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Abstract

Abstract

Very Long Baseline Interferometry (VLBI) polarisation observations of the rela-
tivistic jets from Active Galactic Nuclei (AGN) allow the magnetic field environ-
ment around the jet to be probed. In particular, multi-wavelength observations
of AGN jets allow the creation of Faraday rotation measure maps which can be
used to gain an insight into the magnetic field component of the jet along the line
of sight. Recent polarisation and Faraday rotation measure maps of many AGN
show possible evidence for the presence of helical magnetic fields.

The detection of such evidence is highly dependent both on the resolution of the
images and the quality of the error analysis and statistics used in the detection.
This thesis focuses on the development of new methods for high resolution radio
astronomy imaging in both of these areas. An implementation of the Maximum
Entropy Method (MEM) suitable for multi-wavelength VLBI polarisation obser-
vations is presented and the advantage in resolution it possesses over the CLEAN
algorithm is discussed and demonstrated using Monte Carlo simulations. This
new polarisation MEM code has been applied to multi-wavelength imaging of the
Active Galactic Nuclei 0716+714, Mrk 501 and 1633+382, in each case providing
improved polarisation imaging compared to the case of deconvolution using the
standard CLEAN algorithm. The first MEM-based fractional polarisation and
Faraday-rotation VLBI images are presented, using these sources as examples.

Recent detections of gradients in Faraday rotation measure are presented, in-
cluding an observation of a reversal in the direction of a gradient further along
a jet. Simulated observations confirming the observability of such a phenomenon
are conducted, and possible explanations for a reversal in the direction of the
Faraday rotation measure gradient are discussed. These results were originally
published in Mahmud et al. (2013).

Finally, a new error model for the CLEAN algorithm is developed which takes
into account correlation between neighbouring pixels. Comparison of error maps
calculated using this new model and Monte Carlo maps show striking similari-
ties when the sources considered are well resolved, indicating that the method is
correctly reproducing at least some component of the overall uncertainty in the
images. The calculation of many useful quantities using this model is demon-
strated and the advantages it poses over traditional single pixel calculations is
illustrated. The limitations of the model as revealed by Monte Carlo simula-
tions are also discussed; unfortunately, the error model does not work well when
applied to compact regions of emission.
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Chapter 1

Introduction

1.1 Radio Astronomy

Astronomical objects emit across a wide spectrum of radiation, but observations
on Earth are only possible in windows where the Earth’s atmosphere does not
block the emitted radiation. Figure 1.1 shows the windows in the spectrum at
which observations of astronomical objects are possible and shows clearly a major
advantage of radio observations – they can be conducted from the surface of the
Earth with little interference from the atmosphere.

This clear window of observation occurs because the wavelength of radio radiation
is long enough that it is less easily scattered than other wavelengths of emission.
The same long wavelength ensures that atmospheric phenomena such as rainfall
do not cause major interference. This means that accurate radio observations can
be made with less calibration and with much less sensitivity to weather conditions
than ground observations at many other frequencies.

A second major advantage of radio observations is that, while the Sun is a radio
emitter, its emission is confined to a relatively small part of the sky. This means
that, as long as the source being observed does not lie directly behind the Sun,
radio observations can be made 24 hours a day. As long as the radio telescope
tracks the source continuous observations are possible on very large time-scales,
allowing very high signal to noise ratio data to be recorded.

While in many respects the radio wavelengths may seem the ideal place to conduct
observations of astronomical sources of radiation, there is one major disadvantage
of observing in the radio – the resolution limit imposed by the Rayleigh criterion.

1
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Figure 1.1: The atmospheric opacity of the Earth at different observing wave-
lengths. NASA image from Wikimedia Commons: http://upload.wikimedia.org/
wikipedia/commons/3/34/Atmospheric_electromagnetic_opacity.svg.

The Rayleigh criterion states that the approximate angular resolution, θ, of an
observation at a wavelength, λ, with an aperture of diameter d is

θ ' λ

d
(1.1)

where the term angular resolution is used to mean the minimum angular separa-
tion of two point sources in the sky that results in them being detected as two
distinct sources. For example, in order to resolve two sources with an angular
separation of 0.1 arc-seconds with observations at the wavelength of yellow opti-
cal light (520nm) a telescope with a diameter of 1.2 m is required. However to
resolve the same sources at a radio wavelength (for example, at 2 cm) a radio
dish with a diameter of 42 km is required.

The construction of a uniform radio dish of this size would be extremely difficult,
and funds required to built it would likely dwarf the science case for such an
instrument. Indeed, the largest radio dish ever built is located at Arecibo in
Puerto Rico with a diameter of just 305 m.

This result initially seems to discount radio observation as being of limited use in
astrophysics, however an additional technique, known as radio interferometry can
be used to make high resolution radio observations both possible and practical.
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1.2 Radio Interferometry

Unless otherwise stated, the material presented in this section is based on Burke
& Graham-Smith (2010), and Taylor, Carilli & Perley (1999).

Radio interferometry is a technique which involves the operation of a minimum of
two radio dishes together as a combined instrument with an effective resolution
proportional to longest distance between two dishes in the array. In the above
example, this means that instead of a 42 km wide single radio dish, two much
smaller dishes 42 km from each other can observe with a resolution of 0.1 arc-
seconds.

Radio interferometry greatly improves the resolution of radio observations with-
out greatly increasing the cost of such observations and has been implemented on
scales from hundreds of metres (the Very Large Array in compact configuration)
to thousands of kilometres (the Very Long Baseline Array, the European VLBI
Network, global interferometry). Interferometry works on the principle that ra-
diation emitted from the same source will arrive at different spatially separated
elements of the array at different times. In the same way as interferometric
phenomena such as Newton’s Rings can be detected in visible light due to the
constructive and destructive interference of light, radio fringes can be developed
in interferometric arrays by combining the signals from multiple arrays with a
suitable time delay on each signal (representing the differing paths travelled by
the emission to each element of the array).

In radio interferometry these radio fringes must be found by searching for cor-
relations in the signals from different elements of the array. As there can be
many elements in the array, and many more cross correlation terms, this is a
computationally expensive operation. Original specialised hardware correlators
were designed and used for this purpose, however advancements in computational
power mean that in recent years new, more flexible, software based correlators
have become available.

Figure 1.2 shows this path difference in the case of a simple two element interfer-
ometer. The voltages induced in the two antennas by the incident electromagnetic
wave can be written as the following time varying functions
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Figure 1.2: Path differences in radio interferometry. Image from Murphy (2013).

v1 ∝ E cosωt
v2 ∝ E cosω(t− τ)

where τ = ~B0·~s
c

corresponds to the time for the radio signal to travel the extra
distance to antenna 1 and w is the angular frequency of the radiation (related to
the frequency by w = 2πf). The correlation of these two signals is

〈v1v
∗
2〉 ∝ 〈E2 cosωt cosω(t− τ)〉
∝ E2(cosωτ〈cos2 ωt〉+ sinωτ〈cosωt sinωt〉)
∝ E2 cosωτ.

Substituting the intensity for the square of the electric field, expressing the an-
gular frequency in terms of wavelength and the speed of light, and replacing τ
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with the expression above the following equation is obtained

〈v1v
∗
2〉 ∝ I cos (2πc

λ

~B0·ŝ
c

)
∝ I cos (2π ~B · ŝ)

where ~B is the baseline (distance between telescopes) expressed in wavelengths.
Thus a point source of radiation generates a quasi-sinusoidal interference fringe
pattern in the response of an interferometer. The amplitude of the fringe is
proportional to the intensity of the source and the frequency depends on how
~B · ŝ changes in time.

This treatment of the correlator response approximates the radiating source as a
single point. To generalise this to an extended source the extended source can be
considered as a sum of point sources, each with a different intensity and position
in the sky. The position can be described by the vector ~a in the plane of the
sky directed to the location of the point source from the direction of the vector
ŝ, known as the "phase-center". The vectors ~a and ŝ are thus almost orthogonal
to each other (ŝ being roughly perpendicular to the plane of the sky). Rewriting
the response to a point source for a general location and intensity the following
equation is obtained

〈v1v
∗
2〉 ∝ I(~a) cos [2π ~B · (ŝ+ ~a)].

If the voltages due to radiation from different parts of the source are uncorrelated,
then the total correlator response to the extended sources is

〈v1v
∗
2〉 ∝

∫ ∞
−∞

I(~a) cos [2π ~B · (ŝ+ ~a)]d~a.

The sine component of the signal, measurable by adding a π
2 phase shift to the

cosine term can then the added onto to the cosine term in Equation (1.2) to give
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〈v1v
∗
2〉 ∝

∫ ∞
−∞

I(~a)e2πi ~B·(ŝ+~a)d~a

∝ ei2π
~B·ŝ

∫ ∞
−∞

I(~a)e2πi ~B·~ad~a

≡ e2πi ~B·ŝV,

where V is the visibility function, and V ( ~B) and I(~a) form a Fourier transform
pair (see Section 2.1):

V ( ~B) =
∫ ∞
−∞

I(~a)e2πi ~B·~ad~a (1.2)

I(~a) =
∫ ∞
−∞

V ( ~B)e−2πi ~B·~ad ~B. (1.3)

As the celestial sphere is nearly flat over a small area, ~a is nearly perpendicular
to ŝ and ~B · ~a ≈ ~b · ~a, where ~b = ~B · ŝ is the baseline ~B projected onto the
sky. Choosing coordinates with axes pointing to the North and to the East the
following equations are obtained with (u, v) as the ground coordinates and (x, y)
as the sky coordinates

V (u, v) =
∫ ∞
−∞

I(x, y)e2πi(ux+vy) dx dy (1.4)

I(x, y) =
∫ ∞
−∞

V (u, v)e−2πi(ux+vy) du dv, (1.5)

where the second integration sign of the two dimensional integral has been omitted
for clarity. This means that as long as V (u, v) is known (i.e. the correlation of the
voltages and the lengths of the baselines are known to a high degree of accuracy)
it is possible to invert the Fourier transform and obtain a map of the source as it
appears in the radio sky. However in practice, due to the finite number of elements
in any array, V (u, v) is not known for all values of u and v. This means that the
Fourier transform cannot be reliably inverted due to incomplete data, and there
is no mathematical technique that can guarantee an authentic reproduction of
the original I(x, y) data given only some of the visibility data. This is known as
the deconvolution problem in astronomical imaging, and is discussed at length in
Section 2.1.
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Figure 1.3: The Very Long Baseline Array (USA). 10 telescopes which operate
together to perform radio interferometry at resolutions as low as 0.2 mas. Image
from http://www.nrao.edu/.

The Fourier pair relationship between I(x, y) and V (u, v) means that a baseline of
length u will correspond to a spatial scale on the sky of x ' 1

u
, where the u and

x are both dimensionless (measured in wavelengths and radians, respectively).
This is the Nyquist sampling limit. For any area this means that the smallest
resolution possible is

θ ' λ

B
(1.6)

where B is the longest baseline in the array (in wavelengths) and λ is the observ-
ing wavelength. This effect negates the resolution problem in single dish radio
astronomy and makes radio interferometry a good choice for high resolution stud-
ies of astronomical objects.

The VLBA (Very Long Baseline Array, see Figure 1.3) is a modern radio inter-
ferometer that performs very long baseline interferometry. It comprises of 10
purpose built 25m radio dishes and its longest baseline is over 8,611 km stretch-
ing from Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin
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Islands. Interferometry on these scales is referred to as VLBI (Very Long Baseline
Interferometry).

1.3 Interferometric Polarisation Observations

Unless otherwise stated, the material presented in this section is based on Burke
& Graham-Smith (2010), and Taylor, Carilli & Perley (1999).

Observations of the polarisation properties of radiation from astronomical objects
can give useful indicators of the conditions around the point of emission (see
Section 1.6), so it is important to use a clear and concise description of the
observed polarisation.

The receivers in the telescopes of the VLBA have two feeds which detect incoming
radiation reflected from the collecting dish. One of these feeds responds only to
Right-Circularly-Polarised (RCP) emission, and the second (mounted at right
angles to the first) responds to Left-Circularly-Polarised (LCP) emission. This
means that all the required data to calculate both the intensity and polarisation
intensity distribution of a source are collected at once.

The following Stokes parameter based coordinate system is widely used in the
radio astronomy community to describe the polarisation properties of observed
radiation (see Conway and Kronberg 1969).

I = 〈E2
A〉+ 〈E2

B〉 = 〈E2
C〉+ 〈E2

D〉 = 〈E2
R〉+ 〈E2

L〉 (1.7)
Q = 〈E2

A〉 − 〈E2
B〉 (1.8)

U = 〈E2
C〉 − 〈E2

D〉 (1.9)
V = 〈E2

R〉 − 〈E2
L〉 (1.10)

where I,Q, U and V are the four Stokes parameters (see Figure 1.5) defined with
respect to the component of the electric field in the orthogonal directions A, B, C
and D defined in Figure 1.4. R and L correspond to the LCP and RCP intensities.
It can be seen that the Stokes I component corresponds to total intensity, while
Stokes Q and U together describe the linear polarisation. Stokes V describes the
circular polarisation. Figure 1.5 describes the Stokes parameters for simple cases
of pure Stokes Q, U and V polarisation.
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Figure 1.4: Definitions of the directions of the orthogonal modes A, B, C and
D for the Stokes parameters and definition for the direction of RCP radiation.
Image from Murphy (2013).

Figure 1.5: The Stokes parametrisation of the polarisation of an electromag-
netic wave for some simple cases. Image taken from the Wikimedia Commons:
http://en.wikipedia.org/wiki/File:StokesParameters.png.
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A connection between Q and U and the source polarisation can be found if the
source is considered to have an unpolarised (random) component of its electric
field Eu and a polarised component Ep that lies at position angle χ (measured
from North to East). This gives

EA = Eu√
2 + Ep cosχ (1.11)

EB = Eu√
2 + Ep sinχ (1.12)

EC = Eu√
2 + Ep sin (45− χ) (1.13)

ED = Eu√
2 + Ep cos (45− χ). (1.14)

Note that the power detected in a feed orientated in any of these directions will
be the same due to the unpolarised component of radiation. These expressions
can then be used to calculate Q and U as follows,

Q = (E2
u + E2

p cos2 χ)− (E2
u + E2

p sin2 χ) (1.15)
Q = E2

p cos (2χ) (1.16)
U = (E2

u + E2
p cos2 (45− χ))− (E2

u + E2
p sin2 (45− χ)) (1.17)

U = E2
p sin (2χ) (1.18)

where the average of the product of Ep and Eu has been taken as zero, since
polarised and unpolarised components of the wave are uncorrelated. Thus the
polarisation angle χ, and polarised flux Ep can be calculated as

χ = 1
2 arctan U

Q
(1.19)

Ep =
√
Q2 + U2 (1.20)

and a complex quantity Q + iU can be constructed such that its amplitude is
mI, where m is the fractional polarisation, and phase is 2χ. This is the complex
polarised flux, P:

Q+ iU = mIe2iχ ≡ P. (1.21)
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Connection with the Correlator Output

Having established the connection between the Stokes parameters Q and U and
the linear polarisation of the source radiation, it is now necessary to construct
the relationship between Q and U and the output that is obtained from the
correlation of the voltages in a VLBI array.

Assume that the VLBI array records the left and right circularly polarised com-
ponents of the incoming radio signal. Four correlations are possible:

〈LL∗(u, v)〉
〈RR∗(u, v)〉
〈RL∗(u, v)〉
〈LR∗(u, v)〉

where R and L stand for the RCP and LCP responses and 〈LL∗(u, v)〉 refers to
the correlation of the LCP response of the first antenna with the LCP response
of the second, etc. Writing these correlations in terms of the Stokes parameters
the following equations are obtained

〈LL∗(u, v)〉 = I − V (1.22)
〈RR∗(u, v)〉 = I + V. (1.23)

This implies that 〈LL∗(u, v)〉 and 〈RR∗(u, v)〉 contain information about the to-
tal and circularly-polarised intensities of the radiation, but not the linear po-
larised intensities. In order to find these, the cross correlations 〈RL∗(u, v)〉 and
〈LR∗(u, v)〉 need to be examined. This can be done by writing the relationship
between the circularly polarised and linearly polarised intensities along axes A
and B as follows

EA = EL cos (ωt) + ER cos (ωt) (1.24)
EB = ER sin (ωt)− EL sin (ωt). (1.25)
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Note that χ is chosen to be zero so that the LCP and RCP components of the
polarisation line up along the North axis A at t = 0. In complex notation the
following equations are obtained

EA = (ER + EL)eiωt (1.26)
EB = − i(ER + EL)eiωt (1.27)
EL = 1

2(EA − iEB)e−iωt (1.28)
ER = 1

2(EA + iEB)e−iωt. (1.29)

Thus the correlation 〈RL∗(u, v)〉 becomes

〈RL∗(u, v)〉 = 1
2(EA + iEB)(EA + iEB) (1.30)

= 1
2(E2

A − E2
B) + iEAEB. (1.31)

The quantity EAEB can be identified as U by writing EC and ED in terms of EA
and EB and rewriting U in the following form:

EC = 1√
2(EA − EB) (1.32)

ED = 1√
2(EA + EB) (1.33)

U = 〈E2
C〉 − 〈E2

D〉 = EAEB. (1.34)

This implies that Equation (1.31) becomes

〈RL∗(u, v)〉 = Q+ iU. (1.35)

Similarly, 〈LR∗(u, v)〉 = Q− iU , and the full set correlations becomes
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〈LL∗(u, v)〉 = I − V (1.36)
〈RR∗(u, v)〉 = I + V (1.37)

〈RL∗(u, v)〉 = Q+ iU = P (1.38)
〈LR∗(u, v)〉 = Q− iU = P ∗. (1.39)

As levels of circular polarisation are usually very low it is often assumed that
V ≈ 0, therefore

〈LL∗(u, v)〉 ≈ 〈RR∗(u, v)〉 ≈ I. (1.40)

These Stokes parameters have Fourier transform equivalents in image space give
by the following formulae

〈RL∗(u, v)〉 = P (u, v) (1.41)

=
∫
mĨ(x, y)e2iχe2iπ(ux+vy)dx dy (1.42)

〈LR∗(u, v)〉 = P ∗(u, v) (1.43)

=
∫
mĨ(x, y)e−2iχe2iπ(ux+vy)dx dy. (1.44)

This gives the important result for the conjugate visibilities

〈LR∗(u, v)〉∗ = 〈RL∗(−u,−v)〉 (1.45)

meaning that in order to obtain symmetric polarisation visibility coverage (in u−v
space), all antennae must record both RCP and LCP. This is highly desirable as
it simplifies the processing of polarisation data, however it is can be worthwhile
to use asymmetric polarisation data if the asymmetric points contribute valuable
information (see Section 2.1 for more details).
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1.4 Calibrating Polarisation Data

Unless otherwise stated, the material presented in this section is based on Burke
& Graham-Smith (2010), and Taylor, Carilli & Perley (1999).

Before the data recorded by the telescope array can be used for science, they must
first be calibrated to remove instrumental and atmospheric effects. The presence
of the various thermal and systematic errors in the recorded complex visibilities
can be understood from the following equation

˜Vij(t) = gi(t)g∗j (t)Gij(t)Vij(t) + εij(t) + εij(t) (1.46)

where ˜Vij(t) are the complex visibilities observed with the baseline consisting of
array elements i and j, Vij(t) are the true visibilities and g is the gain of an
individual element – a measure of how well the antenna converts incoming radio
waves into electrical power; G is the non-factorable part of the gain on a baseline,
ε represents thermal noise and ε is an additive offset term. The effects of G
and ε are minimised by the design of the array, leaving the effective relationship
between the observed and true visibilities as

˜Vij(t) = gi(t)g∗j (t)Vij(t) + εij(t). (1.47)

The following Section outlines some of the steps taken to calibrate both the
complex visibilities and gain terms in a VLBA polarisation observation. A good
description of this process can be found in Taylor, Carilli & Perley (1999).

1.4.1 Amplitude Calibration

In radio astronomy it is convenient to measure the response of a radio telescope
to a signal in terms of the equivalent temperature, T , of a source at the input of
the receiver. The Rayleigh-Jeans approximation to the Planck radiation law for
a black body is

P = kbT∆f (1.48)

where kb is the Boltzmann constant, T is the equivalent temperature of the an-
tenna and ∆f is the bandwidth of the observation. The equivalent temperature
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itself is made up of two terms such that T = Ta + Tsys where Ta is the antenna
temperature of the source, and Tsys is the system temperature. The system
temperature includes contributions from receiver noise, feed losses, spillover, at-
mospheric emission, galactic background and cosmic background. The visibility
amplitudes must be corrected for these sources of systematic noise such that

Si,j = ∆i,jST

√
TiTj
Ta,iTa,j

(1.49)

where the i, j notation refers to the antenna pair in a baseline, ∆i,j is the cor-
relation coefficient between the two antennae, ST is the total measured flux of
the source and Si,j is the correlated flux on the baseline. Noting that the an-
tenna temperature is the total measured flux scaled by the gain of the antenna
(Ta,i = giST ), the correlated flux on a baseline can be re-written in terms of the
gains of the antennae as follows

Si,j = ∆i,j

√
TiTj
gigj

. (1.50)

1.4.2 Phase Calibration

The first step in phase calibration is to remove the effect of the parallactic angle
from the phases. The parallactic angle is the angle between the arcs on the
celestial sphere connecting the source and the zenith and the source and the
North Pole. The angle describes the rotation of the feeds of the telescope relative
to the source as it tracks a source across the sky. These angles are different for
antenna mounted at different locations, therefore the parallactic angle difference
between two antenna introduces an additional phase term in the visibilities that
must be removed.

As demonstrated in Figure 1.2, the emission arriving at one antenna from the
source will be out of phase with that arriving at another antenna. The best es-
timate of the phase delay between two antennas in a baseline is applied during
the correlation of the radio signals. The residual phase delays that need to be
applied to ensure that each signal phases up correctly must then be determined.
When the sources observed are sufficiently compact, this is usually done by mod-
eling them as point sources and calculating the phase delays that maximise the
visibility amplitude. For sources that are not sufficiently compact for this ap-
proximation, or that are weak, delay solutions for neighbouring compact sources
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can be interpolated and applied.

1.4.3 Self Calibration

While the initial amplitude and phase calibration perform much of the calibration
need to make a good image of a source, many errors can still remain in the
visibility data. To remedy this a calibration is performed whereby each source
uses itself (or rather, a simplified model of itself) as a calibrator. Care is needed
in this technique, as liberal interpretations of what may or may not represent real
emission can cause the final “calibrated” visibilities to contain significant errors.
The standard method of self calibration uses the CLEAN algorithm (see Section
2.2) to generate a plausible model of the source and applies corrections to the
gains by minimising the following function

S =
∑
k

∑
i,j∀i 6=j

wij(tk)|Ṽij(tk)− gi(tk)g∗j (tk)V̂ij(tk)| (1.51)

where the the indices i and j refer to two telescopes in a single baseline, t(k)
is the time at which the observations were taken, w is the weighting, g is the
gain of a telescope and Ṽ is the Fourier transform of the data, while V̂ is the
Fourier transform of the model (made from CLEAN components – see Section
2.2). By slowly and iteratively changing gi and gj for all the telescopes over
different time intervals a better estimate of the gains can be calculated and more
accurate visibility amplitudes generated, based on the assumption that the model
is accurate enough to correct small errors in the data.

Closure Quantities

In addition to minimising Equation (1.51), another important technique used to
self-calibrate VLBI sources is the use of closure quantities to remove antenna
based errors. This technique is made possible by the property that an appropri-
ate sum of visibility phases around a closed loop of baselines is free of element
related errors (see Jennison 1958). This can be seen by considering the following
expression for the measured visibility phases derived from Equation (1.47)

φ̃ij(t) = φij(t) + θi(t)− θj(t) + noise term (1.52)
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where φ̃ij is the measured phase, φij is the true phase, θi and θj are the phases
of the gain terms of telescopes i and j. The following quantity, known as the
observed closure phase is independent of element related errors

C̃ijk(t) = φ̃ij(t) + φ̃jk(t) + φ̃ki(t) (1.53)
= φij(t) + φjk(t) + φki(t) + noise term (1.54)
= Cijk(t) + noise term. (1.55)

If one makes a model of the source (with CLEAN for example), one can use the
model to provide estimates of the true phases for two terms in this equation for
every independent closure phase. This allows the third phase to be derived from
the observed closure phase. A similar quantity for the amplitudes known as the
closure amplitude can be defined (again from Equation (1.47)) as

Γijkl(t) = |Ṽij(t)| |Ṽkl(t)|
|Ṽik(t)| |Ṽjl(t)|

. (1.56)

In practice both the closure quantities and Equation (1.51) are used to self cali-
brate the visibility gains. Properly implemented self-calibration can significantly
improve the signal to noise ratio of a radio-interferometry image and is an essen-
tial step in imaging the jets of AGN.

1.4.4 Instrumental Polarisation Calibration in VLBI

Of the two feeds on radio telescope, one is designed to detect only LCP emission,
and the other RCP emission. However, as no instrument is perfect, both feeds
actually detect a small amount leakage from the other term – i.e. the LCP
feed detects some RCP emission and vice versa. In the most common linear
approximation the complex voltages induce in the RCP and LCP feeds can be
written

vL = GL[ELeiφp +DLERe
−iφp ] (1.57)

vR = GR[ERe−iφp +DRELe
iφp ] (1.58)

The Development of New Methods for High
Resolution Radio Astronomy Imaging

17 Colm Coughlan



1. Introduction 1.4 Calibrating Polarisation Data

where the G terms are the complex gain factors determined during the calibra-
tion process described previously, EL and ER are the induced electric fields in
complex notation and φp is the parallactic angle for the relevant telescope. The D
terms are the terms that give rise to the “polarisation leakage” and are known as
instrumental polarisations, polarisation cross gains, or just simply, the D-terms.

These D-terms can account for polarisation leakage in the range of 1 – 10 % of the
total detected emission. For this reason higher order products of the D terms are
ignored and the following expressions for the correlator output can be calculated

L1L
∗
2 = GL1G

∗
L2EL1E

∗
L2e

i(φp1−φp2) (1.59)
R1R

∗
2 = GR1G

∗
R2ER1E

∗
R2e
−i(φp1−φp2) (1.60)

R1L
∗
2 = GR1G

∗
L2[ER1E

∗
L2e
−i(φp1+φp2) +D∗L2ER1E

∗
R2e
−i(φp1−φp2)

+DR1EL1E
∗
L2e

i(φp1−φp2)] (1.61)
L1R

∗
2 = GL1G

∗
R2[EL1E

∗
R2e

i(φp1+φp2) +D∗R2EL1E
∗
L2e

i(φp1−φp2)

+DL1ER1E
∗
R2e
−i(φp1−φp2)]. (1.62)

Removing the effect of these D terms is essential if the polarisation properties of
the source is to be studied with accuracy. Writing the equations in terms of the
Stokes parameters, assuming Stokes V to be zero and applying the parallactic
angle corrections (see Section 1.4.2) in such a way as to remove the dependence
from the RR and LL correlations these equations become

L1L
∗
2 = GL1G

∗
L2I (1.63)

R1R
∗
2 = GR1G

∗
R2I (1.64)

R1L
∗
2 = GR1G

∗
L2[Ep + I(D∗L2e

2iφp2 +D∗R1e
2iφp1)] (1.65)

L1R
∗
2 = GL1G

∗
R2[E∗p + I(D∗R2e

−2iφp2 +D∗L1e
−2iφp1)]. (1.66)

This means that the D-terms can be calculated by obtaining a series of observa-
tions of a calibrator source that is either unpolarised, or has a simple polarisation
structure and spans a large range of parallactic angles. The calculated D-terms
must then be calibrated out of the visibility data.
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1.4.5 Electric Vector Position Angle Calibration

The final step in the calibration of VLBI polarisation data is the calibration of
the Electric Vector Position Angle (EVPA). This is most often achieved with the
help of integrated polarisation measurements of a calibrator source. At lower res-
olutions the EVPAs of integrated measurements can be calibrated using standard
calibrator sources with known EVPA values. Unfortunately, this method is not
feasible with VLBI observations as the polarisation of compact AGN at VLBI
scales has been found to be variable in almost every case.

A solution to this problem is to compare relatively low resolution polarisation
measurements of the EVPA of a calibrator source with the EVPA corresponding
to the total polarisation measured by the VLBI array. This results in an EVPA
offset which can then be used to calibrate the VLBI polarisation data at each
frequency. The calibrator source used should be sufficiently compact that a large
fraction of the source polarisation measured in the low resolution observation is
still visible on VLBI scales. If no recent phased array observations of a calibrator
source are available for a VLBI experiment, it is also possible to calibrate the
VLBI experiment against another, already calibrated, VLBI dataset. However
this method is less desirable and if possible an EVPA calibrator source should be
included in every VLBI dataset.

1.5 Active Galactic Nuclei

Unless otherwise stated, the material for this Section is based on Peterson (1997),
Burke & Graham-Smith (2010), Carroll & Ostlie (2007) and Gabuzda (2008).

Galactic Nuclei are the high density centres of galaxies. A Galactic Nucleus
can be considered “Active” if the emission from it is far higher than one might
expect simply due to the increased density of stars. The first observation of an
AGN was made by E.A. Fath in 1908 at optical frequencies, however AGN were
not observed at radio frequencies until the construction of large radio telescopes
after the second World War. In general, AGN emission is observed at frequencies
ranging from the radio all the way to gamma-ray and are distinguished by their
unusually high emission. Emission from AGN can range up to 1046 ergs/s, whereas
normal galaxies (such as the Milky Way) may have emissions on the order of the
≈ 1036 ergs/s (Note 1 erg= 10−7 J). This means that an AGN can have emission
up to 1010 times greater than a normal galaxy. The first step in the study of AGN
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was the identification of a mechanism that could account for these huge amounts
of energy.

1.5.1 Energy production in AGN

There are few astrophysical processes that can credibly account for such high rates
of emission. The best candidate process for powering AGN is thought to be the
high efficiency accretion of material from an accretion disk onto a supermassive
black hole at the centre of the AGN (Figure 1.6). The following quick analysis
gives an indication of the plausibility of such a model.

Consider an AGN of mass M radiating at the Eddington limit L – that is to say
radiating with a outwards radiation pressure which balances the inward force of
gravity. Noting that the momentum of a photon with energy E is p = E

c
, the

outward momentum flux at a distance r from a source of luminosity L is

Prad = L

4πr2c
. (1.67)

This can be converted to an outwards radiation force on a single electron by
multiplying the radiation pressure with the Thomson scattering cross section for
interaction between a photon and electron σe, to obtain

Frad = σe
L

4πr2c
. (1.68)

By equating this force with the inward gravitational force Fgrav = GMmp

r2 between
the AGN and an electron-proton pair (of mass ≈ mp) the maximum luminosity
possible without the disintegration of the source can be calculated as follows

L = 4πGcmp

σe
M (1.69)

≈7.5× 107M ergs s−1.

This is the Eddington luminosity and allows a lower limit to be placed on the
mass of a source observed to be emitting at a luminosity L. If a typical AGN
luminosity of the order of 1046 ergs/s is inserted into this equation, a lower limit
of about 108MSun can be determined for the mass of the emitting system.
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AGN have been observed to be variable on the time scales of just a few hours. As
the size of the AGN core must be comparable to the distance light travels across
the core, this means that the smallest AGN must be only a few light hours across.
The speed of light is 2.998× 108 m/s, therefore it travels 1.07928× 1012 m in an
hour, a distance equivalent to 7.2 AU – where 1 AU, an astronomical unit, is the
distance from the Earth to the Sun. Thus an AGN core may be of the order of
10s of AU across.

If a object of mass m positioned a distance r from a body of mass M wishes
to escape the gravitational attraction of the body, the minimum escape velocity
of the object, ve can be calculated by considering the kinetic energy required to
emerge from the body’s gravitational potential well

1
2mv

2
e = GMm

r
(1.70)

ve =
√

2GM
R

. (1.71)

If one considers the case of a body so massive that even light cannot escape for it,
this formula can be re-arranged to give the radius rs at which the escape speed
from a body of mass M is equal to the speed of light. This is the Schwarzschild
radius of the body:

rs = 2GM
c2 . (1.72)

Inserting an estimate of 10 AU for the radius of the AGN core, a corresponding
black hole mass of about 5 × 108Msun is obtained. This compares well with the
mass estimated assuming emission at the Eddington limit and is strong evidence
for a supermassive black hole based AGN emission.

The question of how much mass such a black hole would need to consume to
provide the observed luminosity is important – if it is unrealistically high, then
supermassive black holes would seem an unlikely candidate for the engines of
AGN. If it is assumed that the energy emitted by the nucleus of the AGN is
supplied by matter accretion of rate Ṁ with an efficiency η the following equation
is obtained
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Figure 1.6: Schematic of an Active Galactic Nucleus. Image taken from Urry &
Padovani (1995).

L = ηṀc2. (1.73)

Thus by inserting an AGN luminosity of 1046 ergs/s and assuming a moderate
efficiency of η = 0.1 the required mass accretion rate can be calculated as

Ṁ = L

ηc2 (1.74)

= 1039

0.1c2

≈1× 1023kg/s

≈1.8MSun/yr.

Thus an accretion rate of only a few solar masses a year is needed to fuel AGN
at observed luminosities, making an accretion fuelled emission mechanism very
plausible.
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1.5.2 Extragalactic Origin of the Emission

There was initial confusion as to whether early detections of AGN represented
galactic sources, such as stars or novae, or truly extragalactic sources. Indeed,
AGN classifications such as Quasar (quasi-stellar object) and BL Lac show the
confusion that existed in the early 20th century. Vesto Slipher took the initial
steps to solving this problem in 1914 when he published his results on the observed
radial velocities of extragalactic objects which had until then been thought to be
in our own galaxy. Slipher (1914) determined these velocities by observing the
Doppler shift of light from the objects. Instead of the random distribution of
radial velocities that had been expected for a source orbiting the same galactic
centre as the Earth, Slipher discovered that most of the objects he was studying
were shifted towards the red end of the spectrum – implying radial velocities
away from the Earth. This implied that the objects were not orbiting the galactic
centre, and thus were likely to be extragalactic in nature.

Shortly after this, Edwin Hubble began a search for a particular type of star –
Cepheid variables. A Cepheid variable is one of the ‘standard candles’ of as-
tronomy, an object that belongs to a class of known luminosity. In the case of
Cepheid variables there is a strong connection between the intrinsic luminosity of
the star and the period of variation as the star pulses between a brighter and a
dimmer state. Thus, comparing the apparent brightness and intrinsic luminosity
implied by the Cepheid period–luminosity relation made it possible to determine
the distance of the variable star.

Hubble found Cepheid variables in some of Slipher’s extragalactic sources and
used them to determine the distance to these sources. Hubble (1925) made the
surprising discovery of a linear relationship between the radial speed of the source
away from the Earth, v, and its distance from the Earth, d – nearby sources
moved away slowly, while further sources moved away quickly. He expressed this
relationship as

v = H0d (1.75)

where H0 is the Hubble constant. This constant is related to the expansion of the
universe and current estimates give its value of about 71 (km/s)/Mpc. Thus if
one can find the velocity of an astronomical source, extragalactic or otherwise, the
distance to the source can be determined. In practise this velocity is determined
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just as Slipher did it – by determining the redshift, z, of the source

z ≡ ∆λ
λrest

(1.76)

where ∆λ is the wavelength shift from an original wavelength λrest. This is related
to the radial velocity of the source vr by the relativistic Doppler formula

z =
√√√√1 + vr

c

1− vr

c

− 1. (1.77)

It is common in astronomy to give the distance of an extragalactic object from
the Earth in terms of its redshift and values of z have been calculated for most
AGN by spectrometric analysis.

1.5.3 The components of an AGN

Figure 1.6 shows a schematic of the current model of an Active Galactic Nucleus.
The centres of all AGN are thought to be supermassive black holes with masses
in the range from millions to billions of solar masses. The existence of such a
dense concentration for the mass is postulated as a result of the high energies
and rapid variability observed in AGN . As discussed in Section 1.5.1 a number
of factors suggest that the most likely configuration of mass in the true centre of
an AGN is a supermassive black hole.

Surrounding the black hole is an accretion disk that is at most a few parsecs
across. Thermal radiation detected from the disk and observed spectra suggests a
non-uniform temperature throughout the disk, while optical spectral lines exhibit
extreme Doppler broadening – an indicator of rotation and turbulent motion in
the disk.

Outside of the accretion disk a torus of cool molecular gas obscures much of
the inner structure of AGN. Infra-red radiation indicates the presence of dust
molecules in the torus and maser (naturally occurring microwave amplification
and stimulated emission of radiation) observations by Miyoshi et al. (1995) have
detected a torus rotating at 900 km/s around a massive central object, providing
strong evidence for the presence of a central black hole.

Clouds of molecular gas (thought to be H II) surround the torus. For reasons
that are not yet fully understood broadened spectra are observed from the clouds
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in close to the centre (inside the torus), while narrow lines are observed from
those further out. The broad lines from the inner clouds are interpreted as being
a result of increased Doppler broadening due to the higher rotational velocities
closer to the black hole.

In about 10% of AGN, jets of relativistic plasma have been detected emanating
from the central region as in Figure 1.6. It is thought that the jets comprise
of accretion disk material launched by either the angular momentum present
in the accretion disk (the Blandford and Payne mechanism) or by the extrac-
tion of rotational kinetic energy from the rotating supermassive black hole (the
Blandford-Znajek mechanism). In both models strong magnetic fields generated
by the moving plasma are collimated into two jets by a combination of magnetic
fields and pressure shocks. These jets are emitted perpendicularly to the plane
of the accretion disk (and probably along the axis of rotation of the spinning
supermassive black hole) and can be highly relativistic, moving at speeds very
close to the speed of light. These AGN jets have been observed extending up to
tens of thousands of light years from the centre of the AGN.

Relativistic jets can give rise to interesting effects, some of which can lead to
problems in the classification of AGN. One such effect is the relativistic Doppler
beaming of the AGN jets. The jets from AGN are emitted in opposite directions;
the emission from each of these will be concentrated in the direction of its motion
due to relativistic beaming (Appendix A). Due to this effect, if one of the jets is
pointing roughly towards the Earth, it will be observed much brighter than it ac-
tually is, while the counter jet (pointing in approximately the opposite direction)
will be detected as much weaker, if it is visible at all. Figure 1.7 demonstrates
the difference between a Doppler boosted source (Figure 1.7a) and a source where
the jets are roughly perpendicular to the line of sight between the Earth and the
source (Figure 1.7b).

Appendix A contains a description of how relativistic effects in AGN can give
rise to this relativistic Doppler beaming, as well as to the detection of apparently
super-luminal speeds in AGN.

1.5.4 Classes of AGN

AGN are divided into a number of different classes. Whether these classes rep-
resent different objects, or are simply the same object observed in different ways
is an open matter of debate. This section describes the main classes of AGN and
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(a) M87.

(b) Cygnus A.

Figure 1.7: Radio images of M87 and Cygnus A as observed with the VLA. M87
exhibits strong Doppler boosting in one of its jets, with no sign of the counter
jet. Cygnus A has two clear jets, with no evidence of Doppler boosting (they
appear to be roughly the same brightness). Images courtesy of the NRAO/AUI
: www.nrao.edu.

discusses how they may in fact represent the same objects.

Seyfert Galaxies

Seyfert Galaxies are low luminosity AGN which can have a compact star-like
nucleus and a clearly visible host galaxy. Originally identified just using this
description, they are now identified by the presence of strong, high ionisation
emission lines. Most, if not all, Seyfert AGN occur in spiral galaxies. They can
be broken up further into Seyfert 1 and 2 galaxies, where type 1 galaxies show
both narrow and broad line emission due to low density ionised gas, while type
2 Seyfert galaxies show only narrow line emission. The reason for this difference
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is not clear, however it is possible that type 2 galaxies are in fact simply type
1 galaxies where the broad line components of the lines are not visible from the
Earth’s line of sight.

Quasars

Quasars (Quasi-stellar objects) are the most luminous class of AGN. Originally
believed to be a type of star, most quasars are unresolved and appear star-like,
however some display suggestions of star light from their host galaxy. Spectra are
similar to those of Seyfert galaxies, but the narrow line features appear weaker
relative to the broad lines and there is little evidence of any stellar absorption
features.

Radio Galaxies

Radio galaxies are galaxies that emit strongly in radio and are often associated
with giant elliptical galaxies. Radio galaxies show the same broad line / narrow
line separation as Seyfert class 1 and 2 galaxies, but are much more radio loud
and occur in different types of galaxies. Many radio galaxies emanate jets per-
pendicularly to the galactic plane. These jets can come from one side or both
sides of the galaxy, though it is more common to see only a single jet due to
relativistic Doppler boosting as discussed in Appendix A.

In the case where two jets are observed from a radio galaxy the class is divided
once more into Fanaroff-Riley class I or II. FR-I radio galaxies exhibit decreasing
luminosity as the distance from the AGN increases, while FR-II galaxies show
increased luminosity in the radio lobes at the end of the jet. FR-I galaxies are
typically lower luminosity than FR-IIs and the primary difference between the
two is thought to be the efficiency of their energy transfer along the jet. FR-I
galaxies are less efficient and lose more energy at the start of the jet (near the
AGN), while FR-IIs keep their energy until much further out.

LINERs

LINERSs are low-ionisation nuclear emission-line region galaxies first identified
by Heckman (1980). They exhibit very low luminosity at the galactic nucleus
and spectroscopically resemble Seyfert 2 galaxies with stronger low-ionisation
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lines. LINERs are very common and may be detectable in up to half of all spiral
galaxies.

Blazars

Blazars comprise of two separate AGN classes – optically violent variables (OVVs)
and BL Lac objects. Optically violent variables exhibit high degree of polarisation
(up to a few percent) and are observed to vary greatly on time-scales of less than
a day. BL Lac objects, named after their prototype BL Lacertae – an AGN
originally identified as a highly variable star, exhibit similar variability but also
do not show strong emission or absorption lines in their spectra. Weak lines have
however been detected in observations with very high signal to noise ratios.

Both OVVs and BL Lac objects are thought to be AGN exhibiting strong rela-
tivistic beaming close to the line of sight to Earth. For this reason they are both
classified as “blazars”.

Narrow Line X-Ray Galaxies

Narrow line X-Ray galaxies are thought to be Seyfert galaxies whose spectra have
been reddened and extinguished by dust within the galaxy. Typically they have
the same high-excitation emission lines as Seyfert galaxies but a lower luminosity.

1.5.4.1 AGN Unification

All of the AGN classes discussed in this section are thought to originate from the
same type of galaxy viewed from different angles as illustrated by Figure 1.8. An
AGN viewed with its jet emanating at 90◦ from the line of sight will not have its
jet strongly Doppler boosted and will appear as a Seyfert 2 or a radio galaxy. A
jet angle of around 60◦ may result in a Seyfert 1 galaxy, while as the jet angle
reaches 30◦ Doppler boosting makes the AGN component of the galaxy more
visible, resulting in the detection of a quasar galaxy. Finally, a viewing angle of
0◦ corresponds to ‘looking down the gun’ of a jet from an AGN and a blazar type
object is observed.

Differences in intrinsic AGN luminosity and the existence of a radio loud / radio
quiet divide between some AGN make a full unification scheme challenging, how-
ever efforts continue in the field to include as many of these effects in the scheme
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Figure 1.8: AGN Unification. Illustration of how the type of galaxy visi-
ble from Earth may vary with viewing angle. Image from Wikimedia Com-
mons: http://en.wikipedia.org/wiki/ File: Galaxies_AGN_Jet_ Properties-
with-LoS.jpg.

as possible. For a good discussion of AGN unification see Urry & Padovani (1995)
and Antonucci (1993). The AGN considered in this thesis are primarily quasars
and blazars.

The Development of New Methods for High
Resolution Radio Astronomy Imaging

29 Colm Coughlan



1. Introduction 1.5 Active Galactic Nuclei

1.5.5 Synchrotron Radiation from AGN

The material in this section is based on Rybiki & Lightman (2008) and Gabuzda
(2008).

AGN emit radiation over a wide variety of frequencies. They cannot be well
described by a black-body spectrum corresponding to a single temperature or
a number of black bodies over a small temperature range. This led to early
speculation that non-thermal emission processes were behind the spectral energy
distribution of AGN. The continuum emission was originally modelled as a power
low of the form

Fν ∝ να (1.78)

where ν is the frequency of radiation, Fν is the monochromatic flux (the energy
in a single frequency interval per unit area) and α is the spectral index of the
emission – observed to vary from −1 to small positive values. This power law
behaviour is predicted by synchrotron radiation emission from a population of
relativistic electrons with a power law distribution in energy as they spiral in a
magnetic field. The predicated distribution of the electron energies can be written
as

N(E)dE = N0E
−pdE (1.79)

where α = −p−1
2 and N(E)dE is the number density of electrons between E and

E+dE. Synchrotron radiation is the relativistic equivalent of cyclotron radiation
– the process by which electrons gyrating in a magnetic field emit radiation with
a frequency equal to the frequency of gyration. By considering the instantaneous
rest frame of the gyrating electron Larmor’s formula can be used to calculate the
radiated power in the rest frame

P ′ = 2e2(a′)2

3c3 (1.80)

where e is the charge of an electron, a′ is the acceleration of the electron in the
rest frame and c is the speed of light. To find the corresponding power in the
observing frame consider the relativistic transformations on the work done over
time t′ in the rest frame. The work done in the observer frame and the time
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Figure 1.9: An electron moving relativistically in a magnetic field emitting syn-
chrotron radiation. Image from Gabuzda (2008).

elapsed in the observer frame can be calculated as

dW = γdW ′ (1.81)
dt = γdt′ (1.82)

where γ is the Lorentz factor. Therefore the power in the observer frame can be
calculated as

P = dW

dt
= dW ′

dt′
= P ′. (1.83)

Thus even though the electrons are moving relativistically, Larmor’s formula
(Equation (1.80)) holds and can be used to calculate the power emitted due
to synchrotron radiation.

Consider an electron moving relativistically in a magnetic field as shown in Figure
1.9. The equations of motion governing the electron are

d

dt
(γm~v) = q~v × ~B (1.84)

d

dt
(γmc2) = q~v. ~E = 0 (1.85)
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where the Equation (1.84) is the Lorenz force on a charge q moving in a magnetic
field ~B with a velocity ~v and Equation (1.85) is the rate of change of relativistic
energy in an electric field ~E. Magnetic fields are believed to play an important
role in the dynamics of AGN. If the magnetic forces can be approximated as much
larger than the electric forces Equation (1.85) can be set to zero and neglected.
This implies that γ is a constant, along with ~v and the pitch and between the
magnetic field and the velocity θ. Therefore Equation (1.84) can be rearranged
to solve for the acceleration in the observer frame as

a = e

γmc
~v × ~B (1.86)

a = eβ sinφB
γmc

â (1.87)

where â is a unit vector perpendicular to both the magnetic field and direction of
motion. This acceleration can be converted to the rest frame of the electron us-
ing the standard acceleration transformations for the components of acceleration
parallel and perpendicular to the direction of motion:

a′‖ = γ3a‖ (1.88)
a′⊥ = γ2a⊥. (1.89)

As the acceleration in this case is strictly perpendicular to the direction of motion
the observed synchrotron radiation in the unprimed frame will be

P = 2e4γ2β2 sin2 φB2

3c3m2 . (1.90)

If one assumes a random distribution of pitch angles θ this power then becomes

P = 4e4γ2β2B2

9c3m2 . (1.91)

This formula for the power emitted due to synchrotron emission in a magnetic
field is the primary reason for the belief that the emission that is observed is
mostly electronic in origin. The 1

m2 term in Equation (1.91) means that electrons
are much more efficient at radiating synchrotron radiation that relatively massive
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protons.

Thus the continuous emission is predicted from electrons gyrating around mag-
netic field lines. This causes the emission to be tightly beamed along the instan-
taneous direction of motion at any one time. An indication of the lifetime of
synchrotron emission can be gained by dividing the energy in an electron by the
rate at which the electron radiates energy to get

τsync '
E

P
(1.92)

τsync '
γmc2

1
9c3m2

4e4γ2β2B2 (1.93)

τsync '
9m3c5

4e4β2γB2 . (1.94)

This indicates that more energetic electrons radiate more powerfully and as a con-
sequence have shorter lifetimes. The frequency corresponding to peak radiation
can be calculated to be

νpeak '
γeB

2πmcβ sinφ (1.95)

νpeak ' 3× 106Bγ2 sinφ Hz. (1.96)

This tells us that the more energetic electrons will radiate at higher frequencies
and contribute more to the higher parts of the spectrum.

A consequence of these results is that electrons radiating at higher frequencies
will do so for less time than electrons radiating at lower frequencies. Thus if an
ensemble of electrons are given a distribution of energies, the higher frequency
emission will be exhausted more quickly than the lower frequency emission. In
plots of the spectral profile of synchrotron radiation such as in Figure 1.10 this
would be observed as a steepening of the high frequency part of the spectrum
with time.

Regions of AGN which exhibit relatively flat (or less steep) spectral index may be
indicative of regions where the supply of high energy electrons is being replenished
by a mechanism which can re-accelerate electrons up to high energy levels. One
of the main mechanisms thought to be responsible for such re-accelerations is the
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Figure 1.10: Spectrum of Synchrotron Radiation. Image from Gabuzda (2008).

formation of a shock in the jet, where the flow of jet material is greater than the
speed of sound in the jet and shockwaves form at various points in the jet.

1.5.5.1 Optical Depth

Different regions of AGN jets exhibit different opacities to synchrotron radiation.
If the mean free path of a photon in the radiating region is long enough that the
photon is likely to be able to leave the region without being reabsorbed by the
jet then that region is said to be optically thin. Correspondingly, if the mean free
path of a photon in a region is less than the size of the region, that region is said
to be optically thick. Figure 1.10 shows how a positive spectral index in Equation
(1.78) corresponds to an optically thick region, while a negative spectral index
corresponds to a region where the jet is optically thin.

At low frequencies there is a significant chance for the synchrotron emission pro-
duced to be re-absorbed by the same electrons producing the radiation. This
is known as synchrotron self-absorption and results in the low frequency part of
the synchrotron spectrum being optically thick with a theoretical value for the
spectral index of α = 5

2 . While this value is shown in Figure 1.10, in practice
observed spectra are only partially optically thick at these low frequencies.
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1.5.5.2 Polarisation Properties

Synchrotron radiation naturally produces highly polarised emission. In the case
of a completely ordered magnetic field with a pitch angle in Figure 1.9 equal to
90◦ in all cases the degree of polarisation of the emitted radiation could be as
high as 100%. In the more realistic case of randomly orientated pitch angles the
theoretical maximum reduces to about 75% for a completely ordered magnetic
field in an optically thin region.

The polarisation of the radiation can be broken up into components parallel to
and perpendicular to the direction of the magnetic field. In optically thin regions
the observed polarisation is perpendicular to the magnetic field and the degree
of polarisation can be up to 75%. In optically thick regions the observed polar-
isation is parallel to the magnetic field and the maximum degree of polarisation
is much lower – of the order of 10–15%. The reason for the difference in degree
of polarisation is that the emission of polarisation radiation perpendicular to the
magnetic field (with the electric field of the emission in the plane of gyration
of the electrons) is much more likely than emission of radiation parallel to the
magnetic field.

1.6 Polarisation Structures in AGN Jets

Having established the deep link between the polarisation of synchrotron radi-
ation from AGN jets and the local magnetic field environment, it is clear that
polarisation observations of jets may provide a valuable insight into the behaviour
of any magnetic fields that may be involved in the launch and collimation of the
jets. Some common polarisation signatures detected in AGN jets will be dis-
cussed in the following section. In particular – the connection between many
polarisation features and the possible presence of jet shocks or helical magnetic
fields will be highlighted.

The most visible characteristics of polarised emission are the degree of the po-
larisation (the fraction of the emission which is polarised) and the direction of
the EVPA (electric vector position angle), which indicates the direction of the
plane of polarisation of radiation at a particular part of the jet. The fractional
polarisation, m, is defined as the ratio of the total flux to polarised flux as follows
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m = I

P
(1.97)

where I is the Stokes I intensity of the emission and P is the total polarised
intensity. The fractional polarisation at any point in a jet is a good indicator of
the order in the underlying magnetic field. An ordered field produces relatively
highly polarised emission, while a disordered or tangled field will produce signif-
icantly less polarisation. As the emission detected from AGN jets is synchrotron
radiation, the theoretical maximum fractional polarisation that could be observed
is 75%, however in practice much lower figures are normally observed.

EVPAs are observed to vary across the jet for a variety of reasons. The basic
morphology of the jet has a major effect – bends and kinds in the jet are often
accompanied by changes in the EVPA detected and it is important to note that
only the 2D projection of the jet on the sky is visible and any emission detected
may in fact be integrated through many different regions of the jet. Shear at the
edges of the jet can also be detected as a ‘drag’ in EVPA angles observed in such
regions. As synchrotron radiation is polarised in a direction perpendicular to the
magnetic field in an optically thin region (see Section 1.5.5), the EVPA can also
be an important diagnostic of the jet magnetic field.

