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A Semi-Systematic Procedure for Producing Chaos
from Sinusoidal Oscillators Using Diode-Inductor and

FET-Capacitor Composites

A. S. Elwakil and M. P. Kennedy

Abstract—A design procedure for producing chaos is proposed. The pro-
cedure aims to transfer design issues of analog autonomous chaotic oscil-
lators from the nonlinear domain back to the much simpler linear domain
by intentionally modifying sinusoidal oscillator circuits in a semisystematic
manner. Design rules that simplify this procedure are developed and then
two composite devices, namely, a diode-inductor composite and a FET-ca-
pacitor composite are suggested for carrying out the modification proce-
dure. Applications to the classical Wien-bridge oscillator are demonstrated.
Experimental results, PSpice simulations, and numerical simulations of the
derived models are included.

Index Terms—Chaos, nonlinear dynamics, oscillators.

I. INTRODUCTION

The realization of electronic chaos generators has for some time been
a topic of increasing interest. Some contributions in this direction were
based on emulating a system of ordinary nonlinear differential equa-
tions that are known to be chaotic [1]–[4], resulting in pure analog
circuits. Some other contributions were based on iterating one-dimen-
sional (1-D) maps, such as the logistic map, within their chaotic win-
dows [5]–[8], resulting in oscillators that are generally suitable for dig-
ital applications. These contributions have a common feature of starting
from a mathematical study and ending with an electronic circuit. How-
ever, the opposite direction in which a chaotic oscillator is discovered
and, accordingly, a mathematical model is derived and has been re-
ported [9]–[11]. Due to the possible applications of chaos in several
areas, particularly in communications, the need for systematic methods
for designing chaotic oscillators has increased. Such methods should
be based on well-established electronic design techniques to make use
of the enormous literature and experience already available. Based on
Chua’s circuit, an attempt in this direction was introduced in [12]. How-
ever, due to the nature of the nonlinearity in Chua’s circuit, which is ac-
tive and piecewise linear, designing such a nonlinearity is not straight-
forward [13]. In general, active nonlinearities are not easy to design or
reconfigure using different building blocks and technology parameters.

Among the chaotic oscillators that have been recently reported, the
chaotic Colpitts oscillator [11] receives special importance. This os-
cillator has demonstrated the fact that a classical sinusoidal oscillator
can behave chaotically for a specific set of parameters. Accordingly,
the question whether it is possible for other classical sinusoidal oscil-
lators to behave chaotically naturally arises. Researchers in [14]–[19]
have shown that Wien-type sinusoidal oscillators can be modified for
chaos. Other types of oscillator have also been modified for chaos
[20]–[22]. These contributions suggest a possible route to producing
chaos starting from an existing sinusoidal oscillator circuit.

It is the aim of this work to propose a three-step procedure for
designing autonomous chaotic oscillators. Four design rules that
simplify this procedure are developed. Finally, the diode inductor and
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FET-capacitor composites are introduced to carry out the procedure in
a semisystematic manner. Using these two composites, generation of
chaos from the classical Wien-bridge oscillator is demonstrated.

II. DESIGN PROCEDURE

Once a chaotic oscillator is to be designed for a target application
there are generally two sets of requirements and design limitations
that should be satisfied. The first set is concerned with statistical mea-
sures of the produced chaotic signal (eigenvalues, Lyapunov exponents,
space dimension, power spectrum characteristics, basins of attraction,
etc.), while the second set is concerned with the nature and character-
istics of the physically produced waveform and its electronic circuit
realization. It is unfortunately not yet clear whether the available sta-
tistical measures are sufficient to describe and compare different types
of chaos. Most of these measures are analysis oriented and no method
has yet been developed to produce chaos with a set of prespecified mea-
sures, even from an abstract mathematical model. On the other hand, it
is possible to realize a chaotic oscillator that fulfills (optimizes) a set of
circuit-specific constraints. For this purpose, the following three-step
design procedure is proposed.

