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Abstract 

 

This thesis describes the optimisation of chemoenzymatic methods in asymmetric 

synthesis. Modern synthetic organic chemistry has experienced an enormous growth in 

biocatalytic methodologies; enzymatic transformations and whole cell bioconversions have 

become generally accepted synthetic tools for asymmetric synthesis. Biocatalysts are 

exceptional catalysts, combining broad substrate scope with high regio-, enantio- and 

chemoselectivities enabling the resolution of organic substrates with superb efficiency and 

selectivity. In this study three biocatalytic applications in enantioselective synthesis were 

explored and perhaps the most significant outcome of this work is the excellent 

enantioselectivity achieved through optimisation of reaction conditions improving the 

synthetic utility of the biotransformations. 

In the first chapter a summary of literature discussing the stereochemical control of 

baker’s yeast (Saccharomyces Cerevisae) mediated reduction of ketones by the introduction 

of sulfur moieties is presented, and sets the work of Chapter 2 in context. 

The focus of the second chapter was the synthesis and biocatalytic resolution of (±)-

trans-2-benzenesulfonyl-3-n-butylcyclopentanone. For the first time the practical limitations 

of this resolution have been addressed providing synthetically useful quantities of enantiopure 

synthons for application in the total synthesis of both enantiomers of 4-methyloctanoic acid, 

the aggregation pheromone of the rhinoceros beetles of the genus Oryctes. The unique aspect 

of this enantioselective synthesis was the overall regio- and enantioselective introduction of 

the methyl group to the octanoic acid chain. This work is part of an ongoing research 

programme in our group focussed on baker’s yeast mediated kinetic resolution of 2-keto 

sulfones.   

The third chapter describes hydrolase-catalysed kinetic resolutions leading to a series 

of 3-aryl alkanoic acids. Hydrolysis of the ethyl esters with a series of hydrolases was 

undertaken to identify biocatalysts that yield the corresponding acids in highly 

enantioenriched form. Contrary to literature reports where a complete disappearance of 

efficiency and, accordingly enantioselection, was described upon kinetic resolution of 

sterically demanding 3-arylalkanoic acids, the highest reported enantiopurities of these acids 

was achieved (up to >98% ee) in this study through optimisation of reaction conditions. 

Steric and electronic effects on the efficiency and enantioselectivity of the biocatalytic 

transformation were also explored. Furthermore, a novel approach to determine the absolute 

stereochemistry of the enantiopure 3-aryl alkanoic acids was investigated through 

combination of co-crystallisation and X-ray diffraction linked with chiral HPLC analysis. 

The fourth chapter was focused on the development of a biocatalytic protocol for the 

asymmetric Henry reaction. Efficient kinetic resolution in hydrolase-mediated 

transesterification of cis- and trans- β-nitrocyclohexanol derivatives was achieved. 

Combination of a base-catalysed intramolecular Henry reaction coupled with the hydrolase-

mediated kinetic resolution with the view to selective acetylation of a single stereoisomer was 

investigated. While dynamic kinetic resolution in the intramolecular Henry was not achieved, 

significant progress in each of the individual elements was made and significantly the 

feasibility of this process has been demonstrated.  

The final chapter contains the full experimental details, including spectroscopic and 

analytical data of all compounds synthesised in this project, while details of chiral HPLC analysis 

are included in the appendix. The data for the crystal structures are contained in the attached CD. 
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1.1 Introduction  

The importance of ready access to biologically active pharmaceutical compounds in 

enantiomerically pure form is widely accepted, primarily due to the recognition that chirality 

plays a crucial role in potency, efficiacy and safety. In 2006, it was estimated that chiral 

compounds comprised more than half of drugs approved worldwide.
1
 Furthermore, five of the 

six top-selling drugs in 2007, Lipitor
®
, Plavix

®
, Nexium

®
, Diovan

®
 and Advair

®
 were sold as 

single enantiomers.
2
 While the predominant source of enantiopurity in the pharmaceutical 

industry resides in the starting material/intermediate purchased, alternative approaches of in-

house generation of chirality exist, namely; resolution, employment of chiral auxiliaries as 

temporary tethers and asymmetric catalysis.
1
 The latter process involves the application of 

enantiopure catalysts to transform prochiral and racemic substrates into enantiomerically 

enriched products. Two of the main strategies employed for catalytic enantioselective 

synthesis are biotransformations and transition metal catalysis. Biocatalytic methods in 

particular have been widely developed due to enzymes’ intrinsic regio- and 

enantioselectivity, high catalytic activity and ability to function under mild reaction 

conditions.
3
 

One of the most widely studied and commercially significant whole cell systems 

employed in biocatalysis is baker’s yeast (Saccharomyces cerevisiae), which has been 

extensively utilised in the asymmetric reduction of a wide variety of ketones and carbon-

carbon double bonds. This is largely due to the ready availability, ease of experimental 

procedures (especially for non-experts in microbiological techniques), and versatility of this 

microorganism.
4-8

 Alcohol dehydrogenases (ADHs) have been identified to be the key 

enzymes responsible for catalytic activity in the reduction of the carbonyl functional group.
9
 

However, these enzymes require a nicotinamide cofactor, NAD(P)H, from which a hydride is 

transferred to the substrate carbonyl carbon. The major advantage of such whole cell systems 

is that in situ regeneration of the coenzyme is achieved via the metabolic pathways of the 

microorganism once an oxidisable co-substrate (generally glucose or ethanol) is provided 

(Figure 1.1).  

 

 

 

 

 

 

 

 

 

 

Figure 1.1 

 

Stereoselectivity in reductions with baker’s yeast is governed by the geometry of 

hydride addition, and is generally in accordance with Prelog’s rule, with approach of the 

hydride from the re-face of the prochiral carbonyl to give the (S)-enantiomer of the alcohol 

(Figure 1.2).
10

 Several exceptions have been found, and this can be due to the presence of 

competing dehydrogenases that interfere with or even dominate the desired transformation, as 

each cell contains an array of varied yeast reductases with conflicting stereoselectivities. 