Variations in fractional polarisation and degree of polarisation across the jet can
be interpreted as corresponding to a variety of physical processes inside the jet.
A compact feature with higher than usual fractional polarisation and polarisation
aligned parallel to the jet direction (implying an orthogonal magnetic field) may
indicate the presence of a transverse shock in the jet. Cawthorne, Jorstad &
Marscher (2013) have described the EVPA signature and fractional polarisation
pattern corresponding to the presence of a conical shock in an AGN jet and found
evidence of such a shock in the jet of 1803+784.

The detection of an extended region of polarisation orthogonal to the jet may
indicate a region of the jet experiencing shear stresses, a change in the direction
of the jet or the presence of a helical magnetic field with a low pitch angle.
In all of these cases, the fractional polarisation may be observed to increase
towards the edge of the jet. Such an increase in fractional polarisation results
from the increasing order imposed on the magnetic field by the forces acting on
the jet. Figure 1.11 demonstrates how a bend in a jet carrying a helical magnetic
field could give to an increased degree at the outer edge of the bend, where
the longitudinal field component is increased due to the ‘stretching out’ of the
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Figure 1.11: The bending of a helical magnetic field can cause an increase in the
fractional polarisation at the outer part of the bend. This occurs as the fields are
more ordered due to the increased spacing. Colour-scale: The colours indicate
the direction of the helix (green for towards the observer, purple for away). Image
from Healy (2013).

frozen-in field.

While compact regions of high fractional polarisation and EVPAs parallel to the
jet direction are likely to be the result of shocks in the jet, such shocks are
unlikely to extend over a large area. Extended regions of parallel EVPAs are
likely to indicate the presence of an axisymmetric magnetic field with a toroidal
component orthogonal to the jet direction, such as a helical field with a relatively
high pitch angle.

Observations of the EVPAs in some sources have shown the existence of a ‘spine-
sheath’ polarisation structure, where the EVPAs in the centre of the jet are
parallel to the direction of the jet, but the EVPAs towards the edge of the jet
are perpendicular to the jet direction. Figure 1.12a illustrates how a helical
magnetic field may give rise to such a structure and Figure 1.12b shows the
presence of a spine-sheath structure in polarisation images of Markarian 501
deconvolved with the Maximum Entropy Method as outlined later in this thesis
(data originally analysed by Pushkarev et al. (2005)). This type of polarisation
structure provides evidence for the presence of a helical magnetic field in the jet,
however the detection of such a clear signature is highly dependent on both the
viewing angle of the AGN and the pitch angle of the helix.

Murphy, Cawthorne & Gabuzda (2013) investigated this dependence and calcu-
lated all of the polarisation signatures possible for a simple model of the helical
magnetic field. Figure 1.13 shows these configurations and confirms the presence
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(a) Spine-Sheath Model. Image from Healy
(2013).

(b) Markarian 501.

Figure 1.12: Spine-sheath structure in theory and reality. Figure 1.12a shows
the ideal model of spine-sheath structure. Figure 1.12b shows spine-sheath struc-
ture in the optically thin part of the jet of Markarian 501 at 6cm imaged with
the VLBA. This image was deconvolved using the Maximum Entropy Method
developed in this thesis (data originally analysed by Pushkarev et al. (2005)).
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Figure 1.13: Transverse polarisation configurations of a simple helical magnetic
field model in an AGN jet. Models parametrised by line of sight with the observer,
δ′, and pitch angle of the helix γ′, both in the rest frame of the jet. Dark
regions indicate longitudinal polarisation (EVPAs aligned with the jet), while
lighter regions indicate transverse polarisation (EVPAs perpendicular to the jet).
The x axis runs transversely across a slice of a model jet. Image from Murphy,
Cawthorne & Gabuzda (2013).

of a spine-sheath structure some configurations of pitch angle and line of sight
angle, however many other variations are possible. The exact configuration ob-
served also depends on the resolution of the observing instrument. Algorithms
such as the Maximum Entropy Method which offer improved resolution over the
standard CLEAN algorithm may be able to better image the actual polarisation
configuration of the jet – allowing a better estimate of the viewing and pitch
angles to be obtained.

Asymmetric features in intensity and polarisation are regularly observed in AGN
jets. These could be explained by pressure gradients across the jet or by the
presence of a helical magnetic field. However if the asymmetry occurs in a region
without any other evidence for the existence of a pressure gradient, such as kinking
or twisting, then the presence of such asymmetries together with some of the other
features discussed above constitutes strong evidence for a helical magnetic field
in the jet.

Murphy et al. (2013) present the results of fitting a simple helical magnetic field
model first, developed by Laing (1981), to the jet of Markarian 501. In agreement
with earlier analyses by Papageorgiou (2005), they found that the model produced
higher than observed levels of polarisation. However, by adding a term dividing
the magnetic field into helical and tangled components, Murphy et al. achieved
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Figure 1.14: The Lorentz Force in Faraday Rotation for the RCP and LCP com-
ponents of an electromagnetic wave. The Lorentz force is aligned with the rota-
tion of the LCP component, but opposed to the rotation of the RCP component.
Image from Gabuzda (2008).

good fits to the asymmetric transverse profiles in Markarian 501 and successfully
calculated a value for the rest frame viewing angle of the jet of approximately
83◦. This corresponded to a magnetic field that contains approximately 60% of
its energy in a helical component and 40% in a tangled component.

1.7 Faraday Rotation and evidence for Helical
Magnetic Fields

Faraday rotation is the rotation of the angle of polarisation of light as it passes
through a charged plasma in the presence of an external magnetic field. This
rotation occurs because the left circularly polarised (LCP) and right circularly
polarised (RCP) components of the radio wave respond differently to the magnetic
field and propagate at different speeds, thereby leading to a rotation in the overall
angle of polarisation.

This can be understood as follows. Consider Figure 1.14 which shows the LCP
and RCP components of an electromagnetic wave passing through a region with
a magnetic field and a charged plasma. The direction of the Lorentz force, given
by the cross product of the velocity of the electron ~v and the magnetic field ~B,
is aligned with the rotation of the LCP component and opposed to the RCP
component.
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Figure 1.15: Faraday rotation caused by different components of the polarisa-
tion of the wave experience different refractive indices, and therefore propagation
speeds. Image from Gabuzda (2008).

The different responses of the LCP and RCP components of the wave to the
Lorentz force result in the two components experiencing different indices of re-
fraction as they travel through the plasma. This introduces a difference in the
speed at which each part of the wave propagates, therefore the original polarisa-
tion angle is not preserved. Figure 1.15 demonstrates the difference between LCP
and RCP components of a wave propagating in a vacuum (without any Faraday
rotation) and in a plasma with a magnetic field, where the plane of polarisation
rotates as the components travel at different velocities.

The amount by which the polarisation angle rotates at a wavelength λ can be
expressed as

χobs = χ0 +RMλ2 (1.98)

where RM, known as the Faraday rotation measure, is defined as

RM = e3

8π2ε0m2
ec

3

∫
ne ~B.d~l (1.99)

where ne is the number density of the plasma and ~B.d~l returns the line of sight
magnetic field. It is of note that the 1

m2
e
term means that any contribution by pro-

tons to the Faraday rotation process will be negligible compared to the electronic
contribution.

The existence of terms describing the magnetic field and electron density in Equa-
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Figure 1.16: Faraday rotation measure gradient due to the changing line of sight
component of a helical magnetic field. Image from Reichstein & Gabuzda (2011).

tion (1.99) makes the measurement of the Faraday rotation occurring in any re-
gion an important diagnostic of the magnetic field environment of the jet. Chan-
ges in the Faraday rotation measure (RM) can be due to either changes in the line
of sight magnetic field, or changes in the electronic number density, however if a
change in the sign of the RM is observed, the only explanation can be a reversal
in the direction of the line of sight magnetic field.

1.7.1 Transverse FR Gradients and Magnetic Fields

The presence of a toroidal or helical magnetic field threading a jet can give rise
to a very distinctive Faraday rotation measure signature – namely, a transverse
gradient across the jet. Figure 1.16 shows how such a systematic transverse
gradient in Faraday RM may come about as the line of sight component of the
magnetic field changes across the jet. In some cases observed transverse gradients
exhibit the sign change demonstrated in Figure 1.16, however in many cases the
finite resolution of the observing array and the geometry of the jet mean that,
while a systematic transverse RM gradient is observed, the RM does not change
sign over the length of the gradient. Murphy et al. (2013) demonstrate the
effects of finite resolution on observed RM distributions for a variety of simple
jet models.

The Faraday rotation measure at a specific location in the jet of an AGN can
be calculated by obtaining observations of the jet at multiple different frequen-
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cies. The resulting maps must be convolved with the same restoring beam (see
Section 2.2) in order to have the same units. As the resolution and size of the
restoring beam scales with frequency according to Equation (1.6), the conserva-
tive choice for this single resolution is the resolution corresponding to the low-
est observed frequency. By calculating the observed polarisation angle at each
frequency, Equation (1.98) allows both the Faraday rotation measure and the
intrinsic polarisation angle to be found using a simple linear fit.

The correct EVPA calibrations must be applied to the polarisation angles before
this fitting process, as well as any correction that may be needed to account for
local Faraday rotation occurring as the emission from the jet passes through our
own galaxy. Section 6.5 discusses the statistical properties of the linear fitting
process in detail – including the effect of EVPA calibration errors on Faraday
rotation measure gradients. Recent results Murphy et al. (2013) discuss the
reliability of the RM gradients calculated in this manner and find them to be
extremely robust when the statistical significance of the gradient is greater than
3σ. In the case where the statistical significance of a gradient is over 3σ this
method can be used to investigate RM gradients for extremely narrow jets.

The process of combining multi-wavelength data to create Faraday rotation mea-
sure maps is surprisingly robust. The method is not sensitive to errors in the
EVPA calibration (see Section 6.5), and while errors can be introduced due to
the incorrect alignment of the images taken at different frequencies, these are
often negligible. This misalignment is due to the phenomenon of VLBI core shift.
The process of interferometric imaging loses the absolute position of the source
and as a result most images are simply centred on the brightest emission (the
“core”). However Konigl (1981) calculated that the position of the VLBI core
shifts depending on the frequency of observation according to

rcore = Cv
1

kr
obs (1.100)

where C is a constant kr = 1 if the system is assumed to be in equipartition.
To correct for this core shift effect identical features must be aligned across the
frequencies used in the experiment. Multiple techniques have been developed to
do this – Croke & Gabuzda (2008) developed a method of estimating the pixel
shift between maps at different frequencies due to this effect using cross correla-
tion coefficient of maps at different frequencies. A catalogue of core shifts across
many sources has been developed by Sokolovsky et al. (2011). In many cases
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Faraday RM maps do not show sensitivity to image alignment errors, but such
errors can be of critical importance in multi-wavelength calculations involving
fewer frequencies, such as the calculation of spectral index.

1.8 Thesis Summary

This thesis describes the development of new methods for high resolution radio
astronomy imaging. Two different avenues of improving radio imaging are pur-
sued. Firstly – the development of new applications for the maximum-entropy
deconvolution method for VLBI polarisation data, which has intrinsically higher
resolution than the CLEAN deconvolution that is usually used in radio astron-
omy. Secondly – a better statistical understanding of the uncertainties associated
with new and existing imaging and analysis methods, which can be used to better
understand what can reliably be inferred from observations.

The first part of this thesis describes the development of a new implementation
of the Maximum Entropy Method (MEM) deconvolution algorithm to be used in
multi-wavelength polarisation studies of AGN. Chapter 2 describes the need for
deconvolution and the advantages that the MEM offers in the creation of radio
images over the more common CLEAN algorithm – namely higher resolution and
a better mathematical basis. The chapter goes on to describe previous work on
VLBI polarisation data with the MEM and details the computational algorithm
which can be used to implement the MEM.

Chapter 3 introduces original changes to the Cornwell-Evans algorithm described
in the previous chapter. The development of an new MEM code is detailed and
Monte Carlo simulations are performed which show the advantages of the MEM
over CLEAN.

Chapter 4 shows the first results of actually using the new MEM code, PMEM,
on real VLBA observations of AGN. Intrinsic MEM model maps are shown, as
well as the first MEM based Faraday rotation measure maps of AGN at VLBI
resolutions. The contribution the MEM can make to high resolution polarisation
studies is illustrated.

Chapter 5 of this thesis consists of results published in Mahmud et al. (2013).
It details the reliable detection of Faraday rotation measure gradients in two
different AGN and the detection of a reversal in the direction of the gradient in
one of them. Various explanations for such a reversal are discussed.
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Chapter 6 pursues the second aim of this thesis – the development of an improved
statistical understanding of the uncertainties associated with current algorithms
and techniques. A new error model for the CLEAN algorithm is introduced
and tested with Monte Carlo simulations. The results of the simulations and
their implications for the error method are discussed. Statistical issues faced by
colleagues in the field are detailed and mathematical solutions are proposed.

Finally, Chapter 7 summarises the results of this thesis and offers conclusions on
the work.
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Chapter 2

The Maximum Entropy Method

The Maximum Entropy Method (MEM) is a deconvolution algorithm widely used
in radio astronomy. It was adapted for use with polarisation data by Holdaway
(1990), Holdaway and Wardle (1990) and Sault (1999). Holdaway and Wardle
(1990) applied the MEM to VLBI polarisation data, however their code could not
be interfaced with other standard imaging packages, and never became generally
available. In addition, Holdaway and Wardle (1990) did not consider the possibil-
ity of investigating multi- wavelength phenomena such as Faraday rotation with
polarisation-sensitive MEM. The following section introduces some concepts from
Fourier analysis and outlines the need for deconvolution of radio data, discussing
the two major algorithms used - the MEM, and the CLEAN algorithm.

2.1 The Problem of Deconvolution

2.1.1 The Fourier Transform

Fourier Analysis is a powerful tool in the study of waveforms of all kinds, including
the radio signals that form the basis of radio astronomy. Bracewell (2000) provides
an excellent summary of the applicability of the Fourier transform to problems
in physics and engineering. However before the practical uses of the Fourier
transform can be considered, the mathematical properties of the transform must
be defined. The one-dimensional Fourier Transform of a function f(x) can be
defined as
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F (s) =
∫ ∞
−∞

f(x)e−i2πxsdx. (2.1)

This transform can then be inverted to obtain the original function using a similar
formula:

f(x) =
∫ ∞
−∞

F (s)ei2πxsds. (2.2)

In order for f(x) to be Fourier transformable both f(x) and its transform F (s)
must obey the Dirichlet conditions:

1. f(x) and F (s) must be square integrable, i.e.
∫∞
−∞|f(x)|2dx must be finite,

showing that lim|x|→+∞ f(x) = 0.

2. f(x) and F (s) must be single valued functions.

3. f(x) and F (s) must be piece-wise continuous.

4. f(x) and F (s) must have both upper and lower bounds.

2.1.2 The Sampling Theorem

Consider a function f(x) such that its Fourier transform F (s) has only finite sup-
port, i.e. F (s) = 0, ∀|s| > sc. In this case f(x) is said to be “band-limited” and
the sampling theorem of Fourier analysis states that sampling f(x) with a fre-
quency given by 1

2sc
is sufficient to completely describe its Fourier transform F (s)

and therefore reconstitute the original function f(x) by inverse Fourier trans-
form.

This result has great practical significance as it means that accuracy of the wave-
form f(x) generated by the Fourier transform is dependent on the cut-off fre-
quency, sc, of the measurements of its transform F (s). In radio interferometry
this cut-off frequency for a particular baseline is determined by the observing
wavelength and the length of the baseline, and means that the signal generated
by inverting the visibilities will only be accurate down to a scale of 1

2sc
. If the

source has structure on scales smaller than this, the corresponding visibilities
would be beyond the effective sc for the array and therefore not measured.

Another important aspect of the interdependence of time and frequency shown
by this result is that it is impossible for a Fourier transformable signal to be both
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band-limited (its Fourier transform describable with a finite number of frequen-
cies) and time-limited (its waveform describable in a finite amount of time). Only
a waveform which continues forever in time can be described with a finite num-
ber of frequencies in frequency space, and only a waveform consisting of infinite
frequencies can be described in a finite amount of time. Consequently, the more
precise one’s knowledge of the time-span of a wave, the less one can constrain
its spectrum (range of frequencies). This can be expressed as the uncertainty
relation of Fourier analysis as follows

∆x∆s ≥ 1
4π . (2.3)

This result has major consequences for the study of any form of wave, and finds
particular fame as the Heisenberg uncertainty principle relating uncertainty in
the position and momentum of a matter-wave in quantum mechanics.

2.1.3 Deconvolution in Radio Interferometry

Consider again the relationship between the image and visibility space in radio
interferometry (see Fig. 2.1)

V (u, v) =
∫ ∞
−∞

I(x, y)e2πi(ux+vy) dx dy (2.4)

I(x, y) =
∫ ∞
−∞

V (u, v)e−2πi(ux+vy) du dv. (2.5)

Note that this relationship assumes that the vertical w coordinate in the visibility
space (see Figure 2.1) can be neglected, effectively assuming all of the antennae
are on a single u− v plane. This introduces a distortion in the image similar to
the effect of projecting a section of the sky dome on a small plane. This effect
is negligible for a sufficiently small patch of the sky dome, obeying the condition
that x2+y2

2w << 1. Therefore for high frequencies or longer baselines the amount
of the sky that can be mapped ignoring the w coordinate shrinks, but for small
sources close to the phase centre w can be safely ignored.

At first glance at these equations it may appear that the visibility function as
recorded by the telescope array may simply be inverse Fourier transformed to
recover the original sky brightness distribution, however a simple fact prevents
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Figure 2.1: The UVW plane. From the lecture notes of Prof. Dale Gary, New
Jersey Institute of Technology: http://web.njit.edu/ gary/728/Lecture6.html.

this – not all of the visibility data has been recorded.

An interferometric array can only collect data at the u − v coordinates corre-
sponding to a pair of antennas (a baseline). This situation is remedied somewhat
by Earth rotation synthesis, the process by which the rotation of the Earth moves
individual baselines across the u − v plane, enabling a more complete sampling,
however it is clear from Figure 2.2 that most of the u− v plane still goes unsam-
pled.

This can be represented mathematically by including a binary valued sampling
function S(u, v), with a value of 0 for baselines not measured during the observa-
tion, and 1 for baselines corresponding to antenna pairs in the array with which
data were taken. Thus the recorded visibility data Vr is a subset of V (u, v) and
can be written

Vr(u, v) = V (u, v)S(u, v). (2.6)

Attempting to invert the recorded visibilities Vr with a discrete Fourier transform
will not return the original map, instead returning a "dirty" map
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Figure 2.2: The relationship between visibility and image space. Image from
the lecture notes of Prof. Dale Gary, New Jersey Institute of Technology:
http://web.njit.edu/ gary/728/Lecture6.html.

Idirty(x, y) =
∑
r

Vr(u, v)e2πi(ux+vy)∆u ∆v. (2.7)

Rewriting Vr(u, v) in terms of V (u, v) and S(u, v) a new formulation of the prob-
lem can be derived using the convolution theorem of Fourier analysis (a product
in one space is a convolution in the Fourier transformed space)

Idirty(x, y) =
∫ ∞
−∞

V (u, v)S(u, v)e2πi(ux+vy)du dv (2.8)

Idirty(x, y) = V (u, v) ∗ S(u, v) (2.9)
Idirty(x, y) = Itrue(x, y) ∗B(x, y) (2.10)

where the bar indicates the Fourier transform, "∗" indicates a convolution and
B(x, y), corresponding to the Fourier transform of the sampling function, is known
as the dirty beam. In this way, the dirty map produced by the array can be seen
as the effect of convolving the true map with the dirty beam of the array as the
kernel.
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This process can lead to major defects and artefacts in the dirty map, including
a relatively low signal to noise ratio and the presence of large "sidelobes" on the
map, artificial features introduced due to the systematic asymmetrical sampling
of the u − v space. Removing the effect of this convolution, i.e. deconvolving
the dirty map, is an essential step in the analysis of spatial data of astronomical
objects.

This is not a straightforward task – the only way to truly recover the original
sky brightness distribution would be to fully sample the u − v plane. Neverthe-
less, even though only a small sample of (noisy) visibilities are recorded for each
observation, there exist numerous mathematical techniques which attempt to ac-
count for the effect of the missing visibilities in a consistent and sensible fashion.
The most popular techniques in radio astronomy are variants of the CLEAN and
MEM algorithms, the fundamentals of which are outlined in Sections 2.2 and 2.3,
respectively. A further explanation of the problem of deconvolution can be found
in Starck and Murtagh (2006).

2.2 The CLEAN Algorithm

First developed by Högbom (1974) the CLEAN algorithm is a quick, conceptually
clear, computationally efficient method of deconvolving a dirty radio map. It
operates as follows

1. The peak of the dirty map is found.

2. The value of the peak is multiplied by a gain factor between 0 and 1 (often
0.1). The resulting number is saved in a list of CLEAN components along
with the location of the peak.

3. A δ function with the amplitude and position of the CLEAN component is
convolved with the dirty beam. The result is subtracted from the dirty map.
This removes the effect of the emission in the CLEAN component from the
dirty map (convolving the CLEAN component with the dirty beam gives
the response of the array to the CLEAN component of emission alone). See
Figure 2.3b.

4. This process is then repeated, removing components of emission from the
dirty map until the peak of the residual map is within 3σ of the RMS noise
on the map.
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(a) The dirty map. (b) The partially cleaned model.

(c) The partially cleaned map. (d) The final cleaned map.

Figure 2.3: Different steps of the CLEAN algorithm as it deconvolves a Gaussian
source. The x and y dimensions are in pixels, while the z (height) direction is the
Stokes I flux in Jy. Figure 2.3c is a CLEAN map made with a single CLEAN
component (visible in Figure 2.3b).

5. The entire list of CLEAN components is then convolved with the CLEAN
beam. This is a Gaussian fit to the primary lobe of the dirty beam, thereby
having approximately the correct shape and resolution, but without any
sidelobes (see the difference in removing the sidelobes associated with a
single CLEAN component between Figures 2.3a and 2.3c. The residual
map is then added to the convolved CLEAN components to give the final
CLEAN map.

The CLEAN algorithm has evolved over the years since it was first introduced
and today many different variants of it are in use, including the standard CLEAN
algorithm (Clark 1980) and multiscale CLEAN (Wakker 1988). It is suitable for
use in imaging both intensity maps and the polarisation Stokes parameters Q,
U and V . The Clark CLEAN algorithm is the most widely used deconvolution
algorithm in VLBI polarisation studies of AGN.

The CLEAN algorithm, like any algorithm, has systematic flaws that can reduce
the quality of the maps it produces. In CLEAN the representation of an emitting
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source as a series of δ functions may be somewhat accurate for point sources
(completely unresolved by the array), but is less suitable for extended emission.
There is also often a degree of subjectivity introduced by rejecting certain CLEAN
components that may be visually identified as being associated with a sidelobe
rather than actual emission (include such components during the self-calibration
phase of the data processing can have a major negative effect).

2.3 The Maximum Entropy Method

The Maximum Entropy Method was originally developed by Jaynes (1957) and
was first used to deconvolve radio images in the 1970s (Wernecke & D’Addario
1977, Frieden & Wells 1978). Cornwell & Evans (1985) outlined an implementa-
tion of the MEM as a constrained optimisation method based on a consideration
of the function

J = H(Im, Pm)− αχ2
I(V̂I , ṼI)

− β(χ2
Q(V̂Q, ṼQ) + χ2

U(V̂U , ṼU))− γG
(2.11)

where H is the entropy of a model map of the source, χ2 is a measure of the
difference between the model (V̂ ) and the observed (Ṽ ) visibilities (there are
three χ2 terms, one for intensity, Stokes I, and two for the polarisation Stokes Q
and U parameters), α, β and γ are Lagrangian optimisation parameters and G
is a function equal to

G =
∑
k

Ik − Z.S.F. (2.12)

where Ik is the Stokes I intensity at pixel k, ∑
k Ik is the total flux of the MEM

model and Z.S.F. stands for the Zero-Spacing Flux, an estimate of the true flux
which can be gained from looking at the amplitudes of the shortest visibilities.
A form of entropy suitable for polarisation emission developed by Gull & Skilling
(1984) and used by Holdaway & Wardle (1990) and Sault, Bock & Duncan (1999)
is
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H = −
∑
k

Ik(log( 2Ik
IBke

) + 1 +mk

2 log(1 +mk

2 )

+ 1−mk

2 log(1−mk

2 ))
(2.13)

where IBk is the flux at pixel k of a bias map (normally chosen to be a flat map
with a total flux equal to the flux estimated for the source) and Ik and mk are
the Stokes Intensity (I) flux and fractional polarisation, respectively, of pixel k.
This exact form of entropy was suggested in Sault et al. (1999), though a very
similar form was used by Holdaway & Wardle (1990).

The Gull and Skilling entropy, H, is a form of Shannon entropy (often used
to describe the information content of a dataset) which has been generalised to
include information on the polarisation of the data. Shannon entropy can be
thought of as a measure of disorder in information. The less certain the value of
a variable is, the higher Shannon entropy it will have and conversely, a certain
outcome has minimal Shannon entropy. The original form of Shannon entropy
for a variable x with possible values x1, x2, ..., xn can be expressed as

H(x) = −
n∑
i

P (xi) logb P (xi) (2.14)

where P (xi) is the probability that x will take the value xi and b is the base of the
logarithm – often taken to be 2 or e, depending on the application of the concept.
Equation (2.13) is a generalisation of Equation (2.14) above treating fractional
polarisation as a measure of order in the magnetic field, and biasing the Stokes I
part of the equation to rescale the logarithm to the units used in the radio map.

An examination of the form of H gives an indication as to how it will react to
different types of sources – see Figure 2.4 for a graphical illustration. The Gull
and Skilling entropy of a source that is described well by the bias map is high –
the data does not require a meaningful model at all, and the amount of useful
information which can be gained from the model is minimal. A source which
has low fractional polarisation (i.e. disordered magnetic field) will also have high
Gull and Skilling entropy.

The Gull and Skilling entropy is thus maximised for an unpolarised source that is
identical to the bias map. This is the map that MEM will produce in the absence
of any data that forces it to make a more complicated model. If data is provided
to the MEM model, the χ2 terms in Equation (2.11) force MEM to make a model

The Development of New Methods for High
Resolution Radio Astronomy Imaging

54 Colm Coughlan



2. The Maximum Entropy Method 2.3 The Maximum Entropy Method

(a) Entropy Vs Intensity.

(b) Entropy Vs Fractional Polarisation.

Figure 2.4: Gull and Skilling entropy for a single pixel (Equation (2.13)) plotted
with a bias pixel equal to 1 Jy. Figure 2.4a shows how the entropy varies with
Stokes I flux with zero fractional polarisation. Figure 2.4b shows how the entropy
varies with fractional polarisation with a constant Stokes I flux of 1 Jy. Note
that the maximum entropy occurs for a model map with no polarisation and
equal intensity to the bias map.
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that maximises the Gull and Skilling entropy while reproducing the data and
observed flux to within noise levels. In this way the MEM can be thought of as
a ‘tug of war’ between the Gull and Skilling entropy, favouring disorder, and the
χ2 terms and flux condition in Equation (2.11), favouring fidelity to the observed
data.

2.4 The Cornwell-Evans Algorithm

The Cornwell & Evans (1985) algorithm, with modifications by Holdaway & War-
dle (1990) to support deconvolution of polarisation data, implements the MEM
by maximising Equation (2.11). The general method can be thought of as follows

1. Generate an initial model (often flat, with a flux equal to the expected flux).

2. Assign appropriate values for the Lagrangian parameters, α, β and γ. These
parameters must be set so that the step size they induce is not too large.
Section 2.4.3 discusses a method of calculating suitable initial Lagrangian
values and updating them as the method converges.

3. Find the step sizes in the Stokes I, Q and U model maps which will max-
imise J for current values of the Lagrangian parameters.

4. Take the step, with numerical safeguards to ensure that the new Stokes I,
Q and U maps have not changed too quickly.

5. Convolve the new model with the dirty beam. Test to see how close the
result is to the dirty map.

6. Repeat steps 2 to 5 until the agreement between the model and the mea-
surements is within the estimated uncertainty (or as close to it as possible).

7. Convolve the MEM model with a restoring beam (see Section 2.5 for a
discussion about the appropriate restoring beam to use).

The following sections outline how each step may be achieved, beginning with how
one can use the Newton–Raphson method to find the maximum of a function.

2.4.1 The Newton–Raphson Method

If one has a one dimensional function f(x) one can take a Taylor series approxi-
mation for x close to x0 to second order as
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f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2 (x− x0)2 (2.15)

where the prime notation indicates differentiation with respect to x. Finding the
critical point of this equation using df(x)

d(x−x0) = 0 gives a step in x, ∆x that brings
f to an extremum such that

f ′(x0)+f ′′(x0)∆x = 0 (2.16)

∆x = −f
′(x0)
f ′′(x0

. (2.17)

If f is quadratic, then ∆x is exact and leads to the solution. Otherwise it can take
some iterations to reach the extremum. This can be generalised to N dimensional
functions as follows

g(~x) = g( ~x0) +∇g( ~x0)(~x− ~x0) + 1
2(~x− ~x0)T∇∇g( ~x0)(~x− ~x0) (2.18)

where ∇ is the gradient operator, ∇∇ is the gradient operator applied twice, and
the superscript T indicates the transpose of a vector. In this case, the step that
leads to the extremum is

~∆x = (−∇∇g( ~x0))−1∇g( ~x0). (2.19)

2.4.2 Finding the maximum of J

The outcome of the MEM is three maps (Stokes I, Q and U) that together
maximise the function J in Equation (2.11). Using the multidimensional Newton–
Raphson method outlined above, where N is now the number of pixels in a map,
the step changes needed in the I, Q and U maps are

~∆I = (−∇∇JI)−1∇JI (2.20)
~∆Q = (−∇∇JQ)−1∇JQ (2.21)
~∆U = (−∇∇JU)−1∇JU (2.22)
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where ~∆I is the change in the Stokes I map (a vector with a length equal to the
number of pixels in the map, N), ∇JI is the partial derivative of J with respect
to Stokes I intensity (a vector of the same length) and ∇∇JI is the matrix of
second derivatives (the Hessian) of J with respect to Stokes I, an NxN matrix.

Using the same notation, where the subscript indicates the Stokes parameter used
to differentiate, the gradients of J for Stokes I, Q and U can be evaluated from
Equation (2.11) and written as follows

∇JI = ∂H

∂Ii
− α∂χ

2
I

∂Ii
− γ (2.23)

∇JQ = ∂H

∂IQ
− β ∂χ

2
I

∂Qi

(2.24)

∇JU = ∂H

∂IU
− β∂χ

2
I

∂Ui
. (2.25)

The Hessians of J can then be evaluated as

∇∇JI = ∂2H

∂Ii∂Ij
− α ∂2χ2

I

∂Ii∂Ij
(2.26)

∇∇JQ = ∂2H

∂Qi∂Qj

− β
∂2χ2

Q

∂Qi∂Qj

(2.27)

∇∇JU = ∂2H

∂Ui∂Uj
− β ∂2χ2

U

∂Ui∂Uj
. (2.28)

Evaluating the first derivatives of the Gull and Skilling entropy in Equation (2.13)
gives the following expressions

∂H

∂Ii
= − 1

2 log[ I
2
i

B2
i

(1−m2
i )] (2.29)

∂H

∂Qi

= Qi

2miIi
log[1−mi

1 +mi

] (2.30)

∂H

∂Ui
= Ui

2miIi
log[1−mi

1 +mi

]. (2.31)

The second derivatives can then be calculated:
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∂2H

∂IiIj
= −δij

1
Ii

( 1
1−m2

i

) (2.32)

∂2H

∂QiQj

= δij(
1

2miIi
)(log[1−mi

1 +mi

]+( Qi

Iimi

)2( 2mi

m2
i − 1 − log[1−mi

1 +mi

])) (2.33)

∂2H

∂UiUj
= δij(

1
2miIi

)(log[1−mi

1 +mi

]+( Ui
Iimi

)2( 2mi

m2
i − 1 − log[1−mi

1 +mi

])). (2.34)

Note that the Hessians of the entropy are diagonal NxN matrices. If the Hessians
of the χ2 terms were similar, then evaluating the steps for Stokes I, Q and U in
Eqs. 2.20 to 2.22. Unfortunately this is not the case, as can be seen when the
χ2 terms are written out as follows. Note that the χ2 function for the Stokes I
visibilities can be written in terms of the weighted difference between the model
and data visibilities:

χ2
I(V̂I , ṼI) =

Nvis∑
k=0

wk(V̂I − ṼI)2 (2.35)

=
Nvis∑
k

wk[(<[V̂I ]−<[ṼI ])2 + (=[V̂I ]−=[ṼI ])2] (2.36)

where Nvis is the number of visibilities, wk are any weights applied to the visi-
bilities (weights are often applied according to perceived reliability, or to favour
certain baselines) and the scripts < and = indicate the real and imaginary compo-
nents, respectively. Note that the model visibilities are just the Fourier transform
of the model map with N pixels

V̂I =
N∑
i=0

Iie
2iπ(ux+vy) (2.37)

=
N∑
i=0

Ii(cos (2π(ux+ vy)) + i sin (2π(ux+ vy))) (2.38)

∂<[V̂I ]
∂Ii

= cos(2π(ux+ vy)) (2.39)

∂=[V̂I ]
∂Ii

= sin(2π(ux+ vy)). (2.40)

Therefore
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∂χ2
I

∂Ii
= 2

Nvis∑
k=0

wk[(<[V̂I ]−<[ṼI ]) cos(2π(ux+ vy))

+ [(=[V̂I ]−=[ṼI ]) sin(2π(ux+ vy))] (2.41)

= 2<[
Nvis∑
k=0

wk(V̂I − ṼI)e−2iπ(ux+vy)] (2.42)

= 2(
N∑
j=0

Pi,jIj −DMIi) (2.43)

where ∑N
j=0 Pi,jIj represents the convolution of the model I map with the dirty

beam P , and DMIi is the ith pixel of the dirty map. Similarly for Stokes Q and
U

∂χ2
Q

∂Qi

= 2(
N∑
j=0

Pi,jQj −DMQi) (2.44)

∂χ2
U

∂Ui
= 2(

N∑
j=0

Pi,jUj −DMUi). (2.45)

In each case the second derivative evaluates to

∂2χ2
I

∂Ii∂Ij
=

∂2χ2
Q

∂Qi∂Qj

= ∂2χ2
U

∂Ui∂Uj
= 2Pi,j. (2.46)

Pi,j is a NxN dimensional non-diagonal matrix. The presence of this term in
Equations 2.26 to 2.28 means that the Hessian of J would be non-diagonal, vastly
increasing the computational power required to evaluate them. Therefore Corn-
well & Evans (1985) make the approximation that

2Pi,j ≈ 2Q (2.47)

where the value of Q is not critical, but should represent the power in the main
lobe of the primary beam. Sault (1990) finds it appropriate to set Q =

√∑N
i P

2
i ,

the gain for white noise.

It is notable that even though Equation (2.11) specifies the χ2 terms in terms of
the visibilities, the derivatives of these terms can be expressed in image space.
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Thus to avoid using any visibilities and simplify computation using only the dirty
maps the following approximation can be made

χ2
I(Ṽ ) ≈ E

Q
(2.48)

where E is the misfit in the image plane, given by

E =
N∑
i

(
N∑
j=0

Pi,jIj −DMIi)2 (2.49)

with corresponding approximations made for Stokes Q and U :

F =
N∑
i

(
N∑
j=0

Pi,jQj −DMQi)2 +
N∑
i

(
N∑
j=0

Pi,jUj −DMUi)2. (2.50)

Thus efficient expressions have been calculated for all of the terms in Equations
(2.20) to (2.22) and, given a suitable choice of values for the Lagrangian parame-
ters α, β and γ, the equations specify steps in Stokes I, Q and U which maximise
the value of J in Equation (2.11). However, given the complexity of J these steps
will not immediately maximise the function – they are rather the first steps in
an iterative process of finding the Stokes I, Q and U maps that maximise the
entropy while minimising disagreement with the observed data. Depending on
the source and any scaling used to limit the effect of disastrously inaccurate steps
in Stokes I, Q and U , it can be many hundreds of iterations before the MEM
converges completely. Critical to this convergence is the choice of values for the
Lagrangian parameters at the first and all subsequent iterations. The following
section prescribes a method of estimating such values.

2.4.3 Updating the Lagrangian Parameters

The Lagrangian parameters α, β and γ need to be updated in such a way that the
model data agrees with the observations as best as possible, while also maximising
the entropy. All Lagrangian parameters can be initially set to zero and a set of
values appropriate for making the first changes to the model map found by the
same mechanism used in all subsequent iterations described below. It is useful
to use the notation introduced in Cornwell & Evans (1985) where it was noted
that the term (−∇∇JI)−1 as it appears in Equation (2.26) can be considered a
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metric of the image space, in such a way that the vector scalar product between
X and Y is

|X · Y | =
∑
i,j

Xi(−∇∇JI)−1Yj. (2.51)

Using this notation the idea that E, F and G are required to be minimal while
also having maximum entropy can be stated mathematically as


∇E · ∇JI
∇F · ∇JQ,U
∇G · ∇JI

 =


0
0
0

 . (2.52)

Expanding this, the following equation in the form Ax− b = 0 is achieved


∇E · ∇E ∇E · ∇F ∇E · ∇G
∇F · ∇E ∇F · ∇F ∇F · ∇G
∇G · ∇E ∇G · ∇F ∇G · ∇G



α

β

γ

−

∇E · ∇H
∇F · ∇H
∇G · ∇H

 =


0
0
0

 . (2.53)

This can be solved for α, β and γ. However the gain of the MEM, the amount
J changes by for a change in Stokes I, can be defined as ∇J ·∇J1·1 . In a situation
where the gain is small, this means maximising J does not change the Stokes I
map by much. A different approach in calculating the Lagrangian parameters
can be useful in such cases – namely to change them from their existing values
in such a way that the resulting changing in ∇E · ∇J , for example, is −E, the
amount by which E must be changed for a perfect agreement. This has the
effect of neutralising the E term and increasing J . Applying this logic to all the
Lagrangian parameters gives


∇E · ∇E ∇E · ∇F ∇E · ∇G
∇F · ∇E ∇F · ∇F ∇F · ∇G
∇G · ∇E ∇G · ∇F ∇G · ∇G



α + ∆α
β + ∆β
γ + ∆γ

−

∇E · ∇H
∇F · ∇H
∇G · ∇H

 =


−E
−F
−G

 (2.54)

which can be re-arranged to solve for the changes in the Lagrangian parameters
as
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
∆α
∆β
∆γ

 =


−E −∇E · ∇JI
−F −∇F · ∇JQ,U
−G−∇G · ∇JI

 . (2.55)

The recommend values of ∆α, ∆β and ∆γ can then be clipped to ensure that
the resulting change in the image is small enough that the image will eventually
converge. Cornwall & Evans (1985) suggest an image can be considered converged
when

|∇J · ∇J | = ε|1 · 1| (2.56)

where ε ≤ 0.01. This condition can be used to place limits on changes in α, β and
γ such that if the change in, for example, α is small enough to allow the MEM to
converge, ∆α must lie within the maximum and minimum bounds given by the
two solutions to the corresponding quadratic equation in ∆α:

|(∇J −∆α∇χ2
I) · (∇J −∆α∇χ2

I)| = ε|1 · 1| (2.57)

and the similar equations in ∆β and ∆γ:

|(∇J −∆β∇(χ2
Q + χ2

U)) · (∇J −∆β∇(χ2
Q + χ2

U))| = ε|1 · 1| (2.58)
|(∇J −∆γ∇G) · (∇J −∆γ∇G)| = ε|1 · 1|. (2.59)

Thus both (2.53) and (2.55) offer two different methods of estimating appropriate
values for α, β and γ. In many cases the recommended values are close, however
implementating a MEM which examines both sets of values and chooses the most
appropriate set given the current quality of the convergence maximises both the
quality and speed of the resulting deconvolution.

2.5 Advantages of the MEM

By iteratively maximising J in equation (2.11), the MEM method develops a
model of the source which maximises the Gull and Skilling entropy of the model
(the model has lowest possible polarisation, and looks as much like the bias map
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as the data allows), while also reproducing the observed data to within noise
levels. This results in a balance between entropy (representing the effects of
unsampled visibilities and thermal noise) and fidelity to the observed data. This
method of deconvolution, while not as straightforward as the CLEAN algorithm,
is statistically and mathematically well-founded and can produce extremely well
deconvolved maps comparable to, and in some cases better than, the CLEAN
algorithm.

Unlike the standard CLEAN algorithm, MEM does not model the source as a
series of δ functions. Instead MEM models the source as a continuous distribu-
tion – a more physically realistic model, but one which is computationally much
more demanding. This increases the effective resolution of MEM, as it is not
necessary to convolve the MEM model with the CLEAN beam. This means that
the theoretical resolution of MEM is the Nyquist sampling theorem limit for the
observation (Equation (1.6)), although thermal and systematic noise may prevent
drawing useful information at such small scales. It proves useful to convolve the
MEM model map with a small beam to smoothen out these variations, although
this limits the resolution of the resulting map. From experience, a beam of about
1
2 to 1

4 of the CLEAN beam works well for most sources.

MEM is also known for its mathematical property of “super-resolution”. This
property can be derived as follows by considering the χ2 function that forces the
model to converge in Equation (2.11), see for example Holdaway (1990). χ2 can
be written as follows

χ2 =
Nvis∑
k=0

ωk(Vm − Vobs)2 (2.60)

where there are Nvis observed visibilities, Vobs, the same number of model visibili-
ties, Vm, and ωk is the weight of each visibility. The equation can be re-written in
terms of the Real and Imaginary parts of the visibilities and differentiated with
respect to the model Stokes I flux as follows,

χ2 =
Nvis∑
k=0

ωk(Re(Vm,k − Vobs,k)2 + Im(Vm,k − Vobs,k)2) (2.61)
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∂χ2

∂Ii
= 2

Nvis∑
k=0

ωk(Re(Vm,k − Vobs,k)
∂Re(Vm,k)

∂Ii

+Im(Vm,k − Vobs,k)
∂Im(Vm,k)

∂Ii
).

(2.62)

Note that the model visibility Vm,k is related to the pixels in the model flux map
Ij by the following Fourier Transform relationship

Vm,k(u, v) =
j=N∑
j=1

Ij(x, y)e2πı(ukxj+vkyj) (2.63)

where Ij is the intensity of the jth pixel on the model map, x and y are the
coordinates of the pixel on the model map in radians, and u and v are the u− v
coordinates of the model visibility in wavelengths. This means that the derivatives
of the real and imaginary parts of the model visibilities can be written

∂Re(Vm,k)
∂Ii

= Cos(2π(ukxi + vkyi)) (2.64)

∂Im(Vm,k)
∂Ii

= Sin(2π(ukxi + vkyi)). (2.65)

These formulae can be inserted into Eqn. 2.62 to give

∂χ2

∂Ii
= 2

k∑
i=0

ωk[Re(Vm,k − Vobs,k)Cos(2π(ukxi + vkyi))

+Im(Vm,k − Vobs,k)Sin(2π(ukxi + vkyi))],
(2.66)

which can be re-written as

∂χ2

∂Ii
= 2

k∑
i=0

ωkRe(Vm,k − Vobs,k)Cos(2π(ukxi + vkyi)). (2.67)

This is the function which drives the convergence of the Maximum Entropy
Method. Consider the case of the initial MEM model being set to a flat map
with a total flux equal to the expected total flux of the source. The correspond-
ing initial model visibility is a δ function with an amplitude equal to the total
flux. For data visibilities with small baselines the cosine term in Equation (2.67)
will be positive and close to its maximum value. This causes these baselines to
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have the effect of increasing or decreasing the flux in all pixels until the model
visibilities agree with the data visibilities. These baselines are not sensitive to
the exact location of the flux in the image.

As MEM progresses the model visibility function will change from its initial δ
function shape, becoming broader and broader as information about the extended
structure is captured from longer and longer baselines. This is an iterative pro-
cess, and information contained in the longer baselines may not be acted upon
until larger changes required to make the model agree at shorter baselines have
been made. As the model visibility function broadens, for longer visibilities it will
remain below the data visibilities (this gap will decrease as convergence proceeds).
This means that for longer baselines the term involving the difference in the real
visibilities in Eqn. 2.67 will be negative. As a further negative sign is applied to
the χ2 term in Eqn. 2.11 this means that for convergence to continue (J to be
maximised), the cosine term in Eqn. 2.67 must be positive. Thus convergence
stops when this term becomes negative, i.e., when

2π(ukxi + vkyi) = π

2 . (2.68)

This equation gives the resolution limit of MEM (when the MEM model stops
converging to data). It is clear from the presence of xi and yi in the equation
that the resolution of MEM varies over the map. The very smallest values of xi
and yi for which the equation holds true correspond to

xmin = 1
4 umax

ymin = 1
4 vmax

, (2.69)

where xmin, ymin are the resolutions in the x and y directions, and umax and
vmax are the maximum baseline in the u and v directions respectively. This
resolution is a factor of 4 below the best-case resolution expected from the Nyquist
sampling limit, and therefore details at this resolution scale do not directly reflect
information which has been recorded by the array. However, as MEM’s model of
the source as a continuous distribution is quite realistic, the MEM can model the
source at resolution levels below those corresponding to the maximum baselines
in the array used for the observations. This modelling is done by creating a
structure that can reproduce the data at the observed resolution levels while also
having maximum Gull and Skilling entropy. In this way, the MEM produces a
conservative model of the source at resolutions below the Nyquist limit.
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2.6 Summary

The problem of deconvolution does not have an easy solution – the data required
to image the source as it truly appears have not been measured and any attempt
to deconvolve an image is, in some sense, an attempt to make a good guess at
what contributions the unobserved visibilities might make to the source. The
CLEAN algorithm is an excellent choice for deconvolving most images – it is sim-
ple, fast and assumes little about the underlying source structure. Nonetheless,
the Maximum Entropy Method appears to promise multiple advantages over the
CLEAN algorithm.

The MEM operates by making a model of the source that maximises the informa-
tional entropy of the source (keeping it as random as possible), while also agrees
with the observed visibilities. In this way the MEM model can be thought of as
a very conservative vision of the true appearance of the source. Section 2.5 dis-
cussed the advantages of such a model and the high resolution maps which may
be made from it. The fact that all Stokes parameters are deconvolved together
may also yield a more consistent image of a source than CLEAN’s independent
treatment of each parameter.

Thus the MEM appears to be a very promising algorithm with which to decon-
volved polarised VLBI maps of AGN jets. The increased resolution and attention
to polarisation may show features that cannot be seen with CLEAN and may
show other features in greater detail. The following two chapters of this thesis
discuss the implementation of new MEM code based closely on previous imple-
mentations in the AIPS and MIRIAD software suites, the testing of the new code
on simulated VLBI sources and the use of the code on real observations of AGN
jets.
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Chapter 3

A New Implementation of the
MEM for Polarisation VLBI

As may be evident from the discussion of the MEM in Chapter 2 the mathemati-
cal rigour and foundation of the MEM over the CLEAN algorithm comes at a cost
of increased complexity and computational demand. Implementing the MEM in
code and successfully using such a code to deconvolve a VLBI image can be more
challenging than simply using CLEAN – but the rewards are correspondingly
greater. Versions of the MEM suitable for the imaging of Stokes I data alone
are implemented in many popular imaging suites, including the NRAO’s AIPS
(Greisen 2002) and CASA (McMullin et al. 2007) suites. While these implemen-
tations of the MEM can deconvolve VLBI Stokes I emission using the MEM, they
have no support for deconvolving Stokes Q and U maps (this is due to the form of
Shannon entropy chosen). Conversely, a version of the MEM suitable for imaging
polarised emission is present in CSIRO’s MIRIAD data reduction package (Sault,
Teuben & Wright 1995), however it is incompatible with data from the VLBA.

A new computer program, Polarised Maximum Entropy Method (PMEM), has
been written to address this problem and implement a version of the MEM based
on the Cornwell-Evans algorithm (see Section 2.4) with support for polarisation.
This implementation builds on work done by Holdaway &Wardle (1990) in studies
of the polarisation properties of AGN at VLBI scales and has enabled the creation
of new multi-waavelength VLBI polarisation images, as well as the first Faraday
rotation measure VLBI maps of AGN made using the MEM.
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3.1 Alternations to the Cornwell-Evans Algo-
rithm

While the Cornwell-Evans algorithm describes the overall method of implement-
ing the MEM in a computationally efficient manner, there are many different
changes that can be made to optimise the performance of the algorithm for VLBI
observations of AGN, and polarisation observations in particular. To this end, a
new MEM based deconvolution code has been written which uses the Cornwell-
Evans algorithm with the polarisation adaptations by Holdaway & Wardle (1990)
and Sault (1999). Although this is not the first implementation of the MEM for
polarisation VLBI, this implementation has improved on the algorithms used
by Holdaway & Wardle (1990) and Sault et al. (1999) in several ways, as will
be described below. It is more user-friendly than the earlier code of Holdaway
& Wardle (1990), and, unlike that earlier code, interfaces well with AIPS and
CASA. PMEM is also very suitable for multiwavelength studies such as the cre-
ation of Faraday rotation measure maps of AGN. The main changes made to the
standard Cornwell-Evans algorithm in PMEM are listed in this section.

3.1.1 Improving the polarisation maps

A major improvement in the Stokes Q and U maps produced with the algorithm
can be obtained with the inclusion of a term weighting the relative sizes of Equa-
tions (2.49) and (2.50). These equations return the misfits between the convolved
model map and the dirty map for the Stokes I intensity and polarised intensities,
respectively. However as mentioned in Section 1.6 the maximum polarisation that
can be expected from synchrotron radiation is 75%. In most sources the actual
detected polarisation is far less, often of the order of 10% or so. This results
in the misfit for the Stokes I intensity almost always being much greater than
the polarisation misfit when both are measured in the same unit. While this is
strictly true, it can result in a optimal MEM model that agrees very well with the
Stokes I intensity, but quite badly with the polarisation data. As a major pur-
pose of PMEM is to provide increased resolution for polarisation observations of
AGN jets this behaviour is unwelcome. To overcome this issue a new parameter
wp is introduced to increase the weight of the polarisation misfits relative to the
Stokes I misfit. The parameter is introduced in such a way that the total misfit
in polarisation is calculated as
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F = wp(
Npix∑
i

(
Npix∑
j=0

Pi,jQj −DMQi)2 +
Npix∑
i

(
Npix∑
j=0

Pi,jUj −DMUi)2). (3.1)

A suitable value for wp can vary between different datasets, depending on the
relative complexities of the intensity and polarisation structures and the noise
present in each. It is suggested that the user divide the total polarised flux of
the source being deconvolved by its total intensity, thus determining an average
fractional polarisation, m, for the source. Setting wp = 1

m
will then equalise the

total intensity and polarisation terms in Equation (3.1). The final Stokes I map is
relatively insensitive to changes in wp, however the use of an appropriate value can
significantly improve the final Stokes Q and U maps. A value of 2.0 was found to
be a good compromise between weighting up the importance of good convergence
in the polarisation Stokes parameters while not causing a major change to the
Stokes I map, though higher values were often appropriate.

An alternative method of implementing this feature would be to weight the Stokes
Q and U maps differently. This would be of use in sources where there was
detectable flux in both Stokes Q and U with a significant difference in magnitude
between them. In practice it was found that a single parameter was sufficient to
allow good convergence in all three Stokes parameters.

3.1.2 Accounting for poorly performing sources

Different observations have different beam profiles and difference noises in the
observed visibilities. While the unaltered algorithm performs well for the majority
of VLBI jet observations, some jets have structure observed on the same scale as
the dirty beam making them difficult for both the MEM and CLEAN to image
well. The inclusion of a stepping factor ∆step and an edge pixel exclusion option
Nexclude give the user some flexibility in responding to challenging sources. More
often, they allow the optimisation of maps made for better performing sources.

∆step is applied as a multiplicative factor to the maximum size of a step allowed
during the maximisation of Equation (2.11) using the Newton-Raphson method.
As discussed in Section 2.4.3 the gain of the MEM, i.e. the change in J for a
change in the Stokes I model map can be calculated as ∇J ·∇J1·1 . If the gain is
high, J may change rapidly, while if the gain is low J may be difficult to change.
Applying ∆step to the maximum step limit allowed in the Newton-Raphson as
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∆max ∝ ∆step
∇J · ∇J

1 · 1 (3.2)

allows the user to manually slow down the changes in a single iteration of the
algorithm in the case of poor performance or increase the changes (reducing
the compute time) in the case of well-performing sources. This parameter was
especially useful in optimising the performance of PMEM for the Monte Carlo
simulations detailed further on in this chapter.

