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Abstract: The mobile cloud computing model promises to address the resource limitations of 

mobile devices, but effectively implementing this model is difficult. Previous work on mobile 

cloud computing has required the user to have a continuous, high-quality connection to the cloud 

infrastructure. This is undesirable and possibly infeasible, as the energy required on the mobile 

device to maintain a connection, and transfer sizeable amounts of data is large; the bandwidth 

tends to be quite variable, and low on cellular networks. The cloud deployment itself needs to 

efficiently allocate scalable resources to the user as well. In this paper, we formulate the best 

practices for efficiently managing the resources required for the mobile cloud model, namely 

energy, bandwidth and cloud computing resources. These practices can be realized with our 

mobile cloud middleware project, featuring the Cloud Personal Assistant (CPA). We compare 

this with the other approaches in the area, to highlight the importance of minimising the usage of 

these resources, and therefore ensure successful adoption of the model by end-users. Based on 

results from experiments performed with mobile devices, we develop a no-overhead decision 

model for task and data offloading to the CPA of a user, which provides efficient management of 

mobile cloud resources. 
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1. Introduction 

 

With the increasing numbers of smart mobile devices in use, they are rapidly 

becoming a portable, capable, and personalised computing platform for the end user 

in different modes of mobility. These devices feature Wi-Fi and cellular network 

interfaces, which open them up to the resources of the world-wide-web. Many end-

users turn to them rather than a desktop or laptop computer for a large range of tasks.  

As mobile devices become more capable with dedicated apps and mobile 

optimised websites, the demand for applications and functionality on these devices, in 

terms of user expectations, grows. This is still problematic, as despite hardware 

advances, resources such as CPU capacity, power, memory, and storage are still small 

compared to their desktop counterparts. In this context, mobile cloud computing has 

emerged as a viable solution: demanding applications and tasks can be offloaded 

from the mobile to the cloud for execution. Completed work or results of offloaded 

tasks can be returned to the mobile device when complete. 

In this complex equation of communication between the mobile device and the 

cloud, the management and use of the limited resources available on the device plays 

a central role. Many mobile cloud solutions published in the research literature 

require continuous, high-quality connectivity to the cloud, and involve large amounts 

of data transfer. There are several resource considerations that come into play. For 

example, the continuous transfer of data between the mobile device and the cloud will 

come at a high energy cost from the device battery. This cost only grows if the device 



is using the cellular network connection, due to variation in signal level, along with 

the variable network bandwidth, and resulting data-rate. It may not be feasible for a 

mobile device to exhaust such energy continuously for the duration of the cloud 

interaction. As another example, as the bandwidth of the network connection may 

vary over time, levels of performance from the resulting data-rate cannot be 

guaranteed. This is very significant in the areas of real-time applications where 

minimal latency is crucial. 

As offloaded tasks and applications execute on cloud infrastructure, cloud 

resources such as storage are used to compliment the local resources of the mobile 

device. The management of resources allocated to the mobile cloud at the cloud 

infrastructure also has to be taken into consideration. As the mobile device is a 

personal computing device, how this translates to the resources of a public cloud is 

important; existing approaches have proposed offloading portions of applications to 

the cloud, or even entire mobile operating systems. If all mobile device users offload 

large and complex data to support such operations, then the management of energy 

and physical resources at the cloud must be a factor. 

The objective of this paper is to devise and examine the best practices in resource 

management, in the area of mobile cloud computing, and to derive a model for data 

and task offloading to the cloud, while considering the limited available resources. 

We will look at some of the previous approaches and models to energy and 

bandwidth resource management in the research literature, in the context of mobile 

cloud. We will augment these models with mobile cloud considerations, and apply 

them to existing approaches that have been taken for mobile cloud implementations, 

to understand how these approaches utilise the resources being studied. From this, we 

will devise and highlight the best practice approaches that solutions in the mobile 

cloud domain should adopt for managing these resources. We will then contrast these 

approaches and the resulting implications from the models with our cloud 

middleware solution, Context Aware Mobile Cloud Services (CAMCS) [1], currently 

under development, to highlight how a disconnected approach from the cloud can be 

of great benefit to the conservation of resources on the mobile device, by minimising 

the usage of the scarcely available energy and bandwidth. This is enabled by the 

Cloud Personal Assistant (CPA) [2], a component of CAMCS, which works to 

complete user tasks in the cloud in a disconnected fashion. We will also discuss how 

our middleware solution can avoid a large allocation of resources to the mobile cloud 

at the cloud server side, by the use of cloud services in SOA fashion, rather than 

allocation of entire virtual machines. We will present the results of several 

experiments performed with mobile devices, to derive a decision model for data and 

task offloading to the CPA of a user of the CAMCS middleware. This model 

considers the available resources and the nature of the data to be offloaded, as part of 

the offload decision process, without requiring additional overhead from the mobile 

device.  As a result of the adoption of these best practices and the derived model, our 

middleware can achieve the goal of efficient resource management in the mobile 

cloud. 

To summarise, the contributions of this paper are: 

 Examination of existing energy models for mobile devices applied to 

mobile cloud approaches. 

 Examination of bandwidth utilisation for mobile cloud approaches. 

 Examination of cloud infrastructure resource requirements for mobile 

cloud approaches. 



 Devise best practices for managing and utilising the aforementioned 

resources. 

 A no-overhead decision model for task and data offloading based on results 

from experiments performed on the mobile devices. 

 Highlight how our cloud middleware meets the best practice requirements 

outlined. 

 

The remainder of this paper is organised as follows; Section 2 looks at the related 

work. Section 3 introduces a model of our cloud middleware, CAMCS, along with 

the CPA component. Section 4 will analyse the energy resource management applied 

to existing solutions and our middleware. Section 5 will analyse bandwidth 

management applied to existing solutions and our middleware. Section 6 examines 

the cloud infrastructure resource considerations for the mobile cloud. Section 7 

describes experiments performed to derive our offload decision model for the mobile 

device, and presents the results of these experiments. Section 8 outlines the derived 

offload decision model based on the results of the experiments. Section 9 presents a 

discussion on best practices along with analysis of our model, followed by our 

conclusions in Section 10. 

2. Related Work 

 

We are unaware of any other related work that has examined and analysed the 

modelling of resource management in the domain of mobile cloud computing related 

to energy, bandwidth, and cloud server requirements. We believe this to be the first 

work to study existing mobile cloud approaches in such a way. However, many 

existing mobile cloud solutions have focused on the conservation of various resources 

such as energy and bandwidth at the mobile device, one component of the mobile 

cloud. 

Code offload solutions [3, 4] have often cited the energy required in running an 

application locally on the mobile device as a consideration for offload; they profile 

the estimated energy cost in running an application locally, and then calculate an 

energy cost for running an application by offloading it to cloud infrastructure. Only if 

the estimated energy cost for offloaded execution is less than the energy cost for local 

execution, will offload actually take place. The consideration itself on the energy cost 

of offloading is actually dependent on the estimated bandwidth currently available on 

the network connection. This may vary over time. Disconnections may also occur 

while the application code is offloaded. In this case, the entire offloaded execution 

and resulting resource usage was wasted, and the task must be re-executed locally. 

Very significantly, in the MAUI approach [3], in experiments that were carried out 

using the cellular 3G connections, the offload decision maker chose never to offload. 

It always opted for local execution rather than offload onto the cellular network. With 

CloneCloud [4], another code offload approach, the authors do not try to evaluate 

their mechanism on a cellular network; they only evaluate it on Wi-Fi. exCloud [5] is 

another code offload approach which considers finer grained code migration by 

focusing offload on the stacks stored in memory for an object-oriented program, 

associated with method calls; this is called stack-on-demand execution. For example, 

when a ClassNotFound exception is thrown, the code is offloaded to the cloud, which 

presumably features the missing library. Offload can also occur when an 

OutOfMemory exception is thrown. 



A Quality of Service (QoS) and power-management aware framework by Ye et al 

[6] focuses on mobile cloud service migration based on power and QoS constraints. If 

it is too costly to use a remote service from the device, or the latency is too high such 

that QoS will not be met, the cloud service can be migrated to the device, and can be 

used locally at lower cost. The work proposes algorithms for migration, along with 

the decision process for local versus remote execution. The solution also supports 

chained services, as the user may use many services in combination, and supports 

services that may not be migrated, due to constraints such as being tied to a database. 

Wang and Deters [7] developed a web-service mash-up solution to deliver SOA 

based services to mobile devices from the cloud. As part of the mashup approach, 

they support the use of multiple services; for example, the output of one service can 

be the input to another. The COSMOS platform by Sankaranarayanan et al [8], 

supported by the proposed SMILE middleware as part of the platform, also focuses 

on the idea of using existing services together to deliver relevant information and 

functionality to mobile devices. The difficulty, but potential of the platform, is in 

allowing services to share data, rather than work in isolation, as most do now. They 

analyse the potential and outline the practical difficulties involved in their endeavour. 

Alfredo [9], an application partitioning solution, operates by dividing a mobile 

application up into various components; these components are then distributed 

amongst local computing infrastructure, where each component is executed. The 

actual partitioning corresponds to an application graph, which is dynamically created 

based on what is required to be optimised, such as “optimise in such a way that will 

result in the lowest energy/bandwidth usage”, or “optimise for minimal execution 

time”. Of course, there is no guarantee here that optimising the energy usage will 

optimise the bandwidth or time; therefore it becomes something of a trade-off in 

optimising one resource over another. 