More recent publications predominantly describe the use of genetically engineered 
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microorganisms with over-expressed enzymes for asymmetric reductions.
11-15

 Also, isolated 

and purified enzymes are often employed to catalyse specific transformations, generally 

without the complication of competing reactions or tedious product recovery.
16

 Nevertheless, 

baker’s yeast is still a viable biocatalyst for the large-scale asymmetric reduction of ketones 

in the production of simple chiral building blocks. The overall economics of baker’s yeast 

mediated reduction may well be competitive because not only is the biocatalyst less 

expensive and possesses a wide substrate range, but the enzymes within the cell are also more 

stable than single isolated and purified enzymes.
17

 Significantly, in resolutions where the 

enzymes may require addition of exogenous enzyme co-factors, for example alcohol 

dehydrogenases, the natural regeneration of co-factors such as the nicotinamide cofactor 

[NAD(P)H] in the whole cell is a major advantage which should not be underestimated.
17

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 

 

A number of strategies have been developed to improve the enantioselectivity of 

baker’s yeast, namely: action of irreversible enzyme inhibitors,
17-20

 addition of organic 

solvents,
21

 cell immobilisation,
22-24

 chemical modification of the substrate,
25

 pre-treatment of 

the cellular mass
26

 and addition of sulfur compounds to the reaction mixture.
27

 Of these 

parameters, stereochemical control in the baker's yeast reduction of ketones by the 

introduction of sulfur functional groups has attracted considerable attention. Sulfides, 

sulfoxides and sulfones not only enhance the stereochemical course of the bioreduction by 

differentiating the steric bulk of the two substituents on the carbonyl group, but also possess 

great synthetic utility and may be employed as chiral building blocks for natural product 

synthesis via functional group transformation and carbon-carbon bond formation.
28

  

The objective of this review is to provide an accurate summary of all developments to 

date of stereocontrol in baker’s yeast reductions by introduction of sulfur-based functionality. 

This subject was previously extensively reviewed 22 years ago
28

 and also has been partially 

covered in other reviews dealing with general baker’s yeast mediated transformations in the 

preparation of enantiomerically pure chiral building blocks.
3,4,6,7
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1.2 Baker’s yeast mediated reduction of sulfur-containing compounds 

Pioneering work in the late 70’s initiated by Ridley et al. reported that baker’s yeast 

mediated reduction of -sulfur functionalised acetone derivatives is critically dependent upon 

the substituents attached to the sulfur-containing group and to the carbonyl group.
29,30

 In 

cases where these substituents are bulky, very little reduction occurs. The relative ease of 

reduction increases from β-ketosulfide to β-ketosulfoxide to β-ketosulfone. Thus, in the case 

of the β-ketosulfides, reduction of 1-(phenylthio)propan-2-one 1 proceeds with relative 

difficulty, generating the corresponding (S)-1-(phenylthio)propan-2-ol (S)-2 with high optical 

purity (≥94%) but poor yield (21-35%).
29,31

 Reduction of racemic (±)-1-

(phenylsulfinyl)propan-2-one (±)-3 results in kinetic resolution, affording the untransformed 

optically active ketone (S)-3 and a mixture of diastereomeric alcohols (Rs,Sc)-4a and (Rs,Rc)-

4b; the ratio of 3 to 4a/4b is dependent on the supplied sucrose concentration.
31

 The 

corresponding β-ketosulfone, 1-(phenylsulfonyl)propan-2-one 5a is reduced to the (S)-

alcohol (S)-6a in 98% yield with high optical purity (>95 % ee) (Scheme 1.1).
29

  

 

 

 

                   1                                        (S)-2  

(35% yield, >95% ee)
29 

                                                                       (21% yield, 94-99% ee)
31 

 

   

 

 

               3                                                   (S)-3                    (Rs,Sc)-4a                (Rs,Rc)-4b  

       (31% yield)                (47% yield, >95 % ee, 79 : 21 dr)
31

 

 

 

             

     

           5a                                                     (S)-6a  

                                                                     (98% yield, >95% ee)
29 

 

Scheme 1.1 

 

Fujisawa and co-workers later expanded this study and found that introduction of a 

sulfur atom into a substrate provides a facile method for controlling the stereochemical 

outcome of baker’s yeast mediated reductions so that the enantioselectivity is improved, or 

alternatively, reversed.
32-34

 Following this fundamental work the microbial reduction of 

sulfur-containing compounds attracted considerable interest. Furthermore these sulfur 

moieties can be easily manipulated chemically to either introduce a variety of 

functionalities,
35-37

 or be cleaved with retention of configuration by reductive 

desulfonylation.
38

 Therefore, the products of baker’s yeast mediated reduction and/or kinetic 

resolution of sulfur-functionalised ketone derivatives are versatile synthetic intermediates and 

have been used extensively in the synthesis of a number of enantioenriched target 

molecules.
39

 

 



Chapter 1                                                                                                                   Introduction 

 

   

7  

 

1.2.1 Baker’s yeast mediated reduction of ketosulfides 

The synthetic utility of enantiomerically pure secondary alcohols has been extensively 

documented.
40-44

 Furthermore, the presence of an additional heteroatom in the chiral alcohol, 

placed at an appropriate position from the hydroxyl group can provide further versatility to 

the compound. Chiral hydroxysulfides serve as valuable intermediates in the synthesis of 

naturally occurring spiroketal pheromones,
45

 chiral oxiranes,
32,46,47

 thiiranes,
48

 

tetrahydrofurans
49,50

 and 4-acetoxyazetidinones.
51

 Moreover, they are easily oxidised to 

hydroxysulfoxides
52-54

 or sulfones
55

 which also serve as extremely useful chiral building 

blocks. 

1.2.1.1 Reduction of β-ketoesters 

Optically active β-hydroxyesters or acids obtained by baker’s yeast mediated 

reduction have been efficiently employed as intermediates in various natural product 

syntheses.
56-60

 Chiral β-ketoester derivatives monosubstituted at C-2 spontaneously racemise 

at this position so that a diastereoselective reductase can convert an initially racemic β-

ketoester to a single β-hydroxyester stereoisomer with total conversion (Scheme 1.2).  

 

 

 

 

 

                                                                                          anti-(2S,3S) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                          syn-(2R,3S) 

 

Scheme 1.2 

 

Although the stereochemical course of the baker’s yeast reduction is generally 

predicted by Prelog’s rule, several different oxidoreductases of Saccharomyces cerevisiae can 

compete for the same substrate to alter the course of hydrogen delivery and/or to reduce the 

enantioselectivity. For example, while reduction of ethyl acetoacetate 7 (R
1
 = Me, X = H, R

2
 

= Et) provides the (S)-hydroxyester (S)-8 with 97% ee,
61

 ethyl 3-oxopentanoate 7 (R
1
 = Et, X 

= H, R
2
 = Et)

60
 and ethyl 5-benzyloxy-3-oxopentanoate 7 (R

1
 = PhCH2OCH2CH2, X = H, R

2
 

= Et) are reduced to the corresponding (R)-hydroxyesters (R)-8, of opposite configuration 

with poor optical purities (~40% ee) (Scheme 1.3).
62
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Fujisawa reported that the stereochemical control of baker’s yeast catalysed reduction 

of β-ketoesters can be strongly influenced by the introduction of a sulfur substituent at the -

position, effectively discriminating the re- and si- faces of the substrate to give enantiopure 