Nexclude is a parameter which forces the flux in the outer Nexclude pixels of the
model map to be zero. This parameter is useful in reducing problems caused
by aliasing due to the Fast Fourier Transforms (FFTs) performed on the model
map. As repeated convolutions are required for every iteration of the MEM,
it is computationally much more efficient to use the FFT method, which has a
complexity of O(n log n), than perform a direct Discrete Fourier Transform (DFT)
with a complexity of O(n2). For example to convolve a 512 × 512 pixel image with
another 512× 512 image requires 3 discrete Fourier transforms (twice, to calculate
the FT of the two images, and once more to find the inverse FT of the product).
Using the DFT this would require roughly 3 × 512 × 512 = 786432 operations,
whereas the FFT would require only 3 × 512 × log 512 = 4162 operations –
approximately 100 times faster.

This increase in speed can come at a price – the FFT is susceptible to aliasing. In
Fourier aliasing the long wavelength visibilities that would be needed in visibility
space to model sharp small scale changes in image space are not recorded in
the N × N FFT of the image. This causes the inverse Fourier transform of the
FFT to contain imperfections and artefacts that were not present in the original
image. In the case of using FFTs to convolve MEM models with the dirty beam
this effect often manifests itself as much higher than would be expected flux in
the outer pixels of the resulting convolved map. This effect can perpetuate itself
when this false flux creates a local distortion in the residual maps calculated from
the convolved map and the MEM actually begins to include the flux in its model
of the source, leading to a runaway-type effect.

One way in which it is possible to reduce aliasing related to the use of the FFT
is to “zero-pad” the images being transformed, i.e. to add on extra pixels at
the edge of the map to contain the higher visibilities that would otherwise go
unsampled. However, in addition to the extra computation needed in the FFT of
a padded map, the potentially sharp feature in such zero-padded maps can cause
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further aliasing (the optimisation of such a process is a currently a field of active
study). As the majority of sources do not suffer greatly from aliasing effects, it
has been found easier to clip the offending aliased pixels rather than zero pad the
entire image. The amount of clipping required to remove aliasing effects can vary
from a few pixels, to up to 10 or 20% of the image and can be specified using
the Nexclude parameter. In the case where the amount of clipping needed becomes
large, the dirty maps may need to be remade in a larger size. This effectively
zero pads the image, and gives more room to clip unneeded pixels from the edge.
Note that the clipping is performed in the model and residual maps, therefore
the value of the final map at the outer Nexclude pixels is not reliable.

While the AIPS task “VTESS” automatically clips the outer 25% of an image,
PMEM allows the user to specify any value deemed appropriate. Such a value can
be determined by examining the outer pixels of the model and residual maps for
any signs of aliasing (higher or lower than expected flux) and setting the Nexclude

parameter to exclude such pixels. Alternatively, making a large image and taking
a similar approach to VTESS would allow a conservative number of pixels to be
clipped without needing to examine the model and residuals maps.

3.1.3 Diagonalising the Hessian

Section 2.4.2 describes how the Hessian of J may be diagonalised with the ap-
proximation

2Pij ≈ 2Q (3.3)

where Pij is an NxN dimensional matrix based off the dirty beam and Q is a
factor which should represent the power in the main lobe of the primary beam.
Sault (1990) suggested setting Q equal to the following expression

Q =

√√√√√Npix∑
i

P 2
i (3.4)

where Pi is the dirty beam. This represents the gain of the array for white noise.
It has been found useful to introduce a manual term, qfactor to tweak the Q
parameter as follows
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Q = qfactor

√√√√√Npix∑
i

P 2
i . (3.5)

Varying qfactor in conjunction with ∆step as defined in Equation (3.2) is a useful
technique in optimising the deconvolution process for poorly performing sources.
A value of qfactor = 1 is equivalent to the suggestion of Sault (1990), however
the choice of a low value can slow down the algorithm in steps where changing
∆step would have little effect. A value of qfactor = 0.5 was found suitable in
many cases, though some sources required values around qfactor = 0.05. In cases
where the source performs very well, a values higher than 1 can result in faster
deconvolution. It is suggested that the user experiment with a range of values
for qfactor to achieve maximum convergence.

3.2 The PMEM Software

PMEM was written to implement a VLBI MEM capable of deconvolving polar-
isation data using Holdaway & Wardle (1990)’s extension of the Cornwell-Evans
algorithm to Stokes Q and U with the modifications outlined in Section 3.1. The
C++ programming language was chosen as it is fast, efficient and suitable for
all forms of numerical and scientific computation. It also has a wide range of
external libraries available which were used to further reduce the computational
time for the MEM, as well as the time needed to design the software.

Care was taken at all times to write computationally efficient code, using OpenMP
to parallelise operations where possible. The external library FFTW (The Fastest
Fourier Transform in the West, Frigo and Johnson 2005) was used to perform the
Fast Fourier Transforms (FFTs) needed in the convolutions. LAPACK, a high
performance linear algebra library, was used to perform the matrix calculations
needed for MEM. The FITS (Flexible Image Transport System) file format was
used at all times, ensuring compatibility with all of the major astronomical soft-
ware packages. To achieve this the CFITSIO library was used, and additional
programs were written to interface between CFITSIO and PMEM, allowing FITS
files to be read and generated.

The open-source code of AIPS’s ‘VTESS’ task, by Tim Cornwell, and MIRIAD’s
‘PMOSMEM’ task, by Robert Sault, were also of great help in writing PMEM.
Both tasks contain excellent implementations of the Cornwell-Evans algorithm
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and were of immense help in avoiding numerical problems and deciding how to
structure PMEM.

PMEM requires the user to provide the dirty Stokes I, Q and U maps of the
source as FITS images. The dirty beam of the observation is also required. The
user is then asked to estimate the flux of the source and the final RMS noise
that might be achieved. Some other options related to the quantities discussed in
Section 3.1 can also improve the performance of the algorithm. To provide a user
friendly interface with the C++ code, a Python front-end, “mempy”, is used to
allow the user to enter these values in a windowed environment (see Figure 3.1).
The program can also be used without the MEMPY interface – this form may be
suitable for the inclusion in an imaging pipeline or integration with an external
software suite.

The code, while numerically intensive, is quick to process maps of 1024x1024 or
less and the results are written out into multiple FITS files along with a log of the
deconvolution process. For each of the 3 Stokes parameters FITS files containing
the following are generated

• The MEM model map for the Stokes parameter.

• The MEM model map convolved with the restoring beam.

• The residual map (the difference between the MEM model convolved with
the dirty beam and the dirty map).

• The final MEM map. This is the MEM map convolved with the restoring
beam with the appropriately scaled residual map added on (the residual
map requires scaling to convert from Jy per old beam to Jy per restoring
beam).

3.2.1 Computational Effort

The overall computational effort required to generate a single MEM map is con-
siderably greater than that needed to make corresponding maps with the CLEAN
algorithm. The computational cost of both techniques is dominated by the FFTs
and inverse FFTs used to convolve their respective models with the dirty beam
via the convolution theorem, however performing a FFT on CLEAN’s delta func-
tion model is computationally much less expensive than performing a FFT on
the continuous model used by MEM.
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Figure 3.1: A screenshot of the MEMPY interface to PMEM.

To mitigate this effect, the high performance FFT library, FFTW, was used to
optimise PMEM’s Fourier transformations. In addition to the immediate speed
benefit associated with using a high-speed library, PMEM’s performance was fur-
ther increased by enabling multi-threaded processing within FFTW and allowing
FFTW to create an optimised FFT plan for transformations with the dimensions
of the specific maps being deconvolved.

Although high efficiency numerical C++ programs often make use of Standard
Template Library (STL) vectorization to optimise performance, the use of C and
Fortran based external libraries such as FFTW, LAPACK and CFITSIO made
reliance on C++ specific features inefficient and inflexible in some cases. This led
to the decision to use OpenMP enabled FOR loops as opposed to STL functions
in most cases.
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PMEM runs efficiently on modern multi-core desktops and laptops, making use
of all available cores and deconvolving maps of 1024x1024 or less in a matter
of minutes. The exact time required to complete a deconvolution depends on
the source and the parameters used, and can range from about a minute to ten
minutes. The results presented in Chapter 4 were imaged using a laptop com-
puter, however as the Monte Carlo simulations described in Section 3.3 required
repeated imaging of hundreds of sources, the “Stokes” supercomputer at the Irish
Centre for High End Computing (ICHEC) was used to perform the MEM imag-
ing. The version of PMEM complied for Stokes was built using the efficient (and
expensive) Intel compiler and numerical libraries available on Stokes, resulting in
efficiencies over the GNU compiler and open-source libraries used in the normal
version of PMEM.

3.3 Monte Carlo Testing

PMEM was initially tested and developed using a variety of real VLBI datasets.
Though the software appeared to be functioning correctly it was not possible to
fully characterise the performance of the algorithm based on real data. To this
end a series of Monte Carlo simulations on model sources were designed that
would characterise the ability of PMEM to deconvolve realistic sources. CLEAN
based deconvolutions were also performed as a benchmark.

A Gaussian and Triple Gaussian source were designed in Octave (an open-source
MATLAB-like numerical software suite) and a typical UV coverage was selected
(see Figure 3.2). New C++ software UVFILL2 was written and used to gener-
ate simulated observations of the model sources using the chosen UV coverage.
Thermal noise was added to the visibilities in such a way as to create realistic
noise levels in the final CLEAN maps. This was done by examining the RMS
deviation of flux in regions far from the source in real maps – often found to be in
the region of 0.5 mJy/Beam, and adding thermal noise to the visibilities until the
resulting CLEAN maps had approximately the right level of noise. The random
element of the thermal noise added to the visibilities was achieved using the GNU
Scientific Library random Gaussian function with zero mean and a user specified
standard deviation, seeded with the current time multiplied by the process ID of
the current CPU thread running UVFILL2.

One hundred UV datasets were generated for each model, each with different ther-
mal noise added. The data were loaded into AIPS and the AIPS task IMAGR
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was used to produce dirty maps of each dataset, which were then exported as
FITS files. All imaging was performed without any UV tapering and a Brigg’s
ROBUST parameter of 0, resulting in an even compromise between natural and
uniform UV weighting. The cell size used in IMAGR was set to be small enough
so that MEM’s super-resolution of data could be tested appropriately. A re-
sult of this was that the image size had to be significantly increased. This, in
combination with the large number of files being processed, and the higher com-
putational demands of the MEM lead to a computer at the Irish Centre for High
End Computing (ICHEC) being used to run the MEM Monte Carlo simulations.
The MEM imaging was performed using estimates of the final RMS noise from
CLEAN images made in the usual way, and using the correct (known) fluxes of
the sources.

The final maps were convolved with the CLEAN beam, and beams corresponding
to 1

4 ,
1
3 ,

1
2 of the CLEAN beam (see Tables 3.1 and 3.3). Results from the CLEAN

algorithm as implemented by the IMAGR task in AIPS were also generated us-
ing an AIPS script and standard CLEAN imaging techniques. A single model
source was imaged manually and used to set the FLUX parameter – the lowest
CLEAN component flux allowed, for the imaging script to three times the back-
ground noise observed in the manual image. The NITER parameter, governing
the maximum number of iterations allowed, was set high enough that the FLUX
parameter was the limiting factor in the automated CLEAN performed by the
script. Again, all imaging was performed without any UV tapering and a Brigg’s
ROBUST parameter of 0, resulting in an even compromise between natural and
uniform UV weighting. A gain value of 0.1 and a set of CLEAN windows encom-
passing the source region in the image were used in each case. These images were
also convolved with the smaller beams in order to provide a comparison with the
results of the MEM.

Maps corresponding to each Stokes parameter and resolution were compared with
the model maps convolved with the corresponding beam. Due to small differences
in map centering both the MEM and the CLEAN maps had to be shifted by a
small number of pixels to align correctly with the convolved model map. The
correct shifting was determined by examining the position of various components
in CLEAN and MEM maps and identifying the common shift between them.
The same shift was found between all CLEAN and MEM maps. Distributions
of the difference between the model and imaged fluxes in both total flux and
flux in regions of interest on the source were made and the performance of the
two algorithms compared. Distributions of the derived quantities, the fractional
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Figure 3.2: The UV distribution used in the Monte Carlo simulations. It corre-
sponds to an observation of 1749+701 at 4.608 GHz in August 2003.

polarisation, m, and the polarisation angle χ were generated as follow:

m =
√
Q2 + U2

I
(3.6)

χ = 1
2ArcTan(U

Q
). (3.7)

Root-Mean-Squared maps of the error for each Stokes parameter and resolution
were also made for each algorithm, providing a more general picture of how well
the algorithms perform. The following section outlines the results for each of the
three source types considered.

3.3.1 Single Gaussian

A Monte Carlo simulation of a single Gaussian with a FWHM of 0.1 mas was
carried out using the technique described above. The UV coverage used corre-
sponded to an observation with the Very Long Baseline Array at 4.6 GHz, so that
0.1 mas is essentially unresolved. Figure 3.3 shows the single Gaussian convolved
with 1

4 of the normal CLEAN beam for the observation. The Gaussian had a total
Stokes I flux of 1 Jy, a Stokes Q flux of 0.05 Jy and a Stokes U flux of 0.02 Jy.
These fluxes were chosen to test how MEM performed at realistic intensity and
polarisation flux levels. The source structure was otherwise the same (FWHM
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Table 3.1: The beams used in the Monte Carlo simulation of the single Gaussian
source. The CLEAN beam is a Gaussian fit to the FWHM of the “dirty” beam.

Frac. of Major Axis Minor Axis Position Angle
CLEAN beam (mas) (mas) (deg.)

1 1.85 1.67 -68.36
1
2 0.925 0.835 -68.36
1
3 0.6167 0.5567 -68.36
1
4 0.4625 0.4175 -68.36

Figure 3.3: The model Gaussian source convolved with 0.25 of the CLEAN beam.
Points A, B and C indicate the regions sampled with 0.21 × 0.21 mas boxes in
the Monte Carlo experiment.

of 0.1 mas) for all Stokes parameters. Imaging was performed with a cell size of
0.02 mas, 512 × 512 pixel images and the restoring beams outlined in Table 3.1.

Figure 3.4 shows an example of the criteria used to test how well the MEM and
CLEAN algorithms deconvolve the single Gaussian. Sample MEM and CLEAN
images from the Monte Carlo simulation are presented, along with histograms
indicating the distribution of the difference between the fluxes in the Monte Carlo
maps and the real flux in a 0.21 × 0.21 mas region centred on the peak of the
maps. The data in this case shows that the CLEAN algorithm is slightly more
accurate than the MEM at identifying the correct peak flux at the full CLEAN
resolution as the distribution of the CLEAN flux differences has a mean value
closer to zero than the corresponding MEM distribution. The narrower profile
of the MEM distribution indicates that this inaccuracy is likely to be systematic
rather than thermal in nature as the width of the Gaussian is indicative of the size
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(a) CLEAN (b) MEM

(c) Distribution of Peak Region (d) Distribution of Peak Region

Figure 3.4: Sample CLEAN and MEM images of the Gaussian source in Stokes I
at CLEAN beam resolution. The histograms give the distribution of the Stokes
I flux in a 0.21 × 0.21 mas region centred point A in Figure 3.9.

of the random variations resulting from the thermal noise added to the visibilities.
Similar tests were performed at all resolutions indicated in Table 3.1. In addition
to this, the ability of the algorithm to identify the correct Stokes I, Q and U

fluxes in regions B and C as indicated in Figure 3.3 was also tested (point A
is the peak of the map). The performance of both algorithms in recovering the
correct total flux was also examined.

Figures 3.5 and 3.6 (left column) show how well each algorithm performs at
identifying the flux (in mJy) in a 0.21 × 0.21 mas region centred on points A, B
and C. A zero error line is included in each plot to show where the data point
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should be in the case of a perfect deconvolution. Each data point corresponds to
the mean error of the algorithm at the corresponding resolution, while the error
bars correspond to the standard deviation of the distribution of errors. Thus
a large error bar indicates a wide histogram as in Figure 3.4; implying a lot of
variation in the accuracy of the algorithm that may not be evident from the mean
difference alone.

In all cases at full CLEAN resolution the MEM and CLEAN data points are
close together and near the zero error line, indicating a successful deconvolution.
As the distance between the data points and the zero error line increases for
both algorithms, as the size of the restoring beam is reduced, it is clear that the
reliability of both algorithms degenerates at resolutions higher than the CLEAN
beam. In particular, both algorithms are generally quite accurate at 1 CLEAN
beam and at 0.5 CLEAN beams (as indicated by their proximity to the zero error
line), however the performance of both CLEAN and MEM quickly drops off at
resolutions lower than 0.5 CLEAN beams.

CLEAN does a better job at finding the correct flux in every region across all
Stokes parameters for the higher resolutions. In particular for point A (corre-
sponding to the peak of the Gaussian) CLEAN greatly outperforms the MEM,
as might be expected given the suitability of CLEAN’s method of modelling the
source as a δ function at this point. The MEM however has difficulty in using
its continuous model of the source to reach sharp peaks, and ends up underesti-
mating the flux in this region as the size of the convolving beam decreases and
the source becomes more sharply defined. This indicates that for real sources
where a significant change in flux occurs in an area CLEAN also outperforms the
MEM at points B and C, and while the MEM is competitive with CLEAN in
Stokes Q and U at these locations, there is little sign of any increase in resolution
or accuracy over CLEAN. It is notable that the standard deviations (plotted as
error bars) are usually not large enough such that the algorithm is within 3σ of
the zero line – a strong indicator of systematic errors in both algorithms.

The plots on the right hand side of Figure 3.6 show how well each algorithm
recovers the total flux of the source (defined as the flux inside a box encompassing
all of the source). It is immediately obvious that the MEM performs much better
than the CLEAN algorithm at higher resolutions, showing little variance at all
across all resolutions. This is due to the fact that the MEM maps made at each
resolution are generated from the same MEM model, which was obtained from
Equation (2.11). This equation explicitly includes a term to ensure that the total
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Stokes I flux of the map does not vary far from the estimate of the true flux,
therefore the MEM’s fidelity to the true flux is not unexpected. It is again of
note that the MEM is also similarly successful in recovering the total Stokes Q
and U fluxes, even though these Stokes parameters do not have an explicit flux
term in Equation (2.11), excepting the χ2 term.

Figure 3.7 gives the Monte Carlo results of the total polarisation and fractional
polarisation in 0.21 × 0.21 regions around points A, B and C. Figs. The plots for
the total polarisation (on the left side) show similar results to those for Stokes Q
and U where the CLEAN algorithm clearly outperforms the MEM at the core,
and there is no suggestion that the MEM is doing a better job at points B and
C. Figs. The plots of fractional polarisation on the right side again show that
the performance of the two algorithms is similar at lower resolutions, however in
this case the MEM outperforms the CLEAN algorithm at higher resolutions at
points B and C, where the source is less peaked. This is consistent with MEM’s
difficulty in modelling sharply peaked sources. It is clear that the MEM is much
better at imaging the fractional polarisation that the total polarisation – this is
likely due to the explicit inclusion of m rather than p in Equation (2.13).

Figure 3.8 gives a similar result for measurements of the polarisation angle. In this
case the MEM and CLEAN both do very well in measuring the polarisation angle
of the core region (point A) – even at very high resolutions. However at points
B and C as the emission becomes more extended the MEM starts to significantly
outperform CLEAN, by up to 10 degrees at the highest resolution at point C. It
is of note that, just as with fractional polarisation and total flux, the performance
of the MEM changes very little as the size of the convolving beam is reduced.
This is due to the fact that the form of entropy used in the MEM takes only
Stokes I and the fractional polarisation into account (see Equation (2.13)). Thus
the form of entropy used does not decide which of the Stokes Q or U components
the detected polarised flux belongs to, only the χ2 term in Equation (2.11) makes
this decision. This means that while Stokes Q or U might individually be less
accurate than CLEAN, when combining them (or in particular, taking the ratio
of them), the MEM data are more likely to be similar to the real data.

3.3.2 Triple Gaussian

The second source used in the Monte Carlo simulations was a triple Gaussian
source of large Gaussian components. The details of the source structure can
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(a) Stokes I (b) Stokes I

(c) Stokes Q (d) Stokes Q

(e) Stokes U (f) Stokes U

Figure 3.5: The distribution of the mean error in the flux detected with the
MEM and CLEAN algorithms in imaging regions A and B in the single Gaussian
of FWHM of 0.5 mas for various convolution sizes. The error bars indicate the
standard deviation of the distribution resulting from the Monte Carlo simulations.
The region size was 0.21 × 0.21 mas.
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(a) Stokes I (b) Total Stokes I

(c) Stokes Q (d) Total Stokes Q

(e) Stokes U (f) Total Stokes U

Figure 3.6: The distribution of the mean error in the flux detected with the MEM
and CLEAN algorithms in imaging the flux at point C (left) and the total flux
(right) in a single Gaussian of FWHM of 0.5 mas for various convolution sizes.
The error bars indicate the standard deviation of the distribution resulting from
the Monte Carlo simulations. The region size was 0.21 × 0.21 mas.
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(a) Polarised Flux (b) Fractional Polarisation

(c) Polarised Flux (d) Fractional Polarisation

(e) Polarised Flux (f) Fractional Polarisation

Figure 3.7: The distribution of the mean error in the total polarised flux and
fractional polarisation detected with the MEM and CLEAN algorithms in imag-
ing regions A, B and C of the single Gaussian of FWHM of 0.5 mas for various
convolution sizes. The error bars indicate the standard deviation of the distri-
bution resulting from the Monte Carlo simulations. The region size was 0.21 ×
0.21 mas.
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(a) Polarisation Angle (b) Polarisation Angle

(c) Polarisation Angle

Figure 3.8: The distribution of the mean error in the polarisation angle detected
with the MEM and CLEAN algorithms in imaging regions A, B and C of the
single Gaussian of FWHM of 0.5 mas for various convolution sizes. The error
bars indicate the standard deviation of the distribution resulting from the Monte
Carlo simulations. The region size was 0.21 × 0.21 mas.

Table 3.2: Information about the size and separation of the three Gaussian com-
ponents making up the triple Gaussian source.

Component FWHM I Q U m DCORE
(mas) (Jy) (Jy) (Jy) (mas)

1 0.05 1 0.035 0.035 0.05 0
2 0.1 0.5 0.018 0.018 0.05 0.85
3 0.4 0.1 0.031 0.016 0.35 1.70
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(a) Data Points (b) Polarisation Map

Figure 3.9: The model triple Gaussian source convolved with 0.25 of the CLEAN
beam. Points A, B and C indicate the peak regions sampled with 0.21 × 0.21 mas
boxes in the Monte Carlo experiment. Points D, E and F indicate regions sampled
for a transverse slice across the jet (indicated by the blue line). The blue dashes
indicate the polarisation angle.

Table 3.3: The beams used in the Monte Carlo simulations of the Triple Gaussian
source. The CLEAN beam is a Gaussian fit to the FWHM of the “dirty” beam.

Frac. of Major Axis Minor Axis Position Angle
CLEAN beam (mas) (mas) (deg.)

1 1.91 1.74 -71.68
1
2 0.955 0.87 -71.68
1
3 0.637 0.58 -71.68
1
4 0.4775 0.435 -71.68

be seen in Table 3.2 and Figure 3.9. Note the more complicated polarisation
structure in Stokes Q and U than was used for the single Gaussian. The same
tests were performed on the triple Gaussian source as were performed on the single
Gaussian source in the previous section. However in addition to considering the
peak region, three additional regions representative of the areas which might be
sampled in a transverse slice across the jet were also tested (see Figure 3.9).

Figures 3.10 and 3.11 (left) give the results of the regional flux test for each
algorithm at points A, B and C. These points are the peaks of the three Gaussian
components of the source, therefore the CLEAN algorithm is expected to perform
well, while the MEM may be at a disadvantage. Both algorithms again do very
well at CLEAN beam and half CLEAN beam resolutions, however at higher
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(a) Stokes I (b) Stokes I

(c) Stokes Q (d) Stokes Q

(e) Stokes U (f) Stokes U

Figure 3.10: The distribution of the mean error in the flux detected with the MEM
and CLEAN algorithms in imaging regions A and B of the triple Gaussian source
for various convolution sizes. The error bars indicate the standard deviation of
the distribution resulting from the Monte Carlo simulations. The region size was
0.21 × 0.21 mas.
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(a) Stokes I (b) Stokes I

(c) Stokes Q (d) Stokes Q

(e) Stokes U (f) Stokes U

Figure 3.11: The distribution of the mean error in the flux detected with the MEM
and CLEAN algorithms in imaging regions C and D of the triple Gaussian source
for various convolution sizes. The error bars indicate the standard deviation of
the distribution resulting from the Monte Carlo simulations. The region size was
0.21 × 0.21 mas.
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(a) Stokes I (b) Stokes I

(c) Stokes Q (d) Stokes Q

(e) Stokes U (f) Stokes U

Figure 3.12: The distribution of the mean error in the flux detected with the MEM
and CLEAN algorithms in imaging regions E and F of the triple Gaussian source
for various convolution sizes. The error bars indicate the standard deviation of
the distribution resulting from the Monte Carlo simulations. The region size was
0.21 × 0.21 mas.
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(a) Total Stokes I (b) Total Stokes Q

(c) Total Stokes U

Figure 3.13: The distribution of the mean error in the total flux detected with
the MEM and CLEAN algorithms in the triple Gaussian source for various con-
volution sizes. The error bars indicate the standard deviation of the distribution
resulting from the Monte Carlo simulations. The region size was 0.21 × 0.21 mas.

resolutions they begin to perform poorly. It is clear that the MEM is much
more competitive with the CLEAN algorithm at points A, B and C in the triple
Gaussian than it was at point A in the single Gaussian. This is possibly due
to CLEAN having trouble imaging the more complicated structure of the triple
Gaussian, whereas the MEM, having the advantage of "super-resolution" does
not suffer any increased difficulty. Thus while CLEAN was a better choice for
imaging the core of the Gaussian in the previous section, the MEM does a better
job imaging point A in this section. This is not true for all points and for all
Stokes parameters however and neither algorithm excels at imaging regions A, B
or C in figures 3.10 to 3.11 at resolutions of less than half a CLEAN beam.

Figures 3.11 (right) and 3.12 show the performance of the two algorithms at
measuring the regional flux in regions D, E and F as indicated in Figure 3.9.
These points were select to represent likely points of data to take when making
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a transverse slice across the jet direction, a common operation in testing for
gradients in the Faraday rotation measure across the jet. As these points are
relatively far from the peaks of the algorithm the continuous model of the source
flux employed by the MEM allows it to do a better job than across the majority
of data points.

Figure 3.13 shows again that the MEM outperforms CLEAN at measuring the to-
tal flux of the source across all three Stokes parameters. Although the CLEAN al-
gorithm does a better job at measuring the Stokes I intensity the normal CLEAN
beam resolution, its performance quickly falls off with decreasing beam size while
that of the MEM does not vary appreciably. It is also of note that the MEM has
a much smaller spread of values, while CLEAN fluctuates wildly.

Figures 3.14 and 3.15 show the results for the regional total and fractional po-
larised flux at all six points. Consistent with the results for the single Gaussian,
the MEM consistently outperforms CLEAN at higher resolutions. A similar jump
in performance of the MEM is seen in going from total polarised flux to fractional
polarised flux. Again, the performance of the MEM appears to vary little as the
resolution is increased, while that of CLEAN suffers greatly. Regions A, B and C
appear more difficult to image with the MEM in total polarisation than regions
D, E and F.

The ability of both algorithms to measure the polarisation angle at all points can
be seen in Figure 3.16. The MEM achieves an extremely low uncertainty at all
points (notably better at regions A, B and C than the equivalent single Gaussian
regions in Figure 3.8). The exceptional performance of the MEM at measuring
the polarisation angle in regions D, E and F is of particular interest as this high
performance even at very high resolutions make the MEM an excellent candi-
date for imaging multi-wavelength polarisation data to investigate the presence
of Faraday rotation measure gradients across the jet.

Another interesting result of these Monte Carlo simulations is the relatively tiny
error in the polarisation angle as measured using the MEM, even though the error
in the individual Stokes Q and U parameters was much higher. Clearly the error
in polarisation angle is not a simple propagation of random error, and is more
related to systematic effects. It would be more appropriate to estimate the error
in the polarisation angle independently from the errors in Stokes Q and U . This
estimate would vary depending on the size of the restoring beam, but from Figure
3.16 a value of around 3 degrees may be appropriate in many cases.
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(a) Polarised Flux (b) Fractional Polarisation

(c) Polarised Flux (d) Fractional Polarisation

(e) Polarised Flux (f) Fractional Polarisation

Figure 3.14: The distribution of the mean error in the total and fractional po-
larisation detected with the MEM and CLEAN algorithms in imaging regions A,
B and C of the triple Gaussian source for various convolution sizes. The error
bars indicate the standard deviation of the distribution resulting from the Monte
Carlo simulations. The region size was 0.21 × 0.21 mas.
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(a) Polarised Flux (b) Fractional Polarisation

(c) Polarised Flux (d) Fractional Polarisation

(e) Polarised Flux (f) Fractional Polarisation

Figure 3.15: The distribution of the mean error in the total and fractional po-
larisation detected with the MEM and CLEAN algorithms in imaging regions D,
E and F of the triple Gaussian source for various convolution sizes. The error
bars indicate the standard deviation of the distribution resulting from the Monte
Carlo simulations. The region size was 0.21 × 0.21 mas.
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(a) Region A. (b) Region B.

(c) Region C. (d) Region D.

(e) Region E. (f) Region F.

Figure 3.16: The distribution of the mean error in the polarisation angle detected
with the MEM and CLEAN algorithms in imaging regions A, B, C, D, E and
F of the triple Gaussian source for various convolution sizes. The error bars
indicate the standard deviation of the distribution resulting from the Monte Carlo
simulations. The region size was 0.21 × 0.21 mas.
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3.4 Conclusions

A new C++ code has been written to implement a MEM deconvolution of VLBI
intensity (I) and polarisation (Q and U) data. This code was based on the earlier
work of Holdaway & Wardle (1990) and Sault (1999), but has improved on their
algorithms in a number of ways. The code has been tested and its performance
evaluated and compared with the equivalent performance of a standard CLEAN
deconvolution using Monte Carlo simulations of the deconvolution of images for
a compact single Gaussian model source and a more extended triple Gaussian
model source, chosen to have properties qualitatively similar to those of observed
AGN on VLBI scales.

On the basis of the Monte Carlo simulations detailed in Section 3.3, the PMEM
code developed successfully uses the Maximum Entropy Method to deconvolve
VLBI polarisation data. The MEM is very successful at measuring the total flux
when given an accurate estimate, but further testing is required to see if this
changes when less accurate estimates are given. Both the MEM and CLEAN
algorithms produce reliable values for the flux in a small region down to about
half of the CLEAN beam, at which point the performance of CLEAN begins to
drop away quickly, whereas the MEM is often more reliable.

The MEM exhibits a particular strength in regions of diffuse emission, while
CLEAN is often more suitable in more “pointy” regions. This is due to the δ
function model of the source used by CLEAN, which assumes the source can be
modelled as a series of point sources - which can be true if the source appears as a
point source to the observing array. In cases where a source, or a part of a source,
appears as a point source to an array – i.e. a single (stacked) CLEAN component
accounts for the vast majority of the flux in a region equivalent to the size of the
CLEAN beam, CLEAN is likely to outperform the MEM due to its innate as-
sumptions about the structure of the source. Conversely, in regions which cannot
be well described as point sources of emission the MEM is likely to outperform
CLEAN. This suggests the feasibility of an approach to deconvolution using both
CLEAN and MEM, where the CLEAN algorithm could be used to search for
“pointy” regions and describe them with a set of CLEAN components with the
MEM then being used to deconvolve the remaining map of diffuse and smooth
emission. The CLEAN components corresponding to regions well described with
a point source model could then be convolved with the same beam as the MEM
model and combined with the convolved MEM model and residuals to give a map
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which should exhibit the strengths of both algorithms. Monte Carlo testing of
such an approach could be conducted in the same manner as those in this chapter
to test its performance and test for any unforeseen systematic issues.

The MEM has a distinct advantage over CLEAN in imaging the polarisation angle
at high resolution, though the exact accuracy can vary (some of the standard
deviations in Figure 3.16 are very large). This will make MEM a valuable tool
in detecting gradients in Faraday rotation measure that are perhaps hinted at in
normal CLEAN images, but need a higher resolution to be firmly detected. The
detection of such gradients will then allow the magnetic field present in the jet
to be studied and any evidence of a helical field component examined.

The fact that both algorithms perform very well at resolutions down to 1
2 of the

CLEAN beam has implications for the choice of beam used in multi-wavelength
studies such as the creation of Faraday rotation measure maps. It is standard
practice to restore all maps used with the restoring beam corresponding to the
lowest frequency, thereby throwing away information present at higher resolu-
tions in higher frequency maps – even though the natural CLEAN beam for those
frequencies might include such information. The results of the Monte Carlo sim-
ulations carried out in this chapter strongly suggest that, even for the CLEAN
algorithm, a moderate super-resolution of up to half of the CLEAN beam corre-
sponding to the lowest frequency should have little effect on the multi-wavelength-
derived map, especially considering the degree of super-resolution will be lower for
the other maps. If the MEM is used then higher quality results may be expected,
or even higher resolution maps created.
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Chapter 4

Application of PMEM to Real
VLBI Polarisation Data

Chapter 2 discussed the Maximum Entropy Method and its implementation to
deconvolve polarised data using the Cornwell-Evans algorithm, with modifications
by Holdaway and Wardle (1990) and Sault (1990). Chapter 3 then discussed
the design and realisation of such a method suitable for deconvolving polarised
VLBI data and detailed the results of Monte Carlo simulations on the resulting
software. This Chapter deals with the application of the new PMEM software to
real VLBI polarisation data. Intensity and polarisation maps for various sources
are presented, along with the first Faraday rotation measure maps made using
the MEM at VLBI scales.

4.1 Markarian 501

The final MEM code was applied to polarisation observations of Markarian 501
at 2cm, 4cm and 6cm taken by Pushkarev et al. (2005). Markarian 501, or
J1653+3945, is observed as a BL Lac object (see Section 1.5.4) with a redshift of
z = 0.0337, corresponding to a distance of 146 Mpc, or 4.5× 1024 m (data from
the MOJAVE project, Lister et al. 2009). This source has a pronounced jet with
strong polarisation and a lot of bending. Evidence for the presence of a helical
magnetic field threading the jet of the source has been reported by Pushkarev
et al. (2005), who pointed out that the spine–sheath polarisation structure ob-
served in the VLBI jet was consistent with a helical magnetic field, and Murphy,
Cawthorne and Gabuzda (2013), who successfully fit transverse slices across this
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spine–sheath polarisation structure using a simple helical field model. In addi-
tion, Faraday rotation measure gradients across the jet have been reported by
Gabuzda et al. (2004), based on 2cm, 3.6cm and 6cm VLBA polarisation data,
and Croke et al. (2010), based on 3.6cm, 6cm, 13cm and 18cm VLBA polarisation
data.

All the initial calibration and imaging of these data (using a CLEAN deconvo-
lution) had already been carried out carried out by Pushkarev et al.(2005). The
MEM deconvolution of the data was carried out with PMEM using the parame-
ters listed in Table 4.1. The estimates of the total Stokes I, Q and U fluxes were
obtained by estimating the zero spacing flux in a plot of the corresponding vis-
ibilities against wavelength (see Figure 4.1 for an example). Markarian 501 was
found to image well using the default flat bias map and with the fluxes approx-
imately conserved. Images were made corresponding to a variety of estimated
final RMS noises, however the best results corresponded to the assumption of
0 final RMS noise in each case. Although this is an unreasonable expectation,
in the particular dataset under consideration it resulted in the best convergence
between the MEM model and the data and gave realistic final RMS noise values.

Samples of the imaging results for the 6 cm dataset can be seen in Figures 4.2
to 4.4. Figure 4.2 shows the results for Stokes I. The plot of the intrinsic
MEM model map shows the intrinsic Stokes I model of Markarian 501 that has
maximum information entropy while still agreeing with the data to within a
reasonable expectation. As much of the structure shown is at scales smaller than
the limit set by the Fourier Sampling Theorem it does not represent real data,
rather a conservative model with maximum entropy given the constraints of the
data. However, the Monte Carlo simulations detailed in Chapter 3 demonstrate
that the MEM does model the source realistically at levels below that accounted
for by the Sampling Theorem. This in contrast to CLEAN, where the choice of
modelling the intrinsic emission as a series of δ functions can be unrealistic for
many sources. It is therefore possible that some useful data can be extracted
from the intrinsic MEM model.

The convolved map shown in Figure 4.2 is the result of convolving the intrinsic
model with the normal CLEAN beam. The residual map is the difference between
the dirty map and the convolution of the intrinsic MEM map with the dirty
beam. To avoid Fourier related artefacting near the edges of the map degrading
the quality of the final MEM image 200 pixels were clipped from the edges of
the maps. The image was made sufficiently large to ensure any emission from
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Table 4.1: MEM parameters used to image Markarian 501. In all cases the
restoring beam used was the CLEAN beam, the maximum number of iterations
was 10, 000, a flat bias map was used and flux was conserved with parameter 2.
It was found that an estimated final RMS noise of 0 gave the best deconvolution
for all Stokes parameters. Nexclude was set to 200 pixels in all cases.

6 cm 4 cm 2 cm
Stokes I Flux 1.05 Jy 0.95 Jy 0.72 Jy
Stokes Q Flux 0.035 Jy 0.03 Jy 0.05 Jy
Stokes U Flux 0.04 Jy 0.03 Jy 0.05 Jy

∆step 1 1 1
qfactor 0.009 0.05 0.04
wp 2 2 2

the source was not present in clipped regions. There is clearly an increase in
the residuals in the on-source area, however as most of the increased residuals
are within 3 times the background noise the model can be considered to be well
converged. This effect is most pronounced at the core of the source, suggesting
that the MEM has difficulty imaging relatively sharply peaked regions. Further
evidence of this effect can be seen by analysing the final MEMmaps of the source.

The final panel in the figure shows the result of adding the residual map to the
convolved model map (note that if the restoring beam is not the CLEAN beam
the residuals should be rescaled into the same Jy/Beam units). This final MEM
map includes any remaining background noise and source structure that has not
been well described by the MEM model. A comparison of the peak Stokes I
value as imaged with the MEM and CLEAN can be seen in Table 4.2. It is clear
that the CLEAN algorithm systematically measures a higher peak flux than the
MEM. This can be explained by the way in which a δ function based model of the
source tends to concentrate flux in a small region, whereas the continuous model
employed by the MEM prefers to spread it over neighbouring pixels. The analysis
in Chapter 3 suggests that, as long as a single pixel value is not used to determine
the peak (instead averaging over a small region), both algorithms agree well at
the peak region at the full CLEAN beam, while falling off in accuracy at higher
resolutions. CLEAN appeared to fare better with a single Gaussian source, while
the MEM was better at imaging the peak of the more spread out triple Gaussian
source. An imaging approach using both the CLEAN and MEM algorithms as
described in Section 3.4 may yield improved results, but would require Monte
Carlo testing to determine its accuracy.

Figures 4.3 and 4.4 show the corresponding Stokes Q and U maps of Markarian
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Figure 4.1: Stokes I visibility versus baseline length plot for Markarian 501 at
4.971 GHz (6 cm). The total Stokes I intensity can be estimated by looking at
the approximate intensity for a baseline of zero length (thus not resolving any of
the source).

Table 4.2: Peak fluxes achieved with the MEM and CLEAN in Markarian 501 at
6 cm.

CB 1
2 CB 1

3 CB 1
3 CB

(Jy/Beam) (Jy/Beam) (Jy/Beam) (Jy/Beam)
CLEAN 0.520 0.463 0.436 0.414
MEM 0.509 0.397 0.303 0.223

Table 4.3: The various beams used in the imaging of Markarian 501.

Frac. of Major Axis Minor Axis Position Angle
CLEAN beam (mas) (mas) (deg.)

1 2.49 1.88 −22.36
1
2 1.245 0.94 −22.36
1
3 0.83 0.63 −22.36
1
4 0.6225 0.47 −22.36
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(a) Model Map. (b) Convolved Model Map.

(c) Residual Map. (d) Final MEM Map.

Figure 4.2: Stokes I MEM maps of Markarian 501 at 4.971 GHz (6 cm). The
Convolved maps shown have been convolved with the CLEAN beam for the ob-
servation. The line in the final map indicates the position of the slices taken
across CLEAN maps and presented in Figure 6.12.
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501 at 6 cm. The Stokes Q map in particular appears to have achieved excellent
convergence, while some structure in the core region of the map is visible in the
residual map for Stokes U . However, as this structure is on a scale close to the
background noise, the Stokes U map can be said to also be well converged. An
important factor in achieving this high degree of convergence was the choice made
to assign a higher weight to the polarisation residuals than the Stokes I residuals
during the MEM mapping. This resulted in a slightly poorer Stokes I map, but
made much better Stokes Q and U maps – a good compromise when primarily
investigating the polarisation features of a source. The resulting final MEM maps
are displayed in the bottom right of each figure.

Figures 4.10 to 4.13 show CLEAN and MEM percentage polarisation maps of
Markarian 501 at 6 cm convolved with the selection of beams listed in Table
4.3. The cut off point for the fractional polarisation displayed was determined by
clipping all polarised flux lower than the maximum polarised flux in region well
off the source. The same colour scale is used for the corresponding MEM and
CLEAN images.

The MEM and CLEAN percentage polarisation maps at full CLEAN beam res-
olution are largely similar and both show increasing fractional polarisation at
the edges of the jet, a possible indication of the presence of a toroidal or helical
magnetic field. At a resolution corresponding to half of the full CLEAN beam
both maps still show similar structure, but the CLEAN map is predicting much
higher fractional polarisation, at some points exceeding the theoretical maximum
of 75% for synchrotron radiation. As the CLEAN maps are convolved with in-
creasingly smaller beams the “bed of nails” effect of the δ function modelling
employed by CLEAN becomes increasingly evident in both the Stokes I contours
and the percentage polarisation colour scale.

In contrast, the MEM maps smoothly increase in resolution – showing the same
features from map to map, but in more detail and with more realistic values
than the corresponding CLEAN maps. The background polarisation noise in
each MEM map was lower than the corresponding CLEAN map and this became
increasingly pronounced as the size of the convolving beam was reduced. The
increased polarisation sensitivity and resolution of the MEM can be seen in the
region of higher fractional polarisation located at a relative right ascension of
about 5 mas and a declination of 0 mas. This is only hinted at in the MEM map
convolved with the CLEAN but is clearly visible at all higher resolutions. Inter-
estingly, CLEAN does detect the feature at 1

2 and 1
3 CLEAN beam resolutions,
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(a) Model Map. (b) Convolved Model Map

(c) Residual Map (d) Final MEM Map

Figure 4.3: Stokes Q MEM maps of Markarian 501 at 4.971 GHz (6 cm). The
colour scale indicates intensity in Jy/Pixel or Jy/Beam. The Convolved maps
shown have been convolved with the CLEAN beam for the observation.
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(a) Model Map (b) Convolved Model Map

(c) Residual Map (d) Final MEM Map

Figure 4.4: Stokes U MEM maps of Markarian 501 at 4.971 GHz (6 cm). The
colour scale indicates intensity in Jy/Pixel or Jy/Beam. The Convolved maps
shown have been convolved with the CLEAN beam for the observation.
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Table 4.4: A comparison of the intrinsic width measurements of Markarian 501 at
the slice locations referenced in Figure 4.9. The MEM measurements were made
by measuring the approximate width in the MEM intrinsic model map. Murphy
et al. achieved their value by a statistical analysis.

Slice Intrinsic MEM Murphy et al.
(mas) (mas)

1 4.2 3.1
2 4.7 5.7
3 5.4 4.8

but the maps display unbelievably high fractional polarisation, which would make
any other features in the map similarly suspect. The apparent reliability of the
MEM maps over the CLEAN maps is in agreement with the Monte Carlo simula-
tion results presented in Chapter 3 which suggested that the MEM is particularly
successful in imaging fractional polarisation and polarisation angle.

Figures 4.5 to 4.8 show the polarisation angle maps of Markarian 501 at 4.971 GHz
(6 cm) for both MEM and CLEAN at each of the four resolutions. Once again
the MEM and CLEAN maps at full CLEAN resolution look broadly similar,
however even at resolutions corresponding to half of the CLEAN beam a marked
difference emerges between the two algorithms as the MEM image remains smooth
while the CLEAN image begins to show signs of the “bed of nails” effect. Only
polarisation angles corresponding to a total polarised flux (P =

√
Q2 + U2) high

enough to rule out most off-source regions were shown. As the MEM produced
total polarised flux maps with much lower noise than those produced by the
CLEAN algorithm, lower cut–offs were required for the MEM maps than for the
CLEAN maps. As the resolution of the maps increase, MEM shows the “spine-
sheath” region at Right Ascension 5 mas, Declination -5 mas in increasing clarity
and picks up some polarisation in the core region of the map. In contrast, while
there is some agreement between the high resolution CLEAN and MEMmaps, the
CLEAN maps are quickly dominated by artifacts unlikely to represent the true
structure of the source, raising questions about the accuracy of CLEAN–based
polarisation angles in highly super–resolved images.

As an example of the potential ability to extract some useful data even from the
intrinsic (unconvolved) MEM model, a measurement of the intrinsic jet width
along a line corresponding approximately to slice 2 in Murphy et al. (2013) gives
a result of approximately 4.7 mas (see Figure 4.9). To achieve this the jet width
was estimated as the contour line corresponding to 0.05% of the peak model flux.
This is in reasonable agreement with the value of 5.7 mas found by Murphy et
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(a) MEM

(b) CLEAN

Figure 4.5: MEM and CLEAN polarisation maps of of Markarian 501 at
4.971 GHz (6 cm). The maps have been made with the full CLEAN beam.
The blue dashes indicate the direction of the observed polarisation angle. The
length of the line is proportional to the magnitude of the polarised flux. The
contours are Stokes I emission.
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(a) MEM

(b) CLEAN

Figure 4.6: MEM and CLEAN polarisation maps of of Markarian 501 at
4.971 GHz (6 cm). The maps have been made with 1

2 of the CLEAN beam.
The blue dashes indicate the direction of the observed polarisation angle. The
length of the line is proportional to the magnitude of the polarised flux. The
contours are Stokes I emission.
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(a) MEM

(b) CLEAN

Figure 4.7: MEM and CLEAN polarisation maps of of Markarian 501 at
4.971 GHz (6 cm). The maps have been made with 1

3 of the CLEAN beam.
The blue dashes indicate the direction of the observed polarisation angle. The
length of the line is proportional to the magnitude of the polarised flux. The
contours are Stokes I emission.

The Development of New Methods for High
Resolution Radio Astronomy Imaging

109 Colm Coughlan



4. Application of PMEM to Real
VLBI Polarisation Data 4.1 Markarian 501

(a) MEM

(b) CLEAN

Figure 4.8: MEM and CLEAN polarisation maps of of Markarian 501 at
4.971 GHz (6 cm). The maps have been made with 1

4 of the CLEAN beam.
The blue dashes indicate the direction of the observed polarisation angle. The
length of the line is proportional to the magnitude of the polarised flux. The
contours are Stokes I emission.
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(a) MEM Model Map Slices (b) Murphy et al. Slices

Figure 4.9: Intrinsic width of Markarian 501 at 6cm from Murphy et al. 2013.
Murphy et al. found slice 2 to have an intrinsic width of about 5.7mas, which
is close to the measurement of 4.7 mas in the corresponding region in the model
map in Figure 4.2.

al. (2013) using a Monte Carlo like χ2 comparison test. Table 4.4 shows the
intrinsic width of the jet measured at the three slices. Although the agreement
varies and it is unclear which method may be more accurate – particularly as
the corresponding slices are necessarily taken at slightly different regions due to
the different types of maps under consideration, the MEM model map could be
clearly of use in helping to constrain the intrinsic width of the jet. This could
lead to increased accuracy and consistency in models such as that of Murphy et
al.

Figures 4.14 to 4.17 show Faraday rotation measure maps of Markarian 501 made
in AIPS using the 2cm, 4cm and 6cm observations. Estimates of the Faraday
rotation were obtained in each pixel, by obtaining a linear fit of the polarisation
angles vs. the square of the wavelength in each pixel. The fitted Faraday rotation
values were written out only when the significance of the linear fit was high enough
that spurious fits in off-source regions were neglected. Different cut off points
were used for different convolution sizes, resulting in only relatively reliable RM
values were written out. Again results are presented with the restoring beams
listed in Table 4.3 corresponding to the full CLEAN beam and 1

2 ,
1
3 and 1

4 of the
CLEAN beam. The same colour scale is used for all images. At full CLEAN
beam resolution the rotation measure maps made with each algorithm look very
similar, though the MEM map appears somewhat more blotchy at the edges of
the jet. The fact that the MEM polarisation maps produced reliable polarisation
measurements over a larger area of the source emission region leads to Faraday
rotation estimates being available over a larger region of the source in the MEM
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Faraday rotation maps compared to the CLEAN maps; however, this did not lead
to the detection of interesting Faraday rotation structures that were not visible
in the CLEAN Faraday rotation maps in this case.

Figures 4.18 to 4.21 show intrinsic polarisation angle maps of Markarian 501
at 6 cm made with CLEAN and the final MEM maps restored with the beams
listed in Table 4.3. The intrinsic polarisation angle was calculated in the same
linear fit as the Faraday rotation measure; i.e., it is the y intercept in the linear
fit of the polarisation angle vs. the square of the wavelength obtained for each
pixel. The pixels for which values are available correspond to those for which
acceptable Faraday rotation estimates could be obtained, based on the same
criterion indicated above. Because the MEM Faraday rotation maps contained
more pixels with reliable Faraday rotation estimates, this leads to estimates of
the intrinsic polarisation angle in a larger number of pixels in the MEM maps,
compared to their CLEAN counterparts. There is strong agreement between the
images in all cases, with EVPAs aligned transverse to the jet direction from just
outside the core to a knot visible in Stokes I, possibly related to a change in
jet direction, a shock, or a globule of plasma travelling out along the jet. In an
optically thin part of the jet this corresponds to a magnetic field along the jet
direction, suggesting a magnetic field structure with a strong toroidal component.
The presence of ‘spine-sheath’ type behaviour at the location of the knot suggests
that a helical magnetic field may be responsible for the observed polarisation
behaviour.

The spine-sheath structure can be seen clearly in the high resolution MEM maps.
Comparing the MEM percentage polarisation and intrinsic polarisation angle
maps convolved with 1

4 of the CLEAN beam it is clear that the ‘sheath’ region of
the structure corresponds to a region of higher than normal percentage polarisa-
tion. The co-incidence of these features is strong evidence for a helical magnetic
field structure at this point in the jet.

4.2 1633+382

J1633+382 is a Quasar with notably high fractional linear polarisation in the
optical and a low spectral peak with a redshift of z = 1.813, corresponding to
a distance of 14,000 Mpc, or 4.3 × 1026 m (data from the MOJAVE project,
Lister et al. 2009). Observations were made at six frequencies; 4.612 GHz,
5.088 GHz, 7.904 GHz, 8.8710 GHz, 12.9270 GHz and 15.3710 GHz. The initial
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(a) MEM

(b) CLEAN

Figure 4.10: Percentage polarisation measure maps of Markarian 501 made with
the MEM and CLEAN convolved with the full CLEAN beam. The contours in-
dicate the Stokes I intensity at 4.971 GHz. The colour scale indicates percentage
polarisation.
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(a) MEM

(b) CLEAN

Figure 4.11: Percentage polarisation measure maps of Markarian 501 made with
the MEM and CLEAN convolved with 1

2 of the CLEAN beam. The contours in-
dicate the Stokes I intensity at 4.971 GHz. The colour scale indicates percentage
polarisation.
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(a) MEM

(b) CLEAN

Figure 4.12: Percentage polarisation measure maps of Markarian 501 made with
the MEM and CLEAN convolved with 1

3 of the CLEAN beam. The contours in-
dicate the Stokes I intensity at 4.971 GHz. The colour scale indicates percentage
polarisation.
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(a) MEM

(b) CLEAN

Figure 4.13: Percentage polarisation measure maps of Markarian 501 made with
the MEM and CLEAN convolved with 1

4 of the CLEAN beam. The contours in-
dicate the Stokes I intensity at 4.971 GHz. The colour scale indicates percentage
polarisation.
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(a) MEM

(b) CLEAN

Figure 4.14: Faraday rotation measure maps of Markarian 501 made with the
MEM and CLEAN convolved with the full CLEAN beam. The contours indicate
the Stokes I intensity at 4.971 GHz. The colour scale indicates the Faraday
rotation measure.
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(a) MEM

(b) CLEAN

Figure 4.15: Faraday rotation measure maps of Markarian 501 made with the
MEM and CLEAN convolved with 1

2 of the CLEAN beam. The contours indicate
the Stokes I intensity at 4.971 GHz. The colour scale indicates the Faraday
rotation measure.
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(a) MEM

(b) CLEAN

Figure 4.16: Faraday rotation measure maps of Markarian 501 made with the
MEM and CLEAN convolved with 1

3 of the CLEAN beam. The contours indicate
the Stokes I intensity at 4.971 GHz. The colour scale indicates the Faraday
rotation measure.
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(a) MEM

(b) CLEAN

Figure 4.17: Faraday rotation measure maps of Markarian 501 made with the
MEM and CLEAN convolved with 1

4 of the CLEAN beam. The contours indicate
the Stokes I intensity at 4.971 GHz. The colour scale indicates the Faraday
rotation measure.
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(a) MEM

(b) CLEAN

Figure 4.18: Intrinsic polarisation angle maps of Markarian 501 made with the
MEM and CLEAN convolved with the full CLEAN beam. The contours indicate
the Stokes I intensity at 4.971 GHz. The blue dashes indicate the direction of
the intrinsic polarisation angle.
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(a) MEM

(b) CLEAN

Figure 4.19: Intrinsic polarisation angle maps of Markarian 501 made with the
MEM and CLEAN convolved with 1

2 of the CLEAN beam. The contours indicate
the Stokes I intensity at 4.971 GHz. The blue dashes indicate the direction of
the intrinsic polarisation angle.
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(a) MEM

(b) CLEAN

Figure 4.20: Intrinsic polarisation angle maps of Markarian 501 made with the
MEM and CLEAN convolved with 1

3 of the CLEAN beam. The contours indicate
the Stokes I intensity at 4.971 GHz. The blue dashes indicate the direction of
the intrinsic polarisation angle.
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(a) MEM

(b) CLEAN

Figure 4.21: Intrinsic polarisation angle maps of Markarian 501 made with the
MEM and CLEAN convolved with 1

4 of the CLEAN beam. The contours indicate
the Stokes I intensity at 4.971 GHz. The blue dashes indicate the direction of
the intrinsic polarisation angle.
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Table 4.5: MEM parameters used to image 1633+382. In all cases the restoring
beam used was the CLEAN beam, the maximum number of iterations was 10, 000,
a flat bias map was used and flux was conserved with parameter 2. It was found
that an estimated final RMS noise of 0 for all Stokes parameters gave the best
deconvolution results for the lower three frequencies. Nexclude was set to 150 pixels
in all cases.

