
Title THAWS: automated wireless sensor network development and
deployment

Authors Harte, Seán;Popovici, Emanuel M.;O'Flynn, Brendan

Publication date 2008-07

Original Citation Harte, S., Popovici, E.M., O'Flynn, B., 2008. THAWS: automated
wireless sensor network development and deployment. In:
Mastorakis, N.E. et al, New aspects of circuits : proceedings of
the 12th WSEAS International Conference on Circuits. Heraklion,
Greece 22-24 July 2008. [S. l.] : WSEAS Press

Type of publication Conference item

Rights © 2008, by WSEAS Press

Download date 2024-04-27 07:27:32

Item downloaded
from

https://hdl.handle.net/10468/147

https://hdl.handle.net/10468/147


THAWS: Automated Wireless Sensor Network Development And 

Deployment 
 

SEÁN HARTE1,2, EMANUEL M. POPOVICI1, BRENDAN O’FLYNN2 
1 Department of Microelectronic Engineering, University College Cork, IRELAND 

2 Microelectronics Applications Integration Group, Tyndall National Institute, Cork, IRELAND 
sean.harte@tyndall.ie     http://www.tyndall.ie/mai/wsn.htm 

 
 
Abstract: - This research focuses on the design and implementation of a tool to speed-up the development and 
deployment of heterogeneous wireless sensor networks. The THAWS (Tyndall Heterogeneous Automated 
Wireless Sensors) tool can be used to quickly create and configure application-specific sensor networks. 
THAWS presents the user with a choice of options, in order to characterise the desired functionality of the 
network. With this information, THAWS generates the necessary code from pre-written templates and well-
tested, optimized software modules. This is then automatically compiled to form binary files for each node in 
the network. Wireless programming of the network completes the task of targeting the wireless network 
towards a specific sensing application. THAWS is an adaptable tool that works with both homogeneous and 
heterogeneous networks built from wireless sensor nodes that have been developed in the Tyndall National 
Institute. 
 
Key-Words: - Wireless sensor networks, Automated application development, Code generation 
 

1   Introduction 
A Wireless Sensor Network (WSN) is made from a 
potentially large number of sensor nodes that are 
capable of communicating wirelessly. The sensor 
nodes must be inexpensive to enable a wide 
deployment that can record sensor data with a high 
spatial and temporal resolution. The nodes must also 
have a small physical size and have a long lifetime 
to allow them to be used in a large number of 
applications. This paper focuses on networks that 
take sensor readings from many nodes and transmit 
them back through the network to a gateway node 
that can be connected to a PC. The sensor data can 
then be analysed. Such a network can perform many 
tasks, such as water quality monitoring [1], or 
ensuring efficient and safe manufacturing plants [2]. 
     Each node in a WSN can be viewed as being 
made from a number of hardware components, as 
shown in Fig. 1. The node is built by combining 
these components or a subset of these components. 
The target application should be considered in the 
selection of each component in a node, to ensure the 
desired performance and lifetime of the system. 
     To create the optimum network for a particular 
application, it may be beneficial to have many 
different types of nodes with different functions that 
together create a single heterogeneous network. One 
reason for this is that nodes can have different 
functions depending on what type of sensors they 
are connected to. A second reason is that, to save 
cost, each node should only have the minimum 

hardware required to perform its task. If a node only 
has to take a reading every 10 seconds and then 
transmit it, a very low-powered processor is 
sufficient. Conversely, for more advanced tasks, a 
more powerful processor is required. Routing in 
large networks, encryption, data compression, and 
error correction are advanced tasks that are not 
possible to implement on a very low-powered 
processor. 
 
 
1.1   WSN Application Development 
The hardware developments in miniaturising sensors 
and improved energy efficiency of components, 
have enabled research on software suitable for 
WSNs. New communication algorithms have been 
designed for large-scale wireless networks, where 
energy consumption is an important factor and low-
power radios create unreliable connectivity [3]. 
Other research is focusing on operating systems that 
can run on very limited processors, and still provide 
support for applications, such as TinyOS [4]. 

