
Title Extending uncertainty formalisms to linear constraints and other
complex formalisms

Authors Wilson, Nic

Publication date 2008-08

Original Citation Wilson, N; (2008) 'Extending uncertainty formalisms to linear
constraints and other complex formalisms'. International
Journal of Approximate Reasoning, 49 (1): 83-98. doi: 10.1016/
j.ijar.2007.08.007

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://www.sciencedirect.com/science/article/pii/
S0888613X07001235 - 10.1016/j.ijar.2007.08.007

Rights (c) 2007 Published by Elsevier Inc. NOTICE: this is the
author’s version of a work that was accepted for publication
in International Journal of Approximate Reasoning. Changes
resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted
for publication. A definitive version was subsequently published in
International Journal of Approximate Reasoning, [VOL 49, ISSUE
1, (2008)] DOI: http://dx.doi.org/10.1016/j.ijar.2007.08.007

Download date 2024-05-19 05:20:50

Item downloaded
from

https://hdl.handle.net/10468/1118

https://hdl.handle.net/10468/1118

Extending Uncertainty Formalisms to Linear

Constraints and Other Complex Formalisms ?

Nic Wilson

Cork Constraint Computation Centre,
Department of Computer Science,

University College Cork, Cork, Ireland
n.wilson@4c.ucc.ie

Abstract

Linear constraints occur naturally in many reasoning problems and the information
that they represent is often uncertain. There is a difficulty in applying AI uncer-
tainty formalisms to this situation, as their representation of the underlying logic,
either as a mutually exclusive and exhaustive set of possibilities, or with a propo-
sitional or a predicate logic, is inappropriate (or at least unhelpful). To overcome
this difficulty, we express reasoning with linear constraints as a logic, and develop
the formalisms based on this different underlying logic. We focus in particular on
a possibilistic logic representation of uncertain linear constraints, a lattice-valued
possibilistic logic, an assumption-based reasoning formalism and a Dempster-Shafer
representation, proving some fundamental results for these extended systems. Our
results on extending uncertainty formalisms also apply to a very general class of
underlying monotonic logics.

Key words: possibilistic logic, lattice-valued possibilistic logic, Dempster-Shafer
theory, assumption-based reasoning, linear constraints, spatial and temporal
reasoning

1 Introduction

Many reasoning problems involve linear constraints restricting the possible val-
ues of real-valued variables; in particular temporal and spatial problems can in-
volve linear constraints representing relationships between temporal variables
and between spatial variables, see e.g., [16,26,7]. Such constraints can often

? This paper is an extended version of (Wilson, 2004) [34].

Preprint submitted to Elsevier 11 June 2007

represent information that is uncertain. Many formalisms for representing and
reasoning with uncertain information have been developed. The underlying
logical information is typically expressed as a finite set of possibilities, or us-
ing propositional calculus, or sometimes first order predicate calculus. One can
sometimes convert linear constraints to a discrete (e.g., propositional) form,
but this can make the representation very cumbersome, and the important
metric information will tend to be hidden. Furthermore, discrete representa-
tions cannot take the continuous nature of space and time into account, for
which it can be natural to have continuously graded representations of uncer-
tainty. For example, based on different sets of map data, we may have (for
example, in a Dempster-Shafer representation) a degree of belief of 0.8 that a
well is more than 5 metres from a property boundary, and a degree of belief
of 0.7 that it is more than 8 metres away. The degree of belief that it is more
than 7 metres from the boundary will tend to be more than 0.7 and less than
0.8; in fact, the degree of belief may well vary continuously with the distance
from the boundary.

It can therefore be preferable and more natural to represent linear constraints
(and more general kinds of constraint) directly, and extend the uncertainty
theories to reason with these. We approach this problem by expressing linear
constraints in a logic (Section 2.1) and generalising uncertainty formalisms
by defining them over this logic. These are illustrated in terms of a simple
example, based on a real application of reasoning with uncertain geographic
information. Our approach to generalising uncertainty formalisms applies for a
very general class of underlying logics, which we define formally in Section 2.2;
this includes logics which can reason with disjunctions of linear constraints,
or even non-linear constraints, allowing, for example, more expressive repre-
sentations of spatial boundaries.

The basic idea behind the generalisation of uncertainty formalisms is to con-
sider the uncertainty theories over (finite or infinite) sets of possibilities, and
associate a constraint with its semantics. For example, suppose that c is a con-
straint on a set of real-valued variables, and let [c] be the set of all assignments
that satisfy the constraint c. Then (for example) the degree of belief of c is
defined to be the degree of belief of the set [c]. This kind of approach can be
used to extend logic-based formalisms, such as various non-monotonic logics
and belief revision formalisms. In this paper we focus on formalisms which
involve some kind of grade or degree of support being allocated to proposi-
tions. The grades of support may be totally ordered: as in Dempster-Shafer
beliefs, or necessity values in possibility theory and possibilistic logic; or only
partially ordered as in lattice-valued possibilistic logic and the generalised
assumption-based reasoning formalism. Partially ordered degrees of support
can be natural, for example, when one has information from two sources, and
we don’t know which of the sources is more reliable. The degrees of belief
are interpreted probabilistically in Dempster-Shafer theory, and more qualita-

2

tively in the other formalisms considered, where the grades may just represent
ordering information amongst strengths of belief.

We consider possibilistic logic in Section 3, where we show (Theorem 2) how
deduction in the possibilistic logic can be achieved using deduction in the un-
derlying logic. In Section 4 we generate a system of lattice-valued possibilistic
logic, based on linear constraints or other underlying monotonic logics; in a
similar way we generate a generalised assumption-based reasoning formalism.
For each of these we give a sound and complete proof theory. In Section 5 we
show how one can extend Dempster-Shafer theory.

2 Underlying Monotonic Logics

In this section we define the underlying logics for the generalised uncertainty
formalisms constructed in Sections 3, 4 and 5. First we consider a logic of linear
constraints. Then, in Section 2.2 we consider a general class of monotonic
logics.

2.1 A Logic of Linear Constraints

We describe, in this section, a logical representation of linear ≥-constraints,
with a semantics and a proof theory that is sound and complete for finite sets
of constraints. We consider linear constraints of the following form: a1x1+· · ·+
anxn ≥ a0, where a0, ..., an are known real numbers, and x1, ..., xn are unknown
real numbers, often representing some physical quantities that we’re interested
in, but only have partial information about. This constraint is saying that the
unknown vector x = (x1, . . . , xn) must be such that a1x1 + · · · + anxn ≥ a0

holds.

The language. Let V = {X1, . . . , Xn} be a finite set of real-valued vari-
ables. 1 We are interested in linear constraints on V of the form a1X1 + · · ·+
anXn ≥ a0. Formally we define a (linear) constraint a to be a real-valued
function on {0, . . . , n}, where a(i) is usually written ai. Let L be the set of all
such (linear) constraints. Define a model x to be a real-valued function on the
set {1, . . . , n}. x(i), usually written xi, is interpreted as a value of the variable

1 Each variable is assumed to have a true, but (usually) unknown, value. We do
not consider here the more complex case where some of the variables are decision
variables, as studied in e.g., Simple Temporal Problems under Uncertainty (Vidal
and Fargier, 1999) [30].

3

Xi. Let M be the set of all models. We say that model x satisfies a, written
x |= a, if and only if a1x1 + · · ·+ anxn ≥ a0.

Element a of L represents the inequality:
∑n

i=1 aiXi ≥ a0. We will usually
slightly abuse the notation and write elements of L as linear inequalities∑n

i=1 aixi ≥ a0, or some equivalent form such as
∑

i−aixi ≤ −a0.

We label three special constraints as >, >0 and ⊥, which are defined as follows:
for each i ∈ {1, . . . , n}, >(i) = >0(i) = ⊥(i) = 0, and >(0) = −1, >0(0) = 0
and ⊥(0) = 1. Thus > can be considered as the constraint 0 ≥ −1, >0 as
0 ≥ 0 and ⊥ as 0 ≥ 1. > and >0 are satisfied by every model x, and ⊥ is
satisfied by none. Constraints can be added, and multiplied by real valued
scalars: for constraints a, b and real number r, constraint a + b is defined by
(a+ b)i = ai + bi for all i, and ra is defined by (ra)i = rai for all i.

The language can also be used to represent constraints with ≤ replacing ≥,
and also linear equalities. A constraint a1x1 + · · ·+ anxn ≤ a0 can be written
as (−a1)x1 + · · · + (−an)xn ≥ −a0, so is equivalent to the constraint −a. (x
satisfies the former constraint if and only if it satisfies −a.) The linear equality
a1x1 + · · · + anxn = a0 holds if and only if both a1x1 + · · · + anxn ≥ a0 and
a1x1 + · · ·+ anxn ≤ a0 hold so is equivalent to the pair of constraints {a,−a}.
We could also easily extend the language to include strict constraints of the
form a1x1 + · · ·+ anxn > a0 though, to keep the language simpler, we do not
do so here.