Freq. (GHz) 4.6 5.1 7.9 8.9 12.9 15.4
Stokes I Flux (Jy) 2.2 2.2 2.2 2.3 2.5 2.3
Stokes Q Flux (Jy) 0.15 0.15 0.15 0.14 0.15 0.17
Stokes U Flux (Jy) 0.17 0.17 0.17 0.15 0.15 0.17

Stokes I RMS (mJy/Beam) 0 0 0 0.98 0.6 1.24
Stokes Q RMS (mJy/Beam) 0 0 0 0.94 0.94 0.61
Stokes U RMS (mJy/Beam) 0 0 0 1.34 1.35 0.64

∆step 3 3 1.5 1.5 0.5 1.0
qfactor 0.5 2 0.05 2 0.03 0.1
wp 1 1 2 2 2 4

calibration and imaging of the data were carried out by Reichstein (2012). The
MEM deconvolution of the data was carried out with PMEM using the parameters
listed in Table 4.5. The parameters were selected by trial and error to achieve the
best possible deconvolution. The CLEAN maps were used to help select expected
RMS residuals for the three highest frequencies, but the three lower frequencies
converged best with an RMS value of zero.

Figures 4.22 to 4.24 show the MEM model, convolved, residual and final maps
for the three Stokes parameters at 4.612 GHz. Several distinct jet components
are clearly visible in the model Stokes I MEM map, which are blended together
when convolved with the full CLEAN beam. The residual maps show that good
convergence has been reached for all Stokes parameters. Some structure is visible
in the residual Q and U maps, notably around the core of the source where the
MEM model map has trouble forming the ‘spikey’ structure needed to describe
the sudden increase at the core. Using CLEAN to first image the brighter regions
of the source and imaging the remaining flux with the MEM may result in a
better image, however as the structure seen in the residual maps is within a few
times the RMS of the residual noise, nearly all the information about the source
contained in the data is included within the model maps.

Figures 4.25 to 4.28 show the CLEAN and MEM percentage polarisation maps
of 1633+382 at 4.612 GHz imaged with four beams, again corresponding to the
full CLEAN beam, 1

2 ,
1
3 and 1

4 of the CLEAN beam (see Table 4.6 for full details
of each beam). The cut off in fractional polarisation shown was determined
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(a) Model Map (b) Convolved Model Map

(c) Residual Map (d) Final MEM Map

Figure 4.22: Stokes I MEM maps of J1633+382 at 4.612 GHz. The Convolved
maps shown have been convolved with the CLEAN beam for the observation.

by finding the maximum total polarised flux in a region away from the source
and clipping to show only fractional polarisation corresponding to a higher total
polarised flux.

The MEM and CLEAN fractional polarisation maps at full CLEAN resolution
are almost identical – clearly both algorithms do a good job at this resolution.
In contrast, the MEM image at twice this resolution looks very different to the
corresponding CLEAN image. In the MEM image a high resolution version of the
full CLEAN beam image is presented, with evidence for an increase in fractional
polarisation at the edges of the jet appearing. The CLEAN image has picked
up much less statistically significant polarised flux, and the increase in fractional
polarisation at the edges is not clear from the CLEAN image alone.
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(a) Model Map (b) Convolved Model Map

(c) Residual Map (d) Final MEM Map

Figure 4.23: Stokes Q MEM maps of J1633+382 at 4.612 GHz. The colour scale
indicates intensity in Jy/Pixel or Jy/Beam. The Convolved maps shown have
been convolved with the CLEAN beam for the observation.
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(a) Model Map (b) Convolved Model Map

(c) Residual Map (d) Final MEM Map

Figure 4.24: Stokes U MEM maps of J1633+382 at 4.612 GHz. The colour scale
indicates intensity in Jy/Pixel or Jy/Beam. The Convolved maps shown have
been convolved with the CLEAN beam for the observation.
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Table 4.6: The various beams used in the imaging of 1633+382.

Frac. of Major Axis Minor Axis Position Angle
CLEAN beam (mas) (mas) (deg.)

1 3.77 2.04 −26.53
1
2 1.885 1.02 −26.53
1
3 1.257 0.68 −26.53
1
4 0.9425 0.51 −26.53

CLEAN images at higher resolutions are badly affected by δ function artefacts
and are of little use. In contrast, the high resolution MEM images give a clearer
indication of the jet direction and the way in which the increase in fractional
polarisation at the jet edges follows the jet direction. In this way, the MEM
maps contribute unique evidence for the presence of a toroidal magnetic field in
1633+382.

Figures 4.29 to 4.30 show the polarisation angle maps. Only polarisation angles
corresponding to a total polarised flux (P =

√
Q2 + U2) high enough to rule

out most off-source regions were shown. As the MEM produced total polarised
flux maps with much lower noise than those produced by the CLEAN algorithm,
lower cut–offs were required for the MEM maps than for the CLEAN maps. The
polarisation angle maps follow the same trend as the fractional polarisation maps,
with MEM and CLEAN producing similar results at resolutions corresponding
to the full CLEAN beam and 1

2 of the CLEAN beam. At higher resolutions the
CLEAN maps are dominated by artefacts, while the MEM maps show the change
in polarisation angle between the core and the brightest component of the jet in
detail. The longer blue dashes in the core and the brightest component of the jet
also link regions of high polarised flux to regions of high total intensity, however
the high resolution MEM fractional polarisation map in Figure 4.28 shows that
the fraction of the emission that is polarised is actually higher out along the jet
than in the core region.

MEM maps of the three Stokes parameters were made for all six frequencies
corresponding to the beams listed in Table 4.6. Polarisation angle maps for each
frequency were constructed and used to create a Faraday rotation measure map
for the entire frequency range in AIPS. Corresponding maps were also made with
the CLEAN algorithm. Figures 4.31 and 4.32 show the resulting RM maps for
each of the four beams used. It is again clear that at full CLEAN resolution the
MEM and CLEAN maps are very similar, though again the MEM map appears
to be a little patchier than the CLEAN map. As the resolution increases however,
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(a) MEM. CLEAN Beam

(b) CLEAN. CLEAN Beam

Figure 4.25: Percentage polarisation maps of 1633+382 made with the MEM and
CLEAN convolved with the full CLEAN beam. The contours indicate the Stokes
I intensity at 4.612 GHz. The colour scale indicates the percentage polarisation.
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(a) MEM. 1
2 CLEAN Beam

(b) CLEAN. 1
2 CLEAN Beam

Figure 4.26: Percentage polarisation maps of 1633+382 made with the MEM and
CLEAN convolved with 1

2 of the CLEAN beam. The contours indicate the Stokes
I intensity at 4.612 GHz. The colour scale indicates the percentage polarisation.
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(a) MEM. 1
3 CLEAN Beam

(b) CLEAN. 1
3 CLEAN Beam

Figure 4.27: Percentage polarisation maps of 1633+382 made with the MEM and
CLEAN convolved with 1

3 of the CLEAN beam. The contours indicate the Stokes
I intensity at 4.612 GHz. The colour scale indicates the percentage polarisation.
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(a) MEM. 1
4 CLEAN Beam

(b) CLEAN. 1
4 CLEAN Beam

Figure 4.28: Percentage polarisation maps of 1633+382 made with the MEM and
CLEAN convolved with 1

4 of the CLEAN beam. The contours indicate the Stokes
I intensity at 4.612 GHz. The colour scale indicates the percentage polarisation.
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(a) MEM. CLEAN Beam. (b) CLEAN. CLEAN Beam.

(c) MEM. 1
2 CLEAN Beam. (d) CLEAN. 1

2 CLEAN Beam.

Figure 4.29: MEM and CLEAN polarisation maps of of 1633+382 at 4.612 GHz.
The maps have been made with the full CLEAN beam and 1

2 of the CLEAN
beam. The blue dashes indicate the direction of the observed polarisation angle.
The length of the line is proportional to the magnitude of the polarised flux. The
contours are Stokes I emission.
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(a) MEM. 1
3 CLEAN Beam. (b) CLEAN. 1

3 CLEAN Beam.

(c) MEM. 1
4 CLEAN Beam. (d) CLEAN. 1

4 CLEAN Beam.

Figure 4.30: MEM and CLEAN polarisation maps of of 1633+382 at 4.612 GHz.
The maps have been made with 1

3 and 1
4 of the CLEAN beam. The blue dashes

indicate the direction of the observed polarisation angle. The length of the line
is proportional to the magnitude of the polarised flux. The contours are Stokes
I emission.
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major artefacts appear in the CLEAN maps in both Stokes I intensity and in RM
measure. The CLEAN map at the resolution corresponding to 1

4 of the CLEAN
beam is completely dominated by artefacts.

In contrast, the MEM maps smoothly transfer from the lower to the higher reso-
lutions. Though fewer pixels show successful RM fits as the resolution increases
(i.e. the beam size lowers), those that are fitted are in agreement with both
the CLEAN and the MEM maps at normal CLEAN resolution. The map con-
volved with 1

2 of the CLEAN beam is probably the best compromise between
resolution and quality of the RM fit. All of the MEM maps shown seem to in-
dicate a Faraday-rotation gradient across the core region, which is also visible in
the CLEAN map convolved with the full CLEAN beam, but not in the CLEAN
maps convolved with the smaller beams.

Figures 4.33 and 4.34 show intrinsic polarisation angle maps of 1633+382 at
4.6 GHz made with CLEAN and the final MEM maps, restored with the beams
listed in Table 4.6. The intrinsic polarisation angle was calculated in the same
linear fit as the Faraday rotation measure, as was described in Section 4.1 above.
There is good agreement between all the MEM intrinsic-polarisation images; this
structure is sometimes also visible in the corresponding CLEAN images, but the
unreliability of the intensity structure shown in the CLEAN images made with
beams smaller than 1

2 the CLEAN beam would cast the reality of this polarisation
structure into doubt and make it hard to interpret. The orientation of the polar-
isation relative to the jet direction roughly 4 mas from the core is not obvious in
the CLEAN images; however, the MEM images suggest that this is polarisation
along one edge of the jet where it bends toward the north, particularly given the
patterns shown by the MEM degree of polarisation images.

4.3 0716+714

0716+714 (J0721+7120) is a BL Lac object, whose distance is not known due
to the lack of a redshift estimate for its spectrum (Lister et al. 2009). Mahmud
et al. (2013) published a detection of a transverse gradient in rotation measure
that appeared to change direction along the jet (see also Chapter 5). It is of note
that Mahmud et al. (2013) used a restoring beam equal to about 60% of the
CLEAN beam corresponding to the lowest frequency observed to achieve their
results. Although this would be considered unjustified in a traditional approach,
the conclusions from my Monte Carlo simulations in Chapter 3 indicate that
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(a) MEM. CLEAN Beam (b) CLEAN. CLEAN Beam

(c) MEM. 1
2 CLEAN Beam (d) CLEAN. 1

2 CLEAN Beam

Figure 4.31: Faraday rotation measure maps of 1633+382 made with the MEM
and CLEAN convolved with the full CLEAN beam and with 1

2 of the CLEAN
beam. The contours indicate the Stokes I intensity at 4.612 GHz. The colour
scale indicates the Faraday rotation measure.
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(a) MEM. 1
3 CLEAN Beam (b) CLEAN. 1

3 CLEAN Beam

(c) MEM. 1
4 CLEAN Beam (d) CLEAN. 1

4 CLEAN Beam

Figure 4.32: Faraday rotation measure maps of 1633+382 made with the MEM
and CLEAN convolved with 1

3 and 1
4 of the CLEAN beam. The contours indicate

the Stokes I intensity at 4.612 GHz. The colour scale indicates the Faraday
rotation measure.
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(a) MEM. CLEAN Beam (b) CLEAN. CLEAN Beam

(c) MEM. 1
2 CLEAN Beam (d) CLEAN. 1

2 CLEAN Beam

Figure 4.33: Intrinsic polarisation maps of 1633+382 made with the MEM and
CLEAN convolved with the full CLEAN beam and with 1

2 of the CLEAN beam.
The contours indicate the Stokes I intensity at 4.612 GHz. The blue dashes
indicate the direction of the intrinsic polarisation angle.
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(a) MEM. 1
3 CLEAN Beam (b) CLEAN. 1

3 CLEAN Beam

(c) MEM. 1
4 CLEAN Beam (d) CLEAN. 1

4 CLEAN Beam

Figure 4.34: Intrinsic polarisation maps of 1633+382 made with the MEM and
CLEAN convolved with 1

3 and 1
4 of the CLEAN beam. The contours indicate the

Stokes I intensity at 4.612 GHz. The blue dashes indicate the direction of the
intrinsic polarisation angle.
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reliable results can be obtained with such modestly “super-resolved” CLEAN
maps. The same VLBA data as used by Mahmud et al. (2013) at 6 frequencies
between 4.612 and 15.383 GHz were used to create MEM based polarisation and
Faraday rotation measure maps of 0716+714, in order to investigate the difference
between CLEAN and MEM-based images of this object. The full CLEAN beam
is used, as well as the CLEAN beam from Mahmud et al. (2013) and a beam
slightly smaller than that beam (Table 4.8).

Table 4.7 gives the PMEM parameters used to image 0716+714 at all 6 frequencies
used. The resulting MEM images corresponding to 4.6 GHz are visible in Figures
4.35 to 4.37. The model, residual, convolved and final MEM maps are present
for each of the three Stokes parameters I, Q and U . The Stokes I model map
captures much of the emission from the extended jet, though the residual map
shows errors in the modelling of the core component – specifically a peak that is
too low, and an extended core region that is too high. This kind of systematic
error is systematic of the MEM algorithm as it struggles to put large amounts of
flux into smaller regions. The deconvolution approach using both CLEAN and
MEM described in Section 3.4 may improve the appearance of the final residual
map and result in a better overall deconvolution, though thorough testing of such
an approach would be necessary before any conclusions could be drawn.

The Stokes Q and U maps also show signs of incomplete convergence as relatively
large residuals are visible. However as the residuals are added to the convolved
map to create the final map, the final MEM images do include any data that may
be missed by the algorithm. Again, MEM appears to be imaging the extended
regions with a greater success than the point-like core region.

Figure 4.38 shows percentage polarisation maps of 0716+714 at the full CLEAN
beam and at the resolution used in Mahmud et al. The MEM and CLEAN maps
show complete agreement, though the MEMmaps do show statistically significant
polarised flux further out along the jet than is visible in the CLEAN maps. This
region appears to have significantly higher percentage polarisation than in the
core region, as is a common feature for AGN jets.

Figure 4.39 continues the same trend for a beam corresponding to 3
4 of the Mah-

mud et al. beam, or about 44% of the full CLEAN beam. The MEM continues
to pick up a region of high percentage polarisation further out along the jet not
visible in the CLEAN map. The difference in scale between the two maps in this
case necessitates a change in the colour scale used in the two images. The major
difference between MEM and CLEAN based percentage polarisation images in
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(a) Model Map (b) Convolved Model Map

(c) Residual Map (d) Final MEM Map

Figure 4.35: Stokes I MEM maps of 0716+714 at 4.612 GHz. The Convolved
maps shown have been convolved with the CLEAN beam for the observation.

The Development of New Methods for High
Resolution Radio Astronomy Imaging

142 Colm Coughlan



4. Application of PMEM to Real
VLBI Polarisation Data 4.3 0716+714

(a) Model Map (b) Convolved Model Map

(c) Residual Map (d) Final MEM Map

Figure 4.36: Stokes Q MEM maps of 0716+714 at 4.612 GHz. The colour scale
indicates intensity in Jy/Pixel or Jy/Beam. The Convolved maps shown have
been convolved with the CLEAN beam for the observation.
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(a) Model Map (b) Convolved Model Map

(c) Residual Map (d) Final MEM Map

Figure 4.37: Stokes U MEM maps of 0716+714 at 4.612 GHz. The colour scale
indicates intensity in Jy/Pixel or Jy/Beam. The Convolved maps shown have
been convolved with the CLEAN beam for the observation.
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Table 4.7: MEM parameters used to image 0716+714. In all cases the restoring
beam used was the CLEAN beam, the maximum number of iterations was 10, 000,
a flat bias map was used and flux was conserved with parameter 2. It was found
that an estimated final RMS noise of 0 for all Stokes parameters gave the best
deconvolution results for the highest frequency. Nexclude was set to 100 pixels in
all cases.

Freq. (GHz) 4.6 5.1 7.9 8.9 12.9 15.4
Stokes I Flux (Jy) 1.17 1.17 1.34 1.5 1.9 1.9
Stokes Q Flux (Jy) 0.05 0.05 0.011 0.05 0 0
Stokes U Flux (Jy) 0.05 0.05 0.011 0.05 0 0

Stokes I RMS (mJy/Beam) 0.4 0.4 0.6 0.6 0.45 0
Stokes Q RMS (mJy/Beam) 0.3 0.3 0.4 0.4 0.35 0
Stokes U RMS (mJy/Beam) 0.3 0.3 0.4 0.4 0.35 0

∆step 1.5 3 1.45 1.5 1.5 1.5
qfactor 0.6 0.48 0.45 0.36 0.0551 0.1
wp 2 2 2 4 2 2

Table 4.8: The beams used to make MEM images of 0716+714. Mahmud et al.
(2013) used a CLEAN beam corresponding to the 7.196 GHz map (see Chapter
5).

% of Major Axis Minor Axis Position Angle
CLEAN beam (mas) (mas) (deg.)

100% 2.15 1.82 1.5
58% (Mahmud et al.) 1.25 1.06 −0.8

44% 0.96 0.795 −0.8

0716+714 appears to be the detection of percentage polarisation much further
out along the jet.

Figures 4.40 and 4.41 show the corresponding polarisation angle maps. Only
polarisation angles corresponding to a total polarised flux (P =

√
Q2 + U2) high

enough to rule out most off-source regions were shown. As the MEM produced
total polarised flux maps with much lower noise than those produced by the
CLEAN algorithm, lower cut–offs were required for the MEM maps than for the
CLEAN maps. Both the MEM and CLEAN maps show identical polarisation
angles at all resolutions, though the MEM maps pick up additional polarisation
further out along the jet at higher resolutions. The super–resolved CLEAN maps
do not show any of the artefacting seen in previous sources and agree closely
with the MEM where both methods detect polarised emission. This suggests
that super–resolved CLEAN can be reliable in certain sources, if little or no
artefacting is observed.
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(a) MEM. CLEAN Beam (b) CLEAN. CLEAN Beam

(c) MEM. Mahmud et al. Beam (d) CLEAN. Mahmud et al. Beam

Figure 4.38: Percentage polarisation maps of 0716+714 made with the MEM
and CLEAN convolved with the full CLEAN beam and with the beam used in
Mahmud et al. (2013). The contours indicate the Stokes I intensity at 4.612 GHz.
The colour scale indicates the percentage polarisation.
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(a) MEM. 3
4 Mahmud et al. Beam (b) CLEAN. 3

4 Mahmud et al. Beam

Figure 4.39: Percentage polarisation maps of 0716+714 made with the MEM
and CLEAN convolved with 3

4 of the beam used in Mahmud et al. (2013). The
contours indicate the Stokes I intensity at 4.612 GHz. The colour scale indicates
the percentage polarisation. Note that different colour scales have been used
because of the large difference in the ranges presented.

Figures 4.42 and 4.43 show CLEAN and MEM Faraday rotation measure maps for
0716+716 at the three resolutions indicated in Table 4.8. The CLEAN maps at
full CLEAN resolution and the beam used by Mahmud et al. (2013) both show
strong evidence for the existence of transverse gradients. For a full statistical
description of the change in direction of the transverse gradient along the jet see
Mahmud et al. (2013), or Chapter 5. Figure 4.43 shows that the gradient reversal
is still visible at a beam corresponding to 44% of the original CLEAN beam,
however the increasing resolution has reduced the significant rotation measure
values at the edges of the jet. This can be interpreted as the averaging effect of
convolution with a larger beam causing the signal to noise ratio at the edges of
the jet to rise to statistically significant levels. As there are no obvious artefacts
in the map suggesting that the CLEAN algorithm has been convolved with too
small a beam and the map is otherwise consistent with the lower resolution maps
it it likely that this high resolution CLEAN map is a good indication of the
true Faraday rotation measure at this resolution, but that a lower resolution is
necessary to successfully view the gradient.

The Development of New Methods for High
Resolution Radio Astronomy Imaging

147 Colm Coughlan



4. Application of PMEM to Real
VLBI Polarisation Data 4.3 0716+714

(a) MEM. CLEAN Beam. (b) CLEAN. CLEAN Beam.

(c) MEM. Mahmud et al. Beam. (d) CLEAN. Mahmud et al. Beam.

Figure 4.40: MEM and CLEAN polarisation maps of of 0716+714 at 4.612 GHz.
The maps have been made with the full CLEAN beam and the beam used in
Mahmud et al. (2013). The blue dashes indicate the direction of the observed
polarisation angle. The length of the line is proportional to the magnitude of the
polarised flux. The contours are Stokes I emission.
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(a) MEM. CLEAN Beam. (b) CLEAN. CLEAN Beam.

Figure 4.41: MEM and CLEAN polarisation maps of of 0716+714 at 4.612 GHz.
The maps have been made with 3

4 of the beam used in Mahmud et al. (2013).
The blue dashes indicate the direction of the observed polarisation angle. The
length of the line is proportional to the magnitude of the polarised flux. The
contours are Stokes I emission.

The corresponding MEM maps are not as clear. At the full CLEAN beam the
gradients visible in the CLEAN map have analogues in the MEM map, however
the MEM map is less smooth and the gradients much less obvious. At the beam
used by Mahmud et al. (2013) the MEM sees a blob of high RM at the North of
the map that appears closer to the left side of the jet in the CLEAN map. The
lower gradient is tentatively visible, but at a different angle and less pronounced.
The same trend is continued in the highest resolution MEM map (corresponding
to about 44% of the full CLEAN beam). If one were to use only the MEM images
for 0716+714 it would be difficult to see any evidence for a significant reversal
in the direction of any gradients across the jet. However the detection of a blob
of high rotation measure in the North of the jet at the two higher resolutions
appears to coincide with the region of high percentage polarisation detected by
both CLEAN and the MEM in Figures 4.38 and 4.39. This is a possible suggestion
that, either the MEM values for percentage polarisation and Faraday rotation
measure in this region are mistaken (though the corresponding CLEAN maps
support the increase in percentage polarisation in the region), or there may be
a component of polarised emission in the North of the jet that is giving rise to

The Development of New Methods for High
Resolution Radio Astronomy Imaging

149 Colm Coughlan



4. Application of PMEM to Real
VLBI Polarisation Data 4.4 Conclusions

a gradient when convolved with the CLEAN algorithm, but is associated with
a peak in Stokes I emission in high resolution MEM maps. A possible cause of
such Faraday RM, percentage polarisation and Stokes I behaviour would be the
presence of a pressure shock in the jet in the region.

Figures 4.44 and 4.45 show the intrinsic polarisation angle of 0716+714 as cal-
culated by the two algorithms for each of the three resolutions. As the intrinsic
polarisation angle is calculated in the same linear fit as the Faraday rotation
measure, angles are only available at points where a good straight line fit was
found between the polarisation angle at each frequency and the square of the
corresponding wavelength. All six maps in Figures 4.44 and 4.45 show much the
same behaviour. An approximately constant polarisation angle is detected in the
same direction of the jet. This indicates a magnetic field orthogonal to the jet,
which could be a signature of either a transverse shock or a region with a signif-
icant toroidal magnetic-field component. There is a slight change in the intrinsic
polarisation angle in the MEM map in Figures 4.45 corresponding to the loca-
tion of the blob in RM in Figure 4.43 and the increasing percentage polarisation
detected in Figure 4.39, however this is too small too associate with the presence
of any shock in the jet.

4.4 Conclusions

This chapter has presented the first results of VLBI polarisation maps of AGN
deconvolved using the Maximum Entropy Method as implemented in PMEM.
For comparison, high resolution images made with the CLEAN algorithm were
also presented. All three sources considered showed very similar performance for
the MEM and CLEAN at resolutions corresponding to the full standard CLEAN
beam. However, MEM shows more detail in polarisation and percentage polarisa-
tion images than CLEAN when we consider images convolved with beams smaller
than the full CLEAN beam. This is in agreement with the enhanced performance
of the MEM in imaging percentage polarisation and polarisation angle noted in
Chapter 3. This increased performance is likely driven by the way in which frac-
tional polarisation is included in the Gull and Skilling entropy, which forces the
MEM maps to create a model that pays very close attention to the interplay
between Stokes I (which has a relatively high signal to noise ratio) and the total
polarised flux (which has a much lower signal to noise ratio).

As discussed in Chapter 2, the effective resolution of the MEM is often higher
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(a) MEM. CLEAN Beam (b) CLEAN. CLEAN Beam

(c) MEM. Mahmud et al. Beam (d) CLEAN. Mahmud et al. Beam

Figure 4.42: 0716+714 MEM Faraday rotation measure maps convolved with the
beams referenced in Table 4.8. A CLEAN Faraday rotation measure map is also
presented. The contours indicate the Stokes I intensity at 4.611 GHz. The colour
scale is Faraday rotation measure in rad/m2.

than that of the CLEAN algorithm. The high resolution MEM images presented
in this chapter, convolved with fractions of the standard CLEAN beam, have in
general been consistent with MEM images at other resolutions and with CLEAN
images at the full CLEAN beams. Features identifiable at low resolution are
imaged in greater detail and new features in Stokes I and fractional polarisation
have become visible as the size of the convolving beam is lowered. These high
resolution images can potentially provide a deeper insight into the mechanisms
at work in AGN jets and comparing maps at different resolutions and made with
different algorithms has proven to be a valuable tool.
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(a) MEM. 3
4 Mahmud et al. Beam (b) CLEAN. 3

4 Mahmud et al. Beam

Figure 4.43: 0716+714 MEM Faraday rotation measure maps convolved with the
final beam referenced in Table 4.8. A CLEAN Faraday rotation measure map is
also presented. The contours indicate the Stokes I intensity at 4.611 GHz. The
colour scale is Faraday rotation measure in rad/m2.

This chapter has also presented high resolution CLEAN maps, made with beams
corresponding to those used for the MEM. The CLEAN algorithm has been found
to be very comparable to MEM maps at resolutions up to half of the CLEAN
beam, as predicted by the simulations discussed in Chapter 3. At resolutions lower
than this single frequency maps suffer greatly from CLEAN artefacts, however
there has also been some evidence that high resolution CLEAN maps made from
multi-frequency data, such as Faraday RMmaps, suffer less than a standard single
frequency Stokes I or Q map. This can be explained by noting that the degree
of super-resolution varies over the frequencies used, so that the lower frequencies
may be super-resolved, while the middle ones are not and the higher frequencies
may be drastically under-resolved.

In all three sources presented the residual maps showed that the MEM had some
difficultly describing the sharply peaked core regions. This was also seen in the
Monte Carlo simulations presented in Chapter 3 and is clearly a systematic feature
of the MEM algorithm. The combined CLEAN and MEM approach discussed in
Section 3.4 may achieve better results in these regions than MEM alone.

This chapter has presented the first MEM based Faraday rotation measure maps
of AGN jets. As discussed for the CLEAN algorithm, Faraday RM maps are
excellent candidates for convolution with a smaller than standard CLEAN beam
due to the presence of information at various scales due to the various frequencies.
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(a) MEM. CLEAN Beam (b) CLEAN. CLEAN Beam

(c) MEM. Mahmud et al. Beam (d) CLEAN. Mahmud et al. Beam

Figure 4.44: Intrinsic polarisation angle maps of 0716+714 made with the MEM
and CLEAN convolved with the full CLEAN beam and with the beam used in
Mahmud et al (2013). The contours indicate the Stokes I intensity at 4.612 GHz.
The blue ticks indicate the direction of the intrinsic polarisation angle.

The RM maps at full CLEAN resolution have overall been similar to the CLEAN
RM map. At higher resolutions the amount of reliable RM values detected de-
creases, suggesting the ideal beam to make a RM image with will vary depending
on the Faraday RM structure of the source in question. The corresponding in-
trinsic polarisation angle maps are in close agreement with the CLEAN maps at
the full CLEAN beam, though the increased resolution has given a deeper insight
into some jet behaviour.

In each of the sources considered here, the MEM polarisation images convolved
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(a) MEM. 3
4 Mahmud et al. Beam (b) CLEAN. 3

4 Mahmud et al. Beam

Figure 4.45: Intrinsic polarisation angle maps of 0716+714 made with the MEM
and CLEAN convolved with the final beam referenced in Table 4.8. The contours
indicate the Stokes I intensity at 4.612 GHz. The blue ticks indicate the direction
of the intrinsic polarisation angle.

with beams from 1
2 to 1

4 the size of the full CLEAN beam have provided new in-
formation about the core and jet polarisation that was not evident in the CLEAN
images. The region of “spine–sheath” polarisation in Markarian 501 extends over
a considerably greater length of the jet in these MEM images, and the rise in the
degree of polarisation toward both edges of the jet is very clear; both of these are
very suggestive of a helical magnetic field associated with this jet. The additional
polarisation detected in the MEM maps for 1633+382 has revealed an increase
in the degree of polarisation on either side of the jet beyond a bend toward the
north; this bend is shown much more clearly in the MEM than the CLEAN in-
tensity images. The MEM Faraday rotation images show a consistent pattern
with a gradient of the Faraday rotation across the VLBI core region, suggestive
of a helical magnetic field. The MEM maps for 0716+716 have likewise detected
polarisation further from the core, showing a clear tendency for the degree of
polarisation to increase along the jet, reaching values of about 35%.
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Chapter 5

RM Gradient Reversals

The research presented in this chapter has been published in the Monthly Notices
of the Royal Astronomical Society as Mahmud et al. (2013). Mehreen Mahmud
calibrated the data and performed the original imaging while Eoin Murphy created
the model jets for the Monte Carlo simulations and provided code to conduct
the simulations. These simulations were then carried out, together with further
imaging and error analysis.

Section 1.7 discussed the use of gradients in Faraday rotation measure (RM) as a
diagnostic of the local magnetic field in a jet. The following chapter outlines the
observations of such gradients in the jets of the AGN 0716+714 and 1749+701.
Reversals in the direction of the gradient are observed in both jets. The chapter
goes on to discuss the error analysis and simulations which suggest that the
detected gradients are reliable and possible explanations for the phenomenon are
presented. All the results presented in this chapter are from maps deconvolved
with the CLEAN algorithm exclusively.

5.1 Faraday Rotation Measure Maps

The VLBI jet of the AGN 0716+714 emerges nearly toward the North; the op-
tical spectrum is essentially featureless, and no redshift has been determined,
so that its distance is unknown. Observations of 0716+714 were carried out on
the 22nd of March 2004 at 6 frequencies: 4.612, 5.092, 7.916, 8.883, 12.939 and
15.383 GHz. It was observed for 25–30 minutes at each frequency in a ‘snap-shot’
mode with 8–10 scans spread out over the observing time period. The calibra-
tion and data reduction was performed in AIPS according to standard practice.
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5. RM Gradient Reversals 5.1 Faraday Rotation Measure Maps

The consistency of the EVPA calibration performed using data from the VLA
suggested an EVPA accuracy of within 3 degrees. No significant core shifts were
found between the images of 0716+714 made at the 6 frequencies (see Section
1.7.1, Equation (1.100)).

The VLBI jet of 1749+701 initially emerges toward the Northwest, then curves
toward the North. The redshift is z = 0.77. The observations for 1749+701
were taken on the 17th of January 2004 at 4 frequencies: 1.358, 1.430, 1.493
and 1.665 GHz. The data showed no core shift due to the proximity of the 4
frequencies and the consistency of the EVPA calibration suggested an accuracy
of within 2 degrees.

Faraday rotation measure maps were made by creating polarisation angle maps for
each of the observed frequencies with the same resolution (beam) and performing
a linear fit for each pixel as described in Section 1.7. In the case of 0716+714 the
beam corresponding to the 7.916 GHz frequency was chosen to provide a compro-
mise between over-resolving the lower frequency maps, and losing the enhanced
resolution of the higher frequency maps. The simulated observations presented
in Chapter 3 showed that mild super-resolution of the CLEAN algorithm does
not have a significant negative effect on the resulting maps. This choice was less
important for 1749+701 (as the 4 frequencies used were very close together) so
the resolution corresponding to the lowest frequency was used.

Figures 5.1 and 5.2 show the resulting RM maps in the central panel, with slices
showing the RM gradients across the core region and inner jet of each of the two
AGN. Note that higher-resolution VLBI images of 1749+701 have shown that
its jet extends toward the Northwest (upper right corner of the image), although
this is not clearly visible in this image due to the relatively low resolution of
these observations. Figures 5.1 and 5.2 also show plots of the polarisation angle
versus wavelength squared for a single pixel at the end of each slice at the top
and bottom of the figure. Two transverse gradients running in opposite directions
are clearly visible in each of the images. The gradients are monotonic and the
sample plots of χ vs λ2 shown at the end points of the gradients display the
linear relationship characteristic of Faraday rotation. Figures 5.3 and 5.4 show
the progress of the RM gradient at three points across the jets, demonstrating
visually the 3 σ significance of the gradients. Table 5.1 shows the complete results
for the RM gradients of both sources.

The observation of the gradients at a significance of over 3σ in each case indicates
that the gradients are real, i.e., not spurious gradients associated with noise in the
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5. RM Gradient Reversals 5.1 Faraday Rotation Measure Maps

Figure 5.1: RM map of 0716+714 at 6 frequencies between 4.612 and 15.383 GHz.
The colour scale is Faraday rotation measure in rad/m2 and the contours are the
Stokes I intensity at 4.612 GHz. The accompanying panels show slices of the
RM distribution across the core, and polarisation angle (χ) vs. wavelength-
squared (λ2) plots for pixels on either side of the core and jet. Errors shown
are 1σ, and include the estimated random errors and the EVPA uncertainties
added in quadrature. The peak of the I map is 1.3 Jy/beam and the bottom
contour is 1.0 mJy/beam. The beam used to construct the I and RM maps was
1.28 X 1.06 mas in position angle −0.8◦.

data or the particular u− v coverage used to make the image. The error analysis
involved in calculating this statistical significance is quite involved and a full
description is given in the following section. Monte Carlo simulations supporting
this analysis are detailed in Section 5.3.

It is notable that a similar result was obtained for 0716+714 by Healy (2014),
where the direction of the transverse RM gradient in 0716+714 on somewhat
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Figure 5.2: RM map of 1749+701 1.36-1.66 GHz. The accompanying panels
show slices of the RM distribution across the core, and polarisation angle (χ)
vs. wavelength-squared (λ2) plots for pixels on either side of the core and jet.
Errors shown are 1σ, and include the estimated random errors and the EVPA
uncertainties added in quadrature. The peak of the I map is 0.6 Jy/beam; the
bottom contour is 1.4 mJy/beam (January 2004).The beam used to construct the
I and RM maps was 9.16 X 8.57 mas in position angle 49◦.

(a) Core Region. (b) Jet.

Figure 5.3: Plots of observed RM as a function of distance from a reference point
on one side of the source structure across the core-region (left) and jet (right) RM
distributions of 0716+714 at 4.6-15.4 GHz. The positions of each point and the
corresponding RM values and their errors are listed in Table 5.1. The horizontal
bar shows the approximate size of the beam FWHM.
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(a) Core Region. (b) Jet.

Figure 5.4: Plots of observed RM as a function of distance from a reference point
on one side of the source structure across the core-region (left) and jet (right) RM
distributions of 1749+701 at 1.36-1.66 GHz. The positions of each point and the
corresponding RM values and their errors are listed in Table 5.1. The horizontal
bar shows the approximate size of the beam FWHM.

Figure 5.5: Faraday rotation measure maps of 0716+714 from Healy (2014). The
2004 image is from Hallahan and Gabuzda (2008). The change in the direction
of the Faraday rotation measure gradient over the six years was found to be
statistically significant.

larger scales was observed to change direction over time. This can be seen in
Figure 5.5 where both the gradients in the 2004 and 2010 data were found to
be statistically significant with significances of 4σ and 7σ respectively. Possi-
ble physical origins of such RM gradients that reverse in space or in time are
considered in the final section of this Chapter.
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5.2 Estimation of the Uncertainties in χ and

RM

Table 5.1: RM measurements in 0716+714 and 1749+701.

Figure Source Point Position RM Left–Right Diff
in plot (mas) rad/m2 RM Diff in σ

(1) (2) (3) (4) (5) (6) (7)
5.1 0716+714 Left (+0.90,−1.00) −256± 53
(left) (Core) Mid (0.10,−0.80) −41± 44 +262± 60 4.4σ

Right (−0.70,−0.60) +6± 28
5.1 0716+714 Left (+1.00,+1.00) +94± 37
(right) (Jet) Mid (+0.30,+1.00) −31± 9 −239± 47 5.1σ

Right (−0.50,+1.10) −145± 29
5.2 1749+701 Left (+9.00,+1.50) −19± 8
(left) (Core) Middle (+4.50,−3.00) +13± 4 +39± 9 4.3σ

Right (−1.50,−7.50) +20± 2
5.2 1749+701 Left (−4.50,+9.00) +17± 10
(right) (Jet) Middle (−6.00,+3.00) +4± 6 −38± 12 3.2σ

Right (−7.50,−3.00) −21± 6

5.2 Estimation of the Uncertainties in χ and
RM

The statistical significance of an observed Faraday RM gradient depends crucially
on the uncertainties in the observed Faraday rotation measures, which, in turn,
depend on the uncertainties in the observed polarisation angles χ at the frequen-
cies used to derive the RM. This section considers estimates of the uncertainties
in the χ and RM values based on recent Monte Carlo simulations by Hovatta et
al. (2012).

While it was standard practice to adopt the root-mean-square (rms) deviations
in the residual map (or in the final CLEAN map far from any regions containing
real flux) σrms as an estimate of the total uncertainty in the measured flux in
an individual pixel, Hovatta et al. (2012) investigated this practice empirically
using Monte Carlo simulations. They concluded that the uncertainties in Q and
U fluxes in individual pixels are described well by the expression

σ =
√
σ2
rms + σ2

Dterm + (1.5σrms)2 (5.1)

where σDterm is the error due to the presence of residual instrumental polarisations
in the data. Roberts, Wardle & Brown (1994) express this as
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σDterm '
σ∆√

NantNIFNscan

√
I2 + (0.3 Ipeak)2 (5.2)

where σ∆ is the estimated uncertainty in the individual D-terms, Nant the number
of antennas in the VLB array (assuming all have altitude-azimuth mounts), NIF

the number of IFs (sub-bands within the total observed band at a given frequency)
used for the observations, Nscan the number of scans with independent parallactic
angles, I the total intensity at the point in question, and Ipeak the total intensity
at the map peak. The term containing Ipeak was added by Hovatta et al. (2012) to
empirically take into account the fact that the residual D-term uncertainty tends
to scatter polarized flux throughout the map. Equation (5.1) above explicitly
demonstrates that, even if the D-term error term is negligible, the uncertainty
in fluxes in regions of source emission is somewhat higher than the map rms in
regions far from source emission. This is in agreement with the Monte Carlo
simulations performed as part of the error analysis on the CLEAN algorithm in
Chapter 6. While Chapter 6 suggests that the full behaviour of the errors is
more complicated than the increase in on–source error described by Equation
(5.1), using this equation is nevertheless an improvement over the older method
of simply assuming the error to be equal to the standard deviation in an area of
the map far from the source.

In the case of the data used for this experiment, Nant = 10, NIF = 4 for the
7.9–15.4 GHz observations and 2 for the 4.6 GHz, 5.1 GHz and 1.36–1.67 GHz
observations, and Nscan ' 8. By studying the scatter of the D-terms a value of
σ∆ ' 0.005 was estimated for all the experiments. As is evident from Equation
(5.2), the largest value for σDterm will occur at the peaks of the maps; at the
positions where we have determined the RM (see Table 5.1), the resulting D-
term uncertainties are no more than ' 0.60σrms for 0716+714 and no more than
' 0.40σrms for 1749+701, making σDterm small compared to the other terms
contributing to σ.

The Q and U uncertainties determined in this way were then propagated to derive
the corresponding uncertainties in the polarisation angles, σχ:

χ = 1
2ArcTan(U

Q
) (5.3)

σ2
χ = 1

4[( Q

Q2 + U2 )2σ2
U + ( U

Q2 + U2 )2σ2
Q]. (5.4)
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The uncertainty in the EVPA calibration σEV PA were then added in quadrature:

σ2
χfinal

= σ2
χ + σ2

EV PA. (5.5)

The uncertainties in the polarisation angle were then used to fit a straight line
to the χ vs. λ2 data using standard least squares techniques. See Barlow (1993)
for a complete description of this process. A detailed description of the fitting
process is also provided in Section 6.5.

It is notable that, as the same EVPA calibration is applied to each polarisation
angle at a given frequency, the uncertainty this introduces is systematic in effect.
One consequence of this is that, although the EVPA calibration uncertainties
increase the uncertainties in the fitted RM values, EVPA calibration uncertainties
do not give rise to spurious RM gradients (see, e.g., Mahmud et al. 2009, Hovatta
et al. 2012). The reason for this is essentially that any EVPA calibration error
corresponds to a specific systematic offset that affects all EVPA measurements
at all points of the maps at the corresponding frequency equally and in the same
direction, and so will not induce gradients between points. A full analysis of this
behaviour is performed in Section 6.5.

To take into account the fact that EVPA calibration uncertainty increases the
total absolute uncertainty in a derived RM value, but essentially cancels out when
calculating the difference between two RM values in an RM image, we calculated
two different RM values: one RM value whose uncertainty included the effect
of the EVPA uncertainty in the polarisation angle values, and a second “rela-
tive” RM value whose uncertainty was calculated without including the EVPA
uncertainty in the χ uncertainties. The latter was used when calculating the
uncertainties in (and thereby significance of) RM gradients.

5.3 New Monte Carlo Simulations

5.3.1 The Question of Resolution

Taylor & Zavala (2010) proposed some criteria for the reliable detection of trans-
verse Faraday rotation gradients. A controversial element of the criteria was
the suggestion that the observed RM gradient span at least three “resolution
elements” across the jet. This criterion reflects the desire to ensure that it is pos-
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(a) Intrinsic Map. (b) Simulated observation.

Figure 5.6: Stokes I maps of the intrinsic model jet and the jet after simulated
observation and imaging. The ellipse in the upper left corner of the simulated
observation indicates the beam size corresponding to the observation.

sible to distinguish properties between regions located on opposite sides of the
jets. The criterion of three “resolution elements” has been taken to correspond to
three beamwidths, and coincides with the general idea that structures separated
by less than a beamwidth are not well resolved.

To test the validity of this criterion of Taylor & Zavala (2010), core–jet-like sources
were constructed with various intrinsic widths and with transverse RM gradients
present across their structures, and Monte Carlo simulations were carried out
based on these model sources. A model jet with a transverse RM gradient present
across the jet was constructed and Monte Carlo simulations carried out based on
this model source. The model source was cylindrical, with a fall-off in intensity
at either side of the cylinder axis and along the axis of the cylinder from a
specified point located near one end of the cylinder (see Figure 5.6). The resulting
appearance of the model emission is broadly speaking “core-jet-like”.

5.3.2 Monte Carlo Procedure

Model visibility data were generated for each of the six frequencies listed in section
5.1 (4.6-15.4 GHz), including the effect of the transverse RM gradient in the Q
and U visibility data, and these model visibility data were sampled at precisely
the (u, v) points at which 0716+714 was observed at each of the frequencies.
Random thermal noise and the effect of uncertainties in the EVPA calibration by
up to 3◦ were added to the sampled model visibilities. The amount of thermal
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noise added was chosen to yield rms values in the simulated images that were
comparable to those in the actual observations. The noise was added to the
model visibilities using the Python SciPy statistics library.

Stokes I, Q and U images were constructed from these visibilities in CASA, using
the same beam as was used in the observations of 0716+714 (1.28 × 1.06 mas
in PA = −0.84◦, where the dimensions given correspond to the full width at
half maximum of the beam along its major and minor axes). The polarisation
of the model was chosen to yield a degree of polarisation in the lower half of
the convolved model image (the “core” region) of about 5% and a degree of
polarisation in the upper half of the convolved model image of about 10% –
similar to the observed values for 0716+714. The Q and U images were then
used to construct the corresponding polarisation angle images at each frequency,
which were, in turn, used to construct RM images in the usual way. Finally,
Monte Carlo RM maps were constructed, based on 200 independent realizations
of the thermal noise and EVPA calibration uncertainty. In each case, the RM
values were output to the RM map only in pixels in which the RM uncertainty
indicated by the fitting was less than 80 rad/m2; this value was chosen so that no
spurious pixels were written to the output RMmaps for any of the 200 realizations
of the RM distribution. Finally, an average RM map was derived by averaging
together all 200 individual realizations of the RM distribution.

This procedure was carried out for a number of model sources with the general
form shown in Figure 5.6, all with a length of 1 mas and with transverse widths
of 0.50, 0.35, 0.20. 0.10 and 0.05 mas. A recent observation of 0716+714 with
the RadioAstron space antenna and the European VLBI Network had measured
the size of a feature in the 6.2-cm core region to be 0.07 mas (Kardashev et al.
2013), thus the narrowest jet was designed to have a width somewhat smaller
than this.

Two types of monotonic transverse RM gradients were considered: uni-directional
along the entire source structure, and oriented in one direction in the “core” region
and in the opposite direction in the “jet” region, i.e., showing a reversal. These
Monte Carlo simulations complement those carried out by Hovatta et al. (2012),
in which simulated RM maps were made from model data that did not contain
RM gradients, to determine the frequency of spurious transverse RM gradients
appearing in the simulated RM maps.

An example of the total intensity maps of the model sources used in the simulation
can be seen in Figure 5.6, and the results of the RM Monte Carlo simulations
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are shown in Figures 5.7 to 5.10 (the results for the jet width of 0.50 mas are
not included as they are very similar for the 0.35-mas jet width). The panels in
Figures 5.7 to 5.10 show (i) the RM map obtained by putting data without added
thermal noise through the imaging procedure (i.e., the intrinsic RM distribution,
but subject to errors due to the CLEAN process and limited uv coverage); (ii) two
examples of the individual “noisy” RM maps obtained. In all cases, the model
source structure corresponds to that shown in Figure 5.6, so that the compact
VLBI jet lies directly to the North. Note that the colour scales for the three
maps in a corresponding set have been individually chosen to highlight the RM
patterns present, and may differ somewhat in some cases.

5.3.3 Simulated Observations

In all cases, the RM gradients that were introduced into the simulated data
are visible in the “noisy” RM maps that were obtained, even when the intrinsic
width of the jet is approximately 1/20 of the beam full-width at half-maximum
(FWHM). The magnitude of the RM gradient is reduced by the convolution more
and more as the size of the beam relative to the intrinsic size of the jet width
increases, but the RM gradients that were initially introduced into the simulated
data remain visible. In the case of jet widths much less than the beam FWHM, the
appearance of individual realizations can sometimes be fairly strongly distorted
by noise; however, in all cases, averaging together all the individual realizations
confirms the presence of the RM gradients in the simulated images.

These results essentially indicate that it is not necessary to impose a restriction
on the width spanned by an observed RM gradient, provided that the difference
between the RM values observed at opposite ends of the gradient is at least 3σ.
This is consistent with the results of Murphy & Gabuzda (2012), who investigated
the effect of resolution on transverse RM profiles. It is also consistent with Fig.30
of Hovatta et al. (2012), which shows that the fraction of “false positives”, i.e.,
spurious RM gradients, that were obtained in their Monte Carlo simulations did
not exceed' 1% when a 3σ criterion was imposed for the RM gradient, even when
the observed width of the RM gradient was less than 1.5 beamwidths. It becomes
important to place some restriction on the width spanned by the gradient if the
difference between the RM values being compared is less than 3σ, as was also
shown clearly by the Monte Carlo simulations of Hovatta et al. (2012).

The results of these new Monte Carlo simulations thus directly demonstrate that
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Results of Monte Carlo simulations using model core–jet sources with
uniformly directed transverse RM gradients. The compact VLBI jet extends
toward the North. The intrinsic width of the jet (RM gradient) on the left is
0.35 mas and on the right is 0.2 mas. The convolving beam(1.28 mas×1.06 mas
in PA = −0.84◦) is shown in the lower left-hand corner of each panel. The top
panel shows the RM image obtained by processing the model data as usual, but
without adding random noise or EVPA calibration uncertainty; pixels with RM
uncertainties exceeding 10 rad/m2 were blanked. The remaining two panels show
two examples of the 200 individual RM images obtained during the simulations;
pixels with RM uncertainties exceeding 80 rad/m2 were blanked.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Results of Monte Carlo simulations using model core–jet sources with
uniformly directed transverse RM gradients. The compact VLBI jet extends
toward the North. The intrinsic width of the jet (RM gradient) on the left is
0.1 mas and on the right is 0.05 mas. The convolving beam(1.28 mas×1.06 mas
in PA = −0.84◦) is shown in the lower left-hand corner of each panel. The top
panel shows the RM image obtained by processing the model data as usual, but
without adding random noise or EVPA calibration uncertainty; pixels with RM
uncertainties exceeding 10 rad/m2 were blanked. The remaining two panels show
two examples of the 200 individual RM images obtained during the simulations;
pixels with RM uncertainties exceeding 80 rad/m2 were blanked.

The Development of New Methods for High
Resolution Radio Astronomy Imaging

167 Colm Coughlan



5. RM Gradient Reversals 5.3 New Monte Carlo Simulations

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Results of Monte Carlo simulations using model core–jet sources
with oppositely directed transverse RM gradients in the core region and inner
jet. The compact VLBI jet extends toward the North. The intrinsic width of
the jet (RM gradient) on the left is 0.1 mas and on the right is 0.05 mas. The
convolving beam(1.28 mas×1.06 mas in PA = −0.84◦) is shown in the lower
left-hand corner of each panel. The top panel shows the RM image obtained by
processing the model data as usual, but without adding random noise or EVPA
calibration uncertainty; pixels with RM uncertainties exceeding 10 rad/m2 were
blanked. The remaining two panels show two examples of the 200 individual RM
images obtained during the simulations; pixels with RM uncertainties exceeding
80 rad/m2 were blanked.

The Development of New Methods for High
Resolution Radio Astronomy Imaging

168 Colm Coughlan



5. RM Gradient Reversals 5.3 New Monte Carlo Simulations

(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Results of Monte Carlo simulations using model core–jet sources
with oppositely directed transverse RM gradients in the core region and inner
jet. The compact VLBI jet extends toward the North. The intrinsic width of
the jet (RM gradient) on the left is 0.1 mas and on the right is 0.05 mas. The
convolving beam(1.28 mas×1.06 mas in PA = −0.84◦) is shown in the lower
left-hand corner of each panel. The top panel shows the RM image obtained by
processing the model data as usual, but without adding random noise or EVPA
calibration uncertainty; pixels with RM uncertainties exceeding 10 rad/m2 were
blanked. The remaining two panels show two examples of the 200 individual RM
images obtained during the simulations; pixels with RM uncertainties exceeding
80 rad/m2 were blanked.
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the three-beamwidth criterion of Taylor & Zavala (2010) is overly restrictive, since
the simulations directly show the possibility of detecting transverse RM gradients
even when the intrinsic widths of the corresponding source structures are much
less than the beamwidth, resulting in RM distributions that span only 1 − 1.5
beamwidths. This demonstrates that the relatively modest widths spanned by
the transverse RM gradients in 0716+714 and 1749+701 described in Section 5.1
should not be taken by themselves as grounds to question the reliability of these
gradients. The Monte Carlo simulations described above are not intended to
provide a physical model of the observations, or to reproduce our observed RM
distributions in any detail; instead, they are intended solely to demonstrate the
possibility of detecting a transverse RM gradient in real data, even if the intrinsic
jet width is much smaller than the beam FWHM.

