2.2.4 35
Quadratic model parameter for solids feed
rate

ANOVA 2.1.2 25 Analysis of Variance
ASTM 3.1.1 50 American Society for Testing and Materials

b
i) 3.2.3
ii) G.6

i) 71
ii) 280

i) Shape parameter of Weibull PDF; ii) Des-
ignation of any denominator in l’Hôpital’s
rule

B 3.1.1 50
Label assigned to a stage 2 infant formula
containing 22.1% fat

Bp 3.1.4 53 Breakage potential, defined byHardin (1985)
Br 3.1.4 53 Relative breakage, defined by Hardin (1985)
Bt 3.1.4 53 Total breakage, defined by Hardin (1985)
bcc 4.1.4 79 A body-centred cubic lattice

c
i) 5.4.2
ii) 6.1.11

i) 134
ii) 169

i) Index of a contact between spheres in a sim-
ulated agglomerate; ii) Damping coefficient
assigned to the dashpot in the Kelvin-Voigt
model

C 3.1.1 50
Label assigned to a stage 3 infant formula
containing 17.1% fat

cD 6.1.4 156
Drag coefficient for an individual sphere in
an unbounded fluid

CFD 5 101 Computational Fluid Dynamics

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

d

i) 3.1.5
ii) 5.3.3
iii) 6.2.4
iv) E

i) 56
ii) 118
iii) 177
iv) 261

i) Distance between the bottom of the platen
and the top surface of the glass plate for
compression of agglomerates using a texture
analyser; ii) Size of the agglomerate defined
for Weibull analysis; iii) Diameter of a parti-
cle (equivalent to 2rp ); iv) Sphere diameter/
cylinder height for the calculation of theoret-
ical convexity in Eq. E.5

D 3.1.1 50
Label assigned to a stage 4 infant formula
containing 15.2% fat

d i E 261
Diameter of sphere i in a simulated agglom-
erate

do 3.1.5 56
d at the instant when the trigger force was
attained for a compression test

D[4,3] 2.2.3 32
Volume mean diameter/De Brouckere mean
diameter

DEM 4.1 74 Discrete Element Modelling
DOE 2.1 23 Design of Experiments

d s G.4 278
Width of a narrow strip of length L in the
derivation of Eq. G.14

d x G.8 281
Width of a narrow strip of length 2y in the
derivation of Eq. 6.35

d y G.9 283
Width of a narrow strip of length 2L in the
derivation of Eq. 6.45

F
i) 5.3.3
ii) 6.1.11

i) 118
ii) 169

i) Force at failure of an agglomerate in Eq. 5.4;
ii) Force exerted on a particle due to a deflec-
tion x in the Kelvin-Voigt impact model

F ∗ 6.3.3 184
The force at which Weibull PDFs for force at
failure of the particles and the maximum im-
pact forces in the conveying system intersect

F1 2.2.4 35 Coded mode of conveying factor (-1, 1)

F2 2.2.4 35
Coded length of vertical rig section factor (-1,
0, 1)

F3 2.2.4 35 Coded air velocity factor
F4 2.2.4 35 Coded number of passes through rig factor

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

F5 2.2.4 35 Coded radii of 90° bends factor

F6 2.2.4 35
Coded plug length/solids feed rate pseudo-
factors

f c 6.1.7 162 Collision frequency: the reciprocal of tφ

FD 6.1.4 156
Drag force acting on the particle in the prob-
abilistic model

Fi 4.1.1 75 Resultant force on a simulated disk or sphere
Fn 4.1.3 77 Normal contact force in a DEM simulation

Fo 6.2.3 175
37% characteristic force for Weibull analysis
of a material

fcc 4.1.4 79 A face-centred cubic lattice
FDII 1.3 7 Food and Drink Industry Ireland

g i 4.1.1 75
Body force acceleration vector acting on a
simulated disk or sphere

H 6.1.7 164
Fall height within any vertical strip in a cross-
sectional plane of the pipeline

i C 240
Index of the active sphere in the sequential
addition algorithm used to form 3D DEM
agglomerates

i 5.3.3 118
Index of a particular agglomerate when or-
dered by increasing σ for the mean rank po-
sition approach

I 4.1.1 76
Moment of inertia of a simulated disk or
sphere

Ix x D.1.1 254
A summation term in the covariance matrix
M used to calculate roundness

Ix y D.1.1 254 As for Ix x

Iy y D.1.1 254 As for Ix x

IBEC 1.3 7 Irish Business and Employers Confederation

INRIA D.1.4 256

Institut National de Recherche en Informa-
tique et en Automatique (eng.: National In-
stitute for Research in Computer Science and
Control)

ISO 3.1.1 50 International Standards Organisation

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

j C 241
Index of a sphere which contacts sphere i
in the sequential addition algorithm used to
form 3D DEM agglomerates

k C 241
Index of a sphere which overlaps sphere i
in the sequential addition algorithm used to
form 3D DEM agglomerates

k 6.1.11 169
Stiffness of the linear spring in the Kelvin-
Voigt model

Kn 4.1.3 77
Normal contact stiffness (secant) in a DEM
simulation

kα
n 4.1.3 77 Normal stiffness of entityα in a DEM contact

kβ
n 4.1.3 77 Normal stiffness of entityβ in a DEM contact

Ks 4.1.3 77
Shear contact stiffness (tangent) in a DEM
simulation

kα
s 4.1.3 77 Shear stiffness of entity α in a DEM contact

kβ
s 4.1.3 77 Shear stiffness of entity β in a DEM contact

L
i) G.4
ii) G.9

i) 278
ii) 283

i) Length of a narrow strip of thickness d s in
the derivation of Eq. G.14; ii) Half-length of
a narrow strip of width d y in the derivation
of Eq. 6.45

Ln 2.1.1 24
Standard designation of a Taguchi orthogo-
nal array, where n is the number of rows

m

i) 4.1.1
ii) 5.3.3
iii) E

i) 75
ii) 118
iii) 261

i) Mass of a simulated disk/sphere, or of a
particle in the probabilistic model of pneu-
matic conveying; ii) Weibull modulus, e.g.,
the exponent in Eq. 5.1; iii) Number of
spheres comprising a simulated agglomerate

M D.1.1 254
Identifier assigned to the covariance matrix
used to calculate roundness

M i 4.1.1 75
Resultant moment on a simulated disk or
sphere

n
i) 2.1.1
ii) C

i) 24
ii) 240

i) Number of rows in an orthogonal array;
ii) Specified maximum permissible number
of spheres in 3D DEM agglomerates pro-
duced by sequential addition

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

n

i) 1.4.2
ii) 5.3.3
iii) 6.1.2

i) 12
ii) 118
iii) 152

i) Exponent in the power-law relationship be-
tween particle velocity and erosion; ii) Total
number of data points recorded for Weibull
analysis; iii) Parameter in the 1/7th power law
velocity profile which is a function of Re

n f 2.1.2 27 Total number of factors
n f i 2.1.2 27 Total number of factors and interactions
n j 2.1.2 26 Number of levels of factor j

n m 2.1.2 27 Number of levels of factor m

n p 2.1.2 26 Total number of data points

n p v 6.1.7 162
Number of particles per unit volume in the
pipe

n c
x 5.4.2 134

x-component of a unit vector describing the
normal orientation of contact c

n c
y 5.4.2 134 As for n c

x , except for the y-component
n c

z 5.4.2 134 As for n c
x , except for the z-component

Nε D.1.2 255
Number of boxes of side length ε which in-
tersect the agglomerate outline

p {-value} 2.1.2 27
Indicator of significance level, e.g., a factor
is significant at the 95% level if p < 0.05

p 6.1.4 156 Inertial rate constant of the conveyed particle

P 6.1.11 169
Impulse: the product of particle mass and
normal impact velocity

pe 6.1.4 157 Effective inertial rate constant of the particle

Ps (d ) 5.3.3 118
Probability of survival of agglomerates of
size d under a stress σ

Ps (Vo) 5.3.3 118
Probability of survival of a volume Vo of
material when exposed to a uniform tensile
stress σ

P (u e ) 6.1.3 154 PDF of effective fluid velocity
P (u f ) 6.1.2 152 PDF of fluid velocity

P (θ) 6.1.10 167
PDF of impact angles between particles and
the pipe bend

PDF 3.2.2 64 Probability Density Function

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

PFC 4.1.1 75 Particle Flow Code

r 3.2.2 68
Pearson product moment correlation coeffi-
cient

r
i) 2.1.2
ii) 6.1.2

i) 26
ii) 152

i) Number of repetitions of each trial in an
experimental design; ii) Radial distance from
the pipe centreline

rp 6.1.3 154 Radius of a particle
R 3.2.2 69 Spearman R rank correlation coefficient

R

i) 2.2.4
ii) 4.1.1
iii) 6.1.2

i) 35
ii) 76
iii) 152

i) Response of polynomial model; ii) Radius
of a simulated disk or sphere; iii) Internal
radius of a pipeline

R2 2.3.2 43
Coefficient of determination: the amount of
variance of the data explained by a fitted
model

R2adjusted 2.3.2 43
Form of R2 that is corrected for the number
of parameters used in a model

Rb 6.1.10 166 Mean radius of the pipe bend

Ru e 6.1.5 159
A first-order autoregressive function to de-
scribe autocorrelation

Rφ 6.1.5 159
A characteristic dimension required in the
calculation of φ

RE 1.1 5 All trans retinol equivalent of vitamin A
Re 6.1.2 152 Pipe Reynolds number

Rep 6.1.4 156 Particle Reynolds number

s G.4 278
Radial distance between the centreline of the
pipe and any strip of length L and thickness
d s in the derivation of Eq. G.14

SEM 1.5.1 14 Scanning Electron Microscope
S/N 2.1.2 26 Signal-to-Noise
SSe 2.1.2 27 ANOVA sum of squares of the error
SS f j 2.1.2 26 ANOVA sum of squares due to factor j

SS f j× f m 2.1.2 27
Sum of squares of the two-way interaction
between factors j and m

SSt 2.1.2 26 ANOVA total sum of squares

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

S f (ω) 6.3.5 188 Fluid turbulence energy spectrum
Sp (ω) 6.3.5 188 Particle energy spectrum

t 6.1.5 160
Time elapsed during the probabilistic mod-
elling simulations

T 6.3.5 188 Integral time scale
tc 6.1.11 169 Contact time for a particle impact

tφ 6.1.7 162
Time required for any particle to travel along
its mean free path

t ∗ 6.3.5 188 Particle relaxation time
TE 1.1 5 d-α-tocopherol equivalent of vitamin E
u 6.1.7 162 Average speed of a particle

u c 6.1.7 163 Average collision velocity between particles

u e 6.1.3 154
Effective fluid velocity, i.e., the average spa-
tial fluid velocity acting on the particle pro-
jected area

u ∗e (t ) G.7 281
Random component in the calculation of ef-
fective fluid velocity

u f 6.1.2 152
Fluid velocity at a radial distance r from the
pipe centreline

u m 6.1.2 152
Maximum fluid velocity at the pipe centre-
line

u n 6.1.9 165
Normal component of impact velocity at the
pipe bend

u p 6.1.4 156 Axial velocity of the conveyed particle

u t 6.1.7 163
Terminal velocity of a particle falling under
gravity

u v 6.1.7 163
Vertical velocity of a particle falling under
gravity and retarded by fluid drag

uφ 6.1.5 158
Characteristic velocity at which conveyed
particles move in the radial direction

V 2.1.2 27 Variance
Ve 2.1.2 27 Variance of the error
Vh E 261 Volume of a convex hull
Vj 2.1.2 27 Variance of factor (or interaction) j

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

Vo
i) 5.3.3
ii) 5.4.2

i) 118
ii) 132

i) Volume of material exposed to a uniform
tensile stress σ for Weibull analysis; ii) Vol-
ume of a tetrahedron before compression

VS E 261
Total volume occupied by all m spheres in a
simulated agglomerate

Vt 5.4.2 132
Volume of a tetrahedron at any stage of the
compression process

W statistic 3.2.2 68
Result from Shapiro-Wilk W test for normal-
ity

W (t ) G.7 281
Random variate drawn from the normal dis-
tribution with a mean of 0 and a variance of
σ2

u e

x C 240
Specified length of the 3D DEM agglomer-
ates produced by sequential addition

x

i) 3.2.2
ii) 6.1.11
iii) 6.2.4

i) 64
ii) 169
iii) 176

i) Raw data for a response, i.e., force at fail-
ure, strain at failure, agglomerate stiffness
or coefficient of restitution; ii) Deflection of
the particle during the duration of impact;
iii) Horizontal displacement from the centre
of the pipe cross-section

x ′(t ) G.10 285 Velocity of a particle at any time t

x i D.1.1 254 The x-coordinate of agglomerate pixel p i j

ẍ i 4.1.1 75 Acceleration of a simulated disk or sphere

xn 4.1.3 77
Normal displacement at a contact in a DEM
simulation

xp 6.2.4 176
Axial displacement of a particle along the
pipeline

y C 240
Specified width of the 3D DEM agglomer-
ates produced by sequential addition

y

i) 3.2.2
ii) 6.1.10
iii) G.8

i) 64
ii) 166
iii) 281

i) Probability density; ii) Vertical displace-
ment from the centre of the pipe cross-
section; iii) Half-height of vertical strip
of width d x defined in the derivation of
Eq. 6.35

y 2.1.2 26 Global mean of all data points

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

yestimated 2.1.2 28
Estimated ANOVA prediction by addition of
marginal means

yi 2.1.2 26
Raw response for trial i before applying S/N
transformation

yi |k 2.1.2 26
Subset of data points (ANOVA) in which a
factor was tested at level k

yi |l k 2.1.2 27
Subset of data points (ANOVA) in which one
factor was tested at level l and another factor
was tested at level k concurrently

y j D.1.1 254 The y-coordinate of agglomerate pixel p i j

yk 2.1.2 26 Mean of the data subset designated as yi |k

y |k j 2.1.2 28
Mean of the data subset where factor j is at
its optimum level

yl k 2.1.2 27 Mean of the data subset designated as yi |l k

ytarget 2.1.2 26
Specified target value for a nominal-is-better
S/N optimisation

z C 240
Specified height of the 3D DEM agglomer-
ates produced by sequential addition

z t 6.1.5 160
A random term in the algorithm to calcu-
late u e which is sampled from the normal
distribution

α

i) 2.3.1
ii) 3.2.2
iii) 4.1.3
iv) C

i) 37
ii) 68
iii) 77
iv) 241

i) Shortened designation for mode of con-
veying; ii) Alternative way of expressing the
level of significance, e.g., α = 0.1 for a sig-
nificance level of 90%; iii) An identifier for
the first entity in a DEM simulation contact;
iv) Initial position of sphere i in the sequen-
tial addition algorithm

β

i) 2.3.1
ii) 4.1.3
iii) C

i) 37
ii) 77
iii) 241

i) Shortened designation for length of verti-
cal rig section; ii) An identifier for the second
entity in a DEM simulation contact; iii) Po-
sition of sphere i in the sequential addition
algorithm when point contact is achieved
with sphere j

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

γ1/2/3 6.2.4 176
Variates randomly selected from the uniform
distribution on the interval [0,1]

∆Fs 4.1.3 77
Increment of shear contact force in a DEM
simulation

∆t 6.1.5 160
The time step used in the algorithm to calcu-
late u e and u p

∆xs 4.1.3 77
Increment of shear displacement at a contact
in a DEM simulation

ε
i) 6.1.11
ii) D.1.2

i) 169
ii) 255

i) Coefficient of restitution of a particle;
ii) Side length of the boxes used to calculate
the box-counting fractal dimension

ζ 6.1.11 169
Dimensionless damping factor for the im-
pact of a particle in the Kelvin-Voigt model

ϑ 4.1.1 76
A dimensionless multiplier which is 0.5 for
a simulated disk and 0.4 for a sphere

Θ 6.1.7 163
Granular temperature for pneumatic convey-
ing

θ 6.1.9 165
Impact angle for a particle collision with the
pipe bend

θc 6.1.10 167
Impact angle for a particle collision with the
bend with is collinear with the centreline of
the straight pipe

θmax 6.1.10 167
Maximum impact angle for a particle colli-
sion with the pipe bend

λ 6.1.7 162
Mean free path between collisions for the
probabilistic model developed

λ̄ 4.1.3 78

Dimensionless parameter which gives the
radius of a parallel bond when multiplied by
the radius of the smaller of the two particles
interacting in the bond

λ1/2 D.1.1 254
Eigenvalues of the covariance matrix M used
to calculate roundness

µ 3.2.2 64
Mean of the normal distribution correspond-
ing to a fitted lognormal distribution

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

µh 6.1.7 163
Average height throughwhich a particle falls
under gravity when placed randomly in the
pipeline

µPs 6.3.3 184
Mean probability of survival of an agglom-
erate

µu c 6.1.8 164
Mean impact velocity for pairwise collisions
of conveyed particles

µu e 6.1.6 161
Mean effective fluid velocity (equivalent to
µu f )

µu f 6.1.2 153 Mean fluid velocity

µu n 6.1.9 165
Mean normal impact velocity for collisions
with the pipe bend

µu p 6.1.6 161 Mean particle velocity

µθ 6.1.9 165
Mean impact angle for collisions with the
pipe bend

ν 6.1.4 156
Kinematic viscosity of the conveying fluid
(air)

ρ 6.1.4 156 Density of the conveying fluid (air)
ρp 6.1.7 163 Density of the conveyed particle

ρu e 6.1.5 160
Autocorrelation coefficient in the algorithm
used to calculate u e from its value at the pre-
ceding step

ρu p ,θ 6.1.9 165
Cross-correlation coefficient of particle ve-
locity and impact angle

σ
i) 3.2.2
ii) 5.3.3

i) 64
ii) 118

i) Standard deviation of the normal distribu-
tion corresponding to a fitted lognormal dis-
tribution; ii) Uniform tensile stress applied
to a volume Vo for Weibull analysis

σo 5.3.3 118
37% characteristic stress for Weibull analysis
of a material

σ2
u e 6.1.5 160 Variance in effective fluid velocity

σ2
u f 6.1.2 153 Variance in fluid velocity

σ2
u n 6.1.9 165

Variance in normal impact velocity of a par-
ticle with the pipe bend

σ2
u p 6.1.6 161 Variance in particle velocity

Continued on next page
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Symbol/ Section/
Page Brief Definition

Abbreviation Chapter

σ2
u t 6.3.5 188

Variance in fluid velocity caused by turbu-
lence

σθ 6.1.9 165
Standard deviation in impact angle with the
pipe bend

τ
i) 3.2.2
ii) 6.1.5

i) 69
ii) 159

i) Kendall τ rank correlation coefficient;
ii) Separation time

τc 6.1.5 159 Correlation (or decorrelation) time constant
υ 2.1.2 27 Degrees of freedom

υerror 2.1.2 27 Degrees of freedom of the error

υfactorj 2.1.2 27
Degrees of freedom of factor (or interaction)
j

υtotal 2.1.2 27 Degrees of freedom of the data

φ 6.1.5 159
Autocorrelation parameter in the first-order
autoregressive function Ru e

Φ1 5.4.2 134
Eigenvalue of the fabric tensor which is the
magnitude of the major fabric

Φ2 5.4.2 134 As for Φ1, except for the intermediate fabric
Φ3 5.4.2 134 As for Φ1, except for the minor fabric

Φi j 5.4.2 134
Element i j of the 3D second-order fabric ten-
sor for contact orientations

ω 6.3.5 188 Spectral frequency

ωd 6.1.11 169
Damped natural frequency for the under-
damped impact of a particle in the Kelvin-
Voigt model

ω̇i 4.1.1 75
Angular acceleration of a simulated disk or
sphere

ωn 6.1.11 169
Natural frequency for the underdamped im-
pact of a particle in the Kelvin-Voigt model
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1
Introduction to Infant Formula

M
any organisations have published definitions which specify precisely what
infant formulae are. As might be expected, all of these definitions are
similar. The principal European Commission directive governing infant for-

mulae, which is discussed in Section 1.1, defines infant formulae as “foodstuffs intended
for particular nutritional use by infants during the first months of life and satisfying by
themselves the nutritional requirements of such infants until the introduction of appro-
priate complementary feeding” (EuropeanCommission, 2006). The CodexAlimentarius
Commission, a body created in 1963 by the Food and Agriculture Organisation of the
United Nations and the World Health Organisation to develop food standards, guide-
lines and related texts (FAO/WHO Food Standards Codex Alimentarius, 2010, ¶1),
defines infant formula as “a breast-milk substitute specially manufactured to satisfy, by
itself, the nutritional requirements of infants during the first months of life up to the
introduction of appropriate complementary feeding” (Codex Alimentarius, 2007).

1.1 Infant Formula Composition and Legislative Framework

The composition of infant formulae must satisfy strict criteria. The standards required
for infant formula marketed in the European Union are detailed in the Annexes of
European Commission Directive 2006/141/EC (European Commission, 2006). Usu-
ally infant formulae are manufactured from cows’ milk proteins and/or soy protein
isolates. Since the implementation of 2006/141/EC, it is now permissible to market
infant formulae manufactured from protein hydrolysates in the EU (European Com-
mission, 2006, Annex I, §2). Soy-based infant formulae are an option for babies who are
intolerant or allergic to cow milk formula or lactose. Protein hydrolysate formulae are
intended for babies who have a family history of milk or soy allergies. These are easier
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1. Introduction to Infant Formula

to digest and are less likely to cause allergic reactions than other types of formula. For
this reason, they are also known as hypoallergenic formulae (Mayo Clinic, 2010). The
criteria which are provided for the composition (in terms of proteins, carbohydrates,
lipids, vitamins, minerals and certain other ingredients) of both infant and follow-on
formulae vary slightly depending on whether the formula is manufactured from cows’
milk proteins, protein hydrolysates or soy protein isolates.

The Codex Alimentarius Commission has also issued guidelines for the nutritional
content of infant formula; these correspond closely to 2006/141/EC. For proteins,
lipids and chloride, for example, both the upper and lower limits are identical. For
other components (particularly vitamins), no upper limits are stated (Codex Alimentar-
ius, 2007, §3.1). Directive 2006/141/EC was transposed into Irish law by passing S.I.
No. 852 of 2007 (European Communities (Infant Formulae and Follow-On Formulae)
Regulations, 2007, p.2). Minor amendments were made by passing S.I. No. 209 of
2009 (European Communities (Infant Formulae and Follow-On Formulae) (Amend-
ment) Regulations, 2009). In England, S.I. 3521 was used to implement the directive
(The Infant Formula and Follow-on Formula (England) Regulations, 2007, p.13). In the
United States, infant formulae are governed by the Food and Drug Administration, who
list requirements for infant formulae in Section 412(i) of the Federal Food, Drug and
Cosmetic Act. Limits are placed on permissible amounts of 29 different nutrients, in a
similar manner to European Commission Directive 2006/141/EC (U.S. Food and Drug
Administration, 2010).

Manufacturers typically divide their core infant formula ranges into between two and
four age-based categories (Norton-Smith, 2008; Pasricha et al., 2009). Some of the most
common definitions of the age categories are the following:

Stage 1 For use from birth to six (sometimes twelve) months

Stage 2 For use from six to twelve months

Stage 3 For use from one to three years

Stage 4 For use from three years on

Nutri Seven and PBM International divide their ranges into stage 1, 2 and 3 formulae
(Nutri Seven Pty. Ltd., 2010; PBM International Ltd., 2011). Infant Formula Australia
categorise their products from stages 1 to 4 (Infant Formula Australia, 2009). Novalac in-
fant formulae, manufactured by United Pharmaceuticals (United Pharmaceuticals, 2010)
and distributed by Bayer Healthcare in Australia and New Zealand, refer directly to
stage 1 and 2 formulae (Bayer Healthcare, n.d.). In Europe, manufacturers seldom refer
directly to the stages in their marketing material, e.g., SMA Nutrition refer to stages 1, 2
and 3 as first infant milk, follow-on milk and toddler milk, respectively (Advertising
Standards Authority, 2010; SMA Nutrition, 2011).
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1. Introduction to Infant Formula

There are some differences between the compositions of typical stage 1/2/3/4 infant
formulae, particularly regarding proteins. Dairy proteins can be subdivided into 2
groups: caseins and whey proteins. In bovine milk, caseins (αs1, αs2, β, κ, γ) com-
prise approximately 78% of the protein content, while the remainder is predominantly
(approximately 19%)whey proteins (α-lactalbumin, β-lactoglobulin, bovine serum albu-
min, casein derived peptides, immunoglobulins) (Walstra et al., 1999, ch.2). Compared
to the relatively invariant nature of cow milk, the composition of human milk changes
over time. A high ratio of whey to casein (> 80% whey) is present at the initiation of
lactation, which is reduced to a 60:40 whey:casein ratio in mature milk, and still further
to a 50:50 ratio in extended lactation (Lien, 2003). Not only does the amino acid profile
change, but the overall mean protein content is approximately halved during the first
month of lactation (Harzer et al., 1986). There are also significant diurnal variations in
fat content (Jenness, 1979), a factor which is significantly influenced by the diet of the
mother (Lönnerdal, 1986). The compositions of typical bovine milk and human milk
are compared in Table 1.1 (Písecký, 1997, p.121).

Table 1.1: Approximate percentage compositions of typical bovine and mature human milk

Bovine Milk Human Milk

Water 87.35 87.3
Fat 3.75 4.1

Lactose 4.85 6.9
Casein 2.78 0.6

Lactalbumin 0.47 0.9
Minerals 0.8 0.2
Total 100 100

Stage 1 infant formulae, or first milks, are generally whey-dominant, with a 60:40
whey:casein ratio: the same ratio as in mature human milk (Nicholson, 2009). Second
milks are casein-dominant, with a 20:80whey:casein ratio (Nicholson, 2009). This closely
reflects the protein composition of bovine milk (Rudloff and Kunz, 1997). Follow-on
formulae for children over one year old (stage 3) contain more protein than formulae
intended for consumption by infants, although the nutritional benefit of this protein
increase is questionable (Fox and McSweeney, 2003, p.633).

When concentrations of individual proteins are assessed, α-lactalbumin is found to
be the dominant protein in human milk (28% of total protein), while this is present in
relatively low concentrations in traditional infant formulae manufactured from cows’
milk proteins. β-lactoglobulin, a protein which is not found in human milk, is the
most dominant whey protein in traditional infant formulae (Lien, 2003). Differences
between the amino acid compositions of bovine and humanmilks are largely attributable
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1. Introduction to Infant Formula

to differences in their α-lactalbumin contents (Heine et al., 1991). Recently, whey
sources with elevated concentrations of α-lactalbumin have become available; this has
permitted the development of formulae with increased concentrations of this protein
and correspondingly decreased concentrations of β-lactoglobulin (Lien, 2003).

In most cases, both lower and upper limits are required for permitted amounts of nutri-
ents. While it is obvious that insufficient amounts of nutrients may lead to deficiency
illnesses or stunt growth, an excess of certain components could also be deleterious
to the health of the infant. Formula that is too strong can lead to hypernatraemic de-
hydration or kidney problems (Laing, 2002; Oates, 1973). Table 1.2 shows some of the
restrictions placed on the composition of infant formulae manufactured from cows’
milk proteins in the European Union.

Table 1.2: Restrictions placed on the composition of infant formulae manufactured from cows’
milk proteins by European Commission Directive 2006/141/EC, Annex I, §4–10.1

Criterion Permitted Minimum Permitted Maximum

Energy† 250 kJ/100 ml 295 kJ/100 ml
Carbohydrates 2.2 g/100 kJ 3.4 g/100 kJ

Lactose 1.1 g/100 kJ —
Lipids 1.05 g/100 kJ 1.4 g/100 kJ
Proteins 0.45 g/100 kJ 0.7 g/100 kJ
Choline 1.7 mg/100 kJ 12 mg/100 kJ
Inositol 1 mg/100 kJ 10 mg/100 kJ

Linoleic Acid 70 mg/100 kJ 285 mg/100 kJ
Taurine — 2.9 mg/100 kJ

Minerals

Calcium 12 mg/100 kJ 33 mg/100 kJ
Chloride 12 mg/100 kJ 38 mg/100 kJ
Copper 8.4 µg/100 kJ 25 mg/100 kJ
Fluoride — 25 µg/100 kJ
Iodine 2.5 µg/100 kJ 12 µg/100 kJ
Iron 0.07 mg/100 kJ 0.3 mg/100 kJ

Magnesium 1.2 mg/100 kJ 3.6 mg/100 kJ
Manganese 0.25 µg/100 kJ 25 µg/100 kJ
Phosphorous 6 mg/100 kJ 22 mg/100 kJ
Potassium 15 mg/100 kJ 38 mg/100 kJ
Selenium 0.25 µg/100 kJ 2.2 µg/100 kJ
Sodium 5 mg/100 kJ 14 mg/100 kJ

Continued on page 5
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1. Introduction to Infant Formula

Criterion Permitted Minimum Permitted Maximum

Zinc 0.12 mg/100 kJ 0.36 mg/100 kJ

Vitamins

Biotin 0.4 µg/100 kJ 1.8 µg/100 kJ
Folic Acid 2.5 µg/100 kJ 12 µg/100 kJ
Niacin 72 µg/100 kJ 375 µg/100 kJ

Pantothenic Acid 95 µg/100 kJ 475 µg/100 kJ
Riboflavin 19 µg/100 kJ 95 µg/100 kJ
Thiamin 14 µg/100 kJ 72 µg/100 kJ
Vitamin A 14 µg-RE/100 kJ‡ 43 µg-RE/100 kJ‡

Vitamin B6 9 µg/100 kJ 42 µg/100 kJ
Vitamin B12 0.025 µg/100 kJ 0.12 µg/100 kJ
Vitamin C 2.5 mg/100 kJ 7.5 mg/100 kJ
Vitamin D 0.25 µg/100 kJ 0.65 µg/100 kJ
Vitamin E 0.1 mg α-TE/100 kJ* 1.2 mg α-TE/100 kJ*

Vitamin K 1 µg/100 kJ 6 µg/100 kJ

†All other figures in this table are per 100 kJ of energy. It is assumed that the
formula has been made up exactly in accordance with the manufacturer’s speci-
fications.

‡Expressed as all trans retinol equivalent.
*Expressed as d-α-tocopherol equivalent.

The exact composition of infant formula in terms of individual proteins is not defined
by legislation. Instead, requirements such as the following are included in legislation:
“. . . the infant formula must contain an available quantity of each indispensable and
conditionally indispensable amino acid at least equal to that contained in the reference
protein (breast milk, as defined in Annex V)” (European Commission, 2006, Annex I, §2).
The minimum required amounts of 11 amino acids are stated in Annex V, and are
provided in Table 1.3.

Table 1.3: Indispensable and conditionally indispensable amino acids in breast milk as stated
by European Commission Directive 2006/141/EC

Amino Acid
Minimum Concentration†

(mg/100 kJ)

Cystine 9
Histidine 10
Isoleucine 22

Continued on page 6

5



1. Introduction to Infant Formula

Amino Acid Minimum Concentration

Leucine 40
Lysine 27

Methionine 5
Phenylalanine 20
Threonine 18
Tryptophan 8
Tyrosine 18
Valine 21

†As in Table 1.2, it is assumed that the formula has
beenmade up in accordance with themanufacturer’s
specifications.

Even though the legislative requirements may appear all-encompassing, and manufac-
turers must take great care to ensure that they are satisfied, they cannot account for the
largest source of error in infant formula reconstitution: those made by the caregiver. In
one representative study of 19 mothers, Lucas et al. (1991) showed that slightly under
half of the participants consistently reconstituted infant formula with an error of less
than 20% and only two of the 19 consistently made up milk with less than 10% error.
Usually the issue is over-concentration of the feed (Renfrew et al., 2003). As a result,
powdered infant formula is linked with higher rates of fat deposition in infants (Lucas
et al., 1992).

1.2 Overview of the Global Infant Formula Market

Based on 2009 figures, the global infant formula market is valued at approximately
US$10 billion, accounting for almost half of the US$21 billion global baby food sector
(Dept. of Agriculture, Fisheries and Food, 2010, p.7). While it is clear that the global
infant formula sector is experiencing rapid growth, estimates of the annual growth vary;
two estimates of market growth are 9% in 2009 (Ubic Consulting, 2010) or 15% as an
average year-on-year growth (Dept. of Agriculture, Fisheries and Food, 2010). Global
Industry Analysts, Inc. project a market worth of $23.8 billion by 2015, which indicates
a future slowdown in the growth rate (Global Industry Analysts, Inc. Report, 2010).
The United States and Western Europe are the traditional markets for baby food and
infant formula products; however, these regions offer little opportunities for growth
due to declining birth rates, static market conditions and industry consolidation. As a
result, manufacturers are placing an increasing emphasis on the more lucrative and
populous markets in Asia-Pacific, particularly India and China. The Asian market is the
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1. Introduction to Infant Formula

largest and also has the highest growth rates. 2009 estimates for the Asian market share
from the sources above are 39% (Dept. of Agriculture, Fisheries and Food, 2010) and
53% (Ubic Consulting, 2010). The United States, Asia-Pacific and Europe collectively
accounted for approximately 82% of the global infant nutrition market in 2009 (Global
Industry Analysts, Inc. Report, 2010).

A large number of firms manufacture infant formula worldwide, although in individual
countries, the market is usually dominated by a small number of brands. One example
for which data are readily available is the United States infant formula market. In 2000,
just three companies controlled 99% of the domestic market: Mead Johnson Nutrition
(Bristol-Myers Squibb), Ross Laboratories (Abbott Laboratories) and Carnation (Nestlé)
(Oliveira et al., 2001). The first two of these still controlled 80% of the market in 2009
(Ubic Consulting, 2010). Globally, the infant formula market leader in 2009 was Mead
Johnson Nutrition with a 20% market share, followed by Nestlé (18%), Abbott Labora-
tories (16%), Groupe Danone (12%) and Wyeth Nutrition with a 10% share (Dept. of
Agriculture, Fisheries and Food, 2010).

Like the pharmaceutical industry, many significant acquisitions and mergers have
occurred in the infant nutrition sector in recent times. Some examples are listed below:

April 2007 Nestlé acquired Gerber from Novartis for US$5.5 billion (Martin and
Sorkin, 2007).

August 2007 Groupe Danone purchased Royal Numico N.V. for €12.3 billion (Michel-
son and Stevenson, 2007).

January 2008 Nutribio was established as an equal joint venture between Groupe Sodi-
aal and Groupe Entremont Alliance by merging their existing subsidiaries Sodiaal
Industrie and Cofranlait (Entremont Alliance, n.d.).

January 2009 Pfizer agreed to purchase Wyeth, including their infant formula interests,
for a total of US$68 billion (Bawden, 2009).

May 2010 Perrigo Co. acquired PBM Holdings, Inc. for approximately US$808 million
(PR Newswire, 2010).

Examples of the infant formula brands produced by some of the major infant formula
manufacturers are listed in Table 1.4, along with their parent companies (where appli-
cable).

1.3 Significance of Infant Formula for Ireland

Ireland has a strong food and agri-business sector, supporting an estimated 230,000 jobs
at present (Ryan, 2010). The Food and Drink Industry Ireland (FDII) sector of the Irish
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Table 1.4: Major infant formula manufacturers and corresponding brands

Manufacturer [Parent Company] Brands†

Abbott Laboratories Gain · Isomil · Similac

Groupe Danone
Bebiko · Bebilon · Cow & Gate ·
Mellin ·Milupa · Neocate

H.J. Heinz Company Nurture
Mead Johnson Nutrition
[Bristol-Myers Squibb]

Enfalac · Enfamil

Nestlé Carnation · Good Start · NAN
PBM Nutritionals Bright Beginnings
Wyeth Nutrition [Pfizer Inc.] Progress · Promil · S-26 · SMA

†Brand information was obtained from the manufacturers’ corporate websites.

Business and Employers Confederation (IBEC) state that the manufacture of food and
drink products is Ireland’s primary indigenous industry with a turnover approaching
e24 billion (Food and Drink Industry Ireland, 2011). The value of exports from this
sector in 2009 was e7.1 billion (Noonan, 2010), equivalent to more than 2/3 of exports by
indigenous manufacturers. This represented a reduction of e1 billion on 2008 figures
due to volatility in dairy markets (Food and Drink Industry Ireland, 2011). 43% of
exports go to the UK and 33% to the remainder of the EU (Food and Drink Industry
Ireland, 2011). The dairy sector is the largest single contributor to Ireland’s food and
drink exports, accounting for 27% of total exports (National Dairy Council, 2008).

In Ireland, the dairy sector is heavily linked to infant formulamanufacture. Ireland is the
world’s largest single producer of infant formulae, accounting for approximately 15%
of world production (European Commission Food and Veterinary Office, 2007, §4.2).
Total sales in 2008 were e667 million, virtually all of which was exported. More than
120,000 metric tonnes of infant formula is produced annually in Ireland, using over
100,000 metric tonnes of Irish dairy ingredients (Dept. of Agriculture, Fisheries and
Food, 2010, p.8).

These infant formula manufacturing plants are not localised in one area, but are found
in different parts of the country. Abbott Ireland’s infant nutrition plant in Cootehill,
Co. Cavan processes around 500,000 litres of milk daily (Abbott Ireland, n.d.). Pfizer
Ireland (formerly Wyeth Nutritionals Ireland) produce infant formula in Askeaton, Co.
Limerick; this is one of the largest purpose-built infant nutrition manufacturing plants
in the world with an annual production capacity of approximately 50 million kilograms
(Pfizer Ireland, 2011). Nutricia Ireland (part of Groupe Danone), who are the market
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leader in Ireland and the UK, have manufacturing sites in Macroom, Co. Cork and in
Rocklands, Co. Wexford (Nutricia, 2011).

1.4 Infant Formula Manufacture

1.4.1 Overview of Manufacturing Processes

Powdered infant formula can be manufactured using two general types of processes: a
dry blending process and a wet mixing/spray drying process. It is also possible to use
both of these processes in combination (U.S. Food and Drug Administration, 2003, ¶1).
The wet mixing/spray drying process is more commonly used, and a flowchart showing
the typical steps involved is shown in Figure 1.1.

The typical raw materials, mineral additives, the most common vitamins and the emul-
sifiers included in infant formula are shown in Table 1.5 (Písecký, 1997, p.122).

Table 1.5: Main raw materials for infant formula manufacture, along with mineral additives,
common vitamins and emulsifiers used (Písecký, 1997)

Raw Materials
Lactose · demineralised whey powder · whey protein
concentrate · caseinate ·maltodextrin · lactulose · frac-
tionated coconut oil · sunflower, corn and soya oil

Mineral Additives
Tricalciumphosphate · sodium and potassium citrate ·
magnesium and potassium chloride · calcium carbon-
ate · zinc, ferrous, cupric and manganese sulfates

Common Vitamins
Ascorbic acid · alpha-tocopheryl acetate · riboflavin ·
vitamin A palmitate · vitamin D3

Emulsifiers
Mono-glycerol-stearate · di-glycerol-stearate · lecithin
· carrageenin

1.4.2 Conveying of Infant Formula within a Plant

Figure 1.1 shows that the infant formula that is formed in the spray dryer must be
transported to the can filling line, often via an intermediate silo. Note that the conveying
distances involved are typically 50–200 m in the horizontal direction, and 10–20 m in the
vertical direction. Production-scale spray dryers are physically large items of equipment;
hence, the base of the dryer, from which the dried product is removed, will invariably
be at a low level in the plant, whereas the silo entrance will usually be at a higher level.
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Liquid Ingredient Mixing

Blending of Dry Ingredients into the
Mixture

Pasteurisation

Homogenisation

Addition of Heat-Sensitive
Micro-Nutrients

Evaporation

Pre-Heating

Spray Drying

Fluidised Bed Drying

Intermediate Storage in Silos

Can Filling

Liquid raw materials (water, oils etc.) are stored in large tanks which are
mounted on load cells (Sørensen et al., 1992). When required, the liquid in-
gredients are pumped into mixing vessels in the appropriate proportions
and may be emulsified.

The dry ingredients, which are stored either in silos or in large bags in a
warehouse, are blended into the mixture until the desired concentration
is achieved.

The mixture is pumped to a heat exchanger for pasteurisation. This pas-
teurization process must ensure that the vegetative cells of harmful bacte-
ria are destroyed (U.S. Food and Drug Administration, 2003).

The mixture is filtered and homogenised to reduce the size of fat globules
in the liquid. Some manufacturers homogenise prior to pasteurisation.

At this stage, thermally-labile micro-nutrients, particularly certain vita-
mins and amino acids, are added to the product (U.S. Food and Drug
Administration, 2003).

A multiple-effect evaporator is often used to concentrate the premix be-
fore spray drying, largely for economic reasons. It is generally cheaper to
removewater in an evaporator than in a spray dryer (Sørensen et al., 1992).

The viscous mixture resulting from evaporation is pre-heated to 70–
90◦C before being pumped under high pressure to the spray dryers.

In the spray dryers, the liquid is atomised by either a wheel or pressure
nozzle type atomiser and falls under gravity through air at 140–200◦C.
The powder temperature at the spray dryer outlet is 45–80◦C (U.S. Food
and Drug Administration, 2003).

The warm powder discharged from the dryer is passed through one
or several fluidised beds for final drying and cooling of the powder to
room temperature. The fluidised beds also enhance agglomeration, and
hence improve flowability and instant properties of the final product
(Písecký, 1997).

The product is sifted to remove lumps and may be stored in silos as an
intermediate step before filling.

The infant formula is filled into tin-plated steel cans on an automated fill-
ing line. The cans are flushed with an inert gas during the packaging
process.

Figure 1.1: A flowchart showing the typical steps for infant formula production by a wet
mixing/spray drying process

This elevation disparity necessitates transport of the infant formula produced in the
vertical direction.

There are many different conveying technologies that could potentially be selected
for this operation, including screw conveyors, belt conveyors and sliding/vibratory
conveyors. These listed conveyors are rarely selected for this application, as all have
at least one major disadvantage that mitigates against their widespread use: screw
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conveyors are restricted to short distances of only a few metres; belt conveyors would
need to be used in conjunction with another form of conveyor, such as a bucket elevator,
for vertical transport; and sliding/vibratory conveyors have both of these disadvantages,
being restricted to distances of 8–10 m and capable of tolerating only small deviations
from the horizontal (Yanko, 2007).

Pneumatic conveying is typically selected for transporting infant formula between the
fluidised bed drying and can filling stages of the manufacturing process. This form of
gas-solid multiphase flow is described by Fraige and Langston (2006) as the use of a
gas, which is usually air, to transport solid particles through a pipeline. The advantages
of pneumatic conveying include the following (Fraige and Langston, 2006; Marcus
et al., 1990, p.2; Molerus, 1996):

• It allows for dust-free transportation of a wide range of products.

• In contrast to the other conveyors listed above, pneumatic conveying is very
flexible as regards layout. Products may be conveyed horizontally, vertically or at
inclined angles and conveyor lengths may exceed 1000 m.

• Pneumatic conveying is safe and easily automated.

• A system may contain multiple product pick-up and distribution points.

• Pneumatic conveyors are low-maintenance.

• The system is easy to design and operate hygienically, which is crucial for infant
formula production to comply with regulatory requirements.

For infant formula transport, flexibility of the system routing is often the primary reason
for selecting pneumatic conveying. However, pneumatic conveying does have some
disadvantages which must be taken into account (Fraige and Langston, 2006; Marcus
et al., 1990; Molerus, 1996):

• The power consumption is often high.

• Significant wear and abrasion of the equipment may occur, particularly at bends
when high gas velocities are used.

• While the conveyor may experience damage due to repeated impacts from the
conveyed product, it is also possible for degradation of the product to occur during
conveying.

The last two disadvantages can be mitigated in a well-designed pneumatic conveying
system. Much research has been conducted on erosion and wear in pneumatic convey-
ors, e.g., Agarwal et al. (1985), Deng et al. (2005), Mason and Smith (1972), and Mills
and Mason (1981). This phenomenon is strongly related to particle velocity by the
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power-law relationship in Eq. 1.1, in which the exponent, n , is often around 3 (Marcus
et al., 1990, p.431):

Erosion= constant×velocityn (1.1)

The final disadvantage listed above, product attrition in pneumatic conveying systems,
is the primary focus of this research. This is a very active area of research; some of
the academic papers published in this area in the last 10 years include Aarseth (2004),
Chapelle et al. (2004), Frye and Peukert (2002), Han et al. (2003), Konami et al. (2002),
Rajniak et al. (2008), Salman et al. (2002), and Zhang and Ghadiri (2002).

Pneumatic conveying may be divided into two broad categories:

1. Dilute/lean phase

2. Dense phase

Dilute phase transport is characterised by low mass flow ratios†[0–15 (Marcus
et al., 1990, p.8), although often around 1 (Klinzing, 2001b)] and relatively high velocities
(often 15–40 ms−1). Note that these figures are indicative; for example, Yanko (2007) sug-
gests that mass flow ratios for dense phase conveying are typically 10–50. Dilute phase
is the most commonly used type of conveying in industry. However, the use of high
velocities exacerbates pipeline erosion and attrition of the conveyed product, although
the latter may become irrelevant if accurate control of the product’s physical properties
(e.g., particle size distribution) is unimportant. This may be true if, for example, the
material is dissolved after conveying. If the velocity is reduced below the saltation
velocity, the conveying transitions to the dense phase regime. The saltation velocity is
the gas velocity below which the particles begin to separate from the gas phase and
thereafter are transported by sliding or rolling along the bottom of the pipeline (Hong
and Tomita, 1995). The saltation velocity is usually measured experimentally, although
theoretical and empirical expressions exist to allow its calculation from some properties
of the material and conveying system (Jones and Leung, 1978).

Dense phase conveying came into use in the 1970s. Mass flow ratios in dense phase
are greater than around 15 (Marcus et al., 1990, p.8) and typical conveying velocities
are 4–10 ms−1 (Yanko, 2007). By conveying in dense phase, all three of the disadvan-
tages of pneumatic conveying listed on p.11 are reduced. There is an overall energy
saving compared to dilute phase: the respective specific energy consumptions are
150–250 Jkg−1m−1 for dilute phase and < 10 Jkg−1m−1 for dense phase (Laouar and
Molodtsof, 1998). Furthermore, the major reduction in conveying velocity lessens both
pipeline abrasion and product attrition (Klinzing, 2001). The reduction in product
breakage makes dense phase pneumatic conveying particularly suitable for transport-

†Mass flow ratio is the mass of solids per unit mass of conveying air (Marcus et al., 1990, p.8)
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1. Introduction to Infant Formula

ing infant formula to the can filling line, where the minimisation of product breakage is
highly desirable (see Section 1.6).

Of course, dense phase conveying also has some disadvantages compared to dilute
phase conveying. It is not possible to convey all materials satisfactorily in dense phase
whereas dilute phase conveying is more widely applicable. Dense phase conveying
is most suitable for products which have a narrow distribution in particle size and
little variation in shape (Yanko, 2007). Dense phase pneumatic conveying systems
which operate by forming plugs of material in the pipeline may have problems when
conveying either very fine powders or granular, permeable products. The conveyance
of sticky products can also be problematic (Marcus et al., 1990, p.346). The capital and
maintenance costs of a dense phase conveying system are usually considerably higher
than those of an equivalent dilute phase system, as it is often necessary to incorporate
apparatus for plug formation, plug destruction (for conveying in the strand or dune
regimes) or supplementary air injection. Even with such devices in place, blockages of
the conveying line can still occur when conveying sub-optimal materials, and reliability
tends to be poorer than for a similar dilute phase system. For hygienic transport, dense
phase systems are not self-cleaning, and therefore must be blown empty at regular
intervals using a high-velocity pulse of air (Yanko, 2007). The system designer must also
consider how to restart a dense phase conveying system following a power failure, when
the pipeline may be obstructed by the conveyed material. In general, these potential
disadvantages mitigate against the selection of dense phase conveying, unless either
pipeline erosion or product attrition are critical considerations.

There are two additional points to be made regarding pneumatic conveying. The
first is that the flow profile in dilute phase is homogeneous and essentially invariant.
However, the conveyed solids are distributed non-uniformly over the pipe cross-section
in the dense phase regime and a number of flow profiles exist. These were originally
categorised by visual observation of flows in glass pipes (Wen and Simons, 1959), e.g.,
slug flow, dune flow, plug flow and ripple flow. The second point is that all of the
pneumatic conveying experiments in this thesis make use of a conventional positive-
pressure system, in which air enters the equipment under pressure. It is also possible
to use a negative-pressure, or vacuum, system, although these are used less frequently
than the positive-pressure equivalents (Yanko, 2007).

1.5 Infant Formula Microstructure

The three main components in infant formulae, comprising typically around 95% of
any formula by mass, are carbohydrate, fat and protein. For example, the experimental
infant formula used by Guo et al. (1998) to examine the distribution of components at
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1. Introduction to Infant Formula

the microstructural level contained 56% carbohydrate, 28% fat, 12% protein, with the
remainder divided between ash and residual moisture.

The carbohydrate is predominantly the disaccharide lactose (4-0-β-D-galactopyranosyl-
D-glucopyranose), with very small amounts of others such as glucose, fructose and
galactose. This can be treated as forming a continuous, crystalline phase in which other
components are suspended. Lactose crystals can be obtained in a variety of forms,
depending on the conditions of crystallisation (Wong et al., 1988, p.284). The principal
factor governing the crystalline habit is the ratio of lactose concentration to its solubility.
In infant formula, the additional components in the lactose lead to crystals which may
be irregularly shaped and clumped, rather than having a regular form.

The fat which is present in the infant formulae is not distributed uniformly throughout
the particle, but is instead localised in globules. These globules are much smaller than
in rawmilk due to breakage during high-pressure homogenisation. These globules have
a large surface area collectively, and are bounded by artificial membranes of casein mi-
celles and denaturedwhey protein clusters (Guo et al., 1996). Thesemembrane-bounded
fat globules can become attached to each other to form short-chained structures.

The vast majority of casein in bovine milk (approximately 95%) exists in the form
of large colloidal particles, known as micelles. These micelles are generally spheri-
cal in shape, with an average diameter of 120 nm and a range from 50–500 nm (Fox
and McSweeney, 1998, p.180). The same is true for infant formula, where the casein
is predominantly in the form of micelles. Whey proteins exist in two main forms
(α-lactalbumin and β-lactoglobulin), and in infant formula production, these can be de-
natured by pasteurisation (forming denatured whey protein clusters). These denatured
whey proteins have a tendency to form appendages to casein micelles, leading to large
protein aggregates.

1.5.1 SEM Images

As part of this research, some representative samples of infant formula were visualised
using the scanning electron microscope (SEM) at the Teagasc Food Research Centre in
Moorepark, Fermoy, Co. Cork. The instrument was a Carl Zeiss Gemini Supra 40VP
field emission SEM (Carl Zeiss SMT AG, Oberkochen, Germany). Samples of infant
formula for analysis were affixed to aluminium stubs using double-sided carbon tape
and sputter-coated with a thin layer of chromium (� 50 nm thick) for either 90 s or
120 s using an Emitech K550X coater (Quorum Technologies Ltd, Ashford, Kent, UK).
The accelerating voltage used for the SEMwas constant at 2 kV, while the magnification
was varied from 50X to 5000X.
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Figures 1.2 and 1.3 show micrographs of two agglomerates taken at different magnifica-
tions. Both are of infant formula B: this designation was given to a particular stage 2
infant formula which had the composition shown in Table 3.1 (p.50).

Figure 1.2: SEM micrograph of an agglomerate of infant formula B at a magnification of
150X, where the scale bar has a length of 100 µm

Figure 1.3: SEM micrograph of part of an agglomerate of infant formula B (size range
710–850 µm) at a magnification of 500X, where the scale bar has a length of 20 µm

The SEM was particularly useful for visualising damage of the agglomerates caused
by mechanical loading. Figures 1.4 and 1.5 show representative micrographs of two
agglomerates of the same infant commercial formula that was used for the pneumatic
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conveying trials described in Chapter 2. The former shows one such agglomerate before
conveying where there is no visible damage of the overall structure or of the component
particles. Conversely, Figure 1.5 shows extensive damage; this was caused by multiple
passes of the powder through a pneumatic conveying rig at 20 ms−1.

Figure 1.4: SEM micrograph of an agglomerate of the infant formula used for the pneumatic
conveying trials described in Chapter 2 at a magnification of 400X, where the scale bar has a

length of 100 µm

Figure 1.5: SEM micrograph at 1500X magnification showing extensive damage of an
agglomerate following pneumatic conveying at a superficial air velocity of 20 ms−1
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1.6 Importance of Infant Formula Breakage

In Section 1.4.2, it was stated that pneumatic conveying is commonly used to trans-
port infant formula from the spray dryers to the can filling line. These pneumatic
conveyors are operated in dense phase mode; however, it is still possible for significant
attrition of infant formula to occur. It must be noted that many infant formulae with
different compositions exist, even within each stage (Section 1.1), and these formulae
can vary considerably in terms of friability. Therefore, the attrition of one particular
formula when conveyed through a pneumatic conveying system may be deemed ac-
ceptable, while a formula with a different composition may break down excessively
using the same system and operating conditions. The fact that infant formula is an
agglomerated product greatly increases the likelihood of disintegration upon impact
with the walls of the pneumatic conveyor (Malave-Lopez and Peleg, 1986; Yan and
Barbosa-Cánovas, 2000).