(S)-hydroxyesters (S)-8.
62

 Enantioselectivity was observed to dramatically improve for the 

reduction of β-keto--(methylthio)esters 7 (X = SMe), giving exclusively (3S)-β-

hydroxyesters 9 with >96% ee. The -methylthio group of 9 was easily removed following 

enzymatic reduction by mCPBA oxidation to the corresponding sulfoxide and subsequent 

desulfonylation with Al-Hg to afford optically pure (S)-8 (Scheme 1.3). A similar effect of an 

electronegative substituent - to the ketone controlling stereoselectivity was observed in the 

reduction of -hydroxy-β-ketoesters.
63

 

 

 

 

  

 

          (R)-8                                                 7                                                  9  

 

 

 

 

 

 

 

 

 

 

                                                                                                                       (S)-8 

    

Scheme 1.3 

 

Interestingly, on introduction of a sulfur moiety into the γ-position of the β-ketoester, 

the absolute configuration of the resulting β-hydroxyester was inverted from (S) to (R). This 

anti-Prelog enantiopreference was observed in the enantioselective baker’s yeast mediated 

reduction of β-keto-γ-phenylthio ester 10a
64

 and the γ-phenylsulfonyl ester derivative 10b 

(Scheme 1.4).
25

 The latter was reduced with greater enantioselectivity (98% ee vs. 73% ee) 

and subsequent sulfur group cleavage yields the (R)-β-hydroxyester 11. Thus, stereochemical 

control of the baker’s yeast mediated reduction to both enantiomeric series, (S)- and (R)-β-

hydroxyesters is achievable through careful positioning of the sulfur functional groups. 

 

 

 

 

 10a X = PhS 12a X = PhS (73% ee)          (R)-11 

 10b X = PhSO2  12b X = PhSO2 (98% ee)                                     

  

Scheme 1.4 
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As is evident from Table 1.1, good diastereo- and enantioselectivity was achieved in 

the baker’s yeast mediated reduction of 2-cyclopentanonecarboxylates with a methyl 13a 

(94% ee) and ethyl ester 13b (89% ee) (entries 1 and 2, Table 1.1). However, on introduction 

of a sulfur atom instead of an oxygen atom into the ester moiety the cis-(1R,2S)-S-ethyl 2-

hydroxycyclopentanecarbothioate (1R,2S)-14d was exclusively formed with enhanced 

enantioselectivity (>96% ee) (entry 4, Table 1.1).
65

 Although the octyl ester derivative 13c 

also gave optically pure cis-(1R,2S)-hydroxyester (1R,2S)-14c (entry 3, Table 1.1), the 

reduction required a significantly longer reaction time (6 d vs. 3.5 h). Such cyclic 

hydroxyesters are highly versatile chiral building blocks and for example have been utilised 

in the asymmetric synthesis of (2R,5S)-malynoglide, a biologically active antibiotic isolated 

from the marine blue-green algae (Lyngbya majuscula), and (1S,5R)-frontalin, the 

aggregation pheromone of the southern pine bark beetle (Dendroctonus brevicomis).
65

  

 

Table 1.1: The baker’s yeast reduction of 2-cyclopentanonecarboxylate 13
65

 

 

 

 

 

 

                      13                                              (1R,2S)-14                  (1S,2S)-14 

 

A more recent development to increase the stereoselectivity and enhance the reactivity 

of yeast reductases is the addition of a sulfur compound. This stems from Fujisawa’s work 

demonstrating that the introduction of a sulfur atom in the vicinity of the carbonyl group of 

the substrate improves the enantioselectivity and reactivity of the baker’s yeast reduction. The 

first report of employing a sulfur compound as an additive in the baker’s yeast reduction of 1-

acetoxy-2-alkanones 15a-c was described by Fujisawa in 1997.
66

 While yeast reduction of 

these substrates in the absence of a sulfur additive generally results in compromised yields 

and enantiopurities, undesired migration of an acetyl group and hydrolysis of the acetoxy 

moiety are also competing factors. However, in the presence of a sulfur compound, this 

migration is suppressed (Table 1.2). 

 

 

 

 

 

 

 

 

 

 

Entry Ketone X Time Alcohol 
Yield 

(%) 

cis (1R,2S)-14 : 

trans (1S,2S)-14 

ee (%) of  

(1R,2S)-14 

1 13a OCH3 1 d 14a 35 93 : 7 94 

2 13b OC2H5 2 d 14b 50 97 : 3 89 

3 13c OC8H17 6 d 14c 62 100 : 0 >96 

4 13d SC2H5 3.5 h 14d 88 100 : 0 >96 
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Table 1.2: The baker’s yeast reduction of 1-acetoxy-2-alkanones 15
66

 

 

 

 

             15                                               16                             17                           18 
 

a. Isolated yield. 
b. Determined by HPLC (Hibar column, Merck) analysis and 500 MHz 1H NMR of the corresponding (−)-MTPA ester derivative. 

                

Reduction of the simplest substrate acetoxyacetone 15a with the addition of 1.0 

equivalent of dimethyl sulfide (Me2S), results in enantiopure alcohol (S)-16a with limited 

migration of the acetyl group (entry 2, Table 1.2). Reduction of 15b is also improved with the 

addition of a sulfur compound as additive (entry 4, Table 1.2). In this case L-cysteine 

suppresses not only the migration of the acetyl group but also the hydrolysis of the acetoxy 

group to give (S)-16b predominantly. Moreover, the reaction rate of the baker’s yeast 

reduction is greatly accelerated in the presence of L-cysteine, 1 h vs. 6 h. In the case of the 

aromatic ketone acetoxyacetophenone 15c, the addition of L-cysteine results in excellent 

enantiopurity of (S)-16c and complete suppression of the hydrolysis of the acetoxy group and 

reduced formation of the migration product 17c (entry 6, Table 1.2). Fujisawa postulated that 

the improved results on addition of a sulfur additive may be due to the interaction of the 

sulfur compound with the active site of the reductase, altering the cavity.      

Shimizu later explored the baker’s yeast reduction of tetrahydrothiofuran and pyran β-

ketoester derivatives in the presence of a sulfur additive.
67

 The resulting cis-β-hydroxyesters 

can be converted by Raney nickel into highly useful chiral building blocks that are not readily 

available with a similar degree of stereocontrol by yeast reduction of open chain β-ketoesters. 