MCU Memory

Sensor/

Actuator

Radio

Power 

source

FPGA / 

ASIC

Power 

Regulator

ADC

Data 

bus

Power 

bus

 
Fig. 1. Generic Wireless Sensor Node 

 



     There are also difficulties creating applications 
for WSNs. Currently, many applications are 
developed using low-level programming languages 
such as C or nesC [5]. To develop a new application 
requires someone with experience in programming 
with these languages. It also requires being familiar 
with the various libraries available. This makes fast 
development and deployment of networks difficult. 
     There also can be other difficulties in developing 
applications for WSNs. To save energy, code is 
often event-driven. For example, the node can be 
woken up by a timer, take a reading, and then go 
back into a sleep mode. The event-driven approach 
is implemented through the use of interrupts which 
creates the opportunity for corrupted data due to 
race-conditions if the programmer is not careful [6]. 
     A more fundamental difficulty is created by the 
distributed nature of WSNs. Some applications can 
be simplified by assuming that all nodes are 
identical. However, as described above, real 
networks may be heterogeneous so as to minimize 
cost while retaining functionality where required. 
Developing an application for such a network 
involves developing different code to execute on 
each node. This is time-consuming and the 
application logic becomes separated into many 
different files, making debugging and future 
development difficult. 
     This paper introduces a system called THAWS 
that simplifies application development for WSNs. 
THAWS allows users to create applications for 
running on heterogeneous networks, as well as 
homogeneous networks. The user can specify what 
they want the network to do, and its associated 
constraints, without worrying about how this will be 
implemented. The network builds itself, generating 
the necessary code and programming the nodes 
appropriately. 
     This paper first briefly discusses the nodes used. 
Then the design and use of the tool to help rapidly 
develop WSN applications is presented. The tool is 
analysed and compared with other similar systems. 
Finally, future work and conclusions are discussed. 
 

2   Implementation 
The tool is implemented to work on a two-tiered 
network with two different classes of nodes, as 
shown in Fig. 2. The first node is small in size, 
inexpensive, and has very low-power energy 
consumption. The second node is bigger in size, and 
also more expensive. However it has more 
processing capability. They are used to build a 
heterogeneous network where the larger, more 
powerful node can provide the backbone of the 

Gateway

 
Fig. 2. Two-tiered heterogeneous network  

 

network, and do any heavy information processing 
that is required. In the THAWS system, each larger 
node supports a cluster of smaller of the smaller, 
cheaper nodes that can be used for sensor interfacing 
and more simple tasks. The larger node is suited to 
higher-powered long-distance communication 
between clusters as they can have a large battery. 
The two nodes are described in the next section. 
 
 
2.1   Tyndall Wireless Sensor Nodes 
In the Tyndall National Institute a number of 
different nodes have been developed. Along with 
various application specific nodes, two modular 
nodes have been designed with a size of 10mm by 
10mm [7], and 25mm by 25mm [8]. These are 
referred to as the 10mm and 25mm nodes. Both 
these nodes are made up of a number of different 
layers. Each node has a processing and transceiver 
layer. Sensor layers can then be connected with 
application specific sensors, for example 
temperature sensors, humidity sensors, 
accelerometers, gyroscopes, etc. This modular 
approach allows the nodes to be used to build sensor 
networks for many applications. The 10mm and 
25mm nodes are shown in Fig. 3. 
     The 25mm node has more powerful processing 
capabilities than the 10mm node. This is provided 
by a layer with an Atmel ATmega128 
microcontroller with 128kB of program memory. 
There is also an FPGA layer that can be used for 
intensive processing, such as forward error 