It may not be immediately apparent why attrition is of concern to infant formula
manufacturers, since the formulamust be reconstitutedwithwater prior to consumption.
The main reason why excessive breakage of the product is undesirable is because
powdered infant formula is dispensed on a volume basis, rather than gravimetrically. A
designated number of scoops of the powder are added to boiled water which has been
allowed to cool sufficiently and either stirred well or shaken. As discussed in Section
1.1 on p.6, it is essential that the caregiver measures out powders accurately to achieve
the correct liquid formula composition which fully meets the nutritional needs of the
infant. Some details of the legislation governing infant formulae were also provided in
Section 1.1. This legislation specifies the essential composition of infant formula when
reconstituted in accordance with manufacturer’s preparation instructions.

Since infant formula is dispensed by volume, bulk density is a key quality parameter
for manufacturers, as this affects the quantity of powder which fills the scoop. If the
bulk density was lower than specified, the reconstituted feed would be nutritionally
deficient, while if too high, the feed would be too concentrated. Bulk density is one of
the quality characteristics which is heavily influenced by breakage (Yan and Barbosa-
Cánovas, 2000). Therefore, it is necessary for manufacturers to factor in an allowance in
bulk density exiting the final dryer to compensate for powder breakage which inevitably
occurs during in-plant handling and transport. If this breakage estimation is inaccurate,
product bulk densities may be out of compliance with in-plant specifications and regu-
latory requirements may not be satisfied for the nutritional content of the reconstituted
formula. While this is the main problem, there are other detrimental effects of infant
formula attrition:

1. Attrition tends to disimprove the product’s instant properties, such as wettability
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(Hogekamp and Schubert, 2003). Since the primary reason for agglomeration
was to benefit from improved rehydration characteristics, a process referred to
as instantisation (Ortega-Rivas, 2009), it is clearly undesirable for some of the
agglomerates to revert to primary particles during conveying.

2. The particle size distribution affects flowability (Peleg, 1977); hence, attrition of
infant formula may negatively influence the can filling operation.

3. The fine dust generated by agglomerate breakage may have health consequences
for employees in infant formula production facilities.

When these issues associated with attrition are considered, it is clear that it is beneficial
for an infant formula manufacturer to minimise breakage of the product between spray
drying and can filling. The ideal scenario would be conveyance of the infant formula
without any attrition. In this case, the spray drying conditions could be controlled by
the manufacturer to give an optimal product and obviate the requirement to add on
estimated allowances for expected downstream powder breakage.

1.7 Research Motivation and Objectives

In Section 1.6, the importance of infant formula attrition was discussed. Although a
major issue, little has been published on the subject of infant formula breakage during
conveying. Manufacturers have some proprietary information regarding breakage of the
specific formulae which they produce; however, such information is never published for
confidentiality reasons. Efforts are rarely made to identify the root causes of attrition as
knowing the breakage behaviour of each product manufactured without understanding
these root causes is generally deemed sufficient for large-scale production. Furthermore,
infant formula manufacturers rarely develop models which may provide additional
insight into the agglomerate breakage process. As long as the infant formula produced
consistently satisfies quality requirements, irrespective of how this is achieved (even
using empirical observations), this is often acceptable for manufacturing purposes.

This lack of fundamental understanding can create a problem when the production
process is changed, e.g., if a formula with a different composition is manufactured. The
only way to estimate potential breakage is by comparison with other formulae of similar
composition. There is no guarantee that predictions thus made will be reliable, which
could result in the initial batches produced failing to meet specifications. Of course,
knowledge of the product’s breakage behaviour would be gained over time, thereby
permitting breakage to be predicted accurately.

This scenario is clearly not ideal. It would be far better to supplement qualitative exper-
imental knowledge with quantitative relationships between process or compositional
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parameters and the bulk properties of the infant formula (and their susceptibility to
variation) during conveying, based on an understanding of fundamental physical phe-
nomena. The aim of this research was to address this gap in the current knowledge,
with reference to the following three specific objectives:

1. Establish relationships between the geometry and operating conditions of a pneu-
matic conveying system, and the resulting changes in bulk properties of infant
formula, including particle size, bulk density and wettability, upon conveying
through the system.

2. Identify which infant formula components (e.g., fat, protein) have the greatest
influence on attrition of the product.

3. Develop mathematical models at two scales to investigate both the breakage of
individual agglomerates and the attrition of a large volume of powder when
conveyed.

1.8 Thesis Structure

The subsequent chapters of this thesis are largely self-contained (with the exception
of Chapter 7: a discussion of the overall findings of this work). Each chapter contains
its own introduction with literature review, description of materials and methods,
presentation of results with discussion, and conclusions sections. Where it is necessary
to refer to other parts of the text, this is clearly indicatedwith reference to the appropriate
section, table or figure and these internal references are often supplemented by a page
number. Each of the remaining six chapters contained in this thesis is described briefly
below:

Chapter 2 investigates the effect of varying seven pneumatic conveying parameters
on four quality characteristics of infant formula to determine which parameters
are most influential and the optimum combination of parameters to minimise
variations in these quality characteristics.

Chapter 3 is similar to Chapter 2, except the effect of infant formula composition is
investigated, rather than the pneumatic conveying parameters. This chapter also
investigates the relationships between the mechanical responses of individual
agglomerates of four infant formulae and their compositions.

Chapter 4 establishes a novel approach for calibrating discrete element models of
bonded agglomerates using Taguchi methods for both 2D and 3D simulations.

Chapter 5 develops a discrete element model which simulates the key features of the
uniaxial compression response of individual agglomerates, making use of the
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calibration approach outlined in Chapter 4. The applicability of this discrete
element model to dynamic loading was also evaluated.

Chapter 6 develops a probabilistic model which may be applied to predict attrition of
a large volume of infant formula when conveyed through a pneumatic conveying
system. The broad approach discussed in this chapter may be applied to any
friable product.

Chapter 7 discusses the results obtained in the preceding chapters as an integrated
body of work and states the main conclusions arising from this research.

The material contained in these chapters is supplemented by seven appendices, the
content of which is discussed at the appropriate point in the main text.
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2 
Effect of Pneumatic Conveying Parameters on

Physical Quality Characteristics of Infant Formula

G
lobally, most infant formula is sold in powdered form, and typically these
powders are agglomerated for improved reconstitution. It is inevitable
that some breakage of these agglomerates occurs during in-plant handling,

transport and packaging; however, quantifying and controlling the amount of breakage
which occurs is a very important issue for manufacturers which has major implications
for product quality (as discussed in Section 1.6).

Dense-phase pneumatic conveying is often used in plants for transporting infant for-
mulae from the drying operation to the filling line in order to minimise breakage of the
agglomerates. While it is generally true that dense-phase pneumatic conveying causes
low levels of product attrition (Section 1.4.2), there are three circumstances in which
significant, undesirable amounts of product breakage may still occur:

1. If the infant formula being conveyed is extremely friable

2. If the operating conditions of the pneumatic conveying system are inappropriate

3. If the design of the pneumatic conveying system is sub-optimal

There is often limited scope to change either the composition of an infant formula or the
production process tomake the product less susceptible to breakage. The composition is
largely dictated by regulatory authorities, who require specific nutritional requirements
of infant formulae sold within their jurisdictions (Section 1.1). Other factors which
influence the composition include financial considerations, since it is desirable to use
less-expensive ingredients where possible, and regional preferences for sweetness
or flavour. Altering the production process to reduce product breakage has many
disadvantages: there would be “knock-on” effects on other product properties which
would need careful consideration; key processes may require re-validation, which is

21



2. Effect of Pneumatic Conveying Parameters on Infant Formula Properties

expensive and time-consuming; new equipment would constitute a capital expense; lost
production time (and profit); operating procedures and other documentation would
require revision; etc. The effect of composition on changes in key quality characteristics
of infant formulae is discussed in Chapter 3; however, the easiest way to minimise
infant formula breakage is to ensure that the dense-phase pneumatic conveying system
is well-designed and is operated correctly. While this is an important issue, there is
no published work which relates the design and operating conditions of a pneumatic
conveying system to the corresponding effects on key quality characteristics of infant
formula.

It has been demonstrated conclusively that increasing the air or particle velocity in a
pneumatic conveying system increases product attrition (e.g., Kalman and Goder, 1998;
Taylor, 1998; Zhang and Ghadiri, 2002). Most attrition in pneumatic conveying systems
occurs around bends (Kalman, 1999), which makes the selection of bend type critical
(Aarseth, 2004; Chapelle et al., 2004; Salman et al., 2002; Wypych and Arnold, 1993).
Other influential factors include the length of the conveying line or number of passes
through an experimental system (Kalman, 2000; Konami et al., 2002), the mass flow
ratio (Han et al., 2003; Kalman, 2000) and structural characteristics of the conveyed
product (Samimi et al., 2003).

This chapter details a comprehensive study that was carried out on seven pneumatic
conveying parameters which may affect key quality characteristics of infant formulae,
such as bulk density, particle size and wettability. A lab-scale modular pneumatic
conveying rig was constructed, which allowed the selected parameters to be varied
according to a Taguchi experimental design, and four responses were measured. The
aimwas to identify which parameters have themost significant effect on these responses,
as it is more important to control these parameters accurately than those which are
less influential. In practice, while the settings chosen by the system designer for some
of the tested parameters (e.g., the vertical conveying length) would be constrained by
physical restrictions, it is still important to understand how these parameters influence
the key quality characteristics of infant formula. Another objective was to determine
the optimum pneumatic conveying parameters to minimise variations in the measured
product quality characteristics. This research also investigates whether the significant
parameters are the same for different responses, and if any of the responses are relatively
unaffected by conveying.

2.1 Introduction to the Taguchi Method

Genichi Taguchi is a Japanese researcher who introduced some new concepts on the
objectives of quality management and selected a set of statistical methods and tools
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to reach those objectives. He is widely regarded as pioneering the modern quality-by-
design approach (Ross, 1988). The Taguchi approach, developed during the 1950s as an
integrated process improvement technique (Taguchi, 1987), is now a key part of the 6σ
methodology for world-class manufacturing. The Taguchi robust engineering design
method has become very popular in industrial practice as a valuable tool to achieve
quality by design and minimise non-conformity costs by establishing the optimum set-
tings of a process that optimise its performance and the consistency of that performance
(Taguchi, 1987). Many researchers have made use of Taguchi methods for this purpose,
e.g., Hou et al. (2007), Kim et al. (2003), Mahapatra et al. (2008), Oktem et al. (2007),
Ozbay et al. (2009), and Wu et al. (2005).

Taguchi’s approach is one of a large range of Design of Experiments (DOE) methods,
all of which share a common objective: to find the relationship between the process
parameters and the process output by using a structured pre-planned methodology for
obtaining experimental data. Appropriate DOE methods maintain an efficient balance
between the amount of data required (resource intensity) and the precision and confi-
dence of the conclusions (information quality), which also implies minimising the bias
that may be induced by the sampling design. It should be noted that it is rarely feasible
to eliminate biases completely from an experimental study, e.g., the composition of milk
varies seasonally, yet experiments involving dairy powders (including those discussed
in this thesis) seldom account for this effect because of practical considerations.

2.1.1 Orthogonal Arrays, Factors, Levels and Responses

The Taguchi method is often viewed as a three step process (Ross, 1988, p.168):

1. System design

2. Parameter design

3. Tolerance design

System design involves determining which parameters may have the greatest influence
on the response and selecting suitable test settings for those parameters. The chosen
parameters are the factors of the design, and the settings of the factors are referred to
as levels. Those outputs which are recorded and analysed are the responses, e.g., profit
margin or a suitable product quality characteristic. Parameter design is used to find
the optimum levels for each factor from those identified by the system design. This
requires the selection of a suitable orthogonal array which depends on the number of
factors and levels to be tested (Ross, 1988, p.74). It is not necessary for the researcher
to develop these arrays, since the commonly-used arrays are provided both in the
literature and in many statistical software packages. These orthogonal arrays were
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not developed by Taguchi, rather they originate from a variety of sources including
fractional factorial and Plackett-Burman designs (Box et al., 1988). It is crucial to choose
an array which is suitable for the application. Selecting a two-level array minimises
experimental requirements but does not identify points of optimum operation within
the solution space, rather only at its limits. Therefore, a three-level design is effectively
the minimum for a typical optimisation procedure.

For the Taguchi method, orthogonal arrays are traditionally designated by Ln, where n
is the number of rows. As an example, the simplest three-level orthogonal array is the
L9, which is shown as Table 2.1.

Table 2.1: Standard form of the L9 orthogonal array, where the numbers 1 to 3 represent factor
levels

Trial Number
Column

1 2 3 4

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

This array contains nine rows and four columns. Each control factor is allocated to one
column of the array. The number of trials for each set of experiments is equal to the
number of rows; thus, an L9 array requires nine trials and can accommodate up to four
three-level factors. It is conventional to denote the factor levels numerically so that the
lowest level of any factor is 1, the second-lowest is 2 etc. If the actual levels of a factor
are 5, 20 and 30, then these would correspond to 1, 2 and 3 in a three-level array. Levels
do not necessarily need to be numerical, and if a factor is discontinuous, such as colour,
then the levels may be assigned arbitrarily. If all columns of an array contain factors,
the array is saturated; however, columns may be left unused, in which case they may
permit some interactive effects to be tested for significance.

A relatively small set of basic arrays is used for the Taguchi method, although a range of
techniques may be used to modify these arrays without loss of orthogonality (Taguchi
et al., 1992). This is the defining property of orthogonal arrays and ensures balanced
comparison of all factors. In an orthogonal array, each factor is tested at each level
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the same number of times, and for any pair of columns, all possible permutations
of levels are tested, and each permutation is tested an equal number of times. For
the L9, each factor is tested at levels 1, 2 and 3 on three occasions, and for any two
columns, each of the nine possible permutations of levels are tested; thus, it satisfies
the requirement for orthogonality. Following system and parameter design, tolerance
design is used to tighten tolerances on statistically-significant parameters to reduce
variation (Ross, 1988, p.168).

One disadvantage of the Taguchi approach is the creation of intricate confoundings
between effects of factors and of interactions (Montgomery, 2009). This means that
a column may contain a number of partial or full interactions, in addition to a factor.
As an example, the interaction between the factors in columns 1 and 2 is distributed
between columns 3 and 4 for any three-level array (e.g., the L9 in Table 2.1). If factors are
allocated to columns 1, 2 and 3 of this array, it would become impossible to distinguish
between the effect of the factor in column 3 and the partial interactive effect due to the
factors in columns 1 and 2, both of which are contained in column 3. The presence of
confounding has significant implications for analysis of the results: in certain cases,
it may be impossible to distinguish between the effects of factors and confounded
interactions. The Taguchi method uses triangular tables and linear graphs to aid with
column allocation. These identify the columns of a particular array which contain the
interaction between any pair of columns (Taguchi, 1987). For this reason, the initial
allocation of factors to columns should ideally be done with the knowledge of which
interactions might be relevant or negligible.

2.1.2 Analysis of Variance (ANOVA)

The Taguchi method uses Analysis of Variance (ANOVA) for data interpretation
(Ross, 1988; Taguchi et al., 1992). This is a statistical method used to quantify how
much of the variability of the response can be attributed to each factor or interaction.
The use of ANOVA obviates the requirement to establish an inference (interpolative)
model to relate the system factors to responses. Taguchi’s belief was that these inference
models are often underpinned by patterns, or surfaces in the solution space, that do not
reflect the behaviour of the real system. This results in the identification of points of
optimum operation that are due to mathematical artefacts and may not exist in reality.
Furthermore, using inference models pools the lack of fit of the model with all other
sources of error. Since analysing sources of variability is one of the main reasons to use
the Taguchi method, adding lack of fit, which is a limitation of the method of analysis
and not a system characteristic, would not be beneficial.

If multiple data sets are available, Taguchi recommends combining repetitions of each
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trial into signal-to-noise (S/N) ratios prior to analysis (Maghsoodloo et al., 2004). There
are two main advantages of analysing the data with S/N ratios:

1. The mean response may be optimised while simultaneously taking the reduction
of process variability into account.

2. The response is logarithmised prior to analysis which extends the region of linear-
ity; this is advantageous as this method ultimately makes extensive use of linear
statistics.

The disadvantage is that S/N ratios confound the effect on the average value of quality
with the effect on the variability, so it does not elucidate which factors influence one
and not the other, which could be useful for a full interpretation of the results. Three
different equations are used for calculating the S/N ratio depending on the objective of
the optimisation (Ross, 1988, p.172). These are given below as Eq s. 2.1–2.3:

S/N smaller-is-better =−10 log10
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r is the number of repetitions of each trial, yi is the (raw) response for trial i and ytarget is
the specified target value for the optimisation. The same equations are used for ANOVA,
irrespective of whether the raw data or S/N ratios are used for the data analysis. The
key ANOVA equations are provided below (Eq s. 2.4–2.11); for further detail, the reader
is directed to Ross (1988).

The first quantity calculated in ANOVA is the total sum of squares (SSt ), which is a
measure of the total variability of the data:

SSt =
n p
∑

i=1

�

yi − y
�2 (2.4)

n p is the total number of data points and y is the global mean of the data.

The sums of squares due to factor j (SS f j ) is the portion of SSt that is explained by the
fact that factor j changed settings in the design n k times (n j is the number of levels of
factor j ):

SS f j =SSt −
n j
∑

k=1
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(2.5)

yi |k is the subset of data points in which factor j was tested at level k and yk is the mean
of this data subset. Note that this form of Eq. 2.5 requires orthogonality to be valid.
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The sum of squares of the error, SSe , is the portion of SSt that is not accounted for by
any of the factors, where n f is the number of factors:

SSe =SSt −
n f
∑

j=1

SS f j (2.6)

If main effects are of interest only, columns which do not contain factors are not con-
sidered and their effects form part of SSe . It is also possible to analyse interactions in
a similar manner to factors if sufficient degrees of freedom are available, unless this
is prevented by confounding. The two-way interaction between factors j and m has a
sum of squares (SS f j× f m ) which is given by Eq. 2.7:
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n j and n m are the numbers of levels of factors j and m , respectively. Note that n j = n m

is not a requirement. yi |l k is the subset of data points in which factor j was tested at
level l and factor m was tested at level k concurrently. yl k is the mean of this data
subset.

To test for significance, variances (V ) are calculated by dividing the sums of squares by
the respective degrees of freedom (υ). Three different degrees of freedom are defined:

υtotal = n p −1 (2.8)

υfactorj = n j −1 (2.9)

υerror =υtotal−
n f i
∑

j=1

υfactorj (2.10)

n f i is the number of factors and interactions analysed. For a validANOVA, it is necessary
for υerror ≥ 0. If υerror = 0, it is impossible to test for significance without pooling, i.e.,
without removing some factors or interactions from the analysis. Statistical significance
can be determined for factor (or interaction) j by dividing Vj by the variance of the error,
Ve , and comparing the result to the f-distribution value for the specified confidence
level. This is equivalent to using the p-value to assess statistical significance: effects are
deemed to be significant at the 90%, 95% or 99% significance levels if their p-values are
less than 0.1, 0.05 or 0.01, respectively.

It is straightforward to identify the point of optimum using the Taguchi method when
all interactions are neglected. The optimum level is selected for each factor as that which
gives the desired trend in the response. For example, the objective of an optimisation
procedure is always to maximise the response if the analysis was conducted using S/N
ratios.
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The corresponding response is then estimated by addition of themarginal means, which
are the differences between the means of the subsets of data where each factor is at its
selected optimum level, k (y |k j ), and the global mean, y :

yestimated = y +
n f
∑

j=1

(y |k j − y ) (2.11)

Eq. 2.11 shows that the Taguchi method only considers as solutions combinations
of those factor settings used in the design. Once the optimum response has been
found, a confirmation experiment should be carried out unless the optimal factor levels
correspond exactly to one of the rows of the orthogonal array; this is an unlikely event
due to the experimental efficiency of these designs.

2.1.3 Advantages and Disadvantages of the Taguchi Method

The main advantages of the Taguchi approach are as follows:

• The experimental designs which make use of orthogonal arrays minimise the
amount of data required, i.e., the method has good experimental efficiency.

• The analysis methods clearly identify what is being analysed and relate only to
actual system behaviour (no pooling lack of fit of an inference model with the
other error terms: Section 2.1.2).

• The method is capable of analysing discontinuous variables (e.g., colour), and if a
factor is numerical, there is no requirement for its levels to be equi-spaced.

However, a theoretical analysis of the implications of Taguchi’s choice of statistical
tools identifies a number of limitations (Box et al., 1988; Montgomery, 2009); the most
important is that the DOEwith orthogonal arrays generates very intricate confoundings,
as discussed in Section 2.1.1. It is often impossible to definitively distinguish between
the effects of factors and confounded interactions. Therefore, while it is true that the
analysis is very clear on which effects one is analysing, it must be understood that many
of the effects being analysed are not individualised and actually pool a complex mix of
effects. More data would be needed in order to distinguish and separate those effects, if
desired. Of course, in systems where interactions are all negligible, the method works
perfectly with no complications.
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2.2 Materials and Methods

2.2.1 RawMaterials and Pneumatic Conveying Rig

A commercial infant formula was used for these trials containing approximately 57%
carbohydrate, 28% fat, 11% protein, 2% ash and 2%moisture. The pneumatic conveying
rig was assembled from hygienically-designed modular components using tri-clover
clamps. The components weremanufactured from 316L stainless steel with a 2B internal
surface finish, except for the powder collection vessel which wasmade of polypropylene.
The basic rig configuration was invariant, with two horizontal sections linked to a
vertical section by two 90° bends. This configuration was selected to provide a close
analogue of a real industrial system, in which inclined pipe sections are seldom used
and a vertical conveying section is required to transport formulae from the spray dryer
outlet to the silo inlet. Three different bend radii (50, 200, 300 mm) and three different
vertical section lengths (340, 650, 960 mm) were available. The rig incorporated two
in-line sight-glasses to allow visual observation of the powder transport operation.
Dry compressed air entered the rig at the point indicated on Figure 2.1. The pressure
of the air was regulated to provide different air velocities. The air velocity could be
measured by inserting a 3 mm diameter pitot-static tube into a small resealable hole
in one horizontal length. All air velocities in this chapter are stated in terms of the
maximum superficial air velocities in the pipeline containing no powder, which could
be measured more accurately than average velocity. After measuring the velocity, the
pitot-static tube was removed and the measurement hole sealed before commencing
powder conveying to avoid disruption of the flow.

For dilute phase operation, the powder was poured into the air stream using a funnel.
To simulate dense phase (plug flow) operation, the funnel was removed and the opening
sealed off with a blank. The first sight glass was filled with infant formula to create a
single plug in the line before reassembling the rig and switching on the air supply with
a ball valve. This plug was not compressed to avoid breakage of the powder before
conveying.

The pipe diameter was constant at 25 mm, except for a 50 mm diameter terminal
section. This section of larger diameter minimised breakage at the capture point by
reducing the velocity of the air stream immediately before the capture vessel. The typical
pipe diameter in an infant formula manufacturing plant is approximately 100 mm.
Although the ratio of pipe diameter to particle diameter remained very large for the
lab-scale rig, there are often issues when scaling up results obtained using small-scale
pneumatic conveying systems to industrial-scale systems. This possible limitation must
be remembered for the results given in this chapter. The end vessel incorporated filters
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90 Degree Bend Radii:
- 300 mm
- 200 mm
- 50 mm

340 mm

960 mm
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650 mm
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Air Supply from Compressor
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Vessel with Filter
for Powder Capture
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Sight Glass 1
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Sight Glass 2
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Figure 2.1: An isometric view of the conveying rig in dilute phase configuration, with an inset
showing the modification for dense phase conveying

for separation of powder from the air, and air stream entry into the vessel was offset to
create a swirling fluid motion and further reduce powder breakage.

Since infant formula is a hygroscopic material, it was stored in bulk in air-tight plastic
bags inside stiff paper sacks. Smaller quantities were transferred into Ziploc bags
for experiments. Any infant formula that was unnecessarily exposed to atmosphere
for more than approximately 30 minutes was discarded. The experiments were also
conducted in a manner which minimised the duration of exposure of the infant formula
to the open air. The pneumatic conveying rig shown in Figure 2.1 was too large to place
inside any available humidity-controlled environment. Therefore, all testing apparatus
(Section 2.2.3) was prepared in advance and each experiment was carried out without
interruption to minimise the exposure time.
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2.2.2 Experimental Design

Seven factors were varied in these experiments, with all others held constant. Noise
factors were not included in these experiments so only an inner array was used. All
factors were controlled at three levels only, except mode of conveying (dilute or dense
phase), which must be a two-level factor. The control factors and levels used for this
experiment are shown in Table 2.2. Note that the number of passes for this experimental
system was analogous to the length of an industrial conveying system, i.e., increasing
the number of passes increased the effective length.

Table 2.2: Control factors and levels used for the L18 experimental design

Control Factors
Levels

1 2 3

Mode of Conveying Dense Dilute
Plug Length (Dense) 50 mm 100 mm 150 mm

Solids Feed Rate (Dilute) 1 gs−1 2 gs−1 3 gs−1

Air Velocity (Dense) 3 ms−1 4 ms−1 5 ms−1

Air Velocity (Dilute) 10 ms−1 20 ms−1 30 ms−1

Number of Passes through Rig 1 2 5
Length of Vertical Rig Section 340 mm 650 mm 960 mm

Radii of 90° Bends 50 mm 200 mm 300 mm

An L18 orthogonal array was chosen; this mixed-level array allows for one two-level
factor and up to seven three-level factors to be tested. The standard form of the L18

array is provided in Appendix A (Table A.2; p.212) for information. The blocking of
the design must be noted. For dense phase, the plug length factor exists but solids feed
rate does not, and vice versa for the dilute phase. Furthermore, the mode of conveying
determines the levels used for air velocity: if dense phase is specified, air velocity
must be less than the saltation velocity for horizontal flow (Marcus et al., 1990), which
was found during preliminary experiments. This situation may be interpreted using
the trans-factor technique – a specific type of pseudo-factor design – to assign the
orthogonal array (Taguchi, 1987). Mode of conveying is a branching factor, while plug
length and solids feed rate are pseudo-factors or nested factors. A narrow range of
velocities was used for dense phase conveying (3–5 ms−1) as the velocity had to be less
than the saltation velocity, yet also sufficient to ensure reliable conveying.

The L18 array provides 17 degrees of freedom for studying effects. Since the two-level
factor requires one degree of freedom, and each three-level factor requires two, the
factors in Table A.2 collectively account for 13 degrees of freedom. The vertical rig
section length was assigned to column two of the array to allow its interaction with
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the two-level factor to be studied; this is the only interaction which can be studied
(Maghsoodloo et al., 2004) as others are partially confounded with the remaining three-
level columns (Taguchi et al., 1992). Sufficient degrees of freedom are available to allow
this interaction to be tested for statistical significance without pooling. After assigning
the remaining factors to columns, the array in Table 2.3 was obtained.

Table 2.3: L18 array showing the columns used after assigning all factors to the array

Row
Column

Mode
Vertical

– –
Air No. of Bend Plug Length/

Length Velocity Passes Radii Solids Feed Rate

1 Dense 340 mm 1 1 3 ms−1 1 50 mm 50 mm
2 Dense 340 mm 2 2 4 ms−1 2 200 mm 100 mm
3 Dense 340 mm 3 3 5 ms−1 5 300 mm 150 mm
4 Dense 650 mm 1 1 4 ms−1 2 300 mm 150 mm
5 Dense 650 mm 2 2 5 ms−1 5 50 mm 50 mm
6 Dense 650 mm 3 3 3 ms−1 1 200 mm 100 mm
7 Dense 960 mm 1 2 3 ms−1 5 200 mm 150 mm
8 Dense 960 mm 2 3 4 ms−1 1 300 mm 50 mm
9 Dense 960 mm 3 1 5 ms−1 2 50 mm 100 mm
10 Dilute 340 mm 1 3 30 ms−1 2 200 mm 1 gs−1

11 Dilute 340 mm 2 1 10 ms−1 5 300 mm 2 gs−1

12 Dilute 340 mm 3 2 20 ms−1 1 50 mm 3 gs−1

13 Dilute 650 mm 1 2 30 ms−1 1 300 mm 2 gs−1

14 Dilute 650 mm 2 3 10 ms−1 2 50 mm 3 gs−1

15 Dilute 650 mm 3 1 20 ms−1 5 200 mm 1 gs−1

16 Dilute 960 mm 1 3 20 ms−1 5 50 mm 2 gs−1

17 Dilute 960 mm 2 1 30 ms−1 1 200 mm 3 gs−1

18 Dilute 960 mm 3 2 10 ms−1 2 300 mm 1 gs−1

2.2.3 Product Quality Characteristics and Experimental Procedure

Four product quality characteristics were measured:

1. Bulk density

2. D[4,3] – volume mean diameter

3. Particle density

4. Wettability
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For infant formula manufacture, bulk density is one of the most critical quality char-
acteristics, as this determines the mass of powder which fills a measuring scoop used
for dispensing powder on reconstitution. This was measured using a Stampfvolumeter
STAV 2003 (J. Engelsmann AG, Luwigshafen, Germany). For each measurement, 100 g
of powder was weighed into the graduated cylinder and tapped 1250 times to the
extreme powder bulk density (GEA Niro, 2006).

The particle size distribution of the infant formula agglomerates was measured by laser
diffraction using aMalvernMastersizer S with dry powder feeder (Malvern Instruments
Limited, Malvern, Worcestershire, UK). Although the air dispersion method has been
shown to cause some attrition of the formula being tested (Kwak et al., 2009), it remains
much more widely used than the alternative wet dispersion method. The particle
size distribution was measured twice for each trial to increase accuracy, and the mean
result was used for analysis. The volume mean diameter/De Brouckere mean diameter
(D[4,3]) was used as the single measure to compare particle size results.

Agglomerates of infant formula contain internal cavities; however, it was not known
whether or not these voids were impermeable to air for the formula tested. Particle
density was found by nitrogen pycnometry using a Micromeritics Multivolume Pyc-
nometer 1305 (Micromeritics Instrument Corporation, Norcross, GA, USA). By assessing
the changes in particle density upon conveying, inferences could be made about the
permeability of the subsurface cavities to air. The particle density was determined three
times for each trial using the same sample and the mean result was used.

Wettability was measured using the GEA Niro Analytical Method (GEA Niro, 2009)
based on the International Dairy Federation standard for determining the dispersibility
and wettability of instant dried milk (International Dairy Federation, 1979). Ten grams
of infant formula were placed inside a steel ring on top of a flat stainless steel plate.
The plate was placed on top of a 600 ml beaker containing 250 ml of water at 25◦C. The
infant formula was scattered on the water surface by slowly withdrawing the plate.
The wettability was recorded as the time required for all particles to become wetted,
by visual inspection, from when the plate began being withdrawn. Note that low
wettability times are desirable, indicating good wettability behaviour.

Three complete sets of replicates were carried out, giving 54 trials in total. Complete
randomisation was used to minimise bias in the results, i.e., trials were randomly se-
lected until all trials had been completed for a replicate, before proceeding on to the
next replicate. Wettability was measured for only one replicate, while bulk density,
particle density and D[4,3] were measured for all three replicates. These four quality
characteristics were also measured prior to conveying: measurements were taken for
four samples of infant formula per replicate, e.g., bulk density was measured for twelve
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samples before conveying. The mean bulk density, D[4,3], particle density and wettabil-
ity of the infant formula before conveying were 462 kgm−3, 312 µm, 1107 kgm−3 and
18 s, respectively.

2.2.4 Analytical Procedure

All data analysis was conducted using the percentage change in each measured powder
quality characteristic before and after passage through the rig. The data were analysed
using STATISTICA (v.7.1, StatSoft, Inc., Tulsa, OK, USA). The complete analysis may be
divided into two parts:

1. The pseudo-factors were treated as categorical and an ANOVA was done using
S/N ratios for each quality characteristic.

2. A polynomial model was fitted to the data, taking into account the nesting of
factors.

Categorical ANOVA

As recommended by Taguchi, the trial replicates were combined into S/N ratios for each
of the four responses. This was done for wettability even though data were available
for only a single replicate. S/N ratios were calculated using the lower-is-best definition,
since the smaller is the change in a quality characteristic during infant formula handling,
the easier it is to control final product properties in the manufacturing plant. Ideally,
the properties of the infant formula immediately after drying would be unchanged
when the consumer reconstitutes the product. In that case, the spray drying conditions
could be controlled to give an optimal product rather than needing to add estimated
allowances for subsequent powder breakage.

An ANOVA was performed on the S/N ratios for each quality characteristic to identify
statistically-significant factors. All factorswere analysedwithout the inclusion of nesting
in the array to avoid intricate confoundings which would prevent certain factor effects
from being uniquely distinguished. For instance, no distinction was made between
air velocities of 5 ms−1 (the highest value for dense phase) and 30 ms−1 (the highest
for dilute phase), as both have the meaning “velocity as high as possible” in terms of
the categorical classification. The same is true for equivalent levels of plug length and
solids feed rate (both as high as possible, or as low as reasonable, or the mid-point).

Effects were calculated and contributions found by subtracting the global mean of the
S/N ratios for each quality characteristic from the marginal means. These effects were
tested for statistical significance. Contributions plots were drawn for each factor which
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show the average effect of selecting any factor level on the responses. A second ANOVA
was performed for four selected factors, taking nesting into account: mode of conveying,
air velocity, plug length and solids feed rate. By omitting all other factors, confounding
was avoided. The main purpose of the second ANOVAwas to obtain contributions plots
for air velocity and the pseudo-factors which show the required dependence on mode
of conveying. It is noted that this procedure does not lead to any loss of information,
because the impact of ignoring the nesting in the first ANOVA was that the importance
of the nested factors may have been overestimated. Thus, the main outcome of the
first ANOVA was to identify those factors which were not statistically-significant. The
second ANOVA then gave a more accurate and real view of the results by considering
the nesting.

Optimum factor levels were determined using the maximum S/N ratio contributions,
and estimates of each product quality characteristic at these optimum levels were
calculated. A verification experiment was done using the optimum settings to check
the results of the analysis.

Polynomial Models

It is likely that the influence of certain factors on a characteristic depends on the mode
of conveying, i.e., the air velocity might be expected to have far greater importance for
dilute phase conveying than for dense phase. However, the ANOVAs did not consider
this when evaluating the statistical significance of factors, including the air velocity
and pseudo-factors. A complementary analysis was performed in which a polynomial
model was fitted to the data. This allows the statistical significance of most factors to
be evaluated while taking nesting into account, i.e., distinguishing between effects for
dense and dilute phase conveying. This polynomial model was fitted to the raw data
for each quality characteristic: bulk density, D[4,3], particle density and wettability. The
model took the form of Eq. 2.12, where Fn represents the levels of factor n when coded
between -1 and 1 and R is the model response:

R = a 0 +a 1F1+a 2F2+a 22F2
2+0.5a 31F3(1− F1)+0.5a 32F3(1+ F1)+0.5a 331F3

2(1− F1)

+0.5a 332F3
2(1+ F1)+a 4F4+a 5F5+a 55F5

2+0.5a 61F6(1− F1)

+0.5a 62F6(1+ F1)+0.5a 662F6
2(1+ F1) (2.12)

By omitting quadratic effects of the number of passes and the plug length, a unique set
ofmodel parameters could be determined for each quality characteristic by least-squares
regression. The linear and quadratic terms for F3 and F6 in Eq. 2.12 are multiplied by
(1± F1) to ensure that certain parameters are present in the models only if dense phase
conveying is used, i.e., if F1 = -1, while those parameters that are multiplied by (1+ F1)

appear only if dilute phase conveying is used.
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In the model fitting, the residual sums of squares for bulk density, D[4,3] and particle
density were partitioned into pure error and lack of model fit components. This was
not possible for wettability due to the lack of replicated measurements. Plots of model
predicted values against experimental data were drawn to highlight bias, if present.
Standardised effects were calculated for these parameters and these were shown on
Pareto charts using a 95% significance level.

2.3 Results and Discussion

2.3.1 Categorical ANOVA

The results obtained for smaller-is-better S/N ratios of the four measured quality
characteristics (bulk density, D[4,3], particle density and wettability) are provided in
Table 2.4.

Table 2.4: Responses for all four quality characteristics in terms of smaller-is-better S/N ratios

Row Bulk Density D[4,3] Particle Density Wettability

1 −4.538 −9.335 −13.118 −24.952
2 −1.526 −7.946 −13.868 −23.380
3 −2.694 −13.514 −8.720 −32.168
4 −2.491 −20.124 −15.875 −37.938
5 −11.610 −9.152 −13.784 −28.227
6 −3.877 −12.273 −7.169 −31.846
7 −6.436 −13.803 −2.661 −34.299
8 −4.235 −15.296 −3.059 −26.680
9 −7.268 −13.093 −8.698 −35.530
10 −28.037 −27.381 −7.615 −41.213
11 −23.796 −23.101 −10.248 −32.349
12 −25.178 −21.136 −15.578 −32.033
13 −27.733 −28.024 −12.028 −45.385
14 −20.636 −21.168 −12.068 −28.014
15 −27.158 −27.634 −11.686 −42.457
16 −28.629 −29.566 −5.889 −39.563
17 −28.463 −28.099 −12.454 −46.194
18 −19.591 −19.239 −6.105 −30.120

Table 2.5 is the partial ANOVA table obtained by analysing these four sets of S/N ratios
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as the responses, and ignoring nesting in the array. A significance level of 95% was
selected as standard in this work.

Table 2.5: Partial ANOVA table for S/N ratio responses. υ is the number of degrees of
freedom, SS the sum of squares associated to each element of the table and p the p-value

calculated with the respective variances. Statistically-significant effects at a 95% confidence
level are denoted in bold and with an asterisk

Factor υ
Bulk Density D[4,3]

SS p SS p

Mode of Conveying (α) 1 1892.06 0.000* 682.17 0.007*
Vertical Length (β) 2 7.75 0.439 29.65 0.610

Air Velocity 2 61.52 0.039* 52.16 0.448
Number of Passes 2 37.82 0.082 5.28 0.907
Radii of 90° Bends 2 29.41 0.116 24.62 0.658

Plug Length/Solids Feed Rate 2 7.75 0.439 8.14 0.862
α × β Interaction 2 11.47 0.325 3.80 0.932

Error 4 15.23 105.54

Total 17 2063.01 911.36

Factor υ
Particle Density Wettability

SS p SS p

Mode of Conveying (α) 1 2.51 0.731 215.70 0.097
Vertical Length (β) 2 114.88 0.153 81.37 0.483

Air Velocity 2 20.12 0.618 186.24 0.249
Number of Passes 2 13.09 0.722 16.01 0.847
Radii of 90° Bends 2 19.95 0.620 80.51 0.486

Plug Length/Solids Feed Rate 2 13.31 0.718 27.95 0.755
α × β Interaction 2 15.30 0.687 4.87 0.949

Error 4 73.93 185.16

Total 17 273.08 797.81

Mode of conveying and air velocity had a statistically-significant effect on bulk density
at the 95% level (p < 0.05). For D[4,3], mode of conveying was the only factor which
was significant while for wettability, mode of conveying was significant at the 90%
level. Air velocity had the second-highest sum of squares for both of these responses,
but was not significant in either case, even at the 90% level. None of the factors had
a significant influence on particle density. Since dense phase conveying is invariably
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used for pneumatic transport of infant formula, the air velocity is the most critical factor
which manufacturers must control to avoid attrition issues.

The raw data were also analysed to supplement this S/N ratio analysis, expressed as
percentage changes from the mean value of the appropriate quality characteristic before
conveying. The results are given in Table 2.6.

Table 2.6: Partial ANOVA table for raw data analysis of percentage changes of four responses,
where υ is the number of degrees of freedom, SS the sum of squares and p the p-value.

Statistically-significant effects at a 95% confidence level are denoted in bold and with an
asterisk

Factor υ
Bulk Density D[4,3]

SS p SS p

Mode of Conveying (α) 1 5381.26 0.000* 2876.86 0.007*
Vertical Length (β) 2 8.55 0.702 536.67 0.063

Air Velocity 2 601.38 0.000* 275.39 0.231
Number of Passes 2 156.64 0.003* 205.81 0.331
Radii of 90° Bends 2 167.31 0.002* 233.76 0.286

Plug Length/Solids Feed Rate 2 57.70 0.103 182.42 0.374
α × β Interaction 2 10.97 0.636 53.23 0.747

Error 40 478.82 3617.90

Total 53 6862.62 7982.03

Factor υ
Particle Density Wettability

SS p SS p

Mode of Conveying (α) 1 3.59 0.597 15099 0.059
Vertical Length (β) 2 70.31 0.074 4784 0.420

Air Velocity 2 3.73 0.863 15108 0.135
Number of Passes 2 5.41 0.808 2876 0.568
Radii of 90° Bends 2 12.89 0.604 7214 0.302

Plug Length/Solids Feed Rate 2 5.29 0.812 973 0.811
α × β Interaction 2 5.29 0.812 636 0.870

Error 40/4 504.70 8795

Total 53/17 611.21 55485

The results were broadly similar to those for the S/N ratio analysis in Table 2.5; the main
difference was the increased number of statistically-significant factors caused by the rise
in degrees of freedom of the error from 4 to 40 for all responses except wettability. For
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bulk density, the number of passes and bend radii factors became significant at the 95%
level. Mode of conveying and air velocity remained significant with the two highest
sums of squares. For D[4,3], vertical length became significant at the 90% level and had
the second-highest sum of squares after mode of conveying, whereas this factor was not
close to significance in the S/N ratio analysis (p = 0.610). There was little change for the
particle density and wettability results: for particle density, vertical length retained the
highest SS and for wettability, the differences between S/N ratio and raw data analyses
were minimal, as expected because of the absence of data replicates.

For those three responses where replicates were available, it was also possible to carry
out an ANOVA on standard deviations between replicates, the results of which are given
in Table 2.7. It is interesting that mode of conveying was statistically-significant for bulk
density and D[4,3]. This indicates that this factor is important not only for minimising
changes in quality characteristics caused by conveying but also for minimising the
variability between results. However, it must be remembered that there is usually a
large difference between the dense and dilute levels of this factor since pneumatic
conveyors in industry seldom use velocities close to saltation.

Table 2.7: Partial ANOVA table for analysis of standard deviations between replicates for three
responses. υ is the number of degrees of freedom, SS the sum of squares and p the p-value.
Statistically-significant effects at a 95% confidence level are denoted in bold and with an

asterisk

Factor υ
Bulk Density D[4,3] Particle Density

SS p SS p SS p

Mode of Conveying (α) 1 11.80 0.023* 217.06 0.009* 0.56 0.713
Vertical Length (β) 2 1.68 0.471 14.56 0.525 4.66 0.568

Air Velocity 2 1.34 0.536 19.61 0.437 6.25 0.484
Number of Passes 2 0.47 0.787 29.11 0.323 3.22 0.666
Radii of 90° Bends 2 4.42 0.206 7.35 0.704 0.20 0.972

P. Length/S. Feed Rate 2 2.25 0.384 12.09 0.577 4.74 0.563
α × β Interaction 2 2.46 0.359 54.03 0.172 2.65 0.711

Error 4 3.67 38.27 14.27

Total 17 28.09 392.08 36.56

A more straightforward way of visualising these results was to partition the raw per-
centage data into six categories: one for each combination of mode of conveying and
air velocity (the two most important factors). The mean percentage changes in bulk
density, D[4,3] and wettability were calculated for each of these combinations, and are
plotted on Figure 2.2. For example, using dilute phase conveying and an air velocity of
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30 ms−1 caused the bulk density to increase by 25.3%, on average, whereas selecting
the same conditions reduced D[4,3] by an average of 21.8%.
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Figure 2.2: Line graphs showing the average percentage changes in a) bulk density, b) D[4,3]
and c) wettability caused by pneumatic transport at velocities of 3, 4 or 5 ms−1 in dense phase

or 10, 20 or 30 ms−1 in dilute phase, where error bars indicate one standard deviation

Figure 2.3 shows the ANOVA plot for S/N ratios using contributions, which shifts all
data to be centred on the x-axis. Note that the air velocity and plug length/solids feed
rate factors showed a strong dependence on the mode of conveying. The optimum level
for each factor was selected as that which gave the maximum S/N ratio contribution.

Figure 2.4 compares the percentages of the total sums of squares attributed to each
factor, and identifies the optimum level for each factor. For example, mode of conveying
accounted for more than 90% of the total sum of squares for bulk density and the
optimum level of this factor was 1, or dense phase by reference to Table 2.2. This sum
of squares was calculated from Table 2.5 by dividing 1892.06 by 2063.01, and the level
was selected from Figure 2.3.

Figure 2.4was used to select the optimum settings. It is clear that dense phase conveying,
the lowest air velocity of 3 ms−1 and the shortest plug length of 50 mm should be chosen.
The number of passes was set at 2, since this was the optimum for all responses except
particle density, where it was not statistically-significant. The fact that 2 passes was
selected as the optimum rather than 1 pass implies that the additional breakage caused
by multiple passes through the conveying rig was negligible. The ANOVA confirms
this: the number of passes was not significant for any quality characteristic except bulk
density, where it was barely significant at the 90% level. A small amount of experimental
variability could have caused 2 passes to be identified as being preferable to 1 pass,
whereas there was minimal difference between the results obtained using these levels in
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Figure 2.3: ANOVA contributions plot for S/N ratio responses

reality. A vertical section length of 960 mmwas selected; this factor made the dominant
contribution to the total sum of squares for particle density. Finally, a bend radius
of 50 mm was chosen. This was the optimum setting for both D[4,3] and wettability.
However, neither the radii of the bends nor the vertical conveying lengthwere significant
factors. The estimated percentage bulk density and D[4,3] changes at these optimum
settings were negligible at 1.15% and -1.90%, based on S/N ratios. These were obtained
by summing the contributions corresponding to the optimum settings (including the
interaction) to the global mean of the S/N ratios for each quality characteristic.

Since the combination of settings identified as the optimum was not among the 18
experiments in the Taguchi design, a verification test was required. The bulk density and
particle size distribution were measured before and after conveying a 600 g sample of
infant formula through the rig using the optimal rig geometry and operating parameters.
Bulk densities of this sample before and after were 457.1 kgm−3 and 461.2 kgm−3

respectively and the corresponding D[4,3] results were 310.36 µm and 306.91 µm. These
were changes of 0.90% and -1.11%. These results were close to the predicted results and
were essentially equivalent within the limits of experimental error. In addition to the
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means, the particle size distributions were almost identical, as can be seen from Figure
2.5.
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Figure 2.5: Particle size distributions for infant formula samples before and after conveying
using the optimum parameters
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2.3.2 Polynomial Models

The parameters obtained by fitting the polynomial model shown as Eq. 2.12 to the raw
data for bulk density, D[4,3], particle density and wettability are shown in Table 2.8,
while the correlations between model parameters are given in Table 2.9.

Table 2.8: Parameters and p-values of polynomial models fitted to percentage data for four
quality characteristics, where factors which are statistically-significant at a 95% level are

indicated by an asterisk and are highlighted in bold

Factor
Bulk Density D[4,3] Particle Density Wettability

Param. p Param. p Param. p Param. p

a 0 13.221 0.000* -15.715 0.002* -2.104 0.287 87.653 0.057
a 1 11.746 0.000* -8.827 0.018* 1.301 0.375 36.204 0.214
a 2 0.462 0.330 -3.513 0.020* 1.110 0.065 16.249 0.176
a 22 0.267 0.744 2.773 0.276 1.470 0.155 -20.099 0.306
a 31 1.054 0.281 2.284 0.448 0.019 0.987 5.561 0.798
a 32 -0.715 0.642 3.245 0.496 1.351 0.483 9.663 0.779
a 331 6.962 0.000* -7.361 0.018* 0.362 0.765 65.061 0.033*
a 332 -2.056 0.186 0.560 0.906 -0.451 0.814 2.416 0.944
a 4 1.272 0.121 -2.080 0.408 -0.197 0.845 2.046 0.910
a 5 -1.049 0.185 1.545 0.525 0.216 0.825 10.463 0.559
a 55 -1.678 0.253 1.132 0.802 -0.718 0.693 -8.759 0.789
a 61 -0.901 0.288 -0.435 0.867 0.595 0.572 9.880 0.606
a 62 -0.199 0.813 2.064 0.430 -0.599 0.570 6.067 0.749
a 662 -3.950 0.020* 7.269 0.156 -1.328 0.517 -14.480 0.695

Table 2.10 contains the R2 and R2adjusted values for the model fits, along with the per-
centages of the total model sum of squares attributed to error, subdivided into pure
error and lack of model fit components. The model fit was particularly good for bulk
density, where less than 5% of the total sum of squares was due to error, and less than
1% of this total was due to lack of model fit. However, the model fit for particle density
was extremely poor: more than 80% of the total sum of squares was due to error. This
result, in conjunction with the lack of any statistically-significant factors in Table 2.5,
confirmed that the particle density of the infant formula tested was not affected by
pneumatic conveying. Since agglomerates of such formulae contain internal cavities,
there must be sufficient surface fissures or pores to permit the ingress of nitrogen into
most of these voids when measuring particle density by pycnometry. Therefore, when
the agglomerates were damaged during conveying, the change in particle density was
negligible.
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Table 2.9: Correlation matrix for parameters of the model shown as Eq. 2.12

a 662 a 62 a 61 a 55 a 5 a 4 a 332 a 32 a 331

a 1 0.707 0.000 0.000 0.000 0.000 0.000 0.707 0.000 -0.707
a 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
a 22 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
a 31 0.000 0.000 0.000 0.408 -0.047 0.283 0.000 0.000 0.000
a 331 -0.500 0.000 0.000 0.000 -0.287 0.208 -0.500 0.000 1.000
a 32 0.000 0.000 0.000 -0.408 0.047 -0.283 0.000 1.000
a 332 0.500 0.000 0.000 0.000 0.287 -0.208 1.000
a 4 -0.208 -0.283 0.283 0.000 0.000 1.000
a 5 -0.115 -0.375 0.375 -0.115 1.000
a 55 -0.250 0.204 -0.204 1.000
a 61 0.000 0.000 1.000
a 62 0.000 1.000
a 662 1.000

a 31 a 22 a 2 a 1

a 1 0.000 0.000 0.000 1.000
a 2 0.000 0.000 1.000
a 22 0.000 1.000
a 31 1.000

Table 2.10: Metrics quantifying goodness of fit of the polynomial models

Response R2 R2adjusted
% Sum of Squares

Error Pure Error Lack of Fit

Bulk density 0.954 0.939 4.616 3.911 0.705
D[4,3] 0.620 0.497 37.976 34.223 3.753

Particle density 0.192 -0.070 80.775 75.908 4.867
Wettability 0.915 0.639 8.484 — —

In all cases, some of the sum of squares attributed to error was caused by the omission
of two quadratic effects from the model; however, the proportion of the sum of squares
caused by lack of model fit was always low, indicating that neither quadratic effect was
very important. The contributions plot for the plug length factor confirmed this, since
it did not exhibit a marked curvature for any response. However, the contributions plot
for the number of passes was notably curved for bulk density with the maximum S/N
occurring at the intermediate level. This factor was also significant at a 90% level in
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the categorical analysis, yet the omission of the quadratic effect did not significantly
affect the model fit: a result which demonstrated the dominance of the mode of con-
veying factor for the bulk density response. Plots of model predicted values against
experimental data are shown in Figure 2.6.
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No bias was apparent for bulk density or wettability. The model for D[4,3] showed a
slight tendency to under-predict the degree of product breakage at high attrition levels,
e.g., the largest absolute percentage change in D[4,3] was 38.6%, whereas the model
predicted a difference of 27.8%: a considerable disparity. The bias in the model for
particle density was even more evident. This model under-predicted large changes in
particle density and overestimated small density changes.

Pareto charts for the four quality characteristics are shown in Figure 2.7. Mode of
conveying was significant for both bulk density and D[4,3], while the linear parameter
for air velocity in dilute phasewas significant for all quality characteristics except particle
density. It is interesting to note that the equivalent parameter for dense phase conveying
was not close to significance for any response. Therefore, if dense phase conveying
is used for infant formula transport, air velocity is not likely to have a significant
effect on measured quality characteristics. However, the choice of air velocity remains
critical to ensure consistent, reliable flow through the pneumatic conveying system. It
should be noted that there are considerations other than the effect on product quality
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characteristics which influence the choice of settings of a factor. For example, the
air velocity and solids feed rate or plug length affect the throughput of a conveying
system, and if a certain mass flow rate is required, this imposes restrictions on the
settings chosen for these parameters. Other influential parameters were the quadratic
parameter for solids feed rate for bulk density and the linear parameter for length of
the vertical rig section. The latter was statistically-significant only for D[4,3], but had
the largest standardised effect for particle density and the second-largest for wettability.
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Figure 2.7: Pareto charts showing the standardised effects for each term in the fitted model for
a) bulk density, b) D[4,3], c) particle density and d) wettability, where the dashed lines indicate

the 95% significance level

2.4 Conclusions of Chapter 2

A lab-scale modular pneumatic conveying rig with a diameter of 25 mmwas used to in-
vestigate the effect of varying seven factors on four product quality characteristics: bulk
density, volume mean diameter, particle density and wettability. The main conclusions
of this chapter are summarised as follows:

1. Mode of conveying and air velocity had a statistically-significant effect on bulk
density at a 95% level. For D[4,3] and wettability, mode of conveying was the
only significant factor, at only a 90% level for the latter. None of the factors had a
statistically-significant influence on particle density.

2. Optimum settings for this system were dense phase conveying with a 50 mm
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plug length, 960 mm vertical section, 3 ms−1 air velocity, 2 passes and 50 mm
bend radii. Estimated bulk density and D[4,3] changes at these optimum settings
were 1.15% and -1.90%. A verification test obtained similar changes of 0.90% and
-1.11%.