Here are a few examples of constraints that can be represented using this
language: (1) x1 ≥ 5.2; (2) x1 ≤ x2; (3) x2 = x1− x3; (4) x1− 2x2 ≤ x3 + 3x4;
(5) x1/(x1 + x2 + x3) ∈ [0.5, 0.6]; (6) the absolute value of x1− x2 is not more
than 5; (7) the arithmetic mean of x1, x2 and x3 is 4.3.

Consistency and semantic consequence. Suppose we have a set A of
constraints on unknown x. We say, in the usual way, that x satisfies A (written
x |= A) if and only if x satisfies every member of A, i.e., x |= a for all a ∈ A.
Let [A] be the set of x ∈ M that satisfy A, i.e., [A] = {x ∈M : x |= A}. A
is said to be consistent if it has a model, i.e., if [A] is non-empty; otherwise
it is said to be inconsistent. We would like to be able to talk about what
constraints b necessarily follow from those in A. Formally we define semantic
consequence relation |= by A |= B if and only if every element b of B is
satisfied by every model of A, i.e., [A] ⊆ [B]. Set of constraintsA is inconsistent
if and only if A |= {⊥}, since ⊥ has no model. By its construction, semantic
consequence |= is a reflexive, transitive and hence monotonic consequence
relation. However, it is not compact; for example, if ak is the constraint x1 ≥ k
then A = {ak : k = 1, 2 . . .} is inconsistent, but every finite subset of A is
consistent.

4

Syntactic consequence. Consider the proof theory generated by the ax-
ioms > and >0 and inference rule schemas (where a and b are arbitrary ele-
ments of L):

For any real r > 0, From a deduce ra.

From a and b deduce a+ b.

For any constraint a, From ⊥ deduce a.

For set of constraints A and constraint b we say in the usual way that b can
be proved from A, written A ` b, if b can be derived from applying iteratively
the above inference rules to A and the axioms > and >0; define also A ` B if
A ` b for all b ∈ B.

Any such (finitary) syntactic consequence relation ` is compact by definition,
so we can’t hope for full completeness, as |= is not compact. However, we have,
by well-known fundamental results for linear programming (see e.g., Chapter
1 of (Stoer and Witzgall, 1970) [29]) the following result (see (Wilson, 2002)
[33]).

Theorem 1 [Finite Completeness] For any sets of constraints A and B, A `
B implies A |= B. If furthermore, A is finite then A ` B ⇐⇒ A |= B.

In practice, one will use more developed tools for finding the consequences of a
set of such constraints: for general problems, linear programming techniques;
for particular sparse systems, Fourier elimination can be efficient; or fast al-
gorithms for special kinds of constraints, such as Simple Temporal Networks
(Dechter et al, 1991) [7].

The expression of reasoning with linear constraints as a logic makes it easy
to generalise many (in particular non-monotonic) extensions of classical logics
to linear constraints. The logic described above is closely related to the logic
of probability described in (Wilson and Moral, 94) [36] the main difference
being that the latter has some additional axioms, because of models being
probability functions which are non-negative. The methods for producing non-
monotonic extensions to this logic of probability can be adapted to produce
non-monotonic logics of linear constraints. In particular, the definition of a
default logic of probability in [36] (related to Reiter’s default logic [25]) carries
over immediately to a default logic of (finite sets of) linear constraints; this
involves defaults of the form A : B /C for finite subsets A, B, and C of L,
which is intended to represent that one should deduce C if one knows A, given
that B is consistent with what is known.

5

Flooded river example

We illustrate the techniques using an example, which is based on a real ap-
plication studied by Damien Raclot and Christian Puech [23,24] (see also
other work, from the REVIGIS project, on this topic: [37,15,17,2]). An area
of land surrounding a flooded river is analysed using aerial photographs and
other sources of information, such as elevation models. It is divided up into
n parcels of land, or compartments, which are small enough so that it can be
assumed that the water level is constant within a compartment. Each of these
compartments is either partially or completely flooded. Let xi be the water
level (in decimetres above a fixed base level) of compartment i.

The purpose of the analysis is to deduce information about the levels xi for
various compartments i. Expert analysis of the aerial photographs, in con-
junction with the other sources of information, generates constraints of the
following forms: upper bounds of the form xi ≤ s, and lower bounds of the
form: xi ≥ r (where r and s are given numbers) and simple linear constraints
of the form xj ≥ xi, which we call a flow, since it corresponds to a flow of
water from compartment j down to compartment i, which is observable in
the photograph. For example, a lower bound can arise from knowledge of the
elevation of a flooded compartment, and an upper bound through an obser-
vation that a vine is partially submerged. Both types of information (bounds
and flows) are uncertain, but the flows are considered as less uncertain than
the bounds.

Ignoring the uncertainty, this is a special kind of Simple Temporal Problem
(Dechter et al, 1991) [7] (though the variables are spatial rather than tempo-
ral, and the variables are state variables as opposed to decision variables); a
simple linear time algorithm can be used involving both upstream and down-
stream propagations (Raclot and Puech, 2003; Wilson, 2002) [24,33], to test
consistency and generate inferred bounds on the variables. However, this is
not so useful on its own since the input information in the application may
well be inconsistent, because e.g., of mis-estimation of elevations.

2.2 A General Class of Monotonic Logics

The initial motivation of this work was to extend various uncertainty for-
malisms to linear constraints. However, our approaches in Sections 3, 4 and
5 apply to much more general logics, which we refer to here as “monotonic
model-theoretic logics”. These include many classical logics, and also logics
which allow disjunctions, negations and conjunctions of linear constraints, as
well as non-linear constraints. In particular, allowing disjunctions of linear
constraints (Koubarakis, 2001) [20] greatly increases the expressive power, for

6

example, allowing disjunctive temporal problems to be represented (Dechter
et al.) [7], or allowing non-convex spatial polygons.

Formally, we define a monotonic model-theoretic logic to be a triple 〈L,M, |=〉,
where L and M are sets and |= ⊆ M× L is a relation between them. L is
called the language and M is called the set of models. Relation |= is used to
build a semantic entailment relation (which is also called |=) between subsets
of the language. We use similar definitions as those in Section 2.1 for this more
general situation. For model x ∈ M and a ∈ L we say that x satisfies a if
x |= a (i.e., if (x, a) ∈ |=). For A ⊆ L we say that x satisfies A, written x |= A,
if x satisfies every element of A. For subsets A and B of the language L we say
that A |= B if x satisfies (every element of) B for any model x which satisfies
A. If b ∈ L we sometimes write A |= b to mean A |= {b}. For A ⊆ L we write
[A] for the set of models that satisfy A, i.e., {x ∈M : x |= A}. Hence A |= B
if and only if [A] ⊆ [B]. We say that A is consistent if it has a model, i.e., if
[A] is non-empty; otherwise A is inconsistent.

The relation |= between subsets of the language is reflexive, monotonic and
transitive. Specifically, if A′ ⊆ A ⊆ L then A |= A′. If A′ |= B and A′ ⊆ A
then A |= B. And, if A |= B and B |= C then A |= C.

We will sometimes also assume that L contains an inconsistent element ⊥, so
that [⊥] = ∅. (This is not a restrictive assumption, since if L does not contain
such an element, we can add one to L.) Then, A (⊆ L) is inconsistent if and
only if A |= ⊥.

3 Extending Possibilistic Logic

In this section it is shown how Possibilistic Logic (Dubois, Lang and Prade,
94; Dubois and Prade, 2004) [10,12] can be extended to deal with linear con-
straints, and the other more general logics we are considering. In possibility
theory (Dubois and Prade, 1988) [11], degrees of certainty—which are called
‘necessity’—are assumed to be totally ordered and representable by numbers
in [0, 1]; a necessity value of 1, for a proposition, means that the proposition
is considered completely certain; a value of 0 means no certainty at all. If
the necessity of a is greater than the necessity of b, then a is considered to
be better supported by our information than b is. Possibilistic logic involves
reasoning about the degrees of necessity of different propositions of interest.
In (Standard) Possibilistic Logic, the lower bound of the necessity value of
each of a set of propositions is given; from these we wish to deduce the im-
plied (lower bounds for) necessity values of further propositions of interest.
For more details about Possibilistic Logic, see [10,14,21,12] and other papers
referenced in the survey (Dubois and Prade, 2004) [12].

7

Possibility distributions, measures and necessity measures. Let Ω
be a (finite or infinite) set, representing a mutually exclusive and exhaustive
set of possibilities. A possibility distribution on Ω is defined to be a function
π : Ω → [0, 1]. The associated possibility measure Possπ : 2Ω → [0, 1] is
given by Possπ(X) = sup {π(ω) : ω ∈ X}. The associated necessity measure
Necπ : 2Ω → [0, 1] is given by Necπ(X) = 1−Possπ(Ω−X). This is intended
to represent degrees of support for subsets of Ω. Note that we are consider-
ing unnormalised possibility distributions, possibility measures and necessity
measures, i.e., we are not assuming that supω∈Ω π(ω) = 1, or Poss(Ω) = 1 or
that Nec(∅) = 0.