1) Design a sinusoidal oscillator circuit that meets the desired re-
quirements in terms of passive element structure, tunability, sen-
sitivity, and active building blocks. This design is to be based
on simple and well-established linear design techniques which
allow an oscillator to have specific features. For example, anRC

oscillator with all grounded capacitors and the minimum number
of resistors can be designed. The appropriate active building
block [i.e., voltage op amp (VOA), operational transconductance
amplifier (OTA), current feedback op amp (CFOA), current con-
veyor (CCII), etc.] and the function it performs (i.e., amplifier,
integrator, impedance converter, current/voltage follower, etc.)
can also be specified. Formulas defining the necessary conditions
for oscillation and the frequency of oscillation are then derived.
Oscillators where the frequency of oscillation can be indepen-
dently controlled are advantageous. A huge collection of sinu-
soidal oscillators with a wide variety of features can be found
in the literature (see, e.x., [23]–[32] and the references therein).
Researchers who are not acquainted with sinusoidal oscillator
design can simply choose from the available catalogues.

2) Guided by the derived condition for oscillation formula, and by
inspecting the structure of the oscillator, selection is made for
a suitable position to insert a simple nonlinear element. If the
designed sinusoidal oscillator is of an order less than three, an
additional energy storage element (inductor or capacitor) should
also be added in a suitable position.

3) The tuning parameters identified in the first step are adjusted
around the same values that satisfy the condition for oscillation
of the sinusoidal oscillator.

The resulting chaotic oscillator inherits the features of the sinusoidal
oscillator and has a continuous noise-like power spectrum centred ap-
proximately around the operating frequency of the sinusoidal oscillator.

In order to simplify the above procedure, the following design rules
are presented.

1) Nonlinearity should be introduced by a passive rather than active
element. Equivalently, the sources of circuit energy should only
be the linear building blocks. For example, an active nonlinear
resistor, such as that in Chua’s circuit, is not recommended.

2) The nonlinear element should be separated from the linear blocks
such that the functionality of these blocks remains clear, ideal,
and independent of any parameters of the nonlinear element.

1057–7122/00$10.00 © 2000 IEEE
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Building blocks such as voltage-controlled voltage sources (in-
verting or noninverting), integrators, negative impedance con-
verters (voltage or current controlled, etc.) should operate lin-
early. In the chaotic Colpitts oscillator [11] the nonlinear element
can not be separated from the gain device, so it is suboptimal
from this point of view.

3) It should be possible to reproduce the chaotic dynamics of the
oscillator with a model that does not depend on any device-spe-
cific parasitic effect. For example the family of chaotic oscilla-
tors in [17] utilizes a voltage op amp as an amplifier and as a cur-
rent-controlled negative impedance converter. Modeling the ob-
served chaotic behavior of this family requires the internal dom-
inant pole of the op amp to be included into analysis. Hence, the
functionality of the linear building blocks cannot be reproduced
other than by using a voltage op amp.

4) Simple two-terminal nonlinear resistors (diodes or diode-con-
nected transistors) should be used where possible.

The basic advantage of adopting these design rules is that the re-
sulting chaotic oscillator is independent of the circuit and technology.
Since the active blocks operate only linearly and ideally, it should be
possible to use any implementation for these blocks. However, once
an implementation has been chosen, effects of any known parasitics on
the chaotic behavior should be considered. Limitations on the operating
bandwidth, supply voltage, and power dissipation of the chaotic oscil-
lator are imposed only by the linear active block and not by the non-
linear element, which is strictly passive. The type of signal processing
(current mode or voltage mode) is also defined by the linear element.
Accordingly, benchmarks used to evaluate and compare linear designs
become valid for chaotic oscillators.

It should be noted that starting with a third-order sinusoidal oscil-
lator, such as the Twin-T oscillator, the above procedure simplifies to
choosing a suitable position to insert a passive nonlinear element and
adjusting the tuning parameters associated with the condition of os-
cillation [20]. However, since most of the available sinusoidal oscilla-
tors are second order, an additional energy storage element is required
to permit chaotic behavior. The position to insert this element and its
value are currently subject to designer experience, hence, we consider
the proposed procedure as semisystematic. However, with the aid of the
composites presented in Section III and with sufficient experience, this
design methodology proves to be indeed systematic. The authors have
demonstrated the flexibility of this procedure by modifying families of
sinusoidal oscillators for chaos [33]–[35].