Cloudlets [10] and their variations are another approach to mobile cloud that, like 

Alfredo, use offloading to local cloud infrastructure that may be located nearby, such 

as at the Wi-Fi access point of a coffee shop or an airport. The mobile device stores a 

virtual machine overlay, which is then sent to the computing infrastructure, combined 

with a full virtual machine, and then the personal applications of the user run on the 

infrastructure. Some execution is then offloaded to remote cloud infrastructure. The 

idea of this solution is to overcome the variable bandwidth and resulting latency that 

comes from offloading to a distant cloud data centre. This could prove very useful for 

real-time applications with minimal latency requirements. How a Cloudlet approach 

will scale for many users in terms of its own resources, how the Wi-Fi network 

performance will cope with multiple users, and how the Cloudlet will handle 

mobility, is yet to be seen. Other works have extended upon the Cloudlet concept, 

such as the work by Verbelen et al [11], which defines a Cloudlet as a collection of 

computing devices within a small area, such as laptops, and even other mobile 

devices. An OSGI-based implementation breaks up an application, similar to the 

Alfredo approach, and distributes the components to other devices within the 

Cloudlet for execution. 

Remote display [12] is a similar approach to Cloudlets. Based on virtual machines 

that run in the cloud, the visual output (the GUI) of the virtual machine is sent back to 

the mobile device, and the user interacts with it using their device. This will suffer 

more than the Cloudlet approach from latency, as the virtual machine is not local. The 

full virtual machine runs in the cloud; there is no personal overlay like with 

Cloudlets. The virtual machine runs a desktop operating system, such as Windows. 



The analysis of energy usage by the antenna in the mobile device is also covered 

to some extent in the literature. As outlined by Schulman et al [13], much of the 

energy cost associated with using the network interface of the mobile device actually 

comes from what is known as the “tail” energy of the network interface. Once the 

communication has actually completed, the network interface stays active for a few 

more seconds before sleeping, to receive any remaining packets from the server. This 

can be quite costly for a short communication. The cost of this grows substantially as 

different network operations take place. The work in the paper is in the 

implementation of a system called Bartendr, which groups network requests together, 

so as to reduce the number of tail energy occurrences. Balasubramanian et al [14] 

describes the high cost in “ramp” energy, to actually transition the network interface 

into a high power state from sleep or low power states, as also being very significant. 

Their TailEnder approach also tries to group together network requests so as to 

minimise the ramp and tail energy. In looking at the actual energy usage figures of 

the antenna, the work by Heinzelman et al [15] describes the energy used by the 

antenna of a micro-sensor in a wireless sensor network, as a product of the electrical 

power required for the antenna components, along with amplification power, the size 

of the data to transmit, and the distance from the base-station.  

The modelling of data bandwidth in the mobile context does not seem to have 

been examined extensively. While there are published figures, which specify what the 

upper bandwidth of a given type of connection should be (such as EDGE, HSDPA, or 

Wireless 802.11b/g/n/ac), how this can vary on the mobile device is largely not 

investigated. Some approaches in the past have looked at the allocation of bandwidth 

in regards to the GSM networks handoff bandwidth [16] [17]. Xu et al [18] proposed 

a fair scheme for dynamic bandwidth allocation in WCDMA networks. Tocado et al 

[19] developed an Android based monitoring application that can collect information 

about cellular networks on the move, and they used this data to analyse the 

performance of cellular networks; for example, they take a train journey from the city 

to the countryside to evaluate network changes en-route. Work by Gomes et al [20] 

examines a splitting and merging approach to cellular base stations that are backed by 

emerging Radio-over-Fibre technology. By organising cells into multiple tiers, based 

on splitting and merging of the cells, they aim to meet a number of different 

optimisations, such as an increase in network capacity during busy periods, and to 

reduce it when demand is low. The optimisations of the multi-tier organisation can 

support other objectives such as energy saving and cost saving/revenue maximisation. 

Kivekäs et al [21] have looked at how bandwidth is influenced by the design of the 

mobile device handset itself, along with the positions of the hand of the user holding 

the device, and the position of the device relative to a model of a human head.  

Several works exist in terms of allocating cloud resources to meet the demands 

and QoS requirements of resource requests from clients. Liang et al [22] proposes an 

economical cost model to deal with offloaded tasks. Their approach aims at 

identifying an optimal allocation of cloud resources to offloaded tasks, and rewarding 

those instances that provide resources with an income. Rahimi et al [23] examine 

using a tiered cloud based system to execute mobile applications as a Location-Time-

Workflow (LTW). Their heuristic algorithm, MuSIC, can reach a 73% optimal 

allocation of resources for mobile applications to meet specified QoS requirements. 

Liang et al [24] used a Semi-Markov decision process to model mobile cloud 

domains, where requests for resources could be transferred to neighbouring cloud 

domains, with the aim of maximising rewards for the providers of the domains 

involved for completing requests, while also considering the cost of such request 



transfers. Using resources from different clouds to satisfy requests has been explored 

in other works. Kaewpuang et al [25] developed a framework that allows different 

cloud providers to share their server resources to meet the resource requirements of 

their users, again, with a focus on maximising the revenue for each of the cloud 

providers that participates in sharing. They also focus on solving optimisation 

problems that indicate when to share, and the optimal number of resources (such as 

application servers) required for sharing to meet request demands. The SAMI model, 

by Sanaei et al [26], is a multi-tier infrastructure framework, which aims to meet 

latency, resource requirements, and security concerns, by utilising existing 

infrastructure resources from trusted mobile network operators (MNO) instead of the 

cloud. An MNO can also delegate to trusted third party infrastructure providers, and 

utilise cloud infrastructures, meaning it can also act as an arbitrator for cloud resource 

requests. In addition, similar to the approach we take with our CAMCS middleware 

in this paper, this framework utilises an SOA approach to using services in the cloud 

to meet service requests from users. The PhD thesis of A. Beloglazov [27] studies 

distributed dynamic virtual machine consolidation techniques and algorithms to meet 

energy efficiency requirements, while being able to meet user demand. 

3. System Model 

 

This section presents the model of our cloud-based middleware system under 

development, which is aware of the resource management considerations outlined in 

this paper. 

3.1 Cloud Middleware 

 

The purpose of our cloud middleware system is to complete tasks passed to it by 

the user, from a thin-client running on the mobile device. Each user of the 

middleware, known as Context Aware Mobile Cloud Services (CAMCS) [1], is 

allocated a Cloud Personal Assistant (CPA) [2], which carries out the tasks on behalf 

of the user. A given task is completed using existing cloud and web-based services. 

We do not instantiate cloud-based resources such as virtual machines for each user. 

However, the user’s CPA can gain access to resources in the cloud owned by their 

user, such as storage. Services used to complete the tasks can range from information 

services (locality point of interest data, mapping data), to e-commerce services 

(reservations systems, online shopping, etc.). These services already exist on the web 

and in cloud deployments; they are used with SOA techniques, such as Simple Object 

Access Protocol (SOAP) or Representational State Transfer (REST) – see Fig. 1. 

Each task has a name, type, and a randomly generated ID associated with it, so 

that the task can be uniquely identified. Also, the user can specify parameters that can 

be used to complete the task, such as in the case of a restaurant reservation, the 

location/name of the restaurant, time, date, and number of guests in the dining party. 

The middleware uses a discovery service to locate a restaurant booking service, and 

contacts that service with the parameters to make the reservation. A confirmation is 

returned and stored with the task data when complete. When the mobile device is 

available, the result is sent back to the thin client. The task itself is stored in a task 

history list, located with the CPA, so that the user can run the task again in the future. 

The middleware containing each users CPA can be deployed on virtual machines 

running in different clouds. Therefore, the CPA can move from the different 

deployments to one that is located nearest to the users location. In this way, the  



 

 

 

 

 

middleware can support scalability for multiple users, and minimise the time required 

for the thin client to communicate with the user’s CPA.  

3.2 Thin Client 

 

The thin client application runs on the mobile device of the user. It is responsible 

for communicating with the user’s CPA in the cloud. The user can input their details 

of a task to be completed into the client, which will then forward them to their CPA. 

The client will also receive the result of a completed task, and the user can then use 

the client to view this result. 

Sending a task to the CPA only requires the user to select the type of task they 

want to complete, and the other details associated with it (name, parameters). The 

client sends these to the CPA in a client-server fashion, and simply receives an 

acknowledgement from the CPA that the task details have been received. Therefore, 

the amount of data sent over the connection will be very small compared to the size 

of the data being transferred in other mobile cloud computing works. 

The important detail here is that once the task has been passed to the CPA from 

the thin client on the mobile device, the CPA takes full responsibility for completing 

the task. The mobile device can disconnect from the CPA at this time. The result is 

stored with the CPA until the mobile device re-connects to a network and the CPA 

can once again communicate with it. Therefore, the client does not need a continuous 

connection with the CPA or cloud deployments. As task data is sent to the CPA in a 

client server fashion, with an acknowledgement, and the only other communication 

that will take place is the sending of the task result from the CPA back to the mobile 

device, the frequency of use of the network interface is twice per task – see Fig. 2. 

4. Mobile Cloud Energy Management 

 

We now turn our attention to examining the management of energy in the mobile 

cloud computing domain. The limited energy provided by the mobile device battery 

is used by the hardware on the mobile device, as well as the software. Some software 

and services running on the mobile device can drain more energy than others. This, 

combined with large displays and the network communication make it a key resource. 

We have described in our introduction how many mobile cloud solutions require a 

continuous connection to the cloud-based infrastructure. This continuous connectivity  
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Fig. 1. The CAMCS Middleware. It is deployed on VM’s in different clouds. Each deployment contains CPA’s 

belonging to various users. They complete tasks for their users by using existing cloud and web-based services. 

The CPA’s can move between different deployments. 



 

 

 

is very undesirable. We first look at describing the energy usage of the antenna of a 

mobile device to send and receive data, before augmenting this usage with other 

aspects. We will then apply this model to the existing solutions, before examining it 

with our own. 

4.1 Antenna Energy Modelling 

 

Heinzelman et al [15] described the energy usage of the antenna of a micro-sensor 

in a wireless sensor network to send data, as follows: 

 

 

ETx(k, d) = ETx-elec(k) + ETx-amp(k, d) 

ETx(k, d) = Eelec * k + εamp * k *d
2 
       (1) 

 

where ETx(k, d) is the energy required to transmit a k-bit message a distance d to the 

base-station. Eelec = 50nJ/bit is the assumed energy dissipated by the antenna for the 

electrical circuitry, and εamp = 100 pJ/bit/m
2

 is the assumed energy dissipated for the 

amplification of the antenna. 

