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Abstract 

Direct supersonic steam injection, direct steam infusion, and indirect tubular heating were 

each applied to protein-enriched skim milk-based beverages with 4, 6 and 8% (w/w) total 

protein, and the effect of final heat temperature on the physical properties of these beverages 

was investigated. Supersonic steam injection resulted in significantly lower levels of 

denaturation of β-lactoglobulin (34.5%), compared to both infusion (76.3%) and tubular 

(97.1%) heating technologies. Viscosity, particle size and accelerated physical stability of 

formulations did not differ significantly between the heating technologies, while noticeable 

colour differences due to heat treatment (mainly attributed to increasing b* value) were 

observed, particularly for tubular heating. Overall, the extent of protein denaturation in high-

protein dairy products was significantly influenced by the particular heating technology 

applied. The application of supersonic steam injection technology, with rapid heating and 

high shear characteristics, may enable differenciated product characteristics for ready-to-

drink ambient-delivery high-protein dairy beverages. 

Industrial Relevance 

The design and application of novel direct supersonic steam injection technology was 

comprehensively studied and found to provide significant benefits over direct steam infusion 

and indirect tubular heating technologies for skim milk-based protein beverages. This type of 

injection heating system resulted in heat-treated formulations with lower levels of denatured 

whey proteins, compared to tubular and infusion heating, offering an alternative opportunity 

to the industry in terms of producing shelf-stable dairy protein beverages. 
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1. Introduction 

Extended shelf life (ESL) and ultra-high temperature (UHT) treated milk have increased in 

popularity worldwide, providing long shelf-life and eliminating cold chain requirements, 

thereby reducing economic costs to producers, distributors and consumers (Bertolini et al., 

2016, Malmgren et al., 2017). High-heat dairy treatments, like ESL heating (120-135 °C for 

2-4 s) and UHT (135–145 °C for 2-4 s), can negatively impact the nutritional quality and 

sensory properties of the final product due to the severity of the heat treatment applied. In 

addition, the choice of thermal processing technology used to achieve ESL or UHT treatment 

can have a significant impact on physical properties and consumer acceptability of the final 

product (Deeth and Lewis, 2016; Roux et al., 2016).  

Thermal processing technologies may be classified as direct or indirect, which have different 

heat transfer mechanisms. For indirectly heated systems, heat is transferred from the heating 

medium to the product through a thermally conducting but otherwise impermeable barrier, 

while direct heating achieves almost instantaneous heating through the direct addition of the 

heating medium, steam, to the product (Hsu, 1970; Burton, 1994; Schroyer, 1997; Lewis et 

al., 2000). Direct heating imparts a lower thermal load on the product due to significantly 

faster heating and cooling rates, thereby reducing thermally-induced changes in the final 

product (Kelleher et al., 2018b). However, there are challenges associated with direct systems 

such as the requirement for culinary-grade steam, lower heat regeneration capacity, and 

concerns with product dilution, resulting in indirect technologies being more commonly used 

industrially (Datta et al., 2002; Britz and Robinson, 2008; Dickow et al., 2012b; 

Karayannakidis et al., 2014; Lee et al., 2017).     

Traditional direct technologies, such as steam injection and infusion systems, have been 

available for decades and their use with various dairy products has been investigated 

throughout the years (Ford et al., 1969; Patrick and Swaisgood, 1976; Lyster et al., 1971, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

4 

 

Datta et al., 2002, Dumpler and Kulozik, 2016). Over the years there have been engineering 

improvements and reconfigurations made to the original formats, such as the lenient steam 

injection patented process (Dickow et al., 2012a, Dickow et al., 2012b) or supersonic steam 

injection (Murphy, 2011, Murphy et al., 2013). There has been little investigation into the 

application and potential benefits of supersonic steam injection to dairy products. This study 

used a patented supersonic steam injector (Maklad Fluid GmbH), which makes use of a De 

Laval nozzle to achieve better mixing and potentially attaining supersonic flow within the 

injection unit. These nozzles are commonly referred to as converging-diverging nozzles, 

where an inlet section converges into a narrow throat and subsequently expands into a 

divergent outlet (Canosa et al., 2016). The converging inlet accelerates the fluid, in this case a 

mixture of steam and liquid product, until the flow becomes choked or sonic at the throat, 

where the cross-sectional area is smallest, and a Mach number (Ma) of 1 is achieved. Due to 

conservation of volumetric flow, temperature and pressure reduce with increasing area in the 

diverging outlet, thereby increasing kinetic energy and resulting in supersonic flow (Ma > 1). 

The application of a supersonic steam injector in dairy processing can theoretically produce 

better product mixing due to high shear from (i) the high throat velocities and (ii) the 

shockwave produced, with reduced residence time in the injection chamber, compared to 

traditional direct systems in dairy processing (Murphy et al., 2011; Murphy et al., 2013). 