3. By fitting a polynomial model to the raw data, it was shown that air velocity was
significant for only dilute phase conveying, and not for dense phase. These results
imply that the resulting changes in infant formula quality characteristics caused
by conveying will be negligible, irrespective of the settings chosen for the other
conveying parameters, provided that the air velocity is selected to ensure dense
phase conveying.

47



3
Effect of Composition on the Mechanical Response

of Agglomerates of Infant Formulae

A
gglomeration is widely used to enhance the reconstitution properties of
dried powders, such as infant formulae (Ortega-Rivas, 2009). Breakage
of infant formula agglomerates during in-plant handling and transport is

undesirable: implications range from deterioration of the product’s instant properties
such as wettability (Hogekamp and Schubert, 2003), to failure of product bulk densities
to comply with predetermined quality control limits, a subject discussed in Section
1.6 on p.17. The issue of agglomerate breakage is often significant since agglomerates
tend to be considerably more fragile, and therefore more liable to disintegrate under
mechanical loading, than the primary particles from which they are formed.

Dense phase pneumatic conveying is often used for transporting infant formula to pow-
der storage silos and packaging lines after spray drying (Section 1.4.2), during which the
agglomerates experience many transient contacts with other agglomerates and the inner
wall of the pipeline. It is known that the composition of dairy powders affects quality
characteristics such as flowability (Benkovic and Bauman, 2009; Fitzpatrick et al., 2007).
However, little information is available in the literature to relate the composition of
infant formulae to the macro-scale changes in key quality characteristics that occur
during pneumatic conveying. As discussed in Chapter 2, there might be limited scope to
change the composition of an infant formula to reduce attrition following spray drying.
However, it is important to quantify the changes in product properties, even if they are
very large, so that these changes may be predicted accurately.

The forces experienced by individual agglomerates at any instant during conveying
are very difficult to quantify experimentally. One feasible alternative is to study the
breakage behaviour of single agglomerates under controlled laboratory conditions using
diametrical compression. Using this approach, detailed information about the force-
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deformation response is provided (Adams et al., 1994; Antonyuk et al., 2005; Khanal
et al., 2008), mechanical properties such as agglomerate strength and toughness may be
measured (Bika et al., 2001), and expressions such as those developed by Rumpf (1962)
and Kendall (1988) may be applied to relate the agglomerate strength to properties of the
primary particles and inter-particle bonds (Ghadiri et al., 2007, p.840; Samimi et al., 2003).
Advances in technology have also made it possible to study individual agglomerates
under dynamic loading by recording high-speed video footage of agglomerate impacts
(e.g., Samimi et al., 2004; Subero andGhadiri, 2001). Both the static and dynamic loading
cases can provide valuable insights into the micro-scale behaviour of the agglomerates
during loading which influences the macro-scale changes in quality characteristics.

The research detailed in this chapter had two main objectives:

1. To investigate the relationship between composition and the resulting changes in
key quality characteristics, such as bulk density and wettability, when subjected
to conveying. This potential relationship was assessed via pneumatic conveying
trials using four formulae of differing compositions.

2. To establish whether the mechanical response characteristics of the individual
infant formula agglomerates, including stiffnesses and coefficients of restitution,
may be predicted by compositional trends. Static uniaxial compression tests as
well as dynamic drop tests were used.

In addition to their application in this chapter, some of the results of the uniaxial
compression tests are also used in Chapter 5 to calibrate a discrete element model.

3.1 Materials and Methods

3.1.1 Infant Formulae

Four typical infant formulae were tested in this work. Their compositions are shown
in Table 3.1 in order of increasing protein to fat ratio. As discussed in Section 1.1,
manufacturers typically (though not always) divide their core infant formula ranges
into four or fewer age-based categories. The tabulated compositions of formulae A–D
approximate those of typical stage 1–4 infant formulae, respectively.

The size range of the agglomerates was restricted for both the uniaxial compression and
drop test experiments, both to control one of the sources of variability and to simplify
agglomerate handling. A sieve shaker was used to isolate the fraction of the infant
formulae between 710 µm and 850 µm using the apparatus shown in Figure 3.1. A
sieving time of 5 min was used. The action of the sieve shaker was likely to cause some
attrition of the infant formula agglomerates; however, little could be done to prevent
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Table 3.1: Compositions of the infant formulae used in terms of their major components, in
order of increasing protein to fat ratio

Formula
Percentages

Protein:Fat
Carbohydrate Fat Protein Ash Moisture

A 56.5 28.8 10.7 2.0 2.0 0.372
B 56.1 22.1 15.4 4.4 2.0 0.697
C 58.9 17.1 14.8 5.2 4.0 0.865
D 58.9 15.2 16.7 5.2 4.0 1.099

this. Once isolated, the agglomerates were stored in an air-tight container with a large
quantity of silica gel desiccant beads to inhibit moisture absorption. The remaining
fractions (< 355 µm; 355–710 µm; > 850 µm) were discarded.

Sieve stack top cover

Sieve stack bottom pan

ISO 850 µm (ASTM No. 20; Tyler 20 mesh)
Maximum individual opening: 970 µm
Permissible variation: ± 35 µm

Sieve fraction selected
for analysis

ISO 710 µm (ASTM No. 25; Tyler 24 mesh)
Maximum individual opening: 815 µm
Permissible variation: ± 30 µm

ISO 355 µm (ASTM No. 45; Tyler 42 mesh)
Maximum individual opening: 425 µm
Permissible variation: ± 16 µm

Figure 3.1: Diagram showing the sieve stack used for isolating infant formula agglomerates in
the 710–850 µm size range

3.1.2 Pneumatic Conveying Experiments

The pneumatic conveying rig was the same modular 316L stainless steel system used
for the experiments in Chapter 2. This rig is described in detail in Section 2.2.1 on
p.29. However, the configuration of the rig was standardised for all experiments in this
chapter, since the only variables of interest related to composition of the formulae. A
diagram of this standardised pneumatic conveying rig is given as Figure 3.2 while Table
3.2 shows the invariant settings chosen for these experiments. Three air velocities were
used for this study: one in the dense phase regime (4 ms−1) and two in the dilute phase
regime (10 ms−1 and 20 ms−1).
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Figure 3.2: An isometric view of the pneumatic conveying rig (modification of Figure 2.1 on
p.30)

Table 3.2: Configuration selected for the pneumatic conveying experiments to investigate the
effect of composition on quality characteristics of infant formulae

Parameter Chosen Setting

Plug Length (Dense) 100 mm
Solids Feed Rate (Dilute) 1 gs−1

Number of Rig Passes 1
Length of Vertical Rig Section 650 mm

Radii of 90° Bends 200 mm

3.1.3 Measured Product Quality Characteristics and Experimental Procedure

Five product quality characteristics were measured:

1. Bulk density

2. D[4,3]

3. Wettability

4. Hausner ratio
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5. Percentage surface (solvent extractable) free fat

The first three of these were measured using the same methods outlined in Section 2.2.3.
Hausner ratio is an indicator of powder flowability, which may be calculated from the
tapped bulk density using Eq. 3.1 (Hausner, 1967).

Hausner ratio=
Tapped bulk density
Poured bulk density (3.1)

A funnel (11.8 mm outlet diameter) was used when slowly pouring the infant formula
into the graduated cylinder. In cases where cohesive arching prevented smooth flow,
the side of the funnel was tapped to initiate movement. A Hausner ratio of 1 indicates
that the bulk solid is incompressible, and the larger the Hausner ratio is, the poorer the
flowability (Schulze, 2008, p.179). Table 3.3 shows a descriptive flowability scale which
is sometimes used (e.g., Sanganwar and Gupta, 2008) to describe the flow properties of
a powder based on the Hausner ratio.

Table 3.3: Descriptors of powder flowability based on the Hausner ratio

Flow Character Hausner Ratio

Excellent 1.00–1.11
Good 1.12–1.18
Fair 1.19–1.25

Passable 1.26–1.34
Poor 1.35–1.45

Very poor 1.46–1.59
Very, very poor > 1.60

The percentage free fat of the infant formulae was determined using the relevant GEA
Niro Analytical Method (GEA Niro, 2005). Free fat is an important property for infant
formulamanufacturers: if it is excessively high, a fatty layer would appear on the surface
of the reconstituted formula which is organoleptically undesirable. It was measured
by agitating 10 g of infant formula with 50 ml of petroleum ether for 15 minutes using
a Stuart SF1 flask shaker (Bibby Scientific Limited, Stone, Staffordshire, UK), filtering
the resulting solution through Whatman Grade 113 filter paper and evaporating 25 ml
of the filtrate to dryness. Most of the ether was evaporated in a fume hood before the
samples were dried in an oven at 105◦C for 90 minutes: a more rigorous criterion than
the one hour drying time required by the standard (GEA Niro, 2005). The mass of the
residue was then measured. The petroleum ether used had a boiling point of 40–60◦C
(min. 95%) and a density of 0.640–0.655 gml−1 at 20◦C (ACS Grade, Sigma-Aldrich, St.
Louis, MO, USA).

All pneumatic conveying trials were conducted three times. The Hausner ratio and
the free fat were measured for only one replicate, whereas the other three quality
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characteristics were measured for all replicates. For each replicate, bulk density and
wettability were measured once, giving three measurements in total for each pneumatic
conveying trial. D[4,3] was measured twice for each replicate, giving six measurements
for each trial. Free fat and Hausner ratio measurements were carried out in duplicate
to allow the variability in the measurements to be estimated. Properties of the infant
formulae before conveying were also measured for comparison. In all cases, the order
of the trials was completely randomised to minimise the bias in the results.

3.1.4 Calculation of Relative Breakage

Rather than using the change in D[4,3] (or any similar definition of average particle
size) to quantify particle breakage, the approach proposed by Hardin (1985) which
gives insight into the breakage which occurs in different size fractions of the material
under loading was used. This method for quantifying breakage using particle size
distributions is commonly used in the field of soil mechanics (e.g., Coop et al., 2004;
Donohue et al., 2009). Particle size distributions are often presented as shown in Figure
3.3a, with percentages of the particles contained in each size category shown on a
linear vertical axis. To apply Hardin’s method, it is necessary to present cumulative
particle size distributions, where the vertical axis shows the percentage of the particles
which is finer than the corresponding particle diameter. The particle diameter must be
displayed on a logarithmic axis. This is shown in Figure 3.3b for the same particle size
distributions considered in Figure 3.3a.
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Figure 3.3: Alternative presentations of the same particle size distributions for infant formula
B before conveying and following pneumatic transport at 20 ms−1

Hardin defined three measures: breakage potential (Bp), total breakage (Bt) and relative
breakage (Br). The breakage potential, Bp, and the total breakage, Bt, represent the
shaded areas on Figure 3.4. A baseline particle size must be selected; Hardin used
74 µm although other researchers have used different values, e.g., Coop et al. (2004) and
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Figure 3.4: Particle size distributions with shaded areas indicating a) the breakage potential,
Bp, and b) the total breakage, Bt, according to the definitions of Hardin (1985)

Donohue et al. (2009) both used 63 µm. For this work, 20 µm was chosen as measured
changes in the particle size distributions of infant formulae below this threshold were
negligible, even where attrition was high. Bp is the area enclosed between the particle
size distribution before breakage and the baseline size (Figure 3.4a), while Bt is the area
enclosed between the particle size distributions before and after breakage for particle
diameters greater than the baseline particle size (Figure 3.4b). Thus, Bt is a measure of
the actual breakage that occurs whereas Bp quantifies the breakage if all the particles
had final sizes below the baseline size. The relative breakage, Br, may then be calculated
from Eq. 3.2.

Br =
Bt
Bp

(3.2)

For the analysis of the laser diffraction data, two particle size distributionswere averaged
since measurements were duplicated for each of the three replicates. Thus, three values
of relative breakage were obtained for each combination of air velocity and infant
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formula. Note that while changing the baseline particle size had a major effect on the
magnitude of Br, it did not significantly affect the relative trends observed for Br. For
example, selecting Hardin’s baseline size of 74 µm instead of 20 µm would increase Br

results by 107%, on average; however, the minimum and maximum increases would be
74% and 139%. Table 3.4 shows values of Br calculated using different baseline sizes
for five randomly-selected combinations of infant formula and air velocity. This table
demonstrates that choosing a different baseline size simply caused the results to scale
proportionally for the infant formulae tested.

Table 3.4: Sample relative breakage values calculated using three different baseline sizes:
20 µm, 63 µm and 74 µm

Formula | Velocity
Baseline Sizes (µm)

20 63 74

A | 10 ms−1 0.0541 0.0920 {+70%} 0.1016 {+88%}
B | 4 ms−1 0.0076 0.0156 {+106%} 0.0181 {+139%}
B | 20 ms−1 0.0502 0.0988 {+97%} 0.1119 {+123%}
C | 10 ms−1 0.0329 0.0619 {+88%} 0.0703 {+114%}
D | 4 ms−1 0.0258 0.0468 {+81%} 0.0518 {+101%}
D | 20 ms−1 0.0549 0.1030 {+87%} 0.1163 {+112%}

3.1.5 Texture Analysis and Compression Methodology

The uniaxial compression experiments were carried out using a Stable Micro Systems
TA.HDplus texture analyser (Stable Micro Systems Ltd., Godalming, Surrey, UK). A
5 kg load cell was used. The force resolution of this load cell is 0.1 g, force accuracy is
0.025%, the range resolution is 0.001 mm and the speed accuracy is better than 0.1%
(TA.HDplus Texture Analyzer, 2011). Individual agglomerates were compressed on
a flat, 120 mm square glass plate that was 4 mm thick: a surface with extremely low
surface friction. Since the agglomerates were not fixed in place, they were always in
a stable orientation before compression. A 75 mm compressive platen was used; the
diameter of this platen was large enough to ensure that fragments which broke off the
agglomerates remained underneath the platen, where they may have been compressed
again subsequently. The configuration of the texture analyser is shown in Figure 3.5.

It was essential to ensure that the platen and glass plate were parallel during the tests.
Otherwise, the edge of the platen could contact the glass plate before fully compressing
the agglomerate, leading to spurious results. The small size of the infant formula
agglomerates being compressed made it necessary to insert small cardboard shims
underneath the bottom surface of the texture analyser to bring the two compressing
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Compressive platen

Glass plate

Base plate of texture analyser

d

120 mm

4 mm75 mm

5 kg load cell

Figure 3.5: Configuration of the texture analyser used for agglomerate compression

surfaces perfectly into alignment. The settings chosen for the parameters of the texture
analyser software, Exponent (v.4.0.5.0), are shown in Table 3.5.

Table 3.5: Settings chosen for the configurable
parameters of the texture analyser

Parameter Setting

Trigger force† 0.2 g (u 0.002 N)
Target force‡ 30 g (u 0.29 N)

Pre-test speed 0.01 mms−1

Test speed 0.01 mms−1

Post-test speed 5 mms−1

Data acquisition rate 500 points/s

†The trigger force is the force at which to begin
recording data.

‡The target force is the force at which to stop record-
ing data and write the results to a file.

Four variables were recorded, with the last three variables being interrelated: force,
distance, strain and time. It may not be immediately obvious how strainwas determined,
so this is briefly outlined here. The load cell and range of the texture analyser were
calibrated daily before use. Thus, the distance between the bottom of the platen and the
top surface of the glass plate (d ) was known precisely at all times, and this decreased
as the test proceeded. The agglomerate height is this distance at the instant when the
trigger force was reached (do). As the agglomerate was compressed (d < do), the strain
was found as do−d

do
.
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3.1.6 Uniaxial Compression Responses

Three responses were taken from the raw data obtained from the texture analyser:

1. The normal force at the point of failure of the agglomerate (N)

2. The strain at the point of failure of the agglomerate (%)

3. The agglomerate stiffness (Nm−1)

Identifying one unique point of failure for strain-controlled crushing can be problematic
as each plot features a number of local maxima, so it may not be straightforward to
identify which corresponds to the failure point. Figure 3.6 shows three representative
plots of force versus displacement for compression of three agglomerates of infant
formula B.
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Figure 3.6: Plots of force (N) versus displacement (10–4 m) for experimental compression of
three agglomerates of infant formula B, indicating points of failure of the agglomerates using

circles and agglomerate stiffnesses using dashed lines

Each plot has a number of peaks and troughs and it is not easy to define exactly which
is the failure point. It is also clear from Figure 3.6 that simply selecting the point at
which the maximum force occurs as the point of failure is not a reliable criterion; often,
the agglomerate fails before the point of maximum force is attained. In these cases,
the maximum force is for compressive failure of the residual agglomerate fragments
created by the initial crushing cycle. For consistency, an algorithm was developed to
identify the points at which agglomerates fail using MATLAB (v.7.0.1 [R14SP1], The
MathWorks, Natick, MA, USA). In brief, the point of failure is the first point, ordered
by increasing strain, which satisfies three conditions:
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1. It is a local maximum on a plot of force versus deformation, and has the highest
force value within a small (< 2%) strain range surrounding this point.

2. The difference between the force at failure and the force at the subsequent local
minimum must be greater than 0.01 N, and when normalised by the force at
failure, the difference must be greater than 25%.

3. The maximum force attained in a 10% strain range following the point of failure
must be less than the force at failure (otherwise, this is indicative of asperity
failure, not agglomerate failure).

These specific numeric values were chosen as they identified the point of failure reliably
when the algorithm was tested using a subset of the experimental data. Since the points
of failure of the agglomerates were not identified in real time, the compression tests
could not be stopped immediately after failure and a target force was instead specified as
the stopping condition. The agglomerate stiffness was defined as the slope of the linear
region prior to the point of failure on a plot of force versus deflection. Stiffnesses were
calculated automatically by initially finding the slope for a small region of displacement,
and successively extending the region used to calculate the slope. The stiffness was
taken to be the first slope at which either the difference between successively-calculated
slopes exceeded a defined tolerance or this difference became negative, i.e., stiffness
began to decrease. In fewer than 2% of cases, stiffnesses were calculated which were
not valid as the slope of the fitted linear trendline deviated markedly from the force-
displacement plot. In these cases, the number of data points used to calculate the
stiffness was changed manually to obtain a realistic value for stiffness. The circles and
dashed lines on Figure 3.6 identify the points of failure and stiffnesses obtained using
this approach. The total numbers of agglomerates which were judged to have failed
using the criteria in this section, and thus, which are considered in the results below,
were 486, 457, 464 and 447 for infant formulae A–D, respectively.

3.1.7 Drop Tests using High-Speed Camera

Thirty agglomerates of each infant formula were dropped individually onto a flat,
horizontal, stainless steel plate. Each agglomerate was gently pushed off a smooth
stainless steel platform which was at a fixed elevation of 450 mm above the target plate.
This ensured that the impact velocities were consistent at approximately 1.9 ms−1: an
important consideration since the coefficient of restitution generally decreases with
increasing impact velocity, e.g., Schwager (2007). Basic statistics are provided in Table
3.6 which indicate the variation between impact velocities more precisely. None of the
agglomerates were seen to fail when subjected to this dynamic loading.

The impacts were recorded at 1000 frames/s using an AOS X-Motion high-speed camera
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Table 3.6: Means, standard deviations and extreme values of impact velocities for drop tests
conducted using agglomerates in the 710–850 µm size range

Infant Formula
Impact Velocity Statistics (ms−1)

Mean Std. Dev. Minimum Maximum

A 1.793 0.168 1.416 2.105
B 1.894 0.154 1.552 2.162
C 1.856 0.150 1.576 2.166
D 1.911 0.128 1.593 2.196

Overall 1.865 0.155 1.416 2.196

with a remote trigger (AOS Technologies AG, Baden Daettwil, Switzerland) and a
Navitar 50 mm F0.95 TV lens adjusted to a focal length of 0.6 m. Each frame had a
resolution of 1280× 600 and the total sequence length was 1.74 s, including the pre-
trigger buffer (20% of total sequence length, or 0.348 s). Illumination was provided by a
pair of Dedolight Asperics2 DLH4 lamps which were fully switched on and focused on
the target plate. The camera was mounted horizontally on a Manfrotto 055XB tripod
with a Manfrotto #222 joystick head.

The camera operating software was AOS Imaging Studio (v.2.5.2.2, AOS Technologies
AG). Each resulting .mpg file was analysed subsequently using ProAnalyst (v.1.5.3.0,
Professional ed., Xcitex, Inc., Cambridge, MA, USA). This software allowed the position
of each agglomerate to be tracked over time, and thus provided the raw data required
to calculate the coefficient of restitution, i.e., the magnitude of the normal velocity after
impact divided by the normal velocity before impact. The mean normal velocities were
calculated for six consecutive frames directly before and after impact. These velocities,
averaged over a 0.005 s period, were used to calculate the coefficient of restitution. This
was more accurate than using only two frames. Figure 3.7 shows four non-consecutive
cropped sample frames for one drop test with a mm scale in the background.

Figure 3.7: Four cropped frames (numbers 50, 69, 72 and 83) extracted from the video of a
drop test of one agglomerate of infant formula C, where the agglomerate is circled and its

direction of motion is indicated by arrows
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3.2 Results and Discussion

3.2.1 Pneumatic Conveying Results

The variation of bulk density with conveying velocity for the four infant formulae listed
in Table 3.1 is given in Figure 3.8.
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Figure 3.8: Bar chart comparing the bulk density (kgm−3) of infant formulae A–D before
conveying, and following pneumatic transport through a rig of invariant configuration at

4 ms−1, 10 ms−1 and 20 ms−1, where the error bars indicate one standard deviation

For all four infant formulae, there was a steady increase in bulk density with conveying
velocity, as expected. It is interesting to compare the magnitudes of the bulk density
increases. The densities of formulae B and D showed the least variation: the percent-
age differences between the bulk densities before conveying and after conveying at
20 ms−1 were 8.9% and 7.7%, respectively. The corresponding differences for formulae
A and C were much larger at 18.4% and 25.5%. Even within the dense phase regime,
differences between the densities before conveying and after conveying at 4 ms−1 were
more pronounced for formulae A and C: the percentage differences were 2.8%, 0.9%,
1.6% and 0.4% respectively for formulae A–D. This means that attrition is potentially
of greatest concern for formulae A and C. The bulk densities of the formulae before
conveying were related to the percentage of protein in their compositions. Infant for-
mula A contained the least protein (10.7%) and had the lowest bulk density before
conveying of 452.6 kgm−3; C contained the second-lowest amount of protein and had
the second-lowest bulk density of 465.1 kgm−3; etc.

The bulk density increased due to attrition of the powder, which is also shown by
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the decreasing trends in D[4,3] on Figure 3.9. This is as expected from results in the
literature (e.g., Kalman and Goder, 1998; Taylor, 1998; Zhang and Ghadiri, 2002).
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Figure 3.9: Bar chart comparing the volume mean diameter (µm) of infant formulae A–D
before conveying, and following pneumatic transport at 4 ms−1, 10 ms−1 and 20 ms−1, where

the error bars indicate one standard deviation

The differences between mean diameters for the formulae before conveying and follow-
ing passage through the rig at 4 ms−1 were low: the difference of 2.1% for formula A
was the largest. The differences between mean diameters before conveying and after
transport at 20 ms−1 were 58 µm, 29 µm, 57 µm and 37 µm respectively for formulae
A–D. These were percentage differences of 17.8%, 13.5%, 22.0% and 14.1% respectively.
The marked differences between D[4,3] values on Figure 3.9 before conveying were
attributable to factors such as spray dryer and fluidised bed configurations. The error
bars were quite large for the results recorded at high conveying velocities, which is due
to the difficulty associated with taking a small (< 1 g), representative sample for laser
diffraction from a relatively large bulk of approximately 200 g.

These D[4,3] results may be compared to the relative breakage results shown in Figure
3.10. Br generally increased with air velocity, except for infant formula A for which Br

remained constant at around 0.06. For any particular velocity, the trends in Br were
related to the percentage differences in D[4,3], e.g., at 20 ms−1, formula C had the largest
percentage difference in D[4,3] compared to the value before conveying of 22%, and this
formula correspondingly had the highest Br of 0.096. Similarly, the smallest percentage
difference of 13.5%was for formula B which had the lowest Br of 0.050.

As discussed in Section 1.6, one of the primary disadvantages of infant formula attrition
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Figure 3.10: Plot of relative breakage against air velocity (ms−1), where the error bars indicate
one standard deviation

is deterioration of the product’s rehydration characteristics. Figure 3.11 shows the
increase in wettability time that is commensurate with increased attrition.
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Figure 3.11: Bar chart comparing the wettability (s) of infant formulae A–D before conveying,
and following pneumatic transport at 4 ms−1, 10 ms−1 and 20 ms−1, where the error bars

indicate one standard deviation

It is interesting to note the very poor wettability of infant formula B. The minimum
wettability recorded for this formula (22.6 s, measured before conveying) was higher
than any of the measurements for the other three formulae, even where attrition was
high. Note that wettability is related to particle size (Ortega-Rivas, 2009), and B also
had the smallest D[4,3] values of the four formulae tested.

Yan and Barbosa-Cánovas (2000) found that the Hausner ratios of instant coffee and
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milk powders increased with increasing attrition. Figure 3.12 shows the opposite result
for infant formula B: as conveying velocity increased, so too did attrition (Figure 3.9),
yet the Hausner ratio decreased which indicates improved flowability.
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Figure 3.12: Bar chart comparing the Hausner ratio of infant formulae A–D before conveying,
and following pneumatic transport at 4 ms−1, 10 ms−1 and 20 ms−1, where the error bars

indicate one standard deviation

The Hausner ratios were particularly high for infant formula B, ranging from 1.31
(20 ms−1) to 1.42 (4 ms−1). These values indicate flowabilities ranging from passable to
poor, which was confirmed by the powder’s tendency to form cohesive arches when
flowing out of the funnel. Yan and Barbosa-Cánovas (2000) also found that larger
agglomerates have higherHausner ratios; again, comparing results for the four formulae
on Figures 3.9 and 3.12 does not confirm this. No clear trends are observed for powders
other than formula B. This fact, along with sizes of the error bars and the use of only
two replicates per data point, implies that these Hausner ratio results for infant formula
B should be interpreted with caution.

The results for percentage free fat are shown on Figure 3.13. Formula A had a very
high free fat content, which increased from 0.75% before conveying to a maximum
of 1.46% after conveying at 20 ms−1. This increasing trend in percentage free fat was
not observed for the other formulae; however, this may be due to their relatively low
values of free fat compared to formula A. The progressive reduction in percentage
free fat as the protein to fat ratio increased reflected a similar trend in the overall fat
content of these powders: powder A contained the most fat (28.8%) while powder D
contained the least (15.2%). It is hypothesised that the regions which contained high
concentrations of fat coincided with the points of structural weakness for agglomerates
of infant formula A. This explanation accounts for the observed free fat results as
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breakage of the agglomerates during conveying exposed surfaces containing high levels
of fat.
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Figure 3.13: Bar chart comparing the percentage surface (solvent extractable) free fat of infant
formulae A–D before conveying, and following pneumatic transport at 4 ms−1, 10 ms−1 and

20 ms−1, where the error bars indicate one standard deviation

3.2.2 Results of Uniaxial Compression Tests

The results recorded for force at failure, strain at failure and agglomerate stiffness for the
four infant formulae tested were displayed as probability histograms; however, these
are confined to Appendix B for reasons of space. The Freedman-Diaconis rule was used
to set the bin widths and locations. Note that the heights of the bars were scaled so
that the sum of the bar areas on each figure was one. All of the distributions showed
a pronounced positive skew. Both Weibull and lognormal distributions were fitted to
these data sets for each infant formula using the dfittool command in MATLAB. The
lognormal distribution gave a better fit of the data for each response. The associated
probability density function (PDF) was overlaid on each histogram in Appendix B as a
solid red line. These PDFs were calculated using Eq. 3.3:

y = f (x |µ,σ) =
1

xσ
p

2π
e
−(lnx−µ)2

2σ2 (3.3)

The lognormal PDFs for the four infant formulae tested are compared on Figures
3.14–3.16, while Table 3.7 shows means and standard deviations of the raw data and
parameters of the lognormal distributions.

64



3. Effect of Composition on the Mechanical Responses of Infant Formulae

Force at Failure (N)

0.05 0.1 0.15 0.2 0.25

P
ro

ba
bi

lit
y 

D
en

si
ty

2

4

6

8

10

12

18

16

14

Formula B

Formula D

Formula A

Formula C

0
0

Figure 3.14: Probability density functions of lognormal distributions fitted to force at failure
data (N) for the four infant formulae tested
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Figure 3.16: Probability density functions of lognormal distributions fitted to agglomerate
stiffness data (Nm−1) for the four infant formulae tested

Table 3.7: Means and standard deviations of the results obtained for force at failure (N), strain
at failure (%) and agglomerate stiffness (Nm−1), and the parameters of the associated fitted

lognormal (L/N) distributions

Force (N) Strain (%) Stiffness (Nm−1)

Formula A

Mean (Exp.) 0.05301 15.1448 4695.79
Std. Dev. (Exp.) 0.04156 11.4917 2964.44

µ† (L/N) {Std. Error} -3.20912 {0.03373} 2.41042 {0.03753} 8.28542 {0.02630}
σ† (L/N) {Std. Error} 0.74351 {0.02388} 0.82737 {0.02658} 0.57981 {0.01863}

Formula B

Mean (Exp.) 0.07140 14.4088 4648.45
Std. Dev. (Exp.) 0.05275 10.4331 2921.23

µ† (L/N) {Std. Error} -2.87162 {0.03199} 2.40225 {0.03573} 8.27756 {0.02719}
σ† (L/N) {Std. Error} 0.68387 {0.02266} 0.76379 {0.02531} 0.58124 {0.01926}

Formula C

Mean (Exp.) 0.05603 14.9298 5232.35

Continued on page 67
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Force (N) Strain (%) Stiffness (Nm−1)

Std. Dev. (Exp.) 0.04372 10.8541 3169.15
µ† (L/N) {Std. Error} -3.11709 {0.03129} 2.42275 {0.03654} 8.39819 {0.02668}
σ† (L/N) {Std. Error} 0.67391 {0.02216} 0.78705 {0.02588} 0.57468 {0.01890}
Formula D

Mean (Exp.) 0.09047 13.3854 7358.42
Std. Dev. (Exp.) 0.06005 10.2184 4201.11

µ† (L/N) {Std. Error} -2.60941 {0.03110} 2.30463 {0.03733} 8.75345 {0.02639}
σ† (L/N) {Std. Error} 0.65754 {0.02203} 0.78934 {0.02644} 0.55795 {0.01869}

†µ and σ are the mean and standard deviation of the corresponding normal distribution, as returned
by the MATLAB function lognfit.

By comparing the means, a number of general trends became apparent. In general, the
force at failure and agglomerate stiffness increased with the protein to fat ratio while the
strain at failure decreased. For all responses and formulae, the standard deviations were
very large, exceeding 50% of the corresponding means, which illustrates the inherent
variability between individual spray-dried agglomerates of this natural product. There
was a clear correspondence between the force at failure and the percentage of protein in
the formulae: the lowest protein level of 10.7% for formula A resulted in the lowest mean
force at failure of 0.05301 N, whereas the maximum mean force at failure of 0.09047 N
was for formula D which contained 16.7% protein. The protein content was inversely
related to the strain at failure. As the percentage of protein increased, the strain at
failure decreased. Since the percentage of protein was related to the bulk densities of
the formulae before conveying, formulae with low bulk densities before conveying had
low mean forces at failure and high mean strains at failure. There is an interesting link
between mean forces at failure of the agglomerates and changes in bulk density due
to conveying. It is intuitively sensible that formulae containing strong agglomerates
with high forces at failure would break less under mechanical loading, and thus exhibit
less change in bulk density, than a formula containing weaker agglomerates. Infant
formulae B and D had the largest mean forces at failure, and also showed the least
change in bulk density on Figure 3.8. The agglomerates of formulae A and C were
comparatively weak, and their bulk densities varied the most with conveying velocity.

The mean strain at failure was also related to the differences between bulk densities
before conveying and after conveying at 4 ms−1: the smallest bulk density difference
(0.4%) and mean strain at failure (13.4%) were both for infant formula D, while the
highest values (2.8% and 15.1% respectively) were recorded for formula A. There was
a relationship between carbohydrate content and agglomerate stiffness, although this
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was not as clear as the others. It is true that increasing the percentage of carbohydrate
increased the agglomerate stiffness. However, formulae C and D had identical carbo-
hydrate contents but markedly different stiffnesses, which indicated that the observed
relationship may be caused by other factors. It must be noted that all of these observa-
tions were based on only four data points and more formulae would need to be tested
to confirm these general trends.

Correlation Tests of Experimental Responses

It was instructive to determine whether or not significant correlations existed between
any pairs of responses from a data set. Correlations are often determined using the
Pearson product moment correlation coefficient (r). However, this is only applicable
if the data are normally distributed. Visual inspection of the probability histograms
(Figures B.1–B.12) indicated that this was not the case. A rigorous test was provided by
the Shapiro-WilkW test for normality (similar to the Kolmogorov-Smirnov and Lilliefors
tests), as implemented in STATISTICA. If the p-value < α for the chosen significance
level (α is one minus the significance level expressed as a decimal, e.g., α = 0.05 for a
significance level of 95%), the null hypothesis that the data are normally distributed
should be rejected. Results of the W test for the four infant formulae are given in Table
3.8.

Table 3.8: Results of the Shapiro-Wilk W test for normality of the force at failure, strain at
failure and agglomerate stiffness data sets

Response
Formula A Formula B

W statistic p-value W statistic p-value

Force at Failure 0.8375 0.0000 0.8268 0.0000
Strain at Failure 0.8916 0.0000 0.8868 0.0000

Agglomerate Stiffness 0.8482 0.0000 0.8377 0.0000

Response
Formula C Formula D

W statistic p-value W statistic p-value

Force at Failure 0.7864 0.0000 0.8733 0.0000
Strain at Failure 0.8998 0.0000 0.8748 0.0000

Agglomerate Stiffness 0.8794 0.0000 0.8891 0.0000

Since the distributions were not normal, the degree of relationship between the re-
sponses was instead determined using rank correlation coefficients. Two of the most
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commonly used are the Spearman R and Kendall τ coefficients, which are both available
in STATISTICA. The results of these calculations are given in Tables 3.9–3.12.

Table 3.9: Spearman R and Kendall τ rank correlations of all combinations of force at failure,
strain at failure and agglomerate stiffness for infant formula A

Correlation
Spearman R Kendall τ

R p-value τ p-value

Force↔ Strain 0.1418 0.0017 0.0924 0.0023
Force↔ Stiffness 0.8511 0.0000 0.6608 0.0000
Strain↔ Stiffness 0.1874 0.0000 0.1259 0.0000

Table 3.10: Spearman R and Kendall τ rank correlations for all combinations of force at
failure, strain at failure and agglomerate stiffness for infant formula B

Correlation
Spearman R Kendall τ

R p-value τ p-value

Force↔ Strain 0.2363 0.0000 0.1604 0.0000
Force↔ Stiffness 0.7370 0.0000 0.5428 0.0000
Strain↔ Stiffness 0.1357 0.0037 0.0913 0.0035

Table 3.11: Spearman R and Kendall τ rank correlations for all combinations of force at
failure, strain at failure and agglomerate stiffness for infant formula C

Correlation
Spearman R Kendall τ

R p-value τ p-value

Force↔ Strain 0.2067 0.0000 0.1388 0.0000
Force↔ Stiffness 0.8430 0.0000 0.6548 0.0000
Strain↔ Stiffness 0.2418 0.0000 0.1634 0.0000

Table 3.12: Spearman R and Kendall τ rank correlations for all combinations of force at
failure, strain at failure and agglomerate stiffness for infant formula D

Correlation
Spearman R Kendall τ

R p-value τ p-value

Force↔ Strain 0.2368 0.0000 0.1580 0.0000
Force↔ Stiffness 0.8180 0.0000 0.6293 0.0000
Strain↔ Stiffness 0.2444 0.0000 0.1635 0.0000

Sufficient data points were available to ensure that all results were statistically-
significant, even at a 99% level. There was a strong positive correlation between force at
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failure and agglomerate stiffness, with infant formula A having the highest Spearman R
of 0.8511 (Kendall τ of 0.6608). This can be visualised on a scatter plot of stiffness against
force with a linear trendline, which is shown for formula A as Figure 3.17. Spearman R
coefficients for the other two combinations of responses were much lower (maximum
of 0.2444).
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Figure 3.17: Scatter plot of agglomerate stiffness (Nm−1) against force at failure (N) for infant
formula A, with a linear trendline to highlight the positive correlation between the responses

3.2.3 Drop Test Results

Table 3.13 shows means, standard deviations and extreme values of the coefficients of
restitution which were obtained by video analyses of agglomerate drop tests.

Table 3.13: Means, standard deviations and extreme values of coefficients of restitution

Infant Formula
Coefficient of Restitution Statistics

Mean Std. Dev. Minimum Maximum

A 0.2460 0.0950 0.0244 0.4191
B 0.3258 0.0979 0.0901 0.4743
C 0.3009 0.1030 0.0929 0.5007
D 0.2768 0.1089 0.0500 0.5852

Overall 0.2883 0.1044 0.0244 0.5852

Formula A had the lowest mean coefficient of restitution of 0.2460, and also had the
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lowest minimum and maximum coefficients of restitution of 0.0244 and 0.4191, respec-
tively. Formula B had the highest mean coefficient of restitution of 0.3258. Since a
large dispersion existed in these results (standard deviations for any formula were
greater than the maximum differences between means of different formulae), a more
appropriate way of displaying coefficients of restitution was by fitting a probability
density function to the data. The most suitable was a Weibull PDF (Eq. 3.4), where a is
the scale parameter, b is the shape parameter and x ≥ 0:

y = f (x | a ,b ) =b a−b x b−1e
−
� x

a

�b

(3.4)

The PDFs obtained are shown on Figure 3.18.
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Figure 3.18: Probability density functions of Weibull distributions fitted to coefficients of
restitution of the four infant formulae tested

Note the relationship that exists between the coefficient of restitution and the relative
breakage results for low velocity conveying at 4 ms−1. Where coefficients of restitution
were low, this implies that extensive breakage of either bonds or primary particles
occurredwhich absorbed energy. Since these agglomerateswere particularly susceptible
to damage, it might be expected that the infant formulawould bemore friable than other
formulae under similar loading conditions. Infant formula A, which had the lowest
coefficient of restitution, had the highest Br for conveying at 4 ms−1 (0.058), formula
D had the second-lowest coefficient of restitution and the second-highest Br of 0.026,
while the Br results for formulae B and C were transposed, but were very close as seen
on Figure 3.10.
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None of the agglomerates were seen to fail during the drop tests. There are two reasons
for this. Firstly, the impact velocity was around 1.9 ms−1, and it was shown that attrition
was low using a considerably higher conveying velocity of 4 ms−1. Secondly, the
agglomerates for the uniaxial compression experiments and the drop tests were isolated
using a sieve shaker which applied significant mechanical loading to the powder. This
process is likely to have broken any friable agglomerates, so those remaining with a
size between 710 µm and 850 µmwere likely to be particularly resistant to breakage.

3.3 Conclusions of Chapter 3

In this chapter, the relationships between the compositions of infant formulae, the
changes in key quality characteristics when transported by pneumatic conveying and the
mechanical properties obtained by uniaxial compression and drop testing of individual
agglomerates were investigated. As conveying velocity increased, so too did the bulk
density, although the increases in bulk densities for those formulae containing the
least protein (A and C) were considerably greater than for others (B and D). As the
percentage of protein increased, the bulk densities before conveying of the four formulae
increased accordingly. The wettability of formula B was poor, which may be caused
by its generally smaller particle size. The surface (i.e., solvent extractable) free fat
decreased progressively as the protein to fat ratio increased, which is commensurate
with the decreasing fat contents of these powders. Since it is desirable to minimise the
changes in bulk properties of the infant formulae caused by conveying, this implies that
manufacturers should consider maximising the protein content of their formulae while
obviously remaining in compliance with regulatory requirements for energy, micro-
nutrient content etc. Reducing the fat content to the minimum permissible should also
be beneficial, as this would correspondingly reduce the percentage surface free fat.

The force at failure and agglomerate stiffness generally increasedwith increasing protein
to fat ratio while the strain at failure decreased. Strong positive correlations existed
between force at failure and agglomerate stiffness. Both force and strain at failure were
related to the percentage of protein: increasing the protein content caused an increase
in the mean force at failure and a decrease in the mean strain at failure. Agglomerates of
infant formulae B andD had the largest mean forces at failure, which explains why these
formulae showed the least variation in bulk density when pneumatically conveyed.
The strain at failure was also related to the differences between bulk densities before
conveying and after conveying at 4 ms−1. When drop tests were conducted at around
1.9 ms−1, infant formula A had the lowest mean coefficient of restitution and B had
the highest (0.3258). The coefficients of restitution decreased as the relative breakage
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results increased, which is likely to be due to the increased number of bonds or primary
particles broken during loading.
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4
Calibration of Discrete Element Models of Bonded

Agglomerates using Taguchi Methods

T
he primary emphasis of Chapters 2 and 3 has been on the “macro” effects of
infant formula attrition, i.e., quantification of the effect of attrition on bulk
product quality characteristics. Even where infant formula breakage has

been assessed on a single-particle, “micro” level (Sections 3.2.2 and 3.2.3), it has not been
possible to gain any insights into the evolution of the microstructure of the agglomerates
under loading, which could potentially be very useful. For example, it might be possible
to develop simulated infant formula agglomerates which are geometrically similar to
the physical agglomerates but which are stronger. The simulation outputs could inform
modificationsmade to the operating parameters of the spray dryer, or the composition of
the formula, and thus aid the development of products which are less prone to attrition
when pneumatically conveyed. Chapters 4 and 5 both make extensive use of discrete
element modelling (DEM), which can provide detailed microstructural information to
the researcher. Chapter 4 introduces this simulation tool and details a novel approach to
calibration of such models. This approach was applied for model calibration in Chapter
5.

4.1 Introduction to Discrete Element Modelling

Discrete element modelling† is a computational or simulation tool used to model com-
plex systems of particulates at the particle scale by specifying a relatively small number
of microstructural parameters. The fundamental algorithm for DEM was established

†DEM may also be read as an abbreviation of distinct element method; in the literature, they are often
treated as interchangeable (Bobet et al., 2009) although the categorisation of Cundall and Hart (2004)
suggests that discrete element modelling is a broader, more inclusive term.
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during the 1970s by P.A. Cundall and O.D.L. Strack (Cundall and Strack, 1979). How-
ever, the method did not become widely used until the 1990s, and its popularity has
grown rapidly since. This increase in usage of DEM is commensurate with the rise in
computational power, which has made it possible to run useful simulations on afford-
able desktop computers (Cundall, 2001). The availability of commercial software has
also contributed to the increased popularity of the method.

4.1.1 Algorithm

The two categories in particulate DEM are the “hard sphere” and “soft sphere” ap-
proaches. The calculations in the former approach assume instantaneous binary col-
lisions, and use momentum and energy balances (Di Renzo and Di Maio, 2004; Zhu
et al., 2007). The discussion below is restricted to the soft sphere, or force-displacement
method, which is used most often. It is so called because particles in the model are
assigned finite stiffnesses and deformations of particles at the contact points are cap-
tured by permitting overlaps between the interacting bodies (Cheng et al., 2003). For
this work, simulations were conducted in both two and three dimensions using the
commercial DEM software packages PFC2D v.4.0 and PFC3D v.4.0† (Itasca Consulting
Group, Minneapolis, MN, USA), respectively. These software packages are implemen-
tations of the DEM algorithm proposed by Cundall and Strack (1979). Note that while
particulate materials of interest in engineering applications are three-dimensional, 2D
models are useful analogues of real 3Dmaterials as the models are easier to create, have
shorter simulation times, and deformation and failure mechanisms can be more easily
observed.

Both of these software packages apply an explicit conditionally-stable central difference
algorithm to calculate the time steps necessary to represent the dynamic behaviour
of the particles. Since the assumption is made that velocities and accelerations are
constant within each time step, this requires time steps to be extremely small for stability
(Potyondy and Cundall, 2004).

At each successive time step, inter-particle forces are evaluated at contact points using
some force-displacement relations and resultant forces are calculated for each particle.
Newton’s second law is then applied to determine particle accelerations, both transla-
tional and angular (O’Sullivan, 2008). Eq. 4.1 relates resultant force (Fi ) and acceleration
(ẍ i ) for a disk/sphere of mass m and Eq. 4.2 gives the relationship between resultant
moment (M i ) and angular acceleration (ω̇i ) (Itasca Consulting Group, 2008).

Fi =m (ẍ i − g i ) (4.1)
†PFC is an abbreviation of “Particle Flow Code”.
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M i = I ω̇i (4.2)

g i is a body force acceleration vector and I is the moment of inertia of the disk/sphere.
Since the centre of mass coincides with the centre of a disk or sphere of radius R , Eq. 4.2
may be rewritten as Eq. 4.3, where the multiplier ϑ is 0.5 for a disk and 0.4 for a sphere.

M i = ϑm R2ω̇i (4.3)

These acceleration terms are integrated numerically to find particle velocities and dis-
placements; hence, positions may be updated after each time step. Note that disks have
three degrees of freedom while spheres, in three dimensions, have six: one translation
and spin in each Cartesian direction (Cundall, 2001).

4.1.2 DEM Particle Shape

The simplest particle shapes to select for use in DEM are disks (2D) or spheres (3D)
(O’Sullivan, 2008). This is because knowledge of the location of the centrepoint and
the radius is sufficient to describe these particles fully as orientation is unimportant.
Furthermore, contact equations involving disks and spheres are usually easier to solve
computationally (linear) than for alternative geometries, e.g., using ellipsoidal particles
requires non-linear equations to be solved at the contact points.

While choosing disks or spheres has significant computational benefits, there are also
disadvantages. If the real particles being modelled have a non-circular aspect, yet are
being modelling using disks or spheres, the model particles may be more prone to
rotation or rolling than in reality.

Where it is desirable to use particles other than disks or spheres, there are two ap-
proaches:

1. Many authors have used fundamental particles of alternative shapes, e.g., ellipses
(Ting et al., 1993), ellipsoids (Lin and Ng, 1997; Ng, 2004), polygons (D’Addetta
et al., 2002; Issa and Nelson, 1993), polyhedra (Ghaboussi and Barbosa, 1990; Hart
et al., 1988), and particles of specific shape, e.g., tablet-shaped particles (Song
et al., 2006). Additional references are given by Donzé et al. (2008).

2. The second option is to bond multiple disks or spheres together to form clumps
or clusters (O’Sullivan, 2008). These clusters may be of any arbitrary shape and
can experience damage due to bond failure. This latter property is crucial for
simulating crushing. Some examples of papers which have used clusters of
bonded particles include Cheng et al. (2003), Favier et al. (1999), Hosseininia and
Mirghasemi (2006), Jensen et al. (1999), McDowell andHarireche (2002), Robertson
and Bolton (2001), and Thornton and Liu (2004).
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4.1.3 Agglomerate Bonds and Contact Models

At each contact, it is necessary to include a rheological model to relate the inter-particle
force (whether tensile or compressive) with the overlap. Cundall and Strack calculated
forces by placing conceptual springs, dashpots and sliders at the contact points between
particles (Zhang and Whiten, 1996). In general, the springs may be linear and elastic,
non-linear and elastic, or elasto-plastic. The dashpots allow for viscous dissipation of
energy. A slider in the contact tangential direction permits relative motion of particles
when the Coulomb frictional strength is exceeded (O’Sullivan, 2008).

PFC2D/3D includes two contact models: the linearmodel and theHertz-Mindlinmodel
(Itasca Consulting Group, 2008). The PFC implementation of the Hertz-Mindlin model
is a non-linear approximation to the theory outlined byMindlin and Deresiewicz (1953).
It is not as popular as the linear model as it is considerably more computationally
expensive (Zhu et al., 2007), and will not be considered further here. The contact
stiffness in the PFC linear model is calculated from the normal or shear stiffnesses of
the two contacting entities (either two disks/spheres or one disk/sphere and one wall).
For two contacting entities, α and β, which have normal stiffnesses of kα

n and kβ
n and

shear stiffnesses of kα
s and kβ

s , the contact normal and shear stiffnesses, Kn and Ks , are
given by Eq s. 4.4–4.5, respectively (Itasca Consulting Group, 2008):

Kn =
kα

n kβ
n

kα
n +kβ

n

(4.4)

Ks =
kα

s kβ
s

kα
s +kβ

s

(4.5)

Note that the normal stiffness is a secant stiffness (relates total displacement and force),
while the shear stiffness is a tangent stiffness (relates incremental displacement and
force). Thus, the normal contact force, Fn , is calculated from Eq. 4.6 and the elastic shear
force increment, ∆Fs , from Eq. 4.7:

Fn = Kn xn (4.6)

∆Fs =−Ks∆xs (4.7)

If the second approach listed in Section 4.1.2 is applied, it is necessary to bond disks or
spheres together at contacts to form agglomerates. PFC includes two standard bond
types: contact bonds and parallel bonds (Itasca Consulting Group, 2008b). Contact
bonds are simpler; these take the form of a pair of elastic springs at the contact point
between bonded entities. Two parameters are required to specify contact bonds: the
bond normal and shear strengths. In 3D, parallel bondsmay be envisioned as an annular
region centred on the contact point which contains a number of uniformly-distributed
elastic springs. In 2Dwhere the contact is between disks of unit thickness, the analogue
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is parallel springs distributed over a rectangular region. Parallel bonds require the
specification of five parameters in the software: the bond normal and shear strengths,
normal and shear stiffnesses and the bond radius. These spring stiffnesses cause a
force and moment to be developed if the bonded particles move relative to one another.
The maximum normal and shear stresses acting at the periphery of the parallel bond
are calculated from beam theory and compared to the corresponding bond strengths.
If the maximum normal tensile stress is greater than the bond normal strength, the
parallel bond is deemed to have failed and is deleted from the model. The same occurs
if the maximum shear stress exceeds the bond shear strength. The bond radius is set
by specifying the parameter λ̄ in the software; the bond radius is the product of λ̄ and
the radius of the smaller of the two particles interacting in the bond (equivalent to
the radius of the circular region containing springs in 3D). λ̄must be positive; if it is
equal to 1, the bond radius is the same as the radius of the smaller particle in the bond.
Further details of parallel bonding are provided by Potyondy and Cundall (2004).

Although parallel bonds are more computationally expensive than contact bonds, they
have one major advantage. Parallel bonds transmit both force and moment (bending
and twisting in three dimensions; bending only in two dimensions), whereas contact
bonds are restricted to the transmission of force only.

4.1.4 Agglomerate Structure Formation

A great deal of research has been conducted on packing of disks and spheres (e.g.,
Feng et al., 2003; Nolan and Kavanagh, 1992; Santiso and Muller, 2002; Visscher and
Bolsterli, 1972). Three different methods were used to produce the agglomerates for
use in this research:

1. Radius expansion (2D)

2. Close-packed cubic lattices (3D)

3. Sequential addition (3D)

Radius expansion has been used by numerous authors to produce agglomerates for use
in 2D simulations (e.g., Belheine et al., 2009; Chareyre and Villard, 2002; Yan et al., 2009).
Disks are randomly generated within a rigid confining wall and their radii are gradually
increased until the maximum overlap between disks reaches a low limiting value, as
illustrated by Figure 4.1. The wall is then deleted. A related method which is sometimes
used to generate 2D agglomerates is to randomly generate disks within a confining
wall, as for radius expansion, but then impose a centripetal gravitational field to pack
the disks together closely (e.g., Lian et al., 1998; Ning et al., 1997). Such methods have
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also been applied to 3D simulations (Moreno-Atanasio and Ghadiri, 2006; Thornton
et al., 1999).

a) b)

Figure 4.1: Radius expansion for a 2D agglomerate containing 147 disks: a) shows the
randomly-placed disks before expansion following 5000 DEM cycles and b) shows the final

agglomerate after expansion

Agglomerates for use in three-dimensional simulations are often produced from ideal
cubic lattices, e.g., Cheng et al. (2003), Harireche and McDowell (2003), Kafui and
Thornton (2000), and McDowell and Harireche (2002). Two types of close-packing of
monosized spheres are possible: hexagonal and cubic close-packing. Both are equally
efficient (74.05%) at filling space with spheres, but result in different lattices: hexagonal
and face-centred cubic (fcc), respectively (West, 1999, p.20). A body-centred cubic
(bcc) lattice may also be generated, but this is not close-packed (efficiency ≈ 68.02%).
Irrespective of the lattice chosen, no initial overlaps are included between the spheres.
Flaws in the lattice may be simulated by randomly deleting some of the spheres. For the
simulations below, cubic close-packing was used, in which there are three alternating
layers. These layers, often denoted as A, B and C, are illustrated in Figure 4.2.

The third method listed above, sequential addition, is less commonly used, and yields
agglomerates with low density packings (Al-Raoush and Alsaleh, 2007). One seed
sphere is placed at the origin. Other spheres are then placed successively and randomly
within a geometry of defined volume surrounding this seed sphere. Each active sphere
is moved randomly until it comes into contact with another sphere, when it is fixed
in position (ensuring no overlaps). Since many different variants of these deposition
methods exist, some details of the sequential addition method used in this research are
provided in Appendix C.
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Layer A Layer B Layer C

Figure 4.2: Illustration showing how the three different layers, A, B, and C, are arranged in
cubic close-packing of monosized spheres

4.2 Current Approaches to Calibration

A key challenge in DEM analysis is to select appropriate parameters so that the response
of real, physical systems can be accurately simulated. Some of the input parameters,
such as the particle dimensions or the density, can be measured or estimated with a
large degree of confidence. However, the rheological parameters for input to the contact
constitutive models are often more difficult to determine accurately by experiment. It
is not generally possible to infer a complete set of appropriate parameters for a DEM
simulation directly from properties of the physical material, as might be expected
for a complex system. Therefore a calibration approach is often used to select these
parameters. Typically calibration involves varying the DEM parameters until the model
response corresponds closely to the equivalent experimental response. This approach is
widely used (e.g., Asaf et al., 2006; Coetzee and Els, 2009; Doležalová et al., 2002). This
calibration is often conducted using very basic parametric studies, where parameters
are varied individually and the effect on the model response is monitored. While
conceptually simple, this approach to calibration has many disadvantages:

• It may take a long time to obtain an appropriate set of parameters.