Possibility measures and necessity measures on logical language L.
We consider any monotonic model-theoretic logic 〈L,M, |=〉, as defined in Sec-
tion 2.2. A possibility distribution π on M induces a possibility measure and
a necessity measure on 2M, which induce values of possibility and necessity for
L by the semantics. We define Necπ(a) = Necπ([a]) and Possπ(a) = Possπ([a]),
for a ∈ L. (Similarly, we could define Necπ(A) = Necπ([A]) for subsets A of
L.)

We are interested in statements of the form Nec(a) ≥ α, which we abbreviate
to (a, α), where a ∈ L and α ∈ [0, 1]. Such a pair is called a necessity-valued
formula (over L) (Dubois et al., 1994) [10]. It gives a lower bound on the
degree of support for a. We assume a set of such pairs, and we will deduce
further pairs from this, implying which elements of the language are best
supported. A set A of necessity-valued formulae is called a necessity-valued
knowledge base (over L). A can be thought of as an imprecise specification
of a necessity measure, and therefore constrains the associated (unknown)
possibility distribution π : M → [0, 1]. Possibility distribution π is said to
satisfy a necessity-valued formula (a, α) if and only if its associated necessity
measure Necπ satisfies Necπ(a) ≥ α. We write in this case that π |= (a, α).
As in the usual possibilistic logic, we have a simpler characterisation of this
condition, which is easily proved.

Lemma 1 Possibility distribution π satisfies necessity-valued formula (a, α)
if and only if π(x) ≤ 1− α for all x ∈M such that x 6|= a.

Proof π |= (a, α) if and only if Necπ(a) ≥ α which is if and only if
Possπ(M− [a]) ≤ 1 − α which is if and only if sup {π(x) : x ∈M− [a]} ≤
1−α, i.e., sup {π(x) : x 6|= a} ≤ 1−α. This holds if and only if π(x) ≤ 1−α
for all x such that x 6|= a. �

We say that π satisfies necessity-valued knowledge base A if and only if π
satisfies each of the necessity-valued formulae in A. The entailment relation
for this possibilistic logic is defined as follows: we say that A entails pair (b, β),

8

written A |= (b, β), if and only if π |= (b, β) for all π such that π |= A. In
other words, A |= (b, β) if and only if the necessity constraints corresponding
to A imply that Nec(b) ≥ β.

Let A be a necessity-valued knowledge base over L, and let α ∈ [0, 1]. Define
the α-cut Aα to be {(a, γ) ∈ A : γ ≥ α}, the set of necessity-valued formulae
whose necessity is at least α. We also define, A∗

α to be the classical projection
of the α-cut, so that a ∈ A∗

α if and only if there exists a pair (a, γ) in A for
some γ ≥ α.

Given a necessity-valued knowledge base A we would like procedures that
enable us to deduce necessity-value formulae which are consequences of A. In
addition, given b ∈ L, we would like to be able to determine the best lower
bound on the necessity of b that A implies; that is, we’d like to compute
ValA(b), which is defined to be sup {β ∈ [0, 1] : A |= (b, β)} [10]. ValA(b) can
be considered as the implied necessity of b given A. We have the following key
result for this possibilistic logic, which connects entailment in the possibilistic
logic with entailment in the underlying (e.g., linear constraints) logic, via the
use of classical projections of α-cuts.

Theorem 2 Let A be necessity-valued knowledge base over L, and b ∈ L.

(i) A |= (b, β) if and only if for all γ < β, A∗
γ |= b;

(ii) if A is finite then A |= (b, β) ⇐⇒ A∗
β |= b;

(iii) ValA(b) = sup {γ : A∗
γ |= b};

(iv) A |= (b,ValA(b));
(v) A |= (b, β) if and only if β ≤ ValA(b).

Hence for linear constraints, by finite completeness (Theorem 1), we have that
finite A entails (b, β) if and only if A∗

β ` b.

Proof (i)(a) First assumeA |= (b, β), and, to prove a contradiction, suppose
that there exists γ < β with A∗

γ 6|= b. So there exists a model x′ with x′ |= A∗
γ

but x′ 6|= b. Define possibility distribution π on M by π(x′) = 1−γ, and for all
x ∈ M− {x′}, π(x) = 0. Now, π(x′) 6≤ 1− β, so, using Lemma 1, π 6|= (b, β).
Consider any (a, α) ∈ A. To prove that π |= (a, α) it is sufficient, by Lemma
1, to show that if x ∈ M is such that π(x) > 1− α then x |= a. If x ∈ M is
such that π(x) > 1− α then x = x′, which implies that 1− γ > 1− α and so
α > γ; therefore a ∈ A∗

γ, and so, since x′ |= A∗
γ, we have x′ |= a, i.e., x |= a.

We’ve shown that π |= (a, α) for all (a, α) ∈ A and therefore π |= A. This,
together with π 6|= (b, β), implies that A 6|= (b, β), which contradicts our initial
assumption. Hence A |= (b, β) implies that for all γ < β, A∗

γ |= b.

(i)(b) Now assume that for all γ < β, A∗
γ |= b. We need to show that A |=

(b, β). Consider any possibility distribution π and x ∈ M such that π |= A

9

and any x 6|= b. We will show that π(x) ≤ 1 − β proving, by Lemma 1, that
π |= (b, β) and hence that A |= (b, β), proving the result.

Consider any γ with γ < β. Since x 6|= b and A∗
γ |= b, we have x 6|= A∗

γ, so
there exists aγ ∈ A∗

γ with x 6|= aγ, and so there exists a pair (aγ, α) in A for
some α ≥ γ. Using the fact that π |= A, and hence π |= (aγ, α), it follows
using Lemma 1 that π(x) ≤ 1− α, and so π(x) ≤ 1− γ.

Hence π(x) ≤ 1 − γ for all γ < β, and so π(x) ≤ s for all s > 1 − β, which
implies that π(x) ≤ 1− β, as required.

(ii) If A∗
β |= b then for any γ < β, A∗

γ |= b (since A∗
γ ⊇ A∗

β) so, by part (i),
A |= (b, β).

Conversely, suppose that A is finite, and that A |= (b, β). Since A is finite we
can choose γ such that, for any pair (a, α) with α < β, we have α < γ < β.
Then A∗

γ = A∗
β since, for (a, α) ∈ A, [α ≥ β ⇐⇒ α ≥ γ]. Part (i) implies

that A∗
γ |= b, i.e., A∗

β |= b.

(iii)(a) Let b̂ = sup {γ : A∗
γ |= b}. Consider any γ < b̂. Then, by definition

of b̂, there exists γ′ such that γ < γ′ ≤ b̂ and A∗
γ′ |= b. Since A∗

γ ⊇ A∗
γ′ this

implies that A∗
γ |= b. So we have for all γ < b̂, A∗

γ |= b, and part (i) implies

that A |= (b, b̂). This proves that b̂ ≤ ValA(b).

(iii)(b) Conversely, consider any β with β < ValA(b). Choose any β′ with
β < β′ < ValA(b). By definition of ValA(b), we have A |= (b, β′) and so, by
part (i), A∗

β |= b. Hence β ≤ sup {γ : A∗
γ |= b} = b̂. Since this holds for any

β < ValA(b), we have ValA(b) ≤ b̂.

(iv) In proving (iii) we showed thatA |= (b, b̂). Hence, by (iii),A |= (b,ValA(b)).

(v) By definition of ValA(b), we have A |= (b, β) implies β ≤ ValA(b). Con-
versely, by (iv), A |= (b,ValA(b)), so if β ≤ ValA(b) then A |= (b, β).

�

Consider a given necessity-valued knowledge base A. Suppose that we are
interested in finding information about the necessity degree of an element b
of the language L. Then, as in the proof of Proposition 13 of (Lang, 2000)
[21], we can use a binary search over values of necessity to find increasingly
large values β ∈ [0, 1] with A∗

β |= b and hence A |= (b, β). Each value of β
involves the checking of an inference in the language; computational efficiency
of the procedure is therefore closely tied to the efficiency of deduction in the
underlying logic (e.g., in the linear constraints case, this depends on the class
of linear constraints used). For the finite case, the procedure will terminate

10

with the maximal value ValA(b) of β; for the case of infinite A, the procedure
may have to terminate before it has found the maximal value. (However, in
certain cases with infinite A, analytic optimisation techniques can be used to
compute ValA(b) exactly.) Of particular interest, for given b ∈ L, is if we can
find β with A |= (b, β) but A 6|= (⊥, β), as this indicates positive support
for b. Focusing on the set of b with positive support leads to a possibilistic
approach to belief revision for such a monotonic model-theoretic underlying
logical language, see e.g., (Dubois and Prade, 2004) [12].