   

Increased consumer awareness has led to market demands for healthy, protein-enriched foods 

for general consumption, in addition to clinical uses such as for the treatment of malnutrition, 

sarcopenia in the elderly, high-performance sports nutrition, and body-building (Hayes et al., 

2008; Jelen, 2009; Shiby, 2013; Withers et al., 2014; Chen and O’Mahony, 2016). Milk 

proteins have many health-promoting and nutritionally beneficial properties for the 

consumer, such as supplying essential amino acids for tissue growth and repair, metabolic 
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regulation for weight control, and anti-oxidant functions for immune-enhancing properties 

(Beucler, 2005; Smithers; 2008; Wijayanti et al., 2014; Gupta and Prakash, 2015). However, 

protein-enriched beverages can pose thermal processing challenges, particularly in relation to 

the denaturation, aggregation and fouling of heat-labile dairy proteins, with the selection of 

thermal processing technology having a significant impact on the occurrence of these 

phenomena (Joyce et al., 2017; Kelleher et al., 2018). The nutritional value of proteins can be 

impaired by severe heat treatment, resulting in decreased protein digestibility and the 

availability of substrate to enzymatic digestion (Resmini et al., 2003). ‘Cooked’ off-flavours 

commonly associated with ESL and UHT milks are connected to the level of whey protein 

denaturation, particularly β-lactoglobulin, as free sulfhydryl groups are exposed leading to 

the development of sulphur compounds in the milk (Al-Attabi et al., 2009; Zabbia et al., 

2012; Lee et al., 2017). Incorporation of ingredients can also pose challenges in high protein 

beverage systems, with commonly used powder ingredients such as milk protein concentrates 

(MPC) exhibiting poor solubility. The application of high temperatures, shear and increased 

hydration time can improve MPC solubility and incorporation into beverage formulations 

(Pathania et al., 2018). Novel thermal processing technologies may prove to be important 

tools for the food industry in the development of protein-enriched beverages with 

differentiated physical properties which can satisfy changing market demands.   

The aim of this study was to investigate the impact of direct supersonic steam injection 

heating on the physical characteristics of ready-to-drink protein-enriched dairy-based 

beverages with ambient distribution, compared to standard direct infusion and indirect tubular 

heating technologies. The three heating technologies were applied to beverages having three 

different protein levels, operated at three final heat treatment temperatures, and compared in 

terms of final product quality and stability.  As little has been published in relation to the use 

of supersonic injectors in dairy processing, the focus of this study was to determine the 
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implications of high shear and rapid heat transfer during processing using the supersonic 

injector and analysing for protein denaturation, and beverage viscosity and physical stability.     

2. Materials and methods 

2.1. Materials and formulation 

Medium-heat skim milk powder, SMP (33.93 % protein, 0.78 % fat, 6.04 % moisture, 48.88 

% lactose and 8.13 % ash), and milk protein concentrate, MPC80 (83.03% protein, 0.96% fat, 

4.03 % moisture, 3.99 % lactose and 6.96 % ash) were supplied by Glanbia Ingredients 

Ireland Ltd. (Kilkenny, Ireland).  

Model protein-enriched beverages were formulated at 4, 6 and 8 % w/w protein 

concentrations using a skim milk base, reconstituted to 10 % total solids (w/w) in reverse 

osmosis water at 45 °C using a YTRON ZC powder induction unit (YTRON Process 

Technology GmbH, Bad Endorf, Germany). MPC80 was added to each formulation to yield 

desired protein concentration (0.73, 3.14, 5.55 % MPC80 (w/w) for 4, 6 and 8 %, 

respectively) and inducted with a high shear mixer (Silverson EX, Silverson Machines Ltd, 

UK). The formulations were held overnight in stirred tanks at 4 °C to allow for powder 

hydration. The pH was measured before and after overnight storage and was adjusted to pH 

6.7 using 0.1 M HCl or KOH, if required.  

2.2. Heat Treatment  

Three types of heat treatment technology were applied to the formulations: direct steam 

infusion, direct supersonic steam injection, and indirect tubular heating (Fig. 1). All heat 

treatment conditions consisted of a preheat treatment (70 °C for 30 s) and final heat treatment 

(121, 135 or 142 °C, for 3 s) with a flowrate of 100 L/h. Infusion heating employed a UHT 

pilot-scale plate exchanger Model 422463 (APV, Denmark), and as in the injection system, 
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initial cooling to 70 °C was achieved using vacuum flash cooling. Preheat and final cooling 

operations were carried out using plate heat exchangers. Indirect tubular heating was applied 

using a MicroThermics tubular UHT 25HV pilot plant (MicroThermics, NC, USA), 

consisting of four tubular heat exchangers; preheat, final heat and two cooling exchangers. 

The direct steam injection was achieved by integrating a purpose-built process line with a 

Maklad supersonic injector Model 700-143-60 (Maklad Innovative Fluid- and Systemtechnik 

GmbH, Austria) for final heat treatment into the MicroThermics plant (Fig. 1B). The process 

line consisted of the Maklad injector, flash cooler, condenser, vacuum pump, product pump, 

culinary steam and product filters and an independent cleaning-in place (CIP) system. 

Vacuum flash cooling to 70 °C was applied after final heat treatment as part of the injection 

process line, while tubular heat exchangers from the Microthermics systems were used for 

preheating and final cooling operations. The injector had a de Laval converging-diverging 

nozzle with a flow rate range of 50 – 150 L/h for the steam-product mix and had a Teflon 

coating in the steam-product mixing zone to reduce burn-on. All heat treatment trials were 

carried out in triplicate.  