Although the baker’s yeast reduction of 2-methoxycarbonyl-tetrahydrothiopyran-4-one 19 

had previously been reported the enantioselectivity was not satisfactory.
68,69

 The β-ketoester 

19 gave the β-hydroxyester derivative 20 with 92% ee. Thus, 3.0 equivalents of dimethyl 

sulfoxide (DMSO) as an additive was employed in the resolution. Improved 

enantioselectivity and acceleration of the reaction rate were observed, with recovery of the 

product 20 in >99% ee, which can be subsequently transformed to the sulfide 21 and 

employed in a catalytic asymmetric sulfur-ylide epoxidation of aldehydes
67,70

 and also into 

anhydro-serricornine 22, a sex pheromone of the cigarette beetle (Scheme 1.5).
68

 

 

 

 

 

 

 

 

 

Entry Ketone R 
Sulfur 

compound 
eq. Time 

Yield 

(%)
a
 

16 + 17 

Yield 

(%)
a
 

18 

16 : 17 : 18 [ee (%)]
b
 

1 15a Me None - 2 h 41 - 94 (>99) : 6 : - 

2 15a Me Me2S  1.0 2 h 46 - >99 (>99) : 1 : - 

3 15b n-Bu None - 6 h 52 28 53 (98) : 12 (>99) : 35 (68) 

4 15b n-Bu L-Cysteine  1.0 1 h 66 8 79 (96) : 10 (>99) : 11 (60) 

5 15c Ph None - 5 h 58 2 64 (90) : 33 (>99) : 3 

6 15c Ph L-Cysteine  2.0 4 h 48 - 75 (>98) : 25 (>99) : - 
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             19                                       (3R,4S)-20                                                    21 

No sulfur additive 92% ee 

DMSO (3.0 eq.) >99% ee 

 

 

 

 

 

 

 

 

                                                             

                                                                22  

 

Scheme 1.5 

 

1.2.1.2 Reduction of ketones 

Baker’s yeast can enantioselectively reduce aliphatic ketones with various functional 

groups which are generally difficult to obtain by chemical reduction methods using hydride 

reagents (see section 1.2.5, Table 1.14). In 1991, Fujisawa reported the efficient baker’s yeast 

mediated reduction of 2-phenylthiocyclopentanone 23 which is more cleanly reduced than the 

corresponding cyclohexanone congener
29,71

 and affords (1S,2R)-2-(phenylthio)cyclopentanol 

24 in optically pure form (>99% ee) with the cis alcohol obtained exclusively (Scheme 1.6).
71

  

 

 

 

  

 

                          23                                                   (1S,2R)-24  

                                                                                                         (47% yield, >99% ee) 

 

Scheme 1.6 

 

In the synthesis of sulfur-containing lactones 25b and 26b, Vankar and co-workers 

obtained the β-thiocyclopentanol 27b and hexanol 28b with trans stereochemistry on baker’s 

yeast mediated reduction of 29 and 30 with poor yield, 16% and 17% respectively (Scheme 

1.7).
72

 Notably, although stereochemistry was assigned by spectral 
1
H NMR data, the optical 

purity of these compounds was not reported. Recently Maguire and co-workers reinvestigated 

the asymmetric synthesis of the lactone 26.
73

 Significantly, mixtures of the cis and trans 

fused lactones 26a and 26b were isolated in ≥98% ee and the diastereoselectivity of the yeast 

reduction was determined to be sensitive to the reduction protocol, with the reaction 
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conditions for isolation of enantiopure 26a and 26b optimised. Presumably in Vankar’s work 

both isomers were also formed but only 26b was recovered following purification. Use of this 

methodology for the asymmetric synthesis of the -diazosulfoxide 31 in enantiopure form 

(≥98% ee) has also been demonstrated (Figure 1.3).
73

 

  

 

 

 

 

    29 (n = 1)         27a (n = 1)                                27b (n = 1)                     

      30 (n = 2)        28a (n = 2)                                       28b (n = 2) 

 

 

 

 

 

 

                                                                             25a (n = 1)                                   25b (n = 1) 

                                                                             26a (n = 2)                                   26b (n = 2) 

 

Scheme 1.7 

 

 

 

 

 

 

                                                      31(≥98% ee) 

 

Figure 1.3 

 

As mentioned previously (section 1.2), Ridley reported the reduction by baker’s yeast 

of 1-(phenylthio)propan-2-one 1 affording (S)-hydroxysulfide (S)-2 in high enantiomeric 

purity (≥94% ee) albeit with low yield (35%) (Scheme 1.1).
29

 Similarly, the structural 

analogue 1-(benzylthio)propan-2-one 32 afforded the corresponding (S)-configured alcohol 

(S)-33 in 49% yield and >95% ee (Scheme 1.8).
29

 However, when the alkyl chain length was 

increased, the attempted reduction of 1-phenylthio-2-heptanone 34 yielded only the racemic 

β-ketosulfoxide 35, formed by oxidation of the sulfide 34 in 5% yield (Scheme 1.8).
29

 In 

general Ridley found that reduction of these β-ketosulfides proceeded with relative difficulty 

and only at low concentrations of the substrate.
29
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                              32                                (S)-33 (49% yield, >95% ee) 

 

 

 

 

                              34                                         (±)-35 (5% yield) 

 

Scheme 1.8 

 

The preparation of enantiomerically pure fluorine-containing compounds by means of 

enzymatic or microbial systems has garnered much interest due to their potential use as drugs 

and valuable tools for metabolic studies. Yamazaki reported the yeast reduction of fluorinated 

β-ketosulfides and found that the reduction of 1-fluoro-2-oxopropylphenylsulfide 36 gave the 

alcohol (R)-37 with 70% ee but with the opposite configuration to the corresponding non-

fluorinated sulfide,
74

 while Ghiringhelli
75

  and Moretti
76

 later reported baker’s yeast mediated 

reduction of the p-tolyl sulfide derivative 38 to give the alcohol (S)-39 with >85% ee. 

Interestingly, 1,1,1-trifluoropropylsulfide 40 did not undergo reduction (Scheme 1.9).
74

 

Comparison of the data in Schemes 1.8 and 1.9 indicate that the stereochemical assignment of 

(R)-37 warrants further investigation. 

 

 

 

 

                                      36                                                        (R)-37 (70% ee)        

 

 

               

                                      38                                                        (S)-39 (>85% ee) 

                              

 

 

                                      40 

 

Scheme 1.9 

 

The introduction of a hydroxyl group in the baker’s yeast reduction of β-ketosulfides 

has also been investigated. When 1-hydroxy-3-(phenylthio)-2-propanone 41 was reduced the 

resulting diol, (S)-3-(phenylthio)-1,2-propanediol (S)-42 was formed in 90% yield and 78% 

ee which was successfully employed for the synthesis of both enantiomers of the insect 

pheromone -n-hexadecanolide
32

 and for the synthesis of the deoxy sugars L-rhodinose and 

D-amicetose (Scheme 1.10).  
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                           41                                              (S)-42 (90% yield, 78% ee) 

 

Scheme 1.10 

 

The baker’s yeast mediated asymmetric resolution of various -ketosulfides bearing 

the benzothiazole-2-thiolic moiety has also been reported in good to excellent 

enantioselectivity and recovery (entries 1-4, Table 1.3).
48

 However, in the case of the more 

sterically demanding substrates, no reduction was observed (entries 5 and 6, Table 1.3). 