Inspection of Fig. 30 of Hovatta et al. (2012) indicates that the fraction of “false
positives”, i.e., spurious RM gradients, that were obtained in their Monte Carlo
simulations did not exceed ' 1% when a 3σ criterion was imposed for the RM
gradient, even when the observed width of the RM gradient was less than 1.5
beamwidths. This suggests that there may be up to a ' 1% probability that the
RM gradients we report here are spurious, due to their relatively limited widths,
although we consider this to be unlikely, given that the RM differences involved
correspond to as much as 5σ.

5.4 Discussion

The strong (greater than 3σ) gradients described in Section 5.1 and Table 5.1
suggest that transverse RM gradients have been observed in the AGN 0716+714
and 1749+701. The Monte Carlo simulations detailed in Section 5.3 indicate that,
contrary to the resolution criteria of Taylor and Zavala, the VLBA does indeed
have the resolution required to detect gradients in Faraday rotation measure
across relatively narrow jets, including cases where the gradient is observed to
reverse direction over the course of the jet.

Due to optical-depth effects that may be present in the core (the possible tran-
sition between an optically thick region, where light from the source is likely to
be absorbed and re-emitted in the source before being detected, and an optically
thin region, where the emission from the source is unlikely to be absorbed and
re-emitted), it is not entirely possible to confirm the reliability of the gradients
in the cores of the AGN, thus the detection of an actual gradient reversal re-
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mains tentative. However, no unusual polarisation features characteristic of an
optically thin/thick transition in the core were observed for either source and
the quality of the linear fits is consistent across both the jet and core regions of
the sources. Thus while the possibility of such a transition giving rise to a false
gradient cannot be ruled out, it can be considered unlikely in these cases.

If the detected reversals in Faraday RM gradient across the jets are indeed real,
there are only a few potential physical causes for such an event. The first of
these is the possible reversal of the “pole” of the black hole facing the Earth.
If the polarity of the rotating black hole at the heart of the AGN reversed, a
similar reversal would be expected in the azimuthal component of any helical
magnetic field, giving rise to a reversal in the detected gradient. However in the
absence of any known mechanism which could cause such a polarity reversal in a
supermassive black hole, this explanation is unlikely.

A second possibility is the presence of torsional oscillations in the helical magnetic
field. Bisnovatyi-Kogan (2007) demonstrated that such oscillations may help
stabilise the jet and may cause the direction of the azimuthal component of the
helical field to flip with time (and therefore with distance from the core). In this
scenario the reversal caused by the oscillations may be expected to propagate
along the jet with time.

A final possible explanation for such reversals in the direction of the Faraday
rotation measure gradient is a nested magnetic field structure along the lines of
that caused by the Poynting-Robertson battery. A Poynting-Robertson battery
in an AGN is a current that may arise from a potential difference created from
the differential rotation of electrons and protons in the accretion disk of the AGN.
This differential rotation is due to the fact that the Poynting-Robertson radiation
drag force on a radiating body is proportional to the Thomson cross sectional area
of the body (see, for example Contopoulos and Kazanas 1998). The Thomson
cross sectional area of a body is

σt = 8π
3

q2

mc2 . (5.6)

The dependence of the cross section on the mass of the radiating body means that
lower mass electrons will be affected much more than protons. As the electrons
slow down and the protons pull ahead the difference in charge can cause a current
to flow. This azimuthal current (in the plane of the accretion disk) can cause a
poloidal magnetic field with a dependence on the direction of rotation of the
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Figure 5.11: The magnetic field in an AGN generated by a Poynting-Robertson
battery. The direction of rotation of the disk is indicated by the black arrows,
with the corresponding axis of rotation shown by the cyan arrows. The direction
of rotation of the helix is indicated by the red arrows. When the direction of
rotation is reversed, the direction of the poloidal magnetic field is too – but the
azimuthal component of the field does not change. Image from Contopoulos et
al. (2009).

accretion disk. The resulting azimuthal component of the field that comes about
when the poloidal field is “wound up” by the rotation of the central black hole
and its accretion disk is independent of the direction of the rotation (see Figure
5.11).

The existence of inner and outer helices in the magnetic field structure of AGN
jets has interesting consequences for Faraday rotation measurements across the
jets. It is possible that the inner part of the helix dominates at some regions,
while the outer part dominates at other regions. Intermediate regions may contain
significant contributes from both fields. The Poynting-Robertson battery, or a
mechanism with a similar nested-helix structure for the magnetic field, may be
the explanation for observed reversals in the direction of the transverse Faraday
rotation measure gradient along the jet. Mahmud et al. (2009) provides a further
discussion of such an explanation.

This final explanation is suggested to be the most likely reason for the reversals
observed in 0716+714 and 1749+701. Continuous observations of the sources for
any changes in the direction of the gradient and the possible propagation of the
gradients along the jet with time may yield a deeper insight into the mechanism
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driving these changes.

The Poynting-Robertson battery also makes the prediction that close to the VLBI
core (as near as can be observed to the black hole) the inner helix of the magnetic
field should be dominant over the outer helix. This is due to the fact that the
outer helical magnetic field can be interpreted as the “return field”. If this were
true, based on Figure 5.11 one would expect to see an excess of clockwise Faraday
rotation measure gradients in regions closer to the VLBI core (a clockwise gradient
is defined as a transverse gradient which would be in a clockwise direction when
viewed from the AGN centre). This excess stems from the independence of the
azimuthal component of the magnetic field from the rotational direction of the
accretion disk. Contopoulos et al. (2009) and Gabuzda et al. (2012) found
evidence for such an excess, as well as an increase in counter clockwise gradients
as one moves along the jet from the core. This suggests that the Poynting-
Robertson battery may indeed be responsible for the magnetic field structure of
AGN jets.

5.5 Conclusions

This chapter has detailed the statistically significant observation of reversals
in the direction of the Faraday rotation measure gradients across two sources;
0716+714 and 1749+701. Monte Carlo simulations of observations with realistic
noise strongly indicate that such a change in direction of a Faraday RM gradient
should be visible to the VLBA, though they reveal that the observed RM values
may differ significantly from the original values. These results are in contrast to
an earlier suggestion by Taylor and Zavala (2010) that the detection of features
on scales below 3 beamwidths be considered unreliable. In fact, the simulations
discussed in Section 5.3 show that reliable results can be obtained even when
the intrinsic width of the jet is 1

20 of a beamwidth – suggesting that the limiting
factor in the observation of Faraday RM gradients in AGN jets is not the intrinsic
width of the jet.

Given the results of these Monte Carlo simulations, and the statistical significance
of the gradients based on the error method of Hovatta et al. (2012), the gradient
reversals observed in 0716+714 and 1749+701 appear to be real. While a number
of explanations are possible, the Poynting-Robertson battery model proposed by
Contopoulos et al. (2009), or a variant thereof, appears to be be most likely.
Further evidence for the presence of this effect, along the lines of the analyses in
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Contopoulos et al. (2009) and Gabuzda et al. (2012), would be a major step in
the understanding of the launch and collimation of AGN jets.

The Development of New Methods for High
Resolution Radio Astronomy Imaging

174 Colm Coughlan



Chapter 6

A New Approach to Estimating
Uncertainties in VLBI Images

This chapter discusses the uncertainty in CLEAN maps of Stokes I and polarisa-
tion emission from AGN-like sources. Monte Carlo simulations to determine the
uncertainties are conducted and a model of the errors is proposed. The advan-
tages of the model in some important calculations is discussed. A good reference
for many of the common statistical formulae used in this chapter is Statistics: A
Guide to the Use of Statistical Methods in the Physical Sciences by R.J. Barlow.

6.1 Correlation in the CLEAN algorithm

Section 2.2 describes the operation of the CLEAN algorithm. It is summarised
again here introducing a new mathematical notation:

• The “dirty map” is found by taking the Fourier transform of the initial
visibility data.

Id(x, y) = F.T.(VI(u, v)) (6.1)

• The peak value in this map is found and assumed to represent real emission.

• The amplitude of this peak value is multiplied by a gain factor (often 0.1)
and added to a list of “CLEAN components”, together with its position.

• The convolution of the new CLEAN component with the dirty beam (the
point spread function) is then subtracted from the map.
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• The previous three steps are then repeated until one is left with a map with
a peak comparable to the rms noise level of the map.

• The source has now been modelled as a sum of point δ function sources
(listed in the CLEAN components table). These sources are then convolved
with a CLEAN beam to form a partial CLEAN map. The CLEAN beam
is normally taken to be an elliptical Gaussian fit to the central lobe of the
point spread function. This operation can be expressed mathematically as

ICk =
n∑
l=1

B(xk − xl, yk − yl)il ≡
n∑
l=1

Blkil (6.2)

where ICk is the value of the partial CLEAN map in pixel k, Blk is the value
of the CLEAN beam centred on l evaluated at pixel k, il is the CLEAN
component l and n is the number of CLEAN components.

• The residuals left over after removing the complete table of CLEAN com-
ponents from the map are then added to the partial CLEAN map to form
the final CLEAN map.

Ik = ICk +Rk (6.3)

where I is the final CLEAN map, IC is the partial map and R is the residual
map.

It can be determined from the description above that nearby pixels in the final
CLEAN map are strongly correlated with each other due to the effect of con-
volving the list of CLEAN components with the CLEAN beam. This correlation
comes into play in Equation (6.2), and although the residuals are added back in
by Equation (6.3), the resulting values at any pixel on the source are largely the
result of convolved CLEAN components.

This correlation cannot be ignored in performing any statistical analysis of the
map. To illustrate the importance of the correlation, consider a CLEAN map
made of a single δ function represented by one CLEAN component. When the
CLEAN component is convolved with the CLEAN beam as in Equation (6.2)
the result will be a Gaussian spread over many pixels. After the residuals are
added in, it might be desirable to calculate the mean flux in the core region of the
resulting Gaussian. This can be done easily and one might be tempted to make
the usual approximation that the standard deviation of the pixels is a suitable
estimate for the 1σ error of the mean. However as the neighbouring pixels used
to calculate the mean stem from a convolution of a single CLEAN component
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they are not independent from each other. In fact, in this case, if one assumes
the residuals to be small the mean value calculated is not statistically useful in
any sense as it is based off a single measurement.

Until the publication of Hovatta et al. (2012), radio astronomers usually took the
off-source RMS noise as an estimate of the uncertainty in any pixel. Hovatta et al.
noted that in Monte Carlo simulations the on-source error was often significantly
higher, suggesting an on-source error for Stokes Q and U maps of

σon−source =
√
σ2
rms + σ2

Dterm + (1.5σ2
rms) (6.4)

where σDterm is the contribution due to uncertainty in the D term calibration (see
Sections 1.4.4 and 5.2) determined by Roberts and Wardle (1994). Assuming
a small contribution by the D terms, as will be the case in sources that are
not especially bright away from the immediate vicinity of the core component,
Equation (6.4) becomes

σon−source ≈ 1.8σrms. (6.5)

This description of the errors in a CLEAN map, while more advanced than simply
using σrms, nevertheless continues to ignore the correlation between neighbouring
pixels established above. The following section proposes a model of the errors
which allows the explicit treatment of this correlation.

6.2 An error model for CLEAN

The correlation present in a CLEAN map is due to the convolution of the CLEAN
components with the CLEAN beam. In a sense, the CLEAN components may be
considered measurements of the data in the dirty map used to build up a CLEAN
component model of the source and, like any measurement, they can have an
error associated with them. Assuming that the error in the measurement of an
individual CLEAN component is of the order σrms, the following approximation
may be made for the value of that CLEAN component and its uncertainty

il ± fσrms (6.6)
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where f is of order unity. As the units of σrms are Jy/Beam, while the units of a
CLEAN component are Jy, this gives f the unit of Beam, where this refers to the
beam area in pixels or radians, etc., as appropriate. The value of f is unlikely to
be exactly constant in a single map, as the successive CLEAN components in the
same map are correlated with previous CLEAN components, and a component
measured in one location may have a different effect than a component measured
in another. The gain of the CLEAN algorithm would also affect the value of
f , as would the choice of whether to count multiple CLEAN components in
the same pixel as a single component with a large value (the collapsed CLEAN
component) or as multiple small components (uncollapsed components). As f
is related to the beam, the value of f may also vary depending on the ratio of
the size of the source to the observing beam. However, if the value of f is taken
to be approximately constant and the CLEAN components are treated as being
approximately independent, this error can be straightforwardly propagated to the
partial CLEAN map. The equation for the propagation of error in a function f
of n independent variables xi with uncertainties σxi

is

σ2
f =

n∑
i=1

( ∂f
∂xi

)2σ2
xi
. (6.7)

As CLEAN components are independent variables representing a δ function of
emission at their locations this formula can be applied to Equation (6.2), resulting
in the following expression for the error in the partial CLEAN map:

σ2
ICk

= f 2σ2
rms

n∑
l=1

B2
lk. (6.8)

The final step in making the CLEANmap is adding the residual map to the partial
CLEAN map (Equation (6.3)). Equation (6.7) yields the following expression for
the error in the final CLEAN map

σ2
Ik

= σ2
ICk

+ σ2
rms. (6.9)

Therefore the following expression may be used to calculate the error at any pixel
in the CLEAN map.

σ2
Ik

= σ2
rms(1 + f 2

n∑
l=1

B2
lk). (6.10)
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This expression for the error explicitly includes the effect of correlation. It can
been seen from the equation that far from the source the error will be approxi-
mately σrms, however close to any CLEAN components the predicted error will be
higher. This is qualitatively consistent with the findings of Hovatta et al. (2012).
Detailed Monte Carlo simulations were then carried out to determine the true
behaviour of the CLEAN errors and compare this behaviour to the expectations
of this model.

6.3 Monte Carlo Simulations

Although the model proposed in Section 6.2 is conceptually simple and results
in a potentially useful mathematical framework, Monte Carlo simulations were
required to investigate whether or not the behaviour of the CLEAN algorithm
could be approximated with such an approach. If this proved to be true, a suitable
value for the f factor in Equation (6.6) could also be determined. A number of
model sources were designed to challenge the CLEAN algorithm in different ways,
ranging from a fully artificial test, to a tests on realistic sources. As a first test of
the method sources many beams across (with many CLEAN components) were
tested (Section 6.3.1). These tests were then followed up with much smaller
sources (Section 6.3.2). In all cases the collapsed CLEAN component table was
used as the basis for the error model.

Hovatta et al. (2012) conducted a similar set of Monte Carlo simulations using
the AIPS and DIFMAP software suites to determine Equation (6.5), however
they only tested individual pixels and did not create error maps of the kind
presented in this thesis. These error maps show strong variation in the value of
the uncertainty in an individual pixel over the course of the map and suggest that
the error is indeed correlated with CLEAN component position.

6.3.1 Initial Testing

In order to provide an initial test of the method well resolved sources with large
number of CLEAN components with both small separations (within the same
beam) and large separations were designed to see if the errors on a CLEAN map
were really associated with the CLEAN component locations. The three models
chosen for this first set of Monte Carlo simulations can be seen in Figure 6.1.
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(a) Cylindrical jet with an intrinsic lin-
ear decrease in intensity

(b) Square-within-square source

(c) Triple Gaussian source (d) UV sampling function

Figure 6.1: Convolved model maps and UV distribution used. Total flux in each
case is 1 Jy. Beam = 2.14 × 1.93 mas, position angle −75.11◦. Contours shown
are 0.2, 0.5, 1 , 2, 4, 8, 16, 32, 64, 95 % of peak. Sources have peak values of (a)
60.46 mJy/Beam, (b) 21.40 mJy/Beam and (c) 274.7 mJy/Beam. The cylindrical
jet in Figure 6.1a has an intrinsic length of 25 mas and width of 10 mas. The
Square-within-square source in Figure 6.1b has an intrinsic length of 14 mas for
the inner square, and 28 mas for the outer square. The 3 components of the
triple Gaussian source in Figure 6.1c have intrinsic full widths at half maximum
of 1 mas, 8 mas and 12 mas.
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These models were generated in OCTAVE and exported as CSV files with a
total flux of 1 Jy in each case. A cylindrical jet with a linear decrease in intensity
(Figure 6.1a) was designed to test how CLEAN responded to continuous emission
that decreased monotonically. A square-within-square source (Figure 6.1b) was
designed to test how CLEAN coped with very sudden changes in flux. Both
the inner and outer squares had constant fluxes, with the inner square having a
value equal to ten times that of the outer square. This is not a realistic model
of any AGN, but serves to test the CLEAN algorithm and help understand the
behaviour of the f factor introduced in Section 6.2. The final model used in this
set of simulations was designed to be a more realistic model of a core–jet source
with three Gaussian components (see Figure 6.1c).

The C++ program UVFILL2 was written to take in these files and the UV
distribution shown in Figure 6.1d and produce simulated observations of the
sources using a direct Fourier Transform to calculate the simulated visibilities
at the given UV coordinates. Thermal noise was then added to the visibilities
to ensure a realistic noise level in the final maps. As in Chapter 3, the random
element of the thermal noise added to the visibilities was achieved using the GNU
Scientific Library random Gaussian function with zero mean and a user specified
standard deviation, seeded with the current time multiplied by the process ID of
the current CPU thread running UVFILL2. One hundred simulated observations
were generated for each of the three models described above and these were then
imaged with the CLEAN algorithm using an AIPS script written by myself. As
each model was made with the same cell size and imaged with the same UV
distribution the resulting CLEAN beam was the same in each case (2.14 × 1.93
mas, position angle −75.11◦). This beam was much smaller than the intrinsic
size of each of the sources, resulting in length to beam ratios of approximately
15.

The final maps were then exported as FITS files and another C++ program,
MCAVERAGE, was written and used to compare the final maps to a convolution
of the original model with the same CLEAN beam. Due to the differences in
map centring the simulated maps had to be shifted slightly to align with the
same position on the convolved model map. Thus the exact RMS error at every
pixel could be calculated by finding the root mean square deviation of each of
the simulated observations from the convolved model map. These results can be
seen in the left panels of Figure 6.2.

A C++ program, ERROR_MAP_MC, was written to calculate the errors for
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each of the individual simulated maps using only the final map and the collapsed
CLEAN components on it according to the error model described in Section
6.2. OpenMP parallel processing was used to speed up the process of calculating
the error maps and ensure that the full one hundred map batch could be pro-
cessed quickly. Individual error maps were generated for each of the simulated
observations and averaged together to give a final map representing the average
predicted error in each pixel. The results can be seen in the right panels of Fig-
ure 6.2. These figures are analytical predictions of the RMS error in the CLEAN
algorithm’s attempt to image the source under realistic thermal noise and are
directly comparable to the error distributions resulting from the Monte Carlo
simulations shown in the corresponding left panels.

The Monte Carlo error maps on the left panels of Figure 6.2 show clearly that
the uncertainty of a pixel in the source is, generally, higher than the error in
a pixel off the source, as was also shown by Hovatta et al. (2012). There are
also certain regions on the source which appear to have much higher errors than
the rest of the source region. In the square-within-square source in the centre
panels of Figure 6.2 it is clear that these regions of enhanced error appear to be
correlated with the points in the model where the flux changes suddenly. The
core-jet source has a much higher error at its peak than anywhere else. There
are also regions of high error in the linear jet that do not seem to be associated
with a sudden change in flux. Thus, at least for these relatively large sources (on
scales of tens of milli-arcseconds, compared to a beam of approximately 2 mas)
it appears that while the suggestion of Hovatta et al. (2012) that the error on
the source is higher than off the source is true, there appears to be significant
structure in the pattern of errors.

The calculated error maps on the right panels of Figure 6.2 show the error pattern
created by the error model described in Section 6.2 with f = 0.75 Beam. There
is strong agreement between the Monte Carlo and calculated error maps in both
the magnitude and structure of the error patterns across all three sources. In par-
ticular, the ridges and bumps in the inner and outer squares in the square within
square source in the centre panels are very well described by the error model, as
is the sudden increase in error at the peak of of the triple Gaussian in the lower
panels. This suggests that the regions of enhanced error are indeed correlated
with the locations of CLEAN components and that at least some component of
the error on the maps can be modelled along the lines suggested in Section 6.2.
A comparison of the corresponding left and right panels of Figure 6.2 shows that
there are individual compact (point-like) regions where the calculated model er-
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(a) Cylindrical jet MC errors (b) Cylindrical jet calculated errors

(c) Square-within-square MC errors (d) Square-within-square calculated errors

(e) Triple Gaussian MC errors (f) Triple Gaussian calculated errors

Figure 6.2: Monte Carlo and calculated error maps for large simulated sources.
Monte Carlo results are in the left panels, and calculated errors on the right
panels. The top panels show a cylindrical jet with a linear decrease in intensity.
The centre panels show the square-within-square source and the lower panels
show the triple Gaussian source. In all cases f = 0.75 Beam
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rors are significantly lower than the Monte Carlo errors, by a factor of about
1.5–2. Although this discrepancy cannot be removed by adjusting the value of f ,
the possibility of underestimating uncertainties in individual regions when using
the calculated model errors could be avoided by increasing the value of f so that
the model agreed well with the Monte Carlo simulations in these compact regions
of higher uncertainty, but at the expense of overestimating the uncertainties in
the remaining regions of emission by a factor of 1.5–2.

Further investigation was required to test the performance of the model for smaller
(more realistic) model sources and, in particular, to test the applicability of the
model at the lower signal to noise regime present polarisation maps.

6.3.2 Testing Flux and Resolution Dependence

A second series of Monte Carlo simulations was conducted to examine any flux or
resolution dependency in the behaviour of uncertainties in images produced using
the CLEAN algorithm. As the Square-within-Square type source used in Section
6.3.1 was very successful in establishing the link between CLEAN component
locations and uncertainty for very well resolved sources, similar sources with
different sizes relative to the beam were used for the second series of tests. The
inner square was offset slightly to the left relative to the original Square-within-
square source. The full details of the new Square-within-Square sources can be
seen in Table 6.1 and corresponding u − v and convolved model data can be
seen in Figures 6.3 and 6.4. There is no reason that Stokes Q and U should
behave differently with regard to their uncertainties; however we have assigned
different flux levels to Q and U in the models (total fluxes of 100 mJy and 50 mJy,
respectively) in order to explore the error model’s performance for these different
flux levels. Below, we will accordingly refer to Q as PHigh and U as PLow.

The u− v data in Figure 6.3 show the amplitude of the sampled Fourier Trans-
form of the intensity distributions for each of the new test sources, with thermal
noise added (i.e., one example of the Monte Carlo realisations), plotted against
baseline length. As the size of the square compared to the size of the beam de-
creases from SQV1 to SQV4 the pattern shown by the visibility amplitude versus
baseline length shifts to the right until only a small part of the Fourier Transform
is successfully sampled. This corresponds to the Fourier Analysis result that fea-
tures on small scales in image space correspond to high frequencies in UV space.
This is manifest in Figure 6.4 as the convolved map of the model becoming in-
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Table 6.1: The 4 Square-within-Square sources used to test the dependence of
CLEAN errors on resolution (See Figure 6.4 for convolved models). All sources
were made from the same 512 pixel CSV file with a 130 pixel wide outer square,
a 60 pixel wide inner square and a 10:1 flux ratio between the inner and outer
squares. Stokes I corresponds to a flux of 1 Jy, PHigh to a flux of 0.1 Jy and PLow
to 0.05 Jy. The geometric mean of the beam is given. The inner square is slightly
offset to the left. The ratio of the outer length to the beam for each source is also
given.

Source ID Cellsize Outer Length Inner Length Beam Outer length
beam

(mas) (mas) (mas) (mas)
SQV1 0.2 26 12 2.27 11.45
SQV2 0.11 14.3 6.6 2.06 6.94
SQV3 0.065 8.5 3.9 1.91 4.45
SQV4 0.02 2.6 1.2 1.76 1.48

Table 6.2: CLEAN beams fitted to SQV1-SQV4. The major (BMAJ) and minor
(BMIN) axes of the restoring elliptical Gaussian beam, along with the position
angle (BPA). The geometric mean of the beam is also listed.

Source ID BMAJ BMIN BPA Geom. Mean
(mas) (mas) (mas) (mas)

SQV1 2.37 2.18 -85.34 2.27
SQV2 2.17 1.96 -75.84 2.06
SQV3 2.02 1.80 -73.75 1.91
SQV4 1.85 1.67 -68.3 1.76

creasingly smeared out as the dimensions of the model decrease. Note that, even
though the same u − v distribution is used in all cases, the varying cell size in
each case leads to a different CLEAN beam being fitted for each of the 4 sources.
The geometric means of the beams fitted are listed in Table 6.2.

The Monte Carlo results for SQV1 in Figure 6.5 for Stokes I are very similar
to the results outlined in Figure 6.2. The same tendency for higher errors in
the inner region of the map is present, although the symmetry present in the
Figure 6.2 is no longer present due to the slightly asymmetric design of these
square-within-square sources (see Figure 6.4). The same pattern of errors is seen
in PHigh and PLow, although the magnitude of the errors has changed to reflect
the lower fluxes involved. The PHigh and PLow maps highlight the tendency of
errors to increase at the interface between the inner and outer squares.

The calculated error maps on the right hand panels in Figure 6.5 show good
agreement with the Monte Carlo maps for all Stokes parameters with a constant
f value equal to 0.75 Beam. This suggests that the dependency of the f parameter
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(a) SQV1 (b) SQV2

(c) SQV3 (d) SQV4

Figure 6.3: Visibility amplitude (including thermal noise) versus baseline length
for each of the square-in-square models used to investigate flux and resolution
dependence of the errors. Note that the UV function appears to be stretched to
the right as increasingly smaller model sources are sampled with the same UV
distribution. By SQV4 much of the UV data goes unsampled. Thermal noise
is present in each UV distribution to an extent designed to give realistic RMS
noises in the final images.
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(a) SQV1 (b) SQV2

(c) SQV3 (d) SQV4

Figure 6.4: Convolved maps of square-within-square model sources. Detail is
lost as the overall dimensions of the model source are decreased. Note that the
inner square is offset to the left. By SQV4 the convolved model appears to be
approximately Gaussian. The locations marked in the map of SQV1 are used in
testing Section 6.4.1.1.
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on flux is fairly weak, although the maximum errors in individual compact regions
in the maps would require a higher value of f to describe them, as was also the
case in the Monte Carlo studies described in the previous section. All of the
calculated error maps reproduce to some degree the tendency of the Monte Carlo
errors to increase at the interfaces between the inner and outer squares and the
outer square and the off-source region. There is a trade off in choosing an f value
that describes both the maximum and average errors well in a given region. This
suggests that the error model proposed in Section 6.2 only approximately holds,
though it may represent a step forward from modelling the error as a constant
value as in previous analyses.

Figure 6.6 is laid out in the same way for SQV2. The Monte Carlo results on
the left side of the image appear broadly similar to those for SQV1, however the
decreasing source size is evident in the way that the ‘perimeter’ of high errors at
the interface between in the inner and outer squares visible for PHigh and PLow in
SQV1 has changed to a central blob of errors in SQV2. The calculated errors do a
fairly good job of describing the overall errors with an f value equal to 0.5 Beam
for all Stokes values, although the agreement is not as good as in the previous
cases considered. Systematic differences are also beginning to be present, as the
Monte Carlo errors peak at the center of the inner square, while the calculated
errors do not show this behaviour. As the effective size of SQV2 is almost half
that of SQV1 the change in the value of f from 0.75 Beam to 0.5 Beam is likely
due to the difference in ratio of the size of the source to the beam (see Table
6.1).

Figure 6.7 shows the Monte Carlo and calculated error results for SQV3. The
two distinct regions of high errors corresponding to the inner and outer squares
are visible in the Stokes I and PHigh Monte Carlo maps but are less distinct in
the PLow map. There continues to be a good general correspondence between
the Monte Carlo error maps and the calculated error maps for all three Stokes
parameters. The calculated maps do not describe the detailed errors, but continue
to approximately describe the regions of high error within the fluctuations of the
background noise. A single value for f of 0.3 Beam yields good results for all
three Stokes parameters.

The final set of results for SQV4 are contained in Figure 6.8. This was the
smallest of the 4 models with an outer length of just 2.6 mas compared to a
beam with a geometric mean of 1.76 mas (see Table 6.2). There is a significant
change in the Monte Carlo error maps at this resolution, with no systematic
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increase in error in the on-source region at all being observed for PHigh and PLow,
while the increase in Stokes I is much narrower than the model in the right
panel would predict. Thermal (random) uncertainties dominate the PHigh and
PLow Monte Carlo maps and there is no evidence of the patterns predicted in the
corresponding calculated error maps. While an f value of f = 0.2 Beam was
used for all Stokes parameters, only the Stokes I map shows any correspondence
with the Monte Carlo simulations, and even then the agreement is poor. This
could be interpreted as evidence for a flux dependency in the value of f at small
scales, however as no sign of such a dependency was evident at large scales it is
more probable that the CLEAN algorithm is simply doing a better job of imaging
smaller structures than the error model predicts. The performance of CLEAN
should increase as the source being imaged more closely resembles a δ function
and, as the Fourier transform of a δ function is a Gaussian, the UV visibilities
for SQV4 in Figure 6.3 suggest that SQV4 appears fairly close to a δ function to
the UV dataset used in the simulated observations. The symmetric error pattern
visible in the Stokes I Monte Carlo error map in Figure 6.8 is likely the result of
an interaction between the source and the dirty beam and is occasionally visible
in real observations. Errors from this effect are distributed symmetrically about
the map and do not show any correspondence with CLEAN component location.

Figure 6.9 shows some results for the (a) peak error, (b) mean overall error,
(c) mean core error rms error for the SQV series of sources. Note that some
care should be taken in examining Figures 6.10 and 6.10 as the straight lines
joining each successive data point are not intended to suggest a linear relationship,
but rather to highlight the apparent trend in the data. It is unlikely that the
underlying relationship between the points is linear in nature. As the error at
any point varies with source and Stokes parameter the mean errors have been
corrected for this variation by dividing by the root-mean-square (RMS) error
corresponding to the map. This means any variation in peak error, total mean
error or mean error in the core region visible in Figure 6.9 is independent of beam
effects and due to source size alone. Note that this treatment of the errors factors
out the increase in RMS error that can be associated with interference due to
source structure on scales less than but close to the CLEAN beam (visible in the
RMS error plot).

The plots of the peak, mean and mean core errors as a function of source size
shown in Figure 6.9a–c show the decrease in the on-source error with the size
of the source. The third plot restricts the analysis to the central (inner square)
region of the SQV sources and appears to show the clearest trends – namely
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(a) Stokes I Monte Carlo Errors (b) Stokes I Calculated Errors

(c) PHigh Monte Carlo Errors (d) PHigh Calculated Errors

(e) PLow Monte Carlo Errors (f) PLow Calculated Errors

Figure 6.5: Monte Carlo and calculated error maps for SQV1. f = 0.75 Beam for
all Stokes parameters. The same colour scale has been used in both the Monte
Carlo error map and the calculated error map for each Stokes parameter, however
the colours have been slightly altered for PHigh and PLow to highlight the pattern
in the calculated error maps. The flux levels in the inner square for Stokes I,
PHigh and PLow are 0.029 Jy, 0.0029 Jy and 0.0015 Jy respectively. The flux levels
in the outer square are approximately a tenth of the inner square.
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(a) Stokes I Monte Carlo Errors (b) Stokes I Calculated Errors

(c) PHigh Monte Carlo Errors (d) PHigh Calculated Errors

(e) PLow Monte Carlo Errors (f) PLow Calculated Errors

Figure 6.6: Monte Carlo and calculated error maps for SQV2. f = 0.5 Beam for
all Stokes parameters. The same colour scale has been used in both the Monte
Carlo error map and the calculated error map for each Stokes parameter. The
flux levels in the inner square for Stokes I, PHigh and PLow are 0.079 Jy, 0.0079 Jy
and 0.0039 Jy respectively. The flux levels in the outer square are approximately
a tenth of the inner square.
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(a) Stokes I Monte Carlo Errors (b) Stokes I Calculated Errors

(c) PHigh Monte Carlo Errors (d) PHigh Calculated Errors

(e) PLow Monte Carlo Errors (f) PLow Calculated Errors

Figure 6.7: Monte Carlo and calculated error maps for SQV3. f = 0.3 Beam for
all Stokes parameters. The same colour scale has been used in both the Monte
Carlo error map and the calculated error map for each Stokes parameter. The
flux levels in the inner square for Stokes I, PHigh and PLow are 0.19 Jy, 0.019 Jy
and 0.009 Jy respectively. The flux levels in the outer square are approximately
a tenth of the inner square.
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(a) Stokes I Monte Carlo Errors (b) Stokes I Calculated Errors

(c) PHigh Monte Carlo Errors (d) PHigh Calculated Errors

(e) PLow Monte Carlo Errors (f) PLow Calculated Errors

Figure 6.8: Monte Carlo and calculated error maps for SQV4. f = 0.2 Beam for
all Stokes parameters. The same colour scale has been used in both the Monte
Carlo error map and the calculated error map for each Stokes parameter. The
flux levels in the inner region for Stokes I, PHigh and PLow are 0.68 Jy, 0.068 Jy
and 0.034 Jy respectively.
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that the on-source error is higher for higher fluxes (Stokes I > PHigh > PLow)
and that in all cases the error decreases with the size of the source. The on-
source uncertainty of approximately 1.8 times the rms implied by the Equation
(6.5) proposed by Hovatta et al. (2012) for Stokes Q and U in the absence of
appreciable uncertainties due to residual D-terms is fairly close to the factors seen
in the plot of the peak errors for Stokes Qand U in Figure 6.9. The fact that the
mean errors in the source region (particularly the core source region) are lower
than this suggest that the uncertainty levels proposed by Hovatta et al. (2012)
may be on the conservative side, especially for compact sources.

Figure 6.10 shows the dependence of f on the size of the source. The values of f
are approximate and were selected by hand, however it is clear that successively
smaller values of f are needed to model smaller sources. Though the plot appears
to suggest an approximate relationship between the value of f for various source
sizes, the fact that the lowest value of f used in SQV4 failed to describe the
errors for PHigh and PLow suggests that the use of a value of f smaller than 0.2
may be appropriate if the error method is to be applied to compact sources; it
is also possible that the approach used in this error model breaks down in the
case of sufficiently compact emission that is described very well by the CLEAN
deconvolution. As the unit of f is Beam, this implies that f is a value partly
defined by the size of the convolving beam used in a particular map. As indicated
in Table 6.2, the beam varies by a small but significant amount between the four
model sources used in the Monte Carlo testing. Thus, the choice of an appropriate
value of f will also depend on the size of the convolving beam, regardless of the
intrinsic size of the source.

6.4 Calculations with the new error model

To briefly summarise the results of the Monte Carlo tests described in Sections
6.3.1 and 6.3.2, the proposed error model given by Equation (6.10) is in good
overall agreement with the results of Monte Carlo simulations of the uncertain-
ties in individual map pixels when the emission region is relatively large compared
to the beam size; i.e., when the source is not too compact to the available res-
olution. In some cases the agreement in details is striking, indicating that the
proposed error model correctly represents at least some component of the overall
uncertainties in CLEAN images. However, the model appears to break down in
regions of emission that are relatively compact; whether it is possible to modify
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(a) Peak Error vs. Source Size

(b) Mean Error vs. Source Size

(c) Mean Core Error vs. Source Size

(d) RMS Error vs. Source Size

Figure 6.9: The dependence of the errors in the CLEAN algorithm on resolution
for the SQV series of sources (source size given as the ratio of the length of the
outer square to the geometric beam of the restoring beam). Note that the straight
lines used to connect the data are intended purely to highlight the data trends.
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(a) f vs. Source Size

Figure 6.10: The dependence of the f factor on source size for the SQV series
of sources (source size given as the ratio of the length of the outer square to the
geometric beam of the restoring beam). Note that the values of f used were
approximate (a best-fit by eye) and that the straight lines used to connect the
data are intended purely to highlight the data trends and are not representative
of actual data. The actual values in the intermediate regions are unmeasured.

the error model to better describe the uncertainties in compact regions is a sub-
ject for future study. Because many regions imaged in VLBI maps of AGN jets
are, in fact, quite compact, the error model is probably not directly applicable to
such images in its current form, although it may be suitable for more extended
regions such as those imaged on larger (kiloparsec) scales.

When applicable, the error model enables a much fuller treatment of the errors
in individual pixels and the correlations between them. The following sections
explore this in some detail.

6.4.1 Taking the average of correlated variables

It is standard practice in radio astronomy to create maps with a cell size appre-
ciably smaller than the beamwidth. This helps ensure that features in the data
are present in the map, and that the dirty beam is correctly reproduced. This
means that a pixel is typically much smaller than a resolution element, making
it reasonable to consider averages over some number of neighbouring pixels when
estimating local values in maps. Complications can arise in finding the error
associated with that average if the variables being averaged are correlated with
each other. This is true when taking the average of a region in a CLEAN map, as
every pixel is dependent on the same variables (the CLEAN components). As the
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CLEAN beam falls off quite slowly this means that nearby pixels in the CLEAN
map are highly correlated, and ignoring this correlation in calculating the error
of the average would result in a significant underestimation of the error.

The equation for the propagation of error in a function f of n dependent variables
xi with uncertainties σxi

, where xi = gi(yk) and yk are m independent variables
with uncertainty σy is

σ2
f =

n∑
i=1

( ∂f
∂xi

)2σ2
xi

+
n∑
i=1

n∑
j=1,j 6=i

∂f
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δf

δxj
cov(xi, xj) (6.11)

where the cov(xi, xj), the covariance matrix, is defined by

cov(xi, xj) =
m∑
k=1
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∂yk

∂gj
∂yk

σ2
yk
. (6.12)

A simple unweighted average over n pixels where the pixel values Qi are each
dependent on every CLEAN component qi as described by equations [6.2] and
[6.3] can be expressed as

Q = 1
n

n∑
i=1

Qi. (6.13)

Equation (6.11) yields the following expression for the uncertainty in the average

σ2
Q

= 1
n2 (

n∑
i=1

σ2
Qi

+
n∑
i=1

n∑
j=1,j 6=i

m∑
k=1

BkiBkjf
2σ2

rms). (6.14)

Note that including the correlation effects in the CLEAN algorithm guarantees
a bigger error than simply ignoring them. The weighted average is defined as
follows

Q =
n∑
i=1

wiQi (6.15)

wi = 1
W

n∑
i=1

1
σ2
i

(6.16)

where wi are the normalised weights and W is the sum of the unnormalised
weights, 1

σ2
i
. The uncertainty in the weighted average can be found using the

same method as for the unweighted average, yielding
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σ2
Q

=
n∑
i=1

w2
i σ

2
Qi

+
n∑
i=1

n∑
j=1,j 6=i

wiwj
m∑
k=1

BkiBkjf
2σ2

rms. (6.17)

6.4.1.1 Test of the validity of the Error Method

The method of calculating the error of of an unweighted mean of all the pixels in a
region of the map given by Equation (6.14) can be used to test the validity of the
error method. If the error method accurately takes into account the correlation
between different pixels, the predicted uncertainty in the mean should be close to
the uncertainty calculated using a Monte Carlo Method. New code was written
to take average values of the simulated observations of the four simulated sources
generated in Section 6.3.2 in 3 × 3 and 9 × 9 pixel regions centred at the locations
marked in Figure 6.4. The code then compared each of the average values against
the known true average value in the corresponding region in the convolved model
maps. The root mean square of the deviations was calculated as a measure of
the uncertainty in the average at each region. The 3 × 3 regions are typical
of small averaging operations useful in increasing the signal to noise ratio of a
quantity on the map while still representing data from the same region, while
the use of a 9 × 9 region resulted in 81 correlated data points, ensuring that
an inaccurate treatment of the correlation should cause a major disagreement
between the error method and the results from the Monte Carlo simulations.
The results are presented in Tables 6.3 to 6.5. Note that Stokes I represents
flux levels typical of total intensity observations, while PHigh and PLow represent
fluxes typical of the linearly polarised component of the emission.

Table 6.3 gives the results for 3 × 3 and 9 × 9 pixel regions around the core of
each of the model sources. It is clear that the measured uncertainty in the mean
value of the region is significantly higher than the off-source RMS noise in almost
all cases. If the pixels were truly independent the mean of a 9 × 9 region (81
samples) should have an uncertainty of 1

9 that of the uncertainty in a single pixel.
The fact that the uncertainty of the mean is generally higher than the RMS noise
(which is of the order of the error in a single pixel) demonstrates strongly that
correlation cannot be ignored in any statistical analysis of a CLEAN map. The
Monte Carlo errors in the 9 × 9 pixel region are slightly smaller than those for
the corresponding 3 × 3 pixel region. This is as expected for a highly correlated
set of data – increased sampling does reduce uncertainty, but at a slow rate. The
errors predicted using Equation (6.14) are in general close to the actual errors
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Table 6.3: Error in unweighted average of core regions in SQV1 to SQV4. The
core region used (point A) can be seen in the maps of each source in Figure 6.4.
Averages were taken over 3 × 3 and 9 × 9 pixel regions. The Monte Carlo RMS
errors are shown, together with the errors predicted using the new error model
and the average off-source RMS noise.

Region A σrms MC Error Pred. Error MC Error Pred. Error
3× 3 3× 3 9× 9 9× 9

(mJy) (mJy) (mJy) (mJy) (mJy)
Stokes I
SQV1 0.56 1.19 1.30 1.03 1.14
SQV2 0.63 1.33 0.96 1.22 0.91
SQV3 0.63 0.84 0.87 0.78 0.83
SQV4 1.61 1.52 2.99 1.47 2.93
PHigh
SQV1 0.42 0.60 0.62 0.56 0.54
SQV2 0.44 0.75 0.54 0.71 0.51
SQV3 0.46 0.70 0.53 0.68 0.50
SQV4 0.55 0.49 0.56 0.49 0.53
PLow
SQV1 0.43 0.65 0.44 0.58 0.38
SQV2 0.45 0.78 0.49 0.74 0.45
SQV3 0.47 0.58 0.47 0.56 0.44
SQV4 0.53 0.47 0.52 0.47 0.49

and, critically, do not show the rapid drop in uncertainty with increasing sample
size that would be seen if the model did not successfully describe the correlation
in neighbouring pixels. The agreement is especially good for the Stokes I results,
and appears to diminish in quality for PHigh and PLow.

It is of note that the performance of the method improves for PHigh and PLow

as the model source shrinks in size – this is in contrast to the maps of the error
distribution presented in Figures 6.7 and 6.8. Thus, while the value of f may
be so low for SQV3 and SQV4 that the random background noise dominates the
error maps, the error model does appear to successfully model the correlation in
nearby pixels due to the CLEAN algorithm. These results show that it may be
justifiable to apply the model to compact sources with a suitable value for f close
to that used for SQV4.

Table 6.4 shows the results for 3 × 3 and 9 × 9 pixel regions around point B as
labelled in Figure 6.4 for SQV1 to SQV4. The general trend is similar to that for
point A, where the predicted error in Stokes I (high flux) matches up well with
the observed errors, while there is a disagreement in PHigh and PLow that becomes
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Table 6.4: Error in unweighted average of point B in SQV1 to SQV4. Point B
can be seen in the maps of each source in Figure 6.4. Averages were taken over 3
× 3 and 9 × 9 pixel regions. The Monte Carlo RMS errors are shown, together
with the errors predicted using the new error model and the average off-source
RMS noise.

Region B σrms MC Error Pred. Error MC Error Pred. Error
3× 3 3× 3 9× 9 9× 9

(mJy) (mJy) (mJy) (mJy) (mJy)
Stokes I
SQV1 0.56 0.89 0.82 0.82 0.72
SQV2 0.63 1.18 0.75 1.14 0.69
SQV3 0.63 0.73 0.62 0.70 0.57
SQV4 1.61 2.43 2.32 2.40 2.26
PHigh
SQV1 0.42 0.40 0.17 0.36 0.09
SQV2 0.44 0.62 0.25 0.58 0.19
SQV3 0.46 0.46 0.27 0.44 0.23
SQV4 0.55 0.54 0.46 0.54 0.43
PLow
SQV1 0.43 0.39 0.15 0.32 0.06
SQV2 0.45 0.53 0.17 0.45 0.09
SQV3 0.47 0.56 0.22 0.54 0.15
SQV4 0.53 0.58 0.41 0.57 0.37

less pronounced as the source becomes more compact. The disagreement between
the uncertainty in the mean predicted by the method for large scale sources and
the measurements from the Monte Carlo analysis is somewhat surprising, as the
error maps in Figures 6.5 and 6.6 appear to show reasonable agreement for single
pixel errors. The results for PLow also show a marked reduction in quality between
the 3 × 3 and 9 × region size for the larger sources – though as in region A the
poor results for PHigh and PLow appear to improve slightly for compact sources.

Although the agreement between the model and the simulations in region B im-
proves for more compact sources, it falls far short of the level of agreement seen
in region A for SQV4. An examination of the final set of results for region C
in Table 6.5 suggests why – the error method does not successfully describe the
behaviour of correlation in an off-source region. As outlined in Section 6.2, the
error method models the background error, σrms, as being completely random –
therefore taking 81 pixels with an individual certainty of σrms should yield an
uncertainty of σrms

9 in the resulting mean. The actual uncertainties measured
are in general smaller than σrms, but not by much. As region C is far from any
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Table 6.5: Error in unweighted average of point C in SQV1 to SQV4. Point C
can be seen in the maps of each source in Figure 6.4. Averages were taken over 3
× 3 and 9 × 9 pixel regions. The Monte Carlo RMS errors are shown, together
with the errors predicted using the new error model and the average off-source
RMS noise.

Region C σrms MC Error Pred. Error MC Error Pred. Error
3× 3 3× 3 9× 9 9× 9

(mJy) (mJy) (mJy) (mJy) (mJy)
Stokes I
SQV1 0.56 0.40 0.19 0.36 0.06
SQV2 0.63 0.49 0.21 0.45 0.07
SQV3 0.63 0.62 0.21 0.60 0.07
SQV4 1.6 0.71 0.54 0.70 0.18
PHigh
SQV1 0.42 0.36 0.14 0.29 0.05
SQV2 0.44 0.38 0.15 0.35 0.05
SQV3 0.46 0.48 0.15 0.38 0.05
SQV4 0.55 0.56 0.18 0.55 0.06
PLow
SQV1 0.43 0.37 0.14 0.30 0.05
SQV2 0.45 0.40 0.15 0.37 0.05
SQV3 0.47 0.39 0.16 0.38 0.05
SQV4 0.53 0.50 0.18 0.50 0.06

CLEAN components this behaviour strongly indicates the presence of a corre-
lation term in the noise completely independent of the CLEAN algorithm and
likely the result of a systematic correlations introduced by a combination of the
physical observing mechanism and electronics, and the calibration process.

It is outside the scope of the error method developed in this chapter to deal with
such correlations; however the problem is largely confined to off source regions.
This effect may cause the error method to give an inaccurate estimate for the
error in regions of low signal to noise, where the contribution of background noise
to the total error in a pixel is comparable to the contribution due to CLEAN
component related errors. This may be evident in the slightly lower quality
results for PHigh and PLow in region B compared to region A, as the CLEAN
components are grouped more tightly around region A and region B experiences
a larger proportion of its noise from the addition of the residual map as described
in Section 6.2.

In any case, it is clear that the errors predicted for averaging over some number of
neighbouring pixels cease to reproduce the corresponding Monte Carlo errors well
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when the flux levels in the regions sampled become relatively low. This makes
this approach of only limited use when applied to VLBI polarisation images.

A final result from this analysis is the suitability of σrms as a measure of the
uncertainty in averaged flux values for compact sources with low flux. Although
the results presented in Sections 6.3.1 and 6.3.2 demonstrated that σrms is often a
poor estimate for the single pixel uncertainty in a source, it appears that by taking
an average over a number of pixels the error quickly becomes approximately equal
to the background rms fluctuations. Thus while the method described in this
Chapter or the approximation of Hovatta et. al (2012) may be necessary to
describe a single pixel error, it may be faster and just as accurate to estimate the
uncertainty in the mean of a number of pixels as σrms.

6.4.2 Error analysis of a data slice

When investigating various types of jet intensity and polarisation structure, it can
at times be useful to take a slice of an image in a particular direction of interest,
e.g. either across or along the jet direction. Such slices are important in the
study of transverse gradients in Faraday rotation measure (see Chapter 5) and
in the fitting of helical magnetic field profiles to observed jets (see, for example,
Murphy et al. 2013). As the taking of a slice of an image often includes the use
of bilinear interpolation any scheme which extends the error method outlined in
Section 6.2 to the taking of slices needs to take this into account. The following
section outlines the bilinear interpolation technique and suggests how the error
model outlined in this chapter can be applied to it.

6.4.2.1 Bilinear Interpolation

Consider the calculation of a value in an image that does not lie exactly on a
pixel. Figure 6.11 shows a point P which is located partly between the pixels
Q11, Q12, Q21 and Q22. The method of bilinear interpolation calculates a value
for the image at P by first interpolating values for the image at points R1 and
R2 which have the same x coordinate as P, and then interpolating a value for P
using R1 and R2 (see, for example Numerical Recipes in C ). Taking a function f
to represent the image value, this scheme can be described as follows:
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Figure 6.11: Bilinear interpolation labelling scheme. The Q points indicate ac-
tual pixels, the point P is the point being interpolated and R1 and R2 are the
intermediate interpolation points. Image credit: Wikimedia Commons.

f(R1) = x2 − x
x2 − x1

f(Q11) + x− x1

x2 − x1
f(Q21) (6.18)

f(R2) = x2 − x
x2 − x1

f(Q12) + x− x1

x2 − x1
f(Q22) (6.19)

f(P ) = y2 − y
y2 − y1

f(R1) + y − y1

y2 − y1
f(R2). (6.20)

Noting that in an image the pixel grid ensures that x2 − x1 = y2 − y1 = 1, the
following expression for f(P ) is obtained

f(P ) = (x2 − x)(y2 − y)f(Q11) + (x− x1)(y2 − y)f(Q21)
+ (x2 − x)(y − y1)f(Q12) + (x− x1)(y − y1)f(Q22) (6.21)

which can be written in the form

f(P ) =
4∑
i=1

wif(Qi) (6.22)

where wi represent the weights applied to the contribution of each of the four
pixels to the interpolated value.
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6.4.2.2 Error analysis of an interpolated slice

Section 6.1 described how a pixel final CLEAN map could be expressed as the
convolution of all the CLEAN components evaluated at that pixel with a residual
value added in

Ik =
n∑
l=1

Blkil +Rk. (6.23)

Therefore the value of the interpolated pixel can be written

f(P ) =
4∑
i=1

wi(
n∑
l=1

Blkil +Rk). (6.24)

Using Equation (6.12) the covariance matrix due to variations in the CLEAN
components alone can be written as

cov(f(Pi), f(Pj))CC =
∑
k

∂f(Pi)
∂qk

∂f(Pj)
∂qk

σq2
k. (6.25)

Using the notation

∂f(Pi)
∂qk

=
4∑
l=1

wilhkl, (6.26)

where wil is the weight corresponding to interpolated point i, pixel l, this becomes

cov(f(Pi), f(Pj))CC =
∑
k

(
4∑
l=1

wilhkl)(
4∑
l=1

wjlhkl)σq2
k. (6.27)

Equation (6.27) gives the covariance matrix of f(P ) due to errors in the CLEAN
components alone. To calculate the final covariance matrix a term describing
the residuals must be added. As the residuals are very small, the correlation
between neighbouring interpolated points sharing the same residuals may be ig-
nored, yielding a final equation of

cov(f(Pi), f(Pj)) = cov(f(Pi), f(Pj))CC + δi,jσ
2
rms. (6.28)

Alternatively, the correlation may be taken into account using Equation (6.12),
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yielding

cov(f(Pi), f(Pj)) = cov(f(Pi), f(Pj))CC + σ2
rms

4∑
k=1

wikwjk′ , (6.29)

where k and k′ refer to the same pixel (which may have a different index for for
different interpolated points).

6.4.2.3 Fitting a model to an interpolated slice

The following method for attempting to correct for correlation when performing
a χ2 based fit of a model to a data slice was developed with Eoin Murphy. The
method was used to make fits similar to those in Murphy et. al 2013.

