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Abstract: We numerically investigate a novel 40 Gbps OOK to AMI all-optical modulation 

format converter employing an SOA-based Mach-Zehnder interferometer.  We demonstrate 

operation with a 2
7
-1 PRBS and explain the phase modulation’s relationship with patterning. 
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1. Introduction 
 

The ever-increasing demand for optical fiber capacity has fueled interest in advanced modulation formats enabling 

superior transmission properties.  One such modulation format is alternate mark inversion (AMI) where on-off 

keyed (OOK) pulses, typically return-to-zero (RZ), are also phase modulated so that each pulse is phase-inverted 

with respect to the next pulse [1].  In this work we propose and numerically investigate, for the first time, the use of 

a semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) for 40 Gbps all-optical 

modulation conversion between RZ-OOK and RZ-AMI.  We also quantitatively analyze the output phase 

modulation through the phase compression factor. 
 

2. Operation Principles 
 

The SOA-based MZI is configured as an exclusive-or (XOR) logic gate [2,3], as shown in Fig. 1, with two input 

ports, A and B.  The cw probe at λAMI is injected into the interferometer input port and propagates through the two 

SOAs which can change both the amplitude and phase of the probe.  The upper arm of the MZI also contains a 

static phase shifter which controls the interference condition of the probe at the MZI output port.  With no other 

inputs to the MZI, the two path lengths are identical, and setting the phase shifter to π leads to a destructive 

interference condition for the probe at the output port. 
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Fig. 1. All-optical modulation converter with the XOR gate shown inside dotted box.   
 

The XOR gate is shown in the well-known push-pull configuration allowing switching windows much shorter 

than the SOA recovery times [2,3].  A pulse injected into input A is split between SOA1 and SOA2.  The pulse first 

saturates SOA1, and through both cross-gain (XGM) and cross-phase modulation (XPM), the rising edge of a pulse 

at λAMI  is created at the switch output.  The other pulse is delayed and enters SOA2 Δτ seconds later, closing the 

switching window opened by SOA1, and creates the falling edge of the output pulse.  Though the push-pull 

configuration enables the creation of short output pulses, it does not eliminate output patterning due to the finite 

recovery times of the SOAs. 

The gate works in the same way for input B except that the SOAs are optically addressed in opposite sequence.  

If there is a pulse inputted to both A and B the simultaneous phase excursions in the two SOAs cancel and the 

switch stays closed.  In this way the MZI exhibits XOR functionality, and we have recently demonstrated a 42.6 

Gbps hybrid-integrated device operating with a low bit-error rate penalty [2]. 
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 To understand the phase modulation at the output we first analyze the static transfer function for the XOR gate, 

H.  We consider the transfer function in the case where the delayed pull inputs and the XGM on the probe are 

neglected: 
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where φ1 and φ2  are the phase shifts induced on the probe by SOA1 and SOA2, respectively, and φ0  in Fig. 1 has 

been set to π.  H becomes nonzero after one of two input conditions: (1,0) and (0,1) where (A,B) are the binary 

inputs to ports A and B.  Using Eq. (1) we can compare the two different output electric fields: 
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where
AE


and

BE


are the electric fields resulting from (1,0) and (0,1), respectively, and we assume that φ1 and φ2 are 

equal.  Eq. (2) indicates that the two possible output field states are π out of phase with each other. 

We stress the important result from Eq. (2) that the phase difference between the two fields is completely 

independent of the magnitude of the individual phase excursions, φ1 and φ2.  Dynamically, it is only necessary that 

the SOA phase excursions be equal for π phase shifts on the output pulses.  This suggests that this technique will 

work across the SOA gain bandwidth and possess a large input dynamic range.  However, we anticipate that pattern 

effects may cause pulse-to-pulse variations in φ1 and φ2 and break the necessary operational symmetry. 