• It is impossible to know in advance how many DEM simulations are required for
calibration.

• The final parameters obtained may not be optimal.

• The mechanistic insight gained is limited.
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Recently there have been proposals to develop more efficient DEM calibration ap-
proaches using design of experiments (DOE) methods. Yoon (2007) applied a Plackett-
Burman design and response surface analysis to determine suitable DEM micro-
parameters for uniaxial compression of bonded rock particles. Favier et al. (2010) used
DOE methods to calibrate discrete element models for a mixer and a hopper, based on
measurements of torque and discharge flow rate, respectively. Johnstone and Ooi (2010)
applied DOE methods to find appropriate model parameters based on experimental
measurements of flow in a rotating drum device and mechanical response during a
confined compression test. A large range of DOE methods are in use in the scientific
field, but all these methods have the same objective: to find the relationship between the
process parameters and the process output by using a structured pre-planned method-
ology for obtaining experimental data that ensures the desired balance between the
amount of data to be obtained and the precision and confidence required of the results.

An introduction to the Taguchi method was given in Chapter 2, beginning on p.22. This
DOE approach has become very popular in industrial practice as a tool to achieve quality
by design and minimise non-conformity costs, by establishing the optimum settings
of a process that optimise its performance and the consistency of that performance
(Taguchi, 1987). As it has proved to be effective in ensuring robust operation in practice
(i.e., obtaining the set of parameters that minimise system variability resulting from
the inevitable variability of its inputs), it should also be ideally suited to calibration
(identifying the set of model parameters that minimise the variability of model predic-
tions). However, a literature review revealed no published work which applied Taguchi
methods to DEM calibration.

The objective of this chapter was to evaluate the Taguchi method as a tool for calibrating
agglomerates of bonded disks (2D) and spheres (3D). If the method proved successful, it
could be applied subsequently to calibrate a DEM using experimental data. Simulations
of agglomerate crushing were conducted in both two and three dimensions using the
commercial DEM software packages PFC2D and PFC3D, which were introduced in
Section 4.1.1.

4.3 DEM Simulations

Due to the range of potential applications and level of interest in the modelling of
particles using bonded agglomerates (Section 4.1.2), it was chosen here as an exemplar
application of the Taguchi method to DEM calibration. It should be noted that these
simulations were not intended to capture the behaviour of any particular material, and
so could feasibly represent many different agglomerated products. This approach also
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allowed parameters such as stiffnesses to be varied to investigate their effect on the
responses without needing to consider physical implications.

4.3.1 Agglomerate Formation

The agglomerates used for the 2D calibration study were produced in the DEM simula-
tion by bonding disks together. These disks were produced by radius expansion within
a circular confining wall with a 500 µm diameter. The random placement of the disks
inside the confining wall is dictated by the seed of the random number generator: a
dimensionless integer. If two simulations were run using identical parameters, disks
would be generated in the same positions; however, changing only the random number
seed would cause the disks to be generated in different positions. The ball diameters
before radius expansion were normally distributed around 30 µm with a lower cut-off
of 20 µm. Following expansion, the average ball diameter was 38 µmwith a standard
deviation of 7 µm. On average, each agglomerate contained 130 disks with a standard
deviation of 11 disks.

A lattice-basedmethodologywas used to produce the agglomerates in three dimensions,
placing monosized spheres in a face-centred-cubic lattice packing without any initial
overlaps. Flaws in the lattice were simulated by randomly deleting either 10% or 20%
of the spheres, as described in Section 4.4.2. Each agglomerate contained 846 spheres
of diameter 60 µm before deletion. The agglomerate dimensions were ellipsoidal, with
equal major and intermediate radii of approximately 350 µm and a minor radius of
250 µm. The PFC damping coefficient was 0.3. This local non-viscous damping is
necessary to dissipate kinetic energy in the DEM (Potyondy and Cundall, 2004). Ball
density was 600 kgm−3 which is a reasonable estimate for light dairy agglomerates. The
damping coefficient and ball density were the same for the 2D and 3D simulations.

4.3.2 Particle Crushing Conditions

To simulate a particle crushing test, each agglomerate was subject to uniaxial compres-
sion between stiff, horizontal, frictionless platens, as shown in Figure 4.3. This form of
DEM agglomerate crushing is similar to the work of Cheng et al. (2003) and Thornton
et al. (2004).

This compression was strain-controlled, and all agglomerates were compressed to a
strain of 20%. In both the two- and three-dimensional cases, the bottom platen remained
at rest and the upper platenmoved towards it at 10mms−1. This velocity was sufficiently
low to ensure that forces on the top and bottom platens were equivalent during crushing,
i.e., quasi-static loading was attained. The initial distance between the platens was
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Figure 4.3: Illustration of uniaxial crushing of an agglomerate between two stiff horizontal
platens for the 3D simulations

equal to the agglomerate height. Stable time steps were calculated automatically by the
software and were approximately 1×10–4 s for 2D and 3×10–5 s for 3D.

4.3.3 Agglomerate Bonds and Contact Models

The inter-sphere contacts were modelled using a standard linear contact model and
parallel bonds were used to cement the disks or spheres together to form a bonded
agglomerate (see Section 4.1.3). Once a bond breaks, or if a new contact is formed after
the cementing stage of the simulation, the contact interaction between two particles is
frictional.

4.4 Experimental Designs

The 2D and 3Dmodels needed to be assessed independently because although many
parameters were the same, the range of values of certain parameters which gave a feasi-
ble response differed by orders of magnitude in many cases. This could be attributed
to the kinematic constraints imposed in 2D compared to the 3D case; in 2D, each base
particle has three, rather than six, degrees of freedom and particle motion is restricted
to a single plane. In ANOVA, whether a factor or interaction is important or negligible
is a comparative result which depends on the range of values tested. This implies that
the 2D and 3D results may not be comparable. However, since the underlying physical
phenomena represented by each parameter are the same, some insights obtained in one
case may be considered for the other. As 2D simulations are much less computationally
expensive, it was decided to consider these first, and use the insights gained to inform
the experimental design for the 3D simulations.
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4.4.1 Experimental Design for Two-Dimensional Simulations

Table 4.1 shows the list of the factors and their levels used for the 2D simulations.
An L27 array could have been chosen as it can accommodate up to 13 factors at three
levels. However, confoundings would have been extensive as nine columns would have
been occupied by factors with only four columns left vacant, and it would not have
been possible to allocate these nine factors to columns without intricately confounding
their effects with interactions. Confoundings are particularly complex with three-level
factors, as the effect of each interaction is distributed between two columns. The next
orthogonal array for three-level factors is the L81 array containing 40 columns, where
a more manageable set of confoundings could be defined. Selecting an L81 instead of
L27 increases computational time approximately three-fold due to the number of runs
rising from 27 to 81. As the 2D simulations were not computationally expensive, this
time increase was considered acceptable. It is noted that the total number of possible
combinations of 9 factors at 3 levels is 39 = 19683, so studying this solution space with
only 81 simulations was still a very efficient approach.

Table 4.1: Factors varied, levels used and column of the standard L81 array assigned to each
factor for the 2D simulations

Control Factor
Level

Column
1 2 3

Bond radius multiplier (–) 0.7 0.8 0.9 1
Bond normal strength (Nm−2) 1×106 1.5×106 2×106 2
Bond shear strength (Nm−2) 1×106 1.5×106 2×106 5
Bond normal stiffness (Nm−3)† 1×1011 1.5×1011 2×1011 14
Bond shear stiffness (Nm−3)† 1×1011 1.5×1011 2×1011 22

Ball friction (–) 0.4 0.6 0.8 25
Ball normal stiffness (Nm−1)‡ 3×105 5×105 7×105 27
Ball shear stiffness (Nm−1)‡ 3×105 5×105 7×105 35
Random number seed (–) 2000 4000 6000 39

†Bond stiffnesses have dimensions of stress/displacement.
‡Ball stiffnesses have dimensions of force/displacement.

The main effects were assigned to the columns of the standard L81 array which are
listed in Table 4.1. The full L81 array is provided in Appendix A on p.214. By reference
to the triangular table for the L81 array (Table A.8 on p.228), it can be seen that these
nine columns were chosen because they were independent of all two-way interactive
effects, which were confined to the remaining 31 columns of the array (where they
were partially pooled). Therefore, this design allowed all factors to be tested without
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confounding. Pools of interactions may also be tested for significance to permit many
of those interactions to be eliminated with confidence.

4.4.2 Experimental Design for Three-Dimensional Simulations

An L27 array containing 13 columns was used for the 3D simulations. In this case, the
computational requirements would not have made an L81 design a reasonable choice.
However, some insight into the system was gained from the analysis of the 2D results.
Two factors whose order of magnitude did not change and which proved to be of little
influence in the 2D model were not considered further: the bond radius multiplier and
the random number seed. These factors were set at their median values in Table 4.1. One
additional factor that needed to be included was the percentage of balls deleted from
the lattice. The number of degrees of freedom remaining allowed only two interactive
effects to be considered. Thus, the design was developed assuming that all but two
interactive effects could be neglected, and factors were allocated to columns to allow
these two chosen interactions to be assessed. This was deemed to be appropriate on the
basis of the 2D analysis, and the interactive effects selected for consideration were the
following:

1. Bond shear strength × bond shear stiffness (Interaction I)

2. Bond shear strength × ball shear stiffness (Interaction II)

Table 4.2 shows the factors and levels used for the 3D simulations, along with the
columns of the standard L27 array assigned to each factor. The L27 array and corre-
sponding triangular table are provided in Appendix A on p.213 and p.226, respectively.

Table 4.2: Factors varied, levels used and column of the standard L27 array assigned to each
factor for the 3D simulations

Control Factors
Levels

Column
1 2 3

Bond shear strength (Nm−2) 1.5×105 2×105 2.5×105 1
Bond shear stiffness (Nm−3) 3×1010 5×1010 7×1010 2
Ball shear stiffness (Nm−1) 3×105 5×105 7×105 5

Bond normal strength (Nm−2) 1.5×105 2×105 2.5×105 8
Ball friction (–) 0.4 0.6 0.8 9

Percentage of balls deleted (%) 0 10 20 10
Bond normal stiffness (Nm−3) 3×1010 5×1010 7×1010 11
Ball normal stiffness (Nm−1) 3×105 5×105 7×105 12
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Interaction I was contained in columns 3 and 4, and interaction II in columns 6 and 7.
The remaining interactions were intricately confounded with factors, and were assumed
to be negligible in the data analysis.

4.5 Simulation Responses

The objective of the study was to achieve a controlled mechanical response for the
agglomerate as a whole. The mechanics of an agglomerate response under uniaxial
compression are often complex and highly non-linear. The force-deflection behaviour
may include multiple local maxima, and alternating periods of strain softening and
strain hardening. As discussed by Cavarretta (2009), the load deformation response is
affected by asperity failure, particle rotation, elastic and plastic response of the solid
particle material and gross fragmentation. Therefore, one single response is insufficient
to characterise the compression mechanics and in this study, four responses were
selected:

1. The normal force on the platens at 10% strain (N)

2. The normal force at the point of failure of the agglomerate (N)

3. The strain at the point of failure of the agglomerate (–)

4. The agglomerate stiffness (Nm−1)

In many single particle compression tests (either physical tests or simulations), identify-
ing the point of failure for strain-controlled crushing is subjective. However, the results
obtained for the 3D simulations in this study were unambiguous. This is illustrated in
Figure 4.4, which shows three representative plots of normal force versus displacement
for trials 1, 6 and 22 in three dimensions.

The problems associated with determining one unique point of failure from a complex
response were discussed in Section 3.1.6 (p.57). The same issue arose with the 2D
simulation data. Figure 4.5 shows plots of normal force versus displacement for trials
18, 65 and 75 in two dimensions.

The algorithmwhich was outlined in Section 3.1.6 was modified for use in this situation.
The modified algorithm states that the point of failure is the first point, ordered by
increasing strain, which satisfies the following three criteria:

1. The point of failure is a local maximum on a plot of force versus deflection, and
has the highest force value within a small (< 2%) strain range surrounding this
point.

2. The force at failure must exceed 50% of the maximum force recorded.
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Figure 4.4: Three plots of normal force (N) versus displacement (10–4 m) for
three-dimensional agglomerate crushing trials 1, 6 and 22

3. The difference between the force at failure and the force at the subsequent local
minimum, normalised by the force at failure, must be greater than 25%.

This modified algorithm was less generally applicable since the second condition arbi-
trarily defined the force at failure to be greater than half the maximum force recorded
before 20% strain was attained. However, the results obtained were more reliable
than the previous algorithm for identifying the points of failure of 2D simulation
data. Each agglomerate stiffness was calculated as the slope of the linear region of the
force-displacement plot immediately prior to failure, which was found using the same
approach as in Section 3.1.6. The circles and dashed lines on Figure 4.5 identify the
points of failure and stiffnesses obtained using this approach.

4.6 Analytical Procedure

The data were analysed using STATISTICA (v.7.1, StatSoft, Inc., Tulsa, OK, USA). Firstly,
an ANOVA was applied to the raw data obtained for the 2D simulations for each of the
four response parameters. Marginal means were calculated and presented graphically;
these show the average effect of choosing a particular factor level compared to the
global average. In the Taguchi method, estimates for any combination of settings are
calculated by addition of the respective marginal means, which implies assuming that
all interactions are negligible. In some cases, it is possible to correct for interactions
(when the effect of that interaction is confounded neither with any factor nor with
other potentially significant interactions). In order to test the predictive ability of this
procedure, a validation set was subsequently run by choosing 10 random combinations
of levels (other than the 81 already used), and the responses obtained by running DEM
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agglomerate crushing trials 18, 65 and 75, indicating points of failure of the agglomerates
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simulations using these randomly-chosen levels were compared to those predicted by
the marginal means addition.

There were 9 factors in the design and therefore 36 possible two-way interactions
h

∑n−1
i=1 i where n is the number of factors

i

. As interactions of three-level factors are
distributed between two columns, most of the columns of the L81 which were not
occupied by factors contained parts of multiple interactions, e.g., column 3 contained
parts of the following interactions:

• Bond radius multiplier × bond normal strength

• Bond normal stiffness × bond shear stiffness

• Ball shear stiffness × random number seed

In order to evaluate the potential significance of the interactions in 2D, eachwas assessed
in turn, assuming all others to be negligible. If the added effect of considering an
interaction in this test was negligible, then the interaction could be neglected. Otherwise,
it could potentially be important, but this was not certain as the effect was confounded
with other interactions. In the 3D analysis, all but two interactions were assumed to be
negligible. Estimates of the response were corrected for these two interactive effects,
and they were also tested for statistical significance and compared with the effects of
factors.
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4.7 Results and Discussion

4.7.1 Results of Two-Dimensional Simulations

The ANOVA results are shown in Table 4.3. The statistical significance was assessed
with the p-value, as described on p.27. As in Section 2.3.1, a significance level of 95%
was chosen. To assist visualisation of results, the statistically-significant effects are
denoted in bold and with an asterisk. The element denoted as error in the ANOVA
table is essentially the error introduced by neglecting all interactions.

Table 4.3: ANOVA results for the four responses for the 2D simulations. υ is the number of
degrees of freedom, SS the sum of squares associated to each element of the table and p the
p-value calculated with the respective variances. Statistically-significant effects at a 95%

confidence level are denoted in bold and with an asterisk

Factor υ

Normal Force at Normal Force at
10% Strain Point of Failure

SS p SS p

Bond radius multiplier 2 0.013 0.473 0.020 0.253
Bond normal strength 2 0.697 0.000* 0.321 0.000*
Bond shear strength 2 0.019 0.332 0.087 0.004*
Bond normal stiffness 2 0.107 0.003* 0.032 0.108
Bond shear stiffness 2 0.008 0.626 0.008 0.550

Ball friction 2 0.024 0.243 0.008 0.576
Ball normal stiffness 2 0.012 0.506 0.060 0.018*
Ball shear stiffness 2 0.021 0.284 0.009 0.526

Random number seed 2 0.001 0.962 0.006 0.670
Error 62 0.518 0.435

Total 80 1.42 0.987

Factor υ

Strain at Point Agglomerate
of Failure Stiffness

SS×104 p SS×10−7 p

Bond radius multiplier 2 1.20 0.815 19.1 0.059
Bond normal strength 2 93.8 0.000* 18.3 0.066
Bond shear strength 2 25.8 0.016* 4.48 0.502
Bond normal stiffness 2 42.8 0.001* 47.2 0.001*
Bond shear stiffness 2 40.6 0.002* 14.3 0.116

Continued on page 90
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Factor υ

Strain at Point Agglomerate
of Failure Stiffness

SS×104 p SS×10−7 p

Ball friction 2 19.4 0.043* 38.4 0.004*
Ball normal stiffness 2 9.02 0.223 15.7 0.095
Ball shear stiffness 2 1.66 0.754 3.56 0.577

Random number seed 2 3.27† 0.575 5.89 0.405
Error 62 182 199

Total 80 419 366

†Note that this entry is equal to 3.27×10-4 to prevent ambiguity.

It is clear that the most important factor in this solution space was the bond normal
strength: it had the largest sum of squares (SS) for three of the responses (only not
statistically-significant for agglomerate stiffness, although still the fourth more impor-
tant there). The second more influential parameter was bond normal stiffness, which
was not statistically-significant only for normal force at failure (where it was the fourth
more influential parameter), and was the most important for agglomerate stiffness (and
second most important for the other two responses). Bond shear strength and ball
friction were also highly influential parameters as both were statistically-significant at
the 95% level for two responses. It was most important to find accurate values for these
four parameters within this solution space.

Other influential parameters for certain responses were bond shear stiffness (for strain
at failure) and ball normal stiffness (force at failure). Bond radius multiplier, ball shear
stiffness and random number seed had no statistically-significant influence on any of
the responses, so fixing them at the median value may suffice for calibration. This
conclusion assumed negligible interactive effects. The error sums of squares were quite
large, which could only have been due to interactive effects being important, as the data
were obtained by mathematical simulation and contained no white noise.

To better understand the system, all the interactions were calculated individually (in
turn) for each response assuming all others to be negligible, and those that were iden-
tified as significant at a 90% confidence level by the respective ANOVA are shown in
Table 4.4, along with the sums of squares, p-values and the two columns of the L81 that
contained the full interaction. Note that 90% confidence for a two-way interaction across
two columns was a similar criterion to 95% for an individual factor in one column, as
0.952 ≈ 0.9.
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Table 4.4: Two-way interactions, sums of squares, p-values and columns containing those
interactions identified as statistically-significant at a 90% level for the 2D simulations

Interaction SS p Columns

Response: Normal Force at 10% Strain

Bond normal strength × Bond shear stiffness 0.109 0.007 16, 19
Bond radius multiplier × Bond normal stiffness 0.090 0.023 15, 16

Bond shear strength × Ball friction 0.086 0.030 16, 34
Bond shear strength × Ball shear stiffness 0.069 0.076 17, 26

Response: Normal Force at Point of Failure

Bond normal stiffness × Ball normal stiffness 0.094 0.006 9, 40
Bond shear strength × Bond shear stiffness 0.090 0.008 31, 40

Bond radius multiplier × Random number seed 0.072 0.030 38, 40
Bond shear strength × Ball shear stiffness 0.068 0.040 17, 26

Bond normal strength × Bond normal stiffness 0.062 0.061 17, 20
Ball friction × Random number seed 0.058 0.078 13, 17

Response: Strain at Point of Failure

Bond normal stiffness × Ball normal stiffness 2.35×10−3 0.086 9, 40
Bond normal stiffness × Bond shear stiffness 2.33×10−3 0.088 3, 18

Bond radius multiplier × Bond normal strength 2.26×10−3 0.098 3, 4

Response: Agglomerate Stiffness

Bond radius multiplier × Random number seed 4.44×108 0.005 38, 40
Bond normal stiffness × Ball normal stiffness 3.61×108 0.019 9, 40
Bond shear strength × Bond shear stiffness 3.55×108 0.021 31, 40
Bond shear strength × Random number seed 3.01×108 0.046 21, 30
Bond normal strength × Ball shear stiffness 2.62×108 0.081 32, 38

Ball friction × Ball shear stiffness 2.55×108 0.089 9, 21

For example, for the normal force at 10% strain, all but four of the interactions were
shown to be negligible using this procedure. The three interactions with the largest
sums of squares had column 16 in common: clearly, this column was associated with a
relatively large sum of squares. Therefore, it cannot be said whether only one of these
was actually significant and dominant, or if two or even all three were significant. A
similar observation could be made regarding column 40 for the normal force at failure
and agglomerate stiffness responses.

Figure 4.6 shows the stacked marginal means plots of the data, where the horizontal

91



4. DEM Calibration of Bonded Agglomerates using Taguchi Methods

dashed limits denote ± two standard errors. For those factors identified as significant
in Table 4.3, it is clear that increasing the normal strength of the parallel bonds tended
to increase the normal force at 10% strain, while increasing their normal stiffness had
the opposite effect. These observations make sense from a mechanical point of view.
If the analyst seeks to maximise this force to give stronger agglomerates, this could
be achieved by choosing the settings shown in Table 4.5. The response estimated by
simple addition of the marginal means (i.e., neglecting all interactive effects) was 0.395
± 0.0785 N.
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Figure 4.6: ANOVA marginal means plots for four responses for the 2D simulations: a)
normal force on platens at 10% strain (N); b) normal force at failure (N); c) strain at failure

and d) agglomerate stiffness (Nm−1)

The force at failure increased if higher values of parallel bond normal and shear strength
were used, while using an intermediate ball normal stiffness of 5×105 Nm−1 increased
this response, i.e., on average, selecting these settings increased the force at which the
agglomerate failed under uniaxial compression. The strain at failure may be maximised
by choosing high settings for bond normal and shear strength and the lowest settings
for ball friction and both bond stiffnesses, within the range tested. The settings for
maximisation of agglomerate stiffness were similar: a high value for bond normal
stiffness and the intermediate setting for ball friction of 0.6, although there was little
difference between the intermediate and high settings of this factor.
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Table 4.5: Factor settings that maximise normal force on the platens at 10% strain for the 2D
simulations, with the force estimated by marginal means addition and estimated 95%

confidence interval

Control Factor Level Factor Value

Bond radius multiplier 1 0.7
Bond normal strength 3 2×106 Nm−2

Bond shear strength 3 2×106 Nm−2

Bond normal stiffness 1 1×1011 Nm−3

Bond shear stiffness 1 1×1011 Nm−3

Ball friction 1 0.4
Ball normal stiffness 2 5×105 Nm−1

Ball shear stiffness 3 7×105 Nm−1

Random number seed 3 6000

Predicted force at 10% strain 0.3950 N
95% confidence interval ± 0.0785 N

To assess the predictive ability of the marginal means addition (i.e., the inaccuracy
resulting from neglecting all interactions in the estimation of a specific response), 10
combinations of factor levels, each different from the 81 combinations already used
in the design, were selected at random. For each combination, the responses (normal
force at 10% strain, normal force at failure, strain at failure and agglomerate stiffness)
were found in two ways:

1. By experiment, running a DEM simulation using the appropriate combination of
factor levels and obtaining the data as was done for the initial 81 trials.

2. By adding the marginal means for the respective factor settings to the global
average for each response.

Figure 4.7 compares the estimates of the marginal means additions with the simulation
results. Results were mixed, with certain responses performing better than others.
This is not surprising as Table 4.3 shows that neglecting the interactive effects was a
major source of error. For the normal force at failure considered in Figure 4.7b, the
marginal means estimates over-predicted forces which had very small values, but under-
predicted larger forces. A tendency to under-estimate agglomerate stiffness (Figure
4.7d) was also apparent for eight of the combinations tested. It is evident that neglecting
all interactive effects would be very limiting. Therefore, the most basic application
of the Taguchi method provided some inconclusive results at this stage. It would be
necessary to untangle some of the interactions to assess them properly and then apply
the Taguchi optimisation procedure for parameter calibration with the appropriate
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corrections. This suggests that a two-step procedure may be a better option than larger
designs. A two-level design could be used first to eliminate (pools of) interactions that
are not significant and then a three-level design may be better defined, even though
it may now require fewer runs. While a two-way interaction with two or three levels
in the factors are not the same, the reality of most systems is that two levels are often
sufficient to reveal the nature of the most common interactions. It is not common that
an interaction may prove to be negligible with a two-level design and show relevance
with a three-level design.
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Figure 4.7: Plots of ANOVA predictions against the corresponding DEM simulation results
for 10 randomly-selected combinations of the factor levels for the 2D analysis, where responses

a–d are as listed for Figure 4.6 and error bars indicate 95% confidence intervals

4.7.2 Results of Three-Dimensional Simulations

The same four overall responses were analysed in 3D, i.e., normal force at 10% strain,
normal force at failure, strain at failure and agglomerate stiffness. As the 2D results
indicated not only many interactions that could be neglected, but also the two factors of
least significance, a second design with reduced data requirements could be established
(using an L27 array). The ANOVA results, which include two interactions that could be
assessed fully and independently (once the others had been assumed negligible), are
shown in Table 4.6.
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Table 4.6: ANOVA results for the four response parameters for the simulations in 3D. υ is the
number of degrees of freedom, SS the sum of squares and p the p-value. Statistically-significant

effects at a 95% confidence level are denoted in bold and with an asterisk

Factor υ

Normal Force at Normal Force at
10% Strain Point of Failure

SS×106 p SS×104 p

Bond normal strength 2 19.6† 0.500 33.9 0.099
Bond shear strength 2 18.4 0.517 31.4 0.107
Bond normal stiffness 2 19.3 0.505 3.94 0.487
Bond shear stiffness 2 132 0.130 2.60 0.590

Ball friction 2 8.30 0.703 24.4 0.133
Ball normal stiffness 2 96.1 0.170 1.13 0.768
Ball shear stiffness 2 73.7 0.211 1.55 0.707

Percentage of balls deleted 2 24.8 0.442 709 0.005*
Interaction I 4 88.8 0.330 8.10 0.532
Interaction II 4 23.1 0.708 1.42 0.925

Error 2 19.7 3.74

Total 26 524 822

Factor υ

Strain at Point Agglomerate
of Failure Stiffness

SS×106 p SS×10−7 p

Bond normal strength 2 54.7 0.025* 7.50 0.088
Bond shear strength 2 20.4 0.065 12.0 0.057
Bond normal stiffness 2 170 0.008* 51.1 0.014*
Bond shear stiffness 2 26.3 0.051 16.3 0.042*

Ball friction 2 182 0.008* 135 0.005*
Ball normal stiffness 2 1.88 0.430 8.13 0.082
Ball shear stiffness 2 8.45 0.144 5.38 0.118

Percentage of balls deleted 2 17.2 0.076 275 0.003*
Interaction I 4 14.2 0.173 5.52 0.218
Interaction II 4 12.1 0.199 37.9 0.037*

Error 2 1.42 0.723

Total 26 509 555

†As in Table 4.3, note that this entry is equal to 1.96×10-5 in reality.
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The results in 3D were comparable to those in 2D, even though different ranges were
used in many parameters. However, the most significant parameters were not always
the same as in 2D. This is not surprising since an analysis of this type is always relative
to the ranges of values used, i.e., to the solution space being scanned. It is also noted
that the inclusion of two interactions (each requiring four degrees of freedom) and the
more limited number of data naturally resulted in a much larger confidence interval.
Therefore, this design did not identify the limit of statistical significance as clearly as
the L81. Considering the normal force on the platens at 10% strain, no factor was now
statistically-significant in 3D. As this was partially attributable to the low number of
degrees of freedom of the error, it was more appropriate to analyse the relative im-
portance of the factors and interactions using their sums of squares. The percentage
of balls deleted had the overwhelming influence on force at failure. The three factors
that significantly affected the strain at failure were three of the five which were identi-
fied as significant in 2D. The percentage of balls deleted significantly influenced the
agglomerate stiffness in addition to ball friction and both bond stiffnesses; both bond
normal stiffness and ball friction were also significant in 2D. Interaction II, between
bond shear strength and ball shear stiffness, was significant at the 95% level for the
agglomerate stiffness response. This was particularly interesting since neither factor
in the interaction was one of those four identified as significant independently, so the
interaction was clearly very important.

It is noted that the relative magnitude of the error was much smaller than in 2D. This
could also be quantified by the coefficient of determination (R2), which is the percentage
of the variance of the data explained by the factors and interactions. For the four
responses in Table 4.6, R2 values were 98.1%, 99.8%, 99.9% and 99.9%, respectively.
When coefficients of determination were calculated without including both interactions,
the results were reduced to 86.5%, 99.2%, 97.2% and 95.9%, respectively. This result
confirmed the importance of considering these two interactions.

The stacked marginal means plots are shown for the main effects in Figure 4.8. Force
at failure was increased by using 0% ball deletion. The settings to maximise strain
at failure were identical to those in 2D for the three factors identified as significant.
High settings of bond normal stiffness, bond shear stiffness and ball friction, and low
percentage ball deletion maximised agglomerate stiffness. However, this analysis with
marginal means alone was no longer complete, as the correction for interactive effects
also needed to be taken into consideration. Marginal means plots were drawn for the
two interactive effects considered and are shown in Figure 4.9.

As an example, normal force at 10% strain was maximised by choosing a bond shear
strength (in green) of 2×105 Nm−2 for both interactions and the highest settings of bond
shear stiffness (7×1010 Nm−3) and ball shear stiffness (7×105 Nm−1). Note also that both
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Figure 4.8: ANOVA marginal means plots for four responses for the 3D simulations: a)
normal force on platens at 10% strain (N); b) normal force at failure (N); c) strain at failure

and d) agglomerate stiffness (Nm−1)

interactive effects were negligible for force at failure, which is unsurprising considering
their small SS in Table 4.6. Approximately the same marginal mean was obtained
irrespective of the value chosen for bond shear strength. For the single statistically-
significant interaction, between bond shear strength and ball shear stiffness for the
agglomerate stiffness response, the following may be seen on Figure 4.9:

• Using an intermediate setting of ball shear stiffness (5×105 Nm−1) gave a high
marginal mean if bond shear strength was at an extreme setting (1.5×105 Nm−2

or 2.5×105 Nm−2).

• Using an extreme setting of ball shear stiffness (3× 105 Nm−1 or 7× 105 Nm−1)
gave a low marginal mean if bond shear strength was at its minimum setting of
1.5×105 Nm−2.

The predictive ability of marginal means addition was again tested by comparing
the results thus estimated with actual simulation results performed for 10 random
combinations of settings (other than the 27 already performed). Results are shown in
Figure 4.10, both considering and omitting the interactive effects.

Both sets of predictions were very close, and the increase in accuracy obtained by
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Figure 4.9: ANOVA marginal means plots for the two interactions considered at three
dimensions: a) bond shear strength × bond shear stiffness and b) bond shear strength × ball

shear stiffness

correcting for the interactive effects was quantitatively small. The predictions in 3D
were considerably more accurate than those in 2D, with a lower number of anomalous
predictions. Predictions were particularly accurate for all normal force at failure points
tested (Figure 4.10b) and for low agglomerate stiffnesses (Figure 4.10d). The predictions
of normal force at 10% strain were least accurate, which reflected the low R2 for this
response (p.96). The better predictive ability in 3D, in comparison with the 2D case,
was due to the smaller proportion of the total sums of squares in the ANOVA table
attributed to unexplained variance (error).

4.7.3 Discussion

The results in Sections 4.7.1 and 4.7.2 demonstrate that the application of the Taguchi
method is appropriate for DEM calibrations using bonded agglomerates. Good pre-
dictive ability was demonstrated when interactions were considered. It is clear that
accounting for interactive effects is important; therefore, a two (or more) step approach
is preferable to a single (larger) design. This could be a problem with the Taguchi
method because it relies on orthogonal arrays with very intricate confoundings between
factors and interactions. However, once these are understood they can be tested to
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Figure 4.10: Plots at three dimensions for 10 randomly-selected combinations of factor levels
which compare ANOVA predictions, both including interactions (×) and excluding

interactions (◦), with the corresponding DEM simulation results for the four responses a–d
listed for Figure 4.8, where error bars indicate 95% confidence intervals

some extent, and as few interactions proved to be truly significant, the confoundings
were manageable. Since interactions proved to be important, using a “one at a time”
approach to parameter tuning is clearly inadequate.

Two additional points must be considered. The first is that the results of this approach
are applicable only to combinations of those levels tested. It is neither acceptable in
the Taguchi method to predict results by interpolating between levels nor by extrap-
olating outside of the range of levels tested. For example, strain at failure decreased
progressively with increasing ball friction between levels of 0.4 and 0.8. It is not valid
to conclude that the result obtained by using a ball friction of 0.5 would lie between the
values obtained at friction settings of 0.4 and 0.6; although probable, it is not a certainty.
It is also not necessarily true that the strain at failure would decrease further if ball
friction is increased to 0.9.

One final point for the analyst to consider is that the Taguchi method makes use of
linear statistics. As a consequence, results become more accurate if smaller ranges of
levels are used. This has important implications for analysis. If calibration is being
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carried out and the researcher does not have reasonable estimates for some parameters,
it may be best to consider a multiple step approach to gain increasing insight into the
system, which factors are more important and which regions of interest of those factor
settings are more promising. Initially, a screening design could be used in which levels
of a factor may span several orders of magnitude. These screening designs are often
used as a first step where a large number of factors are present, in which case the results
are used to justify omitting certain factors to focus on the more influential. Then based
on these results, a second finer design could be used with more closely-spaced levels to
determine the optimum with a higher level of accuracy.

4.8 Conclusions of Chapter 4

In this chapter, the applicability of the Taguchi method to calibration of discrete element
models was demonstrated by considering the calibration of bonded agglomerates in
both 2D and 3D. It is clear that the Taguchi approach has many advantages over basic
parameter studies which vary only one factor at a time; such calibration approaches
remain common and are highly inefficient when compared to an appropriate DOE
method. Its main disadvantage is confounding due to the use of orthogonal arrays.
However, this can be mitigated by careful allocation of factors to columns of the ar-
ray to permit the testing of selected interactions, and also by using multiple smaller
experimental designs rather than one large design.

The Taguchi method is certainly suitable for DEM calibration of bonded agglomerates,
although it is important to identify and include key interactive effects in the analysis to
ensure good predictive ability. Close correspondence was obtained between ANOVA
predictions of the measured responses and the DEM simulation results in 3D, with all
R2 values exceeding 98%. For the 2D simulations, predictions were made using solely
main effects, although some interactions were statistically-significant. As expected,
these predictions were considerably poorer than those made in 3D since all interactions
were disregarded.

For both two- and three-dimensional simulations, parallel bond normal strength, bond
normal stiffness and ball friction all had a statistically-significant effect on strain at
failure at a 95% level. Bond normal stiffness and ball friction had a significant effect on
agglomerate stiffness. By increasing parallel bond normal stiffness, the agglomerate
stiffness was increased and the strain at failure was decreased. Strain at failure may be
maximised by choosing a high bond normal strength and low values of ball friction
and bond normal stiffness.
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5
Discrete Element Modelling of Agglomerates of

Infant Formula

A
s outlined in the introduction to Chapter 3, agglomerates of infant formulae
experience many transient contacts, both with other agglomerates and with
the inner wall of the pipeline, during pneumatic conveying. The forces

experienced by individual agglomerates at any instant are very difficult to quantify
experimentally due to their small magnitudes and short durations. As a result, it is
seldom possible to conduct a thorough experimental investigation of the response of
agglomerates when subjected to such dynamic loads. One method of quantifying the
response of agglomerates of infant formulae to loading was discussed in Chapter 3:
individual agglomerates were isolated and subjected to mechanical loading using both
quasi-static uniaxial compression tests and dynamic drop tests. Data such as forces and
strains at failure, agglomerate stiffnesses and coefficients of restitution can be obtained
using such methods. However, they do not provide any insight into the evolution of
the fabric of the agglomerate (i.e., its internal geometric structure) during loading.

One numerical approach which can capture these fabric changes is coupled CFD-DEM†

models (e.g., Brosh et al., 2011 (dilute); Han et al., 2003 (dilute); Li et al., 2005 (dense);
Sturm et al., 2010 (dense)). The significant computational requirements impose a major
restriction on the number of particles which may be simulated. Simplified models
are sometimes used to reduce the computation time (e.g., Fraige and Langston, 2006;
Sakai and Koshizuka, 2009). Furthermore, disks (2D) or spheres (3D) are often used
in simulations of conveying which are not wholly representative of real agglomerates.
Using simulated agglomerates which are not geometrically similar to the real, physical
agglomerates prevents the researcher from obtaining quantitative data on fabric evolu-
tion. However, these models are capable of providing valuable data for the transient

†CFD is an abbreviation of “Computational Fluid Dynamics”.
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forces experienced by agglomerates during conveying, which is a major reason for their
application.

A third option is to develop a discrete element model of a single infant formula agglom-
erate and use this to simulate uniaxial compression or drop tests. DEM was introduced
in Section 4.1 (p.74) and has often been used to simulate the uniaxial compression of
agglomerates, particularly of soil particles (Cheng et al., 2003; Golchert et al., 2004;
Robertson and Bolton, 2001) although other materials have also been simulated (Khanal
et al., 2005; Samimi et al., 2005). This approach can provide extremely detailed infor-
mation about the evolution of the agglomerate fabric over time. Experimental data
are required for accurate calibration of the model; in this case, the results of the uni-
axial compression experiments presented in Chapter 3 were used. Thus, the primary
objectives of this chapter were as follows:

1. To develop a discrete element model for uniaxial compression of infant formula
agglomerates

2. To calibrate this model using experimental data so that the agglomerate compres-
sion process was accurately simulated

3. To investigate whether this model, calibrated using quasi-static loading data, was
also applicable to dynamic loading by simulating impact tests of agglomerates
and comparing the results to those obtained by experiment

5.1 Physical Characterisation of the Agglomerates

Since the results obtained for force at failure, strain at failure and agglomerate stiffness
were relatively similar for all four formulae tested in Chapter 3 (Table 3.7), the model
was developed for only one of these formulae. Infant formula B was selected since its
composition in Table 3.1 on p.50 did not contain any extreme values of fat, protein or
ash content.

It was necessary to measure those five particular physical characteristics of the agglom-
erates listed below for input into the discrete element model:

1. Agglomerate length (µm)

2. Agglomerate width (µm)

3. Agglomerate height (µm)

4. Particle diameter (µm)

5. Bond radius multiplier (–)
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The agglomerate dimensions were measured as described in Section 5.1.1. The particle
diameter and bond radius multiplier are discussed in Section 5.1.2; both of these were
found only for infant formula B. Note that it was possible to calculate correlations
between pairs of agglomerate physical characteristics, including their lengths or widths,
and also between any measurable physical characteristic and agglomerate compression
response (force at failure, strain at failure or agglomerate stiffness). These results are
shown in Appendix D for information. The experimental impact tests are described in
Section 5.1.3. The impact data were required to assess the applicability of the calibrated
DEM to dynamic loading, and supplements the experimental drop test data previously
discussed in Chapter 3.

5.1.1 Agglomerate Dimensions

The agglomerates were compressed on a glass plate, as discussed in Section 3.1.5
and depicted in Figure 3.5. Each agglomerate could be crudely specified using three
dimensions: length and width, measured parallel to the glass plate, and height, which
is along the line of motion of the compressing platen. For each infant formula A–
D, an average length and width was obtained for the agglomerates using a Malvern
PharmaVision 830 instrument (Malvern Instruments Limited, Malvern, Worcestershire,
UK). This instrument contains a camera, controlled by means of an actuator, which
scans slowly over particles at rest on a glass plate. The particles analysedwere artificially
illuminated from beneath the plate.

Between 80 and 100 agglomerates of each infant formula were analysed. The instru-
ment’s software (v.4.41) saved a .tif image of each agglomerate and separately wrote
information about the agglomerates scanned to a file, including the required length
and width. An example of the software output is shown in Figure 5.1.

The height was found directly from the texture analyser as the distance between the
bottom of the platen and the top surface of the glass plate at the instant when the trigger
force was reached (labelled as do on p.56). The mean dimensions of the infant formula
agglomerates are shown in Table 5.1. Note that height was the smallest dimension for all
formulae: generally, the most stable orientation for an agglomerate on a flat, horizontal
surface is with its two longest dimensions parallel to the surface. Infant formula B, for
which the model was developed, had the smallest mean dimensions of all agglomerates,
although differences between the formulae were slight.
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Figure 5.1: Screenshot showing an example of the output from the Malvern PharmaVision
instrument that was used to determine average lengths and widths of the agglomerates

Table 5.1: Mean agglomerate dimensions for each infant formula

Infant Formula Length (µm) Width (µm) Height (µm)

A 1262 946 704
B 1212 937 678
C 1266 963 692
D 1239 946 717

5.1.2 SEM Characterisation of Microstructure

It was assumed that the physical agglomerates were composed of spherical particles
of various sizes which were bonded together. Thus, it was necessary to estimate the
diameters of the spheres and the sizes of the contact areas between the spheres. The SEM
described in Section 1.5.1 (p.14) was used to obtain this data. 37 SEMmicrographs of
agglomerates of infant formula B in the 710–850 µmsize rangewere obtained. The image
analysis software ImageJ (v.1.43u, U.S. National Institutes of Health, Bethesda, MD,
USA)was used tomeasure the approximate diameter of the particles in the agglomerates.
The parallel bond radiusmultipliers were also estimated similarly by dividing the length
of the overlap between two particles by the smaller of the particle diameters. All lengths
were obtained manually by superimposing straight lines on the image and logging their
lengths in a file. The scale bar on each micrograph was used to set the global scale in
ImageJ before lengths were measured. This procedure was of limited accuracy, since
the diameter of each particle was estimated manually for a circular equivalent projected
area. This is shown in Figure 5.2. The two particles which are circled by white dashed
lines had diameters of 48.8 µm and 50 µm, while the overlap between the two particles
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had a length of 31.6 µm. Thus, the bond radius multiplier was 0.648
�

= 31.6
48.8

�

for this
overlap.

Figure 5.2: SEM micrograph at 2000X magnification of an agglomerate of infant formula B,
which illustrates the methodology used to measure particle diameters and bond radius

multipliers

Lognormal distributions were fitted to the measured particle diameter data in the same
manner as described for the compression responses in Section 3.2.2. Figure 5.3 shows
the probability histogram and corresponding PDF for the particle diameters recorded
for agglomerates of infant formula B.

Basic statistics of the particle diameters and bond radius multipliers are provided in
Table 5.2. It can be seen that the distribution in the bond radius multipliers was less
marked than the distribution in particle diameters. The maximum ratio between bond
radiusmultipliers was 2.5

�

= 0.971
0.383

�

whereas the equivalent for particle diameters was 8.3
�

= 125.39
15.09

�

: almost an order ofmagnitude difference between extrema. A distributionwas
not fitted to the bond radius multiplier data as these varied much less than the particle
diameter data; instead, the simulations used a fixed value of 0.7 for this parameter. The
lognormal distribution fitted to the particle diameter data (in mm) had the parameters
listed below, where µ and σ are the mean and standard deviation of the corresponding
normal distribution, as returned by the MATLAB function lognfit:

• µ = -3.1364 with standard error = 0.0265

• σ = 0.4372 with standard error = 0.0188
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Figure 5.3: Probability histogram of the particle diameters which comprise the agglomerates of
infant formula B, as measured by image analysis of SEM micrographs, compared with the PDF

of a fitted lognormal distribution

Table 5.2: Means, standard deviations and extreme values of particle diameters and bond
radius multipliers, obtained by image analysis of SEM micrographs of agglomerates of infant

formula B in the 710–850 µm size range

No. of Points Mean Std. Dev. Minimum Maximum

Particle diameter (µm) 272 47.74 21.26 15.09 125.39
Bond radius multiplier 113 0.711 0.154 0.383 0.971

5.1.3 Experimental Impact Tests using High-Speed Camera

Thirty-five experimental impact tests were conducted using individual agglomerates
of infant formula B from the 710–850 µm size range. The camera, operating software
and video analysis methods used were identical to those described in Section 3.1.7,
except the impacts were recorded at 2000 frames/s and the resolution was halved to
1280×300. The main difference was the method used to accelerate the particles. For the
drop tests discussed previously, agglomerates were pushed off a smooth stainless steel
platform at an elevation of 450 mm above the target plate so that impact velocities of
approximately 1.9 ms−1 were attained. These moderate impact velocities did not cause
any of the agglomerates tested to fail.

The objective of the impact tests in this chapter was to provide additional experimental
data to allow the applicability of the calibrated model to dynamic loading to be evalu-
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ated; thus, it was important to use higher velocities for these tests to cause observable
damage of the agglomerates. Since the limiting terminal velocity of these agglomerates
was low, it was necessary to supply an initial impulse to the agglomerates to reach
higher impact velocities. This impulse was supplied using compressed air to propel
the agglomerates vertically upwards before they impacted the underside of a smooth
stainless steel plate. The pressure of the compressed air was regulated to provide differ-
ent air velocities, and hence agglomerate impact velocities. The air could be switched
between the fully-on and fully-off states almost instantaneously using a pneumatic
valve. The internal diameter of the air outlet was 3 mm. A small piece of muslin fabric
covered this outlet; this was required to provide a surface upon which the agglomerate
could be placed before activating the air supply, yet did not obstruct the flow excessively.
The configuration of the air outlet and target plate are shown in Figure 5.4.

30 mm

Retort stands

Pneumatic valve

Clamps

Air supply

Stainless steel plate

Air outlet

Cloth

Trajectory

Figure 5.4: Configuration of the pneumatic apparatus used to obtain high agglomerate impact
velocities with the steel target

As in Section 3.1.7, the video files were analysed using ProAnalyst. For each impact test,
only the normal impact velocity and themode of failurewere recorded. Therewere large
variations among the normal impact velocities recorded due to temporal fluctuations
in the air pressure and variations in the initial orientations of the agglomerates on
the muslin support. The lowest velocity recorded was 6.27 ms−1 and the highest was
15.37 ms−1; to reduce the variability, all tests for which impact velocities were outside of
the range 8–12 ms−1 were discarded. This reduced the number of experimental results
from 35 to 25. The mean normal impact velocity for these 25 tests was 10.10 ms−1 with
a standard deviation of 1.31 ms−1.

A number of authors have categorised agglomerate failures using terms such as attrition,
chipping, disintegration, fracture, fragmentation, shattering or wear (e.g., Ghadiri and
Zhang, 2002; Thornton andLiu, 2004). For thiswork, three uniquemodes of agglomerate
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failure were observed upon analysis of the video footage. Thus, the result of each impact
test was assigned to one of the following four categories:

Unbroken The agglomerate was not seen to break. Note that the resolution of the
high-speed camera was insufficient to detect damage of an agglomerate unless a
breakage event occurred.

Binary fracture The agglomerate broke into two large daughter fragments.

Local disintegration The agglomerate broke into a large number of small fragments
at its point of impact with the target plate. However, more than half of the
agglomerate remained intact.

Shattering The entire agglomerate disintegrated to leave only a large number of small
fragments after impact.

Figure 5.5 shows the percentages of the 25 agglomerates considered in the results
which were assigned to each of these four categories. Almost half of the agglomerates
shattered upon impact. A small number of the agglomerates did not fail which again
demonstrates the wide variations among individual agglomerates for a spray-dried
dairy powder.

Unbroken (28%)
Local disintegration (20%)

Binary fracture (8%)

Shattering (44%)

Figure 5.5: Chart showing the percentages of the agglomerates of infant formula B assigned to
each category
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5.2 Discrete Element Modelling of Uniaxial Compression

5.2.1 Agglomerate Structure and Crushing Conditions

The agglomerates required for these simulations were produced using the sequential
additionmethodwhichwas outlined in Section 4.1.4 anddescribed in detail inAppendix
C. The diameters of the spheres which comprised the agglomerates were randomly
selected from a lognormal distribution using the parameters obtained experimentally
for infant formula B in Section 5.1.2. The sphere diameters were restricted to the
range 20–125 µm to prevent particles with unrealistic diameters from being generated.
Agglomerate dimensionswere subject to some variability. However, lengths, widths and
heights of the agglomerates were generally within 10% of the values shown for infant
formula B in Table 5.1. The mean number of spheres in an agglomerate was 688, with
a standard deviation of 107. The sequential addition algorithm yielded agglomerates
with low convexities of 0.14 to 0.18; the method used to calculate the convexities of
simulated agglomerates and the detailed results are both confined to Appendix E.
Figure 5.6 shows an example of an agglomerate generated by this approach, which can
be compared to the physical agglomerate of infant formula B shown in Figure 1.2 (p.15).

Figure 5.6: Generated agglomerate containing 765 spheres, which has a length of 1.2202 mm,
width of 1.0238 mm and height of 0.7613 mm. The colour bar indicates the size of the spheres

in mm

Each agglomerate was individually compressed between stiff, horizontal, frictionless
platens until a strain of 50%was attained. The bottom platen was stationary and the
upper platenmoved downwards at 0.04 mms−1. This velocity was low enough to ensure
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that quasi-static loading was attained. The initial distance between the platens was
equal to the agglomerate height, as for the simulations in Chapter 4.

5.2.2 DEM Calibration

The Taguchi method was used to determine those DEM parameters which could not
feasibly be obtained by experiment, e.g., stiffnesses and strengths of parallel bonds.
This method was discussed in detail in Chapter 2 and its application to the calibration
of discrete element models was illustrated in Chapter 4.

In this case, an initial parameter studywas conducted using an L18 arraywhich identified
the bond strengths and stiffnesses as being particularly influential. Then several sets
of simulations were conducted using saturated L9 arrays (Table 2.1 on p.24). The four
available columns were allocated to the parallel bond strengths and stiffnesses, and
levels were varied by orders of magnitude. The bond radius multiplier was set to 0.7:
approximately equal to the mean recorded in Table 5.2. All of the other parameters were
temporarily fixed at reasonable estimates, e.g., ball stiffnesses were set at relatively large
values as the bonds were believed to have a much greater influence on the agglomerate
compression behaviour. The agglomerate used for all of these simulations was invariant.
This reference agglomerate contained 623 spheres: slightly fewer than the average
agglomerate to reduce the time required to run each simulation, yet still within the
acceptable range for such agglomerates. The emphasis of these simulations was to
minimise the differences between three DEM responses (the force at failure, strain at
failure and agglomerate stiffness) and the equivalent mean experimental results shown
in Table 3.7. Note that these three responses were identified for each simulation using
the same algorithm that was used for the uniaxial compression experiments (described
in Section 3.1.6 on p.57).

Once these three selected responses showed reasonable agreement, appropriate settings
were identified for the remaining parameters using small experimental designs (L4, L8

and L9 arrays), supplemented by a small number of ad hoc “trial-and-error” simulations
to confirm or disprove certain hypotheses. Multiple agglomerates were introduced at
this stage, to ensure that parameters were widely applicable and to mitigate against the
chosen reference agglomerate being atypical in some regard. After these simulations
were completed, the responses considered corresponded quite well to the experimental
means. However, no consideration had yet been given to the shape of the distributions.
The only way of checking this was to obtain sufficient data to yield representative
distributions of the three responses which necessitated running a larger number of
simulations. Twenty simulations were run using identical parameters, each using a
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different randomly-generated agglomerate. These parameters are shown as set I in
Table 5.3.

The results indicated that the ball friction needed to be increased. A much larger set
of 130 simulations were run using these updated parameters, given as set II in Table
5.3. However, the resulting agglomerate stiffnesses were excessively high. This was
remedied by reducing the bond stiffnesses by 20% and reducing the ball friction to an
intermediate value between 0.6 (used in set I) and 0.7 (used in set II). This resulting
set of parameters (III) was the final calibrated set used to obtain the results in Section
5.3. It must be emphasised that the geometric variability of the simulated agglomerates
made calibration of the model both difficult and time-consuming. The example given
in Appendix F effectively illustrates some of these difficulties.

Table 5.3: Calibrated parameters used for the DEM simulations, where set III
was the final calibrated set used to obtain the results

Parameter
Setting

Set I Set II Set III

Ball density (kgm−3)† 1×108 1×108 1×108

Ball normal stiffness (Nm−1) 4×107 4×107 4×107

Ball shear stiffness (Nm−1) 4×107 4×107 4×107

Ball friction 0.6 0.7 0.65
Bond radius multiplier 0.7 0.7 0.7

Bond normal strength (Nm−2) 1×109 1×109 1×109

Bond shear strength (Nm−2) 1×109 1×109 1×109

Bond normal stiffness (Nm−3) 3×1015 3×1015 2.4×1015

Bond shear stiffness (Nm−3) 3×1015 3×1015 2.4×1015

PFC damping coefficient 0.3 0.3 0.3
Random number seed 4000 4000 4000

†Note that density scaling was used (see Section 5.2.4).