2.3. Protein analysis 

Total protein content was determined using the Kjeldhal method with a nitrogen-to-protein 

conversion factor of 6.38 (IDF, 2001). Native protein levels were determined using reverse-

phase high-performance liquid chromatography (RP-HPLC) equipped with a Waters 2695 

separation module, Waters 2487 dual wavelength absorbance detector at 214 nm and 

Empower
®

 software (Milford, MA, USA). The HPLC was equipped with a PolymerX 5µm 

RP-1, 150 x 4.6 mm column (Phenomenex, Cheshire, UK). α-Lactalbumin (α-la), β-

lactoglobulin A and B (β-lg A and B) standards (Sigma Aldrich, Ireland) were used to 

calibrate the method. Sample preparation required pH adjustment to 4.6 with 0.1 M acetate 

buffer to 2.5 g/L protein, centrifugation at 20,000 g for 20 min at 4 °C, and filtration of the 
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supernatant using 0.2 µm PES filters (Agilent Technologies, Santa Clara, CA, United States) 

(Kehoe et al., 2011; Kelleher et al., 2018). Total solids content was measured using a Smart 

System 5, Smart Trac (CEM Corporation, Matthews, NC, USA). 

2.4. Viscosity 

Viscosity was determined using a shear rate sweep at 25 °C, using an AR-G2 controlled 

stress rheometer (TA Instruments, Crawley, UK) with a concentric cylinder geometry 

(Murphy et al., 2013). The apparent viscosity values presented are the average viscosity on 

holding at 500 1/s for 1 min. 
  

2.5. Particle size 

A Malvern Zetasizer Nano ZS combined dynamic light scattering analyser (Malvern 

Instruments Ltd., UK) was used to determine particle size at 25 °C. Samples were dispersed 

using ultra-pure water in polystyrene disposable cuvettes with refractive index for protein and 

the water dispersant of 1.45 and 1.33, respectively. Particle size is reported in terms of 

intensity mean (d.nm).    

2.6. Colour analysis 

Colour of samples in disposable cuvettes was measured using a Minolta Chroma meter CR-

400 colorimeter (Minolta Ltd., Milton Keynes, UK) and expressed in L*, a* and b* values.  

Colour difference from unheated formulations, ΔE, was determined using the CIE76 

Euclidean distance formula, given as described by (Morales and Jiménez-Pérez, 2001): 

       
    

       
    

       
    

                2.1 

2.7. Accelerated physical stability  

Accelerated physical stability of formulations was investigated using a LUMiSizer analytical 

centrifuge (Lum GMBH, Berlin, Germany), equipped with SepView 4.1 software. Samples 
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(0.4 mL) were filled into PC100-131XX polycarbonate cells to a 20 mm depth and 

centrifuged at 2300 g for 3 h at 25 °C (Chen and O’Mahony, 2016). The software integrates 

with respect to particle position on each transmission profile to characterise instability over 

time as a second order polynomial. To calculate the change in transmission over time, 

integration limits were set along the length of the filled tube, at 110 to 130 mm. The average 

slope of this polynomial, calculated from the polynomial coefficients, was used as an 

instability index to compare the stability of different samples under accelerated conditions.  

2.8. Statistical analysis 

Heat treatment trials were carried out in triplicate. The Minitab
®
 17 (Minitab Ltd., Coventry, 

UK) statistical analysis package was used to carry out one-way ANOVA with Tukey post hoc 

and three-way ANOVA analysis using protein content, heating technology and heat treatment 

temperatures as factors.  

3. Results and discussion 

3.1. Protein and total solids analysis  

Total solids and total protein were analysed before and after heat treatment and steam 

injection and tubular heat treatment did not significantly differ in their effects on the level of 

total solids and total protein for 4, 6 and 8 % (w/w) protein formulations (Table 1). However, 

steam infusion technology resulted in a significant reduction in total solids and protein levels 

at each protein concentration and treatment temperature applied (p < 0.001). It is likely that 

the reductions in solids content following steam infusion are related to product dilution by the 

condensed steam heating medium, due to incomplete removal of water by flash cooling, 

which is commonly reported for pilot-scale operation of direct heating systems,  (Dickow et 

al., 2012a; Dickow et al., 2012b; Murphy et al., 2013; Dumpler et al., 2017). The application 

of injection and tubular heating resulted in no significant change in total protein content being 
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observed and while infusion treatment affected the level of total protein in the final 

formulation (possibly due to fouling), injection heating did not. 

The level of native protein was significantly affected by the type of heating technology, 

protein concentration and temperature applied (p < 0.001, p < 0.001 and p < 0.05, 

respectively). The concentrations of native α-la were most greatly reduced by tubular heating, 

resulting in a final native α-la content that was 11.7 - 55.9 % of the initial content in unheated 

formulations. Both direct injection and infusion heating resulted in significantly less 

denaturation of α-la, compared to tubular heating. For infusion technology, treatment at 121 

°C did not affect the level of native α-la at any concentration (p > 0.05), while higher 

temperatures (135 and 142
 
°C) resulted in a reduction in levels of native α-la (on average 65.8 

% native α-la from the initial content; p < 0.05). Injection heating resulted in the lowest level 

of α-la denaturation of all technologies investigated, with no significant change in native α-la 

level (on average 82 % native α-la from the initial content; p > 0.05) despite the application 

of high temperatures, with the exception of the treatment at 135 °C for the 4 % w/w protein 

formulation (with 71 %
 
native α-la from the initial content; p < 0.05).  