We demonstrate in Table 1 how injecting a copy of the data delayed by one bit period into one of the XOR 

input ports (port B in Fig. 1) produces AMI modulation at the output. Table 1 shows a pulse, which represents a 

logical “1”, appearing at the output due to an input pulse (“1”) at port A.  This input pulse is followed by an 

arbitrary number of similar pulses.  Each of these input pulses results in a no-pulse, or logical zero, at the XOR 

output due to the delayed copy injected into port B.  When a logical zero eventually enters port A, the pulse injected 

into port B creates an output pulse which must be of opposite phase as shown in Eq. (2).  Similarly, Table 2 shows 

how a sequence of zeros also results in output pulses of alternating phase.  We note that the AMI pulse sequence 

outputted from the gate is not identical to the input binary logic sequence, but this difference can be removed using 

a simple encoder/decoder which can in principle be implemented either electronically or all-optically. 

 

Table 1          Table 2 
 

 

 

 

 

3. Modeling 
 

We now investigate the operation of the complete all-optical modulation converter shown in Fig. 1 using a 

computer model based on a typical traveling-wave rate-equation analysis [4].  Typical modeling parameters [4] are 

utilized, resulting in SOAs which are 2mm in length and when biased at 350 mA produce a gain peak of 30 dB 

centered at 1548 nm.  The gain recovery time is ~ 22 ps which suggests that these SOAs will perform well for input 

data sequences at 40 Gbps.  However, we expect patterning to persist at the output because each SOA is receiving 

both push and pull (i.e. delayed by Δτ) inputs. 

The cw probe and data wavelengths are 1549.32 nm and 1548.51 nm, respectively.  The probe input power into 

the modulation converter is -7 dBm. The 40 Gbps OOK data is composed of 3 ps optical pulses with an average 

power of -4.2 dBm (2.8 mW peak power) which are modulated with a 2
7
-1 pseudo-random binary sequence 

(PRBS).  The delay built into the pull optical path is 8 ps, and the static phase shifter is set to π. 

The two input signals injected into ports A and B at λdata, as well as the output signal at λAMI, are shown in Fig. 

2.  The plot shows power as a function of time in units of bit number.  Input B (middle trace) is clearly delayed 

from input A (top trace) by one bit period.  The entire output electric field trace is multiplied by a single constant to 

minimize the imaginary components, and the bottom trace in Fig. 2 shows the output power multiplied by the sign 

of the real part of the output field.  This trace depicts the pulse to pulse phase reversals as sign changes which are 

seen to be consistent with AMI modulation. 
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Fig. 2.  Input and output pulses from the modulation converter. 
 

We expect finite SOA recovery times to lead to both amplitude and phase patterning on the output.  

Furthermore, we anticipate that patterning may lead to an overall mean pulse-to-pulse phase shift which is not equal 

to π (see Eq. (2)).  The output electric field is sampled in each bit slot and displayed as a point in the constellation 

diagram in Fig. 3a.  We take the average vector angle of each of the mark subsets as φ+1 ( 0E ) and φ-1 

( 0E ) and define the phase compression, Δφ,  
 

111              (3) 

 

and offer Δφ as a metric for the efficacy of the modulation converter.  The model predicts a phase compression of 

9% for this modulation converter operating at 40 Gbps.  The source of the phase compression lies in the finite SOA 

recovery time.  On every occurrence of input condition (0,1), a pulse must have necessarily been inputted to port A 

in the immediately preceding bit period.  This means that the switch can never be in a completely recovered state on 

input condition (0,1), and the resultant output pulses will have less of an average phase shift than their counterparts 

for input condition (1,0).  The result is a mean phase angle between the output pulses which is not equal to π 

radians. 
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Fig. 3.  (a) Constellation diagram of the 40 Gbps output.  (b) Constellation for 20 Gbps output. 
 

This suggests that allowing more time for the SOAs to recover will decrease the phase compression.  We repeat the 

previous numerical experiment with identical parameters except for a longer bit period of 50ps.  The results are 

shown in Fig. 3b, where the constellation clearly demonstrates less amplitude and phase patterning as well as a 

much smaller phase compression.  
 

4. Conclusion 
  

We have proposed and analyzed a novel high-speed all-optical OOK to AMI modulation converter, which is a 

function of interest in future optical networks.  The device’s reliance on MZI symmetry suggests generous 

tolerances to input pulse width, power, and wavelength.  We also show that scaling to higher bitrates is limited by 

phase compression and patterning.  
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