Note that, in contrast with (Dubois, Lang and Prade, 94) [10], we allow a
necessity-valued knowledge base to be infinite. This is natural in certain sit-
uations for representing continuously graded knowledge bases. Not all results
for the finite case hold for the infinite case. For example, we have the following
result, which is Proposition 11 of [10] in our more general context:

For finite A we have A |= (b, β) if and only if Aβ |= (b, β). (This follows from
Theorem 2(ii), since A∗

β = (Aβ)∗β.)

However, this result does not hold in general for infinite A. For example, let
A = {(a, α) : 0 < α < 1}, where a is some non-tautologous element of L (e.g.,
x1 ≥ 3). Then A |= (a, 1). But the α-cut A1 is the empty set, so A1 6|= (a, 1).

Possibilistic constraints for the flooded river example

We can assign necessity values to the various bounds and flows in the flooding
problem. Our inputs then consist of a set A of pairs (a, α) where α is a lower
bound on the necessity of a, and a is either a flow, a lower bound or an upper
bound.

For example, suppose a hut is observed partially submerged in compartment
49, giving us upper bound information regarding x49, the water level in that
compartment. Our expert is confident (based on the digital elevation model
for the ground level, and on an estimate of the height of the hut) that the ele-
vation of the top of the hut is at most 120 decimeters (above the base level). If
“confident” is taken to correspond to a necessity value of 0.6, then this gives
rise to a statement Nec(x49 ≤ 120) ≥ 0.6, and hence a necessity-valued formula
((x49 ≤ 120), 0.6). The expert tentatively believes—corresponding to necessity
value 0.4—that the top of the hut’s elevation is at most 110 decimeters, lead-
ing to pair ((x49 ≤ 110), 0.4). A flow is observed from compartment 49 down
to compartment 86; and this is considered as very reliable information, cor-
responding to a necessity value of 0.9. This gives rise to the necessity-valued
formula ((x86 ≤ x49), 0.9). We can then deduce upper bound information on
the level x86 of the water in compartment 86: Nec(x86 ≤ 120) ≥ 0.6 and
Nec(x86 ≤ 110) ≥ 0.4.

11

For any α appearing in some pair in the necessity-valued knowledge base A,
we could compute, using the linear propagation algorithm, the bounds on each
compartment level xi implied from A∗

α. All these bounds then have necessity
value at least α. Given that A is finite, applying this approach for each α
appearing in A will then give us the implied necessity value for each inferred
bound.

An alternative approach is to adapt the propagation algorithm for the con-
straints to also propagate the necessities. The propagation of the bounds is
based on inferences of the form: From lower bound xi ≥ r and flow constraint
xj ≥ xi deduce lower bound xj ≥ r. Similarly, for the possibilistic constraints,
we can chain a lower bound pair (xi ≥ r, α) and a flow pair (xj ≥ xi, β) to get
a lower bound pair (xj ≥ r,min(α, β)). This approach generalises easily to the
lattice-valued possibilistic logic and assumption-based reasoning approaches
described in the next section. The propagation algorithms can be adapted in
this way to compute the implied necessity values of lower and upper bounds.
We can also determine ⊥̂, the deduced necessity of ⊥.

The output of such an approach would be a set of upper bounds and lower
bounds for each compartment variable, where each of these bounds has an
associated necessity grade, and stronger bounds are associated with smaller
necessity values. The strongest bounds with necessity values greater than ⊥̂
can therefore be considered as constraining the ‘best guesses’ for the water
levels in the compartments. The weaker bounds, with higher necessity values,
give us information we can be more confident in.

When dealing with continuous spatial or temporal variables, it can be natural
to use a continuous representation of the uncertainty (which could be based on
smooth interpolation of discrete information). For example, an expert might
indicate, using a graphical user interface, that Nec(x49 ≤ 120−50λ) ≥ 0.6−λ
for all λ ∈ [0, 0.6] (continuously extending the upper bound information on
x49 expressed above). This gives rise to an infinite necessity-valued knowledge
base: {((x49 ≤ 120− 50λ), 0.6− λ) : λ ∈ [0, 0.6]}.

4 Lattice-Valued Possibilistic Logic and Assumption-based Rea-
soning

Possibilistic logic can be generalised to a situation where the values of neces-
sity (i.e. the degrees of support) are in a distributive lattice (Dubois, Lang
and Prade, 91; 94) [9,10]; see also (Dubois and Prade, 2004) [12]. Degrees of
support which are only partially ordered occur naturally in many situations.
For example, in the temporal situation described in (Dubois, Lang and Prade,

12

91) [9], or when there are independent sources of support with incomparable
strengths. The grades of support could represent sets of scenarios; in that case,
a has generalised necessity degree of at least α if a holds in the set of scenarios
represented by α. Closely related partially ordered possibilistic logic systems
(based on standard underlying logics) include those described in (Benferhat
and Prade, 2005) [3] and in Section 2.3 of (Wilson, 2006) [35].

We first consider extending lattice-valued possibilistic logic to situations where
the underlying logic is more general, that is, a monotonic model-theoretic logic
〈L,M, |=〉, as defined in Section 2.2. In Section 4.2 we go on to consider a
strongly related system of assumption-based reasoning.

4.1 Lattice-Valued Possibilistic Logic

Let K = (K, 0, 1,
∧
,
∨

) be a completely distributive lattice (Davey and Priest-
ley, 2002) [5], with greatest lower bound operation

∧
and least upper bound

operation
∨

on subsets of K. The associated partial order � on K is given in
the usual way: α � β if and only if α ∧ β (i.e.,

∧ {α, β}) = α.

Define the language P of this lattice-valued possibilistic logic to consist of all
pairs (A,α), where A is a subset of the language L and α ∈ K is a lattice
element. For example, with the linear constraints language defined in Section
2.1, set A is interpreted as meaning that the true value x of the vector of
real valued variables satisfies each constraint in A. The values in the lattice K
might be interpreted as truth values (or, alternatively, degrees of preference).
The interpretation of (A,α) is then: the truth value of “x satisfies A” is at
least α. Extending Standard Possibilistic Logic, we define the semantics is
terms of generalised possibility distributions. In the standard case (Section
3), possibility distribution π satisfies pair (A,α) if and only if 1 − π(x) ≥ α
for all x such that x 6|= A. However, we do not generally have an operation
corresponding to 1− (·) within the lattice. To solve this problem we define a
complementary scale for the possibility values.

Let K 7→ K∗ be a bijection between K and some set K∗, with α∗ being the
image of α, and define (α∗)∗ = α. Generalised possibility distributions π are
defined to be functions from M to K∗. We say π satisfies (A,α) if for all
x ∈ M such that x 6|= A, (π(x))∗ � α. (To recover the usual definitions of
possibility distribution etc., we can set K = [0, 1] with the usual ordering,
and set K∗ = [0, 1] and α∗ = 1−α; cf. Lemma 1.) For ∆ ⊆ P and (B, β) ∈ P
this gives the semantic consequence relation:

∆ |= (B, β) if and only if π satisfies (B, β) for all π such that π satisfies (every
pair in) ∆.

13

Theorem 2 cannot be generalised to the lattice case (at least in a simple way)
because of the potentially more complex structure of the lattice (in particular
it being generally only partially ordered). However, we can still define a very
simple sound and complete proof theory.

Proof theory.

From (A,α) deduce (B, β) for all (B, β) such that A |= B and β � α.

From {(A,αi) : i ∈ I} deduce (A,
∨

i∈I αi) .

From {(Ai, αi) : i ∈ I} deduce (
⋃

i∈I Ai,
∧

i∈I αi) .

Let ∆ be a subset of P . Define the set of syntactic consequences C(∆) of ∆
to be the the intersection of all sets Γ (⊆ P) (which is the unique smallest
set Γ) such that (i) Γ ⊇ ∆ and (ii) Γ is closed under the inference rules
(i.e., if Γ contains an instance of the left hand side of an inference rule then it
contains the corresponding instance of the right hand side). We then define the
syntactic consequence relation ` by ∆ ` (B, β) if and only if (B, β) ∈ C(∆).
This leads to the following completeness result, which is proved in Section 4.3.

Theorem 3 [Soundness and Completeness of Paired System] Let (B, β) ∈ P
be a pair and let ∆ ⊆ P be a set of pairs. Then ∆ |= (B, β) if and only if
∆ ` (B, β).

When ∆ is finite the proof theory can be written in a simpler way, with the
second and third inference rules being replaced by:

From (A,α) and (A, β) deduce (A,α ∨ β).

From (A,α) and (B, β) deduce (A ∪B,α ∧ β).

Also the definition of syntactic consequence simplifies to the usual kind of
definition: ∆ ` (B, β) if and only if (B, β) can be proved (in a finite number
of steps) from ∆ using the inference rules.