 
Fig. 3. 10mm and 25mm modular Tyndall nodes 

 



correction, cryptography, or image processing. The 
25mm has a number of different layers for RF 
communications. In the 2.45GHz frequency band 
there is a layer using a Nordic nRF2401 transceiver 
and another layer using an Ember EM2420 ZigBee 
compatible transceiver. There is also a 433/868/915 
MHz layer using a Nordic nRF905 transceiver, 
which allows a longer range compared to the 
2.45GHz options. The drawback is that bandwidth is 
limited to 50kbps, compared to 1000kbps for the 
Nordic nRF2401 [9]. 
     For the 10mm node, there is currently a single 
transceiver layer. This uses a Nordic nRF9E5 chip. 
This chip has a radio that is compatible with the 
Nordic nRF905 so this allows heterogeneous 
networks to be built. This chip also has an integrated 
8051-compatible microcontroller with a limited 4kB 
program memory. The small size of the 10mm nodes 
allows a greater range of applications, for example it 
can be more easily embedded into clothing, or it can 
be used in medical applications. The 10mm node is 
also cheaper due to reduced PCB size, and lower 
component count. Using the 10mm nodes together 
with the more powerful 25mm nodes allows a lot of 
flexibility in building WSNs suitable for a wide 
range of applications. 
 
 
2.2   THAWS Overview 
The core of the THAWS system is an application 
generating tool. An overview of how this works is 
illustrated in Fig. 4. 
     The tool has two inputs. The first of these is a 
software library containing modules of code that act 
as primitives in building up a WSN application. 
Some of the modules are in the form of templates 
that are customised for varying application 
requirements. The second input into the tool is a 
description of the desired application. This defines 
the functionality of the network, and also 

constraints. For example the type of sensors, number 
of nodes etc. and network topology are declared. 
     Using these two inputs, the tool then outputs 
binary program images for each node in the 
network. This is done by first producing C files and 
then compiling these using the appropriate compiler. 
The use of wireless in-network programming then 
allows the network to be programmed or 
reprogrammed/reconfigured to have the desired 
functionality.  
 
 
2.3   Software Code Library 
The performance and efficiency of the final 
developed application will depend greatly on the 
performance and efficiency of the software library. 
Both energy efficiency and the memory (RAM and 
ROM) footprints were considered when creating the 
library. The limited ROM of the 10mm node 
especially requires efficient code. The code is also 
tested and debugged thoroughly. 
     Some common modules are required in each 
WSN application. Modules are needed to interface 
to radios, and interface to sensors. This code for 
interfacing to hardware follows HAL (Hardware 
Abstraction Layer) principles [10]. A common 
interface is defined for hardware that has similar 
functionality. For example each of the 4 radios used 
by Tyndall nodes share a common low-level 
interface. This interface is currently used to 
implement star or tree networks. Currently there is a 
very simple MAC layer on top of this low level 
layer that supports addressing, collision avoidance, 
and tree networks with a predefined topology. This 
MAC layer is independent of radio or 
microcontroller, due to the use of a HAL. 
     For interfacing with sensors, modules have been 
developed that use I2C, SPI, and UART protocols to 
interfacing with digital sensors. Using integrated 
ADCs, analogue sensors can also be interfaced with. 

App definition:

Type of nodes

Network topology

What Sensors?

Sampling frequency

etc.

THAWS

25504446

23FF1...

24AC2033

343BD...

Software 

code 

library

2A2A2076

51635...

Binary 

Program 

Images

...

Gateway

node

 
Fig. 4. Application development tool 



These sensor interfaces have also been developed, 
so that the higher level application logic does not 
need to be changed if it is running on a 25mm node 
or a 10mm node. 
     In addition to communications and sensing, code 
has also been developed for timers and buffers, 
which are common building blocks that make up a 
WSN application Timers are used to enable low-
power sleep modes. The timer can run in this mode, 
and wakeup the node when required, for example 
when a sensor reading needs to be taken. Buffers 
can be used for temporarily storing sensor readings 
either in RAM for volatile storage or in 
EEPROM/Flash for persistent storage. 
     Higher level software modules tie together the 
hardware interfacing code to produce an application. 
These are in the form of application templates which 
can be automatically modified to produce a specific 
application. For example setting the address of each 
node in the network, or including the appropriate 
files for the attached hardware. 
     The software modules which are core to the 
THAWS tool have been tested in a real-world 
deployment. The SmartCoast project [1] has been 
monitoring water quality (pH, conductivity, 
turbidity, depth, temperature) in the River Lee in 
Cork, Ireland for almost 12 months. In this time the 
only maintenance required was to periodically clean 
the sensors, and recharge the battery. 
 