In the following section, we introduce two nonlinear composite de-
vices that facilitate the modification process. Application to the clas-
sical Wien-bridge oscillator is demonstrated.

III. T HE DIODE-INDUCTOR AND FET-CAPACITOR COMPOSITES WITH

APPLICATION TO THEWIEN-BRIDGE OSCILLATOR

A. The Diode-Inductor Composite

Fig. 1(a) shows a diode-inductor (D–L) composite which is a par-
allel combination of a signal diode and an inductor. The diode switches
on and off according to the voltage developed across the inductor. This
voltage appears across the parasitic transit capacitance [36] of the diode
CD. Hence, the composite is described by the following equations:

L _IL =VCD

CD _VCD = I � IL � ID (1a)

where
I composite current;
IL inductor current;
ID nonlinear diode current modeled by

Fig. 1. (a) The diode inductor (D–L) composite. (b) A suitable position for
theD–L composite in series with a resistorR.

ID =
1

RD

VCD � V
 ; VCD � V


0; VCD < V
 :
(1b)

RD andV
 are the diode forward conduction resistance and voltage
drop, respectively.

When modifying an oscillator for chaos, one must choose a position
within the sinusoidal oscillator to insert this composite and a suitable
value forL. The best position to insert this composite is in series with
one of the resistors, as shown in Fig. 1(b). The composite currentI then
becomes

I =
V1 � VCD � V2

R
: (2)

Clearly, grounding the composite (V1 = 0 or V2 = 0) is preferable.
Consider the classical Wien-bridge configuration shown in Fig. 2

which employs a noninverting voltage-controlled voltage source
(NVCVS) with gain K. With equal capacitors, the state space
representation of this configuration is given by

_VC1

_VC2
=

1

C

K � 1

R2

� 1

R1

�1
R2

K � 1

R2

�1
R2

VC1

VC2
: (3)

Hence, the condition and frequency of oscillation are found to be

K = 2+
R2

R1

and !o =
1

C
p
R1R2

(4)

respectively.
ChoosingR1 = R2, the theoretical gain required to start oscillation

isK = 3. By inspecting the Wien oscillator, two positions are suitable
for inserting theD–L composite: in series withR1 or R2. The posi-
tion in series withR1 enables the composite to be grounded and has
been reported in [19]. For the position in series withR2, the modified
configuration is described by the following equations:

C1
_VC1 = I � VC1

R1

C2
_VC2 = I (5)

in addition to the set of equations in (1a) and (1b) and withI = (K �
1)VC1 � VC2 � VCD=R2.
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Fig. 2. The classical Wien-bridge sinusoidal oscillator configuration.

Since theD–L composite is a second-order composite, the modified
for chaos Wien-bridge oscillator is a fourth-order chaotic oscillator.

For the choice ofC1 = C2 = C; R1 = R2 = R
and by introducing the following dimensionless quantities:
� = t=RC; X = VC1=V
 ; Y = VC2=V
 ; Z = RIL=V
 ; W =
VCD=V
 ; " = CD=C; � = R=RD; and� = R2C=L, the state space
representation of this chaotic oscillator is given by

_X
_Y
_Z

" _W

=

K � 2 �1 0 �1

K � 1 �1 0 �1

0 0 0 �

K � 1 �1 �1 �(1 + a)

X

Y

Z

W

+

0

0

0

a

(6a)

and
a = � W � 1

a = 0 W < 1:
(6b)

TheY –Z phase space trajectory obtained by numerically integrating
(6) using a Runge–Kutta fourth-order algorithm with 0.005 step and
with K = 3; " = 0:01; � = 10; and� = 0:1 is plotted in Fig. 3(a).