Even if ∆ is infinite, if distributive lattice K is finite then we can rewrite ∆
as the equivalent, but finite, set of pairs ∆′ = {(Aα, α) : α ∈ K}, where, for
given α ∈ K, set Aα is the union of A over all (A,α) ∈ ∆, so we again could
use the latter more usual (finitary) kind of proof theory.

Even if ∆ is infinite, if distributive lattice K is finite then we can rewrite ∆
as the equivalent, but finite, set of pairs ∆′ = {(Aα, α) : α ∈ K}, where, for
given α ∈ K, set Aα is the union of A over all (A,α) ∈ ∆, so we again could
use the latter more usual (finitary) kind of proof theory.

14

4.2 Assumption-based reasoning

We can produce a related framework and achieve similar results for systems of
pairs which may be viewed as generalised versions of Assumption-Based Truth
Maintenance Systems (de Kleer, 1986) [6]. Consider a finite system of pairs
of the form (A, φ) where A is a subset of the language, and φ is a formula in
some propositional language R; formula φ is intended to represent conditions
under which constraints (or formulae) A are known to hold. For example, if
an expert tells us that x1 ≥ 120 then we can construct a pair ({x1 ≥ 120}, p1),
where propositional symbol p1 represents that the expert is being reliable here.
To express logical relationships between these conditions, it can be useful also
to allow an additional set of formulae T ⊆ R, which are assumed to be true.

We define the semantics for this assumption-based reasoning systems as fol-
lows. Let Ω be the set of R-valuations satisfying T . Models are defined to be
pairs (x, ω) for x ∈M and ω ∈ Ω. Pair (x, ω) represents a possible assignment
to the propositional variables and also a model of the language L (which is
an assignment to all the real-valued variables in the linear constraints case).
Pair (A, φ) restricts possible models (x, ω), and is intended to represent that,
if condition φ holds, then all of A hold; we therefore say that (x, ω) satisfies
(A, φ) if the following condition holds: [ω satisfies φ] implies x |= A. Hence
(A, φ) can be thought of as an implication: if φ holds then A holds. As usual
we extend this to a semantic consequence relation on pairs: ∆ |= (A, φ) if
(A, φ) is satisfied by all (x, ω) satisfying every element of ∆.

Define syntactic entailment ` using the following proof theory:

From (A, φ) deduce (B,ψ) for all (B,ψ) in P such that A |= B and T ∪{ψ} |=
φ.

From (A, φ) and (A,ψ) deduce (A, φ ∨ ψ).

From (A, φ) and (B,ψ) deduce (A ∪B, φ ∧ ψ).

Again, this simple proof theory is sound and complete, as proved in Section
4.4.

Theorem 4 (Completeness of Assumption-based System.) With the above
proof theory, finite ∆ syntactically entails (B,ψ) if and only if ∆ semantically
entails (B,ψ).

Given set of pairs ∆, one can associate with a set B ⊆ L a formula φB in R
which expresses precisely the conditions under which B can be deduced; that
is, ∆ |= (B, φ) if and only if T ∪ {φ} |= φB (so that φB is a logically weakest

15

formula such that (B, φB) is deducible from ∆). If one had a probability
measure on R, satisfying Pr(T) = 1, then this can be used to generate the
probability that B can be deduced, i.e., Pr(φB), which can be considered as a
degree of belief in B. An important special case is where ∆ can be written as
{(Ai, pi) : i = 1, . . . ,m} where each pi is a propositional variable, and T = ∅.
This is an assumption-based system. If each pi is probabilistically independent
of the others, and has a chance ri of holding, this generates a probability
measure on R and hence degrees of belief. This situation corresponds to a
special case of the generalised Dempster-Shafer theory described in Section
5, and is strongly related to work on probabilistic argumentation systems
(Haenni et al., 2000; Anrig et al., 1997) [13,1].

4.3 Proving Theorem 3

We consider a fixed (possibly infinite) set of pairs ∆ ⊆ P which we label as
{(Ai, αi) : i ∈ I}. Define, for x ∈ M, Ix = {i ∈ I : x 6|= Ai}. Define model
π∆ of the lattice-valued possibilistic logic by, for x ∈M, (π∆(x))∗ =

∨
i∈Ix

αi.

The first three lemmas establish Proposition 1. Lemmas 5 and 6 then establish
Proposition 2; the completeness property follows immediately from these two
propositions. Soundness follows from Lemma 7.

Lemma 2 π∆ satisfies (A,α) if and only if for all x 6|= A,
∨

i∈Ix
αi � α.

Proof π∆ satisfies (A,α) if and only if for all x ∈ M such that x 6|= A,
(π∆(x))∗ � α. i.e.,

∨
i∈Ix

αi � α. �

Lemma 3 Model π satisfies ∆ if and only if for all x ∈ M, (π(x))∗ �∨
i∈Ix

αi, i.e., (π(x))∗ � (π∆(x))∗.

Proof Suppose first that π satisfies ∆. Then π satisfies (Ai, αi) for any
i ∈ I. So, for all x ∈ M we have (π(x))∗ � αi if x 6|= Ai, i.e., if i ∈ Ix. Hence
(π(x))∗ � ∨

i∈Ix
αi.

Conversely, suppose that for all x ∈ M, (π(x))∗ � ∨
i∈Ix

αi. If x 6|= Ai then
i ∈ Ix, so (π(x))∗ � αi, which shows that π satisfies every element (Ai, αi) of
∆, as required. �

Lemma 4 π∆ satisfies ∆.

Proof This follows immediately from Lemma 3. �

Proposition 1 If ∆ |= (B, β) then (
∧

x 6|=B

∨
i∈Ix

αi) � β.

Proof Suppose ∆ |= (B, β). Lemma 4 implies that π∆ satisfies (B, β), so

16

for all x 6|= B,
∨

i∈Ix
αi � β, by Lemma 2. Hence β is a lower bound for the

infimum of these, i.e.,
∧

x 6|=B

∨
i∈Ix

αi � β. �

For an arbitrary subset B of L, let SB = {σ ⊆ I :
⋃

i∈σ Ai |= B}.

Lemma 5 For any B ⊆ L, C(∆) contains the pair (B,
∨

σ∈SB

∧
i∈σ αi).

Proof For any σ ⊆ I, we have that C(∆) contains {(Ai, αi) : i ∈ σ}. So by
the third inference rule, C(∆) contains (

⋃
i∈σ Ai,

∧
i∈σ αi). Therefore, if σ ∈ SB

then C(∆) contains (B,
∧

i∈σ αi), using the first inference rule. Hence, by the
second inference rule, C(∆) contains (B,

∨
σ∈SB

∧
i∈σ αi), as required. �

Lemma 6 For any B ⊆ L,
∨

σ∈SB

∧
i∈σ αi is equal to

∧
x 6|=B

∨
i∈Ix

αi.

Proof A lattice is said to be completely distributive if for any doubly in-
dexed set {αr,s : r ∈ R, s ∈ S},∧

r∈R

∨
s∈S

αr,s =
∨

e:R→S

∧
r∈R

αr,e(r),

where the
∨

on the right-hand-side is over all functions e from R to S.

Let R = M− [B] = {x ∈M : x 6|= B}, let S = I, and define αx,i = αi if
i ∈ Ix (i.e., if x 6|= Ai), and, otherwise, let αx,i = 0, the minimum element of
the lattice. Applying the completely distributive property gives∧

x∈R

∨
i∈I

αx,i =
∨

e:R→I

∧
x∈R

αx,e(x).

Now, ∧
x∈R

∨
i∈I

αx,i =
∧

x 6|=B

∨
i∈Ix

αi,

since elements 0 can be omitted from an application of
∨

. Also,∨
e:R→I

∧
x∈R

αx,e(x) =
∨

e:R→I
∀x,e(x)∈Ix

∧
x∈R

αe(x),

because we need only consider functions e such that for all x ∈ R, e(x) ∈ Ix,
since other functions e just give rise to an element 0, which can be omitted
from the application of

∨
. Using idempotence of

∧
and

∨
, this last term can be

written as
∨

σ∈Q ασ, where Q is a particular set of subsets of I, and for σ ⊆ I,
we define ασ to be

∧
i∈σ αi. A set σ is in Q if and only if there exists some

function e : R→ I such that e(x) ∈ Ix for all x ∈ R, and σ = {e(x) : x ∈ R}.
Putting these parts together we have that

∧
x 6|=B

∨
i∈Ix

αi is equal to
∨

σ∈Q ασ.
Hence, to complete the proof, we just have to show that

∨
σ∈Q ασ =

∨
σ∈SB

ασ.