 
2.4   Application Generation 
The part of the THAWS system that is most visible 
to the user is a wizard tool. This is currently 
implemented as a console application that asks the 
user a number of questions about the network, as 
shown in Fig. 5. This information is then used in the 
task of code generation. 
     THAWS has knowledge of which software 
modules are needed for each node depending on 
what options the user picks. It also knows how to 
modify application templates to have the needed 
functionality. This is done by substituting marked 
text in the application template with code to create 
valid C files. THAWS searches through the source 
file until it finds a variable marked with the prefix 
“THAWS_VAR_”. For example to support tree 

routing each node is given the required addressing 
information, e.g. THAWS_VAR_PARENT_ADDR. 
The variables can have default values, so that the 
code can be compiled by hand without using the 
THAWS tool for testing and debugging purposes. 
     The use of HALs for interfacing with the radio 
and sensors simplifies the code generation. Different 
modules that present the same interface can be 
included without changing any other code. For 
example the code for any radio can be linked to 
without any other modifications because they each 
have the same functions. 
     The compiling and linking processes, that select 
which code will be included for each node in the 
network are all controlled by THAWS to output the 
required binary files. This is done by generating 
makefiles [11] with the necessary rules for including 
the correct code modules and using the appropriate 
compiler. 
     THAWS also outputs a text file with a formal 
description of the network. This can be used as an 
input to the tool to regenerate the same network. It 
can also be modified to change the functionality. 
 
 
2.5   Wireless Programming 
     After the code generation, the binary files can be 
programmed onto the network wirelessly. This 
avoids the time-consuming task of manually 
connecting each node to a PC and programming it. 
This can be especially difficult if a network has been 
deployed in a harsh environment, such as marine 
monitoring. 
     To support wireless programming each 
application has the ability to receive a new program 
binary image and write this to its own program 
memory. When a complete program has been 
written to the memory, the node can restart itself and 
execute the new program. With the 10mm node 
there is an external EEPROM which provides 
persistent storage of the program. When the node is 
powered up, the microcontroller copies from the 
EEPROM to an internal RAM that is used solely for 
program code. As the EEPROM is only accessed at 
power-up, it can be easily rewritten. For the 25mm 
node, integrated Flash memory is used for the 
program code. A special area of this is reserved for a 
bootloader program. This bootloader program can 
receive data through the radio and overwrite the rest 
of the Flash. 
 
 

3   Analysis 
All programming systems must make a compromise 

» How many nodes?

» What type are they?

» What type of radio?

» What sensors are attached?

» How often to take readings?

» What readings to report?

» What is the network topology?
 

Fig. 5. Questions to generate network specification 



between the level of control and ease of use. To 
have no compromises on possible applications, the 
application can be developed in a low-level 
language like assembly, C, or using the TinyOS [4] 
system. Assemblers and C compilers are available 
for most platforms, so they are a possible choice for 
almost all platforms. However the availability of 
libraries will vary from platform to platform. 
TinyOS provides a large set of libraries to support 
energy-aware WSN applications and has libraries 
for many common tasks. With each these options a 
lot of care is required to create a reliable application. 
The programmer must be able to create energy-
efficient applications, avoiding, for example, race-
conditions, as discussed in the introduction. 
     Much effort has been spent developing systems 
that support easier application development for 
WSNs. One such system is Maté [12], which defines 
a list of byte-code instructions that can be used to 
construct wireless sensor network applications. The 
byte-codes can be sent to a node and will be run by 
an interpreter on the node. This system has the 
advantage of fewer lines of code then developing in 
C, and thus a faster application development time. It 
is also easier to disseminate new programs into the 
network, because of the small size of the byte-codes. 
Limitations of Maté are that the user must be 
familiar with the byte-codes which look like an 
assembly language, and also it is assumed that every 
node will have the same function and design. 
     SNQPs (Sensor Network Query Processors) [13] 
are another approach that provide macro-
programming of the full network of nodes, from a 
single declaration. With a SNQP the network can be 
interfaced with as if it were a database. The user can 
then enter SQL queries which are interpreted by the 
network and the desired data is returned to the user. 
     For example: “SELECT nodeid, temperature, 
FROM sensor, WHERE temperature > 20, 