In (6), the active part of the oscillator is represented only by its gain
K which is, of course, the best tuning parameter. The passive nonlin-
earity is characterized by� and". Thus, the active linear and the pas-
sive nonlinear blocks are clearly separated. For fixed values ofR; C;
andK; the mathematical model of (6) provides a maximum value for
� which is necessary to observe chaos. Hence, a corresponding min-
imum value forL can be calculated. Practical minimum values ofL
are given in Table I forR = 1 k
, K = 3 and different values ofC.
In general, the inductor value increases linearly per decade increase of
C. The case where" = 1 is particularly attractive for high-frequency
and monolithic implementations since the value of the physical capac-
itors is as small as the diode parasitic capacitance. We have integrated
(6) with K = 3:5; " = 1; � = 10; and� = 0:2 and a trajectory
similar to Fig. 3(a) was observed. It should be noted, however, that
follower-based sinusoidal oscillators are more suitable for such imple-
mentations than the Wien oscillator.

A PSpice simulation of theVC2—IL trajectory is shown in Fig. 3(b)
whenC1 = C2 = 1 nF, R1 = R2 = 1 k
, L = 10 mH, and
K = 3:4. The amplifier was implemented using a CFOA [37] and a
general purpose diode (D1N914, D1N4148) was used.

B. The FET-Capacitor Composite

Fig. 4(a) shows the FET-capacitor (FET-C) composite which is a
series combination of a FET, connected to operate as a two-terminal
device and a capacitor. The composite is described by the following
equation:

C _VC = IN (7a)

whereIN is the nonlinear FET current modeled as

IN =
1

RN

VGS VGS � VP

VP VGS < VP :
(7b)

RN is the FET small signal resistance at the operating point,VGS is the
gate to source voltage, andVP is the pinch-off voltage. For a positive
VP , (7b) can be written in a form similar to (1b) ifIN is shifted by
VP =RN . For a negativeVP ; VGS should in addition be shifted by2VP .

Since FET’s (particularly junction field effect transistors) can op-
erate as voltage controlled resistors, the FET-C composite is intended
to replace any seriesR–C branch within a sinusoidal oscillator archi-
tecture. Starting with a second-order oscillator, it remains to add an
extra capacitor or inductor. Although several chaotic oscillators have
been designed using the FET-C composite after adding an inductor
[33], [34], we demonstrate two configurations that require the addition
of a single capacitor. The result is an inductorless chaotic oscillator
which is advantageous in many respects. Consider the configuration
in Fig. 4(b) where a seriesR3–C3 branch appears in parallel with the
FET-C2 composite. The configuration is then described by

C2
_VC2 = IN

C3
_VC3 =

V1 � VC3 � V2
R3

(8a)

and

IN =
1

RN

V1 � VC2 � V2; V1 � VC2 � V2 � VP

VP ; V1 � VC2 � V2 < VP :
(8b)

Using this configuration to replace theR2–C2 branch of the Wien os-
cillator in Fig. 2, one obtains the following equation that describes the
system along with the set of (8):

C1
_VC1 =

V1 � VC3 � V2
R3

�
VC1
R1

+ IN (9)

and the VCVS forces the voltage differenceV1–V2 to equal(K �

1)VC1.
Guided by the Wien oscillator design equations (4), we choose the

parameter set:R1 = R3 = RN = R andC1 = C2 = C3 =
C. Setting:� = t=RC; X = VC1=VP ; Y = VC2=VP andZ =
VC3=VP , the state space representation of the configuration is given
by

_X

_Y

_Z

=

�2� a+ (1 + a)K �a �1

a(K � 1) �a 0

K � 1 0 �1

X

Y

Z

+

b

b

0

(10a)

where
a = 1; b = 0; (K � 1)X � Y � 1

a = 0; b = 1; (K � 1)X � Y > 1:
(10b)

TheX–Y phase space trajectory obtained by numerically integrating
(10) with K = 2:38 is plotted in Fig. 5(a). Note that (10) is tuned
via a single parameter (the VCVS gainK) and represents a circuit-
independent model. When a specific active device is used to implement
this VCVS, (10) should be modified to include the effects of any known
parasitics or nonidealities.

PSpice simulations using a J2N4338 type JFET (RN =
750
; VP = �0:7 V) were performed takingR1 = R3 =
750
; C1 = C2 = C3 = 1 nF, andK = 2:5. The resulting
VC1–VC2 trajectory is shown in Fig. 5(b). The VCVS was realized as
in [19] using an AD844 CFOA biased with�9 V supplies. Of course,
the CFOA should not be allowed to saturate and, hence, the voltage
acrossC1 should not exceedVsat=K.