Interestingly the stereoselectivity of the reduction in all cases was (R) even with the larger 

alkyl groups. 

 

Table 1.3: The baker’s yeast reduction of -ketosulfides 43
48

 

 

 

 

 

            43                                                                                  (R)-44 

 

Application of this chemoenzymatic methodology to the asymmetric synthesis of (R)-

(benzothiazol-2-ylsulfanyl)-3-chloropropan-2-ol (R)-45, a precursor of potentially 

biologically active β-blockers (R)-46 proceeded with 70% ee in a biphasic mixture of hexane 

and water (Scheme 1.11).
77

 

 

 

 

 

                      47                                                                   (R)-45 (68% yield, 70% ee) 

 

 

 

 

 

 

 

                                                                                                  (R)-46 

 

 

Scheme 1.11 

Entry Ketone R
 

Time Alcohol Yield (%) ee (%) 

1 43a CH3 3 h (R)-44a 91 >99 

2 43b C2H5 5 d (R)-44b 89 74 
3 43c n-C4H9 3 d (R)-44c 80 >99 
4 43d n-C6H13 6 d (R)-44d 80 91 
5 43e n-C10H21 - - - - 

6 43f Ph - - - - 
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The baker’s yeast mediated reduction of ketones bearing remote sulfide functional 

groups has been reported as a key step in the synthesis of a number of chiral target molecules. 

Cohen et al. described the efficient preparation of (S)-phenylthio-2-alkanols (S)-48a-c in 

excellent enantiopurity (≥96% ee) by enzymatic reduction of the corresponding ketones 49a-c 

(Table 1.4).
45,78

 These highly enantiomerically enriched alcohols were then transformed to 

furan and pyran cyclic systems, to substituted cycloalkane rings and to the spiroacetal bee 

pheromone.
78

 

   

Table 1.4: The baker’s yeast reduction of remote sulfide functional groups
45,78

 

 

 

 

                                        49                                                              48 

 

1.2.1.3 Reduction of dicarbonyls 

Although diketones are good substrates for baker’s yeast, the selectivity of the 

reductions is rather low. Introduction of a bulky sulfur-containing moiety (which can be 

easily removed) is an effective way to stereochemically control these reductions. 

Fujisawa et al. investigated the baker’s yeast catalysed reduction of various 4-

sulfenylacetoacetic ester derivatives 50a-g.
79

 As evident from Table 1.5, enantioselectivity 

varied considerably, with ethyl (R)-3-hydroxy-4-phenylthiobutanoate (R)-51d recovered in 

excellent enantiopurity and good yield (entry 4, Table 1.5), while the corresponding 

methylthio or benylthio 50a-c substrates were reduced with poor stereoselectivity (entries 1-

3, Table 1.5). Furthermore, on substitution of the aromatic ring, a dramatic decrease in 

enantiopurity was observed (entries 5-7, Table 1.5). Despite the limited substrate specificity, 

enantiomerically pure ethyl (R)-3-hydroxy-4-phenylthiobutanoate (R)-51d was subsequently 

transformed into the β-lactam 52 via the oxamate derivative, without loss in enantiomeric 

purity (Scheme 1.12).  

 

Table 1.5: The baker’s yeast reduction of 4-sulfenylacetoacetic ester derivatives 50
79

 

 

 

 

                                        50                                                                  (R)-51 

Entry Ketone n Alcohol Yield (%) ee(%) 

1
45

 49a 1 (S)-48a 70 96 

2
45

 49b 2 (S)-48b 99 97 

3
78

 49c 3 (S)-48c 97 97 

Entry Ketone R
1 

R
2 Reaction 

time (h) 
Alcohol Yield (%)  ee (%) 

1 50a Me Et 11 (R)-51a 47 26 

2 50b Bn Et 4.5 (R)-51b 85 45 

3 50c Bn nBu 26 (R)-51c 70 72 

4 50d Ph Et 13 (R)-51d 63 >99 

5 50e m-Tol Et 2.5 (R)-51e 72 63 

6 50f o-Tol Et 5 (R)-51f 68 5 

7 50g p-MeOPh Et 13 (R)-51g 64 56 
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             (R)-51d (>99% ee)                                                       52  

 

Scheme 1.12 

 

Fujisawa observed the baker’s yeast mediated reduction of 3-

propionyltetrahydrothiopyran-4-ones 53 to give exclusively the (3R,4S)-3-propionyl-4-

hydroxytetrahydrothiopyrane 54 in 66% yield with excellent enantioselectivity (97% ee).
80

 

This highly regio- and stereoselective baker’s yeast reduction was applied to the 

stereocontrolled synthesis of the aggregation pheromone of both the rice and maize weevils 

(4R,5S)-sitophilure 55 (Scheme 1.13).
80

 

 

 

 

 

 

    53                                                 (3R,4S)-54                                                (4R,5S)-55  

 

Scheme 1.13 

 

A further example of the versatility of the whole cell baker’s yeast is reduction of the 

diketone 56 into the anti- and syn-isomeric diols 57 in a  86 : 14 ratio.
81

 Optically pure diol 

(2S,3S)-57 was obtained after crystallisation in 55-60% yield which can be employed as a 

precursor for the synthesis of γ-lactones of natural origin (Scheme 1.14). 