SAMPLEPERIOD 10s” 
     This will return – from each node where the 
temperature is greater than 20 °C – the nodeid and 
temperature reading every 10 seconds. SQL is easier 
to use than byte-codes as it focuses on what the user 
wants and not how this should be implemented. 
However there is still a cost in interpreting the 
queries, and currently the system is not designed for 
heterogeneous networks. 
     Tenet [14] is an architecture for creating two-
tiered heterogeneous networks. More powerful 
nodes are called masters, and less-powerful nodes 
are motes. With Tenet, the master nodes do most of 
the work, and this is where the application is 
programmed by the user. The motes are 
programmed directly by the master nodes, using 

tasks, which are sent by the master to the mote. Each 
task is made up of a string of tasklets, which are 
simple instructions, for example sampling an ADC 
channel. The mote performs each tasklet and then, to 
complete the task, sends a response to the master. 
Tenet provides some support for some motes having 
different functionality. A task can contain predicates 
that must be met before the task will be executed. 
However this test is done on the mote so the task 
still has to be sent to every node, which is 
inefficient. A significant difference between Tenet 
and our system is the class of the nodes. The mote in 
the Tenet system is comparable in functionality to 
the 25mm Tyndall node. The master nodes are a PC 
or based on the Intel Stargate platform, which has a 
32bit, 400MHz processor, and 32MB of program 
memory. This node is several orders of magnitude 
more expensive than the 25mm node. 
     The THAWS tool that has been presented in this 
paper allows fast and easy application configuration 
and rapid deployment of two-tiered heterogeneous, 
and homogeneous sensor networks. THAWS is also 
easy to use for non-engineers. No knowledge or 
embedded systems development is necessary. Our 
system is expressive enough to allow the fast 
development of any sensor data gathering 
application.  The use of code generation, and not an 
interpreter, allows for greater efficiency, which is 
very important on severely constrained systems that 
must have a long life-time. The use of C code allows 
our system to be extended relatively easily to 
different platforms. It is currently working on Atmel 
ATmega128 and an 8051 compatible processor, 
which have completely different tool-chains. The 
Maté, SNQP, and Tenet systems all use TinyOS as a 
base system. Although this gives access to TinyOS’s 
libraries, it also limits their system to TinyOS 
compatible platforms. 
 
 

4   Future Work 
Our system is presently in an early stage of 
development. Although it is possible to develop 
applications that are capable of being deployed, 
there a number of improvements that can be made. 
There is a lot of potential to research optimized 
algorithms for our system. The current library 
supports simple tasks. However it can be improved 
through the use of more advanced MAC algorithms, 
that can enable better energy efficiency as the 
transceiver can be in a sleep mode for more time. 
     Supporting in-network wireless re-programming 
of networks provides many difficulties. Much 
research has been done into solving these. 



Dissemination algorithms for sending the large 
program code to all nodes in the network without 
causing network congestion have been examined 
[15]. Complementary research has been done into 
only reprogramming only the parts of the program 
memory that have changed [16]. This reduces the 
amount of data that has to be sent over the radio. 
However, due to its heterogeneous nature, our 
network will provide extra difficulties. 
     The THAWS system will be validated by using it 
to develop and configure some real WSN 
deployments. The Tyndall National Institute has 
deployments of wearable, environmental 
monitoring, and medical sensor networks that can be 
used for testing. This will give valuable information 
on the ease-of-use and reliability of THAWS. 
 