 

The energy usage to receive a message is given as follows: 

 

ERx(k) = ERx–elec(k) 

ERx(k) = Eelec * k         (2) 

 

where ERx(k) is the energy required to receive a k-bit message. The assumed energy 

dissipation Eelec is the same as in (1). 

In the Bartendr project, Schulman et al [13] estimates the energy cost for 

transmitting a stream of data. The power required by the transmitter to send this data 

will vary depending on the strength of the signal of the mobile device; the weaker the 

signal, the more power that would be required. This also corresponds to (1), even 

though it does not consider signal strength as a factor. This is understandable, as a 

sensor position may be fixed in the wireless sensor network, unlike a mobile device, 

which will constantly move. However, even though signal strength is not a factor, the 

amplification required will be greater if the signal is weaker.  

Continuing to look at Bartendr, the system tries to schedule a data stream of size S 

to be sent over a given time period T. They divide up the data-stream into N frames of 

fixed size chunks, and the time period T is divided into slots. One slot is defined as a 

time period when one frame can be sent. The data rate and width of the slots will 

vary; the predicted signal strength and the observed median throughput over the time 

interval T are used to estimate the power consumption and width for each slot. With a 

given predicted signalζ  in slot ζ, they estimate the communication energy as: 

CAMCS 

Deployment 

Cloud 1 

CPA Service 

(1) 

(2) 

(4) 

(3) 

Fig. 2. CAMCS Task Execution Model. The thin client running on the mobile sends a task to the users CPA in a 

nearby CAMCS deployment (1), and receives an acknowledgement (2); the mobile device can then disconnect. 

CAMCS delegates the task to the user’s CPA, which uses a cloud service to complete the task (3). Later, the result 

is returned to the mobile device (4). No continuous connection to the middleware is required. 
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        (3) 

 

where Signal_To_Power() maps the given signal strength to a power value, and 

Signal_To_Throughput() maps the given signal strength to a throughput value. The 

mapping values are based on empirical measurements carried out by the authors, by 

examining and recording the power required for different transmitter states. They 

found that the power values were smaller for a stronger signal, and that the signal 

itself varied by location, as one would expect. 

In the TailEnder project work by Balasubramanian et al [14], their experiments 

recorded the actual energy values, along with the times, for the ramp-up and tail 

energy, using both cellular 3G and GSM networks, as well as Wi-Fi. These were used 

to construct an energy model for each network, where the energy to transfer an x-byte 

file was given as: 

 

R(x) + M + E           (4) 

 

where R(x) is the sum of the ramp energy, and the energy to transmit the x-byte file, 

M is the maintenance energy required to keep the transmitter on, and E is the tail 

energy. For the Wi-Fi connection, there is no ramp or tail energy as the interface is 

kept active, but there is an energy cost for scanning and association with an access 

point. Interestingly, the tail time for the 3G connection with their tests lasts 12.5 

seconds. This value is actually set by the network provider. With such a high value, 

they observed that up to 60% of the total energy that went into a file transfer on the 

3G connection, was from the tail energy alone, where no actual data-transfer was 

taking place. To contrast, the tail time from the GSM connection was only 6 seconds. 

4.2 Mobile Cloud Considerations 

 

Looking at these other works in the previous Section 4.1, we can see there are 

many factors in modeling the energy required for network communication on the 

mobile device, such as the size of the data, the distance from the base-station, the 

throughput, along with the ramp and tail energy characteristics of the network 

interfaces. In applying these parameters to the mobile cloud domain, we need to 

consider how the mobile cloud makes use of the network interfaces. Does it differ 

from traditional-client server approaches where one simply makes a request and 

receives a response? 

The idea of the mobile cloud is to offload complex calculation and applications to 

the cloud. In the related work, we have mentioned several approaches to this in the 

literature. One such approach is code offload [3, 4]. Such approaches package up the 

code of some application, normally methods in object-oriented languages, along with 

the state of objects, which are then transferred to the server. Once the server has 

completed execution, the results are returned, in the form of the changed state of the 

objects; these need to be merged with the local copies of the objects on the mobile 

device. 

The work by Kumar and Lu [28] has already proposed an energy saving model for 

the decision to offload some computation to the cloud from the mobile device. The 

energy saved on the mobile device by offloading the computation to the cloud is 

given by: 



 
𝐶

𝑀
 × (𝑃𝑐 −

𝑃𝑖

𝐹
 ) − 𝑃𝑡𝑟  ×  

𝐷

𝐵
        (5) 

 

where C is the number of instructions, M is the number of instructions the mobile 

device can execute per second, 𝑃𝑐 is the power required to execute the computation at 

the mobile device, 𝑃𝑖 is the power the mobile device uses while idle, F is the number 

of times faster the server is compared to the mobile device, 𝑃𝑡𝑟 is the power required 

to transmit the computation to the cloud, D is the number of bytes that make up the 

data, and B is the network bandwidth. Energy is saved when the formula produces a 

positive result.  

This formula does not consider the technicalities of actually performing a code 

offload. We can say that if we have a method code-base size Sm, outgoing object size 

Soo, and incoming returned object size Soi then going by (1) and (2), we need to 

consider the total energy cost of offload Etotal  as: 

 

Etotal = n ((Eelec * (Sm + Soo) + εamp * (Sm + Soo) *d
2 
+ Eprof)

 
+ (Eelec + (Soo)) + Emerg)  (6) 

 

where n is the number of times a method offload occurs, Eprof is the profiling energy 

used to determine if the offload should take place, and Emerg is the amount of energy 

used at the mobile device to merge the changed objects back into the virtual machine 

(such as adding new objects, updating existing objects, and removing old objects, 

along with the corresponding memory allocations/de-allocations). Equation (6) takes 

into account (1) and (2) for the offload and the return of the result to the mobile 

device. If we consider that n may occur 10 times in the course of one application 

execution, then the energy usage clearly increases ten-fold with such an approach. 

Let us consider the Cloudlet approach. Here, there will be energy expended to 

transfer the VM overlay to the local cloud infrastructure. Eventually, any changes 

made to the application settings and data will ultimately need to be returned to the 

mobile device before the user leaves the venue where the Cloudlet is located. 

Looking at (1), we can estimate this energy as: 

 

Etotal = O + I + n ((Eelec * (k)) + m (Eelec * (k) + εamp * (k) *d
2
)   (7) 

 

where O will be the initial energy to transfer the virtual machine overlay to the 

Cloudlet, and I will be the energy required to transfer the modified overlay back to 

the mobile device. Energies O and I could correspond to (1) and (2). n will factor up 

the energy consumption for the number of times the Cloudlet sends data to the mobile 

device. It is hard to predict this value. It could be extremely high, if the Cloudlet 

actually displays the visual output of the virtual machine on the mobile device; 

consider how often the display GUI would be refreshed, and this would need to be 

updated on the device display, possibly even if no change has taken place. m will 

factor up the number of times the mobile device sends data to the Cloudlet, which 

could be much smaller than n. The primary energy saving aspect of the Cloudlet 

approach is that d will be very small by contrast compared to sending data to a 

cellular base-station for offloading to remote cloud infrastructure. 

Let us consider our disconnected middleware approach. If a user wishes to offload 

some task to their CPA, to send the task, there will only be one outward 

communication to the cloud, describing the task. This will be a simple message of k 

bytes, with no application code. There will be no immediate response data except for 



a request acknowledgement. When the task is complete, the result will be pushed to 

the thin client on the mobile. This will be a message of m-bytes, which simply carries 

a result message, with no changed object states. 

Therefore, the task offload energy is given by (1), and the response, given by (2), 

will consist only of a HTTP Status with no data. When the task has completed, the 

result will also be given by (2), ERx(m). As the focus here is on disconnected 

operation, there is no continuous communication that needs to be factored into the 

formulas as in (6) and (7), along with no additional overhead (such as initial virtual 

machine offload). 

5. Mobile Cloud Bandwidth Management 

 

During operation, the mobile device will be connected to a multitude of different 

networks, be it a Wi-Fi network, or different base-stations in the cellular network. 

Bandwidth allocation, along the lines of guaranteeing QoS, is a topic that has been 

researched extensively. However, it is difficult to predict what the bandwidth will be 

on a given network. 

At the cellular network level, the bandwidth will vary depending on the type of 

cellular connection used (GPRS, EDGE, 3G, HSPA). While each of these has a 

defined upper limit on the bandwidth specified, the actual bandwidth that the user 

will experience in practice will vary, and will depend on aspects such as signal 

strength, interference, and location. 

At the wireless LAN level, depending on the different version of the 802.11 that a 

Wi-Fi network adheres to (b/g/n/ac), the user will experience a far more stable 

bandwidth with little variation from the nature of the network; what may cause 

trouble is the number of users accessing the Wi-Fi network from the same access 

point. 

The question for mobile cloud is that given the variable nature of the bandwidth of 

these networks, how do we manage the available bandwidth in such a way that this 

will not impact the user experience with the mobile cloud? At first glance, since no 

given bandwidth can be guaranteed with the mobility factor of a mobile device, we 

have to design to use as little bandwidth as possible. This can be a troublesome aspect 

given some of the existing approaches to mobile cloud we have discussed, due to the 

required continuous connection, and large data transfer. 

Additionally, from the perspective of a software developer actually developing 

mobile cloud applications, they will not be able to have any control over bandwidth 

allocation to their applications, as this work is typically carried out at the network 

layer [16 - 18]. The allocation is decided at the base station or access point. 

5.1 Bandwidth Requirements 

 

While we cannot say with certainty what bandwidth is required by many of the 

mobile cloud approaches we have reviewed, we can make an estimate on how much 

will be used based on how they use the network connection.  