 

 

 

 

 

                                        56                                                     (2S,3S)-57  

 

Scheme 1.14 

 

Improved enantio- and diastereoselectivity was achieved in the baker’s yeast 

reduction of β-keto aldehyde derivatives using a sulfur compound as an additive.
82

 Reduction 

of 3-formyltetrahydrothiopyran-4-one 58 gave the sulfur-containing diol derivative 59 as a 

mixture of syn and anti diastereomers with the syn isomer being favoured (82 : 18 dr), but 

recovered in only 84% ee (Scheme 1.15). The syn-selectivity was improved using a sulfur 

compound such as L-cysteine or DMSO as an additive leading to a diastereomeric ratio of 90 

: 10 or 88 : 12 respectively. The best enantioselectivity of the syn-isomer 59 was achieved 

using DMSO as additive, with an enantiomeric excess of >99% ee. The resulting 

enantiomerically pure 1,3-diol derivative was transformed into serricornin 60, a sex 

pheromone of the cigarette beetle (Lasioderma serricorne F.). 
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             58                                               syn-59 (>99%ee)                           anti-59 (>99% ee)  

 

 

 

                                                                                                   

 

                                                                         60 

 

Scheme 1.15 

 

Various other chiral synthons have been obtained by resolution of di- or triketones, 

for example this methodology has been applied to the preparation of the intermediate 61 in 

the synthesis of an optically active steroid (Figure 1.4).
83

  

 

 

 

 

 

                                                                       

                                                                  (2R,3S)-61 

 

Figure 1.4 

1.2.1.4 Reduction of olefins 

Although not as widely investigated as carbonyl reduction, baker’s yeast mediated 

reduction of carbon-carbon double bonds is a useful transformation. The baker’s yeast 

specific hydrogenation of the olefin and carbonyl reduction in the sulfur-containing ,β-

unsaturated cyclopentenone derivative 62 proceeds with excellent enantiopurity (>99% ee) 

affording (1S,2R)-24 as the sole product in 47% yield (Scheme 1.16).
71

 In contrast to the 

cyclopentenone 62, incubation of the cyclohexenone derivative for 20 days led to recovery of 

the substrate. 

 

 

 

 

                          62                                                    (1S,2R)-24  

                                                                                           (47% yield, >99% ee) 

 

Scheme 1.16 

88 : 12 dr 
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Crout and co-workers investigated the baker’s yeast mediated reduction of a number 

of ,β-unsaturated carbonyl compounds with a γ-sulfide, sulfoxide and sulfone moiety 

attached (see Scheme 1.31 and Scheme 1.38).
84

 Carbonyl bond reduction was always detected 

but significantly, olefin bond reduction was only observed with the sulfide. Reduction of the 

vinyl sulfide 63 by Saccharomyces cerevisiae gave the fully saturated alcohol 64 in 18% 

yield and of 90% de, with both diastereomers found to be enantiomerically pure (>96% ee), 

and also the ketosulfide 65 in 20% yield and 72% ee (Scheme 1.17). 

 

 

             

 

 

            63                                                 64 (18% yield, 90% de, >96% ee)        65 (20% yield, 72% ee)  

 

Scheme 1.17 

 

A further example of yeast reduction of a sulfide-functionalised compound is the 

reduction of 3-phenylthiomethyl-2-butenolide 66 reported by Takabe.
85

 In this example the 

double bond is reduced in preference to the carbonyl group to afford 2-

phenylthiomethylbutanolide 67 in 41% yield, 99% ee (Scheme 1.18). 

 

 

 

 

                                    66                                                    67 (41% yield, 99% ee) 

 

Scheme 1.18 

 

Allylic alcohol 68, with a γ-methyl group, gave the (S)-alcohol (S)-69 with a rather 

low enantiomeric excess of 68% ee.
86

 Conversely, baker’s yeast mediated reduction of the 

alcohol 70 proceeded with concomitant hydrogenation of the methylene double bond and 

oxidation of the alcohol 70 to the carboxylic acid (S)-71 with >96% ee. Thus, Fujisawa 

reports changing the feature and position of the double bond results in the reversal of 

hydrogen delivery by the yeast (Scheme 1.19). 

 

 

 

 

                                68                                                                (S)-69 (68% ee)    

 

 

 

 

                                70                                                               (S)-71 (>96% ee) 

 

Scheme 1.19 
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A similar trend of stereochemical behaviour was described by Serra et al. in the baker’s yeast 

mediated reduction of sulfur-functionalised methacroleins.
87

 After 4 days of fermentation 

aldehyde 72 was reduced to a mixture of the allylic alcohol 73 (64%), saturated (R)-alcohol 

(R)-74 (25%) in 90% ee and starting aldehyde 72 (6%) (Scheme 1.20).  

 

 

 

             72                                                       73                          (R)-74 (90% ee) 

 

Scheme 1.20 

 

However, completely different behaviour both in terms of yield and enantioselectivity was 

observed on reduction of aldehyde 75. The double bond of the methacrolein 75 was saturated 

readily and after four days of fermentation (S)-74 (40%) was the main product together with 

allylic alcohol 76 (35%) and residual unsaturated aldehyde 75 (10%). In spite of the 

efficiency of the reduction step, the enantiomeric purity of the (S)-74 was only 65% ee, 

whereas when fermentation was interrupted after only 48 h the isolated (S)-74 had greater 

enantiopurity of 80% ee. The lower enantiopurity may be explained by considering that the 

heteroatom may assist the double bond isomerisation by conjugation. The following 

reduction of isomerised aldehyde affords the opposite enantiomer (R)-74, lowering the 

enantiomeric purity of the product (S)-74 (Scheme 1.21).  

 

 

                         75                                                       76                        (S)-74 (65-89% ee) 

  

Scheme 1.21 

 

Högberg reported the baker’s yeast mediated enantioselective reduction of the 

thiophene derivative 77 to yield the (S)-alcohol (S)-78 in 98% ee. Raney nickel reduction of 

the acetate of (S)-78 followed by hydrolysis provided (S)-2-methyl-1-alkanol 79 of 

unchanged optical purity (Scheme 1.22).
88

 

 

 

 

 

                 77                                             (S)-78 (98% ee)                                           (S)-79 

 

Scheme 1.22 

 

While there are many examples of baker’s yeast mediated hydrogenations of alkenes to yield 

the corresponding alkanes, the reverse process is reported to a much lesser extent.
89
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1.2.2 Baker’s yeast mediated reduction of ketones bearing dithioacetals 

Ketones possessing 1,3-dithiane at the -position 80a-q on treatment with baker’s 

yeast provide the corresponding -hydroxythioacetals 81a-q with high enantiomeric excess 

and proceed predominantly to the (S)-enantiomer.
90-93

 Notably, only reduction of the allyl 

derivative 80g (entry 7, Table 1.6) afforded the (R)-enantiomer with high enantioselection.
90

 

The methyl ester 80r (entry 18, Table 1.6) was rapidly hydrolysed by the esterase of baker’s 

yeast whereas the tert-butyl ester 80q (entry 17, Table 1.6) was stable and afforded 81q in 

good yield and >97% enantiomeric purity.
92

 These optically active -hydroxythioacetals are 

the synthetic equivalent of chiral -hydroxy aldehydes and ketones and have a wide 

applicability for the synthesis of many biologically active compounds, including the total 

synthesis of the anti-inflammatory agent leukotriene B4 via the Wittig reaction.
92

  

 

Table 1.6: The baker’s yeast reduction of -ketothioacetals 80
90-92

 