Despite extensive denaturation of β-lactoglobulin (β-lg) for all heat treatments, significant 

differences between heating technologies were evident (Fig. 2). Injection heating resulted in 

heat-treated formulations with significantly greater levels of native β-Lg A and B, compared 

to tubular and infusion heating (p < 0.001). The average levels of native β-lg A and B were 

greater after injection (64.7 and 66.4 %, respectively) compared to tubular heating (3.16 and 

2.72 %, respectively), indicating substantial denaturation with the use of indirect tubular 

heating. For 4 % (w/w) protein formulations, the differences between infusion and tubular 

heating were statistically significant (p < 0.05); however, at higher protein concentrations, 

these differences were not significant.  
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While both infusion and injection systems resulted in higher levels of native protein than 

indirect tubular heating, supersonic injection technology resulted in the lowest whey protein 

denaturation levels at high processing temperatures. This may be due to the accelerated 

product flow within the injector chamber for supersonic injection, allowing the required heat 

to be imparted with reduced residence time, reduced thermal load and more uniform 

temperature (Murphy et al., 2011; Murphy et al., 2013). The application of high levels of 

shear, due to shockwaves produced in the supersonic injection system, may also contribute to 

the lower levels of protein denaturation observed. It has been shown that high shear can 

reduce whey protein aggregate formation leading to greater retention of native protein post 

heat treatment (Dissanayake and Vasiljevic, 2009; Çakır-Fuller, 2015; Wolz et al., 2016). 

Reduced degree of β-lg denaturation have been shown to reduce the levels of ‘cooked’ off 

flavours and sulphur volatiles in milk (Lee et al., 2017; Kelleher et al., 2018b). The 

substantially lower levels of denatured whey protein in injection-heated formulations is a 

significant differentiating attribute (e.g. with respect to sensory, colloidal stability and protein 

quality) for the final product, compared to infusion- and tubular-heated formulations.  

3.2. Viscosity 

While beverage viscosity increased with increasing protein and total solids content (p < 

0.001), heat-treated formulations were not significantly affected by heating technology or 

temperature per se (p > 0.05; Table 1).  For 4 and 6 % (w/w) protein formulations, viscosity 

was not significantly affected by heat treatment using infusion, injection or tubular heating. 

Heat treatment significantly reduced the viscosity of 8 % (w/w) protein formulations in all 

cases, by an average of 28.4 % (p < 0.05) relative to the unheated formulation, with no 

significant effect of increasing heat treatment temperature or technology. This reduction in 

viscosity may be due to increased solubilisation of the added MPC powder at the high heat 
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treatment temperatures for the more concentrated 8 % (w/w) protein formulation as reported 

by Pathania et al. (2018). 

3.3. Particle size 

The average particle size for 4 and 6 % (w/w) protein formulations was not significantly 

affected by heat treatment (p > 0.05; Table 1). For 8 % (w/w) formulations, the unheated and 

injection 142 °C heated formulations resulted in the greatest particle size. This increase in the 

unheated formulation is likely due to the dissolution of MPC, an ingredient which is 

notoriously difficult to fully solubilise under standard processing conditions (McCarthy et al., 

2014). With the application of heat treatment and, in the case of steam injection, shear 

effects, solubilisation of the MPC is improved and the average particle size is reduced for 8 

% (w/w) formulations. 

While, overall, the average particle size did not differ significantly between heating 

technologies for most protein formulations, differences in particle size distribution were 

observed (Fig. 3). Injection heating resulted in a broader size distribution than infusion and 

tubular heating, for each treatment temperature and protein concentration. The high levels of 

shear produced by the supersonic injector may be the cause of the broadening distribution, as 

the degree of protein aggregation is reduced, and a higher quantity of smaller soluble 

aggregates are present in the system (Wolz et al., 2016).   

3.4. Accelerated storage stability  

The level of protein had a significant impact on stability of formulations, with increasing 

protein concentration resulting in improved accelerated storage stability (Fig. 4). This is 

likely due to the increase in viscosity with increasing protein concentration (Table 1) 

(Karlsson et al., 2005; Lim and Roos, 2015). As with viscosity and particle size, there was no 

significant difference in accelerated storage stability of unheated, infusion-heated, tubular-
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heated or injection-heated formulations at any protein concentration (p > 0.05), while there 

were consistent trends for those parameters across protein levels 

3.5. Colour analysis 

The protein content of formulations was found to have a significant effect on the lightness, 

L*, which increased in unheated formulations as the total solids and protein content increased 

(p < 0.001; Table 2). The L* value is largely attributed to particle size and total solids; 

therefore, as the level of casein micelles increases with protein concentration the L* value 

increases for the unheated formulations (Chung et al., 2014). Heating technology had a 

significant effect on L* values of formulations (p < 0.001), with tubular heating resulting in a 

higher L* value for all 6 and 8 % protein formulations compared to other heating 

technologies. Similar L* values were obtained for the 4, 6 and 8 % protein formulations using 

infusion and injection direct heating systems (Table 2).  