5.2.3 Model Sensitivity to Small Perturbations

Simulations demonstrated that the model was highly sensitive to small perturbations in
the input parameters, i.e., changing one of the parameters in Table 5.3 by a slight amount,
e.g., 1%, could cause the responses of the simulations to change completely. However,
the initial low-strain behaviour was unaffected by perturbations: the responses were
found to deviate only after some strain value which was different for each agglomerate.
Figure 5.7 contains subplots for two different agglomerates: each subplot compares the
average force on the platens obtained using the bond stiffnesses given in Table 5.3 with
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the equivalent responses using stiffness perturbations of ± 1%. Figure 5.8 uses the same
agglomerates, but the perturbations were in bond strengths rather than stiffnesses.
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Figure 5.7: Plots comparing the average normal force exerted on the platens (N) against axial
strain (%) for two agglomerates conducted using parallel bond normal and shear stiffnesses of

2.4×1015 Nm−3 and these stiffnesses ± 1% to create a small perturbation in the input

5.2.4 Density Scaling

These quasi-static simulations of particle compression used density scaling; by increas-
ing the ball density to physically-unrealistic values, the time required to run each
simulation was greatly reduced. It was acceptable to increase the density in this man-
ner because no gravitational fields were active in the simulations. This technique
has been widely used by other researchers (e.g., Sheng et al., 2004; Sykut et al., 2008;
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Figure 5.8: Plots comparing the average normal force exerted on the platens (N) against axial
strain (%) for two agglomerates conducted using parallel bond normal and shear strengths of

1×109 Nm−2 and these strengths ± 1% to create a small perturbation in the input

Thornton, 2000). Without scaling the density, it would not have been feasible to run
a statistically-significant number of simulations: using the scaled density, simulation
times were typically three days whereas times were greater than four months if realistic
ball densities were used (3 GHz Intel Pentium 4). Figure 5.9 illustrates this point using
very large perturbations in ball density which differed by orders of magnitude. By
comparing this figure to Figures 5.7 and 5.8, it can be seen that very large changes in
ball density have no more of an effect than slight perturbations in other simulation
parameters.

113



5. Discrete Element Modelling of Agglomerates of Infant Formula

A
ve

ra
ge

 N
or

m
al

 F
or

ce
 o

n 
P

la
te

ns
 (

N
)

0.05

0.1

0.15

0.2

0.25

100 g
10 g
1 g

0.3

Axial Strain (%)

0 5 10 15 20 25 30 35 40

mm-3

mm-3

mm-3

Figure 5.9: Plots of the average normal force exerted on the platens (N) against axial strain
(%) for three simulations conducted using ball densities which varied by orders of magnitude

(from 1×106 to 1×108 kgm−3), where all other parameters were held constant

5.3 Comparison of DEM and Experimental Results

5.3.1 Probability Histograms and Density Functions

In total, 130 simulations were conducted, of which 116 were deemed to have failed
before 50% strain using the criteria in Section 3.1.6. A different randomly-generated
agglomerate was used for each of these simulations. Probability histograms of the
DEM force at failure, strain at failure and agglomerate stiffness responses are given as
Figures 5.10–5.12. As before, the Freedman-Diaconis rule was used to establish the bin
widths and locations. The corresponding probability density function for a lognormal
distribution is overlaid on each histogram as a solid red line. For ease of comparison, the
PDFs of the experimental responses for infant formula B, which were shown previously
in Figures 3.14–3.16, are superimposed on the histograms as dashed green lines.

For force at failure, the results corresponded exactly to the experimental results for
infant formula B. The results for strain at failure were somewhat skewed compared to
the experimental results: for 30% of the simulations, the strains at failure exceeded 25%
whereas the samewas true for only 14%of the physical agglomerates tested. For stiffness,
the PDF of the simulation results exhibited a marked skew towards smaller stiffnesses,
yet the distribution was also long-tailed. 59% of the simulations had stiffnesses below
5 kNm−1 while 8%of the agglomerates had stiffnesses exceeding 20 kNm−1. Parameters
of the lognormal distributions fitted to the DEM data are given in Table 5.4, along with
means and standard deviations of the DEM results.
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Figure 5.10: Probability histogram of the DEM force at failure responses (N), with the
corresponding PDFs of a fitted lognormal distribution and of the experimental force at failure

results for infant formula B shown in red and green respectively for comparison
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results for infant formula B shown in red and green respectively for comparison
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Figure 5.12: Probability histogram of the DEM agglomerate stiffness responses (Nm−1), with
the corresponding PDFs of a fitted lognormal distribution and of the experimental agglomerate

stiffness results for infant formula B shown in red and green respectively for comparison

Table 5.4: Means and standard deviations of the results obtained for force at failure (N), strain at
failure (%) and agglomerate stiffness (Nm−1) for the DEM simulations, and the parameters of the

associated fitted lognormal (L/N) distributions

Force (N) Strain (%) Stiffness (Nm−1)

Mean 0.07487 19.2680 6996.28
Std. Dev. 0.04933 9.0968 6669.12

µ† (L/N) {Std. Error} -2.80836 {0.06333} 2.80860 {0.05623} 8.43018 {0.08896}
σ† (L/N) {Std. Error} 0.68219 {0.04508} 0.60565 {0.04002} 0.95816 {0.06332}

†µ and σ are the mean and standard deviation of the corresponding normal distribution.

5.3.2 Correlation Tests of DEM Responses

The existence of correlations between any pair of responses was evaluated for the
experimental results in Section 3.2.2. The same was done for the DEM responses: the
Spearman R and Kendall τ coefficients are reported in Table 5.5.
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Table 5.5: Spearman R and Kendall τ rank correlations for all combinations of the force at
failure, strain at failure and agglomerate stiffness responses obtained for DEM simulations of

agglomerate compression

Correlation
Spearman R Kendall τ

R p-value τ p-value

Force↔ Strain 0.2467 0.0076 0.1949 0.0019
Force↔ Stiffness 0.7712 0.0000 0.6208 0.0000
Strain↔ Stiffness 0.4771 0.0000 0.3258 0.0000

Therewas a strong positive correlation between force at failure and agglomerate stiffness.
Figure 5.13 shows the clear relationship between these responses using a scatter plot.
Note however that there were a number of outliers at high force and low stiffness values,
without which the correlation coefficients would have been even higher. The correlation
between force at failure and agglomerate stiffness was also identified as the strongest
for the four formulae tested experimentally and the Spearman R values were similar
(Tables 3.9–3.12): for infant formula B, the Spearman R value was 0.7370. There was
also a moderate positive correlation between strain at failure and agglomerate stiffness
(Spearman R of 0.4771). All of the results in Table 5.5 were statistically-significant at a
99% level.
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Figure 5.13: Scatter plot of agglomerate stiffness (Nm−1) against force at failure (N) for the
DEM simulation results
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5.3.3 Weibull Analysis

Another useful approach which can be used to compare the experimental results and
simulation outputs is to apply Weibull statistics to the data. Eq. 5.1 is the fundamental
Weibull equation, in which Ps (Vo) is the probability of survival of a volume Vo of material
when exposed to a uniform tensile stress σ, σo is the characteristic stress at which
37%

�

1
e

�

of such samples survive and the exponent m is the Weibull modulus (Cheng
et al., 2003; McDowell and Amon, 2000):

Ps (Vo) = e

�

−
�

σ
σo

�m
�

(5.1)

McDowell and Amon (2000) modified Eq. 5.1 for the case of agglomerate compression
to give Eq. 5.2, in which d is a suitable measure of the agglomerate size and Ps is the
survival probability for agglomerates of size d when exposed to a stress σ:

Ps (d ) = e

�

−
�

σ
σo

�m
�

(5.2)

For this work, d was specified as the distance between the compression platens at the
point of failure of the agglomerate; this is the same definition used by McDowell and
Amon (2000), but differs from that of Cheng et al. (2003) who chose d to be the initial
separation of the platens before compression. Eq. 5.2 may be rewritten in the form of
Eq. 5.3 by applying logarithms:

ln

�

ln

�

1

Ps (d )

��

=m ln

�

σ

σo

�

(5.3)

σ, the tensile stress at failure, may be found as a function of F , the force at failure, from
Eq. 5.4 (Jaeger, 1967; McDowell and Bolton, 1998):

σ=
F

d 2 (5.4)

The survival probability, Ps , was calculated using the mean rank position approach
(e.g., Cheng et al., 2003):

Ps (i ) = 1−
i

n +1
(5.5)

n is the total number of data points for σ and i is the index of a particular agglomerate
when ordered by increasing σ. Hence, the agglomerate for which i = 1 has a survival
probability which is close to unity, assuming a reasonable population size, and the
lowest σ of all n agglomerates. However, Ps (n ) would be close to zero due to the
maximum characteristic stress experienced by this agglomerate.

Based on Eq. 5.3, ln
h

ln
�

1
Ps (d )

�i

was plotted against ln(σ) for each infant formula and a
linear regression trendline was fitted to each set of data (Figure 5.14). The slope of each
trendline was the Weibull modulus, m , and σo was found by taking the exponential
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Figure 5.14: Comparison of Weibull plots for the four formulae tested experimentally and the
results of the DEM simulations

Table 5.6: Weibull moduli, the characteristic stresses at which 37% of agglomerates survive
and coefficients of determination of the linear regressions

Infant Formula
Weibull Modulus 37% Characteristic Stress

R2

m σo (Nm−2)

Ex
pe

rim
en

ta
l

←
−−
−−
−−
−−
→ A 1.4123 177364 0.9198

B 1.4939 256955 0.9195
C 1.5097 194705 0.9317
D 1.5502 285941 0.9530

DEM Simulated 1.4946 280546 0.9749

function of the absolute value of the y-intercept, following division by m . The results
obtained for m , σo and coefficients of determination of the linear regressions are given
in Table 5.6.

The five plots on Figure 5.14 have the same appearance and are closely grouped together.
Furthermore, the linear trendlines appear almost parallel, which is unsurprising when
the results in Table 5.6 are compared. All of the experimental Weibull moduli lay in
a narrow range between 1.412 and 1.550. There was a greater dispersion in the 37%
characteristic stresses, from 177.4 kNm−2 to 285.9 kNm−2. This behaviour was captured
very well by the simulation results: the Weibull modulus of 1.495 was almost identical
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to the modulus for infant formula B of 1.494. The 37% characteristic stress for the DEM
simulations was within the range of experimental characteristic stresses. All R2 values
were above 0.9 which indicates that these data sets were well described by a linear
model.

5.4 Additional DEM Results for Quasi-Static Loading

One of the main benefits of a calibrated discrete element model is that the model is
capable of providing insights into the behaviour of the equivalent real system which
may not be obtainable by experiment. It was not possible to experimentally verify the
results presented in this section; however, the fact that the model captured certain
features of the compression response accurately (Sections 5.3.1–5.3.3) and the simulated
agglomerates were geometrically similar to real infant formula agglomerates permits us
to assume, with a reasonable level of confidence, that these results reflect the behaviour
of real agglomerates.

5.4.1 Characterisation of the Mechanical Response using Energy

The results presented in Section 5.3 were in terms of forces and strains, which allowed
the simulation results and the data recorded from the texture analyser to be compared
easily. It was noted by Rozenblat et al. (2011) that it is generally most straightforward
and accurate to represent particle strength in terms of force, although it is also possible
to use a function of energy or stress. PFC facilitates the tracking of six energy terms
(Itasca Consulting Group, 2008b). Three of these were of particular relevance for these
quasi-static simulations as others, such as the kinetic energy or body work, were either
negligible or not present:

Bond energy The total strain energy of the assembly stored in the parallel bonds

Boundary work The total accumulated work done by the walls on the assembly

Frictional work The total energy dissipated by frictional sliding at all contacts

All figures in this section were plotted for one representative agglomerate, the force-
strain behaviour of which was shown previously in Figures 5.7 and 5.8. Figure 5.15
shows the evolution of those three energy terms listed above as the agglomerate is
compressed to a strain of 50%. The cumulative lost bond energy and the total energy
dissipated due to lost bond energy and friction are also shown for comparison.

The strain energy localised in the parallel bonds remained low (< 1 µJ) as the agglomerate
was compressed. The only source of energy input to the system was boundary work,
which was approximately equal to the energy dissipated. At any strain, the sum of
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Figure 5.15: Plots of five energy terms (µJ) against axial strain (%) for uniaxial compression
of one representative agglomerate: bond energy, boundary work, frictional work, lost bond

energy and total energy dissipated due to friction and lost bond energy

the dissipated energy and bond energy must be equal to the boundary work; the
small disparity in this case was due to the omission of several minor energy terms as
mentioned above and the accumulation of floating-point calculation error. More energy
was dissipated by lost bond energy than by friction, although both were significant. It
was instructive to focus on a restricted region of strain in greater detail; this is shown
as Figure 5.16 for which the average normal force on the platens and all three energy
terms were normalised by their maximum values.

The trends in bond energy and normal force were very similar: whenever the force on
the platens decreased sharply, the strain energy stored in the parallel bonds showed a
commensurate decrease. At these points, there was also a corresponding increase in
the frictional work, indicating that part of the agglomerate moved relative to another
contacting part. Figure 5.17 shows the normal force and bond energy for the entire 50%
range of strain, which confirmed that the evolution of bond energy with strain was
similar to that of normal force. Figure 5.18 shows that the rate of change of the frictional
work was highest where there was a sharp decrease in the normal force. The boundary
work increased continuously on Figure 5.15 which demonstrates that the agglomerate
always remained in contact with the platens (otherwise, a horizontal region would be
observed on the boundary work plot). The rate of change of the boundary work was
highest immediately before the local maxima of force or bond energy and was lowest
following the points of rapid energy dissipation.

121



5. Discrete Element Modelling of Agglomerates of Infant Formula

N
or

m
al

is
ed

 F
or

ce
/E

ne
rg

y

Axial Strain (%)
0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Normal Force

Frictional Work

Boundary Work

Bond Energy

on Platens

Figure 5.16: Normalised plots of the average normal force on the platens and three tracked
energy components (boundary work, frictional work and bond energy) for the first 10% of axial

strain

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Axial Strain (%)
0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 N
or

m
al

 F
or

ce
 o

n 
P

la
te

ns
 (

N
)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Bond Energy

Average Normal Force on Platens
B

on
d 

E
ne

rg
y 

(µ
J)

Figure 5.17: Plots of the average normal force on the platens (N) and bond energy (µJ) against
axial strain (%) for uniaxial compression of one representative simulated agglomerate
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Figure 5.18: Plots of the average normal force on the platens (N) and the derivative of frictional
work (Jm−1) against axial strain (%) for uniaxial compression of one typical agglomerate

When the rate of energy dissipation due to friction increased rapidly on Figure 5.18,
this was caused by relative motion between two contacting parts of the agglomerate.
This could potentially be caused by the failure of bonds within the agglomerate, i.e.,
spheres moving relative to each other at the bond failure location. Alternatively, parts
of the agglomerate which were in contact could move relative to each other, with a
corresponding increase in frictional work, without bonds failing. This is possible as the
bonds were not perfectly rigid and allowed some movement without failure. However,
it was most likely that slippage would occur where a bond had been broken during a
previous crushing cycle.

Regardless of whether bonds failed or not, the bond energy would still be expected to
decrease as the microstructural rearrangement within the agglomerate would relieve
some of the stresses which had accumulated. Figure 5.19 plots the number of bonds
failed and the derivative of dissipated energy against axial strain. This figure demon-
strates that the points at which energy dissipation rates were high coincided with bond
breakage events. For example, Figure 5.19 shows that the sharp decrease in force and
bond energy (and increase in frictional work) at 3.3% strain on Figure 5.16 was caused
by the failure of one parallel bond.

5.4.2 Mode of Failure of the Agglomerates

Figure 5.19 shows that some bonds were failing as the agglomerate was compressed.
The total number of bonds which failed could be subdivided by the type of failure, i.e.,
whether the bond failed as the result of its normal or shear strength being exceeded. In
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Figure 5.19: Plots of the number of bonds failed and the derivative of dissipated energy (Jm−1)
against axial strain (%) for uniaxial compression of one representative simulated agglomerate

fact, very few of the bonds which failed (< 2%) were caused by excessive shear stresses
being generated; for example, none of the 47 bonds that had failed by 50% strain for the
agglomerate in Figure 5.19 were shear failures. The percentages of bonds which failed
were plotted against axial strain in Figure 5.20 for 20 randomly-selected agglomerates
subjected to quasi-static uniaxial compression.

This progressive parallel bond breakage with increasing axial strain caused the agglom-
erate to break into multiple daughter agglomerates. The total number of agglomerate
fragments and the number of spheres contained in each fragment were recorded at each
0.5% increment of strain for each simulation. Figure 5.21 shows the data for one repre-
sentative agglomerate. For example, the total of 739 spheres was partitioned into six
daughter agglomerates by 10% strain; these contained 493, 96, 90, 46, 10 and 4 spheres
when ordered by size. The same procedure was applied to the other 130 agglomerates
tested. At each strain increment, Figure 5.22 shows the median number of daughter
fragments present and the median number of spheres in the largest remaining fragment
(the largest fragment was shown as a blue area at the bottom of Figure 5.21).

One important result of this work was that relatively few bonds were required to fail to
cause resulting failure of the agglomerate. This is emphasised by Figure 5.23, which
shows how the percentages of bonds that failed changed around the point of failure.
Each agglomerate is represented by two connected points: one at 5% of strain before
the point of failure and the other at 5% of strain after the point of failure†, e.g., if an

†In cases where the point of failure was ≥ 45% strain, the second point was taken at 50% strain.
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Figure 5.20: Plots of percentage of bonds failed against axial strain (%) for uniaxial
compression of 20 randomly-selected agglomerates, using discrete data points at 5%

increments of strain up to the point of failure of each agglomerate
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Figure 5.21: Plot showing the number of spheres contained in each daughter agglomerate for
uniaxial compression of one representative agglomerate
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agglomerate fragment (axis: 0→ 700) and the median number of agglomerate fragments (axis:

0→ 35) against axial strain (%) for all 130 agglomerates tested

agglomerate failed at a strain of 20%, these two points would be at strains of 15% and
25%.

Therefore, it is important to have an understanding not only of the number of bonds
that fail, but also of where those bonds are located in the agglomerate. Pages 128–132
show two views of the representative agglomerate depicted by Figure 5.21 at each of
the following axial strains: 5%, 10%, 20%, 30% and 40%. The first of these figures shows
the arrangement of the spheres within the agglomerate, in which the colour of each
daughter fragment is related to the number of spheres it contains. The second figure
is a visualisation of the parallel bonds within the agglomerate, both intact and failed.
The diameters of the lines connecting the centrepoints of the bonded spheres vary as a
function of the maximum normal stress acting on the periphery of each bond. These
bond networks were both highly complex and difficult to analyse.
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Figure 5.23: Plots of percentage of bonds failed against axial strain (%) for uniaxial
compression of 20 randomly-selected agglomerates, showing two data points for each
agglomerate: one at 5% of strain before and the other 5% after the point of failure
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Figure 5.24: Visualisation of a representative agglomerate at an axial strain of 5%, in which
the colour bar indicates the number of spheres contained in each fragment of the agglomerate

Figure 5.25: Visualisation of the parallel bonds within a representative agglomerate at an axial
strain of 5%, in which the maximum normal stress acting on each intact bond (—) was

indicated by the diameter of the bond and failed bonds (—) were assigned a nominal diameter
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Figure 5.26: Visualisation of a representative agglomerate at an axial strain of 10%, in which
the colour bar indicates the number of spheres contained in each fragment of the agglomerate

Figure 5.27: Visualisation of the parallel bonds within a representative agglomerate at an axial
strain of 10%, in which the maximum normal stress acting on each intact bond (—) was

indicated by the diameter of the bond and failed bonds (—) were assigned a nominal diameter
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Figure 5.28: Visualisation of a representative agglomerate at an axial strain of 20%, in which
the colour bar indicates the number of spheres contained in each fragment of the agglomerate

Figure 5.29: Visualisation of the parallel bonds within a representative agglomerate at an axial
strain of 20%, in which the maximum normal stress acting on each intact bond (—) was

indicated by the diameter of the bond and failed bonds (—) were assigned a nominal diameter
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Figure 5.30: Visualisation of a representative agglomerate at an axial strain of 30%, in which
the colour bar indicates the number of spheres contained in each fragment of the agglomerate

Figure 5.31: Visualisation of the parallel bonds within a representative agglomerate at an axial
strain of 30%, in which the maximum normal stress acting on each intact bond (—) was

indicated by the diameter of the bond and failed bonds (—) were assigned a nominal diameter
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Figure 5.32: Visualisation of a representative agglomerate at an axial strain of 40%, in which
the colour bar indicates the number of spheres contained in each fragment of the agglomerate

Figure 5.33: Visualisation of the parallel bonds within a representative agglomerate at an axial
strain of 40%, in which the maximum normal stress acting on each intact bond (—) was

indicated by the diameter of the bond and failed bonds (—) were assigned a nominal diameter

The dissipation of energy due to friction demonstrated that parts of the agglomerate
were in relative motion. This was quantified by measuring the volumetric strains within
the agglomerate during the uniaxial compression process. The agglomeratewas divided
into tetrahedral regions by generating a Delaunay tessellation of the three-dimensional
sphere centrepoint data in MATLAB. This particular tessellation, or triangulation, is
the most commonly used in scientific computing. The volume of any tetrahedron
before compression was denoted as Vo while the volume at any subsequent stage of the
compression process was Vt . The volumetric strain may be calculated from Eq. 5.6:

Volumetric strain= Vt −Vo

Vo
(5.6)

Figure 5.34 compares the volumetric strains calculated at three axial strains for the
representative agglomerate used previously, showing the results for one plane which
passes through the centrepoint of the agglomerate. The average volumetric strain
increased progressively with axial strain. Note that one sphere had become separated
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from the main agglomerate at an axial strain of 40% (Figure 5.34c), which corresponds
to the long failed bond (in red) on the right of Figure 5.33.
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Figure 5.34: Visualisation of the fabric changes within an agglomerate subjected to uniaxial
compression at axial strains of a) 20%, b) 30% and c) 40%, where the colour bar denotes

volumetric strain

Although Figure 5.34 conveys a lot of information, it can be difficult to interpret the
fabric changes which occur as an agglomerate is loaded. It is also possible to apply a
statistical approach to fabric analysis (O’Sullivan, 2011, §10.6) which generally requires
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calculation of the second-order fabric tensor for contact orientations. This is shown as
Eq. 5.7 in three dimensions, where Nc is the number of contacts in the agglomerate and
(n c

x , n c
y , n c

z ) is a unit vector describing the normal orientation of contact c .
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(5.7)

This tensor is symmetric (e.g., Φx y = Φy x ) and its trace (Φx x +Φy y +Φz z ) is equal to
1 (O’Sullivan, 2011). The eigenvalues and eigenvectors of the fabric tensor may be
calculated at multiple increments of strain. The former are denoted as Φ1, Φ2 and Φ3

in order of decreasing magnitude; thus, Φ1 and Φ3 are the magnitudes of the major
and minor fabric, respectively, which can be used to quantify the magnitude of the
anisotropy within the system. The simplest approach is simply to find the difference
between the major and minor fabric, a quantity which increases with anisotropy. Figure
5.35 shows these results for the representative agglomerate used previously.
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Figure 5.35: Plot showing the difference between the major and minor fabric against percentage
axial strain for a representative agglomerate subjected to quasi-static uniaxial compression

The difference between Φ1 and Φ3 was low at the initiation of crushing, and approxi-
mately doubled nearing 50% strain indicating increased anisotropy. The orientation of
the principal fabric could be found as the angle between the eigenvector corresponding
to the major fabric eigenvalue (Φ1) and the unit vector in the vertical direction. These
results are shown for the same agglomerate in Figure 5.36.

The major fabric was initially in the horizontal plane and deviated from this as the
agglomerate was compressed. The orientation of the major fabric to the vertical reached
a minimum of 62° at an axial strain of 40%.
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Figure 5.36: Plot showing the orientation of the major fabric to the vertical (°) against
percentage axial strain for the typical agglomerate compressed in Figure 5.35

5.5 DEM Simulations of Dynamic Loading

While the calibrated model gives good results for quasi-static loading, it is interesting
to assess whether or not it can also be applied effectively to dynamic loading. Two
additional sets of simulationswere conducted using the final set of calibrated parameters
shown in Table 5.3 (except ball density). Each set consisted of 20 simulations and were
conducted similarly: a stiff, horizontal, frictionless platen was placed beneath each
simulated agglomerate and an initial normal velocity was assigned to the agglomerate
to cause a collision with the platen. The initial distance between the lowest point of
the agglomerate and the upper surface of the platen was set at 5% of the agglomerate
height for computational efficiency.

One key difference between these dynamic simulations and the quasi-static simulations
was that density scaling was not used. The forces induced by the relative motion
of spheres would be excessively high unless the density was reduced to a physically
realistic value. The ball density was set at 1100 kgm−3: approximately equal to the
particle density of infant formula as measured by nitrogen pycnometry (Section 2.2.3
on p.32). The differences between both sets of dynamic simulations were as follows:

1. One set simulated the drop tests in Section 3.1.7. The impact velocity was set
at 1.9 ms−1 and gravity was active. This allowed coefficients of restitution to be
evaluated and compared with those obtained by experiment.

2. The other set simulated the impact tests in Section 5.1.3, and thus used an impact
velocity of 10.1 ms−1. Gravity was not active for these simulations.
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It should be noted that the algorithm given in Section 3.1.6 for determining the points
at which agglomerates failed could not be applied to the results of these dynamic
simulations for several reasons:

• The deformations of the unconfined agglomerates were low, even for the impact
tests at 10.1 ms−1. The strain was defined as the absolute difference between the
initial agglomerate height before impact and the height thereafter divided by the
initial height, where height was measured in the direction normal to the platen.
The highest strain attained during any of these dynamic simulations was 8.5%.
Therefore, the third criterion, that “the maximum force attained in a 10% strain
range following the point of failure must be less than the force at failure”, was
inapplicable.

• It is often the case that the forces at which materials fail depend upon the rate
of loading. The numerical values in the algorithm were selected for quasi-static
loading and would need to be modified to choose the point of failure reliably for
dynamic loading.

• The strain did not increase monotonically, instead increasing to a maximum and
then decreasing. This required a more sophisticated MATLAB algorithm than
the one described in Section 3.1.6.

The drop tests at 1.9 ms−1 and impact tests at 10.1 ms−1 are discussed separately in
Sections 5.5.1 and 5.5.2, respectively.

5.5.1 Drop Tests at 1.9 ms−1

The results of the experimental drop tests were given in Section 3.2.3, and none of
the agglomerates were seen to fail in these tests. Similarly, none of the parallel bonds,
and hence none of the agglomerates, failed during any of the 20 drop test simulations
conducted. The highest force exerted on the stiff platen during any simulation was
0.0801N,whichwas close to themean force at failure for quasi-static loading of 0.0749N
(Table 5.4 on p.116). There was a significant decrease from this maximum force to the
second-highest force of 0.0599 N, and only three of the 20 simulated agglomerates had
maximum forces which exceeded 0.03 N. Figure 5.37 shows three representative plots
of force versus time for these agglomerates.

The coefficient of restitution was calculated for each simulation as the absolute value
of the maximum normal velocity in the upward direction divided by the maximum
normal velocity in the downward direction. The velocity of the agglomerate was taken
as the unweighted arithmetic mean of the velocities of each of the spheres comprising
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Figure 5.37: Three plots of force exerted on the target platen (N) against time (ms) for
simulated drop tests of agglomerates of infant formula at 1.9 ms−1

the agglomerate. Infant formula B had a mean coefficient of restitution of 0.3258 (Table
3.13), while the mean for the simulated agglomerates was considerably lower at 0.0954.

Thus, a higher proportion of the incident energy was absorbed by the simulated agglom-
erates, on average, than by the physical agglomerates. The local damping coefficient,
previouslymentioned in Section 4.3.1, was set at 0.3 for these simulations. It was hypoth-
esised that the coefficients of restitution of the simulated agglomerates would increase,
and thus become closer to the experimental results, if the damping were reduced. This
was tested by running the same 20 simulations using damping coefficients of 0 and
0.15. Reducing the damping coefficient to 0.15 had a small effect: the mean coefficient
of restitution increased to 0.1298. However, eliminating the damping completely had a
huge effect: the coefficient of restitution increased to 0.5826 without a corresponding
increase in the standard deviation. Figure 5.38 shows the cumulative distributions in
coefficients of restitution, while Table 5.7 gives basic statistics of the data obtained.

Three energy terms which were not significant for the quasi-static tests needed to be
considered for the dynamic tests:

Body work The total accumulated work done by all body forces on the assembly, i.e.,
gravity for the drop tests

Kinetic energy The kinetic energy of all particles in the assembly

Strain energy The total strain energy of the assembly stored at all contacts
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Figure 5.38: Bar charts showing the percentage of the agglomerates tested using local damping
coefficients of 0, 0.15 and 0.3 which had coefficients of restitution less than the values given on

the x-axis

Table 5.7: Basic statistics comparing the coefficient of restitution data for drop tests conducted
using sets of 20 agglomerates having three different local damping coefficients: 0, 0.15 and 0.3

Damping
Coefficient of Restitution

Mean Std. Dev. Minimum Maximum

0 0.5826 0.1149 0.3310 0.7301
0.15 0.1298 0.1203 0.0030 0.4009
0.3 0.0954 0.0903 0.0002 0.3085

Note that Figures 5.39, 5.40, 5.42 and 5.43 in this section were plotted for one representa-
tive agglomerate which had a coefficient of restitution of 0.117. The first of these shows
the evolution of the kinetic and bond energies over time for this agglomerate.

The kinetic energy of the agglomerate increased slowly before impact due to the effect of
gravity, reaching a maximum of 0.1596 µJ. This impact energy was very low compared
to those recorded during the quasi-static crushing simulations (Figure 5.15). The bond
energy was almost zero before impact occurred at 16.7 µs. The remaining four energy
terms recorded (strain energy, body work, boundary work and frictional work) were
small compared to the kinetic and bond energies, and are shown in Figure 5.40.

The increase in frictional work over time demonstrates that some energy was dissipated
by frictional sliding, although this was aminor contributor to the total energy dissipated.
The boundary work was rounded to zero at each time step in the computations (<
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Figure 5.39: Plots of the kinetic and bond energies (both in µJ) against time (ms) for a
simulated drop test of one representative agglomerate
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Figure 5.40: Plots of the strain energy, boundary work, frictional work and body work (all in
µJ) against time (ms) for a simulated drop test of one representative agglomerate

0.1 fJ), which indicates that the platen experienced no deformation when impacted by
the simulated agglomerate. The total bond energy dissipated during the simulation
was 0.0405 µJ: approximately 1/4 of the kinetic energy possessed by the agglomerate
before impact. Thus, most of the incident kinetic energy was dissipated by damping.
Damping clearly had an important role in these drop test simulations, which explains
why eliminating local damping had such a marked effect on the coefficient of restitution.
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Figure 5.41 shows the evolution of three key energy terms when the simulation shown
in Figures 5.39 and 5.40 was rerun using a local damping coefficient of zero.
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Figure 5.41: Plots of the kinetic energy, bond energy and frictional work (all in µJ) against
time (ms) for a simulated drop test of one representative agglomerate where the local damping

coefficient was set at zero

The kinetic energy of the agglomerate remained above 0.06 µJ throughout the simulation.
The primary mechanism for energy dissipation was friction, which became much more
significant in the absence of damping. The lack of damping also caused the bond energy
to attain values which were more than twice the maximum when damping was active
(0.084 µJ compared to 0.037 µJ). Figure 5.42 compares the force exerted on the platen
when damping was active with plots of three energy terms: the kinetic energy, bond
energy and frictional work. The maximum force (equal to 0.057 N) was attained after
a time of 28.9 µs, which corresponds to the peak of bond energy. This is similar to
the results in Section 5.4.1 in which the bond energy and normal force on the platens
showed a close correspondence.

Figure 5.43 shows the parallel bonds within the agglomerate when the force was highest.
The maximum normal stress attained (425 MNm−2) was less than half the bond normal
strength of 1 GNm−2. The corresponding maximum shear stress at this time was
considerably lower, at only 241 MNm−2. It was interesting to observe how the stresses
were distributed within the agglomerate. Strong force chains radiated outwards from
the point of contact between the agglomerate and the platen; however, most of the
agglomerate remained relatively unstressed.
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Figure 5.42: Normalised plots of the force exerted on the platen and three tracked energy
components (kinetic energy, bond energy and frictional work) against time (ms) for a simulated

drop test of one representative agglomerate

Figure 5.43: Visualisation of the parallel bonds within a representative agglomerate when the
force exerted on the platen was at its maximum value. The maximum normal stress acting on
the periphery of each bond was indicated both by the diameter of the bond and by the colour bar

(in MNm−2)

5.5.2 Impact Tests at 10.1 ms−1

By increasing the impact velocity to approximately 10.1 ms−1, 72% of the agglomerates
tested experimentally were seen to fail. It was not possible to apply the algorithm to
determine failure (as discussed on p.136); instead, the number of daughter fragments
and the number of spheres contained in each fragment were recorded during the
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simulations. Each agglomerate was assigned to one of the four categories defined in
Section 5.1.3 using the following criteria:

Unbroken Agglomerates were deemed to be unbroken following the impact test if
more than 95% of the spheres remained in one intact agglomerate.

Binary fracture Two large daughter fragments were produced, each containing more
than 40% of the total number of spheres.

Local disintegration One large daughter fragment was produced, containing more
than 50%of the total number of spheres, and none of the other fragments contained
more than 10% of the spheres.

Shattering No daughter fragment remained which contained more than 20% of the
spheres.

A number of the simulated agglomerates failed in a similar manner, but could not be
allocated to one of these four categories. Therefore, a fifth category was defined:

Fragmentation One large daughter fragment was produced, containing more than 40%
of the total number of spheres, while at least one of the other fragments contained
more than 10% of the spheres.

Figure 5.44 shows the percentages of the 20 simulated agglomerates which were as-
signed to each of these five categories. By comparing these data with the experimental
results in Figure 5.5, it can be seen that a higher proportion of the simulated agglom-
erates failed: 85% compared with 72%. The most marked difference was in the mode
of failure. None of the simulated agglomerates failed by binary fracture or shattering,
while the latter was the most common mode of failure for the physical agglomerates.
The majority of the simulated agglomerates (55%) failed by local disintegration; this
represented an increase of 175% compared to the experimental results. At least one
parallel bond failed in each of the 20 agglomerates simulated, while a maximum of
seven bonds failed (median of three). Therefore, the percentages of bonds which failed
were relatively low: the mean was 0.501%with a standard deviation of 0.195%.

Figure 5.45 shows plots of force against time for three simulated impact tests. The highest
force exerted on the platen during any of the simulations was 0.8203 N, while the mean
and standard deviation of the 20 maximawere 0.2511 N and 0.2175 N, respectively. This
mean was more than three times greater than the mean force at failure for quasi-static
loading given in Table 5.4.

The body work was zero as gravity was not active for the impact simulations. As for the
drop test results, the strain energy was negligible for all simulations and the boundary
work was rounded to zero at each time step, indicating that no deformation of the
platen occurred. One representative agglomerate was selected and used for Figures
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Figure 5.44: Chart showing the percentages of the agglomerates assigned to each failure
category for simulated impact tests at 10.1 ms−1
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Figure 5.45: Three plots of force exerted on the target platen (N) against time (ms) for
simulated impact tests of agglomerates of infant formula at 10.1 ms−1

5.46–5.48. Four bonds failed in this chosen agglomerate which was assigned to the local
disintegration category. Figure 5.46 shows the evolution of the three most significant
energy terms over time: the kinetic energy, bond energy and frictional work.

The kinetic energy was constant at 3.603 µJ before impact occurred at 3.2 µs. This
incident kinetic energy was almost 23 times larger than that for the drop test at 1.9 ms−1,
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Figure 5.46: Plots of the kinetic energy, bond energy and frictional work (all in µJ) against
time (ms) for a simulated impact test of one representative agglomerate at 10.1 ms−1

which reflects the quadratic relationship between kinetic energy and speed. The energy
dissipated by friction was low: 0.054 µJ by the end of the simulation. This was smaller
than the residual kinetic energy at the end of the simulation of 0.061 µJ. The total bond
energy dissipated was 0.406 µJ; thus, more than 85% of the incident kinetic energy
was dissipated by damping. Figure 5.47 compares the force exerted on the platen with
plots of three key energy terms. The maximum force (0.104 N) was attained after 8.9 µs.
This coincided with the maximum bond energy, an observation that was also made for
Figure 5.42.
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Figure 5.47: Normalised plots of the force exerted on the platen and three tracked energy
components (kinetic energy, bond energy and frictional work) against time (ms) for a simulated

impact test of one representative agglomerate
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Figure 5.48 plots the number of bonds failed and the derivative of bond energy against
axial strain. On each occasion when a bond failed, a local maximum was seen in the
rate of change of the bond energy. Figure 5.49 compares the volumetric strains in a
representative agglomerate at times of 0.014 ms and 0.025 ms. As for Figure 5.34, this
figure illustrates the strains for one plane which passes through the centrepoint of the
agglomerate. For all of the agglomerates tested, the highest volumetric strain within
the agglomerate increased from zero to a maximum value when the bond energy was
high (Figure 5.49a). The highest volumetric strain decreased progressively nearing the
end of the simulation (Figure 5.49b), indicating that the accumulated bond energy was
being relieved and strains were being recovered.
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Figure 5.48: Plots of the number of bonds failed and the derivative of bond energy (Js−1)
against time (ms) for an impact test at 10.1 ms−1

5.5.3 Assessment of Applicability

The discrete element model was originally developed for quasi-static compression of
agglomerates. Despite this, it generally captured the failure of agglomerates during
dynamic loading quite well. For the drop tests at 1.9 ms−1, none of the agglomerates
tested experimentally failed, while none of the parallel bonds (and hence none of the
agglomerates) failed during the analogous simulations. When coefficients of restitution
were compared for the drop tests, those obtained from the simulation data were consid-
erably lower than the experimental results (means of 0.0954 and 0.3258, respectively)
using a damping coefficient of 0.3. Most of the incident kinetic energy of the agglom-
erates was dissipated by damping; thus, reducing the damping coefficient caused the
mean coefficient of restitution to increase. There was an optimum damping coefficient
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Figure 5.49: Comparison of the fabric changes that occurred during the impact test of a
representative agglomerate at 10.1 ms−1 at times of a) 0.014 ms and b) 0.025 ms, in which the

colour bar denotes volumetric strain

(approximately 0.1) at which the experimental and simulated coefficients of restitution
were equivalent. This demonstrates that it is necessary to supplement the experimental
quasi-static data with some dynamic results to ascertain the most appropriate value
for the damping coefficient. Local damping in PFC is not a physically-measurable
parameter so it must be calibrated with experimental data. However, the robustness
of values thus obtained must be considered: while the damping parameter should be
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appropriate for simulations which replicate the experimental conditions, there is no
guarantee that it would be suitable for other boundary conditions.

For impact tests at 10.1 ms−1, 72% of the physical agglomerates were seen to fail upon
analysis of high-speed camera footage, while 85% of the simulated agglomerates were
adjudged to have failed when subjected to similar loading conditions. This correspon-
dence was quite good, and it is possible that it might have improved if more data had
been available, both for the experimental trials and simulations. The greatest difference
was in the mode of failure: most of the simulated agglomerates failed by local disinte-
gration and none shattered, whereas 44% of the physical agglomerates shattered upon
impact. Overall the model gave a reasonable description of the experimental results for
dynamic loading, despite being developed for quasi-static loading and therefore being
far outside its range of applicability.

5.6 Conclusions of Chapter 5

In this chapter, a discrete element model was developed for quasi-static, uniaxial com-
pression of individual infant formula agglomerates and calibrated using the experimen-
tal data reported for infant formula B in Chapter 3. It was necessary for the simulated
agglomerates to capture the large variability apparent in the natural agglomerates
which made the calibration process difficult. The final calibrated parameters included
ball and parallel bond stiffnesses of 4×107 Nm−1 and 2.4×1015 Nm−3 respectively and
parallel bond strengths of 1× 109 Nm−2. The mean force at failure, strain at failure
and agglomerate stiffness were 0.075 N, 19.27% and 6996 Nm−1, respectively, while the
corresponding means obtained by experiment for the physical agglomerates of infant
formula B were 0.071 N, 14.41% and 4648 Nm−1. When lognormal distributions were
fitted to the experimental and DEM results and their probability density functions were
compared, the results for force were very close. The DEM results were skewed towards
larger strains at failure and smaller stiffnesses compared to the experimental results,
although still gave a good representation of the experimental data.

It was shown that the force at failure and agglomerate stiffness had a strong positive
correlation (Spearman R > 0.75), which was also present in the experimental data
for infant formula B. Furthermore, when Weibull statistics were applied, the Weibull
moduli for the simulation results (1.4946) and the experimental data (1.4939) were
almost identical. An analysis of the key energy terms during the simulations shows
that the trends in the bond energy and the normal force exerted on the platens were
very similar, and bond breakage events coincided with large energy dissipation rates.

This discrete element model was also applied to dynamic loading tests conducted
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at two velocities: 1.9 ms−1 and 10.1 ms−1. Results for the lower velocity case were
generally good, although coefficients of restitution were lower than those obtained
experimentally using a damping coefficient of 0.3. Most of the incident kinetic energy of
the agglomerate was dissipated by damping; hence, the mean coefficient of restitution
of the simulated agglomerates was shown to increase if a lower value was selected for
the local damping coefficient. This coefficient could be obtained only by calibration,
which requires experimental data for dynamic loading. For the higher velocity case,
85% of the simulated agglomerates were deemed to have failed, despite low percentages
of bonds failing (mean of 0.501%). 72% of the physical agglomerates failed: a close
correspondence. The main difference was in the mode of failure: none of the simulated
agglomerates shattered while 44% of the physical agglomerates shattered upon impact.
Even though this calibrated DEM was not developed for dynamic loading applications,
the model still gave adequate results for such applications.
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T
he DEM developed in Chapter 5 for quasi-static loading of an individual
agglomerate gave extremely detailed information about the stresses gen-
erated and the evolution of the microstructure of an agglomerate during

mechanical loading. The computational requirements were quite significant, even
though only single agglomerates were simulated. Typically, pneumatic conveying of
powders involves the transport of very large numbers of particles concurrently. For
example, if particles are assumed to be perfect, monosized spheres of diameter 1 mm,
one plug of length 300 mm and diameter 50 mm would contain more than 500,000
particles, given a packing efficiency of 50%: sufficiently many particles to make DEM
simulations difficult, even if spheres are used to represent the particles.

Rather than using DEM, a macro-scale probabilistic model of dilute phase conveying
was developed in this chapter to provide data for the distribution in maximum impact
forces for collisions of particles and to stochastically quantify the percentage of particles
which break due to this loading. The model pneumatic conveying system consisted
of a long, straight horizontal pipe section terminated by one 90° bend. Particles in a
conveying system break as a result of collisions, either with each other or with the
inner walls of the conveyor. The former condition requires particles to be transported at
different velocities; otherwise, particles wouldmove on parallel paths at identical speeds
and collisions would not be possible. There are a number of reasons why particles
may be transported at different velocities at any specific cross-section of the pipeline,
including the following:

1. Larger, heavier particles require longer times and distances than finer particles to
reach any attainable velocity.

2. The existence of a velocity profile causes those particles which are near the cen-
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treline of the pipe to have preferentially higher velocities than those close to the
pipe wall.

3. There are random temporal components in both the air and particle velocities.

4. Particles follow different curvilinear trajectories around bends depending on their
masses.

These inter-particle collisions are likely to make a negligible contribution to particle
breakage: the relative velocities between particles are small compared to their absolute
velocities and thus, the normal impact velocities at the pipe bend are considerably
greater than the relative velocities between agglomerates. Since fatigue of particles is
not considered (Section 6.1.1), any particle that would have broken due to collisions with
other particleswould certainly have broken at the subsequent bend. Itwould also be very
difficult to incorporate inter-particle collisions caused by differences between curvilinear
trajectories of particles around bends into such a probabilistic model. Therefore, inter-
particle collisions are not considered explicitly as a cause of particle breakage in the
model, although their effect on the impact velocities of the particles with the pipe bend
is included.

The research detailed in this chapter had two primary objectives. The first was to present
a general approach to the prediction of particle breakage in a pneumatic conveying
system, focusing on the integration of particle motion and the corresponding structural
response. The second objective was to demonstrate a novel probabilistic approach for
representing the many uncertainties and complexities in real systems. It should be
noted that the results obtained using this model could not be validated experimentally.

6.1 Model Development

One of the main advantages of the model presented in this chapter is that it is composed
of a number of sub-models, any of which may be substituted by a reasonable alternative
without having to develop an entirely new model. These sub-models are discussed
individually in Sections 6.1.2–6.1.12. Much of the detailedmathematical development is
confined to Appendix G, and references are made to this appendix throughout Section
6.1.

6.1.1 Assumptions

The model outlined in this chapter was predicated on a number of assumptions. For
convenience, the main assumptions made are listed below, and are referred to through-
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out the remainder of Section 6.1. Some of these assumptions are verifiedmathematically
in Section 6.3.5.

i The particles are rigid, monosized spheres: assuming a monodispersed flow is
commonplace in such models (Eskin et al., 2004).

ii The particle diameter is small compared to the pipe diameter.

iii Particles are treated as point masses from a kinetic perspective and no rotational
effects are included. Magnus and Saffman forces are neglected since both are
negligible when the particles being conveyed are relatively large, typically >
100 µm (Eskin et al., 2007). The Basset force is also not considered as it is negligible
compared to the drag force for particles which aremuch denser than the conveying
fluid (Elghobashi and Truesdell, 1992).

iv The mass flow ratio is low.

v The particles are uniformly distributed over the pipe cross-section, a common
assumption (e.g., Eskin et al., 2007).

vi The tendency of fine particles which are suspended in the air flow to be swept
around the bend by the motion of the air without contacting the bend wall is
ignored.

vii The air velocity has a high magnitude, ensuring that particles remain in suspen-
sion, i.e., homogeneous flow rather than degeneration to dune flow (Wen and
Simons, 1959).

viii Each particle collides with the bend exactly once (Chapelle et al., 2004b).

ix The effect of fatigue loading on particles is not considered (Chapelle et al., 2004b).

x The fluid velocity is invariant in the axial direction in the straight length of pipeline.

xi The radial and tangential components of air velocity are not modelled explicitly.

xii Entry length effects are ignored for both the air and particulate fractions conveyed.

xiii Inter-particle collisions are not considered explicitly as a mechanism for particle
breakage.

xiv All collisions are elastic; the coefficient of restitution is 1 (or very close to 1). This
assumption was also made by Louge et al. (1991).

xv Only the normal component of wall impact velocity contributes to the breakage
force. Frye and Peukert (2002) and Kalman (2000) both state that the normal
component of stress is the primary contributor to particle damage.

xvi The particles are moving in straight lines at the bend; the possibility of curvilinear
motion due to the changed fluid flow pattern in this region is not examined.
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xvii The bend geometry is defined by only a single, rather than a double, curvature.

xviii Fluctuations in the particle velocity due to fluid turbulence are not considered.

6.1.2 Statistics of Fluid Velocity

Several assumptions were made regarding the air velocity in the conveying system,
including vii, x and xi. For the system under consideration, the Reynolds number of
the air flow is large and the flow is considered to be turbulent. Such flows may be
characterised by the empirical 1/7th power law velocity profile, which relates the fluid
velocity, u f , to the maximum velocity along the centreline, u m , at a radial distance of r

from the centreline of a pipe of internal radius R . This velocity profile is given as Eq. 6.1
(Fox et al., 2010, p.324), while Figure 6.1 schematically illustrates the velocity profile
across a pipeline.

u f = u m

�

1−
r

R

�

1
n (6.1)

r

R

Fluid Velocity, uf

0 um

Inner Wall of Pipe

Particle

Figure 6.1: Illustration showing the turbulent velocity profile in a pipeline

It should be noted that the effect of the particles on the air flow was neglected, which
can be justified by assumption iv, i.e., a low mass flow ratio. As the mass flow ratio
decreases towards zero, the effect of conveyed solids on the air flow is progressively
reduced. The parameter n is a function of Reynolds number which can be approximated
by Eq. 6.2. Note that the velocity profile in Figure 6.1 used n = 6, corresponding to a
Reynolds number of 15,000–25,000 (exactly 19,669).

n = 1.77 log10 Re −1.6 (6.2)

The probability density function (PDF) of fluid velocity, P (u f ), was found as Eq. 6.3
(derivation in Section G.1):

P (u f ) =
2n (u f

n −u m
n )

u f
1−n u m

2n 0≤ u f ≤ u m (6.3)
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The zeroth moment of this expression for P (u f ) is equal to unity, i.e.,
∫ 0

u m
P (u f )d u f = 1,

thus showing that Eq. 6.3 satisfies the basic requirement of a valid PDF. The first moment
of P (u f ) about zero gives the mean fluid velocity, µu f , while the second moment of
P (u f ) about its mean value yields the variance in fluid velocity, σ2

u f . Expressions for
both of these quantities are given as Eq s. 6.4 and 6.5 respectively, while derivations are
provided in Sections G.2 and G.3.

µu f =

∫ u m

0

P (u f )u f d u f =
2n 2

(n +1)(2n +1)
u m (6.4)

σ2
u f =

∫ u m

0

P (u f ) (u f −µu f )2 d u f =
n 2(5n +1)

(n +1)2(n +2)(2n +1)2
u m

2 (6.5)

Figure 6.2 shows the PDFs of fluid velocity for three different values of n . The PDFs
deviate more from normality as n is increased, and there is a marked skew when n has
a realistic value of 6. The mean and variance in fluid velocity are defined solely by the
centreline velocity, u m , and the power law exponent, n . For n = 6, the average fluid
velocity is just under 80% of u m and the standard deviation in fluid velocity is around
13% of u m .
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Figure 6.2: Probability density functions of fluid velocity for u m = 20 ms−1 and n values of 2,
4 and 6

6.1.3 Statistics of Effective (Particle-Averaged) Fluid Velocity

The variation of fluid velocity with radial displacement from the centreline was quanti-
fied in Section 6.1.2. The steady-state velocity of a particle at any radial location within
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the pipe is determined by the local velocity of the fluid at that point. If the dimen-
sions of the particles being conveyed are infinitesimal compared to the pipe radius,
the statistics of particle velocity would correspond exactly to those of fluid velocity.
However, larger particles occupy a greater fraction of the pipe cross-section and thus
experience a gradient in velocity acting on the cross-section of the particle normal to
the axial fluid flow (as shown in Figure 6.1). As an example, consider an extremely
large particle with a diameter slightly larger than the pipe radius in contact with the
pipe wall. The fluid velocity at the point of contact with the wall is zero, while the
point on the surface of the particle lying on the pipe centreline would be subjected
to a fluid velocity of u m . Therefore, the average fluid velocity acting on this particle
would be some value between these two extremes. The effective fluid velocity acting
on a particle, u e , is the average spatial fluid velocity acting on the particle projected
area (i.e., the cross-sectional area normal to the axial fluid velocity). The existence of a
velocity distribution across the surface of a particle would cause rotation of the particle
in reality. However, rotational effects are disregarded in this model (assumption ii). For
a spherical particle of radius rp with its centre a distance r from the centreline of the
pipe, u e is approximated by Eq. 6.7, which is derived in Section G.4:

u e (r ) =

∫ r+rp

r−rp

u m

�

1− r
R

�

1
n ·2πr d r

π
�

(r + rp )2− (r − rp )2
� 0≤ r ≤R − rp (6.6)

=
u m

2
�

1+ 1
n

� rp

R





�

1+
rp

R
−

r

R

�

n+1
n −

�

1−
rp

R
−

r

R

�

n+1
n



 (6.7)

The validity of Eq. 6.7 depends on assumption ii, i.e., that rp

R is small. A more pre-
cise equation for u e was derived in Section G.4 which requires numerical solution
(Eq. G.14). Figure 6.3 compares the results of Eq s. 6.7 and G.14 using typical values of
the parameters: rp

R = 0.01, u m = 20 ms−1 and n = 6.

Since both equations give identical results, u e was defined by Eq. 6.7 for this model.
It was shown in Section G.6 that Eq. 6.7 satisfies the required limiting condition that
as particle radius tends towards zero, the effective fluid velocity becomes equal to the
fluid velocity, i.e.:

lim
rp→0

u e = u f (6.8)

In theory, the PDF of u e could be obtained in a similar manner to that of u f , and
this could be used to calculate the mean and variance of u e . However, a closed-form
analytical expression for P (u e ) could not be obtained in terms of u e , although an
expression could be derived for P (u e ) in terms of u f as shown in Eq. 6.9 (Section G.5):

P (u e ) =
4rp (u m

n −u f
n )R

1
n −1

u m
n

�

�

Ru f
n − rp u m

n
�

1
n −

�

Ru f
n + rp u m

n
�

1
n

� (6.9)
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Figure 6.3: Comparison of the approximation of u e given by Eq. 6.7 with the more
theoretically-precise expression for u e given by Eq. G.14

For physically-realistic ranges of n and rp

R , P (u e ) u P (u f ). Figure 6.4 shows that the
correspondence between both functions is closest when n is large and rp

R is small. Hence,
the mean and variance of u e are taken to be the same as those of u f for the remainder
of Chapter 6.
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Figure 6.4: Comparison of P (u f ) [—] and P (u e ) [- - -] for u m = 20 ms−1: a) uses a constant
rp

R
of 0.01 and n values of 2, 4 and 6, while b) uses a constant n of 6 and rp

R
values of 0.02,

0.05 and 0.1

The main difference between the two PDFs is in the prediction of extreme values,
particularly as r → R where P (u e ) is not defined for r > R − rp . Considering the fluid
velocity, its maximum value of u m is attained at the pipe centreline and its minimum
value is zero at the wall. For effective fluid velocity, the corresponding statistics are
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given by Eq s. 6.10 and 6.11:

Minimum u e =
2

1
n u m
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Note again that in the limit as rp → 0, both of these equations predict the same extreme
values as for fluid velocity. The effective fluid velocity field has lower radial gradients
than the corresponding fluid velocity field.