 

 

 

 

 

       

                                             80                                                         81 

 In addition, the baker’s yeast reduction of masked 1,3-dicarbonyl compounds affords 

secondary alcohols in optically active form. Ghiringhelli reports excellent enantiomeric 

excess on reduction of the ketone 1-(1,3-dithian-2-yl)-2-propanone 82, to give the 

enantiomerically pure (S)-β-hydroxythioacetal (S)-83 in 99% ee (Scheme 1.23), a key 

intermediate for the preparation of a variety of compounds with biological and 

pharmacological importance
94-97

 including both enantiomers of the macrocyclic lactone 

lasiodiplodin, which have demonstrated significant antileukemic activity.
98

 The 

corresponding 5-membered thioacetal 1-(1,3-dithiolan-2-yl)-2-propanone 84 was also 

reduced in >99% ee.
99

  

Entry Ketone R
1 

R
2 

Time Alcohol 
Yield 

(%) 
ee (%) 

1
90,91

 80a CH3 H 1 d (S)-81a 84 >96 

2
90,91

 80b C2H5 H 2 d (S)-81b 71 >96 
3

90
 80c n-C3H7 H 4 d (S)-81c 92 >96 

4
90

 80d n-C4H9 H 3 d (S)-81d 71 >96 
5

90
 80e  (CH2)3OH H 10 d (S)-81e 74 >96 

6
90

 80f CH3 CH3 2.5 d (S)-81f 50 >96 
7

90
 80g CH3 CH2CHCH2 4 d (R)-81g 31 >96 

8
91

 80h n-C6H13 H 8 d (S)-81h 38 ≥95 

9
91

 80i CF3 H 2 h (S)-81i 96 67 

10
91

 80j CH2OH H 5 d (S)-81j 28 ≥95 

11
91

 80k CH2OAc H 1 d (S)-81k 58 87 

12
91

 80l CH2OBn H 5 d (S)-81l 50 ≥95 

13
91

 80m CH2O( p-MeOPh) H 6 d (S)-81m 27 ≥98 

14
91

 80n CH2OTHP H 3 d (S)-81n 37 ≥95 

15
91

 80o CH2OCH2OMe H 1 d (S)-81o 82 ≥95 

16
91

 80p CH2OSi(CH3)2t-Bu H 7 d (S)-81p <10% - 

17
92

 80q (CH2)3CO2t-Bu H 3 d (S)-81q 65 >97 

18
92

 80r (CH2)3CO2CH3 H - - - - 
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Scheme 1.23 

 

The baker’s yeast reduction of the diketone 86 proceeds with excellent selectivity depending 

on the reaction time. Reduction of the β-carbonyl group progresses much faster than that of 

the -carbonyl group. (S)-Hydroxyketone (S)-87 and (1S,2S)-anti-diol (1S,2S)-88 are 

obtained in 60% and 82% yields after 2 and 48 h respectively.
33

 The products were obtained 

enantiomerically pure following recrystallisation from hexane. The large differences between 

the reduction rates of the two carbonyl groups was attributed to the steric bulk around them. 

Reduction of the hydroxyketone (S)-87 with diisobutylaluminium hydride gave the syn-diol 

(1R,2S)-88 with high diastereoselectivity, while (1S,2S)-88 is employed in the total synthesis 

of L-digitoxose, a rare sugar in nature.
33

  

 

 

 

  

 

               86                                                          (S)-87                                   (1S,2S)-88 

 

 

 

 

 

 

 

 

                                                                            (1R,2S)-88 

 

Scheme 1.24 

 

Batyl alcohol, the key intermediate for the preparation of platelet-activating factor 

(PAF), was synthesised from the ketoester 89 which gave on baker’s yeast treatment the 

corresponding (R)-alcohol 90 in high yield (80%), but only with moderate enantiomeric 

excess (64%) (Scheme 1.25).
100

 Use of Saccharomyces cerevisiae Kisato Inst. improved the 

enantioselectivity (89%), although the yield dropped significantly (22%). The highest 

enantiomeric excess (99%) but very low yield (15%) were finally achieved, however, with 

Torulopsis sp. Jyoxo kyokai 17. 

 

 

 

 

 

n = 0 84 (S)-85 (>99% ee) 

n = 1 82 (S)-83 (99% ee) 
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                   89                                                            (R)-90 

 

Scheme 1.25 

 

 Somewhat lower yields but still high enantiomeric excesses were achieved upon 

reduction of 1,1-bis-p-tolylthioalkan-2-ones 91a-g to the corresponding alcohols (S)-92a-g 

(Table 1.7).
101

 The rate of reduction was shown to depend on the length of the hydrocarbon 

chain and on the nature of the hetero-substituent. 

 

Table 1.7: The baker’s yeast reduction of 1,1-bis-p-tolythioalkan-2-ones 91
101

 

 

 

 

 

                          91                                                       (S)-92 

 

 Notably, poor yields and enantioselectivities were also observed on the reduction of 

2-acyl-thiazoles.
91

 These results summarised in Table 1.6-1.7 and Scheme 1.23-1.25 indicate 

that  1,3-dithiane as a sulfur functional group instead of the bis(p-tolylthio)methane or 

thiazole derivatives permits the synthesis of a broader range of -alkoxycarbonyl compounds.  

Finally, baker’s yeast mediated reduction of carbon-carbon double bond possessing 

1,3-dithiane moiety has been reported.
99,102

 For example, the ,β-unsaturated aldehyde 93 

was incubated with baker’s yeast for 19 days to yield optically pure (S)-propanoic acid (S)-94 

derivative in 48% yield.
86

 Absolute configuration is proved by conversion to the (S)-lactone 

95. Oxidation of the aldehyde to the carboxylic acid occurs after the reduction of the carbon-

carbon double bond (Scheme 1.26).  

 

 

 

 

 

 

 

Entry Ketone R
 

Time
 

Alcohol Yield (%) ee (%) 

1 91a CH3 3.5 d (S)-92a 50 95 

2 91b CH2F 4 d (S)-92b 42 95 

3 91c CH3OCH2OCH2 6 d (S)-92c 50 95 

4 91d C2H5 7 d (S)-92d 10 - 

5 91e CH2Cl 7 d (S)-92e 5 - 

6 91f CH2OH 7 d (S)-92f 5 - 

7 91g CF3 3 d (S)-92g 25 95 
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           93                                                               (S)-94                                    95 

 

Scheme 1.26 

1.2.3 Baker’s yeast mediated reduction of thiocarbonyls 

Madsen and Nielson reported that reduction of β-thioxoester derivatives 96 with 

baker’s yeast gave mixtures of optically active β-mercaptoesters 97 and β-hydroxyesters 98 

the latter formed by the hydrolysis of the thiocarbonyl group and the subsequent reduction of 

the hydrolysis product (Scheme 1.27).
103

 The reductions parallel those of oxygen analogues 

in terms of rate, diastereo- and enantioselectivity, but the enantiomeric purities were 

generally lower. Optimisation of reaction conditions led to improvements in stereoselectivity. 