We will first show that Q ⊆ SB which implies that
∨

σ∈Q ασ � ∨
σ∈SB

ασ.
Consider any σ ∈ Q. Then for any x 6|= B, there exists an element j = e(x) ∈ σ

17

with j ∈ Ix, i.e., x 6|= Aj and hence x 6|= ⋃
i∈σ Ai; this proves that

⋃
i∈σ Ai |= B

and hence σ ∈ SB, as required.

We will now show that for any σ ∈ SB there exists an element σ′ ∈ Q with
σ′ ⊆ σ, and hence ασ′ � ασ, this proves that

∨
σ∈SB

ασ �
∨

σ∈Q ασ, and hence∨
σ∈Q ασ =

∨
σ∈SB

ασ.

Consider any σ ∈ SB. By definition of SB, for any x 6|= B, we have x 6|= ⋃
i∈σ Ai,

so there exists ix ∈ σ such that x 6|= Aix . Define function e : R→ I by for all
x ∈ R, e(x) = ix, which is in Ix, and let σ′ = {e(x) : x ∈ R}. By construction,
σ′ ∈ Q and σ′ ⊆ σ. �

Proposition 2 If (
∧

x 6|=B

∨
i∈Ix

αi) � β then C(∆) contains the pair (B, β).

Proof Lemmas 5 and 6 immediately imply that C(∆) contains the pair
(B,

∧
x 6|=B

∨
i∈Ix

αi). If (
∧

x 6|=B

∨
i∈Ix

αi) � β then, by the first inference rule,
C(∆) contains the pair (B, β). �

Lemma 7 Let π be any function from M to K∗. Then

(i) if π satisfies (A,α), and (B, β) is such that A |= B and β � α then π
satisfies (B, β);

(ii) if π satisfies each of {(A,αi) : i ∈ I} then π satisfies (A,
∨

i∈I αi)
(iii) if π satisfies each of {(Ai, αi) : i ∈ I} then π satisfies (

⋃
i∈I Ai,

∧
i∈I αi).

Proof (i) Suppose that π satisfies (A,α), and (B, β) is such that A |= B
and β � α. Consider any x ∈ M such that x 6|= B. Therefore x 6|= A, and so
(π(x))∗ � α � β and hence (π(x))∗ � β, proving that π satisfies (B, β).

(ii) Suppose that π satisfies each of {(A,αi) : i ∈ I}. Consider any x ∈ M
such that x 6|= A. Then for all i ∈ I, (π(x))∗ � αi, so (π(x))∗ � ∨

i∈I αi,
showing that π satisfies (A,

∨
i∈I αi).

(iii) Suppose that π satisfies each of {(Ai, αi) : i ∈ I}. Consider any x ∈ M
such that x 6|= ⋃

i∈I Ai. So there exists some i ∈ I such that x 6|= Ai, which
implies that (π(x))∗ � αi and so (π(x))∗ � ∧

i∈I αi, proving that π satisfies
(
⋃

i∈I Ai,
∧

i∈I αi). �

Proof of Theorem 3. Soundness: Let C ′(∆) be the semantic consequences
of ∆, i.e., the set of all pairs (B, β) such that ∆ |= (B, β). To prove soundness,
it is sufficient to show that C ′(∆) contains ∆ and is closed under the inference
rules, as this implies C ′(∆) ⊇ C(∆), and hence ∆ ` (B, β) implies ∆ |= (B, β).

(1) If ∆ contains a pair (B, β) then any π which satisfies ∆ satisfies (B, β), so
∆ |= (B, β). This implies that C ′(∆) contains (B, β) and hence contains ∆.

(2) Suppose C ′(∆) contains (A,α), and that B and β are such that A |= B and

18

β � α. Consider any π such that π satisfies ∆, so π satisfies (A,α). Lemma 7
then implies that π satisfies (B, β), and so ∆ |= (B, β) proving that C ′(∆) is
closed under the first inference rule. Similarly, Lemma 7 implies that C ′(∆) is
closed under the second two inference rules.

Completeness: Suppose ∆ |= (B, β). By Proposition 1, (
∧

x6|=B

∨
i∈Ix

αi) �
β. Hence by Proposition 2, C(∆) contains the pair (B, β), as required. �

4.4 Proving Theorem 4

One might prove Theorem 4 using the results of the last section. Here, however,
we give a direct proof. We consider again a fixed set of pairs ∆, which we write
as {(Ai, φi) : i ∈ I}, where I is finite, since we are assuming that ∆ is finite.
For an arbitrary subset B of L, we let SB = {σ ⊆ I :

⋃
i∈σ Ai |= B}.

The completeness part of the proof follows using the first two lemmas; sound-
ness follows from Lemma 10.

Lemma 8 For any B ⊆ L, ∆ syntactically entails (B,
∨

σ∈SB

∧
i∈σ φi).

Proof The proof of this is very similar to that for Lemma 5. Consider any
σ ∈ SB. Since σ is finite, we can repeatedly apply the third inference rule,
to show that ∆ syntactically entails (

⋃
i∈σ Ai,

∧
i∈σ φi). Since σ ∈ SB, we have⋃

i∈σ Ai |= B, so we can use the first inference rule to show that ∆ syntactically
entails (B,

∧
i∈σ φi). Hence, by repeated application of the second inference

rule, ∆ syntactically entails (B,
∨

σ∈SB

∧
i∈σ αi), as required. �

Lemma 9 If ∆ semantically entails (B,ψ) then T ∪ {ψ} |= ∨
σ∈SB

∧
i∈σ φi.

Proof Suppose that ∆ semantically entails (B,ψ), and consider any ω ∈ Ω
such that ω satisfies ψ. It is sufficient to show that ω satisfies

∨
σ∈SB

∧
i∈σ φi.

Consider any x ∈ M such that x 6|= B. Then (x, ω) does not satisfy (B,ψ),
so (x, ω) does not satisfy ∆, by the definition of semantic consequence in the
paired system. Hence there exists some ix ∈ I such that (x, ω) does not satisfy
(Aix , φix), i.e., ω satisfies φix but x 6|= Aix .

Define σω = {ix : x ∈M, x 6|= B}. If x ∈M is such that x 6|= B then x 6|= Aix

(as shown above) and so x 6|= ⋃
i∈σω

Ai, which proves that
⋃

i∈σω
Ai |= B, and

hence that σω ∈ SB. For all i ∈ σω, we have that ω satisfies φi, so ω satisfies∧
i∈σω

φi and hence ω satisfies
∨

σ∈SB

∧
i∈σ φi, as required. �

Lemma 10 Consider an arbitrary pair (x, ω) with x ∈M and ω ∈ Ω.

19

(i) If (x, ω) satisfies (A, φ) then (x, ω) satisfies (B,ψ) if A |= B and T ∪{ψ} |=
φ.

(ii) If (x, ω) satisfies (A, φ) and (A,ψ) then (x, ω) satisfies (A, φ ∨ ψ).
(iii) If (x, ω) satisfies (A, φ) and (B,ψ) then (x, ω) satisfies (A ∪B, φ ∧ ψ).

Proof (i) Suppose (x, ω) satisfies (A, φ) and A |= B and T ∪ {ψ} |= φ. If ω
satisfies ψ then ω satisfies φ, which implies that x |= A (since (x, ω) satisfies
(A, φ)). Hence x |= B, proving that (x, ω) satisfies (B,ψ).

(ii) Suppose that (x, ω) satisfies (A, φ) and (A,ψ). If ω satisfies φ ∨ ψ then
either ω satisfies φ and so x |= A, or ω satisfies ψ and so also then x |= A.
This proves that (x, ω) satisfies (A, φ ∨ ψ).

(iii) Suppose that (x, ω) satisfies (A, φ) and (B,ψ). If ω satisfies φ∧ψ then ω
satisfies φ and hence x |= A, and also, ω satisfies ψ and so x |= B. Therefore
x |= A ∪B proving that (x, ω) satisfies (A ∪B, φ ∧ ψ).

�

Proof of Theorem 4. Suppose first that ∆ syntactically entails (B,ψ). Con-
sider any pair (x, ω) satisfying ∆. Using Lemma 10, and by induction on the
length of the proof, it follows that (x, ω) satisfies (B,ψ). This proves that ∆
semantically entails (B,ψ).

Now, conversely, suppose that ∆ semantically entails (B,ψ), and so by Lemma
9, T ∪ {ψ} |= ∨

σ∈SB

∧
i∈σ φi. Lemma 8 tells us that ∆ syntactically entails

(B,
∨

σ∈SB

∧
i∈σ φi), so we can apply the first inference rule, showing that ∆

syntactically entails (B,ψ). �

5 Extending Dempster-Shafer Theory

This section shows how Dempster-Shafer theory can be extended to reason
with linear constraints, and to the other monotonic logic formalisms we con-
sider. See (Kohlas and Monney, 91) [19] for a somewhat related approach
to Dempster-Shafer theory for spatial and temporal reasoning, and (Besnard
and Kohlas, 95; Kohlas, 2003) [4,18] for other work on generalising Dempster-
Shafer theory to logics.