6.1.4 Particle Velocity

The motion of the fluid in the axial direction causes the particles to be transported
accordingly in the same direction. The primary force acting on any particle in the
horizontal, straight section of the conveying system is the drag force arising from its
motion through the fluid. It should be noted that the acceleration of the particle from
its initial velocity up to its asymptotic velocity (where particle velocity equals u e ) is
neglected (assumption xii), which was one of the assumptions verified in Section 6.3.5.

The effective fluid velocity acting on any particle fluctuates over time for reasons ex-
plained in Section 6.1.5. If the magnitudes of these fluctuations are low (i.e., if the
standard deviation of u e is relatively small), the instantaneous relative velocity between
the fluid and particle is also low. Thus, the particle Reynolds number, Rep , is low
according to Eq. 6.12, where u p is the particle velocity and ν is the kinematic viscosity
of air:

Rep =
2|u p −u e |rp

ν
(6.12)

In that case, the drag force for a spherical particle of radius rp immersed in a fluid of
density ρ would be described by Eq. 6.13, where cD is the drag coefficient. Note that
assumption iv (low mass flow ratio) is important to ensure the applicability of this
equation, which was developed for single, non-interacting spheres.

FD =−cDπr 2
p

ρ

2
(u p −u e ) (6.13)

The governing differential equation for particle motion in the axial direction would
therefore be given by Eq. 6.14, where m is the mass of the particle and p is its inertial
rate constant, i.e., p =

cDπr 2
pρ

2m .

FD =m
d u p

d t
d u p

d t
=−p (u p −u e ) (6.14)
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Eq. 6.14 is valid only in the Stokes’ law regime, in which Rep ¯ 2. Simulations demon-
strated that generally Rep ≮ 2. More generally, FD is directly proportional to the square
of the relative velocity between the particle and the fluid and the equations can be
rewritten:

FD =−cDπr 2
p

ρ

2
(u p −u e )|u p −u e | (6.15)

d u p

d t
=−p (u p −u e )|u p −u e | (6.16)

p may be replaced in Eq. 6.16 by introducing the effective inertial rate constant of the
particle, pe = p |u p −u e |:

d u p

d t
=−pe (u p −u e ) (6.17)

pe is related to p by Eq. 6.18:

pe = p |u p −u e |=
cDπr 2

pρ

2m
|u p −u e | (6.18)

cD is a function of the particle Reynolds number. One commonly-used expression which
relates cD and Rep was provided by Clift and Gauvin (1970):

cD =
24

Rep

�

1+0.15Re 0.687
p

�

+
0.42

1+42500Re−1.16
p

(6.19)

Eq. 6.19 is valid for all Rep < 105. An approximation for cD which is sometimes applied
is Eq. 6.20:

cD u
10

p

Rep

(6.20)

Eq s. 6.19 and 6.20 compare well for particle Reynolds numbers between 1 and 500, as
shown by Figure 6.5. Thus, Eq. 6.18 could be rewritten as Eq. 6.21:

pe =
cDπr 2

pρ

2m
|u p −u e | (6.18)

=
10πr 2

pρ

2m
p

Rep

|u p −u e |

=
5πr 2

pρ
p
ν

m
p

2|u p −u e |rp

|u p −u e |

pe =
5πr 1.5

p ρ

m

r

ν |u p −u e |
2

(6.21)

6.1.5 Effective Fluid Velocity as a Random Process

The effective fluid velocity, u e , was quantified in Section 6.1.3; this is the fluid velocity
averaged over the projected area of the particle at its particular radial location in the
pipe. u e determines the particle velocity at that location. Up to this point in the
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Figure 6.5: Comparison of the drag coefficients predicted by Eq s. 6.19 and 6.20 for 1 ≤Rep ≤
500

model development, it has been assumed that the particles move solely along straight,
horizontal paths within the pipe, i.e., each particle moves in the axial direction at
a fixed radial distance from the centreline. Thus, effective fluid velocity acting on
the particle was a time-invariant random variable. This is quite unrealistic since all
conveyed particles have some radial component of motion in reality. There are a number
of physical effects which could cause this motion, including:

• The random temporal variation in fluid velocity as a result of turbulence

• Oblique inter-particle collisions

• The effect of gravity on the particles

• The real complexity of the interaction between the particle and the fluid

The average velocity of a particle in the radial direction is generally much lower than
its average velocity in the axial direction (e.g., Zhang et al., 2007). The existence of
this radial component of motion means that particles are subjected to time-varying
effective fluid velocities (and hence drag forces) in the axial direction as they move
through the radially-varying fluid velocity field. The actual motion of the population
of particles in the radial direction is complex and random. However, on average the
particles are taken to move in the radial direction with some characteristic velocity,
uφ. It is important to note that the actual radial motion of any particular particle
is not captured by this approach; only the overall average effect, hence assumption
xi (radial and tangential components of air velocity are not modelled explicitly). Figure
6.6 compares the hypothetical evolution of the fluid velocity and the effective fluid
velocity as a particle moves randomly in the radial direction.
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Figure 6.6: Illustration showing u f and u e for the hypothetical radial motion of a particle in a
cross-section of the pipe

Thus, u e can be described as a time-varying random process for any given particle
having a random component of motion in the radial direction. As the origin of the
random process results from the motion of the particle, the process must display au-
tocorrelation, i.e., the magnitudes of u e experienced by the particle at any two times
measured in quick succession should be related. The level of autocorrelation is sensitive
to the magnitude of uφ; where uφ is low, the level of autocorrelation should be high and
vice versa. In the limit as uφ tends towards zero, values of u e are perfectly correlated
as was the case for a time-invariant random variable. Conversely, u e approximates a
white-noise process as uφ tends towards infinity. For simplicity and considerations of
physical reasonableness, the autocorrelation function for the random process is defined
as a first-order autoregressive process:

Ru e (τ) = e−φτ (6.22)

In this equation, φ is the autocorrelation parameter of the random process and τ is the
separation time, i.e., the time interval between successive samples. φ determines the rate
at which the correlation decays: as φ increases, the random process is characterised by
more rapidly unpredictable fluctuations. The inverse of the autocorrelation parameter
is known as the correlation (or decorrelation) time constant, τc . Eq. 6.22 implies that
the degree of correlation between successive sampled values of u e falls monotonically
with increasing separation time between the samples. In cases where τ< τc , values of
u e are strongly correlated.

The magnitude of the autocorrelation parameter, φ, should be informed by the mag-
nitude of the characteristic radial velocity, uφ. The simplest functional relationship is
given as Eq. 6.23, in which Rφ is a characteristic dimension that depends on how uφ is
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selected.
φ=

uφ

Rφ
(6.23)

This function is clearly a suitable descriptor of φ at its limits:

• As the characteristic radial velocity of the particle, uφ, tends towards zero, φ → 0
and Ru e (τ) → 1, i.e., a perfect correlation.

• As uφ → ∞, φ → ∞ and Ru e (τ) → 0 irrespective of the separation time, τ, i.e., no
correlation.

In summary, the effective fluid velocity, u e was treated as a first-order, autoregressive
process which had a mean of µu f given by Eq. 6.4, a variance of σ2

u f given by Eq. 6.5,
a PDF given by Eq. 6.9 and an autocorrelation function given by Eq. 6.22. To generate
realisations of u e , the effective fluid velocity at any time t +∆t could be related to u e at
time t by Eq. 6.24:

u e (t +∆t ) =µu e +ρu e [u e (t )−µu e ]+ z t (6.24)

The ρu e term in this recursion scheme is a function of the time increment, ∆t , and the
correlation time, τc :

ρu e = e
−∆t
τc = e−φ∆t (6.25)

z t is a random term with a mean of zero and a variance of (1−ρ2
u e )σ

2
u e .

6.1.6 Statistics of Particle Velocity

For a conveying systemwhere the particles have no radialmotion, the statistics of particle
axial velocity are those of effective fluid velocity (or for sufficiently small particles those
of fluid velocity itself). u e is a random variable (Eq. 6.24); therefore, the particle velocity
is likewise a random variable. In practice, the randomness in the axial velocity of any
particle arises because of its radial component of motion within the pipe: particles are
subjected to a high effective fluid velocity close to the centreline, which reduces towards
zero as the particle approaches the pipe wall. It is equivalent to fix the radial positions
of the particles, so that they move only in horizontal, mutually-parallel lines, and then
subject each particle to a time-varying effective fluid velocity. Analytical estimates for
the mean and variance in the particle (axial) velocity as a result of this approach could
be obtained only by an approximate analysis for which one additional assumption was
required: u e was treated as normally-distributed although its actual PDF (Eq. 6.9) was
only approximately Gaussian.

Eq. 6.17 is a stochastic differential equation because u e contains a time-varying random
component (Eq. 6.24). A solution of a stochastic differential equation with a similar form
was presented by Nicolaï et al. (2007), and their solution was adapted for this problem
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to find the mean and variance in particle velocity. Note that an outline derivation of
Eq s. 6.26 and 6.27 is given in Section G.7. The asymptotic value of the mean particle
velocity in the axial direction is equal to the mean effective fluid velocity:

µu p =µu e (6.26)

However, the variance of particle velocity also has a dependence on time:

σ2
u p =

pe

pe +φ
σ2

u e +
pe

pe −φ
σ2

u e e−2pe t −
2p 2

e

(pe +φ)(pe −φ)
σ2

u e e−(pe+φ)t (6.27)

For long times, i.e., t � 1
2pe

and t � 1
pe+φ

, Eq. 6.27 reaches the steady-state value given
by Eq. 6.28:

σ2
u p =

1

1+ φ
pe

σ2
u e t �

1

2pe
; t �

1

pe +φ
(6.28)

Eq s. 6.26 and 6.28 imply that the particle velocity in the axial direction becomes a station-
ary random process after some time has elapsed. Eq. 6.28 shows that the magnitude of
the dispersion in particle velocity is lower than the dispersion in effective fluid velocity,
and the difference depends on the relative magnitudes of pe and φ. Given a relatively
large and heavy particle with a correspondingly low effective inertial rate constant and
with a fluid velocity field characterised by high-frequency fluctuations (i.e., large φ),
then σ2

u p would be much lower than σ2
u e reflecting the fact that the particle is physically

unable to follow the rapid disturbances. However, the variance in particle velocity
would almost equal that of fluid velocity in the opposite situation for a small, light
particle (large pe ) in a velocity field which varies gradually (small φ). Finally, it should
be noted that Eq s. 6.26 and 6.28 could be considered only as estimates of particle velocity
statistics. Their suitability was assessed by numerical calculations presented in Section
6.3.1.

6.1.7 Autocorrelation Parameter of Effective Fluid Velocity

Several equations presented in Sections 6.1.5 and 6.1.6 contained the autocorrelation
parameter, φ. It was necessary to identify a justifiable basis for determining the magni-
tude of φwhich reflected the physical causes of random particle motion in the radial
direction. This required determining suitable values for uφ and Rφ to use in Eq. 6.23.
Two different reasons for radial particle motion are the following:

1. Inter-particle collisions cause the trajectories of the conveyed particles to deviate
from axial motion. This is applicable if the mass flow ratio is sufficiently high to
ensure a high number of inter-particle collisions (notwithstanding assumption
iv).
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2. If the mass flow ratio is very low, inter-particle collisions are unlikely. The force of
gravity may then be the main factor capable of supplying the radial component
of motion to the particles. Note that gravity was not included in Eq. 6.16 as the
particles are assumed to remain in suspension at all times (assumption vii) and
lift forces, which are not explicitly modelled (assumption iii), would be active to
partially balance the gravitational force. However, the gravitational force may be
used to provide an estimate for φ.

Both are discussed individually below and were computed numerically in Section 6.2.2.
It should be noted that these methods provided only estimates of φ; if detailed experi-
ments show that the actual value of φ differs considerably from these approximations,
the disparity would have little effect on the calculated results. Of course, there are other
reasons why particles may move in the radial direction, including fluid turbulence,
which are not considered below.

Inter-Particle Collision Mechanism

By making assumptions i and xiv (i.e., particles are rigid, monosized elastic spheres),
it may also be assumed that collisions that occur cause an exchange of radial velocity
between particles, and the particle velocity within any cross-sectional plane of the
pipeline corresponds to a discrete white-noise process with no correlation between the
velocities before and after any collision. The mean free path between collisions, λ, is
approximated by Eq. 6.29, where n p v is the number of particles per unit volume in the
pipe (Present, 1958, p.32; Serway, 1996, p.605).

λ=
1

4
p

2πrp
2n p v

(6.29)

The smaller is the distance travelled by a particle between successive collisions, the lower
is the change in the effective fluid velocity acting on it over the corresponding time. Of
course, the change in u e is also sensitive to the component of this distance in the radial
direction and the local spatial gradient in u e . Nonetheless, the magnitude of the mean
free path, λ, compared to the pipe radius, R , can be used as a measure of the change in
the magnitude of the effective fluid velocity acting on the particle. According to this
approach, the characteristic radial distance, Rφ, is equal to the inter-collision mean free
path, λ. Hence, the corresponding time for any particle to travel along its mean free
path can act as a useful measure of correlation in the system; this time is termed tφ. For
any time less than tφ, successive values of u f or u e are strongly correlated. Conversely,
this correlation is low if times are greater than tφ. tφ is equivalent to the correlation
time constant (τc ) which was introduced in Section 6.1.5. The reciprocal of tφ is the
collision frequency, f c , which is related to φ by Eq. 6.30. u is the average speed of a
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particle (Serway, 1996, p.605).

φ= f c = 4
p

2πrp
2n p v u (6.30)

One approach which may be applied to find an estimate of uφ was to use the concept
of granular temperature, which is discussed more thoroughly by Goldhirsch (2008).
Granular temperature is similar to gas temperature, although particles are macroscopic
entities rather than infinitesimal gas molecules. It is a measure of the dispersion in
particle velocity and has units of m2 s−2. The granular temperature, Θ, can be related to
the average collision velocity between particles, u c , by Eq. 6.31 (Gidaspow, 1994):

u c =
3

2

p
πΘ (6.31)

The characteristic radial velocity, uφ, is taken to equal u c for the inter-particle collision
mechanism.

Gravitational Mechanism

For the gravitational mechanism, it is assumed that a particle which is initially at rest
falls vertically under gravity to collide with the inner wall of the pipe, and would then
reboundwithout a loss of energy (elastic spheres). An estimate for Rφ could be obtained
as the average height through which a particle would fall if placed randomly in the
pipe cross-section. uφ is taken to be the average vertical velocity of a particle falling
through this distance.

The vertical velocity of a particle falling from rest under gravity and retarded by fluid
drag (u v ) is given by Eq. 6.32, where u t is the terminal velocity of the particle.

u v = u t tanh

�

g t

u t

�

(6.32)

u t may be calculated by equating the drag and buoyancy forces (acting upwards) to
the weight of the particle (of density ρp ) to give Eq. 6.33. Note that u e in Eq. 6.15 for
calculating the drag force is zero for a static fluid.

u t =

r

8rp g (ρp −ρ)
3cDρ

(6.33)

cD may be calculated using Eq. 6.19, for which Rep is a function of u t , thus requiring
Eq. 6.33 to be solved iteratively. Assuming that particles are uniformly distributed over
the cross-section of the pipe (assumption v), the average height that a particle falls
through is given by Eq. 6.34:

µh =
8(R − rp )

3π
(6.34)
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µh is taken as Rφ. As mentioned above, the corresponding characteristic radial velocity,
uφ, is the average vertical velocity of a particle falling through this distance. This was
derived as Eq. 6.35 in Section G.8.

uφ =
2

π(R − rp )2

∫ x=R−rp

x=0

∫ H=2
p

(R−rp )2−x 2

H=0

g H

u t arccosh
�

e
g H
u t

2
�

d H d x (6.35)

6.1.8 Inter-Particle Collision Velocity Statistics

Although the effect of collisions were not considered as a mechanism for particle
breakage (assumption xiii), it was important to estimate the mean inter-particle collision
velocity in order to justify this assumption. A theoretical estimate for the mean inter-
particle collision velocity can be obtained only if the distribution in particle velocity is
known. It is also necessary to have data regarding the homogeneity and isotropy of
the velocity field. However, estimates of the relative magnitude of the mean collision
velocity can still be calculated in the absence of such information. One possibility is
to consider particle velocity to be normally distributed and the relative velocity for a
single pair-wise collision to be described by the absolute magnitude of this distribution.
In this case, the mean value for collision velocity is given by Eq. 6.36:

µu c =
2
p
π
σu p = 1.128σu p (6.36)

Alternatively, the mean collision velocity can be obtained by considering the granular
temperature of the mixture, in which case the result is given by Eq. 6.37:

µu c =
p

3π

2
σu p = 1.535σu p (6.37)

Although Eq s. 6.36 and 6.37 were derived from different theoretical bases, both indicate
that the average inter-particle collision velocity is of the same order of magnitude as
the standard deviation in particle velocity.

6.1.9 Pipe Bend Collision Velocity Statistics

At the end of the straight section of pipe, the particles collide with the inner wall of
the single 90° bend in the system. A number of simplifying assumptions are made in
the development of this sub-model, specifically assumptions vi, viii and xvi, i.e., all
particles travel in straight lines at the bend with no curvilinear motion caused by the
changed fluid flow and collide once with the bend wall. Since the radial component of
air velocity is disregarded, its effect on the impact velocity of the particle was also not
considered. The assumption that particles travel in straight lines in the bend requires a
minimum particle size to ensure validity. Furthermore, the pipe wall at the bend has
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a double curvature in reality, i.e., is curved in two orthogonal directions. Therefore,
the impact angle for any real particle collision depends on its vertical and horizontal
position in the pipe cross-section at the moment of impact. This makes any probabilistic
analysis of impact velocity statistics very cumbersome. Assumption xvii was made
which resulted in a considerable simplification: the impact angle depends solely on the
vertical location of a particle in the pipe at the point of impact†. The normal impact
velocity at the bend, u n , is given by Eq. 6.38, in which u p is the axial velocity of the
particle at impact and θ is the impact angle.

u n = u p sinθ (6.38)

Distributions exist in both the particle velocity, u p , and the impact angle, θ. Both can
be considered to be represented by random variables (since u p is being examined at
a particular moment in time). This makes Eq. 6.38 deceptively complicated: it is non-
linear due to the presence of a product and a sine function. However, the mean and
variance of u n could be estimated by the method of statistical differentials, having
knowledge of the mean and variance of both input random variables. The mean normal
impact velocity is given by Eq. 6.39:

µu n uµu p sinµθ (6.39)

In contrast to inter-particle collisions where themean collision velocity was proportional
to the standard deviation in particle velocity (Section 6.1.8), the mean normal collision
velocity between the particles and wall of the pipe bend is proportional to the mean
particle velocity, µu p . As the mean particle velocity is typically an order of magnitude
greater than the standard deviation in particle velocity, it is clear that collisions with
the bend wall are the dominant cause of particle breakage. The variance of normal
impact velocity is given by Eq. 6.40, in which the partial derivatives are evaluated at
the mean values of the input variables and ρu p ,θ is the cross-correlation coefficient of
particle velocity and impact angle.

σ2
u n u

�

∂ u n

∂ u p

�2

n

σ2
u p +2ρu p ,θ

∂ u n

∂ u p

∂ u n

∂ θ
σu pσθ+

�

∂ u n

∂ θ

�2

n
σ2
θ (6.40)

It is necessary to take into consideration the dependence of particle velocity, u p , and
impact angle, θ. If the particles have no radial motion, then the velocity of any particle
is determined by its radial distance from the pipe centreline. The impact angle is
also sensitive to radial location, which means that u p and θ are dependent random
variables. However, the degree of dependence between these variables depends on the
level of autocorrelation in the effective fluid velocity, u e , which was quantified by φ

†The terminal bend was curved upwards out of the plane of the horizontal pipe section, as shown on
Figure 6.7 (p.166).

165



6. Probabilistic Modelling of Pneumatic Conveying

(Eq. 6.23). If uφ is low, the particles move in almost straight lines (with a large degree
of autocorrelation in particle velocity) and there is a significant dependence between
u p and θ. As uφ increases, the particle velocity becomes more random with respect to
time and the connection between particle velocity and impact angle becomes weaker
(increased φ and decreased Ru e ). If it is assumed that uφ is sufficiently high to ensure
a negligible correlation between u p and θ, ρu p ,θ u 0 and hence the variance in impact
velocity is given by Eq. 6.41:

σ2
u n u sin2µθ ·σ2

u p +µ
2
u p cos2µθ ·σ2

θ (6.41)

Eq s. 6.39 and 6.41 allow estimates of the mean and variance of normal impact velocity
to be calculated given the corresponding statistics for particle velocity and impact
angle. Expressions for the mean and variance of particle velocity are available (Eq s. 6.26
and 6.28), while expressions for the corresponding statistics for the impact angle are
developed in Section 6.1.10.

6.1.10 Impact Angle Statistics

The 90° bend at the end of the modelled conveying system is defined by the mean bend
radius, Rb . The geometry of the bend is shown in Figure 6.7. The impact angle, θ, is
related to the vertical displacement from the centre of the cross-section, y , by Eq. 6.42.

θ (y ) = arccos







1− y
Rb

1+ R−rp

Rb






(6.42)

θ

rp

θ

Rb

R

y

x

θ

Rb-y Rb+R-rp

x
+ y

- y

Figure 6.7: Geometry used to derive the trigonometric relationship between θ and y given as
Eq. 6.42
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As y → −(R − rp ), θ → 0 while the maximum impact angle, θmax, is attained at the top
of the pipe, i.e., where y = R − rp . The impact angle corresponding to motion along
the pipe centreline (where y = 0) is designated as the centreline impact angle, θc . The
magnitudes of θc and θmax are given by Eq s. 6.43 and 6.44, respectively:

θc = arccos







1

1+ R−rp

Rb






(6.43)

θmax = arccos







1− R−rp

Rb

1+ R−rp

Rb






(6.44)

The probability density function of impact angle, P (θ), was found as Eq. 6.45 (the
derivation is confined to Section G.9):

P (θ) =
2 sinθ

π(R − rp )2

Æ

�

R − rp −Rb +(Rb +R − rp )cosθ
�

(1− cosθ)(Rb+R−rp )
3
2 0≤ θ≤ θmax

(6.45)
Figure 6.8 illustrates the nature of this PDF for a range of Rb

R values.
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Figure 6.8: Probability density functions of impact angle for a constant rp
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It is not possible to obtain analytical expressions for the mean and variance of impact
angle. However, it can be shown numerically that the mean impact angle, µθ, is frac-
tionally less than the centreline impact angle, θc , and the standard deviation of impact
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angle, σθ, is 0.29 times this mean, i.e.:

µθ = 0.965θc (6.46)

σθ = 0.29µθ (6.47)

These results are almost independent of Rb
R . Figure 6.9 compares the mean impact

angle obtained using Eq. 6.46 with the values obtained by numerically integrating
P (θ) ·θ between the limits 0 and θmax using Mathematica (v.8, Wolfram Research, Inc.,
Champaign, IL, USA). It is clear that the agreement between both plots is almost perfect
across a wide range of Rb

R values.
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Figure 6.9: Variation of the mean impact angle (rad) obtained both by numerical integration
and using Eq. 6.46, with the ratio of bend radius to pipe radius, Rb

R

A similar comparison was made for the standard deviations in Figure 6.10, where the
variance was obtained by numerically integrating P (θ) ·(θ−µθ)2, taking µθ from Eq. 6.46.
The correspondence is not as close as in Figure 6.9, but the maximum error remains
small: 4.4% when Rb

R is 2. Since bend radii are generally much greater than the pipe
radius in pneumatic conveying systems, the error for a realistic Rb

R ratio would be < 1%.

6.1.11 Particle Impact Force Statistics

A structural model of the particle is necessary to relate the impact velocity to the corre-
sponding impact force. There aremany continuous contact dynamicmodels in literature
which relate force and deformation for particle impacts; these are comprehensively
surveyed by Gilardi and Sharf (2002). Such models often insert some combination of
conceptual springs and dashpots at the contact points. The springs provide the required
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Figure 6.10: Variation of the standard deviation in impact angle (rad) obtained both by
numerical integration and using Eq. 6.47, with the ratio of bend radius to pipe radius, Rb

R

elastic behaviour while the dashpots dissipate energy. The Kelvin-Voigt model was
selected for this work. Marhefka and Orin (1996) highlight some of the deficiencies
of this model, including discontinuous contact forces at the beginning of the impact.
However, it has the major advantage of simplicity: a linear spring (with stiffness k )
and a dashpot (with damping coefficient c ) are inserted at each contact. The governing
differential equation is Eq. 6.48:

m x ′′(t )+ c x ′(t )+k x (t ) = 0 (6.48)

Each impact is modelled as an impulse, P, which is the product of particle mass, m ,
and normal impact velocity, u n (from Eq. 6.38). The deflection of the particle during the
impact is given by Eq. 6.49 for underdamped conditions, where ζ is the dimensionless
damping factor, ωd is the damped natural frequency and ωn is the natural frequency
(see Section G.10 for details).

x (t ) =
u n

ωd
e−ζωn t sin(ωd t ) (6.49)

The corresponding force on the particle, F (t ), was obtained by multiplying the second
derivative of Eq. 6.49 with respect to time by the particle mass:

F (t ) =m u n e−ζωn t

��

ζ2ω2
n

ωd
−ωd

�

sin(ωd t )−2ζωn cos(ωd t )

�

(6.50)

It was not possible to find an analytical expression which relates F (t ) and u n , although
the maximum contact force tends towards

p
k m u n as c → 0. k and c could be found by

knowing the coefficient of restitution of the particles, ε, and the contact time, tc , at any
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impact velocity. Eq s. 6.51 and 6.52 are the relevant expressions which were derived in
Section G.10.

c =−
2m lnε

tc
(6.51)

k =
m

t 2
c

(ln2 ε+π2) (6.52)

6.1.12 Particle Strength Statistics

A criterion is necessary to determine whether or not the force that any particle experi-
ences in an impact with the pipe bend is sufficient to cause breakage. As the results of
the particle crushing experiments in Chapter 3 demonstrated, there are major differ-
ences between the strengths of individual infant formula agglomerates. The Weibull
PDF is often used to model the variability in particle strength; this approach was used
previously in Section 5.3.3 on p.118. The key equation for Weibull analysis is Eq. 5.3:

ln

�

ln

�

1

Ps (d )

��

=m ln

�

σ

σo

�

(5.3)

Thus, two parameters are required: the Weibull modulus, m , and the characteristic
stress at which 37% of agglomerates survive, σo . The methodology used to obtain these
parameters is described in Section 6.2.3.

6.2 Materials and Methods

In order to be able to apply the model, many physical parameters needed to be specified,
both for the infant formula and for the conveying system. These are discussed in
Sections 6.2.1–6.2.3. while the computational methodology used to conduct the Monte
Carlo simulations is outlined in Section 6.2.4.

6.2.1 Model Infant Formula Particles

Although the particles were assumed a priori to be spherical, their other physical prop-
erties for use in the model were informed by experimental data for the physical infant
formula agglomerates. The volume mean diameter, or D[4,3], was found to be 312 µm
for the infant formula used in Chapter 2; thus, 150 µmwas used as rp in this model. The
bulk and particle densities of this formulaweremeasured as 462 kgm−3 and 1107 kgm−3,
respectively. Since themodel particles are solid spheres, their densitywould be expected
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to lie between these two densities†. The packing density of the monosized spheres
was assumed to be 60% (the upper limit of 74.05% for close-packing was mentioned in
Section 4.1.4 on p.79). Therefore, the density of the model particles was approximated
as 770 kgm−3

�

= 462
0.6

�

. Once the radius and density of the particles were known, the
mass of each particle could be calculated: m = 770(4/3)π(150×10–6)3 = 1.09×10–8 kg.

Two other parameters were required for input into the Kelvin-Voigt model, in addition
to the particle mass: k and c . These could be found using Eq s. 6.51 and 6.52, provided
that ε and tc were known. A range of drop tests were described in Chapter 3 using
agglomerates of four infant formulae. These drop tests were restricted to agglomerates
in the 710–850 µm size range: somewhat larger than the particle diameter of 300 µm
used for this model. Nonetheless, the mean coefficient of restitution in Table 3.13 of
0.2883 was a reasonable estimate for ε. A value of 3 µs was obtained for tc using the
calibrated DEM which was developed in Chapter 5. The local damping coefficient
was set at 0.1 for these DEM simulations using agglomerates which had diameters of
approximately 300 µm and impact velocities of 1.9 ms−1. This mean contact time is
much shorter than the high-speed camera is capable of measuring at an acceptable
resolution. Thus, c , k , ζ, ωd and ωn were calculated and are given in Table 6.1. Note
that the behaviour was underdamped (ζ < 1), and so all of the equations in Sections
6.1.11 and G.10 are valid.

Table 6.1: Quantities calculated for the Kelvin-Voigt model from m , ε and tc

Equation Value

c 6.51 9.026×10−3 kgs−1

k 6.52 13,808 kgs−2

ζ G.30 0.3681
ωd G.32 1.047×106 s−1

ωn G.29 1.126×106 s−1

The data in Table 6.1 may be used to plot the relationship between the maximum impact
force and the normal impact velocity, u n . This plot is shown as Figure 6.11 and is linear,
since Eq. 6.50 indicates that F (t )∝ u n .

†When calculating the bulk density, the volume includes the voids between agglomerates. Therefore,
the densities of the agglomerates, and of the spheres representing the agglomerates, must be higher than
the bulk density as the packing efficiency of spheres is less than 100%. The particle density includes the
solid fraction of the agglomerates only. The idealised spheres represent not only the solid fraction of the
real agglomerates, but also the pores and hollows within the agglomerates that are accessible to nitrogen.
Therefore, the density of the spheres must be less than the particle density of infant formula.
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Figure 6.11: Plot of the maximum impact force (N) against normal impact velocity (ms−1) for
the data given in Table 6.1, showing the linear relationship required by Eq. 6.50

6.2.2 Conveying System Geometry and Flow Conditions

The basic geometry of the conveying system was already described in this chapter as a
long, straight, horizontal pipe section with a 90° bend at its end. It was not important
to maintain geometric similarity with the experimental system used in Chapter 2 as
the outputs of the probabilistic model could not feasibly be compared to experimental
results obtained previously; therefore, the modelled conveying system was selected for
simplicity. A 20 m pipe length was used for calculating the model results. The pipe
radius was chosen as 50 mm, as typical diameters of industrial pneumatic conveying
systems used for the transport of infant formula are around 100 mm. The ratio rp

R was
therefore fixed at 0.003. The radius of the bend, Rb , was selected as 800 mm: industrial
systems often use long, sweeping bends, and the 16:1 ratio of Rb :R was the same as for
the lab-scale rig used in Chapter 3. The impact angle along the pipe centreline, θc , and
the maximum impact angle, θmax, were calculated as 0.345 rad (19.75°) and 0.490 rad
(28.07°) respectively from Eq s. 6.43 and 6.44. The variation of θ with y is shown in
Figure 6.12.

The maximum (centreline) fluid velocity, denoted by u m in the model, was selected as
20 ms−1; this velocity is typical for dilute phase conveying and considerably exceeds
the saltation velocity for infant formula, which was necessary to satisfy assumption
vii. The mass flow ratio is an important parameter which is calculated as the mass of
solids per unit mass of conveying air. There is a large range in mass flow ratios used for
dilute phase conveying, as discussed in Section 1.4.2. Klinzing (2001b) states that mass
flow ratios of around 1 are often used, while Marcus et al. (1990) indicate that ratios
below 15 would be reasonable for dilute phase transport. Two different values were
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Figure 6.12: Plot showing the non-linear variation of impact angle with displacement from the
centre of the pipe cross-section (m)

used in the model: 1 and 10. By knowing the density of air, the particle density, the
mass of each particle and the mass flow ratio, n p v was calculated as shown in Eq. 6.53.
Note that the conveying air was assumed to be at 20◦C; at this temperature and at
standard atmospheric pressure, the kinematic viscosity and density of dry air were
1.506×10–5 m2 s−1 and 1.206 kgm−3, respectively (Rogers and Mayhew, 1995, p.16).

n p v =



















1
1.09×10−8

1
770 +

1
1.206

= 1.11×108 m−3 if mass flow ratio = 1

10
1.09×10−8

10
770 +

1
1.206

= 1.09×109 m−3 if mass flow ratio = 10
(6.53)

The pipe Reynolds number, n , and themean air velocity (µu f ) were calculated iteratively
since all three were related. Re was found as the product of µu f and the pipe diameter
divided by the kinematic viscosity of air, n is the function of Re given by Eq. 6.2 and
µu f is the function of n and u m given by Eq. 6.4. These three quantities were found to
equal 1.09×105, 7.32 and 16.47 ms−1, respectively. The large magnitude of Re confirms
that it was acceptable to describe the radial variation of fluid velocity using the 1/7th

power law velocity profile.

Two causes of particle motion in the radial direction were discussed in Section 6.1.7.
Since the gravitational mechanism was applicable only at low mass flow ratios, it was
used only where the mass flow ratio was 1. Conversely, the inter-particle collision
mechanism was applied only for a mass flow ratio of 10. Where inter-particle collisions
were the main cause, the mean free path between collisions, λ, was calculated using
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Eq. 6.29:
λ=

1

4
p

2πrp
2n p v

= 2.3 mm (6.29)

The characteristic radial distance, Rφ, was equal to λ for this approach. The characteristic
radial velocity, uφ, required estimates of the granular temperature. There is a lack of
reliable data in the literature for granular temperatures for pneumatic conveying; in
the absence of suitable estimates, the granular temperature for this conveying scenario
was assumed to be 0.01 m2 s−2. This is close to the maximum granular temperature of
0.009 m2 s−2 obtained by Rajniak et al. (2009) for aWurster type fluidised bed granulator.
For this value of Θ, u c was calculated as 0.266 ms−1 from Eq. 6.31, which was taken as
uφ for the inter-particle collision mechanism. This gave a value of 116 s−1 for φ.

Alternatively, gravity might act as the main cause of particle motion in the radial
direction. Where this was the case, the average height that the particles fall through, µh ,
was calculated as 42.3 mm from Eq. 6.34. Rφ was taken to equal µh for this mechanism.
uφ was calculated by numerically integrating Eq. 6.35 in Mathematica. This integration
required the terminal velocity of the particle, u t , which was found as 0.97 ms−1 from
Eq. 6.33. Thus, uφ was 0.39 ms−1 and φ was equal to 9.24 s−1 for the gravitational
mechanism.

6.2.3 Determination of Weibull Parameters

The calibrated DEM which was developed in Chapter 5 was used to obtain both of
the required Weibull parameters. It has already been demonstrated that this model
gives acceptable results for dynamic loading, despite being developed for quasi-static
compression of agglomerates. Therefore, it could be applied to this dynamic loading
situation with some assurance of obtaining a reasonable result. One hundred dynamic
DEM simulations were run in total. These were similar to the impact simulations
described in Section 5.5.2, with two important differences:

• The agglomerates used were smaller, having a diameter of approximately 300 µm.
The mean number of spheres in an agglomerate was 46, with a standard deviation
of 11.

• The impact velocity was 20 ms−1 rather than 10.1 ms−1.

Failure of these agglomerates was determined using the criterion defined in Section
5.5.2, i.e., an agglomerate was deemed to have failed during the simulation if fewer
than 95% of the spheres remained in one intact entity. Exactly half of the simulated
agglomerates failed according to this criterion. The force at failure for the Weibull
analysis was taken to be the maximum force attained prior to agglomerate failure,
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while the required measure of agglomerate size, d , was the height of the agglomerate
(measured perpendicularly to the platen) before impact.

As before, ln
h

ln
�

1
Ps (d )

�i

was plotted against ln(σ) and a linear regression trendline was
fitted. This is shown in Figure 6.13. The Weibull modulus, m , was equal to 1.7936
and σo was 8.711×106 Nm−2. R2 of the linear regression was extremely high: 0.9804.
Rather than using nominal stresses at failure, it was also possible to determine Weibull
parameters directly using the forces at failure (i.e., without division by d 2). In that case,
m was equal to 1.7180 and the 37% characteristic force, Fo , was 1.336 N.

ln(σ)

14 14.5 15 15.5 16 16.5 17
-5

-4

-3

-2

0

1

2

-1

(     
)

1 P
s

__
ln

ln
(     

      
)

Figure 6.13: Weibull plot for the 50 simulated agglomerates which failed when subjected to
impact loading at 20 ms−1

The probability density functions thus obtained are shown in Figure 6.14 in terms of
both stress and force.
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Figure 6.14: Probability density functions of the Weibull distributions in a) σ and b) F for the
parameters determined in Section 6.2.3
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6.2.4 Monte Carlo Approach for Model Application

Monte Carlo simulation was selected as the most suitable probabilistic approach for
validating the theoretical predictive equations developed for this model. Instead of rep-
resenting each input parameter by a single number, certain model inputs are sampled
from probability distributions which characterise the variability in those parameters
(Cronin and Gleeson, 2007). It is necessary to conduct sufficient simulations to ensure
statistical significance of the model outputs; in this case, 5,000 simulations were con-
ducted for each value of φ to properly account for the input variability. The algorithm is
outlined below and was implemented using MATLAB. Note that the time step chosen
for these simulations, ∆t , was fixed at 0.1 ms.

1. For each simulation, the position of the particle was selected randomly. The
position is defined by the Cartesian coordinates of the centrepoint of the particle,
i.e., x and y . Two variates were randomly selected from the uniform distribution
on the interval [0,1]: γ1 and γ2. x , y and the radial distance, r , were then calculated
from Eq s. 6.54–6.56:

x = γ1(R − rp )cos(2πγ2) (6.54)

y = γ1(R − rp )sin(2πγ2) (6.55)

r =
p

x 2+ y 2 (6.56)

2. u f , µu f (= µu e ) and σu f (= σu e ) were calculated using Eq s. 6.1, 6.4 and 6.5, respec-
tively.

3. u e and u p were calculated at each incremental time step (∆t ) using Eq s. 6.24 and
6.17, respectively.

u p (t +∆t ) = u p (t )−pe [u p (t )−u e (t )]∆t (6.17)

The particle Reynolds number and effective inertial rate constant were recalculated
for each time step using Eq s. 6.12 and 6.21, respectively, since the relative velocity
between the fluid and particle changed continuously. The axial displacement
along the pipeline, xp , was also found at each time step using Eq. 6.57. xp and
t were initialised at 0 at the start of the simulation, while u e and u p were both
initialised at u f .

xp (t +∆t ) = xp (t )+
1

2

�

u p (t )+u p (t +∆t )
�

∆t (6.57)

xp was used as a termination condition for this time-stepping algorithm, i.e., the
algorithm was completed when xp (t +∆t ) became greater than the pipe length.
u e , u p , xp , t , pe and Rep were all stored in a data matrix for subsequent use.
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4. The impact angle, θ, was calculated for each simulation using Eq. 6.42. The normal
impact velocity, u n , was found using Eq. 6.38, noting that the particle velocity in
this equation was the final value recorded for u p . Basic statistics were calculated
for u e and u p : means, standard deviations and extreme values. σ2

u p was calculated
using Eq. 6.28 for comparison, taking pe to be the mean of the relevant column in
the matrix.

5. The maximum absolute impact force was found using Eq. 6.58, which is a simpli-
fied form of Eq. 6.50.

|F (t )|
�

�

max = 0.0103u n (6.58)

This was divided by the square of the particle diameter, d 2, to obtain the nominal
σ required for the Weibull determination of breakage (Eq. 5.4), where d was fixed
at 0.3 mm. The probability of survival of the particle, Ps , was found using Eq. 5.2.

6. Whether or not the particle failed was determined by randomly selecting another
variate from the uniformdistribution on the interval [0,1], γ3. If γ3 ≥ Ps , the particle
was deemed to have failed, otherwise, it survived the loading. For example, if Ps

was found to be 0.95 and γ3 was randomly generated as 0.37, the particle would
be judged to survive the loading. However, if γ3 was instead 0.96, the particle
would be deemed to have failed. All of the relevant data were appended to a
text file for subsequent analysis, the variables were cleared from memory and the
algorithm recommenced.

6.3 Results and Discussion

6.3.1 Effective Fluid and Particle Velocities

Figures 6.15 and 6.16 show three realisations of u e and u p against distance along
the pipeline where φ was 116 s−1 and 9.24 s−1, respectively. By comparing these two
figures, it can be seen that increasing φ had the effect of increasing the frequency of the
fluctuations in the effective fluid velocity, and hence in the particle velocity.

Table 6.2 presents basic statistics of u p which were calculated using two methods:

1. By determining the statistics for 5,000 Monte Carlo simulations conducted at φ
values of 9.24 s−1 and 116 s−1

2. Using the theoretical equations for µu p and σu p presented in Section 6.1.6

Note that each of the statistics in Table 6.2 which were obtained from the Monte Carlo
simulations is the mean of the corresponding values recorded, e.g., the mean of the
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Figure 6.15: Three representative realisations of the effective fluid velocity and particle velocity
(both in ms−1) against distance along the pipeline (m) for φ = 116 s−1

minimum values recorded for u p was 13.941 ms−1 when φ = 9.24 s−1, which was con-
siderably different from the global minimum for all of these simulations: 9.033 ms−1.

Changing the autocorrelation parameter had a negligible effect on the means of u p .
However, there were marked differences in the other statistics. Increasing φ caused
the fluid velocity field to fluctuate more quickly, and the particle was not capable of
following the rapid disturbances: this effect was expected from the discussion of Eq. 6.28
in Section 6.1.6. The same effect can also be seen when the extreme values are compared:
the range of u p was smaller when φwas 116 s−1 (3.943 ms−1) than when φwas 9.24 s−1

(5.301 ms−1).
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Figure 6.16: Three representative realisations of the effective fluid velocity and particle velocity
(both in ms−1) against distance along the pipeline (m) for φ = 9.24 s−1

Eq s. 6.26 and 6.28 were given in Section 6.1.6 for the mean and variance of particle
velocity, respectively. The former is equal to µu e , which is given by Eq. 6.4 as a function
of only two parameters: n and u m . The value of µu p calculated using this equation,
16.471 ms−1, was very close to the simulation values: the magnitudes of the differences
are less than 1% for both φ values when compared to the equivalent Monte Carlo
simulation means. However, the standard deviations do not compare as well, with
differences from the equivalent Monte Carlo simulation standard deviations of 13%
and -17% for φ values of 9.24 s−1 and 116 s−1, respectively. Eq. 6.28 assumes that t � 1

2pe

and t � 1
pe+φ

. Since the mean values of pe were > 7 for all simulations (average of 9.75),
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Table 6.2: Means, standard deviations and extreme values of the particle velocity (ms−1),
averaged over the 5,000 simulations conducted at each value of φ, compared to the means and

standard deviations calculated using theoretical predictive equations

φ (s−1)
u p (ms−1)

Mean Std. Dev. Minimum Maximum

Simulations
9.24 16.592 1.399 13.941 19.242
116 16.493 0.788 14.580 18.523

Equations
9.24 16.471 1.583 — —
116 16.471 0.655 — —

and the conveying time exceeded 1 s, both of these conditions were comfortably met.
Two alternative reasons were identified for the disparity between standard deviations:

1. The modelled conveying system had a length of 20 m. This was insufficient for
σu e to reach the theoretical value of 2.260 ms−1 from Eq. 6.5 when φ was 9.24 s−1

(the average σu e for these simulations was 2.030 ms−1). Since Eq. 6.28 contains
σ2

u e , σ2
u p showed a corresponding deviation.

2. Even as the pipe length tends towards infinity, a difference remains between
simulated and theoretical σu p values. This difference ¯ 30% for typical values of
φ between 1 and 150. The reason for this has not been established definitively,
but it is hypothesised that it may be due to the assumption that P (u e ) is normally
distributed, which was clearly not the case (Figure 6.4 on p.155).

The development of Eq s. 6.26 and 6.28 incorporated an effective inertial rate constant,
pe , to ensure that the expressions were valid outside of the Stokes’ law regime in which
Rep ¯ 2. Figure 6.17 plots the particle Reynolds number against distance along the
pipeline. Clearly, Rep fluctuated greatly and values were almost always greater than
2. The mean particle Reynolds numbers for all 5,000 Monte Carlo simulations were
24.1 (φ of 9.24 s−1) and 34.2 (φ of 116 s−1), while the average maximum values from all
simulations were 91.4 and 149.3, respectively.

The variation of pe with φ is small, which is unsurprising since the only non-constant
term in Eq. 6.21 is

p

|u p −u e |. The mean value of pe was 8.9 s−1 when φ had a value
of 9.24 s−1 in the simulations, which increased to 10.6 s−1 when φwas 116 s−1. Taking
an average pe of 9.8 s−1 and σu e to be at its theoretical value of 2.26 ms−1, Figure 6.18
plots σ2

u p against φ using Eq. 6.28.
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Figure 6.17: Plots of the particle Reynolds number against distance along the pipeline (m) for
φ values of a) 116 s−1 and b) 9.24 s−1
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Figure 6.18: Plot of the variance in particle velocity (m2 s−2) against φ (s−1)

6.3.2 Impact Angles and Normal Impact Velocities

Basic statistics of the angle of impact with the 90° pipe bend, θ, are given in Table 6.3.
As for u p in Table 6.2, means and standard deviations could be calculated from the
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simulation data and compared with those obtained from theoretical equations (Eq s. 6.46
and 6.47). The autocorrelation parameter had no influence on any of the simulation
statistics, while the maximum impact angles almost reached the theoretical θmax of
0.490 rad.

Table 6.3: Means, standard deviations and extreme values of the impact angle, averaged over
the 5,000 simulations conducted at each value of φ, compared to the means and standard

deviations calculated using theoretical predictive equations

φ (s−1)
θ (rad {°})

Mean Std. Dev. Minimum Maximum

Simulations
9.24 0.335 {19.17} 0.078 {4.49} 0.025 {1.43} 0.488 {27.96}
116 0.333 {19.10} 0.079 {4.53} 0.022 {1.26} 0.488 {27.96}

Equations
9.24 0.333 {19.08} 0.097 {5.53} — —
116 0.333 {19.08} 0.097 {5.53} — —

The means compared extremely well. However, the standard deviations obtained from
the simulations and predictive equations differed considerably: by 24% (φ of 9.24 s−1)
and 22% (φ of 116 s−1), relative to the Monte Carlo simulation results. The formula
always over-predicted the actual standard deviations that occurred in the simulations.
The analogous statistics for the normal impact velocity, u n , are given in Table 6.4, for
which Eq s. 6.39 and 6.41 were the theoretical equations. Note that the required values
of µu p and σu p were taken as the simulation results in Table 6.2, while µθ and σθ were
taken from Table 6.3.

Table 6.4: Means, standard deviations and extreme values of the normal impact velocity
(ms−1), averaged over the 5,000 simulations conducted at each value of φ, compared to the

means and standard deviations calculated using theoretical predictive equations

φ (s−1)
u n (ms−1)

Mean Std. Dev. Minimum Maximum

Simulations
9.24 5.446 1.369 0.373 9.710
116 5.383 1.270 0.335 8.361

Equations
9.24 5.455 1.306 — —
116 5.391 1.258 — —

The normal components of impact velocity had an average of around 5.4 ms−1, and thus
were more than three times smaller than the mean particle velocities. Of course, this
observation was caused by the selection of a long bend radius of 0.8 m, and choosing
progressively smaller bend radii would cause the ratio of u n :u p to increase asymptot-
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ically towards 1. The means and standard deviations in Table 6.4 showed excellent
agreement, particularly considering that Eq s. 6.39 and 6.41 were approximations ob-
tained by the method of statistical differentials, and thus would be expected to contain
some error. The cross-correlation coefficient of particle velocity and impact angle,
ρu p ,θ, was calculated to assess the validity of omitting the partial derivative terms from
Eq. 6.40. ρu p ,θ was equal to -0.005 or 0.021 when φ was 9.24 s−1 or 116 s−1, respectively.
The magnitudes of both are negligible, confirming that it was acceptable to omit the
partial derivative terms in Eq. 6.41. This equation was the sum of two distinct terms,
one proportional to the variance in particle velocity and the other proportional to the
variance in impact angle. Their relative importance is quantified in Table 6.5.

Table 6.5: Contributions made by each term of Eq. 6.41 to the variance in normal impact
velocity, σ2

u n

φ (s−1)
Percentage

sin2µθ ·σ2
u p µ2

u p cos2µθ ·σ2
θ

9.24 12.4 87.6
116 4.2 95.8

The term containing σ2
θ makes the dominant contribution to σ2

u n for both values of φ
tested, and its relative importance became more marked as φ increased. Thus, if it is
desirable to minimise the variance in normal impact velocity, it may be more effective
to optimise the design of the pipe bend rather than to minimise the variance in particle
velocity.

6.3.3 Impact Forces and Agglomerate Breakage Statistics

Statistics of the maximum impact forces are provided in Table 6.6. Since neither θ nor
u n were significantly affected by φ, the same was true for |F (t )|

�

�

max and Ps . Thus, the
statistics were combined for the simulations conducted at both φ values to yield one
set of 10,000 simulations. The mean and standard deviation of the maximum impact
force could be predicted using Eq. 6.58, i.e., the mean is 0.0103µu n and the standard
deviation is 0.0103σu n . µu n and σu n were both taken as the average of the simulation
statistics in Table 6.4.

The means and standard deviations calculated using both methods were identical. The
MATLAB function wblfit was used to fit a Weibull distribution to the simulation data
for |F (t )|

�

�

max. The parameters of the PDF (Eq. 3.4) are given below, while the PDF is
graphed on Figure 6.19.
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Table 6.6: Means, standard deviations and extreme values of the maximum impact forces (N),
averaged over 10,000 simulations, compared to the means and standard deviations calculated

using theoretical predictive equations

Mean Std. Dev. Minimum Maximum

Simulations 0.056 0.014 0.003 0.100
Equations 0.056 0.014 — —

• a , the scale parameter, was equal to 0.0609 (95% confidence interval: 0.0606 →
0.0611)

• b , the shape parameter, was equal to 4.7657 (95% confidence interval: 4.6928→
4.8398)
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Figure 6.19: Probability density function of the Weibull distribution fitted to the simulation
data for |F (t )|
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The mean of this Weibull distribution was 0.056 and its standard deviation was 0.013,
both of which show excellent agreement with the statistics given in Table 6.6. Table 6.7
contains the statistics for the probability of survival of agglomerates when subjected
to this loading. An equation was derived for the mean of Ps , µPs , by comparing the
Weibull PDFs for force at failure of the particles and the maximum impact forces in the
conveying system: Figures 6.14b and 6.19, respectively. The force at which these PDFs
intersected was termed F ∗, which is shown on Figure 6.20†.

F ∗ was found to equal 0.093 N for these simulations. The probability that a particle
survives the loading could therefore be approximated by theWeibull cumulative density

†Note that both PDFs were truncated on Figure 6.20 so that F ∗ could be seen clearly.
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Figure 6.20: Identification of F ∗: the point of intersection of the Weibull PDFs for force at
failure and for the maximum impact forces in the conveying system

function given as Eq. 6.59.

µPs = e

�

−
�

F ∗

Fo

�m
�

(6.59)

Fo and m in Eq. 6.59 are the parameters given for the Weibull PDF of forces in Section
6.2.3 (equal to 1.336 N and 1.718, respectively).

Table 6.7: Means, standard deviations and extreme values of the probability of survival,
averaged over 10,000 simulations, compared to the mean calculated using Eq. 6.59

Mean Std. Dev. Minimum Maximum

Simulations 0.991 0.004 0.975 1.000
Equations 0.990 — — —

Both results for µPs showed excellent agreement. Only 0.9% of the particles failed when
subjected to this loading. The proportion of the agglomerates which fail would be
expected to increase as u m increases. This is demonstrated by Figure 6.21, which shows
that the mean probability of survival of an agglomerate decreases with increasing u m .
The data for this figure were obtained by running 500 Monte Carlo simulations at each
value of u m .

6.3.4 Advantage of Theoretical Predictive Equations

Throughout Sections 6.3.1–6.3.3, means and standard deviations have been presented
that were obtained from two sources: the Monte Carlo simulations and the theoretical
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Figure 6.21: Plot of the mean probability of survival of an agglomerate against the maximum
(centreline) air velocity (ms−1), where the error bars indicate ± one standard deviation of Ps

equations that were provided in Section 6.1. Generally, both approaches have shown
good agreement, particularly for the mean statistics. The main advantage of these
equations is that they provide insights into the conveying process that could not be
attained by simulation. If any parameter is changed, the simulations would need to
be rerun to quantify its effect, whereas the equations allow for immediate prediction
of the resulting effect without the requirement to conduct simulations. Some of the
insights gained are presented below:

• Themean particle velocity always coincideswith themean (effective) fluid velocity
given sufficiently long conveying times (Eq. 6.26). Thus, it is affected only by n

and u m . Since n varies little for realistic ranges of conveying conditions, µu p is
approximately 0.8u m .

• The variance in particle velocity is proportional to, and always less than, the
variance in (effective) fluid velocity (Eq. 6.28), which is in turn proportional to u 2

m

(Eq. 6.5). Hence, σu p is approximately proportional to u m . σ2
u p can be reduced by

either increasing φ or reducing pe (e.g., by conveying particles of larger diameter).

• µθ and σθ depend only on the centreline impact angle, θc , and hence are affected
only by the geometry of the pipe bend (Eq s. 6.46 and 6.47). Both of these equations
have very low sensitivity to the ratio of bend radius to pipe radius, Rb

R .