The a* value (red-greenness) of beverages generally increased upon heat treatment, an effect 

that become more significant with increasing protein concentration (p < 0.001). At 4 % 

protein, significant increases in a* value were identified for infusion treatments at 121 °C and 

135 °C and tubular treatment at 142 °C only (Table 2). Heating technology and temperature 

were shown to affect a* value (p < 0.01 and 0.05, respectively), with tubular heating causing 

the greatest increase. Changes in a* value increased with increasing heating temperature. 

There was no significant difference between a* values following injection and infusion for 

the protein concentrations investigated.  

The b* value increased with increasing protein concentration (Table 2). Heat treatment had a 

significant impact on the b* value, with infusion resulting in the lowest b* value and tubular 

treatment resulting in the highest b* value overall (p < 0.001). Tubular and injection heating 

significantly increased the b* value with increasing temperature, while infusion did not. For 
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tubular-heated milks the b* value was shown to increase with increasing final heat 

temperature, while injection-treated milks did not. Increases in b* values can result from the 

occurrence of Maillard browning in a system (Morales and van Boekel, 1998). The increased 

b* values in tubular- and injection- treated formulations indicates a greater level of Maillard 

browning compared to that in infusion- treated formulations.  

Euclidean distance, ΔE, provides information on the overall colour change from the unheated 

formulation for each of the heat-treated protein-enriched beverages (Table 2). Protein 

concentration, heating technology and final heat temperature all significantly affected the ΔE 

(p < 0.001, for each factor in terms of three-way ANOVA). Tubular heating resulted in the 

greatest overall colour change, particularly at 6 and 8% protein, and all heating temperatures 

resulted in a visibly observable colour difference (ΔE > 2.3). It should be noted that these 

colour changes are not thought to be of an order of magnitude that would be undesirable from 

a consumer perspective. 

4. Conclusion 

Supersonic steam injection heating provides substantial retention of native whey protein, 

particularly heat labile β-lg, across three ESL and UHT temperatures, compared to traditional 

tubular and direct steam infusion heating. Physical characteristics such as viscosity, particle 

size and accelerated storage stability did not significantly differ between the differently heat-

treated formulations. It is well established that direct heating imparts less thermal damage on 

a product than indirect heating; however, the more novel supersonic direct steam injection 

technology provides an opportunity to further reduce thermal damage of dairy beverages, 

particularly in terms of protein denaturation. The application of this technology could enable 

opportunities differentiated product characteristics in long-life ready-to-drink high-protein 

beverages with high levels of native whey protein. 
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Appendix I 

The ratio of steam to product, on a water basis, required to achieve the desired increase in 

product temperature, ΔT, can be calculated as:  

  
    

     
                                A.1 

where h1 is the specific enthalpy of the steam at the nozzle inlet, hf is the specific enthalpy of 

the product at the final temperature and cp is the specific heat of the product; the value of cp is 

made up of contributions from water (the major component) and also of fat and non-fat 

solids. If the incoming product is preheated, to Ti = 70 °C, with a typical final heat 

temperature, Tf = 121 °C, after mixing with steam at 3 bar(a), the ratio of condensed steam to 

incoming product to achieve the desired product temperature (121 °C) is 9. 5% by weight.  

The thermodynamic conditions in the supersonic steam injector unit were analysed to 

understand the thermodynamic conditions in the deLaval nozzle. While the mass flowrate is 

constant at successive sections of the nozzle, the volumetric flowrate changes as it goes 

through, mainly for two reasons (i) the cross-sectional area is changing, and (ii) steam is 

being condensed as it moves through the nozzle. The percentage of the total steam load that is 

condensed before the throat is not known and hence in the simulation this percentage is 

treated as an arbitrary constant which can be set between 0 and 100%. The velocity profile 

for steam at successive sections can be described by the steady flow enthalpy equation, based 

on the law of conservation of energy as applied to compressible fluids: 

     
         

                A.2 
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where h is the specific enthalpy of steam and v is the velocity of fluid flow. For cases in 

which v1 is very small in comparison to v2, v1 may be neglected (Gupta, 2013), resulting in the 

equation: 

                                      A.3 

 

For a system using saturated steam supply (6 bar (a)) at nozzle inlet (1) and throat (2) 

pressure of 3 bar (a), we obtain using saturated steam tables, h1 = 2756 kJ⁄kg, and near 

supersonic conditions, using wet steam tables, h2= 2639 kJ⁄kg, giving 

                  

The Mach number can be written as: 

    
 

 
                    A.4 

 

where c is the local speed of sound, 440 m/s. Thus, Ma at the throat is calculated as 1.1; 

however, as the flow would become choked at the throat, to a maximum of Ma = 1, the 

maximum throat velocity would equal c.   