Approaches that require a continuous connection will undoubtedly require more 

bandwidth than what is used in an approach with disconnected fashion. If we look at 

the Cloudlet approach, where the network connection is repeatedly used to transfer 

the output of the virtual machine to the mobile client, then the expected bandwidth 

usage is going to be large. On a Wi-Fi network, which is the premise of use of 

Cloudlets, we can expect the bandwidth to initially be large, and relatively constant, 



compared with the data connection; however this may change as the number of users 

of that Cloudlet grows. As the limited bandwidth of the Wi-Fi connection is used up, 

the user experience will suffer from the time delay induced as a result of the drop in 

the data rate. The same principle can be applied to cellular networks where remote 

display technologies may be used, except in this case that the bandwidth will be very 

small to start with, and shared by far more users of the base-station. As a result, the 

main concern with these approaches is that they have a requirement that a certain 

amount of bandwidth must be available for use when required, to ensure that they 

work as expected for the user, without any delays from sub-optimal bandwidth 

allocation. 

Approaches such as code-offload and application partitioning may not be as 

dependent on the amount of bandwidth as Cloudlets or remote displays. A continuous 

connection is required to either the cloud infrastructure running the virtual machine, 

or to the other computing nodes in the network where the application partitions have 

been sent to, but data does not need to be repeatedly sent over the network 

connection. Once code or partitions have been offloaded from the mobile device, it 

need only receive the results back when the remote execution is complete. The actual 

data to be sent/received between the mobile and the infrastructure is the serialised 

application code and objects. These will likely be much smaller in size when 

compared with the graphical output of virtual machines. Also, in the way that the 

updated graphical output of a virtual machine needs to be sent to the mobile 

continuously (even if the display has not changed), the same does not apply for these 

approaches, because the mobile device only receives the results of a completed 

execution. As a result, unless a disconnection occurs, there is no negative user 

experience impact, as it is not as time sensitive as the virtual machines. 

If we consider the disconnected operation aspect of our CAMCS middleware, then 

the bandwidth is something of little concern. Users offload a task description to their 

CPA within the CAMCS middleware. The description is just made up of a limited 

number of ASCII characters that describe the task, the type of task, and any 

parameters. We speculate that the data sent will be even smaller than the data sent on 

code-offload or application partitioning approaches, so our middleware brings the 

same advantages as far as bandwidth is concerned as these approaches, low data 

usage, no time sensitive delay, and no continuous use of the data connection.  

There are other features of our middleware that will further reduce the requirement 

for data transfer, and hence bandwidth utilisation. A history of completed tasks and 

related task data for each user is stored with their CPA. If the user wants to run a 

variation of a past task, or re-run a task entirely, such as order office supplies from an 

e-commerce website, then the user does not need to send this task information to their 

CPA, all over again; they can simply signal an old task to run again with a small 

HTTP request signal using the task ID, and send any updated parameters if required, 

therefore reducing the request size and the bandwidth utilisation even further. Also, 

the CPA is able to undertake work under its own initiative for the user. For example, 

if the user has, in the past, requested traffic information for a work route on 

weekdays, then, without the user having to send this task to their CPA over the 

network connection, the CPA will fetch this task data independently, and send it back 

to the mobile. This is similar to the Google Now service, except the initiative to fetch 

this information is not taken from the mobile device (and hence, requiring a request 

to be made), but by the CPA; therefore we only have a one way-communication, 

“response”, to the mobile. 



There are scenarios where we expect the size of the data sent to the CPA can be 

very large. For example, if the user sends large files such as images or datasets to the 

cloud for some processing task, or possibly for storage, then we can expect the size of 

the task data to be sent to the CPA to be very large. Next, we discuss how to 

effectively manage the available bandwidth in such a situation. 

5.2 Bandwidth Management 

 

As part of a positive user experience as far as bandwidth is concerned (i.e. 

minimise use, not require large amounts), not only must we design to not use large 

amounts of it, but what is available must be used intelligently. 

Where a high amount of bandwidth is required, it can possibly be reserved in 

advance of needing it, if it can be reasonably anticipated. Cloudlets or remote display 

approaches could reserve and allocate an amount of bandwidth as needed to cope 

with their expected demand. In this way, it could ensure bandwidth is available so 

that they function optimally with no time delay. Of course, this may not be fair to 

other users of the Wi-Fi access point, and can reduce the amount of bandwidth 

available to them. A financial cost may also be incurred for this reserving of 

bandwidth in advance. However, reserving bandwidth will still fail to deal with 

unexpected bursts in required capacity. 

Code-offload and application partitioning approaches may not need to reserve 

bandwidth in advance. They can simply make the best use of bandwidth already 

available, which can speed up the offload of the code, and return of any changed 

object state. It may be argued that if these approaches did reserve bandwidth, it may 

still reduce the wait time of the user, but it may not reduce the time enough to justify 

the high cost of reservation. 

We have already discussed how the mobile uses little bandwidth as a result of the 

small request size made to the CPA in the cloud, and because of its disconnected 

operation, it is not time sensitive. However, despite the fact that little bandwidth is 

used, bandwidth that is available must be used intelligently. Furthermore, there are 

cases when the size of the data sent to the CPA from the mobile are very large, such 

as when sending large files to be stored as described earlier. In this case, if bandwidth 

is low, then there is certainly going to be a delay for the user. If using the cellular 

network rather than the Wi-Fi, it will take even longer. The additional cost will be 

incurred to the user if for example, the low bandwidth results in not only a slow 

upload, but if data needs to be re-transmitted across the network if there are errors. 

The thin client application running on the mobile device, must adapt to the current 

situation. If, for example, the available bandwidth is low, transfer of a file must be 

deferred to a later point in time, when the available bandwidth increases (the same 

principle applies to other resources such as energy, if the battery is low, upload 

should be deferred). As far as we are aware, this has been implemented in many apps 

today, such as Dropbox, where files will only be uploaded on a Wi-Fi connection if 

the user chooses. However, if there is a need to upload on a cellular network, this 

should be possible, but only when the bandwidth is suitable. The same principle of 

deferring upload can be used on a busy Wi-Fi network, or when the Wi-Fi signal is 

poor. This will benefit other users of the network, as bandwidth is not used up with a 

large task upload that may fail if the signal is very poor and ultimately drops. 

We can also defer the offload of tasks that may not be urgent. The user can specify 

how urgent a task is, and even give a time when it should be completed by. Urgent 

tasks, or tasks that have a specified completion time coming up, can be offloaded 



immediately, even on a network with poor bandwidth, if this is the case. Tasks that 

are not urgent, or tasks with a specified completion time at some point later in the 

day, can be deferred until the bandwidth is available. 

In scenarios where the battery energy is low, it may consume energy to actively 

test the bandwidth available on the connection. Even though data transfer is small, the 

network interface must be activated. In such cases, it is best to apply a policy based 

on the connection (Wi-Fi or cellular), and the current measured signal strength, which 

can normally be determined from an API on the mobile operating system. This is 

explored and developed further in Sections 7 and 8. 

6. Cloud Resource Management 

 

This section will look at how resources on the cloud can be managed while 

provisioning services to mobile clients for the various mobile cloud approaches. At 

the cloud, one will find resources at the different “Service Layers” (IaaS and PaaS) 

that can be provisioned as resources to clients, such as virtual machines providing 

compute capacity, storage in the form of file systems and databases, memory, and 

networking capacity. Developers can also find resources for developing and 

deploying tools, such as application runtime environments, message queues, 

replication and backup facilities, and load balancers for scalability.  

6.1 Cloud Resource Cost Model 

 

The services offered by cloud deployments are normally offered through the 

interface of a virtual machine (VM); that is, for each resource, such as a hardware 

resource (e.g. CPU), or a developer resource, (e.g. a database), the user or application 

interacts with them by using a VM. CPU time is allocated to each VM for 

computation tasks, and database systems run on these VM’s. To run each VM, a 

hypervisor is required to sit on top of the hardware. Therefore from an energy and 

financial standpoint, the number of VM’s required for the mobile cloud requirements, 

and how much of the physical resources are required, will be of concern. 

It is difficult to precisely approximate VM hardware costs, as described in [27]. 

Therefore, for each VM running on a server in the cloud, we can estimate a simple 

cost model for our purposes, as the summation of the costs required to run the 

physical resources required on the server. There will be a CPU cost, Ccpu, network 

input and output costs, Cinput and Coutput, a storage cost, Cstor, and a memory cost, 

Cmem. All these costs can be viewed as both energy costs and financial costs, as 

ultimately the financial cost will be the energy required to power these physical 

resources. If n is the total number of VM’s, possibly different, running on a server, 

the total server cost, Cserver_total for a cloud server is: 

 

Cserver_total =  ∑ 1𝑛
1 (Ccpu + Cinput + Coutput + Cstor + Cmem)     (8) 

 

For m, the number of servers required on the cloud for scalability, we can factor up 

equation (8) by m. As a result, to keep the energy and financial cost as low as 

possible, we need to minimise as much of the hardware costs C as possible, and of 

course, n and m. 

In the next section, we will examine how each of the discussed approaches to the 

mobile cloud makes use of the server resources, and estimate a cost based on (8). 



6.2 Mobile Cloud Usage 

 

Several of the previous approaches take different paths in terms of requirements at 

the cloud side, depending on what role the cloud will play. 

With VM-based approaches such as the Cloudlets and Remote Display 

technologies, virtual machines capable of running end-user operating systems with 

GUI’s such as Microsoft Windows or Linux distributions such as Ubuntu or Red-Hat 

will be required. They will also require resources such as imaging and storage, to 

store a user’s VM image and for storing the image itself and any files. Cloudlets, as 

described in Section 2, only have a base VM stored on the infrastructure. The overlay 

image, containing the user’s applications, data, and settings, is stored on the mobile 

device of the user. It is combined with the base VM to form the full VM at runtime. 

As a result, it will not need as much storage at the cloud deployment. However, the 

overhead of having to transfer the overlay images between the mobile and the server 

may be undesirable. Furthermore, breaking up and combining the base and overlay 

VMs may need special modification of the images and operating system software. 