• The mean normal impact velocity is directly proportional to the mean particle
velocity (Eq. 6.39). Table 6.5 shows that the variance in normal impact velocity is
mainly affected by the variance in impact angle rather than the variance in particle
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velocity (Eq. 6.41). Therefore, σu n is nearly proportional to both µu p and σθ for
realistic ranges of φ.

• By using the Kelvin-Voigt dynamic model, the mean and standard deviation of
the maximum impact force are directly proportional to the equivalent statistics
for the normal impact velocity (Eq. 6.58).

6.3.5 Verification of Key Model Assumptions

xii: Neglecting the Acceleration Period for Particles in the Conveying System

Several simulations were conducted in which the initial velocity of the particle was zero.
Figure 6.22 shows the evolution of particle velocity with axial displacement along the
pipeline for one such representative simulation.
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Figure 6.22: Plot of the particle velocity and effective fluid velocity (both in ms−1) against
distance (m) for a representative conveying simulation in which the particle was initially at rest

µu e was 16.47 ms−1 for this simulation. The particle attained this velocity after 0.132 s
by which time it had travelled 2.38 m. Since the pipe length is 20 m, the acceleration
phase of the particle from rest up to the mean effective fluid velocity was completed
within the first 12% of the conveying system. Thus, it was acceptable to neglect this
initial phase of the simulations.
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xiii: Inter-Particle Collisions Not Considered Explicitly as a Mechanism for Particle
Breakage

The mean inter-particle collision velocity was calculated using Eq s. 6.36 and 6.37 to be
1.579 ms−1 or 2.147 ms−1, respectively, taking σu p as 1.399 ms−1 from Table 6.2. These
estimates of µu c were much less than 1/2 of the mean normal impact velocities at the
pipe bend in Table 6.4, and since fatigue of the particles was not considered (assumption
ix), assumption xiii was acceptable.

xviii: Not Considering Fluctuations in the Particle Velocity due to Fluid Turbulence

Assume that turbulence effects are present in the fluid flowwhich are characterised by a
turbulence intensity of 10%, i.e., σu t = 0.1µu f , where σ2

u t is the variance in fluid velocity
due to turbulence. Therefore σu t is 1.647 ms−1, since µu f = 16.471 ms−1 from Eq. 6.4.
Oesterle and Petitjean (1993) present Eq. 6.60 which relates σ2

u t to the corresponding
variance in particle velocity, σ2

u p .

σ2
u p =

∫∞
0

Sp (ω)dω
∫∞

0
S f (ω)dω

σ2
u t (6.60)

In this equation, ω represents the frequency, while S f (ω) and Sp (ω) are the fluid turbu-
lence energy spectrum and particle energy spectrum, respectively. These spectra can be
obtained from Eq s. 6.61 and 6.62.

S f (ω) =
4T

1+T 2ω2 (6.61)

Sp (ω) =
S f (ω)

1+ t ∗2ω2 (6.62)

T is the integral time scale and t ∗ is the particle relaxation time. The former can be
approximated by Eq. 6.63 while the latter is defined by Eq. 6.64 (Louge et al., 1991).

T ≈ 0.1
R

u f
(6.63)

t ∗ =
8ρp rp

3cDρ(u f −u p )
(6.64)

Taking u f in Eq. 6.63 to be the mean fluid velocity, T was evaluated as 0.3 ms. The
drag coefficient in Eq. 6.64 was replaced by Eq. 6.20 and the slip velocity between the
fluid and particle was assumed to be 1 ms−1, which is physically realistic. Thus, t ∗ was
calculated as 0.114 s.

Since T > 0, both of the integrals in Eq. 6.60 can be solved to yield the following results:
∫ ∞

0

S f (ω)dω= 2π

∫ ∞

0

Sp (ω)dω=
2πT

T + t ∗
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Thus, Eq. 6.60 simplifies to Eq. 6.65:

σ2
u p =

T

T + t ∗
σ2

u t (6.65)

σ2
u p was evaluated as 0.0072 m2 s−2. This variance in particle velocity, which is solely

attributable to fluid turbulence, is less than 2% of the smallest simulation value of σ2
u p

caused by radial motion of the particle in Table 6.2.

Oesterle and Petitjean (1993) also give the heuristic that fluctuations in particle velocity
due to turbulence are small if u f t ∗

R � 1. This statistic was evaluated as 37.5, taking
u f =µu f as was done for Eq. 6.63. This heuristic and the negligible magnitude of σ2

u p

caused by fluid turbulence both confirm that assumption xviii was acceptable.

6.4 Conclusions of Chapter 6

A macro-scale probabilistic model of dilute phase pneumatic transport was developed
in this chapter to predict the percentage of agglomerates which break when conveyed
under specified conditions. Most of the assumptions made in the model development
were realistic. However, a small number were not and were made to simplify the
model (e.g., assuming a monodispersed flow). This model was very straightforward
compared to some alternative approaches, yet provided much quantitative data for
analysis. In addition to its ease of implementation, the model also had the benefit of
a modular structure, i.e., any of the sub-models comprising the overall model could
easily be substituted by a reasonable alternative without necessarily compromising the
functionality of the model as a whole.

For infant formula agglomerates with typical dimensions, the fluid velocity and effective
(particle-averaged) fluid velocity were almost identical. Slightly less than 1% of the
infant formula agglomerates failed when conveyed through a simple system containing
one 90° bend (radius of 0.8 m) at a maximum superficial velocity of 20 ms−1. The speed
at which the agglomerates moved in the radial direction, and hence the autocorrelation
parameter, did not influence the probability of survival of the agglomerates conveyed.
The cross-correlation coefficients between particle velocity and impact angle were
negligible. The mean inter-particle collision velocity was much lower than the normal
impact velocity at the pipe bend, thus justifying the assumption to neglect inter-particle
collisions as a mechanism for particle breakage.
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I
n this chapter, the results presented in the preceding chapters are discussed
further, with particular reference to the three objectives defined in Section
1.7 (p.18), and the main conclusions of the research are stated. The first of

these objectives was to establish relationships between the geometry and operating
conditions of a pneumatic conveying system, and the corresponding changes in bulk
properties of infant formulae when conveyed through the system. Chapter 2 addressed
this objective by conducting a reasonably comprehensive study of the effect of changing
seven selected pneumatic conveying parameters on four key quality characteristics of
infant formulae: bulk density, D[4,3], particle density and wettability. This approach
worked well, although it had some limitations. It would be extremely time-consuming
and difficult from a practical standpoint to investigate all of the parameters which
could potentially affect the properties of the conveyed product; those which were not
considered in this research included the surface finish of the inner wall of the pipeline,
the diameter of the pipeline and the temperature of the conveying air. Bend angles other
than 90° and the use of inclined sections were also not considered. One limitation of the
pneumatic conveying rig used was the tendency of the single plugs of infant formula
used for dense phase conveying to disintegrate rapidly during transport through the
system. Industrial systems convey multiple plugs, separated by cushions of air, which
would be somewhat less prone to disintegration. However, the sophisticated apparatus
required to convey multiple plugs in this manner were unavailable in this lab-scale rig.

It was found that the mode of conveying (dilute or dense phase) and the air veloc-
ity were the most influential parameters by a wide margin, although the latter was
significant only for dilute phase conveying. The importance of these two parameters
was not surprising as many researchers had found similar results (e.g., Kalman and
Goder, 1998). What was more interesting to note was the comparative unimportance of
the other factors considered, including the bend radii, the vertical conveying length and
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the number of rig passes: as long as the conveying velocity was selected to ensure dense
phase conveying, attrition was low regardless of the settings chosen for the other factors.
Conveying velocities which are used industrially for infant formula transport are usually
close to the minimum required to ensure reliable flow, so there might appear to be little
potential to reduce the velocity below the values currently used if this was desired.
However, a number of systems based on supplementary air injection have been devel-
oped with the aim of ensuring reliable flow at extremely low velocities. These include
the Gattys, Fluidstat/Turboflow and Takt-Schub systems (Marcus et al., 1990, §7.6.6).

The second objective, to identify which infant formula components have the largest
effect on attrition when conveyed, was addressed by Chapter 3. It was found that the
percentage of protein in the formulae was the most influential compositional factor:
formulae containing high levels of protein had the highest bulk densities before pneu-
matic conveying. Since bulk density increased with breakage and their densities were
quite high initially, these high-protein formulae showed less variation of bulk density
when conveyed. This is beneficial for manufacturers as small variations between key
quality characteristics of the powders before and after conveying make the process
easier to control and reduce the risk of batches failing to comply with specifications.
There is usually limited scope to change the composition of an infant formula to reduce
attrition when the powder is conveyed. However, by having advance knowledge of the
predisposition of low-protein formulae to break significantly, manufacturers may be
able to take additional precautions when batches of these formulae are being produced,
e.g., use the spray dryers which are closest to the can filling lines.

It was necessary to developmathematicalmodels at two scales to fulfil the third objective:
one a detailed micro-scale model to assess breakage of individual agglomerates when
subjected to mechanical loading and one a macro-scale probabilistic model of a simple
pneumatic conveying system. Discrete element modelling was used for the former, for
which it was necessary to obtain experimental data for quasi-static uniaxial compression
of single agglomerates to calibrate the model. The model was calibrated using a novel
approach based on Taguchi methods, which was illustrated in Chapter 4. This DEM,
which was discussed in detail in Chapter 5, gave a good description of key mechanical
responses for quasi-static loading and also gave acceptable results when applied to two
dynamic loading situations. One important general finding of this chapter was that
while it was important to track the number of bonds which failed during a simulation, it
was evenmore crucial to understandwhere those bondswere located in the agglomerate
and the effect the bond failures had on the structure of the agglomerate. For example, if
a hypothetical agglomerate is loaded so that 20% of the bonds fail, yet all of these bond
failures occur at the periphery of the agglomerate, its structure may not be significantly
affected. Only 1% of the bonds may fail if the agglomerate is loaded in a different
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manner. However, this may cause the agglomerate to split into several large fragments
if these bonds are located at key points in the structure. The latter is a much more
significant alteration of the agglomerate’s structure, but the implications could not be
known by simply comparing the numbers of failed bonds.

The discrete element model that was developed for a single agglomerate was very
complex, consisting of approximately 700 spheres with a lognormal distribution of
diameters and linked by parallel bonds. A completely different philosophy was used
when developing the probabilistic model described in Chapter 6. Many simplifying
assumptions were made: the geometry of the agglomerates was not considered explic-
itly and they were treated as monosized spheres, or as point masses from a kinetic
perspective; the radial and tangential components of air velocity were disregarded; and
the particles were assumed to be uniformly distributed over the cross-sectional area.
The applications for such a model are, of course, quite different to the detailed DEM.
It provides no information about the microstructural fabric changes that occur within
the agglomerates, instead giving statistics of the distribution in impact force and the
percentage of the particles which fail due to this loading. One major advantage of this
model was that it was composed of a series of smaller sub-models. This means that
if a researcher intends to apply this probabilistic approach, they can easily simplify
some of the sub-models if those effects are deemed unimportant, or incorporate more
sophisticated sub-models if effects are thought to be highly significant, without having
to develop the entire model again. Thus, the probabilistic model can be regarded as
a number of interacting components, any of which could be replaced by a reasonable
alternative without creating difficulties for the functionality of the model as a whole.

Ideally, the DEM and the probabilistic model could be combined by replacing the
idealised spheres of the probabilistic model with the calibrated agglomerates from
the detailed DEM. The computational requirements for simulating a large population
of agglomerates makes this approach infeasible at present. However, it may become
feasible in the near future due to constant advances in computational power (Koh and
Magee, 2006; Nagy et al., 2010). Until this occurs, the compromise which is often made
is to progressively reduce the detail as the number of particles to be simulated increases.

Themain conclusions of the work described in this thesis are given below; more detailed
conclusions are provided at the end of each chapter:

• Mode of conveying and air velocity had a statistically-significant effect on bulk
density at a 95% level, while the former was also significant for D[4,3] (95%) and
for wettability (90%). A polynomial model was used to show that air velocity was
significant only for dilute phase conveying, and not for dense phase. The changes
in quality characteristics of infant formulae caused by pneumatic transport should
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be minimal, irrespective of the settings chosen for the other conveying parameters,
provided that the air velocity is selected to ensure dense phase conveying.

• When individual agglomerates of infant formula were subjected to quasi-static
uniaxial compression, both the force at failure and stiffness of the agglomerates,
which were strongly correlated, increased with the protein to fat ratio while the
opposite trend was seen for strain at failure. Those formulae which had the
highest forces at failure were also least susceptible to attrition when pneumatically
conveyed. Bulk densities of the four infant formulae tested were directly related
to the percentage of protein in the compositions, while the percentage surface
free fat increased with the fat content of the formulae.

• It was demonstrated that simple “one factor at a time” parameter studies were
severely flawed for calibration of discrete element models of bonded agglomerates.
The Taguchi method was applied and shown to be suitable for such calibrations,
although it is important to be aware of potential confoundings when assigning
the factors to columns and to include significant interactive effects in the analysis.

• A DEMwas developed and calibrated for quasi-static, uniaxial compression of
individual agglomerates of one typical infant formula. Although the model was
difficult to calibrate because of the necessity to capture the variability of the
physical agglomerates, the selected responses (force and strain at failure, and
agglomerate stiffness) generally compared well for the physical and simulated
agglomerates, as did Weibull statistics of failure. Force at failure and agglomerate
stiffness were strongly correlated, which was also the case for the agglomerates
tested experimentally. When the applicability of the DEM to dynamic loading
was evaluated, the model was found to give relatively good results, although it
was important to select an appropriate value for the local damping coefficient.

• A novel probabilistic model was developed for pneumatic conveying of particles.
This model was capable of providing insights into the effect of changing parame-
ters of the conveying process without the requirement to conduct experimental
trials or simulations. A major advantage of this model was its modular structure,
which permitted parts of the model to either be simplified or else replaced with
more sophisticated alternatives without affecting the functionality of the model
as a whole.
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A
Orthogonal Arrays and Triangular Tables

T
his appendix contains the orthogonal arrays for all the Taguchi experimen-
tal designs used in this thesis (Section A.1). Since these arrays are com-
monly used, they are also provided in numerous literature sources (e.g.,

Taguchi, 1987, App.11) and in statistical software packages. Triangular tables are pro-
vided in Section A.2; these identify the columns (for interactions between two-level
factors) or pairs of columns (for interactions between three-level factors) which contain
all first-order interactions. Note that a triangular table is not available for the L18 array
that was used for the conveying experiments in Chapter 2 since, as mentioned in Section
2.2.2, all interactions except one (between the two-level factor in column 1 and the
three-level factor in column 2) are partially confounded with the remaining columns in
the array.

A.1 Orthogonal Arrays

In the orthogonal arrays below, the numbers 1, 2 and 3 represent factor levels, with 1
being the lowest setting of any factor.

Table A.1: Standard form of the L8 orthogonal array

Row
Column

1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1

Continued on page 212
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Appendix A. Orthogonal Arrays and Triangular Tables

Row
Column

1 2 3 4 5 6 7

5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

Table A.2: Standard form of the L18 orthogonal array‡

Row
Column

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3
4 1 2 1 1 2 2 3 3
5 1 2 2 2 3 3 1 1
6 1 2 3 3 1 1 2 2
7 1 3 1 2 1 3 2 3
8 1 3 2 3 2 1 3 1
9 1 3 3 1 3 2 1 2
10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 1 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1

‡This is notable for being a mixed-level ar-
ray, which was originally derived from a
Plackett-Burman design (Box et al., 1988).
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Appendix A. Orthogonal Arrays and Triangular Tables

Table A.3: Standard form of the L27 orthogonal array

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 2 2 3 3 3
5 1 2 2 2 2 2 2 3 3 3 1 1 1
6 1 2 2 2 3 3 3 1 1 1 2 2 2
7 1 3 3 3 1 1 1 3 3 3 2 2 2
8 1 3 3 3 2 2 2 1 1 1 3 3 3
9 1 3 3 3 3 3 3 2 2 2 1 1 1
10 2 1 2 3 1 2 3 1 2 3 1 2 3
11 2 1 2 3 2 3 1 2 3 1 2 3 1
12 2 1 2 3 3 1 2 3 1 2 3 1 2
13 2 2 3 1 1 2 3 2 3 1 3 1 2
14 2 2 3 1 2 3 1 3 1 2 1 2 3
15 2 2 3 1 3 1 2 1 2 3 2 3 1
16 2 3 1 2 1 2 3 3 1 2 2 3 1
17 2 3 1 2 2 3 1 1 2 3 3 1 2
18 2 3 1 2 3 1 2 2 3 1 1 2 3
19 3 1 3 2 1 3 2 1 3 2 1 3 2
20 3 1 3 2 2 1 3 2 1 3 2 1 3
21 3 1 3 2 3 2 1 3 2 1 3 2 1
22 3 2 1 3 1 3 2 2 1 3 3 2 1
23 3 2 1 3 2 1 3 3 2 1 1 3 2
24 3 2 1 3 3 2 1 1 3 2 2 1 3
25 3 3 2 1 1 3 2 3 2 1 2 1 3
26 3 3 2 1 2 1 3 1 3 2 3 2 1
27 3 3 2 1 3 2 1 2 1 3 1 3 2
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Table A.4: Standard form of the L81 orthogonal array

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3
4 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2
5 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
6 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 1 1 1
7 1 1 1 1 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 3 3 3

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
5 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
7 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2

Continued on page 215
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Table A.4 continued from page 214

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

8 1 1 1 1 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1
9 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2
10 1 2 2 2 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1
11 1 2 2 2 1 1 1 2 2 2 3 3 3 2 2 2 3 3 3 1 1 1 2 2 2
12 1 2 2 2 1 1 1 2 2 2 3 3 3 3 3 3 1 1 1 2 2 2 3 3 3
13 1 2 2 2 2 2 2 3 3 3 1 1 1 1 1 1 2 2 2 3 3 3 2 2 2
14 1 2 2 2 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 3 3 3

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

8 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3
9 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
10 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
11 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1
12 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2
13 3 3 3 1 1 1 3 3 3 1 1 1 2 2 2
14 1 1 1 2 2 2 1 1 1 2 2 2 3 3 3

Continued on page 216
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Table A.4 continued from page 215

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

15 1 2 2 2 2 2 2 3 3 3 1 1 1 3 3 3 1 1 1 2 2 2 1 1 1
16 1 2 2 2 3 3 3 1 1 1 2 2 2 1 1 1 2 2 2 3 3 3 3 3 3
17 1 2 2 2 3 3 3 1 1 1 2 2 2 2 2 2 3 3 3 1 1 1 1 1 1
18 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 2 2 2
19 1 3 3 3 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1
20 1 3 3 3 1 1 1 3 3 3 2 2 2 2 2 2 1 1 1 3 3 3 2 2 2
21 1 3 3 3 1 1 1 3 3 3 2 2 2 3 3 3 2 2 2 1 1 1 3 3 3

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

15 2 2 2 3 3 3 2 2 2 3 3 3 1 1 1
16 1 1 1 2 2 2 2 2 2 3 3 3 1 1 1
17 2 2 2 3 3 3 3 3 3 1 1 1 2 2 2
18 3 3 3 1 1 1 1 1 1 2 2 2 3 3 3
19 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2
20 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3
21 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1

Continued on page 217
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Table A.4 continued from page 216

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

22 1 3 3 3 2 2 2 1 1 1 3 3 3 1 1 1 3 3 3 2 2 2 2 2 2
23 1 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 3 3 3
24 1 3 3 3 2 2 2 1 1 1 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1
25 1 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1 3 3 3 2 2 2 3 3 3
26 1 3 3 3 3 3 3 2 2 2 1 1 1 2 2 2 1 1 1 3 3 3 1 1 1
27 1 3 3 3 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 2 2 2
28 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

22 1 1 1 3 3 3 3 3 3 2 2 2 1 1 1
23 2 2 2 1 1 1 1 1 1 3 3 3 2 2 2
24 3 3 3 2 2 2 2 2 2 1 1 1 3 3 3
25 2 2 2 1 1 1 2 2 2 1 1 1 3 3 3
26 3 3 3 2 2 2 3 3 3 2 2 2 1 1 1
27 1 1 1 3 3 3 1 1 1 3 3 3 2 2 2
28 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Continued on page 218
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Table A.4 continued from page 217

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

29 2 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 1 2 3 1
30 2 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2
31 2 1 2 3 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3 2 3 1
32 2 1 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 2
33 2 1 2 3 2 3 1 2 3 1 2 3 1 3 1 2 3 1 2 3 1 2 1 2 3
34 2 1 2 3 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 3 1 2
35 2 1 2 3 3 1 2 3 1 2 3 1 2 2 3 1 2 3 1 2 3 1 1 2 3

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

29 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
30 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
31 2 3 1 2 3 1 3 1 2 3 1 2 3 1 2
32 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3
33 1 2 3 1 2 3 2 3 1 2 3 1 2 3 1
34 3 1 2 3 1 2 2 3 1 2 3 1 2 3 1
35 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2

Continued on page 219
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Table A.4 continued from page 218

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

36 2 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 2 3 1
37 2 2 3 1 1 2 3 2 3 1 3 1 2 1 2 3 2 3 1 3 1 2 1 2 3
38 2 2 3 1 1 2 3 2 3 1 3 1 2 2 3 1 3 1 2 1 2 3 2 3 1
39 2 2 3 1 1 2 3 2 3 1 3 1 2 3 1 2 1 2 3 2 3 1 3 1 2
40 2 2 3 1 2 3 1 3 1 2 1 2 3 1 2 3 2 3 1 3 1 2 2 3 1
41 2 2 3 1 2 3 1 3 1 2 1 2 3 2 3 1 3 1 2 1 2 3 3 1 2
42 2 2 3 1 2 3 1 3 1 2 1 2 3 3 1 2 1 2 3 2 3 1 1 2 3

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

36 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3
37 2 3 1 3 1 2 1 2 3 2 3 1 3 1 2
38 3 1 2 1 2 3 2 3 1 3 1 2 1 2 3
39 1 2 3 2 3 1 3 1 2 1 2 3 2 3 1
40 3 1 2 1 2 3 3 1 2 1 2 3 2 3 1
41 1 2 3 2 3 1 1 2 3 2 3 1 3 1 2
42 2 3 1 3 1 2 2 3 1 3 1 2 1 2 3

Continued on page 220
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Table A.4 continued from page 219

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

43 2 2 3 1 3 1 2 1 2 3 2 3 1 1 2 3 2 3 1 3 1 2 3 1 2
44 2 2 3 1 3 1 2 1 2 3 2 3 1 2 3 1 3 1 2 1 2 3 1 2 3
45 2 2 3 1 3 1 2 1 2 3 2 3 1 3 1 2 1 2 3 2 3 1 2 3 1
46 2 3 1 2 1 2 3 3 1 2 2 3 1 1 2 3 3 1 2 2 3 1 1 2 3
47 2 3 1 2 1 2 3 3 1 2 2 3 1 2 3 1 1 2 3 3 1 2 2 3 1
48 2 3 1 2 1 2 3 3 1 2 2 3 1 3 1 2 2 3 1 1 2 3 3 1 2
49 2 3 1 2 2 3 1 1 2 3 3 1 2 1 2 3 3 1 2 2 3 1 2 3 1

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

43 1 2 3 2 3 1 2 3 1 3 1 2 1 2 3
44 2 3 1 3 1 2 3 1 2 1 2 3 2 3 1
45 3 1 2 1 2 3 1 2 3 2 3 1 3 1 2
46 3 1 2 2 3 1 1 2 3 3 1 2 2 3 1
47 1 2 3 3 1 2 2 3 1 1 2 3 3 1 2
48 2 3 1 1 2 3 3 1 2 2 3 1 1 2 3
49 1 2 3 3 1 2 3 1 2 2 3 1 1 2 3

Continued on page 221
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Table A.4 continued from page 220

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

50 2 3 1 2 2 3 1 1 2 3 3 1 2 2 3 1 1 2 3 3 1 2 3 1 2
51 2 3 1 2 2 3 1 1 2 3 3 1 2 3 1 2 2 3 1 1 2 3 1 2 3
52 2 3 1 2 3 1 2 2 3 1 1 2 3 1 2 3 3 1 2 2 3 1 3 1 2
53 2 3 1 2 3 1 2 2 3 1 1 2 3 2 3 1 1 2 3 3 1 2 1 2 3
54 2 3 1 2 3 1 2 2 3 1 1 2 3 3 1 2 2 3 1 1 2 3 2 3 1
55 3 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2
56 3 1 3 2 1 3 2 1 3 2 1 3 2 2 1 3 2 1 3 2 1 3 2 1 3

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

50 2 3 1 1 2 3 1 2 3 3 1 2 2 3 1
51 3 1 2 2 3 1 2 3 1 1 2 3 3 1 2
52 2 3 1 1 2 3 2 3 1 1 2 3 3 1 2
53 3 1 2 2 3 1 3 1 2 2 3 1 1 2 3
54 1 2 3 3 1 2 1 2 3 3 1 2 2 3 1
55 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2
56 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3

Continued on page 222
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Table A.4 continued from page 221

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

57 3 1 3 2 1 3 2 1 3 2 1 3 2 3 2 1 3 2 1 3 2 1 3 2 1
58 3 1 3 2 2 1 3 2 1 3 2 1 3 1 3 2 1 3 2 1 3 2 2 1 3
59 3 1 3 2 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 2 1
60 3 1 3 2 2 1 3 2 1 3 2 1 3 3 2 1 3 2 1 3 2 1 1 3 2
61 3 1 3 2 3 2 1 3 2 1 3 2 1 1 3 2 1 3 2 1 3 2 3 2 1
62 3 1 3 2 3 2 1 3 2 1 3 2 1 2 1 3 2 1 3 2 1 3 1 3 2
63 3 1 3 2 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 2 1 3

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

57 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1
58 2 1 3 2 1 3 3 2 1 3 2 1 3 2 1
59 3 2 1 3 2 1 1 3 2 1 3 2 1 3 2
60 1 3 2 1 3 2 2 1 3 2 1 3 2 1 3
61 3 2 1 3 2 1 2 1 3 2 1 3 2 1 3
62 1 3 2 1 3 2 3 2 1 3 2 1 3 2 1
63 2 1 3 2 1 3 1 3 2 1 3 2 1 3 2

Continued on page 223
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Table A.4 continued from page 222

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

64 3 2 1 3 1 3 2 2 1 3 3 2 1 1 3 2 2 1 3 3 2 1 1 3 2
65 3 2 1 3 1 3 2 2 1 3 3 2 1 2 1 3 3 2 1 1 3 2 2 1 3
66 3 2 1 3 1 3 2 2 1 3 3 2 1 3 2 1 1 3 2 2 1 3 3 2 1
67 3 2 1 3 2 1 3 3 2 1 1 3 2 1 3 2 2 1 3 3 2 1 2 1 3
68 3 2 1 3 2 1 3 3 2 1 1 3 2 2 1 3 3 2 1 1 3 2 3 2 1
69 3 2 1 3 2 1 3 3 2 1 1 3 2 3 2 1 1 3 2 2 1 3 1 3 2
70 3 2 1 3 3 2 1 1 3 2 2 1 3 1 3 2 2 1 3 3 2 1 3 2 1

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

64 2 1 3 3 2 1 1 3 2 2 1 3 3 2 1
65 3 2 1 1 3 2 2 1 3 3 2 1 1 3 2
66 1 3 2 2 1 3 3 2 1 1 3 2 2 1 3
67 3 2 1 1 3 2 3 2 1 1 3 2 2 1 3
68 1 3 2 2 1 3 1 3 2 2 1 3 3 2 1
69 2 1 3 3 2 1 2 1 3 3 2 1 1 3 2
70 1 3 2 2 1 3 2 1 3 3 2 1 1 3 2
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Table A.4 continued from page 223

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

71 3 2 1 3 3 2 1 1 3 2 2 1 3 2 1 3 3 2 1 1 3 2 1 3 2
72 3 2 1 3 3 2 1 1 3 2 2 1 3 3 2 1 1 3 2 2 1 3 2 1 3
73 3 3 2 1 1 3 2 3 2 1 2 1 3 1 3 2 3 2 1 2 1 3 1 3 2
74 3 3 2 1 1 3 2 3 2 1 2 1 3 2 1 3 1 3 2 3 2 1 2 1 3
75 3 3 2 1 1 3 2 3 2 1 2 1 3 3 2 1 2 1 3 1 3 2 3 2 1
76 3 3 2 1 2 1 3 1 3 2 3 2 1 1 3 2 3 2 1 2 1 3 2 1 3
77 3 3 2 1 2 1 3 1 3 2 3 2 1 2 1 3 1 3 2 3 2 1 3 2 1

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

71 2 1 3 3 2 1 3 2 1 1 3 2 2 1 3
72 3 2 1 1 3 2 1 3 2 2 1 3 3 2 1
73 3 2 1 2 1 3 1 3 2 3 2 1 2 1 3
74 1 3 2 3 2 1 2 1 3 1 3 2 3 2 1
75 2 1 3 1 3 2 3 2 1 2 1 3 1 3 2
76 1 3 2 3 2 1 3 2 1 2 1 3 1 3 2
77 2 1 3 1 3 2 1 3 2 3 2 1 2 1 3

Continued on page 225
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Table A.4 continued from page 224

Row
Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

78 3 3 2 1 2 1 3 1 3 2 3 2 1 3 2 1 2 1 3 1 3 2 1 3 2
79 3 3 2 1 3 2 1 2 1 3 1 3 2 1 3 2 3 2 1 2 1 3 3 2 1
80 3 3 2 1 3 2 1 2 1 3 1 3 2 2 1 3 1 3 2 3 2 1 1 3 2
81 3 3 2 1 3 2 1 2 1 3 1 3 2 3 2 1 2 1 3 1 3 2 2 1 3

Row
Column

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

78 3 2 1 2 1 3 2 1 3 1 3 2 3 2 1
79 2 1 3 1 3 2 2 1 3 1 3 2 3 2 1
80 3 2 1 2 1 3 3 2 1 2 1 3 1 3 2
81 1 3 2 3 2 1 1 3 2 3 2 1 2 1 3

225



Appendix A. Orthogonal Arrays and Triangular Tables

A.2 Triangular Tables

The numbers in the triangular tables shown below refer to the columns in which a
particular interaction is contained. One column number in an interaction is read from
the top row and the other from the left-most column of the table. For example, the
interaction between the factors in columns 1 and 2 of an L27 array is distributed between
columns 3 and 4, as shown in Table A.7. As another example, the interaction between
columns 4 and 7 of an L27 array is contained in columns 9 and 11.

Table A.5: Triangular table for the L8 orthogonal array

I
Column II

2 3 4 5 6 7

1 3 2 5 4 7 6
2 1 6 7 4 5
3 7 6 5 4
4 1 2 3
5 3 2
6 1

Table A.6: Triangular table for the L9 orthogonal array

I
Column II

2 3 4

1 3,4 2,4 2,3
2 1,4 1,3
3 1,2

Table A.7: Triangular table for the L27 orthogonal array

I
Column II

2 3 4 5 6 7 8 9 10 11 12 13

1 3,4 2,4 2,3 6,7 5,7 5,6 9,10 8,10 8,9 12,13 11,13 11,12
2 1,4 1,3 8,11 9,12 10,13 5,11 6,12 7,13 5,8 6,9 7,10
3 1,2 9,13 10,11 8,12 7,12 5,13 6,11 6,10 7,8 5,9
4 10,12 8,13 9,11 6,13 7,11 5,12 7,9 5,10 6,8
5 1,7 1,6 2,11 3,13 4,12 2,8 4,10 3,9
6 1,5 4,13 2,12 3,11 3,10 2,9 4,8
7 3,12 4,11 2,13 4,9 3,8 2,10

Continued on page 227
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I
Column II

2 3 4 5 6 7 8 9 10 11 12 13

8 1,10 1,9 2,5 3,7 4,6
9 1,8 4,7 2,6 3,5
10 3,6 4,5 2,7
11 1,13 1,12
12 1,11
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Table A.8: Triangular table for the L81 orthogonal array†

I
Column II

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 15,16 14,16 14,15 18,19 17,19 17,18 21,22 20,22 20,21 24,25 23,25 23,24 27,28 26,28 26,27 30,31 29,31
2 17,20 18,21 19,22 14,20 15,21 16,22 14,17 15,18 16,19 26,29 27,30 28,31 23,29 24,30 25,31 23,26 24,27
3 18,22 19,20 17,21 16,21 14,22 15,20 15,19 16,17 14,18 27,31 28,29 26,30 25,30 23,31 24,29 24,28 25,26
4 19,21 17,22 18,20 15,22 16,20 14,21 16,18 14,19 15,17 28,30 26,31 27,29 24,31 25,29 23,30 25,27 23,28
5 23,32 24,33 25,34 26,35 27,36 28,37 29,38 30,39 31,40 14,32 15,33 16,34 17,35 18,36 19,37 20,38 21,39
6 24,34 25,32 23,33 27,37 28,35 26,36 30,40 31,38 29,39 16,33 14,34 15,32 19,36 17,37 18,35 22,39 20,40

† Interactions between factors in columns 1–13 of the L81 array are identical to those for the L27 array, and are given in Table A.7 on p.226.

I
Column II

31 32 33 34 35 36 37 38 39 40

1 29,30 33,34 32,34 32,33 36,37 35,37 35,36 39,40 38,40 38,39
2 25,28 35,38 36,39 37,40 32,38 33,39 34,40 32,35 33,36 34,37
3 23,27 36,40 37,38 35,39 34,39 32,40 33,38 33,37 34,35 32,36
4 24,26 37,39 35,40 36,38 33,40 34,38 32,39 34,36 32,37 33,35
5 22,40 14,23 15,24 16,25 17,26 18,27 19,28 20,29 21,30 22,31
6 21,38 15,25 16,23 14,24 18,28 19,26 17,27 21,31 22,29 20,30

Continued on page 229
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Table A.8 continued from page 228

I
Column II

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

7 25,33 23,34 24,32 28,36 26,37 27,35 31,39 29,40 30,38 15,34 16,32 14,33 18,37 19,35 17,36 21,40 22,38
8 26,38 27,39 28,40 29,32 30,33 31,34 23,35 24,36 25,37 20,35 21,36 22,37 14,38 15,39 16,40 17,32 18,33
9 27,40 28,38 26,39 30,34 31,32 29,33 24,37 25,35 23,36 22,36 20,37 21,35 16,39 14,40 15,38 19,33 17,34
10 28,39 26,40 27,38 31,33 29,34 30,32 25,36 23,37 24,35 21,37 22,35 20,36 15,40 16,38 14,39 18,34 19,32
11 29,35 30,36 31,37 23,38 24,39 25,40 26,32 27,33 28,34 17,38 18,39 19,40 20,32 21,33 22,34 14,35 15,36
12 30,37 31,35 29,36 24,40 25,38 23,39 27,34 28,32 26,33 19,39 17,40 18,38 22,33 20,34 21,32 16,36 14,37
13 31,36 29,37 30,35 25,39 23,40 24,38 28,33 26,34 27,32 18,40 19,38 17,39 21,34 22,32 20,33 15,37 16,35

I
Column II

31 32 33 34 35 36 37 38 39 40

7 20,39 16,24 14,25 15,23 19,27 17,28 18,26 22,30 20,31 21,29
8 19,34 17,29 18,30 19,31 20,23 21,24 22,25 14,26 15,27 16,28
9 18,32 18,31 19,29 17,30 21,25 22,23 20,24 15,28 16,26 14,27
10 17,33 19,30 17,31 18,29 22,24 20,25 21,23 16,27 14,28 15,26
11 16,37 20,26 21,27 22,28 14,29 15,30 16,31 17,23 18,24 19,25
12 15,35 21,28 22,26 20,27 15,31 16,29 14,30 18,25 19,23 17,24
13 14,36 22,27 20,28 21,26 16,30 14,31 15,29 19,24 17,25 18,23

Continued on page 230
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Table A.8 continued from page 229

I
Column II

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

14 1,16 1,15 2,20 3,22 4,21 2,17 4,19 3,18 5,32 6,34 7,33 8,38 9,40 10,39 11,35 12,37
15 1,14 4,22 2,21 3,20 3,19 2,18 4,17 7,34 5,33 6,32 10,40 8,39 9,38 13,37 11,36
16 3,21 4,20 2,22 4,18 3,17 2,19 6,33 7,32 5,34 9,39 10,38 8,40 12,36 13,35
17 1,19 1,18 2,14 3,16 4,15 11,38 12,40 13,39 5,35 6,37 7,36 8,32 9,34
18 1,17 4,16 2,15 3,14 13,40 11,39 12,38 7,37 5,36 6,35 10,34 8,33
19 3,15 4,14 2,16 12,39 13,38 11,40 6,36 7,35 5,37 9,33 10,32
20 1,22 1,21 8,35 9,37 10,36 11,32 12,34 13,33 5,38 6,40

I
Column II

31 32 33 34 35 36 37 38 39 40

14 13,36 5,23 7,25 6,24 11,29 13,31 12,30 8,26 10,28 9,27
15 12,35 6,25 5,24 7,23 12,31 11,30 13,29 9,28 8,27 10,26
16 11,37 7,24 6,23 5,25 13,30 12,29 11,31 10,27 9,26 8,28
17 10,33 8,29 10,31 9,30 5,26 7,28 6,27 11,23 13,25 12,24
18 9,32 9,31 8,30 10,29 6,28 5,27 7,26 12,25 11,24 13,24
19 8,34 10,30 9,29 8,31 7,27 6,26 5,28 13,24 12,23 11,25
20 7,39 11,26 13,28 12,27 8,23 10,25 9,24 5,29 7,31 6,30

Continued on page 231
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Table A.8 continued from page 230

I
Column II

22 23 24 25 26 27 28 29 30 31 32 33 34 35

21 1,20 10,37 8,36 9,35 13,34 11,33 12,32 7,40 5,39 6,38 12,28 11,27 13,26 9,25
22 9,36 10,35 8,37 12,33 13,32 11,34 6,39 7,38 5,40 13,27 12,26 11,28 10,24
23 1,25 1,24 2,29 3,31 4,30 2,26 4,28 3,27 5,14 6,16 7,15 8,20
24 1,23 4,31 2,30 3,29 3,28 2,27 4,26 7,16 5,15 6,14 10,22
25 3,30 4,29 2,31 4,27 3,26 2,28 6,15 7,14 5,16 9,21
26 1,28 1,27 2,23 3,25 4,24 11,20 12,22 13,21 5,17
27 1,26 4,25 2,24 3,23 13,22 11,21 12,20 7,19

I
Column II

36 37 38 39 40

21 8,24 10,23 6,31 5,30 7,29
22 9,23 8,25 7,30 6,29 5,31
23 9,22 10,21 11,17 12,19 13,18
24 8,21 9,20 13,19 11,18 12,17
25 10,20 8,22 12,18 13,17 11,19
26 6,19 7,18 8,14 9,16 10,15
27 5,18 6,17 10,16 8,15 9,14

Continued on page 232
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Table A.8 continued from page 231

I
Column II

29 30 31 32 33 34 35 36 37 38 39 40

28 3,24 4,23 2,25 12,21 13,20 11,22 6,18 7,17 5,19 9,15 10,14 8,16
29 1,31 1,30 8,17 9,19 10,18 11,14 12,16 13,15 5,20 6,22 7,21
30 1,29 10,19 8,18 9,17 13,16 11,15 12,14 7,22 5,21 6,20
31 9,18 10,17 8,19 12,15 13,14 11,16 6,21 7,20 5,22
32 1,34 1,33 2,38 3,40 4,39 2,35 4,37 3,36
33 1,32 4,40 2,39 3,38 3,37 2,36 4,35
34 3,39 4,38 2,40 4,36 3,35 2,37
35 1,37 1,36 2,32 3,34 4,33
36 1,35 4,34 2,33 3,32
37 3,33 4,32 2,34
38 1,40 1,39
39 1,38
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B
Probability Histograms for Agglomerate

Compression Experiments of Infant Formulae

F
or reasons of space, none of the probability histograms for force at failure,
strain at failure or agglomerate stiffness, obtained by uniaxial compression
of individual agglomerates of the four infant formulae described in Table

3.1 (p.50), are shown in Chapter 3. These graphs are instead confined to this appendix.
The probability histograms for force at failure, strain at failure and agglomerate stiffness
are given in Sections B.1, B.2 and B.3, respectively. Note that the heights of the bars
are scaled so that the sum of the bar areas is one. Lognormal distributions were fitted
to the data, and the corresponding probability density function is superimposed on
each of these histograms as a solid red line. These probability density functions of the
compression responses are compared in Chapter 3 on Figures 3.14–3.16 (p.65–66).
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B.1 Force at Failure Histograms

0 0.05 0.1 0.15 0.2 0.25

Force at Failure (N)

P
ro

ba
bi

lit
y 

D
en

si
ty

0

2

4

6

8

10

12

14

16

18

Figure B.1: Probability histogram of the force at failure data (N) for compression of
agglomerates of infant formula A, compared with the PDF of a fitted lognormal distribution
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Figure B.2: Probability histogram of the force at failure data (N) for compression of
agglomerates of infant formula B, compared with the PDF of a fitted lognormal distribution
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Figure B.3: Probability histogram of the force at failure data (N) for compression of
agglomerates of infant formula C, compared with the PDF of a fitted lognormal distribution
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Figure B.4: Probability histogram of the force at failure data (N) for compression of
agglomerates of infant formula D, compared with the PDF of a fitted lognormal distribution
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B.2 Strain at Failure Histograms
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Figure B.5: Probability histogram of the strain at failure data (%) for compression of
agglomerates of infant formula A, compared with the PDF of a fitted lognormal distribution
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Figure B.6: Probability histogram of the strain at failure data (%) for compression of
agglomerates of infant formula B, compared with the PDF of a fitted lognormal distribution
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Figure B.7: Probability histogram of the strain at failure data (%) for compression of
agglomerates of infant formula C, compared with the PDF of a fitted lognormal distribution
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Figure B.8: Probability histogram of the strain at failure data (%) for compression of
agglomerates of infant formula D, compared with the PDF of a fitted lognormal distribution
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B.3 Agglomerate Stiffness Histograms
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Figure B.9: Probability histogram of the stiffness data (Nm−1) for compression of agglomerates
of infant formula A, compared with the PDF of a fitted lognormal distribution
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Figure B.10: Probability histogram of the stiffness data (Nm−1) for compression of
agglomerates of infant formula B, compared with the PDF of a fitted lognormal distribution

238



Appendix B. Probability Histograms for Agglomerate Compression Experiments

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

× 10
-4

Agglomerate Stiffness (N m-1

2000 4000 6000 8000 10000 12000 14000 16000 18000

)

20000

P
ro

ba
bi

lit
y 

D
en

si
ty

Figure B.11: Probability histogram of the stiffness data (Nm−1) for compression of
agglomerates of infant formula C, compared with the PDF of a fitted lognormal distribution
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Figure B.12: Probability histogram of the stiffness data (Nm−1) for compression of
agglomerates of infant formula D, compared with the PDF of a fitted lognormal distribution
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C
Supplementary Information on the Formation of

DEM Agglomerates by Sequential Addition

T
he sequential addition (or deposition)methodused to produce agglomerates
for the 3D DEM simulations was described briefly in Section 4.1.4 on p.78.
One seed sphere is placed at the origin. Other spheres are then placed

successively and randomly within an ellipsoidal volume surrounding this seed sphere.
Each active sphere is moved randomly until it comes into contact with another sphere,
when it is fixed in position (ensuring no overlaps). The randommotion of the spheres is
modified by point transformation to continuously reduce the distance between the active
sphere and the origin until contact occurs with a pre-existing sphere. Russ describes
this method of depositing particles on a surface as “diffusion-limited aggregation”
(Russ, 1994, p.16), which results in very open, dendritic structures. Such agglomerates
exhibit fractal characteristics, having a self-similar appearance.

Figure C.1 (p.242) is a flowchart which shows the principal features of the MATLAB
algorithmwhichwas used to produce agglomerates by sequential addition. The number
of symbols used on this flowchart was minimised for clarity; those which were required
are described below:

i Index of the current active sphere

n Maximum permissible number of spheres in the agglomerate

x Specified length of the agglomerate

y Specified width of the agglomerate

z Specified height of the agglomerate

The complete annotated MATLAB code for an agglomerate of infant formula B is
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provided at the end of this appendix for reference. Some other points regarding the
MATLAB algorithm are given below:

• If the algorithm was implemented according to Figure C.1, a residual overlap
between spheres is possible at the point in the flowchart marked with an asterisk
(∗). This could occur in either of the following situations:

1. If moving sphere i to give point contact with sphere j would cause a new
overlap with another sphere (k).

2. If there are multiple simultaneous contacts initially, it would not be possible
to give point contact with multiple spheres using the scheme in Figure C.1.

This was remedied by introducing two additional nested counter-controlled loops,
which allows the code segment labelledwith an asterisk to be repeated onmultiple
occasions. Note that although simpler, one loop would not be sufficient and could
lead to problems with infinite evaluation, e.g., moving sphere i (from position α

to β) to give point contact with sphere j would cause an overlap with sphere k;
then moving sphere i to give point contact with sphere k would return sphere i to
position α.

• The diameters of the ellipsoid were not equal to x, y and z. If the polar and
equatorial diameters were equal to x, y and z, this would yield an agglomerate
with quite a tightly-packed structure. By selecting larger ellipsoid diameters,
agglomerates with open, highly-porous structures could be generated.

• Pseudo-random numbers were generated as a uniform distribution on the open
interval (0,1). The seed of the random number generator was modified each
second as a function of time. Negative random numbers were required; these
were produced using additional conditional statements which are not shown in
Figure C.1.

Since the aim of using this algorithm was to produce loosely-packed agglomerates
which closely simulate the structure of real infant formula agglomerates (e.g., SEM
micrograph as Figure 1.2 on p.15), the success of this algorithmmust be evaluated taking
this into consideration. Figure C.2 shows an orthographic projection (front elevation,
plan and end views) of one sample agglomerate containing 200 spheres. It is clear that
such structures are much less regular than those derived from lattice packing (Section
4.1.4), and are thus closer to real infant formula agglomerates. Furthermore, the density
of the packing decreases with distance from the centrepoint of the agglomerate (the
origin). This is beneficial as asperities are formedwhich are easily broken under uniaxial
loading. Effects such as asperity failure are also observed on the force–displacement
plots for experimental compression of infant formula agglomerates.
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Figure C.1: Simplified flowchart of the MATLAB code used to form agglomerates by
sequential addition
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Figure C.2: Orthographic projection of a sample agglomerate containing 200 spheres produced
by sequential addition, in which the colour bar indicates the size of the spheres in mm
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C.1 Annotated MATLAB Code

% This is the complete script used to generate an agglomerate

% of any arbitrary size using balls of any size. Most of the

% operations are not vectorised; it was found that vectorising

% many of the for loops, which theoretically should improve

% performance, causes the file to run more slowly.

clear

format long

% Take in the basic variables required.

ball_num = 2000; % The maximum number of balls to generate

exit_cond = 0; % Initialise an exit condition

tolerance = 1e-12; % An overlap tolerance must be defined

% Since the confining shape is an ellipsoid, there are three

% confining radii to be defined (in mm).

mult_factor_x = 1.5; % Multipliers to obtain loose agglomerates

mult_factor_y = 1.2;

mult_factor_z = 1.1;

x = 1.212; % Along x axis

y = 0.937; % Along y axis

z = 0.678; % Along z axis

% Take in parameters for the lognormal distribution in ball

% size where mu and sigma are the mean and standard deviation

% of the associated normal distribution (from lognfit).

mu = -3.1364;

sigma = 0.4372;

lower_cut_off = 0.02; % To truncate the distribution

upper_cut_off = 0.125;

% Call a function to generate a vector of lognormally-distributed

% ball diameters in mm.

ball_diameter = random_variates_lognormal(mu,sigma,...

...lower_cut_off,upper_cut_off,ball_num);

ball_radius = ball_diameter./2;

step_size = min(ball_diameter)/10; % The distance that the active

% ball is moved on each iteration of the loop below

% Randomly reset the random number stream using the clock.
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rand(’state’,sum(100*clock));

% Place the seed sphere at the origin, and pre-allocate three

% vectors to store the ball coordinates.

coord_x = zeros(ball_num,1);

coord_y = zeros(ball_num,1);

coord_z = zeros(ball_num,1);

i = 2; % Initialise the active ball index (#1 at origin).

% Generate balls successively inside the confining ellipsoid.

while i <= n % While fewer balls generated than the maximum

exit_cond = 0; % Initialise at 0.

% Test to see if the agglomerate radii are <= the required

% confining radii. If not, break out of the while loop.

if i >= 10

distance_x_pos = -1000; % Initislise at large values

distance_x_neg = 1000;

distance_y_pos = -1000;

distance_y_neg = 1000;

distance_z_pos = -1000;

distance_z_neg = 1000;

for k = 1:(i-1) % Loop through all balls generated

if coord_x(k) > distance_x_pos

distance_x_pos = coord_x(k);

elseif coord_x(k) < distance_x_neg

distance_x_neg = coord_x(k);

end

if coord_y(k) > distance_y_pos

distance_y_pos = coord_y(k);

elseif coord_y(k) < distance_y_neg

distance_y_neg = coord_y(k);

end

if coord_z(k) > distance_z_pos

distance_z_pos = coord_z(k);

elseif coord_z(k) < distance_z_neg

distance_z_neg = coord_z(k);

end

end
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distance_x = abs(distance_x_pos) + abs(distance_x_neg);

distance_y = abs(distance_y_pos) + abs(distance_y_neg);

distance_z = abs(distance_z_pos) + abs(distance_z_neg);

if (distance_x>x) || (distance_y>y) || (distance_z>z)

break;

end

end

% Provisionally place the ball randomly within the confining

% ellipsoid. Since rand is a uniform distribution from 0 to 1,

% the full spectrum of pos_x, pos_y and pos_z is a cuboid with

% its centroid at the origin.

pos_x = rand*mult_factor_x*x;

pos_y = rand*mult_factor_y*y;

pos_z = rand*mult_factor_z*z;

% The following ensures that pos_x/y/z are not always positive.

neg_x = rand; % A random number from the uniform distribution

if neg_x <= 0.5

pos_x = -1*pos_x; % Change to the negative analogue

end

neg_y = rand;

if neg_y <= 0.5

pos_y = -1*pos_y;

end

neg_z = rand;

if neg_z <= 0.5

pos_z = -1*pos_z;

end

% Firstly, check whether the ball is inside the confining

% ellipsoid. It could potentially lie inside the cuboid but

% outside the ellipsoid.

distance = sqrt((pos_x^2)+(pos_y^2)+(pos_z^2));

% intersec_x/y/z are the coordinates of the point of

% intersection between the line joining the origin and

% the ball coordinates, and the ellipsoid. Note that the

% sign is unimportant.

intersec_x = 1/sqrt((1/((mult_factor_x*x)^2))+...
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((pos_y^2)/((pos_x^2)*((mult_factor_y*y)^2)))+...

...((pos_z^2)/((pos_x^2)*((mult_factor_z*z)^2))));

intersec_y = 1/sqrt((1/((mult_factor_y*y)^2))+...

...((pos_x^2)/((pos_y^2)*((mult_factor_x*x)^2)))+...

...((pos_z^2)/((pos_y^2)*((mult_factor_z*z)^2))));

intersec_z = 1/sqrt((1/((mult_factor_z*z)^2))+...

...((pos_x^2)/((pos_z^2)*((mult_factor_x*x)^2)))+...

...((pos_y^2)/((pos_z^2)*((mult_factor_y*y)^2))));

intersection = sqrt((intersec_x^2) +...

...(intersec_y^2) + (intersec_z^2));

if distance < intersection % Ball inside confining ellipsoid

% Now cycle through all existing balls to check that the

% ball does not overlap with any of those that have

% already been generated.

for j = 1:(i-1)

ball_dist = sqrt(((pos_x-coord_x(j))^2)+...

...((pos_y-coord_y(j))^2)+((pos_z-coord_z(j))^2));

if ball_dist < (ball_radius(i)+ball_radius(j))

exit_cond = 1; % To skip the computations below

break; % Exit the inner for loop

end

end

% If the ball is inside the confining ellipsoid and is

% not overlapping any other balls, provisionally

% write the ball coordinates to the storage vectors.

if exit_cond == 0

coord_x(i) = pos_x;

coord_y(i) = pos_y;

coord_z(i) = pos_z;

% Now move the ball randomly from its starting

% position until it contacts another ball.

overlap = 0;

while overlap == 0 % Loop while there is no contact

x_step = rand; % Random numbers for moving the ball

y_step = rand;
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z_step = rand;

% As before, rand always returns positive numbers.

neg_x = rand;

if neg_x <= 0.5

x_step = -1*x_step;

end

neg_y = rand;

if neg_y <= 0.5

y_step = -1*y_step;

end

neg_z = rand;

if neg_z <= 0.5

z_step = -1*z_step;

end

% Now provisionally move the ball to a position

% which is incrementally different from the

% starting coordinates. Over-write pos_x/y/z to

% save variables.

pos_x = coord_x(i) + x_step*step_size;

pos_y = coord_y(i) + y_step*step_size;

pos_z = coord_z(i) + z_step*step_size;

% Find the distance between the ball and the origin

% before and after motion. If the distance after is

% greater, use a point transformation to bring the

% ball closer to the origin.

distance_old = sqrt(((coord_x(i))^2)+...