The standard χ2 method of fitting a model to data is the search for a model that
minimises the function

χ2 = (di −mi)V −1
ij (dj −mj), (6.30)

where di corresponds to the ith element of the data, mi to the corresponding
model value and V is the covariance matrix of the data. The quality of the
resulting fit (and the statistical likelihood of rejecting the null hypothesis) can
normally be determined from the χ2 value corresponding to the best fit for the
given degrees of freedom (DOF). However if this technique is used to find the
best fitting model to a set of data points which are correlated with each other the
resulting χ2 value may indicate a much higher quality fit than is truly the case.
This can be understood by considering the χ2 value of a linear fit to two data
points. When judged by eye the fit will appear to be perfect, but statistically
the hypothesis that the data series is not linear cannot be rejected. However if
the two points were interpolated to two hundred points, the apparent statistical
quality of the fit would be artificially inflated.

In order to correct for this a correction to the degrees of freedom value was
developed such that

DOFcorrected = DOF

G
, (6.31)

where G is a correction equal to the sum of the entire Pearson correlation matrix
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divided by the number of variables

G = 1
N

N∑
i=1

N∑
j=1

Vij/Vii. (6.32)

Note that in the case of completely uncorrelated variables the covariance matrix
is diagonal and the Pearson correlation matrix is equal to the identity matrix.
The value of G in this case is 1 and the number of degrees of freedom does not
need to be corrected.

Figure 6.12 shows Q and U slices taken across the jet of Markarian 501 at 6 cm.
The error bars shown are generated using the new technique introduced at the
beginning of the chapter and resulted in a value of G equal to 30.1. It is no-
table that the 8.49 mas long slice is approximately 3.9 beams across (using the
geometric mean of the beam, 2.1951 mas). Therefore with an extremely conser-
vative perspective on resolution one can say that there are roughly 4 independent
measurements made across the slice. Of course the true number of measurements
is higher than this, but removing correlation effects is difficult. The value for
G calculated would result in DOF = 200

30.1 ≈ 6.6. Thus this technique suggests
that there are 6.6 independent measurements across the slice, in agreement with
out intuition that the effective size of a resolution element is somewhat but not
dramatically smaller than the beamwidth.

While this method attempts to account for correlation in the use of a χ2 test and
does in some cases work better than the normal χ2 on correlated data, in order
to perform a fully rigorous statistical fit to correlated data a different statistical
test (not based on the χ2 statistic) may be more useful.

6.5 Uncertainty in a rotation measure gradient

The following section describes the standard method of calculating a rotation
measure gradient and calculates the effect of the correlation introduced by the
EVPA calibration. It also briefly describes a more rigorous method of calculating
a Faraday rotation measure taking into account correlation introduced by cor-
recting for the local Galactic contribution to the total Faraday rotation. It is
of note that the AIPS task ’RMCUB’ as kindly provided by R. Zavala does not
implement the standard weighted least squares technique described in the follow-
ing section, thus all Faraday rotation measure gradients reported were made in
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(a) Stokes Q.

(b) Stokes U..
Figure 6.12: Q and U slices from a CLEAN image Markarian 501 at 6cm. The
error bars have been generated using the method described in Section 6.4.2. The
errors and correlation correspond to G = 30.1. The convolving beam was 2.55
× 1.89 mas with a position angle of -25.56 degrees. The original slice covered
approximately 28.3 pixels with a cell size of 0.3 mas. The slice was then inter-
polated to 200 pixels. The approximate position of the Slice can be seen in the
MEM contour map in Figure 4.2
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external software.

6.5.1 Calculating a Rotation Measure Gradient

Given values for Stokes Q and U and their uncertainties in a particular region, the
polarisation angle in that region can be found. The polarisation angle is defined
as

χ = 1
2ArcTan(U

Q
). (6.33)

Using equation [6.7], the uncertainty in χ can be calculated as

σ2
χ = 1

4[( Q

Q2 + U2 )2σ2
U + ( U

Q2 + U2 )2σ2
Q]. (6.34)

Calibration corrections may need to be added to each polarisation angle. If these
corrections have an error associated with them it can be added to the existing
error in quadrature as derived from equation [6.7] to give

σ2
χfinal

= σ2
χ + σ2

cal. (6.35)

It should be noted that as the same calibration correction is added to each po-
larisation angle at the same frequency, this introduces a systematic error into
the polarisation angle. This systematic error is a type of correlation and must
be treated carefully to ensure that its effect on subsequent calculations is taken
into account. See Mahmud, Gabuzda and Bezrukovs (2009) and Section 6.5.2
for a detailed description of how this correlation affects the error in the rotation
measure.

If one measures χfinal at the same location over a number of frequencies one can
then investigate the change in χfinal across frequencies. If the change is due to
Faraday rotation caused as the wave passes through a plasma in a magnetic field
the following linear relationship is expected to be observed

χ = χ0 +RMλ2, (6.36)

where λ is the wavelength in metres, and RM , the rotation measure, is a constant
related to the plasma density and magnetic field along the line of sight between
the plasma and the observer.
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By plotting observed values of χ against λ2 and fitting a line to the distribution
the value of the rotation measure (the slope of the line) and its uncertainty can
be calculated using standard least squares techniques and some extra measures
needed due to the correlations in the polarisation angles discussed above.

The weighted least squares technique fits a line f(x) = ax + b to a set of n data
points (x, y) with uncertainties in yi of σi by minimising

χ2 =
n∑
i=1

wi(yi − axi − b)2 (6.37)

relative to a and b. Note in this case that χ2 is used in the statistical sense,
and has nothing to do with the polarisation angle. wi are the unnormalised
weights 1

σ2
i
. This minimisation yields the following equations for a and b and

their uncertainties:

a = xy − x y
x2 − x2 , (6.38)

σ2
a = 1

W (x2 − x2)
, (6.39)

b = y − ax, (6.40)

σ2
b = x2

W (x2 − x2)
, (6.41)

where W is the sum of the unnormalised weights and x and x2 indicate the
weighted averages of x and x2 respectively. Fitting the linear relationship in
Equation (6.36) using this method allows the RM and its error to be found using
the above formulae, where the x axis is λ2 in metres squared, and the y axis is
χfinal; the polarisation angle after calibration corrections have been applied.

6.5.2 Removing the correlation due to EVPA calibration

To find the difference between rotation measures at two different points the fol-
lowing formula is used
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∆RM = RM1 −RM2. (6.42)

To find the uncertainty in the difference Equation (6.11) must be used as RM1

and RM2 are correlated due to the calibration corrections made to χ. This results
in the formula

σ2
∆RM = σ2

RM1 + σ2
RM2−

2
W1W2

1
(x2

1 − x1
2)

1
(x2

2 − x2
2)

nfreq∑
k=0

(xk − x1)(xk − x2)w1kw2kσ
2
C , (6.43)

where σC is the error in the calibration and W1, x1 etc. refer to the parameters
from the least squares fit of each RM value.

6.5.3 Correlation due to Galactic Faraday rotation

The method for calculating a Faraday rotation measure as described above ignores
any correlation between the polarisation angles introduced by EVPA calibration
and correction for local Galactic Faraday rotation. A fully general method of
linear fitting can be derived from Equation (6.30) as

χ2 =
n∑
i=1

(yi − axi − b)V −1
ij (yj − axj − b), (6.44)

where xi and yi correspond to the square wavelength and polarisation angle of
frequency i, respectively, a is the slope of the fitted line, b is the y-intercept and
Vij is the covariance matrix. The resulting expressions for a and b are compli-
cated, but can be found in standard statistics texts such as Barlow (1993). The
covariance matrix for χ can be written

Vij = cov(χi, χj) =
Nvar∑
k=0

∂χi
∂vk

∂χj
∂vk

∆v2
k, (6.45)

where the index k varies over all variables involved vk. Any given final polarisation
in degrees can be thought of as being dependent on three variables, χd, the
uncalibrated polarisation angle, ∆χE, the correction due to EVPA calibration
and ∆RMG, the local Galactic Faraday rotation, such that
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χfinal = χd + ∆χE −
180
π
λ2∆RMG. (6.46)

Thus the above equation can be written

Vij =
Nfreq∑
k=0

∂χi
∂χdk

∂χj
∂χdk

∆χ2
dk +

Nfreq∑
k=0

∂χi
∂χEk

∂χj
∂χEk

∆χ2
Ek + ∂χi

∂RMG

∂χj
∂RMG

∆RM2
G

(6.47)

= δij(∆χ2
dk + ∆χ2

Ek) + (180
π

)2λ2
iλ

2
j∆RM2

G, (6.48)

where χd and ∆χE are only correlated at the same frequency, but ∆RMG in-
troduces an off-diagonal term to the covariance matrix as the same calibration
is applied to all frequencies. Given accurate errors for χ at a pixel or region
(generated as described in this section), this method allows statistically rigorous
Faraday rotation measure values to be generated, which can then be tested for a
significant gradient using Equation (6.43).

6.6 Conclusions

The proposed method introduced in Section 6.2 for estimating the uncertainties
in individual pixels in a CLEAN image is mathematically straightforward. It is
based on the hypothesis that the uncertainty in each CLEAN component is pro-
portional to the rms noise off-source, σ = fσrms, and represents a first attempt to
describe the image uncertainties mathematically as being a result of the CLEAN
algorithm used to produce the image.

Section 6.3 detailed Monte Carlo simulations which suggest that the error method
proposed works well for large, well-resolved, sources – successfully predicting re-
gions of high error and scaling properly between typical fluxes associated with
Stokes I and Q or U . The agreement in the error patterns shown by the Monte
Carlo simulations and error maps calculated using the proposed method is strik-
ing, indicating that the proposed error-calculation method successfully reproduces
at least some component of the overall image uncertainties. However the model
does not appear to work well for sources whose size is comparable to or smaller
than the beam size, as is typical on the scales probed by VLBI observations of
AGN. This breakdown may indicate that the appropriate value of f in Equation
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(6.6) is so low that the corresponding error pattern is below the variations in the
background noise (which are random and not modelled by the technique devel-
oped in Section 6.3); however, it is also possible that this approach is not suitable
for compact sources for some other reason related to differences in the way that
CLEAN deconvolves compact and more extended regions of emission.

A modification of the error model may result in better agreement with the results
of the Monte Carlo simulations, but at the cost of increased mathematical com-
plexity. Some exploration of different models based on Section 6.2 was conducted,
however no model emerged that offered a clear advantage over the one proposed
and investigated in this chapter. It may also be possible to instead perform a
series of Monte Carlo simulated observations to generate an accurate error map
and correlation matrix for a real source. This would be computationally demand-
ing and time consuming, but would allow the full and accurate exploitation of
the real data independent of any analytical model for the errors.

Section 6.4.1.1 considers the uncertainty in the average of values within pixels in
a 3 × 3 or 9 × 9 region, and compares estimates of these uncertainties obtained
using Monte Carlo simulations and using the proposed analytical error formula.
One striking result to come out of this analysis is that the uncertainty in these
average values tends to be close to the background RMS fluctuations σrms in
off-source pixels. This means that σrms provides a reasonable estimate of the
uncertainty in averaged flux values for compact sources with relatively low flux
levels (e.g. for polarised fluxes).

Section 6.5 describes how an accurate value and error for a Faraday rotation
measure gradient can be calculated, and includes a more rigorous treatment of
correlations introduced due to EVPA calibration (Section 6.5.2) and local Fara-
day rotation (Section 6.5.3). These improvements to the calculation of Faraday
rotation measures and gradients are independent of the error model from Section
6.2 and will result in formally more accurate Faraday rotation measure maps of
any AGN.

In conclusion, the error method developed in this chapter shows considerable
promise in its ability to describe single-pixel errors in CLEAN maps of sources
that are not too compact compared to the beam size and is easily extendible to
more complicated calculations where the analytical description of the correlations
introduced by the CLEAN algorithm allows accurate uncertainties for many useful
quantities to be determined.
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Chapter 7

Conclusions

This thesis has developed new methods for high resolution radio astronomy imag-
ing and investigating the uncertainties in VLBI intensity and polarisation images.

Chapter 3 of this thesis has described a new software implementation of the Maxi-
mum Entropy Method for use in the the deconvolution of multi-wavelength VLBI
polarisation images of AGN jets. Using the Cornwell-Evans algorithm and build-
ing on previous work done on MEM-based VLBA polarisation deconvolution by
Holdaway and Wardle (1990) and Sault (1990), a new C++ program, PMEM
was written. This program is suitable for polarisation observations and capable
of working closely with existing software suites. PMEM produces MEM images
which have the resolution advantage enjoyed by the MEM over the CLEAN al-
gorithm outlined in the introductory chapters of this thesis.

PMEM uses multi-threaded coding techniques and high performance external li-
braries to ensure a rapid deconvolution of the typical VLBI polarisation data.
It has an easy-to-use Python based graphical user interface and uses the FITS
file format to input and output data. This should make PMEM useful to as-
tronomers using popular astronomy software packages such as AIPS and CASA,
while requiring a minimum amount of knowledge of the underlying code. The
source code of PMEM is fully commented and modular so advanced users may
easily edit and adapt it for new purposes, such as the possible inclusion of PMEM
in a CASA-based imaging “pipeline”, where large numbers of images are created
with minimal human input.

PMEM has been tested using Monte Carlo simulations of realistic VLBI sources.
The UVFILL2 code included in Appendix B was developed to enable such sim-
ulations and was also used to generate Monte Carlo simulations for the error
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technique proposed in Chapter 6. The performance of the MEM was compared
against that of the CLEAN algorithm for a variety of conditions. An early in-
teresting result of this comparison was that, even though the CLEAN algorithm
specifies the use of a restoring beam that is a Gaussian fit to the central lobe
of the dirty beam, the CLEAN algorithm actually performs very well when used
with a restoring beam up to 50% smaller than this. This is equivalent to double
the normal CLEAN resolution. Thus a mild to mid-range CLEAN based “super-
resolution” may be appropriate in many maps as long the resulting images do
not show any signs of CLEAN based artefacts, such as any evidence of δ function
type structures.

The performance of both MEM and CLEAN was found to be very close for restor-
ing beams down to about half the size of the normal CLEAN beam. After this
point performance drops off significantly for both algorithms, with each algorithm
demonstrating particular strengths and weaknesses. As might be expected in an
algorithm which models sources with a series of δ functions, the CLEAN algo-
rithm outperforms the MEM method at the more “pointy” parts of the source,
where it appears that MEM’s continuous model of the emission struggles to rise
to a point. Conversely, the MEM outperforms CLEAN at more diffuse regions.
This is of interest in one of the major applications for PMEM – the detection of
Faraday rotation measure gradients.

In order to examine the statistical significance of a Faraday rotation measure
gradient across a jet the greatest range of the gradient is found and the difference
between the two end points is calculated. The MEM is particularly strong at
imaging these end points as they correspond to the diffuse edges of the jet. The
simulations have also demonstrated that the MEM performs particularly well in
measurements of fractional polarisation and polarisation angle, even for restoring
beams up to a quarter of the normal CLEAN beam (this is presumably a result of
the way in which polarised emission is included in the Gull and Skilling entropy).

The combination of MEM’s high quality measurements of the polarisation angle
at high resolutions and its suitability for imaging diffuse regions gives it a major
advantage over the CLEAN algorithm right at the critical points for the measure-
ments of gradients in Faraday rotation measure and suggest that the MEM is an
excellent choice to image multi-wavelength polarisation data. The MEM also out-
performs CLEAN at determining the total Stokes I, Q and U flux in the source,
though this will depend on out accurately the zero spacing flux is estimated from
the Stokes I visibility data for a source.
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The use of PMEM on real VLBI observations of Markarian 501, 1633+632 and
0716+714 in Chapter 4 supports the conclusions of the Monte Carlo simulations.
In all three cases high resolution MEM maps of the fractional polarisation show
significantly more detail than the corresponding CLEAN maps. The higher res-
olution also allows the polarisation angle structure of each jet to be examined
in greater detail. These results in particular are in close agreement with the
high level of accuracy in MEM based fractional polarisation and polarisation
angle maps predicted by the simulations in Chapter 3. The MEM polarisation
maps offer a deeper insight into the polarisation structure than the corresponding
CLEAN maps. In addition to this, the high resolution makes the total intensity
(Stokes I) structure visible in much greater detail, allowing the association of
particular polarisation features with jet components only clear at resolutions cor-
responding to beams smaller than the CLEAN beam.

The first MEM-based VLBI Faraday rotation measure maps have been made
by combining MEM polarisation-angle images at multiple wavelengths. These
maps have then been compared to their CLEAN algorithm equivalents. The high
resolution achieved in these MEM maps allows the magnetic field structure of
AGN jets to be probed on smaller scales than possible with the CLEAN algorithm,
and will prove useful in the analysis of new and existing gradients in Faraday
rotation measure. Intrinsic polarisation angle maps were also generated and show
strong agreement with existing CLEAN maps – sometimes even at resolutions
corresponding to a fraction of the CLEAN beam. This again suggests that a mild
amount of super–resolution can be applied to the CLEAN algorithm without
negatively affecting its accuracy.

Chapter 5 of this thesis presents observations of transverse gradients in Faraday
rotation measure in CLEAN images of 0716+714 and 1749+714 first published
in Mahmud et al. (2013). The detection of these gradients, all of which involve
a change from negative to positive rotation measure, constitute strong evidence
for the presence of helical magnetic fields in the two sources. The detection of
reversals in the direction of the gradients further out along the jet is interesting.
Some possible explanations are proposed, the most likely being a phenomenon
along the lines of the Poynting-Robertson battery, whereby the magnetic field
lines in an inner helix return to the AGN core in an outer helical field. Monte
Carlo results showing the ability to detect transverse Faraday rotation gradients
even when the intrinsic width of the jet is appreciably smaller than the width of
the beam (at least down to jet widths of about 1

20 of the beam width) are also
presented.
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Chapter 6 of this thesis has presented a new model for errors introduced by
CLEAN in maps deconvolved using this algorithm. Previous practices for esti-
mating the single-pixel uncertainties in CLEAN maps have largely ignored the
issue of correlation between neighbouring pixels, and have taken the single-pixel
uncertainties to be equal to the root-mean-square deviations far from regions of
source emission. The error model introduced attempts to both predict the dis-
tribution of uncertainties across CLEAN maps, as well as to determine the exact
correlation between neighbouring pixels.

Monte Carlo simulations showing the distribution of CLEAN errors for various
sources are presented and compared to the patterns predicted by the error method
proposed. While the error method works very well for sources spread across many
CLEAN beams, the CLEAN algorithm performs better than predicted by my
model for compact sources similar to realistic observations of AGN jets. Thus,
although the ability of the error model to reproduce the error patterns visible in
the corresponding Monte Carlo error maps for well resolved sources is striking,
this method cannot in its present form be applied to sources with sizes appreciably
smaller than the CLEAN beam. It may be possible to modify the technique to
provide better predictions of the uncertainties for compact sources, but such a
modification remains illusive.

Chapter 6 also explores one of the major advantages of the new error model –
the ability to calculate rigorous errors for simple statistical quantities that have,
up until now, been impossible to determine accurately. Calculations for weighted
averages, linear fits and the fitting of a general model to an interpolated slice of
data are made. The predicted unweighted average generated by the error model
is compared to the result from Monte Carlo simulations, again showing good
agreement for larger sources, but poor agreement for compact sources. These
simulations also demonstrate that the off-source rms flux fluctuations σrms provide
a reasonable estimate of the uncertainty in averaged flux values for compact
sources with relatively low flux levels (e.g. for polarised fluxes). A simple method
for estimating the number of degrees of freedom in a χ2 statistic for correlated data
is also presented. This method, while crude, does gives much better results than
simply ignoring the correlation between pixels when making a fit and provides
a first step on a path to rigorous test statistics on the applicability of a fit to a
transverse slice across a jet.

In conclusion, this thesis has developed a range of new methods for high resolution
radio astronomy imaging, along with codes that may be useful for MEM decon-
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volution, Monte Carlo analyses and error analyses involving radio-interferometry
data. Much of the code is included in Appendix B, and any additional code (for
example, to implement the error method described in Chapter 6 is available on
request.
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Appendix A

Basic Relativistic Effects in AGN

A.1 Relativistic Beaming

Consider a body moving at a relativistic speed u in the x direction. The Lorentz
transformations of special relativity give the following relationship between the
observer’s frame of reference (unprimed) and the co-moving frame (primed)

dx = dx′ + udt′√
1− u2

c2

(A.1)

and similarly for the y and z directions and time

dy = dy′ (A.2)
dz = dz′ (A.3)

dt =
dt′ + dx′ u

c2√
1− u2

c2

(A.4)

Defining vx = dx
dt

and v′x = dx′

dt′
the following equations can be obtained for the

velocities
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vx = v′x + u

1 + v′x
u
c2

(A.5)

vy =
v′y

(1 + v′x
u
c2 )γ (A.6)

vz = v′z
(1 + v′x

u
c2 )γ (A.7)

where β = u
c
and the Doppler factor, γ, is γ = (1 − β2)− 1

2 . In a more compact
form this can be written

v‖ =
v′‖ + u

1 + v′‖
u
c2

(A.8)

v⊥ = v′⊥
1 + v′‖

u
c2

(A.9)

where v‖ and v⊥ are the velocity components parallel and perpendicular to u,
respectively. This gives the expression for the angle along which the object is
observed to move as

tanφ = v⊥
v‖

= v⊥
γ(v′‖ + u) (A.10)

tanφ = v′ sinφ′
γ(v′ cosφi+ u) (A.11)

Consider a photon with velocity c emitted at an angle of 90◦ to u in it’s rest
(primed) frame. The following equations can be are obtained

tanφ = 1
γ u
c

= 1
γβ

(A.12)

cosφ = 1√
tan2 φ+ 1

= β (A.13)

sinφ =
√

1− cos2 φ = 1
γ

(A.14)
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Figure A.1: A source moving with speed v at an angle θ with respect to the Earth
emitting photons at times t1 and t2. Image from Gabuzda (2008).

For a jet with a relativistic speed β ≈ 1, therefore γ is very large. This implies

sinφ ≈ φ = 1
γ

(A.15)

The consequence of this is that a moving source emitting radiation isotropically
will appear brighter than it is in the rest frame when approaching an observer,
but dimmer than in the rest frame when it is receding from the observer. In the
example above half of the source’s total emission will be detected in an angle of
just φ = 1

γ
in the observer frame. This is sometimes called the "Headlight Effect",

Doppler boosting or relativistic beaming.

A.2 Apparent superluminal motion

Consider a source of radiation moving with speed v at an angle θ to the line of
sight towards the observer as shown in Figure A.1. The distance moved on the
sky can be written as

∆dsky = v sin θ∆t (A.16)

The distance between photons emitted at time t1 and t2 is
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∆x = c∆t− v cos θ∆t = ∆t(c− v cos θ) (A.17)

where ∆t = t2 − t1. The time measured between the arrival of the two photons
is therefore

∆tarr = ∆x
c

= ∆t(1− v

c
cos θ) (A.18)

This gives the apparent speed of motion on the sky as

vapp = ∆dsky
∆tarr

= v sin θ
1− v

c
cos θ (A.19)

βapp = β sin θ
1− β cos θ (A.20)

where β = v
c
. Equation (A.20) reveals that the speed of the object as deduced

from it’s motion across the sky differs from the true speed of the object. The
maximum βapp for a given β can be calculated by differentiating with respect to
θ and setting the resulting function to zero. The resulting angle which gives a
maximum value for βapp gives

cos θ = β (A.21)

sin θ =
√

1− cos2 θ = 1
γ

(A.22)

The corresponding maximum value of βapp is

βapp = βγ (A.23)

Therefore for highly relativistic speeds (B ≈ 1, γ > 1), the observed speed can
be far greater than the true speed, leading to the apparent superluminal motion
of the source. This effect is regularly observed in blobs of gas in the relativistic
jets of AGN.
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Appendix B

Source Code

This appendix contains the C++ source code for the main PMEM Maximum En-
tropy Method deconvolution code, the UVFILL simulation observation code and
various subroutines needed to interface with the FITS file format. The header files
are also included. All of the code is released under the GNU GPL version 3. You
can obtain the source code by emailing me at colm.coughlan_at_umail.ucc.ie.
For the purposes of brevity, not all of the code described in this thesis is included
in this appendix. The code corresponding to the Monte Carlo simulations of
the error method in Chapter 6 and the implementation of various fits and error
analysis is available on request.

B.1 PMEM Code

The following section contains the source code to the main PMEM C++ program,
along with a script for a Python based graphical user interface and a Linux make
file to compile the program.

B.1.1 MEMPY Interface

’’’
This program is called mempy. It is a GUI to pmem.
Copyright (C) 2013 Colm Coughlan

This program is free software : you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
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B. Source Code B.1 PMEM Code

GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

’’’

import easygui as eg
from subprocess import call

msg = "Please enter the parameters"
title = "MEMPY"
fieldNames = ["Number of polarisations (max 4)","Stokes I dirty map","Stokes Q dirty map","Stokes U dirty map","Stokes V

dirty map (untested)","Dirty Beam", "Default Map (0 if none)","Estimated Stokes I flux","Estimated Pol 2 flux","
Estimated Pol 3 flux","Estimated Pol 4 flux","Conserve Flux? (1/0, 2 = est)","Estimated Stokes I rms","Estimated Pol 2
rms","Estimated Pol 3 rms","Estimated Pol 4 rms","Maximum number of iterations","Restoring beam BMAJ (as)", "
Restoring beam BMIN (as)", "Restoring beam BPA (degrees)","Noise box : BLCX","Noise box : BLCY","Noise box :
TRCX","Noise box : TRCY","Acceleration factor (rec:3)","Q factor (rec:0.5)","Pol factor (rec:2.0)","Output Name","
Number of edge pixels to be ignored","Debug mode?"]

fieldValues = [] # we start with blanks for the values

loadmsg = "Do you want to load the last values?"
loadtitle = "Welcome to MEMPY"
if eg.ynbox(loadmsg, loadtitle): # show a Continue/Cancel dialog

try:
f=open(’mempy_driver.dat’,’r’)

except IOError:
print ’Error loading old data\n’

for i in range(len(fieldNames)):
try:

line = f.readline() . rstrip ( ’\n’)
except IOError as e:

print ’Error loading old data\n’
break

fieldValues .append(line)

f . close ()

fieldValues = eg.multenterbox(msg,title, fieldNames, fieldValues )
errmsg = ""
npol=0
temp=0

# make sure that none of the fields was left blank
while 1: # do forever, until we find acceptable values and break out

if fieldValues == None:
errmsg = "Blank field"
break

errmsg = ""

# look for errors in the returned values

# check that the number of polarisations is okay

try:
npol = int(fieldValues [0])

except ValueError as e:
errmsg += ’Invalid choice of number of polarisations\n’

# check that the dirty imap is okay

try:
with open(fieldValues [1]) as f : pass

except IOError as e:
errmsg += ’Error locating dirty Stokes I map\n’
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# check that the dirty Q,U,V maps are okay

for i in range(npol−1):
try:

with open(fieldValues[2+i]) as f : pass
except IOError as e:

errmsg += ’Error locating dirty polarisation map ’+str(1+i)+’\n’

# check that the dirty beam is okay

try:
with open(fieldValues [5]) as f : pass

except IOError as e:
errmsg += ’Error locating dirty beam\n’

# check that the default map is okay

try:
with open(fieldValues [6]) as f : pass

except IOError as e:
if float ( fieldValues [6]) <> 0:

errmsg += ’Error locating default map\n’

# check that the estimated fluxes are okay

try:
temp = float(fieldValues [7])

except ValueError as e:
errmsg += ’Need a (positive) value for estimated I flux\n’

if temp <= 0:
errmsg += ’Need a (positive) value for estimated I flux\n’

for i in range(npol−1):
try:

temp = float(fieldValues[8+i])
except ValueError as e:

errmsg += ’Need a value for estimated polarised flux\n’

# check that the conserve flux option is okay

try:
temp = int(fieldValues[11])

except ValueError as e:
errmsg += ’Need a decision about weather or not to conserve flux\n’

if (temp <> 0 and temp <> 1) and temp <> 2:
errmsg += ’Please enter 0 , 1 or 2 for flux conservation\n’

# check that rms options are okay

for i in range(npol):
try:

temp = float(fieldValues[12+i])
except ValueError as e:

errmsg += ’Need a value for estimated rms\n’

# check that niter is okay

try:
temp = int(fieldValues[16])

except ValueError as e:
errmsg += ’Need a maximum number of iterations\n’

if temp <= 0:
errmsg += ’Please enter a strictly positve maximum number of iterations\n’

# check that bmaj is okay

try:
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temp = float(fieldValues [17])
except ValueError as e:

errmsg += ’Need a BMAJ\n’
if temp < 0:

errmsg += ’Please enter a positive or zero−valued BMAJ\n’

# check that bmin is okay

try:
temp = float(fieldValues [18])

except ValueError as e:
errmsg += ’Need a BMIN\n’

if temp < 0:
errmsg += ’Please enter a positive or zero−valued BMIN\n’

# check that bmaj is okay

try:
temp = float(fieldValues [19])

except ValueError as e:
errmsg += ’Need a BPA\n’

# check that the BLC TRC is okay

try:
temp = int(fieldValues[20])

except ValueError as e:
errmsg += ’Need a valid BLCX\n’

try:
temp2 = int(fieldValues[21])

except ValueError as e:
errmsg += ’Need a valid BLCY\n’

try:
temp3 = int(fieldValues[22])

except ValueError as e:
errmsg += ’Need a valid TRCX\n’

try:
temp4 = int(fieldValues[23])

except ValueError as e:
errmsg += ’Need a valid TRCY\n’

if temp3 −temp <= 0:
errmsg += ’Please enter a sensible noise box coord for x\n’

if temp4 −temp2 <= 0:
errmsg += ’Please enter a sensible noise box coord for x\n’

# check that the acceleration factor is ok

try:
temp = float(fieldValues [24])

except ValueError as e:
errmsg += ’Need an acceleration factor\n’

if temp <= 0:
errmsg += ’Please enter a positive acceleration factor\n’

# check that the q factor is ok

try:
temp = float(fieldValues [25])

except ValueError as e:
errmsg += ’Need a q factor\n’

if temp <= 0:
errmsg += ’Please enter a positive q factor\n’

# check that the pol upweight factor is ok

try:
temp = float(fieldValues [26])

except ValueError as e:
errmsg += ’Need a polarisation weighting factor\n’

if temp <= 0:
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errmsg += ’Please enter a positive q factor\n’

# check that the output name option is okay (check that the use has entered one)

temp = len(fieldValues[27])
if temp <= 1:

errmsg += ’Please set an output name\n’

# check that the ignore edge pixels option is okay

try:
temp = int(fieldValues[28])

except ValueError as e:
errmsg += ’Need a valid number of edge pixels to ignore. Try 0 as a default\n’

if temp < 0:
errmsg += ’Error in number of pixels to ignore (needs to be an integer >=0).\n’

# check that the debug option is okay

try:
temp = int(fieldValues[29])

except ValueError as e:
errmsg += ’Need a decision about weather or not to use debug mode\n’

if temp <> 0 and temp <> 1:
errmsg += ’Please enter 0 or 1 for debug mode\n’

if errmsg == "":
break # no problems found

else:
# show the box again, with the errmsg as the message
fieldValues = eg.multenterbox(errmsg, title, fieldNames, fieldValues )

if errmsg <> "":
exit ()

f=open(’mempy_driver.dat’,’w’) # write instructions to a driver for the C++ file

for i in range(len(fieldNames)):
f .write( fieldValues [ i]+’\n’)

f . close ()

err=call("cp mempy_driver.dat "+fieldValues[27]+".pmemo",shell=True) # copy driver file to a log version

err=call("./pmem > "+fieldValues[27]+".pmemlog",shell=True) # call C++ program, printing the output to a log

if err!=0:
if err==2:

print "Run complete: Desired criteria not achieved."
else:

print "Error "+str(err)+" running c++ code"
exit ()

print(’Program appears to have executed correctly’)

B.1.2 PMEM Headers

/∗
pmem_heads.hpp is a header file used by pmem and some programs it links with
Copyright (C) 2012 Colm Coughlan

This program is free software : you can redistribute it and/or modify
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it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

∗/

#include <iostream>
#include <fstream>
#include <string>
#include <string.h>
#include <cmath>
#include <stdlib.h>
#include <sstream>
#include <fftw3.h>
#include <fitsio.h>
#include <stdio.h>
#include <omp.h>
#include <armadillo>

int cfits_write(const char∗ filename , double∗ array , int imsize , double cell , double ra , double dec , double∗
centre_shift , double∗ rotations , double freq , double freq_delta , int stokes , char∗ object , char∗ observer , char∗
telescope , double equinox , char∗ date_obs , char∗ history , double bmaj , double bmin , double bpa , int niter ,
bool jy_per_beam);

int cfits_read_header_map(const char∗ filename , int∗ dim , double∗ cell , double∗ ra , double∗ dec , double∗
centre_shift , double∗ rotations , double∗ freq , double∗ freq_delta , int∗ stokes , char∗ object , char∗ observer ,
char∗ telescope , double∗ equinox , char∗ date_obs , double∗ bmaj , double∗ bmin , double∗ bpa , int∗ ncc);

int cfits_read_map(const char∗ filename, double∗ tarr, int dim2 , double∗ cc_xarray, double∗ cc_yarray, double∗
cc_varray , int ncc);

extern "C" {
void dgetrf_( const int ∗ , const int ∗ , double ∗ , const int ∗ , int ∗ , int ∗ );
void dgetrs_( const char ∗ , const int ∗ , const int ∗ , double ∗ , const int ∗ , int ∗ , double ∗ , const int∗ ,

int ∗ );
};

B.1.3 PMEM Source Code

/∗
This program is called pmem. It deconvolves polarised VLBI maps using MEM.
Copyright (C) 2012 Colm Coughlan

This program is free software : you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Polarised Maxmimum Entropy Method
Colm Coughlan − colmcoughlanirl %%%at%%% gmail.com

∗/
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#include "pmem_heads.hpp"

using namespace std;

// structure to make passing around all the gradients a bit easier

struct gradient_structure {
double EE;
double EF;
double EG;
double EH;
double EJ;
double FF;
double FG;
double FH;
double FJ;
double GG;
double GH;
double GJ;
double HH;
double JJ;
double II;

};

int write_csv(string filename, double∗ array, int imsize);
void arrange_ft(double∗ arr, int imsize);
int ft (fftw_complex∗ in, fftw_complex∗ out, int imsize, int direction);
int convolve(double∗ data, fftw_complex∗ response, int imsize, int pad_factor, double∗ output , fftw_plan&

forward_transform, fftw_plan& backward_transform, double∗ double_buff, fftw_complex∗ complex_buff);
string int2str (int num);

int get_residual_map(double∗ dirty_map , double∗ convolved_model , double∗ residual_map, int imsize, int
ignore_pixels);

int get_info(double∗∗ model , double∗∗ residual, double∗ default_map2 , gradient_structure& grad , double∗ chi2_rms,
double& total_flux , double alpha , double beta , double gamma , double& imin, double& imax , int imsize , int
npol, double q, int ignore_edge_pixels);

int new_ABG(gradient_structure grad , double delta_E , double delta_F , double delta_G , double& alpha , double&
beta , double& gamma , bool conserve_flux , int npol);

int cal_step(double∗∗ model , double∗∗ residual, double∗ default_map2 , double alpha , double beta , double gamma ,
int imsize , int npol , double q , double& J0 , double∗∗ step_map, int ignore_edge_pixels);

int take_step(double∗∗ model , double∗∗ step , double step_length , double step_limit , int imsize , int npol, int
ignore_edge_pixels);

int check_step(double∗∗ old_model , double∗∗ new_model , double∗∗ new_residual, double∗ default_map2 , double
alpha , double beta , double gamma , int imsize , int npol , double q , double& J1, int ignore_pixels);

int interpolate_models(double∗∗ current_model , double∗∗ new_model , double frac_new , int imsize , int npol, int
ignore_pixels);

int interpolate_residuals(double∗∗ current_residuals , double∗∗ new_residuals , double frac_new , int imsize2 , int npol);
int copy_model(double∗∗& model1, double∗∗& model2);

int gen_gauss(double∗ matrix, int imsize, double cellsize, double bmaj, double bmin, double bpa);
int ft_beam(double∗ beam, fftw_complex∗ ft_beam, int imsize, int pad_factor, fftw_plan& plan, double∗ double_buff,

fftw_complex∗ complex_buff);
double average_region(double∗ map, int blcx, int blcy, int trcx, int trcy, int imsize) ;
int clip_edges(double∗ map, double replacement_value, int edge_limit, int imsize);
double rms_region(double∗ map, int blcx, int blcy, int trcx, int trcy, int imsize);
int zero_array(double∗ array, int imsize);

const double min_flux = 1e−18; // set the minimum flux allowable for the Stokes I models (must be > 0 for model)

int main()
{

double ra;
double dec;
int imsize;
double cell; // stored in degrees

double centre_shift[2]; // where the peak of the source is on the map (x and y coords)
double rotations[2]; // any rotation applied to the map
int stokes [4]; // enough room to hold stokes parameters for 4 maps

double freq; // stored in Hz
double freq_delta;
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char object[FLEN_VALUE];
char observer[FLEN_VALUE]; // information about the source
char telescope[FLEN_VALUE];
double equinox;
char date_obs[FLEN_VALUE];

char history[] = "MEM deconvolution performed by PMEM. See PMEM logs for details.";

double bmaj; // stored in degrees
double bmin; // stored in degrees
double bpa; // stored in degrees
int ncc; // number of clean components

string line ;
string filename_dirty_imap; // strings for filenames , IO
string filename_dirty_beam;
string ∗filename_pol;
string output_name;
string filename_default_map;
gradient_structure grad; // room to transport gradient information
fstream fout;

bool converged;
bool converged_temp;
bool conserve_flux;
bool estimate_flux;
bool debug;

double current_rms[4]; // current Stokes I , Q, U , V residual rms
double min_rms[] = {1e99,1e99,1e99,1e99}; // minimum Stokes I residual rms achieved (should be updated almost

every iteration )
int min_rms_i_ctr; // counter value at which the minimum Stokes I residual rms has been achieved
int convergence_limit; // the number of allowed iterations where the Stokes I residuals are not decreasing before

the program quits

int i , j , k,ctr ;
int err ;
int imsize2;
int npol; // no. of polarisations being deconvolved
int niter ; // max no. of iterations
int pad_factor = 1; // 1 for no padding, 2 for zero padding
int blcx , blcy , trcx , trcy;
int ignore_edge_pixels; // number of pixels at the edge of the map to ignore ( useful for aliasing problems)

double∗ null_double;

double acceleration_factor;
double q_factor;
double pol_upweight_factor;
double temp,temp2;
double pixels_per_beam;
double total_flux;
double alpha , beta , gamma;
double imin , imax;
double step_length1 , step_length2;
double old_step_length1 , old_step_length2;
double step_limit;
double delta_E, delta_F, delta_G;
double J0 , J1;
double rms_tolerance , flux_tolerance , convergence_tolerance;
double bmaj_restoring , bmin_restoring , bpa_restoring;

double∗∗ dirty_map;
double∗∗ current_model;
double∗∗ new_model;
double∗∗ current_residuals;
double∗∗ new_residuals;
double∗∗ convolved_model;
double∗∗ best_model;

double∗ dirty_beam;
fftw_complex∗ dirty_beam_ft;
fftw_complex∗ complex_buff;
double∗ double_buff;
double∗ default_map2;
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double∗ zero_spacing_flux;
double∗ chi2_rms;
double∗ rms_theoretical;

double q = 0.0;

// start up some of the fourier tranform settings and variables from FFTW

fftw_init_threads(); // initialise fftw parallisation
fftw_plan_with_nthreads(omp_get_max_threads());

fftw_plan forward_transform, backward_transform;

fout.open("mempy_driver.dat",ios::in); // read in filename, number of frequencies to be used and number of 3x3 grids
required

if (fout.is_open())
{

getline (fout, line ) ;
npol = atoi(line .c_str()) ; // read number of pols

getline (fout,filename_dirty_imap); // read imap filename
}
else
{

cout<<"Exiting program..."<<endl;
return(1);

}

rms_tolerance=1.1; // allow a tolerance of 10 % in guess for noise
flux_tolerance=0.1;
convergence_tolerance=0.1;

err = cfits_read_header_map( filename_dirty_imap.c_str() , &imsize , &cell , &ra , &dec , centre_shift , rotations ,
&freq , &freq_delta , &stokes[0] , object , observer , telescope , &equinox , date_obs , &bmaj , &bmin , &
bpa , &ncc );

if ( err != 0 )
{

cout<<"Error reading header from "<<filename_dirty_imap<<endl;
cout<<"Exiting program..."<<endl;
return(1);

}

if (ncc!=0)
{

cout<<"Warning: "<<filename_dirty_imap<<" does not appear to be a dirty map..."<<endl;
ncc = 0;

}

imsize2=imsize∗imsize;

j = pad_factor ∗ imsize ∗ ( pad_factor ∗ imsize / 2 + 1 ); // allowing for padding in buffers and reducing
memory needed for r2c and c2r transform by taking Herm. conjugacy into account

// first declaration of memories − only for things with npol dependencies

dirty_map=new double∗[npol];
current_model=new double∗[npol];
new_model=new double∗[npol];
current_residuals=new double∗[npol];
new_residuals=new double∗[npol];
convolved_model=new double∗[npol];
best_model = new double∗[npol];
zero_spacing_flux=new double[npol];
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chi2_rms=new double[npol];
rms_theoretical=new double[npol];

if (npol>1)
{

filename_pol = new string[npol];
}

dirty_beam=new double[imsize2];
dirty_beam_ft = ( fftw_complex∗ ) fftw_malloc( sizeof( fftw_complex ) ∗ j ); // saving memory with herm.

conjugacy
complex_buff = ( fftw_complex∗ ) fftw_malloc( sizeof( fftw_complex ) ∗ j ); // allowing room for padding in

buffers
double_buff = ( double∗ ) fftw_malloc( sizeof( double ) ∗ pad_factor ∗ pad_factor ∗ imsize2 );
default_map2=new double[imsize2];

for(i=0;i<npol;i++)
{

dirty_map[i]=new double[imsize2];
current_model[i]=new double[imsize2];
new_model[i]=new double[imsize2];
current_residuals[ i]=new double[imsize2];
new_residuals[i]=new double[imsize2];
convolved_model[i]=new double[imsize2];
best_model[i] = new double[imsize2];

chi2_rms[i] = 0.0;
rms_theoretical[i ] = 0.0;
zero_spacing_flux[i] = 0.0;

}

if (err!=0)
{

goto free_mem_exit;
}

for(i=0;i<npol;i++)
{

zero_spacing_flux[i] = 0.0;
rms_theoretical[i ] = 0.0;

}

if (fout.is_open())
{

for(i=0;i<npol−1;i++)
{

getline (fout,filename_pol[i ]) ; // read in the filenames of the Q,U,V files
}

for(i=npol;i<4;i++)
{

getline (fout, line ) ; // read in any blank lines
}

getline (fout,filename_dirty_beam); // filename of dirty beam

getline (fout,filename_default_map); // filename of default map (if any)

for(i=0;i<npol;i++)
{

getline (fout, line ) ;
zero_spacing_flux[i] = atof(line .c_str()) ; // read in estimated fluxes

}

for(i=npol;i<4;i++)
{

getline (fout, line ) ; // read in any blank lines
}

estimate_flux = false;
getline (fout, line ) ;
i = atoi(line .c_str()) ;
if ( i>0)
{
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conserve_flux = true;
if ( i==2)
{

estimate_flux = true;
}

}
else
{

conserve_flux=false;
}

for(i=0;i<npol;i++)
{

getline (fout, line ) ;
rms_theoretical[i ] = atof(line .c_str()) ; // read in estimated fluxes

}

for(i=npol;i<4;i++)
{

getline (fout, line ) ; // read in any blank lines
}

getline (fout, line ) ;
niter = atoi(line .c_str()) ; // read in number of iterations

getline (fout, line ) ;
bmaj_restoring = atof(line.c_str()); // read in restoring beam

getline (fout, line ) ;
bmin_restoring = atof(line.c_str());

getline (fout, line ) ;
bpa_restoring = atof(line.c_str()) ;

getline (fout, line ) ;
blcx = atoi(line .c_str()) ; // read in noise box info
blcx−−;

getline (fout, line ) ;
blcy = atoi(line .c_str()) ; // read in blc and trc . Convert to 0 base.
blcy−−;

getline (fout, line ) ;
trcx = atoi(line .c_str()) ;
trcx−−;

getline (fout, line ) ;
trcy = atoi(line .c_str()) ;
trcy−−;

getline (fout, line ) ; // read in acceleration factor name
acceleration_factor = atof(line .c_str()) ;

getline (fout, line ) ; // read in q factor name
q_factor = atof(line .c_str()) ;

getline (fout, line ) ; // read in polarisation upweight factor name
pol_upweight_factor = atof(line.c_str());

getline (fout,output_name); // read in output name

getline (fout, line ) ;
ignore_edge_pixels = atoi(line.c_str());

getline (fout, line ) ;
if (atoi( line .c_str())==1) // read in debug mode option
{

debug=true;
}
else
{

debug=false;
}

fout. close () ;
}
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else
{

return(1);
}

// prepare FT plans

forward_transform = fftw_plan_dft_r2c_2d(imsize ∗ pad_factor , imsize ∗ pad_factor , double_buff , complex_buff
, FFTW_MEASURE ); // optimise FFT

backward_transform = fftw_plan_dft_c2r_2d(imsize ∗ pad_factor , imsize ∗ pad_factor , complex_buff ,
double_buff , FFTW_MEASURE ); // r2c is always a forward transform etc

if ( bmaj_restoring == 0 || bmin_restoring ==0) // if no restoring beam is given, use the beam from the dirty maps
{

bmaj_restoring = bmaj;
bmin_restoring = bmin;
bpa_restoring = bpa; // storing in degrees

}
else
{

bmaj_restoring /= 3600.0;
bmin_restoring /= 3600.0;

}

// print out some information

cout<<"Running PMEM."<<endl<<endl;
cout<<"Target files:"<<endl;
cout<<"\t Stokes I : "<<filename_dirty_imap<<" with an estimated flux of "<<zero_spacing_flux[0]<<" Jy."<<

endl;
for( i = 1; i < npol ; i++ )
{

cout<<"\t Stokes "<<i+1<<" : "<<filename_pol[i−1]<<" with an estimated flux of "<<zero_spacing_flux[i
]<<" Jy."<<endl;

}
cout<<"\t Dirty beam : "<<filename_dirty_beam<<"."<<endl;
if ( filename_default_map.length() > 1)
{

cout<<"\t Default map : "<<filename_default_map<<"."<<endl;
}
else
{

cout<<"\t No default map used."<<endl;
}
cout<<endl<<"Restoring beam information:"<<endl;
cout<<"\t BMAJ = "<<bmaj_restoring∗3600.0<<" as, BMIN = "<<bmin_restoring∗3600.0<<" as, BPA = "<<

bpa_restoring<<" deg."<<endl<<endl;
cout<<"Map details :"<<endl;
cout<<"\t Imsize = "<<imsize<<" pixels."<<endl;
cout<<"\t Cellsize = "<<cell∗(3600.0∗1000.0)<<" mas."<<endl<<endl;
cout<<"Running parameters :"<<endl;
cout<<"\t Acceleration factor = "<<acceleration_factor<<endl;
cout<<"\t Q factor = "<<q_factor<<endl;
cout<<"\t Polarisation upweight factor = "<<pol_upweight_factor<<endl;
cout<<endl<<endl;

ncc=0; // turn off any clean component handling
err = cfits_read_map(filename_dirty_imap.c_str() , dirty_map[0] , imsize2 , null_double , null_double ,

null_double , ncc );
if (err!=0)
{

cout<<endl<<"Error detected reading map from "<<filename_dirty_imap<<", err = "<<err<<endl<<endl
;

cout<<"Program closing"<<endl;
goto free_mem_exit;

}
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for(i=1;i<npol;i++) // read in all the polarisation maps (if any)
{

err = cfits_read_header_map( filename_pol[i−1].c_str() , &imsize , &cell , &ra , &dec , centre_shift ,
rotations , &freq , &freq_delta , &stokes[i ] , object , observer , telescope , &equinox , date_obs ,
&temp , &temp , &temp , &ncc ); // note the only new piece of information here is the stokes value
(read in temp to avoid overwriting bmaj etc .)

if (err!=0)
{

cout<<endl<<"Error detected reading header from "<<filename_pol[i−1]<<", err = "<<err<<endl
<<endl;

cout<<"Program closing"<<endl;
goto free_mem_exit;

}

ncc = 0;

err = cfits_read_map( filename_pol[i−1].c_str() , dirty_map[i] , imsize2 , null_double , null_double ,
null_double , ncc ) ;

if (err!=0)
{

cout<<endl<<"Error detected reading map from "<<filename_pol[i−1]<<", err = "<<err<<endl<<
endl;

cout<<"Program closing"<<endl;
goto free_mem_exit;

}
}

err = cfits_read_map( filename_dirty_beam.c_str() , dirty_beam , imsize2 , null_double , null_double ,
null_double , ncc );

if (err!=0)
{

cout<<endl<<"Error detected reading beam from "<<filename_dirty_beam<<", err = "<<err<<endl<<
endl;

cout<<"Program closing"<<endl;
goto free_mem_exit;

}

// estimate number of pixels per beam

pixels_per_beam = bmaj ∗ bmin ∗ M_PI / ( 4.0 ∗ log(2) ∗ cell ∗ cell );
if (pixels_per_beam <= 0 )
{

cout<<"Error in estimating beamize. Strictly positive number of pixels per beam required."<<endl;
goto free_mem_exit;

}
cout<<"Pixels per beam = "<<pixels_per_beam<<endl;

// initialize default map

if ( filename_default_map.length() > 1)
{

cout<<"Using given map as default."<<endl;

ncc = 0;
cfits_read_map( filename_default_map.c_str() , default_map2 , imsize2 , null_double , null_double ,

null_double , ncc ); // load default map if given

temp = 0.0;
for(i=0;i<imsize2;i++)
{

temp += default_map2[i];
}
temp = zero_spacing_flux[0] / temp; // normalise flux of default map to guess
temp ∗= temp;

for(i=0;i<imsize2;i++)
{

default_map2[i] ∗= (default_map2[i]∗temp);
}

}
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else
{

cout<<"Making flat default map."<<endl;

temp=zero_spacing_flux[0]/(imsize2); // temp becomes the pixel value of the ( flat ) default map
temp = temp ∗ temp; // the default map is never actually used, but its square is

for(i=0;i<imsize2;i++)
{

default_map2[i]=temp;
}

}

// initialize current models and zero residual maps

if ( imsize − 2 ∗ ignore_edge_pixels <= 0)
{

cout<<"Ingore edge pixels = "<<ignore_edge_pixels<<" is too large for image of size "<<imsize<<endl;
goto free_mem_exit;

}

ctr = (imsize − ignore_edge_pixels);
k = ctr ∗ ctr ;

for(int tpol=0; tpol<npol;tpol++)
{

err = zero_array(new_residuals[tpol], imsize);
err = zero_array(current_residuals[tpol], imsize) ;
err = zero_array(current_model[tpol], imsize);

temp = zero_spacing_flux[tpol] / k;
cout<<"Initial model of polarisation "<<tpol<<" is set to a flat map with pixel value = "<<temp<<endl;

#pragma omp parallel for collapse(2)
for( i = ignore_edge_pixels ; i < ctr ; i++ )
{

for( j = ignore_edge_pixels ; j < ctr ; j++ )
{

current_model[tpol][i∗imsize + j] = temp;
}

}
}

cout<<"Set to ignore "<<ignore_edge_pixels<<" edge pixels."<<endl;
cout<<"Acceleration factor set to "<<acceleration_factor<<endl;

// find ft of the dirty beam

if ( pad_factor == 1)
{

arrange_ft( dirty_beam , imsize ); // rearrange beam to prepare for use in convolution
}

ft_beam(dirty_beam , dirty_beam_ft , imsize , pad_factor , forward_transform , double_buff , complex_buff); //
get ft

// convolve initial model maps with dirty beam and get residual maps

for(i=0;i<npol;i++)
{

convolve( current_model[i] , dirty_beam_ft , imsize , pad_factor , convolved_model[i] , forward_transform ,
backward_transform , double_buff , complex_buff);

get_residual_map( dirty_map[i] , convolved_model[i] , current_residuals[i] , imsize, ignore_edge_pixels );
}

// initialize alpha, beta and gamma

alpha = 0.0;
beta = 0.0;
gamma = 0.0;
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// Caculate Q, a factor used in the approximation of the Hessian matrix as diagonal . Important value. (see Cornwell
& Evans 1984, Sault 1990)

q = 0.0;
#pragma omp parallel for reduction( +: q)
for( i = 0 ; i < imsize2 ; i++ )
{

q += dirty_beam[i]∗dirty_beam[i];
}
q = q_factor ∗ sqrt( q ) ;
cout<<"Q = "<<q<<endl;

// get some information

err=get_info( current_model , current_residuals , default_map2 , grad , chi2_rms, total_flux , alpha , beta ,
gamma , imin, imax , imsize , npol , q , ignore_edge_pixels);

if (err!=0)
{

cout<<endl<<"Error detected in initial get_info, err = "<<err<<endl<<endl;
cout<<"Program closing"<<endl;
goto free_mem_exit;