The circuit was experimentally constructed with the above compo-
nents and withK varied via a 30-K
 pot. Fig. 6(a) represents the limit
cycle just before the period-two orbit, shown in Fig. 6(b), is born. The
period-doubling cascade continues asK is increased and the chaotic
attractor is shown in Fig. 6(c).
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(a)

(b)

Fig. 3. (a) TheY –Z phase space trajectory obtained by numerically integrating (6) withK = 3; " = 0:01; � = 10; and� = 0:1. (b) PSpice simulation of
theV –I trajectory usingC = C = 1 nF,R = R = 1 k
, L = 10 mH, a D1N914 diode and withK = 3:4. The amplifier is implemented using an
AD844 CFOA biased with�9 V supplies.

Next consider the configuration in Fig. 7(a) which can be described
by

C2
_VC2 = IN

C3
_VC3 =

V1 � VC3 � V2

R3

� IN (11a)

and

IN =
1

RN

VC3 � VC2; VC3 � VC2 � VP

VP ; VC3 � VC2 < VP :
(11b)

Using this configuration to replace theR2–C2 branch of the Wien
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(a) (b)

Fig. 4. (a) The FET-capacitor (FET-C) composite. (b) A proposedRC configuration using the FET-C composite.

TABLE I
TYPICAL MINIMUM INDUCTOR VALUES OF

THED–L COMPOSITE INFig. 1(b)FOR A GIVEN VALUE OFC

oscillator, the resulting circuit can be described by (11) in addition to
the following equation:

C1
_VC1 =

V1 � VC3 � V2

R3

�
VC1

R1

(12)

whereV1–V2 is forced to equal(K � 1)VC1.
Choosing the parameter setR3 = RN = R; R1 = 2R; C2 =

C3 = C; C1 = 2C and using the same dimensionless settings as
above, the following set of equations is obtained:

2 _X
_Y
_Z

=

K � 3

2
0 �1

0 �a a

K � 1 a �(1 + a)

X

Y

Z

+

0

b

�b

(13a)

where
a = 1; b = 0; Z � Y � 1

a = 0; b = 1; Z � Y > 1:
(13b)

TheX–Y trajectory shown in Fig. 7(b) was obtained by integrating
(13) withK = 3:1. A PSpice simulation is also shown in Fig. 7(c) with
C = 1 nF andK = 3:17. The model of (13) is also a single-parameter
tuned circuit-independent model.

It is worth noting that the design sets which we have demonstrated
here are based on the equalC design equations of (4). However, other
design sets can be used as well. A particularly useful design set using
the composite of Fig. 7(a) in any oscillator is to takeC1 = m(C2+C3)
andR1 = n(R3 +RN) wherem andn are guided by the oscillator’s
design equations. In some cases, and with good knowledge of the ex-
isting parasitic elements of a specific implementation, one might re-
placeR3 orC3 with these parasitics [34].

IV. CONCLUDING REMARKS

We have introduced a methodology for designing autonomous
chaotic oscillators. The aim of this methodology is to transfer chaotic
oscillator design issues from the nonlinear domain back to the well-es-

tablished linear circuit theory of design by specifying a linear starting
point for the design process along with a set of design rules. Following
these design rules, a chaotic oscillator automatically inherits the main
features of a mother simple harmonic oscillator. Thus, optimization
techniques performed on the harmonic oscillator result in an optimized
chaotic oscillator as well.

We have also introduced two passive nonlinear composites, namely,
a second-order diode-inductor composite and a first-order FET-capac-
itor composite, as tools to carry out the design procedure. Indeed, with
some experience, designers would find using these tools rather system-
atic. It should be noted that all areas of analog circuit design still de-
pend on designers’ experience to a great extent. In this sense, chaotic
oscillator design is no exception. In conclusion, we conjecture that fol-
lowing the proposed three-step design procedure, at least one chaotic
oscillator can always be derived from any simple harmonic oscillator.
Several important points should be mentioned.