There is also the issue of having to determine what should be offloaded to the remote 

cloud infrastructure, and what should be kept local on the Cloudlet. The energy 

requirements for this decision making process, along with merging the VM’s, are 

unclear. 

From this, we can determine that for Cloudlets, we will actually have two “server” 

costs, the costs incurred by the local Cloudlet, and the costs incurred at the remote 

cloud server. Let us categorise the costs from equation (8) by indicating if the 

resources are local and remote. The cost will be: 

 

Ctotal = ∑ 1𝑛
1  (Cr_cpu + Cr_stor + Cr_input + Cr_output + Cr_mem)  

+ (Cl_cpu + Cl_input + Cl_output + Cl_stor + Cl_mem)       (9) 

 

In equation (9), an r in a cost C indicates the resource is remote on the cloud 

infrastructure, and l indicates the resource is local on the Cloudlet. In equation (9), 

the remote storage cost will only be required for the VM image that can run whatever 

software is required to carry out the work offloaded by the Cloudlet; what form this 

takes is unclear. The local storage on the Cloudlet Cl_stor has to store the base virtual 

machines. As described earlier, applications and settings are stored on the overlay 

VM on the mobile device of the user. The local input and output costs Cl_input and 

Cl_output need to accommodate the energy required not only for transferring the visual 

VM GUI state to the mobile device and received input from the user, but also the 

costs to transfer the VM overlay to and from the mobile device. Cl_stor will account for 

any temporary storage of user data for the VM operation; no user data required for 

VM operation (except for temporarily offloaded jobs) will be stored at the remote 

server, so there is no contribution to Cr_stor for this. Cl_cpu will also have the overhead 

of the offload decision process.  

If we consider remote viewing approaches, the cost model will be modelled as 

equation (8). For remote viewing, we only have a remote server cost. Each of n users 

will require their own virtual machine. The VM for each user and all user data will 

need to be stored on the server, so Cstor will be very high. Again, we can expect Cinput 

and Coutput to be large as to accommodate the energy required to transfer the visual 

VM GUI state to the mobile device and receive input from the user. 

Code offload and application partitioning approaches may be more desirable. 

These need only have specific software running on the cloud resources to support 



their operations. However, it is generally not described what resources or specific 

software is required at the cloud. For example, for CloneCloud [4], we know that a 

copy of the mobile device operating system must be available and running on the 

server. MAUI [3] has an MAUI runtime required at the server, which is presumably 

not as resource-hungry as an entire mobile operating system. How these are deployed 

(standalone executable, application containers, operating system services) is 

unknown. MAUI was implemented in C#, so it stands to reason that the .NET CLR 

was used. For Alfredo [9], as an application partitioning solution, each local 

computing node must have OSGI available, as this is the framework that is used to 

split up and distribute the application components. 

For application partitioning approaches such as Alfredo, we can model the 

resource usage as equation (8), except that n will be the number of remote computing 

nodes used for offloading the application partitions. Each node may or may not run 

virtual machines with the supporting OSGI platform (a desktop machine node could, 

but a mobile device node is unlikely to). Ccpu at a node will be smaller than in VM 

approaches because each node only runs a smaller part of a whole application on the 

platform, and if no VMs are deployed on the nodes, then each node only runs one 

operating system. Cinput and Coutput will correspond to the transfer cost of serialised 

application code and data. Cstor will not have any additional contribution from the 

mobile cloud approach. Cmem will be contributed to by the OSGI runtime. 

Code offload approaches are similar to the model for application partitioning. n 

will be the number of cloud servers required as scaling takes place for the VM 

running the software or complete mobile operating system. Ccpu will be small, as the 

server only has to execute offloaded code, along with the required software for the 

offload process; there is little contribution to this cost from the mobile cloud. Cinput 

and Coutput will again correspond to the transfer cost of serialised application code and 

data. Cstor is tricky to estimate; if like MAUI, the server runs a software application to 

execute offloaded code, it would be small, but if the CloneCloud approach is used, 

this will be greater, because the entire mobile operating system is cloned into the 

cloud server; how many OSs are required for each user and their software is unclear. 

Cmem will depend on the amount of code and data offloaded and will vary with each 

offload. 

With each of the discussed approaches above, disconnection is a concern. If the 

mobile device becomes disconnected, then the exhausted energy at the cloud in 

completing work that has been offloaded will be wasted.  

Similar to the code offload and application partitioning approaches, the CAMCS 

middleware only requires a runtime application container running in a virtual 

machine, along with NoSQL database storage for storing user and task details. The 

VM can be scaled as required to cope with demand, and indeed we expect it to be 

replicated at cloud deployments globally, for user proximity benefits. We do not need 

to provision virtual machines and the corresponding required hardware for each user 

of the middleware.  

As a result of the architecture of our middleware, going by equation (8) again, we 

expect that n can be as low as one but will get larger as scaling occurs. One area 

where Ccpu may grow is in the case that the middleware makes a decision process to 

carry out work on behalf of the user, without the user requesting it (which will also 

result in Cinput being zero). Cinput  and Coutput will be very small; as we have discussed, 

the nature of the character data will likely be even smaller than serialised application 

code. Cstor will be mainly attributed to the database storage. There is no significant 

storage required by the middleware itself. Cmem will not incur any significant 



overhead from the middleware. Importantly, one cloud deployment can serve several 

users and their CPA’s. 

Aside from making independent decisions for the user, Ccpu will not result in any 

significant overhead from the middleware, because the work of completing a task will 

be distributed to existing SOA services located elsewhere in the cloud and the web. 

This is an important consideration; various cloud and web services exist already, and 

our approach relies on these to complete work for the user. For example, Amazon 

provides the S3 storage service. Therefore, our approach does not require VM 

resources to allocate storage for a user. As another example, if a user wishes for their 

CPA to find restaurants based on a meeting scheduled in a calendar and make a 

booking for them, we can utilise services such as Google Calendar, TripAdvisor, and 

online booking systems such as booktable.com (of course, they must expose a public 

API). These providers offer their services with their own server infrastructure, so we 

do not have to consider VM resources allocated specifically for this computation. The 

CPA relies on the nature of distributed SOA services, and does not operate under the 

same constraints of a VM that has to provide dedicated resources to carry out a piece 

of work. The CPA simply contacts services running on other servers, and stores result 

data, along with implementing some coordination logic. A CPA does not perform 

demanding computation itself that operates subject to available VM resources and 

constraints. In this sense, the CAMCS middleware simply acts as a trusted third party 

mediator in the cloud, to bring dispersed cloud services together, to offer the user our 

concept of a mobile device as an intelligent, portable, lightweight-computing 

terminal.  

7. Thin Client Modelling Experiments for the Mobile Cloud 

 

In order to realise a positive user experience of the mobile cloud for the user, a 

model must be developed which considers the resources outlined in this paper. A 

mobile user will primarily be concerned with the energy consumed on the mobile 

device, and time taken for mobile cloud communication. In light of this, we 

performed several experiments to evaluate task offloading over a cellular 3G 

network, to our CAMCS middleware in the cloud. 

Our experimental devices were a Samsung Galaxy S3, and a Google Nexus 5, 

running on the Vodafone Ireland network. Our thin client software is installed on 

each device. The Galaxy is our primary development device; the Nexus was 

introduced at a later stage, and the reasons for this will be explained shortly. Power 

saving mode was disabled on the Galaxy, the Nexus has no such mode. The research 

questions we aimed to answer with these experiments were the following: 

 

1. What effect does the varying quality of the cellular signal (signal strength) 

have on task offloading? 

2. What effect does the distance between the mobile device and the mobile 

cloud deployment have on task offloading? 

3. What effect does the varying quality of the cellular signal (signal strength) 

have on the power draw while task offloading is in progress? 

 

The results from the experiments performed to answer these questions, drove the 

creation of our offloading decision model for the thin client on the mobile device. 



7.1 Signal Strength Experiments 

 

Evaluating the effect of the signal strength on the performance of the task offload 

has been performed in various ways in related work. We explained in Section 2 that 

code offload approaches normally evaluate the state of the network before the offload 

decision is made. The result of this evaluation is given to an optimisation solver. The 

solver then makes the decision to offload the code to the cloud, if an objective 

function can be met, such as saving energy. This network evaluation/profiling 

introduces overhead at the mobile device. Our aim is to eliminate this overhead to 

benefit the user experience. Nevertheless, we need to know something about the 

network state for the offload. 

Our Galaxy S3 mobile device runs the Android OS operating system, as does the 

Google Nexus 5. Android OS provides some information through its 

PhoneStateListener API, regarding the state of the cellular network. According to the 

documentation, this includes signal strength (as an RSSI value or measured in 

Decibel-milliwatts [dBm]). By registering with the Listener, an application can 

receive updates whenever the strength of the signal changes. Our thin client was 

adapted to listen for these updates. With this approach, we do not have to introduce 

additional overhead to profile the network state, as this information is already 

collected by the Android OS. Our first experiment was therefore to answer research 

question 1, by evaluating offload performance with varying signal strengths. 