}

if (debug)
{

cout<<endl<<endl<<"Initial values"<<endl;
cout<<"Alpha, beta, gamma = "<<alpha<<" , "<<beta<<" , "<<gamma<<endl;
cout<<"Total flux, max and min = "<<total_flux<<" , "<<imax<<" , "<<imin<<endl;
cout<<"First step, second step, step limit = "<<step_length1<<" , "<<step_length2<<" , "<<step_limit

<<endl; // output some info
cout<<"GradJ.J, Grad1.1, J0, J1 = "<<grad.JJ<<" , "<<grad.II<<" , "<<J0<<" , "<<J1<<endl;
cout<<"Delta E, F, G = "<<delta_E<<" , "<<delta_F<<" , "<<delta_G<<endl;
cout<<"GradE.E, GradF.F, GradG.G = "<<grad.EE<<" , "<<grad.FF<<" , "<<grad.GG<<endl;
cout<<"GradE.F, GradF.G, GradE.G = "<<grad.EF<<" , "<<grad.FG<<" , "<<grad.EG<<endl; // output

even more info
cout<<"GradE.H, GradF.H, GradG.H = "<<grad.EH<<" , "<<grad.FH<<" , "<<grad.GH<<endl;
cout<<"GradE.J, GradF.J, GradG.J = "<<grad.EJ<<" , "<<grad.FJ<<" , "<<grad.GJ<<endl;

}

// start iterations

converged=false;
ctr=0;
old_step_length1=0.0;
old_step_length2=0.0;
min_rms_i_ctr = 0;
convergence_limit=100;

while(!converged && ctr < niter)
{

ctr++;
k = (imsize − ignore_edge_pixels) ∗ (imsize − ignore_edge_pixels); // number of pixels being used

delta_E = (chi2_rms[0] − (rms_theoretical[0] ∗ rms_theoretical[0] ∗ k) ) / q; // find differences in E, F
and G

delta_F = 0.0;
for(i=1;i<npol;i++)
{

delta_F += ( ( chi2_rms[i] − (rms_theoretical[i] ∗ rms_theoretical[i] ∗ k) ) / q);
}
delta_F ∗= pol_upweight_factor; // upweight polarisation error

delta_G = total_flux − zero_spacing_flux[0];

err = new_ABG( grad , delta_E , delta_F , delta_G , alpha , beta , gamma , conserve_flux , npol ); //
update values of alpha, beta , gamma

if (err!=0)
{

cout<<endl<<"Error detected in new_ABG, err = "<<err<<endl<<endl;
break;
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}

err = cal_step( current_model , current_residuals , default_map2 , alpha , beta , gamma , imsize , npol , q ,
J0 , new_model, ignore_edge_pixels); // find a good step

if (err!=0)
{

cout<<endl<<"Error detected in cal_step, err = "<<err<<endl<<endl;
break;

}

step_limit = 1.0;
if ( grad.JJ > 0 )
{

step_limit = min( 2.0 , acceleration_factor ∗ 0.15 ∗ grad.II / grad.JJ ); // this line is very
very very important ... ( especially the 0.15 factor )

}
step_length1 = min( 0.5 ∗ (1.0 + old_step_length1) , step_limit); // step length etc . is measured as a

fraction (between 0 and 1)
old_step_length1 = step_length1;
J0 ∗= step_length1;

err = take_step( current_model , new_model , step_length1 , step_limit , imsize , npol, ignore_edge_pixels)
; // take the step calculated , but scaled by step_length1

if (err!=0)
{

cout<<endl<<"Error detected in take_step, err = "<<err<<endl<<endl;
break;

}

// convolve new model maps with dirty beam and get new residual maps

for(i=0;i<npol;i++)
{

convolve( new_model[i] , dirty_beam_ft , imsize , pad_factor , convolved_model[i] ,
forward_transform , backward_transform , double_buff , complex_buff);

get_residual_map( dirty_map[i] , convolved_model[i] , new_residuals[i] , imsize, ignore_edge_pixels
);

}

err = check_step( current_model , new_model , new_residuals , default_map2 , alpha , beta , gamma ,
imsize , npol , q , J1 , ignore_edge_pixels); // check if the step was near optimal

if (err!=0)
{

cout<<endl<<"Error detected in check_step, err = "<<err<<endl<<endl;
break;

}

if ( J0 − J1 != 0.0 )
{

step_length2 = J0 / (J0 − J1);
}
else
{

step_length2 = 1.0;
}
step_length2 = 0.5 ∗ (step_length2 + old_step_length2);
step_length2 = min( step_length2 , step_limit / step_length1 );
old_step_length2 = step_length2;

if ( fabs( step_length2 − 1.0) > 0.05 ) // if step 1 was okay, just use it , but if step 2 offers a decent
advantage take the average of step1 and step2

{
err = interpolate_models( current_model , new_model , step_length2 , imsize , npol,

ignore_edge_pixels); // interpolate between old and new models, scaling with step2
if (err!=0)
{

cout<<endl<<"Error detected in interpolation of new and old models, err = "<<err<<endl
<<endl;

break;
}

err = interpolate_residuals( current_residuals , new_residuals , step_length2 , imsize2 , npol);
// interpolate residuals too

if (err!=0)
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{
cout<<endl<<"Error detected in interpolation of new and old residuals, err = "<<err<<endl

<<endl;
break;

}

if (debug)
{

cout<<"Interpolating current and new models."<<endl;
}

}
else
{

err = copy_model( current_model , new_model ); // just copy new model into old model
if (err!=0)
{

cout<<endl<<"Error detected replacing new and old models, err = "<<err<<endl<<endl;
break;

}

err = copy_model( current_residuals , new_residuals ); // just copy new residuals into old model
if (err!=0)
{

cout<<endl<<"Error detected replacing new and old residuals, err = "<<err<<endl<<endl;
break;

}

if (debug)
{

cout<<"Replacing current model with new model."<<endl;
}

}

err = get_info( current_model , current_residuals , default_map2 , grad , chi2_rms, total_flux , alpha ,
beta , gamma , imin, imax , imsize , npol , q , ignore_edge_pixels); // get grads etc .

if (err!=0)
{

cout<<endl<<"Error detected in get_info, err = "<<err<<endl<<endl;
goto free_mem_exit;

}

if (debug || (ctr%100 == 0) )
{

cout<<endl<<endl<<"Iteration number "<<ctr<<endl;
cout<<"Alpha, beta, gamma = "<<alpha<<" , "<<beta<<" , "<<gamma<<endl;
cout<<"Total flux, max and min = "<<total_flux<<" , "<<imax<<" , "<<imin<<endl;

}

if (debug)
{

cout<<"First step, second step, step limit = "<<step_length1<<" , "<<step_length2<<" , "<<
step_limit<<endl; // output some info

cout<<"GradJ.J, Grad1.1, J0, J1 = "<<grad.JJ<<" , "<<grad.II<<" , "<<J0<<" , "<<J1<<endl;
cout<<"Delta E, F, G = "<<delta_E<<" , "<<delta_F<<" , "<<delta_G<<endl;
cout<<"GradE.E, GradF.F, GradG.G = "<<grad.EE<<" , "<<grad.FF<<" , "<<grad.GG<<endl;
cout<<"GradE.F, GradF.G, GradE.G = "<<grad.EF<<" , "<<grad.FG<<" , "<<grad.EG<<endl;

// output even more info
cout<<"GradE.H, GradF.H, GradG.H = "<<grad.EH<<" , "<<grad.FH<<" , "<<grad.GH<<endl;
cout<<"GradE.J, GradF.J, GradG.J = "<<grad.EJ<<" , "<<grad.FJ<<" , "<<grad.GJ<<endl;

}

converged_temp = true; // check for convergence

// update the rms that has been reached

for(i=0;i<npol;i++)
{

current_rms[i] = rms_region( current_residuals[i] , blcx , blcy , trcx , trcy , imsize) ; //
this might actually go up at the start , as the residual map is not a noise map initially

}

// Check if the current iteration is the best ( best average polarisation , if available )
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if (npol==1)
{

if ( current_rms[0] < min_rms[0] )
{

min_rms[0] = current_rms[0];
min_rms_i_ctr = ctr;

#pragma opm parallel for
for(k=0; k<imsize2; k++)
{

best_model[0][k] = current_model[0][k];
}

}
}
else
{

temp = 0.0;
temp2 = 0.0;
for(k = 0; k < npol ; k++)
{

temp += current_rms[k];
temp2 += min_rms[k];

}

if ( temp < temp2 )
{

for(k=0; k<npol; k++)
{

min_rms[k] = current_rms[k];
}
min_rms_i_ctr = ctr;

#pragma opm parallel for collapse(2)
for(j=0; j<npol; j++)
{

for(k=0; k<imsize2; k++)
{

best_model[j][k] = current_model[j][k];
}

}
}

}

// Test for convergence

for(i=0;i<npol;i++)
{

converged = ( current_rms[i] < rms_theoretical[i] ) ;

if (debug or (ctr%100 == 0) )
{

if (converged)
{

cout<<"Stokes "<<i+1<<" has converged. "<<current_rms[i]<<" < "<<
rms_theoretical[i]<<endl;

}
else
{

cout<<"Convergence test S"<<i+1<<": "<<current_rms[i]<<" needs to be < "<<
rms_theoretical[i] <<endl;

}
}

converged = converged && converged_temp;
converged_temp = converged;

}

// Add flux condition if required

if (conserve_flux && (!estimate_flux) )
{

converged = converged && ( total_flux − zero_spacing_flux[0] < flux_tolerance ∗ zero_spacing_flux
[0]);
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if (debug&&converged)
{

cout<<"Flux has converged."<<endl;
}

}
converged = converged && (grad.JJ / grad.II < convergence_tolerance);

if (alpha!=alpha)
{

err=1;
cout<<endl<<"Error : Infinity detected in alpha."<<endl<<endl; // a check to make sure no

infinities are around
goto free_mem_exit;

}
if (total_flux < 0)
{

err=1;
cout<<endl<<"Error : Negative total Stokes I flux detected in model."<<endl<<endl;
goto free_mem_exit;

}

if ( ctr − min_rms_i_ctr > convergence_limit )
{

cout<<endl<<"Convergence appears to have stopped."<<endl;
cout<<"If you have not achieved the desired convergence try changing some parameters."<<endl;
break;

}
}

if (converged)
{

cout<<endl<<"Successful convergence after "<<ctr<<" iterations."<<endl;
for(i=0;i<npol;i++)
{

cout<<"Stokes "<<i+1<<" has converged. "<<current_rms[i]<<" < "<<rms_theoretical[i]<<endl;
}

}
else
{

cout<<endl<<"Failed to converge after "<<ctr<<" iterations."<<endl;
for(i=0;i<npol;i++)
{

cout<<"Convergence test S"<<i+1<<": "<<current_rms[i]<<" needs to be < "<< rms_theoretical[i
] <<endl;

}
}

cout<<endl<<endl<<"Final iteration number "<<ctr<<endl;
cout<<"Alpha, beta, gamma = "<<alpha<<" , "<<beta<<" , "<<gamma<<endl;
cout<<"Total flux, max and min = "<<total_flux<<" , "<<imax<<" , "<<imin<<endl;

if (debug)
{

cout<<"First step, second step, step limit = "<<step_length1<<" , "<<step_length2<<" , "<<step_limit
<<endl; // output some info

cout<<"GradJ.J, Grad1.1, J0, J1 = "<<grad.JJ<<" , "<<grad.II<<" , "<<J0<<" , "<<J1<<endl;
cout<<"Delta E, F, G = "<<delta_E<<" , "<<delta_F<<" , "<<delta_G<<endl;
cout<<"GradE.E, GradF.F, GradG.G = "<<grad.EE<<" , "<<grad.FF<<" , "<<grad.GG<<endl;
cout<<"GradE.F, GradF.G, GradE.G = "<<grad.EF<<" , "<<grad.FG<<" , "<<grad.EG<<endl; // output

even more info
cout<<"GradE.H, GradF.H, GradG.H = "<<grad.EH<<" , "<<grad.FH<<" , "<<grad.GH<<endl;
cout<<"GradE.J, GradF.J, GradG.J = "<<grad.EJ<<" , "<<grad.FJ<<" , "<<grad.GJ<<endl;

}

if ( (min_rms[0] < current_rms[0]) && (!converged) )
{

cout<<endl<<endl<<"A better Stokes I convergence of "<<min_rms[0]<<" was attained during iteration "
<<min_rms_i_ctr<<endl;

cout<<"Corresponding S2 convergence is "<<min_rms[1]<<endl;
cout<<"Corresponding S3 convergence is "<<min_rms[2]<<endl;
cout<<"Loading results from there."<<endl;

for(i=0;i<npol;i++) // calculate convolved final models from best_model
{
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convolve( best_model[i] , dirty_beam_ft , imsize , pad_factor , convolved_model[i] ,
forward_transform , backward_transform , double_buff , complex_buff);

get_residual_map( dirty_map[i] , convolved_model[i] , current_residuals[i] , imsize,
ignore_edge_pixels );

}
}

gen_gauss(new_model[0], imsize , cell, bmaj_restoring , bmin_restoring , bpa_restoring); // make restoring
beam

if ( pad_factor == 1)
{

arrange_ft( new_model[0] , imsize ); // arrange beam so that the convolution will work well
}

ft_beam(new_model[0] , dirty_beam_ft , imsize , pad_factor , forward_transform , double_buff , complex_buff); //
get ft of restoring beam

for(i=0;i<npol;i++) // calculate convolved final models
{

convolve( best_model[i] , dirty_beam_ft , imsize , pad_factor , convolved_model[i] , forward_transform ,
backward_transform , double_buff , complex_buff);

}

temp = bmaj_restoring ∗ bmin_restoring ∗ M_PI / ( 4.0 ∗ log(2) ∗ cell ∗ cell ); // set time = number of pixels in
restoring beam

// there is a good possiblity that temp = pixels per beam, but if the restoring beam is different to the initial
beam, then the units of Jy/Beam in the residuals need to be converted to Jy/restoring beam.

temp = temp / pixels_per_beam;

cout<<endl<<endl<<"Ratio of restoring beam to \"natural\" beam = "<<temp<<endl;

#pragma omp parallel for collapse(2)
for(i=0;i<npol;i++) // add in residuals
{

for(j=0;j<imsize2;j++)
{

current_residuals[ i ][ j ] = − current_residuals[i][ j ] ∗ temp; // residuals defined as dirty model
− dirty map, redefine and rescale

new_model[i][j] = convolved_model[i][j] + current_residuals[i ][ j ]; // save final
map in new_model

}
}

cout<<"Writing out maps..."<<endl;

for(i=0;i<npol;i++) // write out convolved models
{

line .assign(output_name);
line .append("_Model_S");
line .append(int2str(i+1));
line .append(".fits ") ;
err = cfits_write( line .c_str() , best_model[i] , imsize , cell , ra , dec , centre_shift , rotations , freq

, freq_delta , stokes [ i ] , object , observer , telescope , equinox , date_obs , history ,
bmaj_restoring , bmin_restoring , bpa_restoring , ctr , false) ;

if (err!=0)
{

cout<<endl<<"Error detected in attempting to write to "<<line<<", err = "<<err<<endl<<endl;
}

line .assign(output_name);
line .append("_Convolved_S");
line .append(int2str(i+1));
line .append(".fits ") ;
err = cfits_write( line .c_str() , convolved_model[i] , imsize , cell , ra , dec , centre_shift , rotations ,

freq , freq_delta , stokes [ i ] , object , observer , telescope , equinox , date_obs , history ,
bmaj_restoring , bmin_restoring , bpa_restoring , ctr , true);

if (err!=0)
{

cout<<endl<<"Error detected in attempting to write to "<<line<<", err = "<<err<<endl<<endl;
}
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line .assign(output_name);
line .append("_Residual_S");
line .append(int2str(i+1));
line .append(".fits ") ;
err = cfits_write( line .c_str() , current_residuals[ i ] , imsize , cell , ra , dec , centre_shift , rotations

, freq , freq_delta , stokes [ i ] , object , observer , telescope , equinox , date_obs , history ,
bmaj_restoring , bmin_restoring , bpa_restoring , ctr , true);

if (err!=0)
{

cout<<endl<<"Error detected in attempting to write to "<<line<<", err = "<<err<<endl<<endl;
}

line .assign(output_name);
line .append("_Final_S");
line .append(int2str(i+1));
line .append(".fits ") ;
err = cfits_write( line .c_str() , new_model[i] , imsize , cell , ra , dec , centre_shift , rotations , freq ,

freq_delta , stokes [ i ] , object , observer , telescope , equinox , date_obs , history ,
bmaj_restoring , bmin_restoring , bpa_restoring , ctr , true);

if (err!=0)
{

cout<<endl<<"Error detected in attempting to write to "<<line<<", err = "<<err<<endl<<endl;
}

}

// free up memory

free_mem_exit:
cout<<"Freeing up memory..."<<endl;

fftw_destroy_plan(forward_transform);
fftw_destroy_plan(backward_transform);

fftw_cleanup_threads();

for(i=0;i<npol;i++)
{

delete[] dirty_map[i];
delete[] current_model[i];
delete[] new_model[i];
delete[] current_residuals[ i ];
delete[] new_residuals[i ];
delete[] convolved_model[i];
delete[] best_model[i];

}
delete[] dirty_map;
delete[] current_model;
delete[] new_model;
delete[] current_residuals;
delete[] new_residuals;
delete[] convolved_model;
delete[] best_model;
delete[] chi2_rms;
delete[] rms_theoretical;
delete[] zero_spacing_flux;

delete[] default_map2;
delete[] dirty_beam;
fftw_free(dirty_beam_ft);
fftw_free(double_buff);
fftw_free(complex_buff);

if (npol > 1)
{

delete[] filename_pol;
}
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cout<<"End of program"<<endl;

if (err == 0 && !converged)
{

return(2);
}
else
{

return(err);
}

}

/∗
write_csv

write_csv writes out a matrix into a comma separated volume file

inputs :
filename = the name of the output file
array = the matrix to be written out
imsize = the dimension of the matrix

outputs :
on return = err (0 if no error)

∗/

int write_csv(string filename, double∗ array, int imsize)
{

int i , j ,k;
int err ;
ofstream fout;
char∗ cfilename;

cfilename=new char[filename.length()]; // get name into C format
strcpy(cfilename,filename.c_str()) ;

fout.open(cfilename,ios :: out);
err=fout.is_open();

k=0;
for(i=0;i<imsize;i++)
{

fout<<array[k];
k++;
for(j=1;j<imsize;j++)
{

fout<<","<<array[k];
k++;

}
fout<<endl;

}
fout. close () ;

delete[] cfilename;
return(err);

}

/∗
int2str converts an integer to a string

∗/

string int2str (int num)
{

stringstream ss ;

ss<<num;

return(ss.str()) ;
}

/∗
arrange_ft

arrange_ft changes an image to "wrap−around" order by swapping quadrants 1 −−> 3, and 2 −−> 4
This can be useful in performing an FFT
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At the moment this function is needed only for FFTs with no zero padding (not the default case)

inputs :

arr = the image (stored in doubles) that needs to be rearranged
imsize = the dimension of the image (length of one side)

outputs :

arr = the image now in "wrap−around" order
∗/

void arrange_ft(double∗ arr, int imsize)
{

int i , j ,k, l ;
int half=(imsize/2); // 0.5∗dimension

double temp;

#pragma omp parallel for collapse(2) private(k,l,temp)
for(i=0;i<half;i++) // swap values from q1 to q3, and q2 to q4
{

for(j=0;j<half;j++)
{

k=i∗imsize+j; // location in q1
l=(i+half)∗imsize+half+j; // location in q3

temp = arr[k]; // re
arr [k] = arr[l ];
arr [ l ] = temp;

k=i∗imsize+j+half; // location in q2
l=(i+half)∗imsize+j; // location in q4

temp = arr[k]; // re
arr [k] = arr[l ];
arr [ l ] = temp;

}
}

}

/∗
"convolve"

Convolves data with the repsonse function response and copies output to output.

Inputs:

data = data to be convolved
response = response function (same size as data)
imsize = size of data, response and output
pad_factor = amount of zero padding (1 = no zero padding, 2 = imsize zero padding, etc .)
forward_transform = fftw plan for forward transform
backward_transform = fftw plan for backward transform
double_buff = work space for fftw plans
complex_buff = work space for fftw plans

Outputs:

output = the convolved data
on return, 0

∗/

int convolve(double∗ data, fftw_complex∗ response, int imsize, int pad_factor, double∗ output , fftw_plan&
forward_transform, fftw_plan& backward_transform, double∗ double_buff, fftw_complex∗ complex_buff)

{
int i , j , k;

int imsize_pad = pad_factor ∗ imsize;
double temp1 , temp2;
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#pragma omp parallel for collapse(2) private(k) // initialise (padded) working array for forward transform
for(i=0;i<imsize_pad;i++)
{

for(j=0;j<imsize_pad;j++)
{

k = (i ∗ imsize_pad) + j ;
if ( ( i < imsize ) && ( j <imsize ) )
{

double_buff[k] = data[ (i ∗ imsize) + j ];
}
else
{

double_buff[k] = 0.0;
}

}
}

fftw_execute( forward_transform ); // forward transform

j = pad_factor ∗ imsize ∗ ( pad_factor ∗ imsize / 2 + 1 ); // this is the point where Hermitian conjugacy
means the FFTW routine has stopped spitting out more data

// no need to process the additional data, as the c2r
transform assumes conjugacy too

k = imsize_pad ∗ imsize_pad;

#pragma omp parallel for private(temp1,temp2)
for( i=0 ; i < j ; i++ ) // convolution theorem
{

temp1 = ( complex_buff[i][0] ∗ response[i ][0] − complex_buff[i][1] ∗ response[ i ][1] ) / double( k );
temp2 = ( complex_buff[i][1] ∗ response[i ][0] + complex_buff[i][0] ∗ response[ i ][1] ) / double( k ); //

the k scales data_pad and response_pad correctly

complex_buff[i][0] = temp1;
complex_buff[i][1] = temp2;

}

fftw_execute( backward_transform ); // inverse transform

if (pad_factor==1) // k is the displacement necessary to read from the centre of the padded array
{

k = 0;
}
else
{

k = (pad_factor − 1) ∗ imsize / 2;
}

#pragma omp parallel for collapse(2) // copy data to result , reading from the "centre" of the padded output
for(i=0;i<imsize;i++)
{

for(j=0;j<imsize;j++)
{

output[ ( i ∗ imsize) + j ] = double_buff[ ( (i + k) ∗ imsize_pad) + j + k];
}

}

return(0);
}

/∗
ft_beam

ft_beam FFTs a beam (dirty or restoring ) and saves the result in a complex array
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As the FFT is real to complex, the array does not need the same dimensions as the input due to the Hermitian
conjugacy of the resulting FT frequencies

This FFT is done outside the convolution function because the beam only needs to be FFTed once. This saves processing
time.

inputs :

beam = the beam image to be FFTed (dirty or restoring )
imsize = the length/width of the image
pad_factor = amount of zero padding (1 = no zero padding, 2 = imsize zero padding, etc .)
plan = fftw plan for forward transform
double_buff = work space for fftw plans
complex_buff = work space for fftw plans

outputs :

ft_beam = the FFT of the beam
on return, 0

∗/

int ft_beam(double∗ beam, fftw_complex∗ ft_beam, int imsize, int pad_factor, fftw_plan& plan, double∗ double_buff,
fftw_complex∗ complex_buff)

{
int imsize_pad = pad_factor ∗ imsize;
int i , j , k;

#pragma omp parallel for collapse(2) private(k) // initialise (padded) working array for transform
for(i=0;i<imsize_pad;i++)
{

for(j=0;j<imsize_pad;j++)
{

k = (i ∗ imsize_pad) + j ;
if ( ( i < imsize ) && ( j < imsize ) )
{

double_buff[k] = beam[ (i ∗ imsize) + j ];
}
else
{

double_buff[k] = 0.0;
}

}
}

// pad_image( beam , double_buff , imsize , pad_factor); // initialise (padded) working array for forward transform,
using padding correctly

fftw_execute(plan); // forward transform

j = pad_factor ∗ imsize ∗ ( pad_factor ∗ imsize / 2 + 1 ); // only read in as much as necessary, taking the
Herm. cong. into account

for(i=0;i<j;i++) // copy result to output array
{

ft_beam[i][0] = complex_buff[i][0];
ft_beam[i][1] = complex_buff[i][1];

}

return(0);
}

/∗
"zero_array"

sets array to zero . useful for initial declaration of residuals

inputs :

array = map
imsize = length of one side of the array

outputs :

array = map, now zero everywhere
∗/

int zero_array(double∗ array, int imsize)
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{
#pragma omp parallel for
for(int i = 0; i < imsize ; i++ )
{

array [0] = 0.0;
}

return(0);
}

/∗
"get_residual_map"

gets the residual map of the convolved model − the dirty map (units = Jy/beam)

inputs :

dirty_map = dirty map, nothing done to it (units = Jy/beam)
convolved_model = the current model convolved with the dirty beam (units = Jy/beam)
size = the number of pixels

outputs :

residual_map = difference between convolved model and dirty map
on return, 0

∗/

int get_residual_map(double∗ dirty_map , double∗ convolved_model , double∗ residual_map , int imsize, int
ignore_pixels)

{
int i , j , ctr ;
int right_pixel_limit = imsize − ignore_pixels;

#pragma omp parallel for collapse (2) private(ctr)
for(i=ignore_pixels;i<right_pixel_limit;i++)
{

for(j=ignore_pixels;j<right_pixel_limit;j++)
{

ctr = i ∗ imsize + j;
residual_map[ctr] = convolved_model[ctr] − dirty_map[ctr];

}
}

return(0);
}

/∗
"get_info"

Calculates inner products . Finds the current total flux and total rms residuals

Inputs:

model = Current model imap
residual = Current residual maps (I,Q,U,V)
default_map2 = Default imap squared (normally flat)
alpha = Lagrange parameter for chi2 for Stokes I
beta = Lagrange parameter for chi2 for polarisation Stokes parameters
gamma = Lagrange paramter for flux conservation
imsize2 = The number of pixels in the images
npol = The number of polarisations
q = Factor converting Jy/pix to Jy/beam

outputs :

grad = Structure holding all the inner products that need to be calculated
chi2_rms = Calculated rms residual for I ,Q,U,V
imin = Minimum Stokes I flux
imax = Maximum Stokes I flux
on return = error (0 if none)

∗/

int get_info(double∗∗ model , double∗∗ residual, double∗ default_map2 , gradient_structure& grad , double∗ chi2_rms,
double& total_flux , double alpha , double beta , double gamma , double& imin, double& imax , int imsize , int
npol, double q, int ignore_pixels)

{
double metric,dh,dh2,de,df,dg,temp,p,pexp,plog,m;
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double EE , EF , EG , EH , FF , FG , FH , GG , GH , HH , II;
int i , j , k , ctr , err ;
int right_pixel_limit = imsize − ignore_pixels;

EE = 0.0;
EF = 0.0;
EG = 0.0;
EH = 0.0;
FF = 0.0;
FG = 0.0; // note EF and FG will stay as zero
FH = 0.0;
GG = 0.0;
GH = 0.0;
HH = 0.0;
II = 0.0;

temp=0.0;

err=0;

#pragma omp parallel for collapse(2) reduction( +: EE , EG , EH , FF , FH , GG , GH , HH ,temp) private(ctr,k,p,
m,plog,pexp,dh,dh2,de,df,dg,metric)

for(i=ignore_pixels;i<right_pixel_limit;i++)
{

for(j=ignore_pixels;j<right_pixel_limit;j++)
{

ctr = i ∗ imsize + j;

p = 0.0;
for(k=1;k<npol;k++)
{

p += (model[k][ctr] ∗ model[k][ctr ]) ; // find polarised intensity for each pixel
}
p = sqrt(p);

if (p > 0.01 ∗ model[0][ctr ])
{

plog = 0.5 ∗ log( ( model[0][ctr ] − p ) / ( model[0][ctr ] + p) ) / p;
pexp = ( ( model[0][ctr ] / (p ∗ p − model[0][ctr] ∗ model[0][ctr ] ) ) − plog ) / (p ∗ p);

// calculate some expressions needed for evaluating the derivative of the
entropy

}
else
{

m = p / model[0][ctr];
plog = − (1.0 + (m ∗ m / 3.0) ) / model[0][ctr];
pexp = − ( (2.0 / 3.0) + 0.8 ∗ m ∗ m) / (model[0][ctr] ∗ model[0][ctr ] ∗ model[0][ctr ]) ;

// Taylor series expansion of above for small m (see Mathematica)
}

for(k=0;k<npol;k++)
{

if (k==0) // Stokes I only
{

dh = −0.5 ∗ log( ( model[0][ctr ] ∗ model[0][ctr ] − p ∗ p ) / ( default_map2[ctr] ) );
// derivative of the entropy contribution of pixel

dh2 = − model[0][ctr] / ( model[0][ctr ] ∗ model[0][ctr ] − p ∗ p);
// second derivative of the entropy contribution of

pixel
de = 2.0 ∗ residual [0][ ctr ];

// derivative of the Stokes I chi2 contribution of the pixel
df = 0.0;

// derivative of the Stokes Q,U,V chi2 contribution of the pixel
dg = 1.0;

// derivative of the flux conservation term contribution of the pixel
metric = 1.0/( 2.0 ∗ q ∗ alpha − dh2);

// metric of the minimisation at this point
}
else // Other Stokes parameters (same idea)
{

dh = model[k][ctr] ∗ plog;
dh2 = plog + model[k][ctr] ∗ model[k][ctr ] ∗ pexp;
de = 0.0;
df = 2.0 ∗ residual [k ][ ctr ];
dg = 0.0;
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metric = 1.0/( 2.0 ∗ q ∗ beta − dh2);
}

EE += de∗metric∗de;
EG += de∗metric∗dg;
EH += de∗metric∗dh; // contributions to the inner products
FF += df∗metric∗df;
FH += df∗metric∗dh;
GG += dg∗metric∗dg;
GH += dg∗metric∗dh;
HH += dh∗metric∗dh;
temp += metric; // inner product 1.1

}
}

}

total_flux=0.0;

imin=9999.0;
imax=−9999.0;

for(j=0;j<npol;j++)
{

chi2_rms[j]=0.0;
}

for(i=ignore_pixels;i<right_pixel_limit;i++) // find max, min, total flux and residual chi2 term
{

for(j=ignore_pixels;j<right_pixel_limit;j++)
{

ctr = i ∗ imsize + j;

for(k=0;k<npol;k++)
{

chi2_rms[k] += residual[k][ctr] ∗ residual [k ][ ctr ];
}

total_flux += model[0][ctr];
imin=min(imin,model[0][ctr]);
imax=max(imax,model[0][ctr]);

}
}

// save inner products into the structure

grad.EJ = EH − alpha ∗ EE − beta ∗ EF − gamma ∗ EG;
grad.FJ = FH − alpha ∗ EF − beta ∗ FF − gamma ∗ FG;
grad.GJ = GH − alpha ∗ EG − beta ∗ FG − gamma ∗ GG;
grad.JJ = HH + alpha ∗ alpha ∗ EE + beta ∗ beta ∗ FF + gamma ∗ gamma ∗ GG − 2.0 ∗ alpha ∗ EH − 2.0 ∗ beta ∗

FH − 2.0 ∗ gamma ∗ GH + 2.0 ∗ alpha ∗ beta ∗ EF + 2.0 ∗ alpha ∗ gamma ∗ EG + 2.0 ∗ beta ∗ gamma ∗ FG;
II = HH + alpha ∗ alpha ∗ EE + beta ∗ beta ∗ FF + gamma ∗ gamma ∗ GG;

if (II < 0)
{

II=temp;
}

grad.EE = EE;
grad.EF = EF;
grad.EG = EG;
grad.EH = EH;
grad.FF = FF;
grad.FG = FG;
grad.FH = FH;
grad.GG = GG;
grad.GH = GH;
grad.HH = HH;
grad.II = II;

return(err);
}

/∗
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new_ABG

new_ABG gets new values for alpha, beta and gamma
This function uses LAPACK functions dgetrf (factorise into LU) and dgetrs (solve A x = b when A is LU factorised)

inputs :
grad = a structure containing all the norms calculated in get_info
delta_E = the difference between current residuals and expected residuals for Stokes I
delta_F = the difference between current residuals and expected residuals for Stokes Q and U
delta_G = the difference between current flux and expected flux
conserve_flux = a boolean that is true if flux is being conserved, false otherwise
npol = the number of polarisations being deconvolved

outputs :
alpha = the Lagrangian parameter associated with minimising Stokes I residuals
beta = the Lagrangian parameter associated with minimising Stokes Q and U residuals
gamma = the Lagrangian parameter associated with conserving the Stokes I flux
on return, 0

∗/

int new_ABG(gradient_structure grad , double delta_E , double delta_F , double delta_G , double& alpha , double&
beta , double& gamma , bool conserve_flux , int npol)

{
double l , arg;
double alpha1 , beta1 , gamma1;
double alpha2 , beta2 , gamma2;
double dalpha , dbeta , dgamma;

double epsilon1 = 0.1; // tolerance for checking if the changes in alpha etc . are "small enough". This is the MEM’
s equivalent of Gain. Keep very small.

double epsilon2 = 0.05; // tolerance for checking if the changes in l are "small enough". This is the MEM’s
equivalent of Gain.

int err ;

int n; // parameters for LAPACK functions dgetrf (factorise into LU) and dgetrs (solve A x = b when A is LU
factorised)

char trans=’T’; // indicate that the transpose should be used in LAPACK functions (row major to column major)
int nrhs = 1;

l = fabs( grad.JJ / grad.II ) ; // a measure of how quickly the cost function is changing scaled with how quickly the
I map is changing

if (alpha <= 0)
{

l=0.0;
}

if (npol ==1 )
{

if (conserve_flux)
{

n=2;
double A[4] = { grad.EE , grad.EG , grad.EG , grad.GG};
double b[2] = { grad.EH , grad.GH};
int ipiv [2];

dgetrf_(&n , &n , A , &n , ipiv, &err );
if (err != 0)
{

cout<<"Error : new_ABG : dgetrf_ : Error performing LU factorisation."<<endl;
return(1);

}

dgetrs_( &trans , &n , &nrhs , A , &n , ipiv , b , &n , &err );
if (err != 0)
{

cout<<"Error : new_ABG : dgetrs_ : Error solving linear equation."<<endl;
return(1);

}

alpha1 = b[0];
beta1 = 0.0;
gamma1 = b[1];
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b[0] = delta_E + grad.EJ; // reset b
b[1] = delta_G + grad.GJ;

dgetrs_( &trans , &n , &nrhs , A , &n , ipiv , b , &n , &err );
if (err != 0)
{

cout<<"Error : new_ABG : dgetrs_ : Error solving linear equation."<<endl;
return(1);

}

dalpha = b[0];
dbeta = 0.0;
dgamma = b[1];

}
else
{

// no beta or gamma
// need only to solve gradE.gradJ = 0, i .e. gradE.(gradH − alpha ∗ grad E)=0, or alpha = grad HE /

grad EE

alpha1 = grad.EH / grad.EE;
beta1 = 0.0;
gamma1 = 0.0;

// need to solve grad EE ∗ dalpha = delta E + grad EJ

dalpha = ( delta_E + grad.EJ ) / grad.EE;
dbeta = 0.0;
dgamma = 0.0;

}
}
else
{

if (conserve_flux)
{

// If conserving flux solve 3x3 matrix to find changes in alpha, beta , gamma

n=3;
double A[9] = { grad.EE , grad.EF , grad.EG , grad.EF , grad.FF , grad.FG , grad.EG , grad.FG ,

grad.GG };
double b[3] = { grad.EH , grad.FH , grad. GH};
int ipiv [3];

dgetrf_(&n , &n , A , &n , ipiv, &err );
if (err != 0)
{

cout<<"Error : new_ABG : dgetrf_ : Error performing LU factorisation."<<endl;
return(1);

}

dgetrs_( &trans , &n , &nrhs , &A[0] , &n , ipiv , &b[0] , &n , &err );
if (err != 0)
{

cout<<"Error : new_ABG : dgetrs_ : Error solving linear equation."<<endl;
return(1);

}

alpha1 = b[0];
beta1 = b[1];
gamma1 = b[2];

b[0] = (delta_E + grad.EJ); // reset b
b[1] = (delta_F + grad.FJ);
b[2] = (delta_G + grad.GJ);

dgetrs_( &trans , &n , &nrhs , A , &n , ipiv , b , &n , &err );

if (err != 0)
{

cout<<"Error : new_ABG : dgetrs_ : Error solving linear equation."<<endl;
return(1);
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}

dalpha = b[0];
dbeta = b[1];
dgamma = b[2];

}
else
{

n=2;
double A[4] = { grad.EE , grad.EF , grad.EF , grad.FF };
double b[2] = { grad.EH , grad.FH};
int ipiv [2];

dgetrf_(&n , &n , A , &n , ipiv, &err );
if (err != 0)
{

cout<<"Error : new_ABG : dgetrf_ : Error performing LU factorisation."<<endl;
return(1);

}

dgetrs_( &trans , &n , &nrhs , A , &n , ipiv , b , &n , &err );
if (err != 0)
{

cout<<"Error : new_ABG : dgetrs_ : Error solving linear equation."<<endl;
return(1);

}

alpha1 = b[0];
beta1 = b[1];
gamma1 = 0.0;

b[0] = delta_E + grad.EJ; // reset b
b[1] = delta_F + grad.FJ;

dgetrs_( &trans , &n , &nrhs , A , &n , ipiv , b , &n , &err );
if (err != 0)
{

cout<<"Error : new_ABG : dgetrs_ : Error solving linear equation."<<endl;
return(1);

}

dalpha = b[0];
dbeta = b[1];
dgamma = 0.0;

}
}

// check if change in alpha is "small enough"

arg = grad.EJ ∗ grad.EJ − (grad.JJ − epsilon1 ∗ grad.II) ∗ grad.EE;
if ( arg > 0 )
{

arg = sqrt(arg);
dalpha = max( (grad.EJ − arg) / grad.EE , min( (grad.EJ + arg) / grad.EE , dalpha ) );

}
else
{

dalpha=max( dalpha , 0.0);
}
alpha2 = alpha + dalpha;

// check if change in beta is "small enough"

if (npol>1)
{

arg = grad.FJ ∗ grad.FJ − (grad.JJ − epsilon1 ∗ grad.II) ∗ grad.FF;
if ( arg > 0 )
{

arg = sqrt(arg);
dbeta = max( (grad.FJ − arg) / grad.FF , min( (grad.FJ + arg) / grad.FF , dbeta ) );
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}
else
{

dbeta=max( dbeta , 0.0);
}
beta2 = beta + dbeta;

}

// check if change in gamma is "small enough"

if (conserve_flux)
{

arg = grad.GJ ∗ grad.GJ − (grad.JJ − epsilon1 ∗ grad.II) ∗ grad.GG;
if ( arg > 0 )
{

arg = sqrt(arg);
dgamma = max( (grad.GJ − arg) / grad.GG , min( (grad.GJ + arg) / grad.GG , dgamma ) );

// cout<<"Max, min = "<<(grad.GJ + arg) / grad.GG<<" , "<<(grad.GJ − arg) / grad.GG<<endl;
}
else
{

dgamma=max( dgamma , 0.0);
}
gamma2 = gamma + dgamma;

}

// decide on alpha

if ( l >= epsilon2 or alpha2 <=0.0)
{

alpha=max(alpha1,0.0);
}
else
{

alpha=max(alpha2,0.0);
}

// decide on beta

if (npol>1)
{

if ( l >= epsilon2 or beta2 <=0.0)
{

beta=max(beta1,0.0);
}
else
{

beta=max(beta2,0.0);
}

}

// decide on gamma

if (conserve_flux)
{

if ( l >= epsilon2 or gamma2 <=0.0)
{

gamma=max(gamma1,0.0);
}
else
{

gamma=max(gamma2,0.0);
}

}

return(0);
}

/∗
cal_step

cal_step finds the next step to take for the image using the Newton−Ralphson method
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It also uses the plog , m and pexp terms to try to be computationally effecient

inputs :
model = the model Stokes I , Q and U maps
residuals = the residual Stokes I , Q and U maps
default_map2 = the square of the default map
imsize2 = the number of pixels in the new map
alpha = the Lagrangian parameter associated with minimising Stokes I residuals
beta = the Lagrangian parameter associated with minimising Stokes Q and U residuals
gamma = the Lagrangian parameter associated with conserving the Stokes I flux
q = the number of pixels in a beam
npol = the number of polarisations being deconvolved

outputs :
J0 = a measure of the change in J due to the step taken
step_map = the steps for the Stokes I ,Q,U model maps
on return, 0

∗/

int cal_step(double∗∗ model , double∗∗ residual, double∗ default_map2 , double alpha , double beta , double gamma ,
int imsize , int npol, double q , double& J0 , double∗∗ step_map, int ignore_pixels)

{
double p , plog , pexp , m , dh , dh2 , gradJ , metric , step;
int i , j , k, ctr ;
int right_pixel_limit = imsize − ignore_pixels;

double J0_temp = 0.0;

#pragma omp parallel for collapse(2) reduction(+:J0_temp) private(ctr,k,p,m,plog,pexp,dh,dh2,gradJ,metric,step) //
eff : rewrite to reduce operations ( default map^2, 2∗ q )

for(i=ignore_pixels; i < right_pixel_limit; i++)
{

for(j=ignore_pixels; j < right_pixel_limit; j++)
{

ctr = i ∗ imsize + j;

p = 0.0;
if (npol>1)
{

for(k=1;k<npol;k++)
{

p += (model[k][ctr] ∗ model[k][ctr ]) ;
}
p = sqrt(p);

if (p > 0.01 ∗ model[0][ctr ])
{

plog = 0.5 ∗ log( ( model[0][ctr ] − p ) / ( model[0][ctr ] + p) ) / p;
pexp = ( ( model[0][ctr ] / (p ∗ p − model[0][ctr] ∗ model[0][ctr ] ) ) − plog ) / (p

∗ p);
}
else
{

m = p / model[0][ctr];
plog = − (1.0 + (m ∗ m / 3.0) ) / model[0][ctr];
pexp = − ( (2.0 / 3.0) + 0.8 ∗ m ∗ m) / (model[0][ctr] ∗ model[0][ctr ] ∗ model[0][ctr

]) ; // Taylor series expansion of above for small m (see Mathematica)
}

}

for(k=0;k<npol;k++)
{

if (k==0)
{

dh = − 0.5 ∗ log( (model[0][ctr ] ∗ model[0][ctr ] − p ∗ p) / (default_map2[ctr]));
dh2 = − model[0][ctr] / (model[0][ctr ] ∗ model[0][ctr ] − p ∗ p);
gradJ = dh − 2.0 ∗ alpha ∗ residual [0][ ctr ] − gamma;
metric = 1.0 / ( 2.0 ∗ q ∗ alpha − dh2);

}
else
{

dh = model[k][ctr] ∗ plog;
dh2 = plog + model[k][ctr] ∗ model[k][ctr ] ∗ pexp;
gradJ = dh − 2.0 ∗ beta ∗ residual[k ][ ctr ];
metric = 1.0/( 2.0 ∗ q ∗ beta − dh2);

}
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step = metric ∗ gradJ;
J0_temp += gradJ ∗ step;
step_map[k][ctr] = step;

}
}

}

J0 = J0_temp;

return(0);
}

/∗
take_step

take_step actually takes the step that was generated by cal_step
it also enforces a minimum flux and makes sure that the fractional polarisation does not leave the region 0<m<1

inputs :
model = the model Stokes I , Q and U maps
step = the steps for the Stokes I , Q and U model maps
step_length = the factor by which the steps should be scaled
step_limit = the maximum allowed change
imsize2 = the number of pixels in a map
npol = the number of polarisations being deconvolved

outputs :
model = the new model I, Q and U maps (after the step)
on return, 0

∗/

int take_step(double∗∗ model , double∗∗ step , double step_length , double step_limit , int imsize , int npol, int
ignore_pixels)

{

// First declare variables

double pold , pnew , iold , inew , istep , factor ;
int i , j ,k,ctr ;
int right_pixel_limit = imsize − ignore_pixels;

// Start openmp for loop if possible to efficiently loop over every pixel

#pragma omp parallel for collapse(2) private(pold, pnew, k, ctr, iold , istep , inew, factor)
for(i=ignore_pixels; i < right_pixel_limit; i++)
{

for(j=ignore_pixels; j < right_pixel_limit; j++)
{

ctr = i ∗ imsize + j;
/∗

First take the Stokes I step
Record the old value
Set istep = step (which is the step length times the recommended step). If the step is negative ,

make sure it ’s not too negative
Update Stokes I value with new flux, or min_flux − whichever is greater

∗/

iold = model[0][ctr ];
istep = step_length ∗ max( step[0][ctr] , −0.9 ∗ model[0][ctr ] / step_limit);
step [0][ ctr ] = max( model[0][ctr] + istep , min_flux );
inew = step[0][ ctr ];

// Polarisation section

if (npol > 1 )
{

// Find P, the total polarised flux , for the old and new cases

pold = 0.0;
pnew = 0.0;

for(k=1;k<npol;k++)
{

pold += model[k][ctr] ∗ model[k][ctr ];
pnew += pow( model[k][ctr] + step_length ∗ step[k][ctr] , 2);

}
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pold = sqrt(pold);
pnew = sqrt(pnew);

// Set a factor to ensure that m, the fractional polarisation , is an element of [0,1]

if ( pnew < inew )
{

factor = min( 1.0 , (0.4 ∗ inew / pnew + 0.4 ∗ pold / pnew) );
}
else
{

factor = 0.8 ∗ inew / pnew;
}

// Update the Q and U maps with their new values

for(k=1;k<npol;k++)
{

step[k ][ ctr ] = factor ∗ ( model[k][ctr ] + step_length ∗ step[k][ctr ] ) ;
}

}
}

}

return(0);
}

/∗
check_step

check_step checks to see if the previous step length was near optimal

inputs :
old_model = the model Stokes I, Q and U maps from before the last step
new_model = the model Stokes I, Q and U maps from after the last step
new_residuals = the residual Stokes I , Q and U maps from after the last step
default_map2 = the square of the default map
imsize2 = the number of pixels in the new map
alpha = the Lagrangian parameter associated with minimising Stokes I residuals
beta = the Lagrangian parameter associated with minimising Stokes Q and U residuals
gamma = the Lagrangian parameter associated with conserving the Stokes I flux
q = the number of pixels in a beam
npol = the number of polarisations being deconvolved

outputs :
J1 = a measure of the change in J due to the step taken. To be compared with J0 to see if the step should

have been bigger or smaller.
on return, 0 if no error , 1 if error detected

∗/

int check_step(double∗∗ old_model , double∗∗ new_model , double∗∗ new_residual, double∗ default_map2 , double
alpha , double beta , double gamma , int imsize , int npol, double q , double& J1, int ignore_pixels)

{
// Declare some variables

double p , plog , m , dh , gradJ , step;
int i , j , k , ctr ;
int right_pixel_limit = imsize − ignore_pixels;

double J1_temp = 0.0;

// Start openmp for loop if possible to efficiently loop over every pixel

#pragma omp parallel for collapse(2) reduction(+:J1_temp) private(ctr,k,m,p,plog,dh,gradJ,step)
for(i=ignore_pixels; i < right_pixel_limit; i++)
{

for(j=ignore_pixels; j < right_pixel_limit; j++)
{

ctr = i ∗ imsize + j;

// Find the total polarised flux , P

p = 0.0;
for(k=1;k<npol;k++)
{
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p += (new_model[k][ctr] ∗ new_model[k][ctr]);
}
p = sqrt(p);

/∗
Need to implement dH and gradJ according to the MEM formulae
To do this efficiently , make use of plog and m to prevent calculating the same thing more than once
If the total polarised flux is sufficiently small, use the Taylor expansion of the logs to save

computation
∗/

if (p > 0.01 ∗ new_model[0][ctr])
{

plog = 0.5 ∗ log( ( new_model[0][ctr] − p ) / ( new_model[0][ctr] + p) ) / p;
}
else
{

m = p / new_model[0][ctr];
plog = − (1.0 + (m ∗ m / 3.0) ) / new_model[0][ctr];

}

for(k=0;k<npol;k++)
{

if (k==0)
{

dh = −0.5 ∗ log( (new_model[0][ctr] ∗ new_model[0][ctr] − p ∗ p ) / (default_map2[
ctr]));

gradJ = dh − 2.0 ∗ alpha ∗ new_residual[0][ctr] − gamma;
}
else
{

dh = new_model[k][ctr] ∗ plog;
gradJ = dh − 2.0 ∗ beta ∗ new_residual[k][ctr];

}

step = new_model[k][ctr] − old_model[k][ctr]; // Step = difference between the two maps
J1_temp += gradJ ∗ step; // The change in J due to this is gradJ

}
}

}

J1 = J1_temp;

if (J1 == J1) // make sure J1 is not infinity
{

j = 0;
}
else
{

j = 1;
}

return(j);
}

/∗
interpolate_models

interpolate_models interpolates current models and new models if necessary .
It also enforces a minimum flux and makes sure the polarisation doesn’t do anything strange

inputs :

current_model = the current model Stokes I , Q, U maps
new_model = the new model Stokes I, Q, U maps
frac_new = the weighting factor of the new Stokes I, Q, U maps
imsize2 = the number of pixels in a map
npol = the number of polarisations being deconvolved

outputs :
current_model = the interpolated model maps
on return, 0

∗/

int interpolate_models(double∗∗ current_model , double∗∗ new_model , double frac_new , int imsize , int npol, int
ignore_pixels)

{
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double frac_old , iold , inew , pold , pnew , factor ;
int i , j , k, ctr ;
int right_pixel_limit = imsize − ignore_pixels;

frac_old = 1 − frac_new;

#pragma omp parallel for collapse(2) private(ctr, iold , inew , pold , pnew , factor , k)
for(i=ignore_pixels; i < right_pixel_limit; i++)
{

for(j=ignore_pixels; j < right_pixel_limit; j++)
{

ctr = i ∗ imsize + j;
// First interpolate the Stokes I part

iold = current_model[0][ctr];
current_model[0][ctr] = max( frac_old ∗ current_model[0][ctr] + frac_new ∗ new_model[0][ctr] ,

min_flux);
inew = current_model[0][ctr];

// Now interpolate Stokes Q and U, making sure that the resulting m is an element of [0,1]

if (npol > 1)
{

pold = 0.0;
pnew = 0.0;
for(k=1;k<npol;k++)
{

pold += current_model[k][ctr] ∗ current_model[k][ctr];
current_model[k][ctr] = frac_old ∗ current_model[k][ctr] + frac_new ∗ new_model[k

][ctr];
pnew += current_model[k][ctr] ∗ current_model[k][ctr];

}
pold = sqrt(pold);
pnew = sqrt(pnew);

// New P has been found − need a factor to make sure it ’s safe

if ( pnew < inew )
{

factor = min( 1.0 , (0.4 ∗ inew / pnew + 0.4 ∗ pold / pnew) );
}
else
{

factor = 0.8 ∗ inew / pnew;
}

// apply interpolation

if (factor < 1.0)
{

for(k=1;k<npol;k++)
{

current_model[k][ctr] = factor ∗ current_model[k][ctr];
}

}

}
}

}

return(0);
}

/∗
interpolate_residuals

interpolate_residuals interpolates current resdiuals and new resdiuals if necessary .

inputs :

current_resdiuals = the current model Stokes I , Q, U maps
new_resdiuals = the new model Stokes I, Q, U maps
frac_new = the weighting factor of the new Stokes I, Q, U maps
imsize2 = the number of pixels in a map
npol = the number of polarisations being deconvolved

outputs :
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current_resdiuals = the interpolated resdiual maps
on return, 0

∗/

int interpolate_residuals(double∗∗ current_residuals , double∗∗ new_residuals , double frac_new , int imsize2 , int npol)
{

double frac_old;

frac_old = 1.0 − frac_new;

#pragma omp parallel for collapse(2)
for(int i=0;i<imsize2;i++)
{

for(int j=0;j<npol;j++)
{

current_residuals[ j ][ i ] = frac_old ∗ current_residuals[j ][ i ] + frac_new ∗ new_residuals[j][i];
}

}

return(0);
}

/∗
copy_model

copy_model updates either the model or residual maps by just copying the new maps into the old
All it actually does is swap the pointers
model2 points at model1’s old memory afterwards

inputs :
model1 = a pointer to the map to be updated
model2 = a pointer to the map to be copied

outputs :
model1 = model2
model2 = model1

∗/

int copy_model(double∗∗& model1, double∗∗& model2)
{

double∗∗ temp;

temp = model1;
model1 = model2;
model2 = temp; // this actually swaps model 1 and model 2

return(0);
}

/∗
gen_gauss

gen_gauss makes a Gaussian distribution using the given beam parameters

inputs :
imsize = the dimensions of the matrix
cellsize = the size of a single cell in degrees
bmaj = the major axis of the ellipse at the FWHM of the beam in degrees
bmin = the major axis of the ellipse at the FWHM of the beam in degrees
bpa = the position angle of the ellipse at the FWHM of the beam in degrees

output
matrix = a matrix containing the generated Gaussian
on return, 0

∗/

int gen_gauss(double∗ matrix, int imsize, double cellsize, double bmaj, double bmin, double bpa)
{

int imsize2=imsize∗imsize;
int i , j ,k;
double x,y,a,b,c;
int yorigin = (imsize/2); // centre of distribution ( pixels ). Assumed centre is of the form (255,256) for a

512 map.
int xorigin = yorigin;

bpa = 90 − bpa; // convert from CCW measurement used in astronomy
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bpa∗=(M_PI/180.0); // convert to radiens
bmaj∗=((M_PI/180.0)/(2.354820045)); // convert to radiens from degrees and from FWHM to sigma (2∗sqrt(2∗log(2))

)) = 2.354820045
bmin∗=((M_PI/180.0)/(2.354820045));

cellsize ∗=M_PI/180.0; // convert from degrees to radiens

a=0.5∗(pow(cos(bpa)/bmaj,2)+pow(sin(bpa)/bmin,2));
b=0.25∗sin(2.0∗bpa)∗(−1.0/pow(bmaj,2)+1.0/pow(bmin,2));
c=0.5∗(pow(sin(bpa)/bmaj,2)+pow(cos(bpa)/bmin,2));

j=0;
k=0;

for(i=0;i<imsize2;i++)
{

x=double(k−xorigin)∗cellsize;
y=double(j−yorigin)∗cellsize;
matrix[i]=exp(−(a∗pow(x,2)+2.0∗b∗x∗y+c∗pow(y,2))); // 2d gaussian general form
k++;
if (k==imsize)
{

k=0;
j++;

}
}

return(0);
}

/∗
average_region

average_region takes the average of a given region in the map

inputs :
map = the map in question
imsize = the size of the map (one side)
blcx = the x coord of the bottom left corner
blcy = the y coord of the bottom left corner
trcx = the x coord of the top right corner
trcy = the y coord of the top right corner

outputs :
on return = the average of the region

∗/

double average_region(double∗ map, int blcx, int blcy, int trcx, int trcy, int imsize)
{

int i , j ;
double sum = 0.0;

trcx++; // increment ends to make the for loop design a bit easier
trcy++;

#pragma omp parallel for collapse(2) reduction(+:sum)
for(i=blcx;i<trcx;i++)
{

for(j=blcy;j<trcy;j++)
{

sum += map[j ∗ imsize + i]; // add up over entire region , with openmp if possible
}

}

i = trcx − blcx; // find number of pixels in region
j = trcy − blcy;

i = i ∗j ;

return(sum/double(i));
}

/∗
rms_region_region

rms_region takes the root mean square of a given region in the map
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inputs :
map = the map in question
imsize = the size of the map (one side)
blcx = the x coord of the bottom left corner
blcy = the y coord of the bottom left corner
trcx = the x coord of the top right corner
trcy = the y coord of the top right corner

outputs :
on return = the rms of the region

∗/

double rms_region(double∗ map, int blcx, int blcy, int trcx, int trcy, int imsize)
{

int i , j ;
double sum = 0.0;
double mean;

trcx++; // increment ends to make the for loop design a bit easier
trcy++;

#pragma omp parallel for collapse(2) reduction(+:sum)
for(i=blcx;i<trcx;i++)
{

for(j=blcy;j<trcy;j++)
{

sum += pow(map[j ∗ imsize + i] , 2.0);
}

}

i = trcx − blcx; // find number of pixels in region
j = trcy − blcy;

i = i ∗j ;

return(sqrt(sum/double(i)));
}

/∗
clip_edges

clip_edges clips the edges of a map, replacing the values with a single given value

inputs :
map = the map in question
imsize = the dimension of the map (one side)
replacement_value = the value with which to replace all pixels in the edge region
edge_limit = the number of pixels from the edge of the map to consider "edge" pixels

outputs :
map = the map, now clipped
return value = 0

∗/

int clip_edges(double∗ map, double replacement_value, int edge_limit, int imsize)
{

int i , j ,k;

k = imsize − edge_limit;

#pragma omp parallel for private(j)
for(i=0;i<imsize;i++)
{

for(j=0;j<edge_limit;j++)
{

map[ i ∗ imsize + j] = replacement_value;
}

for(j = k; j<imsize;j++)
{

map[ i ∗ imsize + j] = replacement_value;
}

}

#pragma omp parallel for private(i)
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for(j=edge_limit;j<k;j++)
{

for(i=0;i<edge_limit;i++)
{

map[ i ∗ imsize + j] = replacement_value;
}

for(i = k; i<imsize;i++)
{

map[ i ∗ imsize + j] = replacement_value;
}

}

return(0);
}

B.1.4 PMEM Make File

# Set compiler to g++.
CC=g++
LINK=g++
# Set options for the compiler
CCFLAGS= −c −O3 −fopenmp
LINKOPTS= −lm −lfftw3 −fopenmp −llapack −lblas −lfftw3_threads −lcfitsio −O3

all : cfits pmem link

cfits_read: cfits_read_map.cpp
$(CC) $(CCFLAGS) cfits_read_map.cpp

cfits_read_header_map: cfits_read_header_map.cpp
$(CC) $(CCFLAGS) cfits_read_header_map.cpp

cfits_write : cfits_write .cpp
$(CC) $(CCFLAGS) cfits_write.cpp

cfits : cfits_read cfits_write cfits_read_header_map

pmem: pmem.cpp
$(CC) $(CCFLAGS) pmem.cpp

link :
$(LINK) −o pmem pmem.o cfits_read_map.o cfits_write.o cfits_read_header_map.o $(LINKOPTS)

clean:
rm −rf ∗.o pmem

B.2 CFITSIO Interface Code

The following sections contains the C++/C source code to interface between the
PMEM program and FITS files using the external CFITSIO program.