If the fluid flow reaches sonic velocity at the throat, the velocity increases in the diverging 

section of the de Laval nozzle, as the area increases, as described in equation A.4 below 

(derived from the Bernoulli continuity equation), i.e. giving supersonic flow, since the 

combination of Ma  1 and dA > 0 gives dv > 0, hence increasing v:  

  

 
  

  

 
                     A.5 
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However, after supersonic flow has been achieved within the diffuser, boundary conditions 

will ensure that the velocity will eventually decrease at a point which depends on the ratio of 

inlet pressure to exit or back pressure of the injector and drop below Ma = 1 to subsonic flow. 

This irreversible adjustment of velocity results in a shock wave.  It should be noted that 

achieving this condition depends on matching the nozzle dimensions to the flow of product 

and steam, using 

                  A.6 

where Q is the volumetric flowrate of steam at the throat and A is the available cross sectional 

area, with allowance for a slight restriction due to product flow determined by the densities of 

product and steam. 

The mass flowrate of water removed from the steam-product mix, ml, by flash cooling can be 

determined by calculating the weight percent vapourised, X: 

  
      

    
  

  
    

       A.7 

where h
L
 is the liquid enthalpy upstream (u) and downstream (d) from the flash cooler, and h

v
 

is the vapour enthalpy at the flash cooler. 

The mass flowrate of vapourised liquid in the flash cooler, ml, can be determined using: 

     
  

                     A.8 

Best operating practices of direct heating systems recommend that the flash cooling system is 

operated so that the flash cooling temperature is equal to the preheat temperature used 

(Burton, 1968).  For a product at 121 °C where the flash cooler is operated at 0.3 bar(a) 
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resulting in a flash cooling temperature of 70 °C, the mass flowrate of liquid being removed 

from the flash cooler can be calculated as: 

         

               

Note that there is still a differential between the calculated values for ms and ml, which may 

result in a 2.98 % concentration of the product despite ideal operating conditions. As 

described by Burton and Lewis (2009), the total solids of the product should be monitored for 

dilution or concentration and the temperature of the flash cooler adjusted if required, as 

dilution of product is commonly reported in pilot-scale operation of direct heating systems 

(Dickow et al., 2012b; Murphy et al., 2013; Dumpler et al., 2017).  For the SSIH system, 

increasing the flash cooling pressure to 0.6 bar(a), related to a temperature of 86 °C, could 

limit the change in product solids to a dilution of 0.16 %. However, for flash cooler operation 

at 0.3 bar(a), a simple mass balance can determine the quantity of product leaving the flash 

cooler to be 97 kg/h. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

27 

 

Tables  

Table 1. Physico-chemical characteristics of protein-enriched skim milk beverage 

formulations at 4, 6, and 8% protein before and after heat treatment with direct infusion, 

direct injection or indirect tubular heat treatment at a preheat temperature of 70°C for 30 s 

and final heat temperatures of 121, 135 and 142°C for 3s.
1
 

 

Treatment 

pH Total Solids Total Protein Viscosity 

Particle 

Size 

 

Technology Temp - % (w/w) % (w/w) m.Pas 

diameter
2
  

(nm)
 

4
%

 P
ro

te
in

 

Unheated  6.74 ± 0.05
a
 10.3 ± 0.09

a 
4.02 ± 0.16

ab
 3.86 ± 0.12

a 
222 ± 8

a 

Infusion 

121 6.75 ± 0.05
a
 9.15 ± 0.09

b 
3.82 ± 0.05

bc 
3.83 ± 0.06

a
 220 ± 11

a 

135 6.75 ± 0.07
a
 9.09 ± 0.00

b 
3.74 ± 0.03

c 
3.86 ± 0.14

a
 212 ± 1

a 

142 6.76 ± 0.06
a
 8.94 ± 0.14

b 
3.73 ± 0.07

c 
3.86 ± 0.04

a
 211 ± 2

a 

Injection 

121 6.68 ± 0.02
a
 10.1 ± 0.01

a 
3.95 ± 0.06

abc
 3.64 ± 0.09

a
 238 ± 4

a 

135 6.68 ± 0.02
a
 10.0 ± 0.0

a 
3.92 ± 0.03

abc
 3.72 ± 0.05

a
 222 ± 9

a 

142 6.68 ± 0.01
a
 10.1 ± 0.02

a 
3.93 ± 0.01

abc
 3.67 ± 0.03

a
 280 ± 9

a
 

Tubular 

121 6.76 ± 0.06
a
 10.1 ± 0.08

a 
3.99 ± 0.19

abc
 3.82 ± 0.10

a
 205 ± 1

a 

135 6.74 ± 0.06
a
 10.1 ± 0.08

a 
4.13 ± 0.05

a
 3.73 ± 0.17

a
 214 ± 8

a 

142 6.74 ± 0.05
a
 10.1 ± 0.03

a 
4.09 ± 0.05

ab
 3.82 ± 0.07

a
 230 ± 10

a 

6
%

 P
ro

te
in

 