In our experiments, the GSM signal strength was divided into ranges of dBm 

values: [-110, -100], [-99, -90], [-89, -80], and [-79, -70] dBm. The range between  

-110 and -100 is the poorest signal range, while in our experiments, the range 

between -79 and -70 dBm is the best signal range. The signal range can go higher 

than this, though on our devices, it was difficult to get a steady signal in the [-69, -60] 

range and above. The reason for using the GSM signal strength, rather than the 

CDMA signal strength, considering the use of the 3G network, is discussed in Section 

8.1 In one of our previous works [29] we looked at other application models that can 

be facilitated by the CPA and CAMCS. We modified one of these, a file 

synchronisation application, to evaluate the timing of the offload of image files of 

varying size to the CPA; the CPA then forwards these files to cloud storage providers 

such as Dropbox and Facebook. However, for these experiments, we disabled this 

forwarding; as soon as the file was offloaded to the CPA as part of the file 

synchronisation task, the server immediately responded without doing anything. Files 

are converted into a String format with Base-64 encoding for offload. This encoding 

adds overhead, therefore the images were sized beforehand such that when the 

overhead was taken into account and added to the offload data size, the size of the 

five image files used was 2MB, 1MB, 500KB, 250KB, and 125KB. For each of these 

files, 25 offloads were performed over the cellular 3G network, to a cloud server, for 

each of the 4 signal ranges, totalling 100 offloads for each of the five files. This 

experiment was repeated twice, once for a cloud server located at the Virginia, USA 

site of Amazon EC2, and one for a cloud server located within our University. The 

aim of this was to answer research question 2. The Amazon EC2 server is a t1.micro 

instance, featuring 613MB RAM, and 1 vCPU with 2 EC2 Compute Units. Our 

University server features a 1.7Ghz CPU and 2GB RAM. Offload experiments were 

performed between the hours of 10am and 5pm on weekdays. 

The timing of the offload was captured using logging placed into the Android thin 

client code. This data was imported into IBM SPSS Statistics version 21, and we 



generated boxplots to study how the offload time varied for each of the file sizes, 

under the varying ranges of signals. 

For the following results until stated otherwise, the Samsung Galaxy S3 device 

was used for the experiments. Fig. 3 shows the boxplots for the offload time (in 

seconds) of the 2MB image to the CAMCS middleware deployed on the Amazon 

EC2 server (left boxplot) and the University College Cork server (right boxplot), 

against the four GSM signal ranges. We note from this that the median time for the  

[-99, -90], [-89, -80], and [-79, -70] dBm ranges are very similar, just under or at 10 

seconds. The only notable difference is for the [-110, -100] range, where the median 

time for the Amazon server is just over 30 seconds, and just under 30 seconds for the 

UCC server. 

This kind of result was also repeatedly observed for the offload times of each of 

the other file sizes (Fig. 4-7). When the GSM signal strength is in the dBm ranges  

[-99, -90], [-89, -80], and [-79, 70], the median offload times are almost the same, but 

the median offload time for the [-110, -100] range is always higher. Of note, is that 

for the 500KB, 250KB, and 125KB files, there is barely any difference in the median 

offload times at all for the three strongest signal ranges. At this point, the offload time 

would appear to be dominated by network overhead, rather than payload transfer.  

Fig. 8 shows the same boxplot for the 500KB file offloaded to the UCC server, 

where the experiment was performed on the Google Nexus 5 device, instead of the 

Samsung Galaxy S3; this was to see if the same timing trend held true for our other 

device. We can see that the trend does hold. The median offload time was very close 

for the [-99, -90], [-89, -89], and [-79, -79] dBm signal ranges, 2-4 seconds, where the 

signal strength for the [-110, -100] dBm range was about 9 seconds. 

 From this, to answer to research question 1, we would conclude that if the GSM 

signal strength is greater than -100dBm, there is no significant difference in the 

offload times as the signal strength varies. 

7.2 Mobile Cloud Distance Experiments 

 

To answer research question 2, we further analysed the data collected to answer 

research question 1. Fig. 9 shows a boxplot, comparing the offload time of a 2MB 

file to the Amazon EC2 middleware deployment, and the University College Cork 

middleware deployment in the [-99, -90] dBm signal range. The mobile device used  

Fig. 3. 2MB Image Offload Boxplots. Plot of offload time (in seconds) against GSM signal strength (in -

dBm) for offloads to an Amazon EC2 VM (left) and a UCC cloud VM (right) over the cellular 3G 

network. For Fig. 3-8, 25 offloads were performed for each range of signal strength, totalling 100 offloads 

of the file. For Fig. 3-7, the Samsung Galaxy S3 device was used. 



 

 

 

 

Fig. 4. 1MB Image Offload Boxplots. Plot of offload time (in seconds) against GSM signal strength (in -

dBm) for offloads to an Amazon EC2 VM (left) and a UCC cloud VM (right) over the cellular 3G network.  

 

Fig. 5. 500KB Image Offload Boxplots. Plot of offload time (in seconds) against GSM signal strength (in -

dBm) for offloads to an Amazon EC2 VM (left) and a UCC cloud VM (right) over the cellular 3G network.  

Fig. 6. 250KB Image Offload Boxplots. Plot of offload time (in seconds) against GSM signal strength (in -

dBm) for offloads to an Amazon EC2 VM (left) and a UCC cloud VM (right) over the cellular 3G network.  

 



was the Samsung Galaxy S3, and it was located in Cork city when performing the 

offloads. The Amazon EC2 virtual machine is running in the Virginia, USA Amazon 

datacentre. 

Looking at Fig. 9, we see that there is little difference between the median offload 

times for each server. The standard deviation is higher for the Amazon server; this 

may be expected because it is further away than the UCC server and naturally 

because of varying bandwidth and usage over the traversed networks. This 

experiment was repeated for all the file sizes, and there was little difference for all, so 

the boxplots for the other files are omitted. We do however include one other boxplot, 

Fig. 10, which shows the same experiment for the 250KB file. In this case, the results 

for the closer UCC server show higher standard deviation and larger interquartile 

range than the Amazon server results, although the Amazon server data features 

outliers not found in the UCC server data. From this data, we would conclude that 

when modelling the offload performance, there is no need to consider the server 

distance, from a time perspective. Of course, this applies to our CAMCS middleware 

and thin client application. Consider a real-time application, such as in experiments 

performed in the work by Clinch et al [30], where latency caused by server distance 

did have an impact on results on the user experience while playing games run on 

Cloudlets. 

 

Fig. 7. 125KB Image Offload Boxplots. Plot of offload time (in seconds) against GSM signal strength (in -

dBm) for offloads to an Amazon EC2 VM (left) and a UCC cloud VM (right) over the cellular 3G network.  

 

Fig. 8. 500KB Image Nexus 5 Offload Boxplots. Plot of offload time (in seconds) against GSM signal strength 

(in -dBm) for offloads to a UCC cloud VM over the cellular 3G network, with the Google Nexus 5 device.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

7.3 Power Experiments 

 

Answering research question 3 was a more difficult endeavour. For the Android 

OS, there is no publically available power or energy API. One can use a graph in the 

device Settings to determine how much battery energy has been used by the different 

OS components and applications in percentages, but this is not fine grained, the 

figures are only estimates. In the MAUI code offload paper [3], the authors used 

external measuring equipment placed between the battery and the device to construct 

a model. The implications of this for a developer are that they cannot dynamically 

evaluate power consumption of an application they develop. 

In our research, we discovered the Trepn [31] profiler tool, developed by 

Qualcomm. Qualcomm manufacture the processors used in various mobile devices 

and the tool can be used to profile various aspects of the mobile device performance. 

A profiler application is simply installed on the mobile device, and is started. The 

user can then carry out whatever tasks they want to profile the performance of. The 

profiler is then stopped, plugged into the Eclipse IDE, and a graph printout shows the 

collected data. Unfortunately, for our primary Samsung Galaxy S3 development 

device, it does not profile battery power usage. This is why at this late stage the 

Fig. 9. 2MB Image Offload Server Comparison Boxplots. Plot of offload time (in seconds) for offloads to 

both an Amazon EC2 VM and a UCC Cloud VM, in the GSM signal range of [-99, -90] dBm, over the 

cellular 3G network. Data taken from 25 offloads of the file for both servers in the  

[-99, -90] dBM range of Fig. 3.  

Fig. 10. 250KB Image Offload Server Comparison Boxplots. Plot of offload time (in seconds) for offloads to 

both an Amazon EC2 VM and a UCC Cloud VM, in the GSM signal range of [-99, -90] dBm, over the 

cellular 3G network. Data taken from 25 offloads of the file for both servers in the [-99, -90] dBM range of 

Fig. 6.  

 



Google Nexus 5 device was introduced, which is fully compatible with the profiler. 

Therefore, the following experiments were carried out with the Google Nexus 5 

device. For this experiment, the profiler was started. We conducted offloads of the 

2MB file over the [-110, -100], [-99, -90], and [-89, -80] dBm GSM signal ranges. 

The results for the [-89, -80] and [-110, -100] dBm ranges (in the aforementioned 

order) are featured in Fig. 11-12. For each experiment, the profiler measured the 

battery power before, during, and after the offloads, in Watts. Just for reference, Fig. 

13 shows a power draw trace gathered when no offload was taking place. Aside from  

 

 

 

 

Fig. 12. 2MB Image Offload Trepn Profiler Graphs from [-110, -100] dBm GSM Signal Range. Top graph 

shows battery power usage (Watts), bottom graph shows mobile data usage (Bytes), both over time 

(Seconds), during offload to a UCC cloud VM over the cellular data connection with the Google Nexus 5. 

Two offloads occurred here. Offloads occur in the periods between the tall green spikes in the bottom graph. 

Therefore, spikes appear in two pairs; one pair for each offload. The first spike in a pair is the time at the start 

of the data transfer, and the second spike is the time at the end of the data transfer. The smaller spikes in the 

bottom graph results from DNS queries and handshaking. Dark green represents data sent, light green 

represents data received. 

Fig. 11. 2MB Image Offload Trepn Profiler Graphs from [-89, -80] dBm GSM Signal Range. Top graph 

shows battery power usage (Watts), bottom graph shows mobile data usage (Bytes), both over time (Seconds), 

during offload to a UCC cloud VM over the cellular data connection with the Google Nexus 5. Five offloads 

occurred here. Offloads occur in the periods between the tall blue spikes in the bottom graph. Therefore, 

spikes appear in five pairs; one pair for each offload. The first spike in a pair is the time at the start of the data 

transfer, and the second spike is the time at the end of the data transfer. The smaller spikes in the bottom 

graph result from DNS queries and handshaking. Dark blue represents data sent, light blue represents data 

received. 