Dempster-Shafer theory, with the view taken here, can be considered as rep-
resenting situations where we have a probability distribution over a set, and a
logical relation between the set and the propositions of interest. For example,
in the flooded river problem, one such situation is if we have a probability
distribution over the height of a vine, and the vine is only partially covered by

20

the water, implying that the water level there is below the top of the vine. The
probabilistic and logical information together can be used to generate degrees
of belief in propositions of interest.

5.1 Basic Definitions of Dempster-Shafer Theory

The formalism of (Shafer, 76) [27] was derived from that of Arthur Demp-
ster [8]; Dempster’s framework is more convenient for our purposes, and we
describe the mathematical basics of a slight variant of it (see (Wilson, 2000)
[32]).

Let Θ be a set, which is interpreted as a set of mutually exclusive and exhaus-
tive propositions, or as a set of ‘possible worlds’. Θ is known as a frame [of
discernment]. The propositions of interest are all assumed to be expressed as
subsets of the frame. An uncertain piece of information regarding Θ is repre-
sented as a source triple over Θ, which is defined to be a triple (Ω,P,Γ) where
Ω is a set, P is a strictly positive probability distribution over Ω (so that for
all ω ∈ Ω, P(ω) 6= 0) and Γ is a function from Ω to 2Θ − {∅}. So we have
probabilistic information P about another set Ω, which is related to Θ by Γ.
Mapping Γ expresses a logical connection between Ω and Θ: for ω ∈ Ω, Γ(ω)
is the set of elements of Θ which are compatible with ω. Associated with a
source triple S is a belief function BelS : 2Θ → [0, 1] giving “degrees of belief”
in subsets of the frame. We define BelS(X) = P{ω : Γ(ω) ⊆ X}, which is the
probability that random set Γ(ω) is a subset of X. BelS(X) can be thought of
as the probability that X is implied by the piece of uncertain information rep-
resented by the source triple. Belief functions are intended as representations
of subjective degrees of belief, as described in (Shafer 76; 81) [27,28].

Suppose we have a number of source triples over Θ each representing a separate
piece of uncertain information. The combined effect of these, given the appro-
priate independence assumptions, is calculated using Dempster’s rule (of com-
bination). The result of applying Dempster’s rule to a finite set of source triples
{(Ωi,Pi,Γi), for i = 1, . . . , k}, is defined to be the source triple (Ω,PDS,Γ)
over Θ, which is defined as follows. Let Ω× = Ω1 × · · · × Ωk. For ω ∈ Ω×,
ω(i) is defined to be its ith component, so that ω = (ω(1), . . . , ω(k)). Define
Γ′: Ω× → 2Θ by Γ′(ω) =

⋂k
i=1 Γi(ω(i)) and probability distribution P′ on Ω× by

P′(ω) =
∏k

i=1 Pi(ω(i)), for ω ∈ Ω×. Let Ω be the set {ω ∈ Ω× : Γ′(ω) 6= ∅}, let
Γ be Γ′ restricted to Ω, and let probability function PDS on Ω be P′ conditioned
on Ω, so that for ω ∈ Ω, PDS(ω) = P′(ω)/P′(Ω).

The combined measure of belief Bel over Θ is thus given, for X ⊆ Θ, by
Bel(X) = PDS({ω ∈ Ω : Γ(ω) ⊆ X}).

21

5.2 Generalising Dempster-Shafer Theory to Other Logics

We consider an underlying monotonic model-theoretic logic 〈L,M, |=〉, as de-
fined in Section 2.2. The definitions of the previous section can be extended
easily to such logical languages via the semantics. Essentially, the belief of
A ⊆ L is defined to be the belief of [A].

Define a source triple over L to be a triple (Ω,P,Γ) where Ω is a set, P is
a strictly positive probability function (i.e., probability density function or
probability mass function) on Ω and Γ is a function from Ω to F , where F is
the set of finite 2 consistent subsets of L. One interpretation of source triples is
that we’re interested in L, but we have Bayesian beliefs about Ω, and a logical
connection between the two, expressed by Γ. The interpretation of Γ is that
if the proposition represented by ω is true, then the proposition represented
by Γ(ω) is also true.

We can associate with a source triple S = (Ω,P,Γ) over L a generalised belief
function BelS : L → [0, 1] giving degrees of belief in elements in the language
L. This is given as follows: for a ∈ L, BelS(a) = P({ω ∈ Ω : Γ(ω) |= a})
(assuming that this set is measurable), which we abbreviate to P(Γ(ω) |= a);
the belief in a is the probability that a is implied. We can also define Bel for
finite subsets A of L in a similar fashion: BelS(A) = P(Γ(ω) |= A).

Source triple S = (Ω,P,Γ) over L corresponds to a source triple S0 = (Ω,P,Γ0)
over the set of models M (as defined in the last section), where Γ0 : Ω → 2M

is given by, for ω ∈ Ω, Γ0(ω) = [Γ(ω)]. As one would hope, we then have, for
A ⊆ L, BelS(A) = BelS0([A]).

Dempster’s rule of combination. Dempster’s rule of combination can
also be easily extended. Suppose we have a number of source triples (Ωi,Pi,Γi),
for i = 1, . . . , k, each representing a separate piece of uncertain information.
The combination (Ω,PDS,Γ) of these source triples over L is defined as follows.

As in the last section, let Ω× = Ω1 × · · · ×Ωk. Define Γ′: Ω× → F by Γ′(ω) =⋃k
i=1 Γi(ω(i)) and probability function P′ on Ω× by P′(ω) =

∏k
i=1 Pi(ω(i)), for

ω ∈ Ω×. Let Ω be the set {ω ∈ Ω× : [Γ′(ω)] 6= ∅}, let Γ be Γ′ restricted to
Ω, and let probability function PDS on Ω be P′ conditioned by Ω, so that for
ω ∈ Ω, PDS(ω) = P′(ω)/P′(Ω) (given that P′(Ω) 6= 0).

The combined measure of belief Bel is the belief function associated with the
combined source triple, and is thus given, for finite A ⊆ L, by Bel(A) =

2 We restrict to finite subsets so that for the linear constraints case, we can make
use of the finite completeness result, Theorem 1. This restriction could be relaxed.

22

PDS(Γ(ω) |= A). For the linear constraints case, by Theorem 1, this equals
PDS(Γ(ω) ` A) since Γ(ω) is a finite subset of L.

Computing combined belief. It is possible to adapt some of the standard
approaches (see e.g., (Wilson, 2000) [32]) for computing combined belief in this
more general situation. In particular, various Monte-Carlo algorithms can be
adapted to give arbitrarily close approximations of values of belief. We assume
that we have some procedure for determining whether Γ(ω) |= A holds or not.

Since, for finite A ⊆ L, Bel(A) = PDS(Γ(ω) |= A), to calculate Bel(A) we can
repeat a large number of trials of a Monte-Carlo algorithm where for each trial,
we pick ω with chance PDS(ω) and say that the trial succeeds if Γ(ω) |= A, and
fails otherwise. Bel(A) is then estimated by the proportion of the trials that
succeed. The most straight-forward way is to pick ω with chance PDS(ω) by
repeatedly (if necessary) picking ω ∈ Ω× with chance P′(ω) until we get an ω
in Ω. Picking ω with chance P′(ω) is easy: for each i = 1, . . . , k, we pick ωi ∈ Ωi

with chance Pi(ωi) and let ω = (ω1, . . . , ωk). If the conflict probability 1−P′(Ω)
is bounded away from 1, this algorithm has low complexity, proportional to the
complexity of proof in the logic (Wilson, 1991, 2000) [31,32], but with a high
constant factor because of needing a large number of trials to achieve a good
estimate of values of belief. If the conflict is very high, we would be better off
using more complex Monte-Carlo algorithms, such as a Markov Chain Monte
Carlo algorithm (Moral and Wilson, 1994; Wilson, 2000) [22,32].

Dempster-Shafer approach for the flooded river example

An uncertain flow constraint xj ≥ xi with reliability p ∈ [0, 1] can be repre-
sented as a source triple ({ω, ω′},P,Γ) over a linear constraints language L
(see Section 2.1), with P(ω) = p, P(ω′) = 1 − p and Γ(ω) = {xj ≥ xi}, and
Γ(ω′) = {>}. This corresponds to a simple support function (Shafer, 76) [27].
Given just this source triple, we can deduce the constraint xj ≥ xi with chance
p, so that the associated belief function has Bel({xj ≥ xi}) = p.