Unheated  6.73 ± 0.06
a 

12.3 ± 0.13
a 

5.81 ± 0.63
abc 

4.33 ± 0.16
a 

291 ± 75
a 

Infusion 

121 6.73 ± 0.09
a 

11.5 ± 0.12
b 

5.51 ± 0.08
abc 

4.21 ± 0.21
a
 238 ± 6

a 

135 6.73 ± 0.08
a
 11.1 ± 0.05

bc 
5.41 ± 0.16

c 
4.10 ± 0.02

a
 230 ± 8

a 

142 6.73 ± 0.06
a
 11.0 ± 0.13

c 
5.41 ± 0.09

bc 
4.36 ± 0.12

a 
 231 ± 10

a 

Injection 

121 6.64 ± 0.02
a
 12.1 ± 0.03

a 
5.95 ± 0.01

abc 
4.25 ± 0.06

a
 259 ± 4

a 

135 6.64 ± 0.02
a
 12.1 ± 0.03

a
 5.95 ± 0.01

abc 
4.19 ± 0.04

a
 250 ± 1

a 

142 6.64 ± 0.01
a
 12.1 ± 0.06

a
 5.95 ± 0.04

abc 
4.27 ± 0.06

a 
282 ± 8

a 

Tubular 121 6.72 ± 0.08
a
 12.2 ± 0.09

a
 5.93 ± 0.29

a 
4.11 ± 0.14

a 
227 ± 26

a 
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135 6.71 ± 0.08
a
 12.1 ± 0.25

a
 5.88 ± 0.16

abc 
4.18 ± 0.06

a
 269 ± 48

a 

142 6.67 ± 0.07
a
 12.1 ± 0.12

a  
 5.91 ± 0.20

abc 
4.32 ± 0.05

a
 272 ± 12

a 

8
%

 P
ro

te
in

 

Unheated  6.69 ± 0.06
a 

14.5 ± 0.12
a 

7.75 ± 0.38
a 

6.66 ± 1.33
a 

366 ± 14
a 

Infusion 

121 6.70 ± 0.08
a 

12.8 ± 0.28
b 

7.29 ± 0.30
a 

4.69 ± 0.52
b 

286 ± 6
bc 

135 6.72 ± 0.06
a 

12.8 ± 0.29
b 

7.25 ± 0.23
a 

4.57 ± 0.45
b 

284 ± 26
bc 

142 6.72 ± 0.06
a 

12.7 ± 0.27
b 

7.34 ± 0.20
a 

4.66 ± 0.06
b 

286 ± 10
bc 

Injection 

121 6.62 ± 0.01
a 

14.5 ± 0.06
a 

7.88 ± 0.08
a 

4.59 ± 0.13
b 

282 ± 17
bc 

135 6.62 ± 0.00
a 

14.4 ± 0.07
a 

7.85 ± 0.03
a 

4.94 ± 0.48
b 

250 ± 6
c 

142 6.63 ± 0.00
a 

14.2 ± 0.06
a 

7.82 ± 0.07
a
 4.66 ± 0.13

b 
316 ± 20

ab 

Tubular 

121 6.72 ± 0.06
a 

14.4 ± 0.20
a 

7.68 ± 0.47
a 

5.15 ± 0.19
b 

274 ± 20
bc 

135 6.69 ± 0.06
a 

14.4 ± 0.19
a 

7.73 ± 0.44
a 

4.88 ± 0.43
b 

289 ± 13
bc 

142 6.65 ± 0.05
a 

14.2 ± 0.08
a 

7.70 ± 0.51
a 

4.79 ± 0.26
b 

284 ± 13
bc 

 

1
 For each formulation (protein concentration), mean values with a common superscript letter 

in the same column are not significantly different (p > 0.05).  

2
 Average particle size is presented in terms of intensity mean. 
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Table 2. Colour analysis of protein–enriched skim milks at 4, 6 and 8 % protein (w/w) before 

and after heat treatment with direct infusion, direct injection or indirect tubular heat treatment 

at a preheat temperature of 70°C for 30 s and final heat temperatures of 121, 135 and 142°C 

for 3s. 

 

 Tech. Temp.  

(°C) 

L* a* b* ΔE 

4
%

 P
ro

te
in

 

Unheated  75.44 ± 1.12
a
 -5.32 ± 0.16

c
 -0.23 ± 0.20

d
   

Infusion 121 75.54 ± 1.51
a
 -4.75 ± 0.05

ab
 -0.17 ± 0.17

d
 0.91 ± 0.18

c
 

135 76.15 ± 1.39
a
 -4.86 ± 0.03

ab
 -0.18 ± 0.39

d
 0.92 ± 0.28

c
 

142 76.95 ± 0.89
a
 -5.06 ± 0.18

abc
 0.18 ± 0.10

d
 1.64 ± 0.29

c
 

Injection 121 75.81 ± 0.13
a
 -5.08 ± 0.02

abc
 2.62 ± 0.04

ab
 2.89 ± 0.09

b
 

135 76.09 ± 0.39
a
 -5.05 ± 0.07

abc
 2.71 ± 0.02

ab
 3.11 ± 0.24

b
 

142 76.52 ± 0.05
a
 -5.05 ± 0.03

abc
 2.87 ± 0.02

ab
 3.35 ± 0.09

b
 

Tubular 121 77.07 ± 1.04
a
 -5.18 ± 0.07

bc
 0.43 ± 0.27

cd
 1.77 ± 0.07

c
 

135 77.75 ± 1.03
a
 -5.17 ± 0.10

bc
 1.68 ± 0.46

bc
 3.01 ± 0.45

b
 

142 78.80 ± 1.42
a
 -4.70 ± 0.25

a
 3.32 ± 0.73

a
 4.95 ± 0.62

a
 

6
%

 P
ro

te
in

 