 

occasional spikes, the power consumption remains levelled out between 1W and 

1.5W for the trace with no offload taking place. This base power draw could of 

course vary depending on what other applications and services are running on the 

device at the time.  

The interesting results show that there was little difference for each of the signal 

ranges tested. When the offloads start, there is an initial ramp up of energy used, 

before the offload starts. Once the offload starts, the power for each of the offloads 

performed in all signal ranges shows many peaks of between 5W and 7W, but all 

graphs level out between 3W and 3.3W. After the offload completes, the power does 

not drop for a few seconds; this is the tail energy as demonstrated in the related 

works. The same trend was found in the [-99, -90] dBm GSM signal range, and 

therefore the graph is not shown. 

We expected that the power used would be greater as the signal strength 

decreased, especially for the [-110, -100] dBm range, as with the results from Section 

7.1. This however does not seem to be the case. Of course, it should go without 

saying that because of the longer offload duration of the poorer signal strength, 

especially the [-110, -100] dBm range, that the transfers take more time, and as such, 

the power draw from the battery will occur for a longer duration of time. 

In terms of energy usage, while we cannot explicitly measure the energy without 

extra equipment, we can estimate it based on the power usage observed, and the time 

spent offloading. We also cannot specify an exact value for energy usage; as we see 

from Fig. 11-12, with varying power spikes during offloads, a constant value would 

not be appropriate. Instead, we specify a lower-bound estimate on the offload energy: 

 

Ω(e) = 3W(t)                     (10) 

 

This formula is simply derived from the formula for Energy, E = PT, where  

E = energy, P = power (or work done), and T = time. In equation (10), we have  

e = energy in Joules, and t = time. 3 is derived from the minimum of 3W of power 

observed from Fig. 11-12 during the offloads.  

Fig. 13. No Offload Activity Trepn Profiler Graphs. Shows battery power usage (top) and charge state 

(bottom) while no offload was occurring with the Google Nexus 5. Aside from the occasional spikes, power 

usage rests between 1W and 1.5W. We also see that during the time the device is plugged into a USB charger 

(time periods when the yellow rectangular areas on the bottom graph are visible on the left and right), power 

usage drops further. 



Deriving an upper-bound estimate on the energy is less practical. In our 

experiments, the highest power usage spike observed during an offload was around 

7W. Defining an upper bound from 7W would by and large grossly over-estimate the 

energy used. Instead, we define a weaker upper-bound estimate on energy: 

 

θ(e) = 3.3W(t)                  (11) 

 

In Fig. 11-12, ignoring the high spikes, the maximum offload energy used 

commonly levels off around 3.3W, and so we define (11) as such. The derivation and 

terms used are the same as (10). 

From these results, it would appear that in terms of power draw, there is no need to 

include any specific power draw aspect into the model, as it does not vary 

considerably with stronger and weaker signal strengths. To lessen the energy utilised 

for offload, the speed of the offload must be maximised to reduce the time taken. 

From the results in Section 7.1, to achieve high speed, it is crucial to offload when the 

signal strength is greater than -100dBm. Of course, this result is an interesting 

difference to the findings for the Bartendr work by Schulman et al [13], which found 

a higher power draw for lower signal strengths as described in Section 4.1. 

8. Modelling for Thin Client Offloading 

 

Based on the experiments performed, and the obtained result data, we derive a 

simple model for the mobile cloud offload decision, which takes into account the 

resources under discussion. Section 8.1 provides some practical analysis of 

implementing such a model. Section 8.2 will present the decision model. Section 8.3 

briefly describes the implementation of the mechanism for our Android based thin 

client. 

8.1 Analysis 

 

Considering the related works presented which provide models for energy usage at 

the radio level, it is difficult to incorporate these at the application level, as anybody 

developing a mobile cloud application may not have control over data size, radio 

state, or distance between the mobile device and the cell tower. When bandwidth is 

taken into account, regardless of bandwidth utilisation on the network, the user will 

want their tasks and data to be transferred regardless of the bandwidth utilisation of 

the network at some point. In the related works we have presented, we have already 

described the network state profiling and optimisation decision on local versus 

remote execution. Our aim is to remove this overhead, which can have a detrimental 

impact on the user experience, and waste resources. 

The major obstacle in implementing such presented models at the application level 

is the limited options available to the developer. The Android API does not feature 

any functionality that allows the developer to inspect the power or energy state, or 

determine the state of the network quality without sending packets out over the 

network connection to evaluate RTT and bit-error rates. 

Another area of difficulty with the Android API is in the details provided by the 

PhoneStateListener. A knowledgeable reader may have questioned why we based our 

signal range experiments for a 3G network transfer on the GSM signal strength; 3G 

networks use UMTS with CDMA instead of GSM. Indeed, one can read both the 

GSM and CDMA signal strength from the PhoneStateListener in Android. However,  



 

Variable Description 

p ∈ (0, 1) Offload Priority 

s Offload Data Size in Kilobytes 

r ∈ (-51,…,-120) Signal Strength in dBm 

b ∈ (0,…,1) Battery Percentage  

o ∈ (0, 1) Offload Decision Variable 

 

implementing this functionality is dependent on the NIC manufacturer. On our 

Samsung Galaxy S3, if a developer queries the CDMA signal strength, while 

connected to a 3G network, the method call will return -1. This indicates it cannot 

read the CDMA signal strength. -1 is also returned if the developer queries the GSM 

bit-error rate, another method call in the Android API. The only data our Samsung 

Galaxy S3 device provided was the GSM signal strength. As such this was our only 

option to try and gauge signal quality, without adding additional network overhead. 

As such, for a developer, the minimal signal information that can be relied on is the 

GSM signal strength measured in RSSI or dBm, at least in Europe presently.  

8.2 Modelling the Offload Decision 

 

Based on our experimental results in Section 7, and our desire to not add any 

additional overhead to the mobile device, we introduce a simple model for offloading 

over the cellular network connection. For the model, we define the variables outlined 

in Table 1. 

We then define the offload decision model as: 

 

o = {

1                                                                      𝑝 = 1      

1                                             𝑑𝑒𝑐𝑖𝑑𝑒(𝑟, 𝑠, 𝑏) = 𝑡𝑟𝑢𝑒
0                                           𝑑𝑒𝑐𝑖𝑑𝑒(𝑟, 𝑠, 𝑏) = 𝑓𝑎𝑙𝑠𝑒

                    (12) 

 

The three case stack in (12) has 3 possible outcomes. We introduce a priority 

variable p. If this is set to 1, then regardless of the signal strength r or battery 

percentage b, offload will take place immediately; hence o is set to 1. The user can 

specify if a task is high priority using the thin client. The second and third cases rely 

on a decide function, which encapsulates a set of rules to determine if offload should 

take place. If the device is connected to Wi-Fi, offload will always take place 

immediately, but the decision process can easily be applied to this connection as well, 

in terms of the battery power, or even extended further to take into account 

performance based on Wi-Fi signal strength. 

The decide function takes three parameters, r, s, and b. The algorithm pseudo code 

is presented in listing 1. 

The comments in Listing 1 describe how the algorithm decides if the offload 

should occur. Any developer, or even the user, may choose their own battery policies 

for offload decisions; this is just our particular implementation; one may even leave 

the battery percentage values in the cases to the user to decide as a preference. The 

important decision processes in this algorithm are the cases; we do not offload at all if 

the signal strength is weaker than -100dBm. Otherwise, we consider the size of the 

data offload and the current battery situation. For cases where the data offload size is  

Table 1. Offload Decision Model Variables.  



Listing 1: Algorithm decide 

Inputs: GSM signal strength r, data size s (in Kilobytes), battery percentage b 

Output: true if offload should occur, false otherwise 

 

1. if -100 < r   //If signal is weaker than -100dBm 

2. return true   //Do not offload 

3. else 

4.  case s > 500   //Case: data size greater than 500KB 

5.  if b > 0.25  //If battery percentage is greater than 25% 

6.   return true //Offload 

7.  else 

8.   return false //Do not offload 

9. case s <= 500   //Case: data size less than or equal to 500KB 

10.  if b >= 0.10  //If battery percentage is greater than 10% 

11.   return true //Offload 

12.  else 

13.   return false //Do not offload 

14. end case 

15. end 

 

greater than 500KB, in our results, the offload time would vary depending on the 

size. For cases where the data offload size is less than or equal to 500KB, there was 

little difference in the offload times. As described in Section 7.3, for sizes below 

500KB the time is mostly dominated by network overhead, rather than payload size. 

Where the battery drops to 10% or lower, the user more than likely wants to conserve 

the battery life of the device for important calls or messages, rather than having 

additional network activity occur. 

It is worthwhile briefly mentioning a situation where the signal strength changes 

during the offload. If the signal strength weakens to a value less than -100dBm, 

perhaps the offload should be suspended. We do not implement this in our model. If 

an offload has started, then regardless of how the signal strength changes, it should 

continue until completion. In the related works, disconnection during offload is not 

discussed, except for in the MAUI [3] framework. With MAUI, if the mobile device 

suffers a disconnection from the cloud while code has been offloaded, after a certain 

timeout period, the local application will execute the offloaded code itself. This is a 

waste of resources in the case where offload has successfully taken place, but no 

result has been received. It is our opinion that starting an offload in our model, and 

using up time and energy as a result, should not be made to count for nothing if the 

signal strength deteriorates.  

8.3 Model Implementation 

 

Our existing thin client Android application was modified to implement the model 

in Section 8.2. Whenever the user enters the details of a task to be offloaded to their 

CPA, for example, a file to be offloaded to a cloud storage provider as described in 

our previous work [29], the task is forwarded to a TaskOffloadHandler class. This 

class features our own custom implementation of a Queue data structure, the 

TaskOffloadQueue. Whenever a task is passed to the TaskOffloadHandler, unless it 

has been assigned priority, the task is placed into this queue, along with some 

additional offload data, such as the data-size. If the user has assigned priority to a 



task, it is offloaded immediately. Our thin client uses RESTful web service 

architecture to send task data to the CAMCS middleware. The task is converted into 

JSON format for the transfer. Files, such as the image files in our example, are  

Base-64 encoded to a String for offload. Based on the number of ASCII characters in 

the JSON String and any Base-64 encoded files, the data size is calculated.  