Suppose we have uncertain lower bound information on x2, the water level in
compartment 2, based on information from a digital elevation model and an
observation that this compartment is flooded, which is represented by a source
triple ({ω1, ω2, ω3},P2,Γ2) defined as follows: P2(ω1) = 0.5, P2(ω2) = 0.4 and
P2(ω3) = 0.1; and Γ2(ω1) = (x2 ≥ 100), Γ2(ω2) = (x2 ≥ 90), and Γ2(ω3) = >.
This leads to a belief function with Bel(x2 ≥ 100) = 0.5 (arising from a
judgement that there is 50% chance that the elevation of this compartment is
at least 100), and Bel(x2 ≥ 90) = 0.5 + 0.4 = 0.9. If we had just this source
triple and an uncertain flow constraint x8 ≥ x2 with reliability 0.95, then the
combined belief that x8 ≥ 100 would be equal to 0.5×0.95 = 0.475. Note that

23

a continuously graded representation of an uncertain bound can also be very
natural, which requires the use of infinite Ω in the source triple; Monte-Carlo
simulation can be still used for computation.

Given a large number of uncertain flow constraints and uncertain upper and
lower bounds, we can represent each by source triples and combine them us-
ing Dempster’s rule, given that the appropriate independence assumptions
are satisfied. (It is also possible to model dependencies in the information,
by constructing a different combined probability function from PDS.) We
can then compute the combined beliefs in constraints of interest, or use a
Monte-Carlo algorithm to approximate them. For example, if we find that
Bel({x6 ≥ 120, x6 ≤ 130}) = 0.7 then it means that with chance 0.7 we can
deduce that the level of compartment 6 is in the interval [120, 130]; the value
0.7 can be viewed as a kind of lower probability for: x6 ∈ [120, 130].

6 Summary

This paper shows how a number of important uncertainty formalisms can
be extended to deal with uncertain linear constraints, and other logical for-
malisms. The formalisms we discuss are possibilistic logic, a lattice-valued pos-
sibilistic logic, a general form of assumption-based reasoning, and Dempster-
Shafer theory. We show how deductions can be made in this possibilistic logic,
and how Dempster-Shafer algorithms can be adapted, and construct sound
and complete proof theories for the lattice-valued possibilistic logic, and the
assumption-based reasoning formalism.

Acknowledgements

This work was supported by the REVIGIS project, IST-1999-14189, and was
partly based on works supported by the Science Foundation Ireland under
Grant No. 00/PI.1/C075 and Grant No. 05/IN/I886. It benefitted from the
referees’ comments and many discussions with my colleagues on the RE-
VIGIS project, in particular, Mahat Khelfallah, Eric Wurbel, Belaid Ben-
hamou, Robert Jeansoulin, Odile Papini, and especially Christian Puech and
Damien Raclot.

24

References

[1] B. Anrig, R. Haenni, J. Kohlas, and N. Lehmann. Assumption-based modeling
using ABEL. In First International Joint Conference on Qualitative and
Quantitative Practical Reasoning; ECSQARU–FAPR’97, pages 171–182, 1997.

[2] S. Benferhat, J. Ben-Naim, R. Jeansoulin, M. Khelfallah, S. Lagrue, O. Papini,
N. Wilson, and E. Würbel. Belief revision of gis systems: The results of
REV!GIS. In Proc. Eighth European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (ECSQARU’05), pages 452–464,
2005.

[3] S. Benferhat and H. Prade. Encoding formulas with partially constrained
weights in a possibilistic-like many-sorted propositional logic. In Proc. IJCAI-
05, pages 1281–1286, 2005.

[4] P. Besnard and J. Kohlas. Evidence theory based on general consequence
relations. Int. J. of Foundations of Computer Science, 6(2):119–135, 1995.

[5] B. Davey and H. Priestley. Introduction to Lattices and Order (Second edition).
Cambridge University Press, 2002.

[6] J. de Kleer. An assumption-based truth maintenance system. Artificial
Intelligence, 28:127–162, 1986.

[7] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61–95, 1991.

[8] A. P. Dempster. Upper and lower probabilities induced by a multi-valued
mapping. Annals of Mathematical Statistics, 38:325–39, 1967.

[9] D. Dubois, J. Lang, and H. Prade. Timed possibilistic logic. Fundamenta
Informaticae, pages 211–234, 1991.

[10] D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. Gabbay, C. Hogger,
and J. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 3, pages 439–513. Oxford University Press, 1994.

[11] D. Dubois and H. Prade. Possibility Theory: An Approach to Computerized
Processing and Uncertainty. Plenum Press, New York, 1988.

[12] D. Dubois and H. Prade. Possibilistic logic: A retrospective and prospective
view. Fuzzy Sets and Systems, 144(1):3–23, 2004.

[13] R. Haenni, J. Kohlas, and N. Lehmann. Probabilistic argumentation systems.
In J. Kohlas and S. Moral, editors, Handbook of Defeasible Reasoning and
Uncertainty Management Systems, volume 5: Algorithms for Uncertainty and
Defeasible Reasoning, pages 221–287. Kluwer, Dordrecht, 2000.

[14] B. Hollunder. An alternative proof method for possibilistic logic and its
application to terminological logics. International Journal of Approximate
Reasoning, 12(2):85–109, 1995.

25

[15] R. Jeansoulin and E. Würbel. An anytime revision operator for large and
uncertain geographic data sets. Soft Comput, 7(6):386–393, 2003.

[16] P. Kanjamala, P. Revesz, and Y. Wang. MLPQ/GIS: A GIS using linear
constraint databases. In Proceedings of 9th International Conference On
Management Of Data (COMAD’98), 1998.

[17] M. Khelfallah and B. Benhamou. Geographic information revision based on
constraints. In Proc. European Conference on Artificial Intelligence (ECAI
2004), pages 828–832, 2004.

[18] J. Kohlas. Probabilistic argumentation systems: A new way to combine logic
with probability. Journal of Applied Logic, 1(3-4):225–253, 2003.

[19] J. Kohlas and P.-A. Monney. Propagating belief functions through constraint
systems. International Journal of Approximate Reasoning, 5:433–461, 1991.

[20] M. Koubarakis. Tractable disjunctions of linear constraints: Basic results and
applications to temporal reasoning. Theoretical Computer Science, 266:311–339,
2001.

[21] J. Lang. Possibilistic logic: Complexity and algorithms. In J. Kohlas
and S. Moral, editors, Handbook of Defeasible Reasoning and Uncertainty
Management Systems, volume 5: Algorithms for Uncertainty and Defeasible
Reasoning, pages 179–220. Kluwer, Dordrecht, 2000.

[22] S. Moral and N. Wilson. Markov chain Monte-Carlo algorithms for the
calculation of Dempster-Shafer belief. In Proceedings of the Twelfth National
Conference on Artificial Intelligence, AAAI-94, pages 269–274, 1994.

[23] D. Raclot and C. Puech. Photographies aèriennes et inondation: globalisation
d’informations floues par un système de contraintes pour définir les niveaux
d’eau en zone inondée. Revue internationale de géomatique, 8(1):191–206, 1998.

[24] D. Raclot and C. Puech. What does AI contribute to hydrology? aerial photos
and flood levels. Applied Artificial Intelligence, 17(1):71–86, 2003.

[25] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1, 2):81–132,
1980.

[26] P. Rigaux, M. Scholl, and M. Voisard. Spatial Databases with Application to
GIS. Morgan Kaufmann, 2001.

[27] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

[28] G. Shafer. Constructive probability. Synthese, 48:1–60, 1981.

[29] J. Stoer and C. Witzgall. Convexity and optimization in finite dimensions I.
Springler-Verlag, 1970.

[30] T. Vidal and H. Fargier. Handling contingency in temporal constraint networks:
from consistency to controllabilities. JETAI, 11:23–45, 1999.

26

[31] N. Wilson. A Monte-Carlo algorithm for Dempster-Shafer belief. In Proceedings
of the 7th Conference on Uncertainty in Artificial Intelligence, pages 414–417,
1991.

[32] N. Wilson. Algorithms for Dempster-Shafer theory. In J. Kohlas and S. Moral,
editors, Handbook of Defeasible Reasoning and Uncertainty Management
Systems, volume 5: Algorithms for Uncertainty and Defeasible Reasoning, pages
421–476. Kluwer, Dordrecht, 2000.

[33] N. Wilson. The logic of linear constraints and its application to the flooding
problem. Technical report, annex to REVIGIS project year 2, task 1.2 report,
2002.

[34] N. Wilson. Uncertain linear constraints. In Proc. European Conference on
Artificial Intelligence (ECAI 2004), pages 231–235, 2004.

[35] N. Wilson. A logic of soft constraints based on partially ordered preferences.
Journal of Heuristics, 12(4-5):241–262, 2006.

[36] N. Wilson and S. Moral. A logical view of probability. In Proceedings of the
11th European Conference on Artificial Intelligence, ECAI-94, pages 386–390,
1994.

[37] E. Würbel, R. Jeansoulin, and O. Papini. Revision: an application in the
framework of GIS. In KR 2000, Principles of Knowledge Representation and
Reasoning, Proceedings of the Seventh International Conference, pages 505–515,
2000.

27