B.2.1 CFITS Read Map Header

/∗
This program is called cfits_write . It interacts with the CFITSIO library to read metadata from a FITS file
Copyright (C) 2012 Colm Coughlan
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This program is free software : you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

INPUTS:
char∗ filename : c string = name of FITS file to be read from

OUTPUTS:
various metadata

NB : see FITS file format documentation to see what each parameter means (though AIPS may interpret it differently
...)

∗/

#include "pmem_heads.hpp"

int cfits_read_header_map(const char∗ filename , int∗ dim , double∗ cell , double∗ ra , double∗ dec , double∗
centre_shift , double∗ rotations , double∗ freq , double∗ freq_delta , int∗ stokes , char∗ object , char∗ observer ,
char∗ telescope , double∗ equinox , char∗ date_obs , double∗ bmaj , double∗ bmin , double∗ bpa , int∗ ncc)

{

/∗
INPUTS:

char∗ tfilename : c string = name of FITS file to be read
OUTPUTS:

ra = right ascention
dec = declination
key_string = name of source
freq = frequency
cell = cellsize (degrees )
dim = image size
bmaj, bmin, bpa = beam information (degrees)

∗/
fitsfile ∗fptr ;

int status , i ;
int err ;
char comment[FLEN_VALUE];
char beamhdu[]="AIPS CG ";
char cchdu[]="AIPS CC ";
char bmajname[]="BMAJ";
char bminname[]="BMIN";
char bpaname[]="BPA";
int colnum;
double temp;
float floatbuff ;
float float_null=0;
int int_null=0;
long longbuff;

status = 0; // for error processing
err=0;

if ( fits_open_file(&fptr,filename, READONLY, &status) ) // open file and make sure it ’s open
{

printf ("ERROR : cfits_read_header_map −−> Error opening FITS file, error = %d\n",status);
return(status);

}

i=ASCII_TBL;
if (fits_movabs_hdu(fptr,1,&i,&status)) // move to main AIPS image HDU (assuming it’s the first one)
{

printf ("ERROR : cfits_read_header_map −−> Error locating AIPS ACSII table extension, error = %d\n",
status);

printf ("ERROR : cfits_read_header_map −−> Did you remember to use the AIPS FITAB task instead of
FITTP?\n");
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return(status);
}

// read in some optional keys

fits_read_key(fptr,TSTRING,"OBJECT",object,comment,&status);
fits_read_key(fptr,TSTRING,"OBSERVER",observer,comment,&status);
fits_read_key(fptr,TSTRING,"TELESCOP",telescope,comment,&status);
fits_read_key(fptr,TDOUBLE,"EQUINOX",equinox,comment,&status);
fits_read_key(fptr,TSTRING,"DATE−OBS",date_obs,comment,&status);

// read in important keys

status = 0;

fits_read_key(fptr,TDOUBLE,"OBSRA",ra,comment,&status);
err+=status;
fits_read_key(fptr,TDOUBLE,"OBSDEC",dec,comment,&status);
err+=status;

fits_read_key(fptr,TDOUBLE,"CDELT1",&temp,comment,&status);
err+=status;
cell [0]=fabs(temp);
fits_read_key(fptr,TDOUBLE,"CRPIX1",&temp,comment,&status);
err+=status;
centre_shift[0]=temp;
fits_read_key(fptr,TDOUBLE,"CROTA1",&temp,comment,&status);
err+=status;
rotations[0]=temp;

fits_read_key(fptr,TDOUBLE,"CRPIX2",&temp,comment,&status);
err+=status;
centre_shift[1]=temp;
fits_read_key(fptr,TDOUBLE,"CROTA2",&temp,comment,&status);
err+=status;
rotations[1]=temp;

fits_read_key(fptr,TDOUBLE,"CRVAL3",freq,comment,&status);
err+=status;
fits_read_key(fptr,TDOUBLE,"CDELT3",freq_delta,comment,&status);
err+=status;

fits_read_key(fptr,TINT,"CRVAL4",stokes,comment,&status);
err+=status;

fits_read_key(fptr,TDOUBLE,"NAXIS1",&temp,comment,&status);
err+=status;
dim[0]=int(temp); // dim is stored as a double in the FITS file

if (err!=0)
{

printf ("ERROR : cfits_read_header_map −−> Error reading keywords, custom error = %d\n",err);
}

// move to AIPS CG HDU for beam information

if (fits_movnam_hdu(fptr,BINARY_TBL,beamhdu,0,&status)) // move to beam information hdu
{

// printf ("cfits_read_header_map −−> Beam information not found in %s\n",filename);
// return( status );

bmaj[0] = 0.0;
bmin[0] = 0.0; // changed this because model files don’t have any beam information. Should check to make

sure beam info is valid in other code
bpa[0] = 0.0;

}
else
{

fits_get_colnum(fptr,CASEINSEN,bmajname,&colnum,&status);
if (status!=0)
{
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printf ("ERROR : cfits_read_header_map −−> Error locating BMAJ information, error = %d\n",
status);

}
fits_read_col(fptr ,TFLOAT,colnum,1,1,1,&float_null,&floatbuff,&int_null,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_header_map −−> Error reading BMAJ information, error = %d\n",
status);

}
bmaj[0]=double(floatbuff);

fits_get_colnum(fptr,CASEINSEN,bminname,&colnum,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_header_map −−> Error locating BMIN information, error = %d\n",
status);

}
fits_read_col(fptr ,TFLOAT,colnum,1,1,1,&float_null,&floatbuff,&int_null,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_header_map −−> Error reading BMIN information, error = %d\n",
status);

}
bmin[0]=double(floatbuff);

fits_get_colnum(fptr,CASEINSEN,bpaname,&colnum,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_header_map −−> Error locating BPA information, error = %d\n",
status);

}
fits_read_col(fptr ,TFLOAT,colnum,1,1,1,&float_null,&floatbuff,&int_null,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_header_map −−> Error reading BPA information, error = %d\n",
status);

}
bpa[0]=double(floatbuff);

}

// move to AIPS CC HDU for clean component information

if (fits_movnam_hdu(fptr,BINARY_TBL,cchdu,0,&status)) // move to main AIPS UV hdu
{

// printf ("WARNING : cfits_read_header_map −−> No clean component table detected.\n");
ncc[0]=0;

}
else
{

fits_get_num_rows(fptr,&longbuff,&status);
ncc[0]=longbuff;
if (status!=0)
{

printf ("ERROR : cfits_read_header_map −−> Error reading number of clean components, error =
%d\n",status);

}
}

status=0;
if ( fits_close_file (fptr , &status) )
{

printf ("ERROR : cfits_read_header_map −−> Error closing FITS file, error = %d\n",status);
return(status);

}

return(status);
}
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B.2.2 CFITS Read Map

/∗
This program is called cfits_write . It interacts with the CFITSIO library to read in a FITS file to an array of doubles
Copyright (C) 2012 Colm Coughlan

This program is free software : you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

INPUTS:
char∗ filename : c string = name of FITS file to be read from
array : map of doubles to be read from FITS file
various metadata

OUTPUTS:
Reads a FITS file from disk

NB : see FITS file format documentation to see what each parameter means (though AIPS may interpret it differently
...)

∗/

#include "pmem_heads.hpp"

int cfits_read_map(const char∗ filename, double∗ tarr, int dim2 , double∗ cc_xarray, double∗ cc_yarray, double∗
cc_varray , int ncc)

{
/∗

INPUTS:
char∗ tfilename : c string = name of FITS file to be read
int dim2 : number of pixels to be read
int ncc : number of clean components to be read (0 if no cc table expected/needed)

OUTPUTS:
tarr : 1D floating point array containing pixel values . ∗∗∗∗∗∗ NB! This is in row major order, converted

Fortran code ∗∗∗∗
cc_xarray : 1D fp array containing x coords of clean components in degrees
cc_yarray : 1D fp array containing y coords of clean components in degrees
cc_varray : 1D fp array containing values of clean components in degrees

∗/
fitsfile ∗fptr ;

int status ;
char comment[FLEN_VALUE];
float nullval=666.0;
int int_null=0;
double double_null=0;
long fpixel=1;
char cchdu[]="AIPS CC ";
char fluxname[]="FLUX";
char xname[]="DELTAX";
char yname[]="DELTAY";
int colnum;
int i ;

status = 0; // for error processing

if ( fits_open_file(&fptr,filename, READONLY, &status) ) // open file and make sure it ’s open
{

printf ("ERROR : cfits_read_map −−> Error opening FITS file, error = %d\n",status);
return(status);

}

if (fits_movabs_hdu(fptr,1,IMAGE_HDU,&status)) // move to main AIPS image hdu
{

printf ("ERROR : cfits_read_map −−> Error locating AIPS primary image extension, error = %d\n",status);
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return(status);
}
// read in main image data data

fits_read_img(fptr, TDOUBLE, fpixel, dim2, &nullval, tarr, &int_null, &status);
if (status!=0)
{

printf ("ERROR : cfits_read_map −−> Error reading map, error = %d\n",status);
}

if (ncc > 0) // read in cc data if present/ required
{

if (fits_movnam_hdu(fptr,BINARY_TBL,cchdu,0,&status)) // move to main AIPS image hdu
{

printf ("ERROR : cfits_read_map −−> Error locating AIPS clean component extension, error = %d\
n",status);

return(status);
}
else
{

fits_get_colnum(fptr,CASEINSEN,xname,&colnum,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_map −−> Error locating CC x position information, error = %
d\n",status);

}
fits_read_col(fptr ,TDOUBLE,colnum,1,1,ncc,&double_null,cc_xarray,&int_null,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_map −−> Error reading CC x position information, error = %d
\n",status);

}

fits_get_colnum(fptr,CASEINSEN,yname,&colnum,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_map −−> Error locating CC y position information, error = %
d\n",status);

}
fits_read_col(fptr ,TDOUBLE,colnum,1,1,ncc,&double_null,cc_yarray,&int_null,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_map −−> Error reading CC y position information, error = %d
\n",status);

}

fits_get_colnum(fptr,CASEINSEN,fluxname,&colnum,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_map −−> Error locating CC flux position information, error =
%d\n",status);

}
fits_read_col(fptr ,TDOUBLE,colnum,1,1,ncc,&double_null,cc_varray,&int_null,&status);
if (status!=0)
{

printf ("ERROR : cfits_read_map −−> Error reading CC flux position information, error =
%d\n",status);

}
}

}

if ( fits_close_file (fptr , &status) )
{

printf ("ERROR : cfits_read_map −−> Error closing FITS file, error = %d\n",status);
return(status);

}

return(status);
}

B.2.3 CFITS Write Map
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/∗
This program is called cfits_write . It interacts with the CFITSIO library to write out a FITS file from an array of

doubles
Copyright (C) 2012 Colm Coughlan

This program is free software : you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

INPUTS:
char∗ filename : c string = name of FITS file to be created
array : map of doubles to be converted to a FITS file
various metadata (source and observation information, cellsize , frequency , beam (if any) etc .)

OUTPUTS:
writes a FITS file to disk

NB : see FITS file format documentation to see what each parameter means (though AIPS may interpret it differently
...)

∗/

#include "pmem_heads.hpp"

int cfits_write(const char∗ filename , double∗ array , int imsize , double cell , double ra , double dec , double∗
centre_shift , double∗ rotations , double freq , double freq_delta , int stokes , char∗ object , char∗ observer , char∗
telescope , double equinox , char∗ date_obs , char∗ history , double bmaj , double bmin , double bpa , int niter ,
bool jy_per_beam)

{

fitsfile ∗fptr ; // pointer to fits file
int status , i , j ;
long fpixel = 1, naxis = 4, nelements; // fpixel is the coordinate of the first pixel to be read
long naxes[4] = { imsize, imsize , 1 , 1 };
double temp;
char comment[]="";
char tstring[FLEN_VALUE];
char fname[strlen(filename)+1];

strcpy(fname,"!") ;
strcat(fname,filename);

status = 0;
// status is an error variable

fits_create_file (&fptr,fname, &status);

// create new file

// Create the primary array image (64−bit floating point pixels )
fits_create_img(fptr, DOUBLE_IMG, naxis, naxes, &status);

fits_update_key(fptr, TSTRING, "OBJECT", object , comment , &status);
fits_update_key(fptr, TSTRING, "OBSERVER", observer , comment , &status); // write out information about the

source
fits_update_key(fptr, TSTRING, "TELESCOP", telescope , comment , &status);
fits_update_key(fptr, TDOUBLE, "EQUINOX", &equinox , comment, &status);
fits_update_key(fptr, TSTRING, "DATE−OBS", date_obs , comment , &status);
fits_update_key(fptr, TDOUBLE, "OBSRA", &ra , comment , &status);
fits_update_key(fptr, TDOUBLE, "OBSDEC", &dec , comment , &status);

temp=1.0;
fits_update_key(fptr, TDOUBLE, "BSCALE", &temp,comment, &status);

temp=0.0;
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fits_update_key(fptr, TDOUBLE, "BZERO", &temp,comment, &status);

if (jy_per_beam)
{

sprintf ( tstring ,"JY/BEAM");
fits_update_key(fptr, TSTRING, "BUNIT", tstring , comment , &status);

}
else
{

sprintf ( tstring ,"JY/PIX");
fits_update_key(fptr, TSTRING, "BUNIT", tstring , comment , &status);

}

sprintf ( tstring ,"RA−−−SIN");
fits_update_key(fptr, TSTRING, "CTYPE1", tstring , comment , &status); // write out information about the first axis

, Right Ascention

fits_update_key(fptr, TDOUBLE, "CRVAL1", &ra , comment , &status);

temp = −cell;
fits_update_key(fptr, TDOUBLE, "CDELT1", &temp , comment , &status);

temp = centre_shift[0];
fits_update_key(fptr, TDOUBLE, "CRPIX1", &temp , comment , &status);

temp = rotations[0];
fits_update_key(fptr, TDOUBLE, "CROTA1", &temp , comment , &status);

sprintf ( tstring ,"DEC−−SIN");
fits_update_key(fptr, TSTRING, "CTYPE2", tstring , comment , &status); // write out information about the second

axis, Declination

fits_update_key(fptr, TDOUBLE, "CRVAL2", &dec , comment , &status);

fits_update_key(fptr, TDOUBLE, "CDELT2", &cell , comment , &status);

temp = centre_shift[1];
fits_update_key(fptr, TDOUBLE, "CRPIX2", &temp , comment , &status);

temp = rotations[1];
fits_update_key(fptr, TDOUBLE, "CROTA2", &temp , comment , &status);

sprintf ( tstring ,"FREQ");
fits_update_key(fptr, TSTRING, "CTYPE3", tstring , comment , &status); // write out information about the third

axis, Frequency

fits_update_key(fptr, TDOUBLE, "CRVAL3", &freq , comment , &status);

fits_update_key(fptr, TDOUBLE, "CDELT3", &freq_delta , comment , &status);

temp=1.0;
fits_update_key(fptr, TDOUBLE, "CRPIX3", &temp , comment , &status);

temp=0.0;
fits_update_key(fptr, TDOUBLE, "CROTA3", &temp , comment , &status);

sprintf ( tstring ,"STOKES");
fits_update_key(fptr, TSTRING, "CTYPE4" , tstring , comment , &status); // write out information about the fourth

axis, Stokes parameter

temp = double(stokes);
fits_update_key(fptr, TDOUBLE, "CRVAL4", &temp , comment , &status);

temp=1.0;
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fits_update_key(fptr, TDOUBLE, "CDELT4", &temp , comment , &status);

fits_update_key(fptr, TDOUBLE, "CRPIX4", &temp , comment , &status);

temp=0.0;
fits_update_key(fptr, TDOUBLE, "CROTA4", &temp , comment , &status);

fits_write_history(fptr , history , &status); // write history and date

fits_write_date(fptr , &status);

nelements = naxes[0] ∗ naxes[1];
// number of pixels to write

// Write the array of double size floating point to the image
fits_write_img(fptr, TDOUBLE, fpixel, nelements, array, &status);

if (jy_per_beam) // write out beam information for AIPS if necessary. note AIPS CG −−> AIPS CLEAN gaussian,
which is not true in this case, but is used for compatability with AIPS

{
char bmaj_name[] = "BMAJ";
char bmin_name[] = "BMIN";
char bpa_name[] = "BPA";
char freq_name[] = "FREQUENCY";
char freq_units[] = "HZ";
char beam_units[] = "DEGREES";
char data_type[] = "1D";
char∗ beaminfo_names[4] = {freq_name , bmaj_name, bmin_name, bpa_name};
char∗ beaminfo_units[4] = {freq_units , beam_units , beam_units , beam_units};
char∗ beaminfo_datatype[4] = {data_type , data_type , data_type , data_type};
char tbl_name[] = "AIPS CG ";

sprintf ( tstring ,"COMMENT : WRITING OUT BEAM IN AIPS FASHION (NOT REALLY FROM AIPS)");
// write beam as AIPS−style note

fits_write_history(fptr , tstring , &status);

// NB − do no use more than 8 places here. Make sure to use the same accuracy for BMAJ and BMIN
sprintf ( tstring ,"AIPS CLEAN BMAJ= %.8lf BMIN= %.8lf BPA= %.8lf" , bmaj , bmin , bpa );
fits_write_history(fptr , tstring , &status);

if (niter>0)
{

sprintf ( tstring ,"COMMENT : NITER BELOW NOT NECESSARILY FROM CLEAN"); // write
beam as AIPS−style note

fits_write_history(fptr , tstring , &status);

sprintf ( tstring ,"AIPS CLEAN NITER= %d PRODUCT=1",niter);
fits_write_history(fptr , tstring , &status);

}

fits_create_tbl(fptr , BINARY_TBL , 1 , 4 , beaminfo_names , beaminfo_datatype , beaminfo_units ,
tbl_name , &status); // make beam table

if (status!=0)
{

printf ("cfits_write_map −−> Error creating beam information table for %s, error code %i\n",
filename,status);

}

if (fits_movnam_hdu(fptr , BINARY_TBL , tbl_name , 0 , &status))
{

printf ("cfits_write_map −−> Error writing beam information to %s, error code %i\n",filename,
status);

}

fits_write_col(fptr , TDOUBLE , 1 , 1 , 1 , 1 , &freq , &status);
fits_write_col(fptr , TDOUBLE , 2 , 1 , 1 , 1 , &bmaj , &status); // write out values (beam info in

degrees )
fits_write_col(fptr , TDOUBLE , 3 , 1 , 1 , 1 , &bmin , &status);
fits_write_col(fptr , TDOUBLE , 4 , 1 , 1 , 1 , &bpa , &status);

}

fits_close_file (fptr , &status);
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fits_report_error(stderr , status) ;

return(status);

fits_close_file (fptr , &status);
fits_report_error(stderr , status) ;

return(status);
}

B.2.4 CFITS Overwrite UV Data

/∗
This program is called cfits_overwrite_uvdata . It overwrites visibility data in a FITS file using the FITSIO library.
Copyright (C) 2012 Colm Coughlan

This program is free software : you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

∗/

#include "uvfill_heads.hpp"

int cfits_overwrite_uvdata(char∗ filename, int nvis, double∗ u_array, double∗ v_array, double∗ tvis)
{
/∗

INPUTS:
char∗ tfilename : c string = name of FITS file to be read
int nvis : number of visibilities to be read

OUTPUTS:
u_array : nvis u coords , converted to physical units by fitsio
v_array : nvis v coords , converted to physical units by fitsio
tvis : (nvis∗24) visibilities , in Jy

∗/
fitsfile ∗fptr ;

int status , i , j ;
int err ;
char extname[]="AIPS UV ";
char comment[]="UVFILL";
double d_null=0;
int anynull;
double temp;

status = 0; // for error processing
err=0;

if ( fits_open_file(&fptr,filename, READWRITE, &status) ) // open file and make sure it ’s open
{

printf ("ERROR : cfits_overwrite_uvdata −−> Error opening FITS file, error = %d\n",status);
return(status);

}

if (fits_movnam_hdu(fptr,BINARY_TBL,extname,0,&status)) // move to main AIPS UV hdu
{

printf ("ERROR : cfits_overwrite_uvdata −−> Error locating AIPS UV binary extension, error = %d\n",
status);

printf ("ERROR : cfits_overwrite_uvdata −−> Did you remember to use the AIPS FITAB task instead of
FITTP?\n");

return(status);
}
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// read in data

fits_write_col(fptr , TDOUBLE, 1, 1, 1, nvis, u_array, &status);
err+=status;
if (err!=0)
{

printf ("ERROR : cfits_overwrite_uvdata −−> Error writing uarray, custom error = %d\n",err);
}

fits_write_col(fptr , TDOUBLE, 2, 1, 1, nvis, v_array, &status);
err+=status;
fits_write_col(fptr , TDOUBLE, 9, 1, 1, nvis∗12.0, tvis , &status);
err+=status;
if (err!=0)
{

printf ("ERROR : cfits_overwrite_uvdata −−> Error writing keywords, custom error = %d\n",err);
}

if ( fits_close_file (fptr , &status) )
{

printf ("ERROR : cfits_overwrite_uvdata −−> Error closing FITS file, error = %d\n",status);
return(status);

}

return(status);
}

B.2.5 CFITS Replace Antenna Information

/∗
This program is called cfits_replace ant info . It replaces antenna information in a FITS file using the FITSIO library.
Copyright (C) 2012 Colm Coughlan

This program is free software : you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

∗/

#include "uvfill_heads.hpp"

int cfits_replace_ant_info(char∗ filename, double∗ rdterm, double∗ ldterm)
{
/∗

INPUTS:
char∗ tfilename : c string = name of FITS file to be read
int nvis : number of visibilities to be read

OUTPUTS:
u_array : nvis u coords , converted to physical units by fitsio
v_array : nvis v coords , converted to physical units by fitsio
tvis : (nvis∗24) visibilities , in Jy

∗/
fitsfile ∗fptr ;

int status , i , j ;
char extname[]="AIPS AN ";

// char comment[FLEN_VALUE];
char comment[]="UVFILL";
char poltype[]="VLBI " ;
char rdtermname[]="POLCALA"; // assumes column a is the r term and column b is the l term
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char ldtermname[]="POLCALB";
double d_null=0;
int colnum;
double temp;

status = 0; // for error processing

if ( fits_open_file(&fptr,filename, READWRITE, &status) ) // open file and make sure it ’s open
{

printf ("ERROR : cfits_replace_ant_info −−> Error opening FITS file, error = %d\n",status);
return(status);

}

if (fits_movnam_hdu(fptr,BINARY_TBL,extname,0,&status)) // move to main AIPS UV hdu
{

printf ("ERROR : cfits_replace_ant_info −−> Error locating AIPS UV binary extension, error = %d\n",
status);

printf ("ERROR : cfits_replace_ant_info −−> Did you remember to use the AIPS FITAB task instead of
FITTP?\n");

return(status);
}
// write out d−term data to correct columns

fits_get_colnum(fptr,CASEINSEN,rdtermname,&colnum,&status);
if (status!=0)
{

printf ("ERROR : cfits_replace_ant_info −−> Error finding r dterm column to write to, error = %d\n",
status);

}

fits_write_col(fptr , TDOUBLE, colnum, 1, 1, 10∗2, rdterm, &status);
if (status!=0)
{

printf ("ERROR : cfits_replace_ant_info −−> Error writing keywords, error = %d\n",status);
}

fits_get_colnum(fptr,CASEINSEN,ldtermname,&colnum,&status);
if (status!=0)
{

printf ("ERROR : cfits_replace_ant_info −−> Error finding l dterm column to write to, error = %d\n",
status);

}

fits_write_col(fptr , TDOUBLE, colnum, 1, 1, 10∗2, ldterm, &status);
if (status!=0)
{

printf ("ERROR : cfits_replace_ant_info −−> Error writing new antenna information, error = %d\n",status)
;

}

fits_update_key(fptr, TSTRING, "POLTYPE", &poltype,comment, &status);
if (status!=0)
{

printf ("ERROR : cfits_replace_ant_info −−> Error writing polarisation type to header file, error = %d\n",
status);

}

if ( fits_close_file (fptr , &status) )
{

printf ("ERROR : cfits_replace_ant_info −−> Error closing FITS file, error = %d\n",status);
return(status);

}

return(status);
}
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B.3 UVFILL Code

The following section contains the C++ source code for the UVFILL program
used to simulate observations by replacing the UV visibilities corresponding to
a real observation with a simulated set generated from a CSV model. The code
also allows thermal noise to be added to the resulting visibilities and can also
simulate errors in the D-term calibration.

B.3.1 UVFILL Headers

/∗
This is a header file for functions and libraries releating to uvfill2 .
Copyright (C) 2012 Colm Coughlan

This program is free software : you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

∗/

#include <iostream>
#include <fstream>
#include <string>
#include <string.h>
#include <cmath>
#include <stdlib.h>
#include <sstream>
#include <fftw3.h>
#include <fitsio.h>

extern "C"
{

#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

int cfits_write(const char∗ filename , double∗ array , int imsize , double cell , double ra , double dec , double∗
centre_shift , double∗ rotations , double freq , double freq_delta , int stokes , char∗ object , char∗ observer
, char∗ telescope , double equinox , char∗ date_obs , char∗ history , double bmaj , double bmin , double
bpa , int niter , bool jy_per_beam);

int cfits_read_header(char∗ filename, double∗ ra, double∗ dec, char∗ key_string, double∗ freq, int∗ nvis);
int cfits_read_data(char∗ filename, int nvis, double∗ u_array, double∗ v_array, double∗ tvis);
int cfits_overwrite_uvdata(char∗ filename, int nvis, double∗ u_array, double∗ v_array, double∗ tvis);
int cfits_replace_ant_info(char∗ filename, double∗ rdterm, double∗ ldterm);

}

// g++ −o uvfill uvfill .cpp cfits_replace_ant_info .c cfits_read_data.c cfits_overwrite_uvdata .c cfits_read_header.c − lcfitsio
−fopenmp −lgsl −lblas −O3

// g++ −o uvfill2 uvfill2 .cpp cfits_replace_ant_info .c cfits_read_data.c cfits_overwrite_uvdata .c cfits_read_header.c
cfits_write .cpp − lcfitsio −fopenmp −lgsl −lblas −O3

The Development of New Methods for High
Resolution Radio Astronomy Imaging

282 Colm Coughlan



B. Source Code B.3 UVFILL Code

B.3.2 UVFILL Source Code

/∗
This program is called uvfill2 . It creates simulated UV data corresponding to a given CSV model of an AGN.
It writes results using an existing UV file as a basis .
Copyright (C) 2012 Colm Coughlan

This program is free software : you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version .

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

∗/

#include "uvfill_heads.hpp"
using namespace std;

class fitsinfo
{

private:

double ra_val;
double dec_val;
int nvis_val;
double freq_val;
string name_val;

double cellsize ;
int imsize;

public:

fitsinfo () // constructor defaults everything to zero
{

ra_val=0.0;
dec_val=0.0;
nvis_val=0;
freq_val=0.0;

}

~ fitsinfo (){} // destructor

double∗ set_ra()
{

return(&ra_val);
}
double∗ set_dec()
{

return(&dec_val);
}
int∗ set_nvis()
{

return(&nvis_val);
}
double∗ set_freq()
{

return(&freq_val);
}
int set_name(string temp)
{

name_val=temp;
return(0);

}

double freq()
{

return(freq_val);
}
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double ra()
{

return(ra_val);
}
double dec()
{

return(dec_val);
}
int nvis()
{

return(nvis_val);
}
string name()
{

return(name_val);
}

int set_image_info(double cell, int im)
{

cellsize =cell;
imsize=im;

return(0);
}

double give_cellsize()
{

return(cellsize) ;
}

int give_imsize()
{

return(imsize);
}

};

class rawuv
{

private:

double∗ u;
double∗ v;
double∗ weight;

fftw_complex∗ i;
fftw_complex∗ rl;
fftw_complex∗ lr;

double∗ fits_uv_data;

int size ;
int blocksize ;

double umax;
double vmax;
double maxweight;
double sum_weights;

public:

rawuv(int n)
{

size=n;
blocksize=n∗12;
u=new double[n];
v=new double[n];
i=new fftw_complex[n];
rl=new fftw_complex[n];
lr=new fftw_complex[n];
weight=new double[n];
fits_uv_data=new double[blocksize];

}

~rawuv()
{
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delete[] u;
delete[] v;
delete[] i ;
delete[] rl ;
delete[] lr ;
delete[] weight;
delete[] fits_uv_data;

}

int filluv (double∗ uvals, double∗ vvals, double∗ tvis, double freq)
{

double temp;

umax=0.0;
vmax=0.0;
sum_weights=0.0;
maxweight=0.0;
for(int ctr=0;ctr<size;ctr++)
{

// unweighted averaging of IF1 and IF2 occuring
// assumed order in line : u,v,<6 unneeded random pars>,rr1,ll1,rl1 , lr1 ,rr2, ll2 , rl2 , lr2
// rr1 −−> real, imag, weight. => 3∗8 = 24 per entry
// assumes the weighting remains the same for each individual visibility

u[ctr]=uvals[ctr ]∗ freq ;
v[ctr]=vvals[ctr ]∗ freq ;

temp=fabs(u[ctr]);
if (temp>umax)
{

umax=temp;
}
temp=fabs(v[ctr]);
if (temp>vmax)
{

vmax=temp;
}

i [ ctr ][0]=0.5∗( tvis [( ctr∗12)]+tvis[( ctr∗12)+3]);
i [ ctr ][1]=0.5∗( tvis [( ctr∗12)+1]+tvis[(ctr∗12)+4]);
rl [ ctr ][0]= tvis [( ctr∗12)+6];
rl [ ctr ][1]= tvis [( ctr∗12)+7];
lr [ ctr ][0]= tvis [( ctr∗12)+9];
lr [ ctr ][1]= tvis [( ctr∗12)+10];
weight[ctr]=tvis [( ctr∗12)+2];

temp=weight[ctr];
if (temp>maxweight)
{

maxweight=temp;
}
sum_weights+=weight[ctr];

}
cout<<"maxweight = "<<maxweight<<endl;

for(int i=0;i<blocksize;i++)
{

fits_uv_data[i]=tvis[ i ];
}
return(size);

}

double∗ update_vis_block()
{

for(int ctr=0;ctr<size;ctr++)
{

fits_uv_data[(ctr∗12)]=i[ctr ][0]; // ll , rr , rl , lr
fits_uv_data[(ctr∗12)+3]=i[ctr ][0];
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fits_uv_data[(ctr∗12)+6]=rl[ctr ][0];
fits_uv_data[(ctr∗12)+9]=lr[ctr ][0];

fits_uv_data[(ctr∗12)+1]=i[ctr ][1];
fits_uv_data[(ctr∗12)+4]=i[ctr ][1];
fits_uv_data[(ctr∗12)+7]=rl[ctr ][1];
fits_uv_data[(ctr∗12)+10]=lr[ctr ][1];

}

return(fits_uv_data);
}

double∗ give_vis_block()
{

return(fits_uv_data);
}

int change_vis(double ∗imap, double ∗qmap, double∗ umap, int imsize, double cellsize)
{

int ctr , j ,k,n;
double temp1,temp2;
int beg,end;

double∗ grid_image;

grid_image=new double[imsize];

k=0;
beg=−imsize/2;
end=imsize/2;
if ((imsize%2)==0)
{

beg++;
}
end++;
for(ctr=beg;ctr<end;ctr++) // create x and y axes for maps (in radiens) and gridded uv data (in lambda)
{

grid_image[k++]=ctr∗cellsize;
}

#pragma omp parallel for private(n,ctr,j,temp1,temp2)
for(k=0;k<size;k++)
{

i [k ][0]=0.0;
i [k ][1]=0.0;
rl [k ][0]=0.0;
rl [k ][1]=0.0;
lr [k ][0]=0.0;
lr [k ][1]=0.0;
n=0;
for(j=0;j<imsize;j++)
{

for(ctr=0;ctr<imsize;ctr++)
{

temp1=−2.0∗M_PI∗((u[k]∗grid_image[ctr])−(v[k]∗grid_image[j]));
temp2=sin(temp1);
temp1=cos(temp1);
i [k][0]+=imap[n]∗temp1; // assuming imap is real
i [k][1]+=imap[n]∗temp2;
rl [k][0]+=qmap[n]∗temp1−umap[n]∗temp2;
rl [k][1]+=umap[n]∗temp1+qmap[n]∗temp2;
lr [k][0]+=qmap[n]∗temp1+umap[n]∗temp2;
lr [k][1]+=qmap[n]∗temp2−umap[n]∗temp1;
n++;

}
}

}

delete[] grid_image;

return(0);
}

double giveu(int n)
{

return(u[n]);
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}

double givev(int n)
{

return(v[n]);
}

double∗ giveu_array()
{

return(u);
}

double∗ givev_array()
{

return(v);
}

double giveumax()
{

return(umax);
}

double givevmax()
{

return(vmax);
}

double givei(int n,int comp)
{

return(i[n][comp]);
}

double giverl(int n,int comp)
{

return(rl[n][comp]);
}
double givelr(int n,int comp)
{

return(lr[n][comp]);
}

int set_i(int n,int comp,double val)
{

i [n ][comp]=val;
return(0);

}

int set_rl(int n,int comp,double val)
{

rl [n ][comp]=val;
return(0);

}

int set_lr(int n,int comp,double val)
{

lr [n ][comp]=val;
return(0);

}

double giveweight(int n)
{

return(weight[n]);
}

double give_sum_weights()
{

return(sum_weights);
}

double give_max_weights()
{

return(sum_weights);
}

int givesize ()
{

return(size);
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}
};

int get_fitsi (string filename, fitsinfo & fi);
int get_vis(string filename,rawuv& visarr, fitsinfo& fi); // put uv visibilities into rawuv
int csv_read(string filename, int imsize, double∗ matrix);
int rewrite_vis(string filename,rawuv& visarr, fitsinfo& fi);
string int_to_str(int i) ;
int rewrite_ant_data(string filename,double∗ rdterm, double∗ ldterm,fitsinfo& fi);
int write_csv(string filename, double∗ array, int imsize);
int row_major_to_col_major(double ∗mat, int imsize);

int main()
{

fitsinfo fi ;

string uvfits ;
string modelname;

int err ;
int i , j ,k;
int nvis ;
int question;
int nmaps;

double temp;
double stddev;
double stddev_dterm;

int imsize;
double cellsize ;

double ∗imap;
double ∗qmap;
double ∗umap;
fftw_complex∗ original_i;
fftw_complex∗ original_rl;
fftw_complex∗ original_lr;

double∗ rdterm;
double∗ ldterm;

ifstream fin ;
ofstream fout;

char outdata[]="simmodel";

cout<<"Please enter the imsize of the model map (pixels)"<<endl;
cin>>imsize;
cout<<"Please enter the cellsize of the model map (as)"<<endl;
cin>>cellsize;

imap=new double[imsize∗imsize];
qmap=new double[imsize∗imsize];
umap=new double[imsize∗imsize];
cellsize ∗=(M_PI)/(180.0∗3600);

cout<<"Please enter the name of the I model map"<<endl;
cin>>modelname;
err=csv_read(modelname,imsize,imap);
if (err==0)
{

cout<<"Imap read successful"<<endl;
}
else
{

cout<<"Problem reading model map."<<endl;
return(1);
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}

cout<<"Please enter the name of the Q model map"<<endl;
cin>>modelname;
err=csv_read(modelname,imsize,qmap);
if (err==0)
{

cout<<"Qmap read successful"<<endl;
}
else
{

cout<<"Problem reading model map."<<endl;
return(1);

}

cout<<"Please enter the name of the U model map"<<endl;
cin>>modelname;
err=csv_read(modelname,imsize,umap);
if (err==0)
{

cout<<"Umap read successful"<<endl;
}
else
{

cout<<"Problem reading model map."<<endl;
return(1);

}

cout<<"Please enter the name of the FITS file with the UV information"<<endl;
cout<<"This FITS file is assumed to have 1 IF."<<endl;
cin>>uvfits;

cout<<"Attempting to open "<<uvfits<<endl;
err=get_fitsi( uvfits , fi ) ; //get fits information from file
if (err!=0)
{

cout<<"Error attempting to open fits file. "<<endl;
cout<<"Program closing."<<endl;
return(1);

}
nvis=fi.nvis() ;

rawuv visarr(nvis) ;

get_vis(uvfits , visarr , fi ) ;
cout<<"Raw UV data and visibility read complete."<<endl;
cout<<"\t "<<nvis<<" visibilites read."<<endl;
cout<<"\t First U coord = "<<visarr.giveu(0)/(1000000.0)<<" megalambda."<<endl;
cout<<"\t First V coord = "<<visarr.givev(0)/(1000000.0)<<" megalambda."<<endl;
cout<<"\t First I visibility = "<<visarr.givei(0,0)<<" "<<visarr.givei(0,1)<<" i."<<endl;
cout<<"\t First RL visibility = "<<visarr.giverl(0,0)<<" "<<visarr.giverl(0,1)<<" i."<<endl;
cout<<"\t Sum of FITS weights = "<<visarr.give_sum_weights()<<endl;

err = cfits_write( "model_imap.fits" , imap , imsize , cellsize ∗(180.0/M_PI) , fi.ra() , fi .dec() , &temp , &stddev
, fi.freq() , 0 , 1 , outdata , outdata , outdata , 0 , outdata , outdata , 0 , 0 , 0 , 0 , false) ;

err = cfits_write( "model_qmap.fits" , qmap , imsize , cellsize ∗(180.0/M_PI) , fi.ra() , fi .dec() , &temp , &stddev
, fi.freq() , 0 , 2 , outdata , outdata , outdata , 0 , outdata , outdata , 0 , 0 , 0 , 0 , false) ;

err = cfits_write( "model_umap.fits" , umap , imsize , cellsize ∗(180.0/M_PI) , fi.ra() , fi .dec() , &temp , &stddev
, fi.freq() , 0 , 3 , outdata , outdata , outdata , 0 , outdata , outdata , 0 , 0 , 0 , 0 , false) ;

// write_csv( "model_imap.csv", imap , imsize);

// err = row_major_to_col_major( imap, imsize);
// err = row_major_to_col_major( qmap, imsize);
// err = row_major_to_col_major( umap, imsize);

visarr .change_vis(imap,qmap,umap,imsize,cellsize);

cout<<"DFT complete − writing results to fits file"<<endl;

fin .open(uvfits.c_str(), fstream::binary);
fout.open("output_no_noise.fits", fstream::trunc|fstream::binary);
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fout<<fin.rdbuf();
fout. close () ;

rewrite_vis("output_no_noise.fits",visarr , fi ) ;

cout<<"Writing out model maps as FITS images."<<endl;

temp=imsize/2;
stddev=(imsize/2)+1;

cout<<"Would you like to add normally distributed noise to the DFT? (1 = yes, 0 = no)"<<endl;
cin>>question;

if (question==1)
{

const gsl_rng_type ∗ T;
gsl_rng ∗ r;
gsl_rng_env_setup();
unsigned long int seed;

T = gsl_rng_default;
r = gsl_rng_alloc (T);

seed = time (NULL) ∗ getpid();
gsl_rng_set ( r, seed);

original_i=new fftw_complex[nvis];
original_rl=new fftw_complex[nvis];
original_lr=new fftw_complex[nvis];

rdterm=new double[2∗10];
ldterm=new double[2∗10];

for(i=0;i<nvis;i++)
{

original_i [ i ][0]=visarr . givei ( i ,0) ;
original_i [ i ][1]=visarr . givei ( i ,1) ;
original_rl [ i ][0]=visarr . giverl ( i ,0) ;
original_rl [ i ][1]=visarr . giverl ( i ,1) ;
original_lr [ i ][0]=visarr . givelr ( i ,0) ;
original_lr [ i ][1]=visarr . givelr ( i ,1) ;

}

for(i=0;i<20;i++) // format is ( real , imag)∗10
{

rdterm[i]=0.0;
ldterm[i ]=0.0;

}

cout<<"How many files would you like to make?"<<endl;
cin>>nmaps;
cout<<"What standard deviation would you like the noise distributed about zero to have?"<<endl;
cin>>stddev;
stddev/=sqrt(2.0);
cout<<"Sample Noise values."<<endl;
for(i=0;i<10;i++)
{

cout<<"\t "<<gsl_ran_gaussian(r,stddev)<<endl;
}

cout<<"What D term noise would you like to add to the antenna table?"<<endl;
cin>>stddev_dterm;
stddev_dterm/=sqrt(2.0);

for(i=0;i<nmaps;i++)
{

fin .seekg(0, ios :: beg);
fin . clear () ;

modelname.assign("output_");
modelname.append(int_to_str(i+1));
modelname.append(".fits");
fout.open(modelname.c_str(), fstream::trunc|fstream::binary);
fout<<fin.rdbuf();
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fout. close () ;

for(j=0;j<nvis;j++)
{

visarr .set_i(j ,0, original_i [ j ][0]+gsl_ran_gaussian(r,stddev));
visarr .set_i(j ,1, original_i [ j ][1]+gsl_ran_gaussian(r,stddev));
visarr .set_rl(j ,0, original_rl [ j ][0]+gsl_ran_gaussian(r,stddev));
visarr .set_rl(j ,1, original_rl [ j ][1]+gsl_ran_gaussian(r,stddev));
visarr .set_lr(j ,0, original_lr [ j ][0]+gsl_ran_gaussian(r,stddev));
visarr .set_lr(j ,1, original_lr [ j ][1]+gsl_ran_gaussian(r,stddev));

}

rewrite_vis(modelname.c_str(),visarr,fi) ;

for(j=0;j<20;j++) // format is ( real , imag)∗10
{

rdterm[j]=gsl_ran_gaussian(r,stddev_dterm);
ldterm[j]=gsl_ran_gaussian(r,stddev_dterm);

}

rewrite_ant_data(modelname.c_str(),rdterm,ldterm,fi);
}

delete[] original_i ;
delete[] original_rl ;
delete[] original_lr ;
delete[] rdterm;
delete[] ldterm;
gsl_rng_free (r);

}
else
{

// visarr .make_vis_map(imap,imsize,cellsize,fi);
cout<<"Closing Program"<<endl;

}

delete[] imap;
delete[] qmap;
delete[] umap;
fin . close () ;

/∗
fi .set_image_info( cellsize , imsize);
write_map("qmap.fits",pmap,0,fi);

∗/
return(0);

}

string int_to_str(int i)
{

stringstream ss ;
string str ;

ss<<i;

str=ss.str() ;
ss . flush () ;

return(str);
}

int get_fitsi (string filename, fitsinfo & fi) // fill up fi with header information
{

char∗ cfilename; // c and fitsio are a bit fussy about exactly what type of character array / string they
recieve

char tstring[FLEN_VALUE];

int err ;

cfilename=new char[filename.length()];
strcpy(cfilename,filename.c_str()) ;

err=cfits_read_header(cfilename,fi.set_ra(), fi .set_dec(), tstring , fi .set_freq() , fi .set_nvis()) ; // write header
information into fi

fi .set_name(tstring);
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delete[] cfilename;

return(err);
}

int get_vis(string filename,rawuv& visarr, fitsinfo& fi) // put uv visibilities into rawuv
{

int i ;
int nvis ;
double freq;
char∗ cfilename; // c and fitsio are a bit fussy about exactly what type of character array / string they

recieve
double∗ u_array;
double∗ v_array;
double∗ tvis;

int err ;

nvis=fi.nvis() ;
freq=fi. freq() ;

cfilename=new char[filename.length()];
strcpy(cfilename,filename.c_str()) ;

u_array=new double[nvis]; // hold u coordinates
v_array=new double[nvis]; // hold v coordinates
tvis=new double[nvis∗12]; // hold all visibilities

err=cfits_read_data(cfilename,nvis,u_array,v_array,tvis);
if (err!=0)
{

cout<<"Error reading data from fits file . "<<endl;
return(1);

}

err=visarr. filluv (u_array,v_array,tvis,freq);
if (err!=nvis)
{

cout<<"Error loading fits information into memory."<<endl;
return(1);

}

delete[] cfilename;
delete[] tvis ;
delete[] u_array;
delete[] v_array;

return(0);
}

int rewrite_vis(string filename,rawuv& visarr, fitsinfo& fi) // put uv visibilities into rawuv
{

int i ;
int nvis ;
double freq;
char∗ cfilename; // c and fitsio are a bit fussy about exactly what type of character array / string they

recieve

int err ;

nvis=fi.nvis() ;
freq=fi. freq() ;

double∗ ucorr;
double∗ vcorr;

ucorr=new double[nvis];
vcorr=new double[nvis];

for(i=0;i<nvis;i++)
{

ucorr[ i]=visarr.giveu(i)/freq ;
vcorr[ i]=visarr.givev(i)/freq ;

}
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cfilename=new char[filename.length()];
strcpy(cfilename,filename.c_str()) ;

err=cfits_overwrite_uvdata(cfilename,nvis,ucorr,vcorr,visarr .update_vis_block());
if (err!=0)
{

cout<<"Error rewriting data in fits file . "<<endl;
return(1);

}

delete[] cfilename;
delete[] ucorr;
delete[] vcorr;

return(0);
}

int csv_read(string filename, int imsize, double∗ matrix)
{

fstream fin ;

string str ;
int i , j ;
size_t p1,p2;

fin .open(filename.c_str(), ios :: in) ;

if (fin .is_open())
{

i=imsize−1;
while(getline(fin , str))
{

p1=0;
for(j=0;j<imsize;j++)
{

p2=str.find_first_of(" , " ,p1);
matrix[i∗imsize+j]=atof((str.substr(p1,p2−p1)).c_str()); // left to right , from the

end of the file
p1=p2+1; // this is the Octave way...

}
i−−;

}
}
else
{

return(1);
}

if ( i!=−1)
{

cout<<"Problem reading file. Look at dimensions."<<endl;
return(1);

}

fin . close () ;
return(0);

}

int rewrite_ant_data(string filename,double∗ rdterm, double∗ ldterm,fitsinfo& fi)
{

char∗ cfilename; // c and fitsio are a bit fussy about exactly what type of character array / string they
recieve

int err ;

cfilename=new char[filename.length()];
strcpy(cfilename,filename.c_str()) ;

err=cfits_replace_ant_info(cfilename,rdterm,ldterm);
if (err!=0)
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{
cout<<"Error rewriting antenna data in fits file . "<<endl;
return(1);

}

delete[] cfilename;

return(0);
}

int write_csv(string filename, double∗ array, int imsize)
{

int i , j ,k;
int err ;
ofstream fout;
char∗ cfilename;

cfilename=new char[filename.length()+1]; // get name into C format
strcpy(cfilename,filename.c_str()) ;

fout.open(cfilename,ios :: out);
err=fout.is_open();

k=0;
for(i=0;i<imsize;i++)
{

fout<<array[k];
k++;
for(j=1;j<imsize;j++)
{

fout<<","<<array[k];
k++;

}
fout<<endl;

}
fout. close () ;

delete[] cfilename;
return(err);

}

int row_major_to_col_major(double ∗mat, int imsize)
{

double ∗buffer;
int i , j ;
int imsize2 = imsize ∗ imsize;

buffer = new double[imsize2];

for(i=0;i<imsize2;i++)
{

buffer [ i ] = mat[i];
}

#pragma omp parallel for collapse(2)
for(i=0;i<imsize;i++)
{

for(j=0;j<imsize;j++)
{

mat[(i∗imsize)+j] = buffer[( j∗imsize)+i];
}

}

delete[] buffer ;
return(0);

}
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