At this point, if the queue was previously empty, the Handler will register with the 

Android PhoneStateListener, to receive updates when the signal strength changes. 

When a signal strength change is detected (which is received as an RSSI value, which 

can be mapped to a dBm value), the queue is iterated, and for each task in the queue, 

the decide algorithm is executed. Based on the outcome of this, the task is offloaded, 

or the task remains in the queue. When the queue has finally been emptied of tasks, 

the Handler will unsubscribe from the PhoneStateListener. The user is notified via the 

Android notification tray when a task is being offloaded, and when the offload is 

complete. 

9. Discussion 

 

To enable a mobile cloud computing model that works seamlessly for the user, the 

resources we have described in this paper must be managed cost-effectively. For the 

end-user of the mobile device, the effectiveness of how energy and bandwidth are 

managed, will determine how successful the implementation of the model will be. 

Users want batteries that last longer, and have limited patience for delay from the 

network connection, so only if these resources are used wisely will we see users 

uptake this model. We already know that these resources are in limited supply to 

begin with. We now highlight the required elements for the three resources analysed 

in this paper to define the elements of a best practice model for management. 

For energy, we have highlighted in Section 4 many of the previous works that 

have attempted to model the energy usage of the mobile device, and we can see that 

the models have brought the energy usage down to three factors: power for the radio, 

the amount of data transferred, and the distance from the base-station. To enable a 

successful implementation of the mobile cloud model, we need to minimise these 

factors. While we cannot control how power is supplied to the radio, we can control 

and minimise how much data is transferred over the connection, and we can specify 

the location of cloud deployments worldwide so that they are close to the user, 

minimising network delay where possible (we cannot force a user to move close to a 

base-station, nor expect them to stay there). The other factor in this regard is how 

often the network connection is used, as this also has a detrimental impact on the 

energy usage; it must also be kept to a minimum. Only when all these factors are 

minimised, we can realize a mobile cloud model that effectively manages energy for 

the user. 

For bandwidth, we cannot control or guarantee any size allocation being made 

available to the mobile device, on the fly, or in advance. Only approaches that are 

going to have minimal bandwidth requirements in this regard will be successful and 

tolerated by the end user. We must develop systems under the assumption that we 

have minimal bandwidth available, and the mobile device must adapt its use of the 

mobile cloud appropriately to situations where a large amount is available, or where a 

small amount is available. If a large amount of bandwidth is available, such as on a 

Wi-Fi network, it should be used for the greatest advantage to the user, but only by 

assuming that little bandwidth is available, will all situations be tolerated by the user. 



It is the same issue that applies to energy consumption; the amount of data that is 

transferred over the network must be minimal, and data transfer should occur 

sparsely. While approaches may take advantage of high bandwidth situations such as 

on Wi-Fi networks, and transfer large amounts of data at these times, the issue of 

fairness for other users connected to access points will be of concern as well. 

While the end-user will likely not be concerned with what is happening on the 

cloud deployments at data centres, how the resources will be provisioned there, and 

what those resources are will be of technical importance to the implementation of the 

mobile cloud. Our belief is that not only the footprint on hardware requirements 

should be small on the cloud, but also the software requirements must not be 

extensive either. As more consumers of mobile cloud come online, the requirements 

at the cloud, resulting from factors such as personalisation of applications and data, 

must not grow. Providing a VM to each user for example may grow at an un-

manageable rate. Replicating custom and personal software for users in the cloud (in 

the sense that users currently have personalised apps on their phones) may be difficult 

to scale, considering the size and complexity of the software. To achieve effective 

resource utilisation, we must minimize the factors we outlined in equation (8). We 

have seen that code offload approaches and our middleware do this most effectively. 

In addition, for our middleware, we believe that the use of existing software and 

services, already located in a distributed SOA fashion in various cloud deployments, 

that can be shared amongst many end-users will be the appropriate deployment model 

in the cloud moving forward. This is especially useful, as the VM is not relied upon 

to carry out intense computation and subject to the resource limitations and 

performance demand penalties that may come with a VM. 

Our model for offload decision making over the cellular network in equation (12), 

in contrast to other works, does not impose additional profiling overhead on the 

device, further adding to the user experience, such as no energy or time penalties. We 

have observed from our experiments that offloading time increases significantly when 

the GSM signal strength falls below -100dBm; above this, offload times are very 

similar. We also observed that when the size of the data offloaded falls below 500KB, 

the median offload times are almost the same. In terms of the cloud deployment 

location, the results show that the actual deployment location relative to the user 

location had little difference in median times, but for the further away Amazon EC2 

server, there was more variance. Battery power usage, aside from power spikes, was 

found to be the same regardless of the signal strength during offload. 

In terms of the best practices outlined in this paper, the implications of these 

results from our experiments, now incorporated into the offload decision model, tell 

us that in order to manage energy usage effectively at the mobile device, the time for 

offload is the crucial factor. Minimising offload time is the goal to meet, and the best 

way to achieve this is to offload when the GSM signal strength is greater than  

-100dBm. The results also show the value of the low bandwidth approach. The 

smaller the data size, it goes without saying, the better performance; but for 

approaches that rely on transferring large volumes of data, practical application may 

be difficult, considering the substantial time overhead in comparison with small 

amounts of data. For example, consider the previously discussed remote display 

approaches. Unless compressed, transferring an image of a high resolution desktop 

output continuously over the network, judging by our experimental results, will result 

in a very poor user experience, and will use available resources very inefficiently. 

With small amounts of data, the network overhead is the primary time contribution, 

and so real time applications must focus on data size and frequency of use 



optimisations, by making sensible use of data transferred when required. Of course, 

the fact that this transfer may have to take place continuously will also have a 

detrimental impact on the energy resources and performance. Our middleware does 

not require continuous data transfer, just the offload, and a result. The actual size of 

our task offloads in our previous work for task descriptions [2] were between 2KB 

and 5KB. Offloading such a small amount of data, while the device has a strong 

signal, will reduce offload time, and save energy. 

Our cloud middleware and the thin client can effectively manage all these 

resources to provide an effective model to satisfy the consumer of mobile cloud 

applications. If we contrast with the other approaches and their implementation 

details that we have outlined in this paper, our data transfer is minimal. We do not 

require continuous connections to cloud infrastructure once tasks have been offloaded 

to the users’ CPAs. In addition, the CPA is capable of carrying out work and 

delivering results to users without the user having to request it. Results are stored 

with the CPA until the mobile device is available, and so it will support disconnected 

operation. Our model for offloading over the cellular network on the thin client 

considers the resources available, with no additional overhead. Our development goal 

is that the middleware will de deployed on multiple clouds, so that it is always close 

to the position of the user, and the CPA will move between these deployments; even 

if this showed little impact on our results, the shorter network traversals should beep 

the time variance low. The server side requirements only require an appropriate 

application container and database, and it does not require any physical resources to 

be allocated to each end user. Table 2 compares the discussed approaches with our 

middleware project, along the lines of how they manage the available resources 

discussed in this paper. 

10. Conclusions 

 

In this paper, we have presented an analysis of how mobile device resources such 

as energy and bandwidth, along with cloud infrastructure resources, can be managed 

effectively in the mobile cloud domain, and we have modelled best practice 

approaches for implementations. We applied these to existing works in the area, 

along with our Context Aware Mobile Cloud Services (CAMCS) cloud middleware 

and the Cloud Personal Assistant (CPA), the representative of the user within the 

middleware. 

Our CPA works in the cloud to complete user assigned tasks, using existing cloud 

software and SOA services. Most importantly, it works in a disconnected fashion, 

which has several advantages in terms of resource management, compared with other 

existing approaches in the area. The network connection is not in continuous use, or 

required to be active as in other works. It is infrequently used, simply to send the task 

to the CPA from the mobile thin client, and receive the result later. The amount of 

data sent over the connection, the task description, and the result, is character-based 

and small in size. As a result of the small data size, and infrequent use of the network 

connection, the approach minimises energy and bandwidth use, when compared with 

some of the existing approaches described in this paper. The server side footprint at 

the cloud is also smaller compared to other approaches, as we do not require multiple 

cloud based hardware and software resources for each user of the middleware. The 

middleware runs within an application container, which can be deployed in multiple 

clouds, so that a user’s CPA is nearby, minimising communication time variance. 
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We have also presented experiments conducted with mobile devices to judge the 

performance of offloading to the cloud from our thin client application, along with 

their results. We looked at the effects of signal strength, cloud deployment location, 

and power usage during offload, while offloading with various different data sizes, 

and ranges of GSM signal strength. From these results, conclusions were drawn 

which were implemented into an offload decision model for the cellular network, 

which imposes no additional overhead on the mobile device. The conclusions drawn 

from these results were discussed in the context of our approach, and the implications 

for other approaches. 

Applying such management to the resources is important, because each user of the 

mobile cloud will have many tasks to be completed, and these resources will be 

required separately for each task; these resources must be used with the 

considerations outlined in this paper in mind. Effectively minimising the usage of 

these resources, and applying the best practices we have outlined, will be crucial in 

successful adoption of the mobile cloud computing model by the end user.  

Our future work will involve continued development of the CPA, and our CAMCS 

cloud middleware project within which the CPA resides, while adopting the practices 

outlined in this paper, the focus being on minimal resource usage. We also intend to 

Table 2. Mobile Cloud Computing Approach Resources. Comparison of the resource requirements of each of the 

discussed approaches to mobile cloud computing models, along with the CAMCS middleware project with the 

CPA by the authors 



extend our offload decision model to Wi-Fi networks. In addition, once our CAMCS 

middleware has been further developed with features such as service discovery, we 

will evaluate its usage of VM resources and performance under load with ordinary 

operation by end users. 
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