...((coord_y(i))^2)+((coord_z(i))^2));

distance_new = sqrt((pos_x^2)+(pos_y^2)+(pos_z^2));

if distance_old < distance_new

pos_x = coord_x(i) - x_step*step_size;

pos_y = coord_y(i) - y_step*step_size;

pos_z = coord_z(i) - z_step*step_size;

end

% Check for overlaps between the ball in its new

% position and all other balls. If there is one

% overlap, the looping will continue at least once
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% more until it is certain that there are no

% additional ball overlaps.

redo = 0;

passes = 0;

while redo == passes

passes = passes + 1;

% Sometimes, a loop may be established whereby

% moving a ball one way could move it into the

% path of another. By re-generating the ball

% if passes > 100, this problem is avoided.

if passes > 100

break; % Exit the while loop

end

Unindent the section of code between the lines for readability.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for k = 1:(i-1)

ball_dist = sqrt(((pos_x-coord_x(k))^2)+...

...((pos_y-coord_y(k))^2)+((pos_z-coord_z(k))^2));

if ball_dist < (ball_radius(i)+ball_radius(k))-tolerance

% If there is an overlap, must move active ball to give a

% touching contact. Move the centrepoint of the active

% ball away from the contacting ball along the line joining

% their centres.

pos_x = coord_x(k)+(pos_x-coord_x(k))*...

...(ball_radius(i)+ball_radius(k))/ball_dist;

pos_y = coord_y(k)+(pos_y-coord_y(k))*...

...(ball_radius(i)+ball_radius(k))/ball_dist;

pos_z = coord_z(k)+(pos_z-coord_z(k))*...

...(ball_radius(i)+ball_radius(k))/ball_dist;

overlap = 1; % Change variable to record the overlap

redo = redo + 1; % If no overlap on a loop, redo < passes

break; % Exit the for loop

end

end

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

end

% Even if there is no overlap, the positions must

% still be updated.
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coord_x(i) = pos_x;

coord_y(i) = pos_y;

coord_z(i) = pos_z;

% Increment the active ball index if there has

% been an overlap.

if overlap == 1

i = i + 1;

end

end

end

end

end

% Write the ball coordinates to a text file.

fid = fopen(’Ball_Coordinates.txt’,’wt’);

for m = 1:(i-1)

fprintf(fid,’%1.10f\t %1.10f\t %1.10f\t %1.10f\n’,...

...coord_x(m),coord_y(m),coord_z(m),ball_diameter(m));

end

fclose(fid);

% Show a plot of the generated agglomerate.

figure

hold on

axis(’equal’); % Make the axes equal

axis(’off’); % Turn the axes off

for i =1:m

[a,b,c] = sph_coords(coord_x(i),coord_y(i),coord_z(i),...

...ball_radius(i));

surf(a,b,c,’LineWidth’,0.1,’EdgeColor’,[0.2,0.2,0.2]);

colormap(summer);

brighten(0.3);

view([90 30]);

end

hold off

return

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

function diameters = random_variates_lognormal(m,sig,lower,...

...upper,num_balls)
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% lognrnd requires the Statistics Toolbox

var = 1;

while var <= num_balls

diameters(var) = lognrnd(m,sig,1,1);

if (diameters(var) >= lower) && (diameters(var) <= upper)

var = var + 1;

end

end

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

function [x,y,z] = sph_coords(xcenter,ycenter,zcenter,rad)

phi = 0:pi/20:pi;

theta = 0:pi/10:2*pi;

[Phi,Theta] = meshgrid(phi,theta);

x = xcenter + rad*sin(Phi).*cos(Theta);

y = ycenter + rad*sin(Phi).*sin(Theta);

z = zcenter + rad*cos(Phi);
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D
Correlations of Compression Responses and
Physical Characteristics of the Agglomerates

I
n Section 3.2.2, correlations between each combination of responses (force at
failure, strain at failure and agglomerate stiffness) were determined, begin-
ning on p.68: the Spearman R and Kendall τ coefficients were reported for

each of the four formulae in Tables 3.9–3.12. Since a range of physical characteristics of
individual agglomerates could be measured, it was possible to evaluate two additional
types of correlation:

1. Correlations between one of the three agglomerate compression responses and
any measurable physical characteristic of the agglomerates

2. Correlations between pairs of measurable physical characteristics of the agglom-
erates

Spearman R coefficients were calculated in both cases as none of the experimental
compression responses were normally distributed (Table 3.8) and the same was true for
many of the agglomerate physical characteristics. These correlations were evaluated
only for 92 agglomerates from the 710–850 µm sieve fraction of infant formula B due to
the practical difficulties involved:

• The agglomerates were individually characterised before compression using the
Malvern PharmaVision 830 instrument introduced in Section 5.1.1. Since this
apparatus was not in the same laboratory as the texture analyser, the exposure of
the agglomerates to atmosphere was prolonged. Experiments were performed
only when the relative humidity of the air was low. However, it was difficult to
ascertain whether the agglomerates had absorbed sufficient moisture to affect the
results during this period of exposure.

• The necessity of having to transfer agglomerates between two widely-separated
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pieces of equipment made these experiments very time-consuming. It would
have been impractical to conduct a larger, more statistically-significant number of
experiments for four formulaewithout changing the arrangement of the apparatus,
which was infeasible in this case.

D.1 Measured and Calculated Agglomerate Characteristics

Nine physical characteristics of the agglomerates were obtained:

1. Mean diameter (µm)

2. Length (µm)

3. Width (µm)

4. Projected area (µm2)

5. Roundness (–)

6. Convexity (–)

7. Aspect ratio (–)

8. Box fractal dimension of the agglomerate outline (–)

9. Box fractal dimension of the compressive force response (–)

The first six characteristics were obtained directly from the PharmaVision, while aspect
ratio was obtained from a trivial calculation. These seven characteristics are described
collectively in Section D.1.1, while the fractal dimensions are discussed in Sections
D.1.2–D.1.4.

D.1.1 Characteristics Obtained Directly from PharmaVision†

1. Mean diameter: This was calculated by measuring the distance from the centre of
mass of the agglomerate to each pixel on its perimeter, and then multiplying the
arithmetic mean of these distances by two.

2. Length: All possible lines that may be drawn between points on the agglomerate
perimeter were projected onto the major axis‡. The length of the agglomerate was
the maximum length of any projection.

3. Width: As for length, except projections were onto the minor axis‡. The width of
the agglomerate was the maximum length of any projection.

†All details of the calculations in Section D.1.1 were obtained from Malvern Instruments Ltd. (2004).
‡The major and minor axes were defined in # 5 as part of the explanation of roundness.
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4. Projected area: This was the projected surface area of the agglomerate.

5. Roundness: A perfect circle has a roundness of one, and narrow, elongated ob-
jects have roundness values which approach zero. Roundness was calculated as
|λ1−λ2|
λ1+λ2

, where λ1 and λ2 were the eigenvalues of the covariance matrix, M :

M =







Ix x Ix y

Ix y Iy y






(D.1)

Ix x =
∑

i ,j

x i x j (D.2)

Ix y =
∑

i ,j

x i y j (D.3)

Iy y =
∑

i ,j

yi y j (D.4)

x i and y j were the coordinates of the agglomerate pixel p i j relative to the centre of
mass of the agglomerate. The major axis of the agglomerate was the eigenvector
of the maximum eigenvalue of matrix M . The minor axis was orthogonal to the
major axis.

6. Convexity: This was found as the projected area divided by the area of the convex
hull enclosing the agglomerate.

7. Aspect ratio: This was calculated by dividing the length by the width.

D.1.2 Fractal Analysis

In Euclidean geometry, every structure may be defined by an integer dimension: 0 for a
point in space, 1 for a line, 2 for an area or 3 for a volume (Peleg, 1993). Fractals have
dimensions which are not exact integers. While the concept of fractals has existed for a
long time in fields such as mathematics, fractals were popularised, and the term itself
was coined, by Benoît Mandelbrot (Russ, 1994, p.1) in his book The Fractal Geometry
of Nature (Mandelbrot, 1982). A fractal dimension between 1 and 2 corresponds to
an irregular, convoluted line which partially fills an area (Barrett and Peleg, 1995;
Peleg, 1993). Any truly fractal object must be self-similar, which requires the physical
appearance of the object to remain unchanged irrespective of themagnification or length
scale used (Barletta and Barbosa-Cánovas, 1993). This condition is satisfied only by
mathematical constructs such as the Koch curve, Sierpinski triangle andMandelbrot set.
In nature, there are always physical restrictions; a common lower limit for self-similarity
is the size of an atom, molecule, cell, or pixel for image analysis. Apparent fractal
dimensions may still be calculated for such objects, which are described as self-affine
rather than self-similar (Peleg and McClements, 1997), and which may be treated as
fractals within a restricted range of scale.

254



Appendix D. Correlations of Compression Responses and Agglomerate Properties

There are many methods used to calculate fractal dimensions; further information
regarding most of these is provided by Russ (1994). Only one method was used in this
work: the box-counting method. This is widely used, is relatively straightforward to
implement and may be applied to patterns which lack self-similarity (Foroutan-pour
et al., 1999). As an example, the box-counting fractal dimension for an agglomerate
outline may be estimated by the following four-step process:

1. A grid of identical square boxes, each of side length ε, is overlaid on the image
and the number of boxes which intersect the agglomerate outline is recorded as
Nε.

2. The size of the boxes is progressively reduced, and the number of boxes which
contain part of the agglomerate outline is recorded for each box size.

3. A graph is plotted of log (Nε) against log (ε).

4. The (apparent) fractal dimension is the absolute slope of the linear regression of

this graph. Strictly, the box-counting dimension is defined as lim
ε→0

log (Nε)
log (ε)

(Karpe-
rien, 2007).

D.1.3 Particle Outline Box Dimension (FracLac)

The PharmaVision saved a .tif file of each agglomerate, as stated in Section 5.1.1. These
files were opened in ImageJ (previously mentioned in Section 5.1.2). Each image was
converted to a binary form and holes inside the agglomerate boundary were filled to
leave a solid black agglomerate against a white background. An example of this process
is shown in Figure D.1.

Once the agglomerate images were prepared, the fractal dimensions were calculated
using the FracLac ImageJ plug-in (v.2.5, r.4, A. Karperien (auth.), http://rsb.info.nih.gov/
ij/plugins/fraclac/fraclac.html). The standard box count option was selected with the
default linear progression of box sizes and 8 grid positions. This number specified that
eight fractal dimensions were calculated for each agglomerate by using this number of
random sampling orientations for the grid. The fractal dimension used in the results
is the arithmetic mean of these eight dimensions. Figure D.2 shows an example of
the linear regression used to calculate the fractal dimension for one agglomerate scan.
The box-counting fractal dimension for this scan is 1.6853 (the mean of all scans of this
agglomerate is 1.6716).

255

http://rsb.info.nih.gov/ij/plugins/fraclac/fraclac.html
http://rsb.info.nih.gov/ij/plugins/fraclac/fraclac.html


Appendix D. Correlations of Compression Responses and Agglomerate Properties

Convert to Binary

Fill Holes within Boundary

Figure D.1: Preparation of the .tif images for calculating the fractal dimensions of agglomerate
outlines using ImageJ
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Figure D.2: Logarithmic plot showing the data calculated by FracLac for Nε and ε, where the
fractal dimension of the agglomerate outline is the absolute slope of the linear regression

D.1.4 Compressive Response Box Dimension (FracLab)

It is also possible to calculate a box counting fractal dimension for amechanical crushing
signature (e.g., Nussinovitch et al., 2000; Peleg, 2003). This was done using the FracLab
plug-in for MATLAB (v.2.04, INRIA, Saclay, France), an established plug-in which has
been used in many academic studies, e.g., Devaux et al. (2006), and Feng et al. (2010).

The force data were imported to FracLab from the MATLAB workspace as a column

256



Appendix D. Correlations of Compression Responses and Agglomerate Properties

vector. The raw data for displacement, strain or time were not required since the
compression and data acquisition rates were constant for all tests at 0.01 mms−1 and 500
points/s, respectively. The optionwas selected in FracLab to use an affine transformation
to map all input forces to the range [0,1], which is recommended for correct calculation
of the fractal dimension. The boxdim_classique function was used with a power law
progression of box sizes. 21 boxes were specified in the software, with a maximum
size of 1, a minimum size of 1/1024 and the least-squares linear regression option. The
resulting output is shown in Figure D.3 for one set of agglomerate data. The user was
required to select a range of points which was used to fit a linear trendline to the results.
The same region, between box sizes of 1/2 and 1/16, was selected in most cases (> 90%)
for consistency. These points are shown in red on Figure D.3 and the corresponding
linear fit is shown in blue. This agglomerate has a fractal dimension of 1.15, which was
automatically calculated from the slope of the linear fit.

Figure D.3: An example of fractal dimension calculation for agglomerate compression data
using FracLab

D.2 Correlation Results and Discussion

Table D.1 shows the Spearman R rank correlations between the three responses recorded
and the physical characteristics of the agglomerates. Most of the correlation results in
Table D.1 were not statistically-significant, which was largely attributable to the small
number of agglomerates tested. However, two correlations were significant: between
force at failure and convexity, and between strain at failure and the fractal dimension of
the force response. Neither correlation coefficient was strong at approximately 0.23. It
was also possible to calculate correlations between pairs of agglomerate characteristics,
and these results are shown in Table D.2.

Many of these correlations are intuitively obvious if the relationships between physical
characteristics of the agglomerates are considered. Some of these are listed below:
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Table D.1: Spearman R rank correlations of force at failure, strain at failure or agglomerate
stiffness, and the physical characteristics of 92 agglomerates of infant formula B.

Statistically-significant correlations at a 95% significance level are denoted in bold and with an
asterisk

Correlation
Force at Failure Strain at Failure Agglomerate Stiffness

R p-value R p-value R p-value

Mean Diameter -0.0038 0.9719 0.1118 0.2996 0.0596 0.5815
Length -0.0211 0.8456 0.1631 0.1288 0.0599 0.5793
Width 0.0794 0.4623 0.0050 0.9632 0.1488 0.1665

Projected Area 0.0192 0.8593 0.1028 0.3406 0.0534 0.6214
Roundness 0.0165 0.8784 -0.1212 0.2606 0.0101 0.9255
Convexity 0.2266 0.0337* 0.0548 0.6122 0.0089 0.9344

Aspect Ratio -0.0313 0.7724 0.1268 0.2392 -0.0233 0.8297
Outline F. Dim. 0.1395 0.1948 0.1034 0.3378 -0.0362 0.7375
Force F. Dim. 0.0391 0.7177 0.2328 0.0291* 0.0520 0.6304

Table D.2: Spearman R rank correlations of pairs of agglomerate physical characteristics,
where p-values are given in parentheses after the R coefficients. Statistically-significant

correlations at a 95% significance level are denoted in bold and with an asterisk

Force F. Dim. Outline F. Dim. Aspect Ratio Convexity

Mean Diameter 0.097 (0.367) 0.216 (0.043*) 0.505 (0.000*) -0.196 (0.067)
Length 0.158 (0.142) 0.244 (0.022*) 0.781 (0.000*) -0.382 (0.000*)
Width 0.082 (0.446) -0.401 (0.000*) -0.438 (0.000*) -0.200 (0.062)

Projected Area 0.082 (0.448) 0.214 (0.045*) 0.395 (0.000*) -0.109 (0.313)
Roundness -0.131 (0.222) -0.441 (0.000*) -0.936 (0.000*) 0.236 (0.027*)
Convexity -0.034 (0.750) 0.529 (0.000*) -0.198 (0.064)

Aspect Ratio 0.085 (0.433) 0.465 (0.000*)
Outline F. Dim. -0.029 (0.788)

Roundness Projected Area Width Length

Mean Diameter -0.525 (0.000*) 0.966 (0.000*) 0.423 (0.000*) 0.873 (0.000*)
Length -0.797 (0.000*) 0.789 (0.000*) 0.150 (0.164)
Width 0.341 (0.001*) 0.498 (0.000*)

Projected Area -0.422 (0.000*)
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• Mean diameter had a quadratic relationship with projected area; therefore, the
correlation coefficient for these two characteristics should be almost 1. The calcu-
lated coefficient was 0.966. Similarly, a strong negative correlation was expected
between roundness and aspect ratio, since by definition, agglomerates with high
roundness values are required to have aspect ratios close to unity, and those with
low roundness values must have large aspect ratios.

• Length and roundness had a strong, statistically-significant R coefficient of -0.797.
This negative correlation indicates that, on average, longer particles had relatively
low roundness values.

• Projected area showed a strong positive correlation with agglomerate length
(0.789).

A small number of the statistically-significant results provided more insight. Fractal
dimension of the agglomerate outlines showed a moderate correlation with aspect ratio
(0.465), agglomerate width (-0.401), roundness (-0.441) and convexity (0.529). Round-
ness and mean diameter had a moderate negative correlation of -0.525.
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E
Convexities of Simulated Agglomerates before

Mechanical Loading

T
he convexities of the simulated agglomerates generated using the sequential
addition algorithm were stated to lie between 0.14 and 0.18 in Section 5.2.1.
These convexities were calculated using Eq. E.1:

Convexity=
Total volume occupied by spheres

Volume enclosed by the bounding convex hull (E.1)

The convex hull of a set of points is defined as the smallest convex polyhedron which
contains all of the points in the set. This was calculated in MATLAB using the convhulln
function. Figure E.1 shows an example of a convex hull fitted to a set of 100 randomly-
generated points in three dimensions drawn from the uniform distribution.

Figure E.1: Example of a convex hull fitted to 100 randomly-generated points

Although this method made use of an inbuilt MATLAB function, finding an accurate
value for the convexity was not as straightforward as this fact may imply. The convexity
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was calculated directly from the output of the sequential addition algorithm shown in
Appendix C. Each row in the output file corresponded to one sphere and there were
four columns: the first three contained x, y and z coordinates of the sphere centres
while the fourth column gave the diameters of the spheres. To find the total volume
occupied by all m spheres, Vs , the volumes of each individual sphere were summed:

Vs =
m
∑

i=1

π

6
d 3

i (E.2)

If the convex hull was fitted using only the sphere centres as potential vertices, parts of
those spheres on the periphery of the agglomerate would protrude beyond the hull.
However, the entirety of these peripheral spheres would be included in the calculation
of Vs ; hence, the resulting convexity would be overestimated and quite inaccurate,
particularly for agglomerates containing relatively few spheres. This issue was avoided
by replacing each sphere centrepoint with a set of points having the following properties:

• Each point was a distance equivalent to the sphere radius from the centrepoint of
the sphere.

• The points were evenly distributed on the surface of the sphere.

This method necessitated finding an appropriate compromise between accuracy and
computational requirements. For example, if an agglomerate contains 700 spheres, the
number of potential vertices would increase to 700,000 if each centrepoint was replaced
with 1000 points on the sphere surface. Moreover, the number of possible facets for
the convex hull would increase from

�700
3

�

to
�700000

3

�

, i.e., from 5.7× 107 to 5.7× 1016.
Despite the large number of permutations for the convex hull, the qhull algorithm used
by MATLAB for the convhulln function is efficient and quick, even with large data
sets. Most of the calculation time required is for other operations, including reading
data from text files, basic manipulations of matrices, plotting figures and writing the
results to output files. This is illustrated by Table E.1, which shows times required to fit
convex hulls and find their volumes for large sets of 3D coordinates on the range [0, 1]
which were randomly selected from the uniform distribution. These computations were
performed on a single 3 GHz Intel Pentium 4 processor and the times recorded were
the medians of three replicates. These times were measured using the inbuilt MATLAB
tic. . . toc construct and exclude the time required for data generation.

While it is inefficient to use an excessively large number of points to find the convex
hull, it is important that the number is sufficient to ensure accurate convexity results.
This may be illustrated by the simple idealised agglomerate shown in Figure E.2. This
agglomerate is composed of two identical spheres in contact and has a convexity which
may be calculated theoretically.

If the spheres have diameters of d , Vs is given by Eq. E.3. The volume of the hull, Vh , is
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Table E.1: Median times required to fit convex hulls and find their enclosed volumes using the
MATLAB function convhulln. Hulls were fitted to sets of randomly-generated data with

lengths varying between 104 and 107

Number of Points×10−4 Time (s)

1 0.015
2 0.031
5 0.062
10 0.125
20 0.203
50 0.516
100 1.156
200 2.110
500 5.078
1000 9.750

found by adding the volume of a cylinder of height d (highlighted in blue on Figure
E.2) to the volume of two hemispherical heads, or equivalently one sphere (Eq. E.4).
Thus, the convexity is 0.8, irrespective of the value of d :

Vs = 2
π

6
d 3 =

π

3
d 3 (E.3)

Vh =π
d 2

4
(d )+

π

6
d 3 =

5π

12
d 3 (E.4)

Convexity= Vs

Vh
=

π
3

5π
12

= 0.8 (E.5)

Each sphere may now be replaced by a set of points at a distance d/2 from their centres
to assess the effect of changing the number of points used on the convexities calculated.
This is shown on Figure E.3, where the number of points used per sphere varied from
25 to 4225 and the convexity changed correspondingly from 1.056 to 0.8009. Note that
for each sphere, if the increment is given as π/n, the number of points per sphere is
(n + 1)2 for this simple agglomerate.

For actual simulated agglomerates, such as the example shown in Figure 5.6 on p.109,
only a minority of the spheres form part of the convex hull. For these peripheral hull
spheres, the MATLAB algorithm used 4225 points for accuracy, whereas the number of
points used for the core spheres was relatively unimportant, and therefore was set at
25 for computational efficiency. Those spheres which formed part of the hull could be
distinguished from those which did not by initially fitting a crude convex hull to the
agglomerate using 25 points for all spheres. Spheres were identified as hull spheres
if at least one of the 25 points composing the sphere was a vertex of the convex hull.
Then a second convex hull was fitted, increasing the number of points used for the hull
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d = 2r r

d = 2r

Figure E.2: An agglomerate composed of two identical contacting spheres, the convexity of
which may be calculated theoretically as 0.8 (Eq. E.5)

Increment
Points/Sphere
Convexity

π/4

25
1.056

Increment
Points/Sphere
Convexity

π/8

81
0.8592

Increment
Points/Sphere
Convexity

π/12

169
0.8259

Increment
Points/Sphere
Convexity

π/16

289
0.8145

Increment
Points/Sphere
Convexity

π/32

1089
0.8036

Increment
Points/Sphere
Convexity

π/64

4225
0.8009

Figure E.3: Effect of varying the number of points used per sphere on the calculated convexity

spheres to 4225. The complete MATLAB code, with annotations, is shown in Section
E.1.
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E.1 Annotated MATLAB Code

% This is the complete script used to calculate convexities of

% DEM agglomerates with high accuracy.

clear

format long

% Read in the ball coordinate data. The first 3 columns contain

% the x, y and z coordinates and column 4 contains the

% ball diameters.

coord_data = dlmread(’Ball_Coordinates.txt’,’ ’,0,0);

points = size(coord_data,1);

% Find the volume occupied by all the balls.

ball_volume = 0; % Initialise at 0.

for i = 1:points

ball_volume = ball_volume + (pi/6)*((coord_data(i,4))^3);

end

% Now fit a crude convex hull to the points.

counter = 0; % Initialise at 0.

% For each sphere, generate 25 points on the sphere surface to

% replace the centrepoint. Store these points in the

% expanded_data matrix.

for i = 1:points

% Multiply coord_data(i,4) by 0.5 to convert to radii.

[a,b,c] = sph_coords_convex_hull(coord_data(i,1),...

...coord_data(i,2),coord_data(i,3),0.5*coord_data(i,4),(pi/4));

for j = 1:size(a,1)

for k = 1:size(a,2)

counter = counter + 1;

expanded_data(counter,1) = a(j,k);

expanded_data(counter,2) = b(j,k);

expanded_data(counter,3) = c(j,k);

% Also store the index of the ball.

expanded_data(counter,4) = i;

end

end

end

expanded_points = size(expanded_data,1);
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% Use the convhulln function to fit the convex hull.

[the_hull, hull_volume] = convhulln(expanded_data...

...((1:expanded_points),(1:3)));

hull_length = size(the_hull,1);

% Create a matrix of zeros which will be overwritten with indices

% of the hull spheres.

indices = zeros(3*expanded_points,1);

counter = 1; % Re-initialise at 1.

% Cycle through all the points in the crude convex hull and write

% indices of the balls which form part of the hull to the indices

% matrix, overwriting the zero values.

for i = 1:hull_length

for j = 1:3

indices(counter) = expanded_data(the_hull(i,j),4);

counter = counter + 1;

end

end

% Use the ismember command to identify those spheres which form

% part of the hull.

counter = 0; % Reinitialise for further use.

balllist = [1:points]; % Create a vector of all ball indices.

% ismember returns a vector of 0s and 1s which is the same

% size as balllist. 1 is returned if that index is contained in

% both balllist and indices; otherwise, 0 is returned.

spherelist = ismember(balllist,indices);

% Clear and re-use some variables for efficiency.

clear expanded_data a b c expanded_points the_hull hull_volume...

... hull_length

% Now increase the number of points for the hull spheres.

for i = 1:points

if spherelist(i) == 1 % Sphere is part of convex hull

[a,b,c] = sph_coords_convex_hull(coord_data(i,1),...

...coord_data(i,2),coord_data(i,3),0.5*coord_data(i,4),...

...(pi/64));

else

[a,b,c] = sph_coords_convex_hull(coord_data(i,1),...

...coord_data(i,2),coord_data(i,3),0.5*coord_data(i,4),...

...(pi/4));
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end

% Append the coordinates of sphere i to a matrix named

% expanded_data.

for j = 1:size(a,1)

for k = 1:size(a,2)

counter = counter + 1;

expanded_data(counter,1) = a(j,k);

expanded_data(counter,2) = b(j,k);

expanded_data(counter,3) = c(j,k);

end

end

end

expanded_points = size(expanded_data,1);

% Fit a more precise convex hull.

[the_hull, hull_volume] = convhulln(expanded_data...

...((1:expanded_points),(1:3)));

hull_length = size(the_hull,1);

% Show a plot of the agglomerate, with full spheres and the

% bounding convex hull.

figure

hold on

axis(’equal’); % Make the axes equal

axis(’off’); % Turn the axes off

for i =1:points

[a,b,c] = sph_coords_convex_hull(coord_data(i,1),...

...coord_data(i,2),coord_data(i,3),0.5*coord_data(i,4),(pi/8));

surf(a,b,c,’LineWidth’,0.1,’EdgeColor’,[0.2,0.2,0.2]);

colormap(summer);

brighten(0.3);

end

for i =1:size(the_hull,1)

j = the_hull(i,[1 2 3 1]);

patch(expanded_data(j,1),expanded_data(j,2),...

...expanded_data(j,3),rand,’FaceAlpha’,0.6);

end

hold off

% Finally, calculate the convexity.
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convexity = ball_volume/hull_volume;

disp([’The agglomerate convexity is ’,num2str(convexity),’.’]);

return

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

function [x,y,z] = sph_coords_convex_hull(xcenter,ycenter,...

...zcenter,rad,increment)

phi = 0:increment:pi;

theta = 0:2*increment:2*pi;

[Phi,Theta] = meshgrid(phi,theta);

x = xcenter + rad*sin(Phi).*cos(Theta);

y = ycenter + rad*sin(Phi).*sin(Theta);

z = zcenter + rad*cos(Phi);

E.2 Convexity Results

The distribution in convexities of the agglomerates before compression is shown in
Figure E.4. For example, approximately 66% of agglomerates in the full set had a
convexity less than 0.16. The convexities lay within a narrow range from 0.14–0.18, as
mentioned at the start of this appendix.
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Figure E.4: Plot showing the percentages of simulated agglomerates which had convexities ≤
the corresponding values given on the x-axis
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F
Illustration of DEM Calibration Difficulties in

Chapter 5

T
he inherent variability of the simulated agglomerates in Chapter 5 made
it extremely difficult to calibrate the model. This appendix illustrates this
point using two randomly-generated agglomerates containing 633 and 746

spheres. The parameters selected for both agglomerates were varied according to an L8

Taguchi array (Table A.1 on p.211). The array was saturated, and the levels of the seven
factors were chosen as their settings in set II of Table 5.3 ± 20%. The factors and levels
are shown in Table F.1 and the assigned array is shown as Table F.2. For conciseness,
the seven factors are denoted as A–G in accordance with Table F.1. Therefore, 16
experiments were necessary since the eight experiments in the L8 array were run for
each agglomerate.

Table F.1: Control factors and levels used for the L8 experimental design

Control Factors
Levels

1 2

Ball normal stiffness, A (Nm−1) 3.2×107 4.8×107

Ball shear stiffness, B (Nm−1) 3.2×107 4.8×107

Bond normal strength, C (Nm−2) 8×108 1.2×109

Bond shear strength, D (Nm−2) 8×108 1.2×109

Bond normal stiffness, E (Nm−3) 2.4×1015 3.6×1015

Bond shear stiffness, F (Nm−3) 2.4×1015 3.6×1015

Ball friction, G 0.56 0.84

The data were analysed by ANOVA and the results are shown in Tables F.3 and F.4.
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Table F.2: L8 array showing the columns used after assigning all factors to the array

Row
Column

B (Nm−1) C (Nm−2) E (Nm−3) D (Nm−2) F (Nm−3) A (Nm−1) G

1 3.2×107 8×108 2.4×1015 8×108 2.4×1015 3.2×107 0.56
2 3.2×107 8×108 2.4×1015 1.2×109 3.6×1015 4.8×107 0.84
3 3.2×107 1.2×109 3.6×1015 8×108 2.4×1015 4.8×107 0.84
4 3.2×107 1.2×109 3.6×1015 1.2×109 3.6×1015 3.2×107 0.56
5 4.8×107 8×108 3.6×1015 8×108 3.6×1015 3.2×107 0.84
6 4.8×107 8×108 3.6×1015 1.2×109 2.4×1015 4.8×107 0.56
7 4.8×107 1.2×109 2.4×1015 8×108 3.6×1015 4.8×107 0.56
8 4.8×107 1.2×109 2.4×1015 1.2×109 2.4×1015 3.2×107 0.84

For each response, the factor with the smallest sum of squares (SS shown in grey) was
pooled (P) with the error to allow the statistical significance to be evaluated.

Table F.3: Partial ANOVA table for the three simulation responses for the agglomerate
containing 633 spheres. υ is the number of degrees of freedom, SS the sum of squares
and p the p-value. Statistically-significant effects at a 95% confidence level are denoted

in bold and with an asterisk

Factor υ

Normal Force Strain at Agglomerate
at Failure Failure Stiffness

SS×106 p SS p SS×10−4 p

A 1 (0 P) 1.13 — 16.2 0.140 168 0.110
B 1 (0 P) 37.5† 0.110 0.805 — 26.4 ‡ 0.264
C 1 (0 P) 609 0.027* 1.12 0.448 5.12 —
D 1 1.07 0.509 2.92 0.308 44.4 0.209
E 1 25.2 0.133 8.88 0.186 11.3 0.377
F 1 29.8 0.122 5.42 0.234 47.9 0.201
G 1 38.3 0.108 16.6 0.138 596 0.059

Error 1 (P) 1.13 0.805 5.12

Total 7 742 51.9 900

†Note that this entry is equal to 3.75×10-5 to prevent ambiguity.
‡This entry is equal to 2.64×105.

The ANOVA results were quite consistent, particularly for the force and strain at failure
responses. For normal force at failure, bond normal strength had the highest sum of
squares for both agglomerates, and was statistically-significant at the 95% level for the
agglomerate containing 633 spheres. The ball friction had the second-highest SS for
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Table F.4: Partial ANOVA table for the three simulation responses for the agglomerate
containing 746 spheres. υ is the number of degrees of freedom, SS the sum of squares and p the
p-value. Statistically-significant effects at a 95% confidence level are denoted in bold and with

an asterisk

Factor υ

Normal Force Strain at Agglomerate
at Failure Failure Stiffness

SS×104 p SS p SS×10−5 p

A 1 (0 P) 5.21 0.266 56.8 0.045* 5.89 —
B 1 (0 P) 1.03 — 0.287 — 18.2 0.329
C 1 49.2 0.091 6.44 0.133 17.4 0.335
D 1 2.28 0.376 7.46 0.123 72.4 0.177
E 1 3.16 0.330 27.6 0.065 97.7 0.153
F 1 3.01 0.336 22.4 0.072 7.47 0.462
G 1 12.7 0.176 85.0 0.037* 28.1 0.273

Error 1 (P) 1.03 0.287 5.89

Total 7 76.6 206 247

both agglomerates. The results for strain at failure corresponded almost exactly for the
two simulated agglomerates. When the factors were ordered by increasing SS, the same
hierarchy was seen in both cases: ball shear stiffness (which was pooled)→ bond normal
strength→ bond shear strength→ bond shear stiffness→ bond normal stiffness→ ball
normal stiffness→ ball friction. The last two were significant at the 95% level for the
agglomerate containing 746 spheres. The results for agglomerate stiffness did not
compare as well, although none of the factors were statistically-significant for either
agglomerate. Although this reasonable correspondence between the ANOVA results
for the two agglomerates may imply that calibration ought to be straightforward, Figure
F.1 demonstrates why this was not the case.

Even for those factors identified as being statistically-significant, increasing the setting
of a factor often had opposite effects on the two agglomerates, e.g., increasing the ball
friction caused an increase in the strain at failure of the agglomerate containing 633
spheres whereas the strain at failure decreased for the agglomerate containing 746
spheres. Thus, even though a factor might be identified as influential, it may be unclear
what the effect of changing its settingwould be on a typical agglomerate. This behaviour
made the calibration process difficult and time-consuming.
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G
Mathematical Derivations for Probabilistic Model

of Pneumatic Conveying

C
hapter 6 contains the development of a probabilistic model of pneumatic
conveying. Most of the detailed mathematical workings were not given in
this chapter for reasons of space, and are instead provided in this appendix

for reference.

G.1 Probability Density Function of Fluid Velocity

The fluid velocity, u f , is related to the maximum velocity along the centreline, u m , by
the 1/7th power law given as Eq. 6.1.

u f = u m

�

1−
r

R

�

1
n (6.1)

The first derivative with respect to r was found as Eq. G.1:

d u f

d r
=−

u m

nR

�

1−
r

R

�

1
n −1

=−
u m

nR

�

1−
r

R

�

1
n
�

1−
r

R

�−1
(G.1)

The two substitutions identified below were made:

u m

�

1−
r

R

�

1
n
= u f (G.2)

�

1−
r

R

�−1
=

�

u m

u f

�n

(G.3)
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Thus, Eq. G.4 was obtained:

d u f

d r
=−

u f
1−n u m

n

nR

∴ d r =−
nR d u f

u f
1−n u m

n (G.4)

The fraction of the pipe cross-section in which the velocity lies between u f and u f +d u f

is given by Eq. G.5:
2πr d r

πR2 =
2r d r

R2 =−
2nRr d u f

R2u f
1−n u m

n (G.5)

Eq. 6.1 was rearranged to obtain r =R

�

1−
u f

n

u m
n

�

and this was substituted into Eq. G.5:

2r d r

R2 =−
2nR2 (u m

n −u f
n )d u f

R2u f
1−n u m

2n =
2n (u f

n −u m
n )d u f

u f
1−n u m

2n (G.6)

Finally, the probability density function is given by Eq. 6.3:

P (u f ) =
2n (u f

n −u m
n )

u f
1−n u m

2n (6.3)

Eq. 6.3 satisfies the basic requirement of a PDF that its zeroth moment equals one:
∫ 0

u m

P (u f )d u f =
2n

u m
2n

∫ 0

u m

�
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1

2
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2n
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=
2
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2n

2

�

= 1

G.2 Derivation of Mean Fluid Velocity

The mean fluid velocity, µu f , could be found using two different methods, which had
to give the same result:

1. By a method based on integration of the probability density function of u f

2. By integrating the spatial variation of u f
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G.2.1 Method One

µu f =

∫ u m
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G.2.2 Method Two
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A substitution was made to do this integration. Let y = 1− r
R . Therefore, r = R(1− y )

and d r =−R d y . The limits also needed to be modified:

r = 0 −→ y = 1

r =R −→ y = 0

Thus, Eq. G.7 was rewritten as Eq. G.8:

µu f =−2u m

∫ 0

1

y
1
n (1− y )d y (G.8)
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G.3 Derivation of Variance in Fluid Velocity

As for the mean fluid velocity in Section G.2, the variance in fluid velocity, σ2
u f , could

be found using two different methods.

G.3.1 Method One

σ2
u f =

∫ u m

0

P (u f ) (u f −µu f )2 d u f (G.9)

Eq s. 6.3 and 6.4 were substituted for P (u f ) and µu f , respectively:
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This integral was divided into six parts, as follows:
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Eq. G.11 was manipulated algebraically, gathering all of the terms, to give Eq. 6.5:
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n 2(5n +1)
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u m
2 (6.5)

G.3.2 Method Two
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1
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0
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Eq. 6.1 was substituted for u f and µu f was replaced by Eq. 6.4. The integral was divided
into three parts:
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For the first two of these integrals, the same substitution was made as in Section G.2.2,
i.e., y = 1− r

R :
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R2(n +1)2(2n +1)2

�

r 2

2

�R

0

= 2u m
2
�

n

n +2
−

n

2(n +1)

�

+
8n 2u m

2

(n +1)(2n +1)

� n

2n +1
−

n

n +1

�

+
4n 4u m

2

(n +1)2(2n +1)2

= 2nu m
2
�

1

n +2
−

1

2(n +1)
+

4n 2

(n +1)(2n +1)2
−

4n 2

(n +1)2(2n +1)
+

2n 3

(n +1)2(2n +1)2

�

When similar terms were gathered and this equation was rearranged, the same expres-
sion was obtained as in Section G.3.1, i.e.:

σ2
u f =

n 2(5n +1)
(n +1)2(n +2)(2n +1)2

u m
2 (6.5)

G.4 Derivation of Effective Fluid Velocity

The effective fluid velocity is the average fluid velocity acting on the cross-section of
a particle normal to the axial fluid velocity. Consider a particle of radius rp , with its
centre at a distance of r from the centreline of a pipe of radius R . The inner edge of the
particle is a radial distance of r − rp from the centreline of the pipe, while its outer edge
is a radial distance of r + rp from the centreline. The effective fluid velocity acting on
this particle is approximately equal to the mean velocity in an annular band with inner
and outer radii of r − rp and r + rp , respectively. This is shown in Figure G.1.

o

r-rp

r+rp

R

2rp

Figure G.1: Illustration of a spherical particle in the cross-section of the pipeline
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Thus, u e was approximated by Eq. 6.7:

u e (r ) =

∫ r+rp

r−rp

u m

�

1− r
R

�

1
n ·2πr d r

π
�

(r + rp )2− (r − rp )2
� (6.6)

=
u m

2
�

1+ 1
n

� rp

R





�

1+
rp

R
−

r

R

�

n+1
n −

�

1−
rp

R
−

r

R

�

n+1
n



 (6.7)

Note that u e is defined only for 0 ≤ r ≤R − rp since the particles are in contact with the
pipe wall at the upper limit. Eq. 6.7 is a simplification as it assumes that each particle
has a cross-section which is an annular segment rather than a circle. This difference is
illustrated by Figure G.2.

Real Assumption

r-rp

r+rp

Figure G.2: Diagram showing the assumption made that the cross-section of each particle is a
segment of an annulus rather than a circle

This assumption is reasonable if the particle radius is considerably smaller than the
pipe radius. A more accurate expression was obtained by substituting the annular rings
of thickness d r with narrow strips of length L and thickness d s , as shown on Figure
G.3. s is the radial distance between the centreline of the pipe and any such strip, while
r is the value of s when at the centrepoint of the particle.

s=r-rp

rp

s=r+rp

ds

L

Figure G.3: Geometry for more accurate integration used to quantify u e

L varies with radial distance, from 0 at r − rp and r + rp to a maximum of 2rp at a radial
distance of r . Figure G.4 graphically shows the relationship between L and s , while
Eq. G.13 is the equation relating these variables.

L = 2
p

rp
2− (s − r )2 (G.13)
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r-rp r r+rp

Radial Distance, s

0

2rp

Le
ng

th
, L

Figure G.4: Relationship between L and s which is quantified by Eq. G.13

Thus, the integral given as Eq. 6.6 was changed to the form of Eq. G.14:

u e (r ) =
1

πrp
2

∫ s=r+rp

s=r−rp

u f L d s r − rp ≤ s ≤ r + rp

=
2u m

πrp
2

∫ s=r+rp

s=r−rp

�

1− s
R

�

1
n
p

rp
2− (s − r )2 d s (G.14)

Although it appears to be relatively straightforward, it was not possible to evaluate
an analytical solution using Mathematica and therefore, Eq. G.14 required numerical
evaluation.

G.5 Probability Density Function of Effective Fluid Velocity

The first derivative with respect to r was obtained as Eq. G.15:

d u e

d r
=

u m

2rp





�

1−
rp

R
−

r

R

�

1
n −

�

1+
rp

R
−

r

R

�

1
n



 (G.15)

The fraction of the pipe cross-section in which the velocity lies between u e and u e +d u e

was obtained as follows:

2πr d r

πR2 =
2r d r

R2 =
2r ·2rp d u e

R2u m





�

1−
rp

R
−

r

R

�

1
n −

�
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rp

R
−

r

R

�

1
n
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Since r =R

�

1−
u f

n

u m
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from the 1/7th power law:

2r d r
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2R
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·2rp d u e

R2u m
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Finally, the PDF was obtained as Eq. 6.9:

P (u e ) =
4rp (u m

n −u f
n )R

1
n −1

u m
n

�

�

Ru f
n − rp u m

n
�

1
n −

�

Ru f
n + rp u m

n
�

1
n

� (6.9)

G.6 Proof that Effective Fluid Velocity Tends to Fluid Velocity
for Infinitesimal Particles

This could be proved in a number of ways, one of which was to apply l’Hôpital’s rule.
This states that for two functions, a (rp ) and b (rp ):

lim
rp→0

a (rp )
b (rp )

= lim
rp→0

a ′(rp )
b ′(rp )

(G.16)

if lim
rp→0

a (rp ) = lim
rp→0

b (rp ) = 0 or ±∞ and lim
rp→0

a ′(rp )
b ′(rp )

exists.

Writing u e as
a (rp )
b (rp )

:

d a

d rp
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nR
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d b
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Thus:

lim
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a ′(rp )
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u m

2





�

1+
rp

R
−

r

R

�

1
n
+
�

1−
rp

R
−

r

R

�

1
n





=
u m

2

�

2
�

1−
r

R

��

= u f
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G.7 Outline Derivation of Mean and Variance of Particle Ve-
locity

Eq. 6.24 shows that the effective fluid velocity, u e , at any time is the sum of the mean
effective fluid velocity, µu e , and a random component, denoted as u ∗e (t ):

u e (t ) =µu e +u ∗e (t ) (G.17)

When Eq. 6.17 was substituted into Eq. G.17, Eq. G.18 was obtained, in which W (t ) is a
random variate drawn from the normal distribution with a mean of 0 and a variance of
σ2

u e , i.e., W (t )öN [0,σ2
u e ].

d

d t
u ∗e (t )+φu e (t ) =W (t ) (G.18)

This stochastic differential equation has the same form as an equation developed for
lumped capacitance heat transfer by Nicolaï et al. (2007). Nicolaï et al. solved the
differential equation using the variance propagation algorithm, and the analogous
result for Eq. G.18 is shown as Eq s. 6.26 and 6.27:

µu p =µu e (6.26)

σ2
u p =

pe

pe +φ
σ2

u e +
pe

pe −φ
σ2

u e e−2pe t −
2p 2

e

(pe +φ)(pe −φ)
σ2

u e e−(pe+φ)t (6.27)

G.8 Mean Fall Height and Velocity of Particle

Since the pipe cross-section is symmetrical, half was disregarded in the derivation. A
vertical strip of width d x and of height 2y was selected, which is a distance x from
the vertical axis passing through the centrepoint of the cross-section. This is shown in
Figure G.5.

The mean fall height for particles in this strip is y , since there is an equal probability of
any particle within this area being above or below the horizontal area bisector. y is a
function of x : y =R − rp when x = 0 and y = 0 when x =R − rp . Pythagoras’s theorem
gives the relationship y 2 = (R − rp )2− x 2. The average fall height for any particle, µh ,
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R

R-rp

y

dx

x

Figure G.5: Geometry for the integral used to quantify the mean fall height of a particle under
gravity, µh

was found as Eq. 6.34, noting that the area of the strip is 2y d x :

µh =
2

π(R − rp )2

∫ x=R−rp

x=0

y ·2y d x

=
4

π(R − rp )2

∫ x=R−rp

x=0

�

(R − rp )2−x 2
�

d x

=
4

π(R − rp )2

�

(R − rp )2x −
x 3

3

�R−rp

0

=
4

π(R − rp )2

�

2(R − rp )3

3

�

=
8(R − rp )

3π
(6.34)

For a particle falling under gravity, its vertical velocity is given by Eq. 6.32 for a suitable
range of Reynolds numbers. Note that the particle has zero initial velocity, i.e., falls
from rest.

u v = u t tanh

�

g t

u t

�

(6.32)

d y

d t
= u t tanh

�

g t

u t

�

(G.19)

This first-order differential equation was solved to yield Eq. G.20, where H represents
the fall height corresponding to a fall time of t .

H =
u t

2

g
ln

�

cosh

�

g t

u t

��

(G.20)

Rearranging:

t =
u t

g
arccosh

�

e
g H
u t

2
�

(G.21)
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If any vertical strip is selected, the mean velocity of a particle in that strip is not y
t (y )

since there is a non-linear relationship between u v and H . Hence, the mean velocity of
a particle was found as Eq. G.22, noting that mean velocity was calculated by dividing
the total fall height by the fall time.

1

2y

∫ H=2y

H=0

H

t
d H =

1

2y

∫ H=2y

H=0

g H

u t arccosh
�

e
g H
u t

2
�

d H (G.22)

These were summed by integration for all strips of thickness d x , noting that y =
p

(R − rp )2−x 2 and again the area of each strip is 2y d x :

uφ =
2

π(R − rp )2

∫ x=R−rp

x=0

1

��2y

∫ H=2y

H=0

g H

u t arccosh
�

e
g H
u t

2
�

d H ·��2y d x (G.23)

uφ =
2

π(R − rp )2

∫ x=R−rp

x=0

∫ H=2
p

(R−rp )2−x 2

H=0

g H

u t arccosh
�

e
g H
u t

2
�

d H d x (6.35)

Eq. 6.35 required numerical solution.

G.9 Probability Density Function of Impact Angle

The cross-sectional area of the pipe of inner radius R within which the centrepoint of
any particle of radius rp may be located is π(R − rp )2. The cross-section was divided
into horizontal strips of length 2L and width d y , as shown in Figure G.6. The area of
each such strip is 2L d y . Pythagoras’s theorem was applied to relate L to y (the vertical
displacement from the centrepoint of the cross-section):

L =
p

(R − rp )2− y 2 (G.24)

The proportion of the particles in any horizontal strip at a distance y from the centrepoint
of the pipeline, and hence the proportion of the particles subjected to the commensurate
impact angle, θ, is given by Eq. G.25:

Proportion of particles in strip=
2
p

(R − rp )2− y 2 d y

π(R − rp )2
(G.25)

A relationship was found between θ and y by reference to Figure 6.7:

θ (y ) = arccos







1− y
Rb

1+ R−rp

Rb






(6.42)

This equation was rearranged to find y explicitly and differentiated to obtain d y :

y =Rb − (Rb +R − rp )cosθ (6.42)

d y = (Rb +R − rp )sinθdθ (G.26)
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R-rp

R

y=0o

L

y

dy

Inner wall of pipeline

Maximum displacement of 
particle centrepoints from o2rp

Figure G.6: Cross-section through the pipe bend showing the geometry used to derive Eq. 6.45
for P (θ)

Thus, Eq. G.25 could be rewritten as Eq. G.27:

Proportion=
2
p

(R − rp )2− y 2

π(R − rp )2
(Rb +R − rp )sinθdθ

=
2 sinθdθ

π(R − rp )2
p

(R − rp − y )(R − rp + y )(Rb +R − rp )

Substituting y with Rb − (Rb +R − rp )cosθ:

Proportion= 2 sinθdθ

π(R − rp )2
p

(R − rp −Rb +(Rb +R − rp )cosθ)(1− cosθ)(Rb +R − rp )
3
2

(G.27)

Finally, the PDF was found as Eq. 6.45:

P (θ) =
2 sinθ

π(R − rp )2

Æ

�

R − rp −Rb +(Rb +R − rp )cosθ
�

(1− cosθ)(Rb +R − rp )
3
2 (6.45)

G.10 Derivations for Kelvin-Voigt Model

The governing second-order differential equation for the Kelvin-Voigt model is Eq. 6.48:

m x ′′(t )+ c x ′(t )+k x (t ) = 0 (6.48)

This could be rewritten as Eq. G.28:

x ′′(t )+2ζωn x ′(t )+ω2
n x (t ) = 0 (G.28)
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where:

ωn =

Ç

k

m
(G.29)

ζ=
c

2mωn
=

c

2
p

m k
(G.30)

Impacts of particles with the bend are always underdamped (ζ < 1); thus, the solutions
for velocity and deflection are given by Eq s. G.31 and 6.49, respectively.

x ′(t ) = e−ζωn t
�

−ζωn u n

ωd
sin(ωd t )+u n cos(ωd t )

�

(G.31)

x (t ) =
u n

ωd
e−ζωn t sin(ωd t ) (6.49)

In these equations, u n = x ′(0) and ωd is defined by Eq. G.32.

ωd =ωn

p

1−ζ2 (G.32)

It was necessary to derive suitable expressions for k and c . It is known that the damping
coefficient, c , is related to the coefficient of restitution, ε, which is in turn a function of
thematerial parameters, the particlemass and radius, and the impact velocity (Schwager
and Pöschel, 2007). A relationship between the coefficient of restitution of the impacting
bodies and the damping coefficient could be found readily for an underdamped system.

Consider a particle which is initially at its equilibrium position, x (t ) = 0. It is projected
in the positive x -direction, towards the wall of the pipeline. A maximum displacement
from the equilibrium position is reached, which corresponds to the point of maximum
compression of the particle or spring, after which motion commences in the negative
x -direction. The particle is unstressed (spring at its natural length) again when the
equilibrium position is reached. The contact time between the particle and the wall of
the pipeline, tc , could be found as the difference between the two times when x (t ) = 0:

x (tc ) =
u n

ωd
e−ζωn tc sin(ωd tc ) = 0

sin(ωd tc ) = 0

tc = 0 (trivial) or π

ωd

By subsection, Eq. G.33 was obtained:

tc =
π

ωd
=

π

ωn

p

1−ζ2
=

π
Æ

k
m

Ç

1−
�

c
2
p

m k

�2
=

2πm
p

4m k − c 2
(G.33)

The coefficient of restitution is defined as the magnitude of the normal velocity after
impact divided by the normal velocity before impact. The latter is u n , whereas the
normal velocity after impact was found by substituting tc from Eq. G.33 into Eq. G.31:

x ′(tc ) = e
−ζωn

π
ωd

�

−ζωn u n

ωd
sinπ+u n cosπ

�

=−u n e
−ζωn

π
ωd
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Thus, the coefficient of restitution may be found from Eq. G.34:

ε =

�

�

�

�

�

�

−u n e
−ζωn

π
ωd

u n

�

�

�

�

�

�

= e
−ζωn

π
ωd (G.34)

ζ, ωn and ωd were all substituted into Eq. G.34 to obtain an equivalent expression
which is more commonly seen in the literature (e.g., Marhefka and Orin, 1996):

ε = e
− cπp

4m k−c 2 (G.35)

Note that the denominator of the exponential quotient in Eq. G.35 is identical to the
denominator in Eq. G.33. Eq. G.33 was rearranged and substituted into Eq. G.35 to
yield an explicit equation for c in terms of m , ε and tc only:

p

4m k − c 2 =
2πm

tc
(G.33)

ε = e
− cπp

4m k−c 2 = e−
c tc
2m

c =−
2m lnε

tc
(6.51)

Eq. 6.51 was, in turn, substituted into Eq. G.33 to obtain a similar equation for k in
terms of m , ε and tc only:

4m k − c 2 =
4π2m 2

t 2
c

4m k =
4π2m 2

t 2
c

+
4m 2 ln2 ε

t 2
c

k =
m

t 2
c

(ln2 ε+π2) (6.52)

The force on the particle according to the Kelvin-Voigt model is given by Eq. 6.50:

F (t ) =m u n e−ζωn t

��

ζ2ω2
n

ωd
−ωd

�

sin(ωd t )−2ζωn cos(ωd t )

�

(6.50)

The first derivative of this function was found as Eq. G.36 using the product rule:

F ′(t ) =−ζm u nωn e−ζωn t

��

ζ2ω2
n

ωd
−ωd

�

sin(ωd t )−2ζωn cos(ωd t )

�

+m u n e−ζωn t
�

(ζ2ω2
n −ω

2
d )cos(ωd t )+2ζωnωd sin(ωd t )

�

(G.36)

As c → 0, ζ → 0 and ωd → ωn . Thus:

F ′(t )→−m u nω
2
n cos(ωn t ) =−�

�m u n k

��m
cos(ωn t ) =−u n k cos(ωn t ) (G.37)

Eq. G.37 is equal to 0, indicating a point of maximum or minimum of F (t ), when
ωn t = π

2 or 3π
2 . F ′′(t ) = u nωn k sin(ωn t )where c = 0; thus, a local maximum exists (F ′′(t )

< 0) where ωn t = 3π
2 . Finally, the maximum force is given by Eq. G.38, again noting that

this is for the special case of c → 0:

F (t )
�

�

max =−m u nωn sin( 3π2 ) =m u nωn =
p

k m u n (G.38)
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