Unheated  78.08 ± 1.16
b
 -5.05 ± 0.56

b
 1.56 ± 0.43

c
   

Infusion 121 78.64 ± 0.58
b
 -4.72 ± 0.19

ab
 3.00 ± 1.11

bc
 2.26 ± 1.56

b
 

135 78.70 ± 0.48
b
 -4.63 ± 0.21

ab
 2.75 ± 0.97

bc
 2.15 ± 1.40

b
 

142 80.20 ± 1.37
ab

 -4.66 ± 0.08
ab

 2.65 ± 0.44
bc

 2.34 ± 0.67
b
 

Injection 121 78.06 ± 0.13
b
 -4.82 ± 0.01

ab
 4.08 ± 0.00

abc
 2.16 ± 0.18

b
 

135 78.93 ± 0.04
ab

 -4.74 ± 0.03
ab

 4.48 ± 0.13
abc

 3.13 ± 0.14
ab

 

142 79.12 ± 0.13
ab

 -4.62 ± 0.00
ab

 4.71 ± 0.14
ab

 3.41 ± 0.26
ab

 

Tubular 121 80.58 ± 1.26
ab

 -4.24 ± 0.92
ab

 3.49 ± 1.00
bc

 3.26 ± 1.41
b
 

135 81.40 ± 1.33
ab

 -3.86 ± 1.00
ab

 5.12 ± 1.30
ab

 5.08 ± 1.77
ab

 

142 82.85 ± 1.07
a
 -2.57 ± 1.07

a
 7.25 ± 1.07

a
 7.95 ± 2.49

a
 

8 %
 

P
r

o
t ei n
 Unheated  80.20 ± 0.44

c
 -5.36 ± 0.18

c
 2.82 ± 0.40

e
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Infusion 121 81.81 ± 1.19
abc

 -4.54 ± 0.08
b
 3.71 ± 0.41

d
 2.75 ± 0.62

d
 

135 82.08 ± 1.20
abc

 -4.52 ± 0.09
b
 3.84 ± 0.29

d
 3.31 ± 0.78

cd
 

142 82.28 ± 1.20
abc

 -4.39 ± 0.04
b
 4.28 ± 0.28

cd
 3.77 ± 0.74

bc
 

Injection 121 80.14 ± 0.27
c
 -4.51 ± 0.02

b
 5.22 ± 0.16

bc
 1.36 ± 0.42

e
 

135 80.72 ± 0.08
bc

 -4.38 ± 0.04
b
 5.58 ± 0.10

b
 2.03 ± 0.03

de
 

142 80.92 ± 0.22
bc

 -4.26 ± 0.02
b
 5.85 ± 0.19

b
 2.38 ± 0.43

cde
 

Tubular 121 81.90 ± 0.80
abc

 -4.79 ± 0.16
b
 4.13 ± 0.34

cd
 2.90 ± 0.37

cd
 

135 82.57 ± 0.78
ab

 -4.44 ± 0.38
b
 5.53 ± 0.80

b
 3.95 ± 0.09

b
 

142 84.04 ± 1.40
a
 -3.72 ± 0.57

a
 7.11 ± 1.22

a
 5.87 ± 0.55

a
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Figures 

Fig. 1. Process flow diagram of (A) direct steam infusion, (B) direct steam injection and (C) 

indirect tubular heat exchange pilot plants across preheating, final heating, initial and final 

cooling operations.  Common preheat and final cooling operations are used for the direct 

injection and indirect tubular plants (----).  

 

Fig. 2. Levels of native (a) α-la, (b) β-lg A and (c) β-lg B protein in 4, 6, and 8% protein 

(w/w) formulations heat-treated using direct steam infusion (■), direct steam injection (■) 

and indirect tubular heating (■) at final heat temperatures of 121, 135 and 142 °C, expressed 

as a percentage of the respective native protein content of the unheated formulation. The error 

bars represent the standard error determined from three trial replicates.  

 

Fig. 3. Particle size distribution, on an intensity basis, of unheated ( ) beverages, and 

infusion ( ), injection ( ), and tubular ( ) heated 4% (w/w) protein formulation at final 

heat temperatures of (A) 121, (B) 135 and (C) 142 °C.  

 

Fig. 4. Instability index of formulations, following accelerated storage stability using an 

analytical centrifuge at 2300 x g, for 3h at 25°C, with 4 (■), 6 (■), and 8% (■) protein (w/w) 

before and after heat treatment with direct infusion, direct injection or indirect tubular heat 

treatment at final heat temperatures of 121, 135 and 142 °C for 3 s. 
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Highlights 

Supersonic steam injection provides rapid heating and high shear 

Substantial native whey protein retention compared to tubular and infusion heating 

No difference in accelerated physical stability for heating technologies 

May enable new product development opportunities 
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