1) All circuits that have been modified using theD–L and FET-C
composites show a Colpitts-like chaotic attractor [11], [38] and
are governed by dynamics similar to the chaotic Colpitts oscil-
lator [39]. In fact, there is enough evidence to believe that this
attractor is universal and will naturally arise in many low-dimen-
sional chaotic systems [40].

2) Chaotic oscillators based on sinusoidal oscillators have a broad
power spectrum which is concentrated around the sinusoidal os-
cillator’s operating frequency. For this reason, such oscillators
can not have a spectrum with a flat magnitude over a wide band-
width. This also applies to Chua’s circuit which we have recently
shown to have a core sinusoidal oscillator [41], [42]. Chaotic os-
cillators based on voltage-controlled oscillators (VCO’s) which
have a varying center frequency appear to be more attractive
when flat spectra are required.

3) Our design methodology strictly recommends using passive non-
linear elements. This remains desirable as long as there is no ev-
idence that chaotic signals produced when active nonlinearities
are used possess any statistical features that are not possessed by
chaotic signals produced when passive nonlinearities are used.
One of the reviewers has noted that diodes and FET’s suffer
from large parameter spreads and temperature sensitivity. If ac-
tive nonlinear devices, such as Chua’s diode, prove to be better
in this respect for a specific application, they should be used.
We note, however, that when passive antisymmetric voltage-con-
trolled diode and FET characteristics are replaced with active (or
passive) odd symmetrical characteristics in any of the designed
oscillators [21], [35], a chaotic attractor still results and can be di-
rectly related to two of the basic Colpitts-like attractors by simple
flip, mirror, and merge operations.

4) Our proposed design methodology applies also to hysteresis
chaotic oscillators which can be obtained by modifying si-
nusoidal oscillators using hysteresis nonlinear resistors [43].

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on April 29,2010 at 08:52:38 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 4, APRIL 2000 587

(a)

(b)

Fig. 5. Results of replacing theR –C branch of Fig. 2 with the configuration of Fig. 4(b). (a) TheX–Y phase space trajectory obtained by numerically
integrating (10) withK = 2:38. (b) PSpice simulations of theV –V trajectory using a J2N4338 JFET,R = R = 750
, C = C = C = 1 nF,
K = 2:5 and using�9 V supplies.

Passive hysteresis nonlinear resistors have been introduced in
[44] and we have successfully used them to systematically
design a class of hysteresis chaotic oscillators [45]. Hysteresis
resistors do not require the addition of an extra energy storage
element (inductor/capacitor) as required by Step 2 of our design

procedure since there always exists a parasitic inductor (capac-
itor) associated with the fast dynamics of their nonmonotone
current-controlled (voltage-controlled) characteristics [46]. The
observed chaotic attractor from this class of oscillators is a single
screw which can also develop into a Colpitts-like attractor [45].
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(a)

(b)

(c)

Fig. 6. (a) Limit cycle from an experimental setup:K = 2:48. (b) Birth of the period two orbit:K = 2:5. (c) Chaotic attractor:K = 2:59. All photographs
represent theV –V trajectory.V is measured by a differential probe.X axis: 0.1 V/div,Y axis: 0.1 V/div.

5) It is possible to design higher order chaotic and hyperchaotic
oscillators by coupling at least two sinusoidal oscillators using
passive nonlinearities [47].

Finally, we believe that the topic of chaotic oscillator design has ad-
vanced significantly guided by a linear circuit design perspective. By
contrast, design-oriented tools developed under the theory of nonlinear
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(a)

(b)

(c)

Fig. 7. (a) AnotherRC configuration using the FET-C composite. (b) TheX–Y trajectory obtained by integrating (13) withK = 3:1. (c) A PSpice simulation
with R = 1:5 k
, R = 750
; C = 2 nF,C = C = 1 nF, andK = 3:17.
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dynamics have not advanced as much. On the application front, more
effort is needed to define the required properties of chaotic signals.
Clear specifications are required in order to attract the interest of analog
circuit designers to chaotic electronics (chaotronics).
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