5   Conclusions 
We presented in this paper a new method for fast 
development and deployment of wireless sensor 
networks. The sensor networks can be 
heterogeneous to minimize the cost of the overall 
network, and also to facilitate non-uniform 
functionality of each node. 
     To support this development, the THAWS tool 
allows macro-programming of the entire network 
from a single application definition. This definition 
is obtained from the application developer without 
the need for any knowledge of software 
programming or embedded systems. 
     THAWS has been implemented to use the 
modular Tyndall nodes, and uses software modules 
that have been tested in real-world deployments. 
 
 

6   Acknowledgements 
This work was supported by the Irish Research 
Council for Science, Engineering, and Technology, 
as part of the Embark Initiative 
 
 
References: 

 

[1] B. O'Flynn et al., “SmartCoast: a wireless 
sensor network for water quality monitoring,” 
in Proc. 32nd IEEE Conf. Local Computer 
Networks, Dublin, 2007, pp. 815-816. 

[2] L. Krishnamurthy et al., “Design and 
deployment of industrial sensor networks: 
experiences from a semiconductor plant and the 
North Sea,” in Proc. 3rd Int. Conf. Embedded 
Networked Sensor Systems, San Diego, CA, 
2005, pp. 64-75. 

[3] P. Levis et al., “The emergence of networking 
abstractions and techniques in TinyOS,” in 

 

 

Proc. 1st USENIX/ACM Symp. Networked 

Systems Design and Implementation, San 
Francisco, CA, 2004, pp. 2-15. 

[4] TinyOS. Available: http://www.tinyos.net/ 
[5] D. Gay et al., “The nesC language: a holistic 

approach to networked embedded systems,” in 
Proc. ACM SIGPLAN Conf. Programming 
Language Design and Implementation, San 
Diego, Ca, 2003, pp. 1-11. 

[6] J. Regehr, N. Cooprider, and D. Gay, 
“Atomicity and visibility in tiny embedded 
systems,” in Proc. 3rd Workshop on 

Programming Languages and Operating 

Systems, San Jose, CA, 2006, pp. 4-7. 
[7] S. Harte, B. O’Flynn, R. V. Martínez-Català, 

and E. M. Popovici, “Design and 
implementation of a miniaturised, low power 
wireless sensor node,” in Proc. 18th Euro. 
Conf. Circuit Theory and Design, Seville, 2007, 
pp. 894-897. 

[8] S. J. Bellis et al., “Development of field 
programmable modular wireless sensor network 
nodes for ambient systems,” Computer 

Communications, vol. 28, no. 13, pp. 1531-
1544, Aug. 2005. 

[9] Nordic Semiconductor, nRF905 Datasheet. 
Available: http://www.nordicsemi.com/ 

[10] V. Handziski et al., “Flexible hardware 
abstraction for wireless sensor networks,” in 
Proc. 2nd European Workshop on Wireless 

Sensor Networks, Istanbul, 2005, pp. 145-157. 
[11] GNU Make, http://www.gnu.org/software/make 
[12] P. Levis and D. Culler, “Maté: a tiny virtual 

machine for sensor networks,” in Proc. 10th Int. 
Conf. Architectural Support For Programming 

Languages and Operating Systems, San Jose, 
CA, 2002, pp. 85-95. 

[13] J. Gehrke and S. Madden, “Query processing in 
sensor networks,” Pervasive Computing, vol. 3, 
no. 1, pp. 46-55, Jan.-Mar. 2004. 

[14] O. Gnawali et al., “The Tenet architecture for 
tiered sensor networks,” in Proc. 4th Int. Conf. 
Embedded Networked Sensor Systems, Boulder, 
CO, 2006, pp. 152-166. 

[15] S. S. Kulkarni and L. Wang, “MNP: Multihop 
network reprogramming service for sensor 
networks,” in Proc. 25th IEEE Int. Conf. 
Distributed Computing Systems, Columbus, 
OH, 2005, pp. 7-16. 

[16] J. Jeong and D. Culler, “Incremental network 
programming for wireless sensors,” in Proc. 1st 
IEEE Conf. Sensor and Ad Hoc 

Communications and Networks, Berkeley, CA, 
2004, pp. 25-33. 