The cyclic β-thioxo ester 99 was also reduced to furnish the (1S,2S)-thiol 100 with 81% ee 

and the (1R,2S)-alcohol 101 with 97% ee. 

 

 

 

                     96                                                              97                                       98    

 

 

 

 

 

 

                99                                              (1S,2S)-100 (81% ee)    (1R,2S)-101 (97% ee) 

 

Scheme 1.27 

 

Highly syn-selective baker’s yeast mediated reduction was observed of the β-

ketodithioesters 102a-d providing primarily the corresponding optically active (3S)-

hydroxythioester syn-103a-d.
34

 Reduction of methyl 3-oxo-2-methyldithiobutanoate 102c 

yielded an easily separable 94 : 6 mixture of syn-103c and anti-103c (entry 3, Table 1.8), the 

latter was obtained as a low yield byproduct although with high enantiomeric excess (96% 

ee), while the reduction of methyl 2-oxocyclohexanedithiocarboxylate 102d gave an optically 

pure single product of syn-(1R,2S)-103d (entry 4, Table 1.8). The syn to anti ratio is better 

than with the corresponding oxo isomers, a fact that appears to be due to the enhanced 

enolization of the β-keto groups by the thiocarbonyl moiety. Thus, changing the oxygen 

atoms in an ester group of a β-ketoester to sulfur atoms can control both the diastereo- and 

enantioselectivity of the reduction quite efficiently.  
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Table 1.8: The baker’s yeast reduction of β-keto dithioester derivatives 102
34

 

 

 

 

 

  

                  102                                                        syn-103                        anti-103 

1.2.4 Baker’s yeast mediated reduction of ketosulfoxides 

Optically pure sulfoxides have attracted a great deal of interest in the past three 

decades due to their use as chiral auxiliaries in a broad range of synthetic reactions; including 

carbon-carbon
104,105

 and carbon-oxygen
53

  bond forming reactions, in cycloaddition 

reactions,
106-108

 radical addition reactions
109,110

 and in asymmetric catalysis.
111

 Furthermore, 

chiral sulfoxides are formed as metabolites of many sulfur-containing drugs,
112,113

 and exhibit 

differential stereochemically-dependent metabolism
114,115

 and enzyme inhibition.
116

   

However, in contrast to the research described above for the reduction of various 

carbonyl groups bearing sulfide functionality, efficient baker’s yeast mediated kinetic 

resolution of racemic β-ketosulfoxide derivatives with concomitant reduction of the ketone 

functionality has been reported to a lesser extent, as the maximum yield of enantioenriched β-

ketosulfoxide and/or β-hydroxysulfoxide is at best 50%.  

As described at the beginning of section 1.2, one of the earliest reports of kinetic 

resolution of sulfoxides was the reduction of (±)-1-(phenylsulfinyl)propan-2-one (±)-3 

affording a diastereomeric mixture of 1-(phenylsulfinyl)propan-2-ol (Rs,Sc)-4 and (Rs,Rc)-4 

while the (S)-sulfoxide 3 was recovered in optically pure form (Scheme 1.1).
29,31

 The 

optically active ketone (S)-3 can be further reduced and alkylated to provide chiral building 

blocks  for the asymmetric synthesis of disparlure.
117

 Ridley and co-workers also monitored 

the reduction of the analogous benzylsulfinyl compound 104 over a period of four days and 

found that the reduction of the two enantiomers of the starting sulfoxide 104 can proceed at 

different rates (Scheme 1.28). For example, reduction of one enantiomer of 1-

(benzylsulfinyl)propan-2-one 104 occurred readily to afford (Ss,Sc)-(+)-1-

(benzylsulfinyl)propan-2-ol (Ss,Sc)-105 (40%) after 5 h while after 4 d the reaction yielded 

the (R)-sulfoxide (R)-104 (10%) and the alcohols (Ss,Sc)-105 (30%) and (Rs,Sc)-105 (25%).  

 

 

 

 

 

 

 

 

Entry Ketone R
1 

R
2 

R
3 

Alcohol Yield (%) 
syn-103                          

ee (%) 

1 102a CH3 H CH3 syn-103a 50 >96 

2 102b CH3 H C2H5 syn-103b 30 >96 

3 102c CH3 CH3 CH3 
syn-103c : anti-103c  

(94 : 6) 
65 >96 

4 102d -(CH2)4- CH3 
syn-103d: anti-103d 

(100 : 0) 
27 >96 
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            104                                                 (R)-104                (Ss,Sc)-105               (Rs,Sc)-105                  

 

Scheme 1.28 

 

The reduction of 1-phenylsulfinylheptan-2-one 106 proceeded very slowly, yielding 

the racemic ketone 106 and the (Rs,Sc)-alcohol (Rs,Sc)-107 in low yield (Scheme 1.29). 

Clearly extending the alkyl chain length of the β-ketosulfoxide reduces the efficiency of the 

yeast reductions; a similar trend was observed with the β-ketosulfides (see Scheme 1.8).
29

 

 

 

  

           106                                                (±)-106                         (Rs,Sc)-107 

 

Scheme 1.29 

 

Fujisawa et al. employed baker’s yeast to resolve racemic (±)-1-(p-

chlorophenylsulfinyl)propan-2-one (±)-108 to provide access to (Sc,Rs)-2-hydroxypropyl p-

chlorophenyl sulfoxide (Sc,Rs)-109 while the optically pure (S)-ketosulfoxide (S)-108 was 

recovered in a yield of 38% (Scheme 1.30).
118

 This chiral sulfoxide was subsequently 

employed as a precursor for the preparation of both enantiomers of the antitumor and 

antibacterial agent corynomycolic acid (+)-110 and (−)-110. 

 

 

 

         (±)-108                                                          (S)-108                             (Sc,Rs)-109     

                                                             (Yield 38%, >99% ee)                                 

 

 

 

 

 

 

 

 

                                                                   (−)-110 

 

Scheme 1.30 

 

Crout et al. also investigated the baker’s yeast reduction of ,β-unsaturated ketones 

with sulfinyl functionality.
84

 In contrast to the corresponding vinyl sulfide 63 discussed 

earlier in section 1.2.1.4, the major product isolated when the corresponding sulfoxide 111 

Reaction duration Yield (%) Yield (%) Yield (%) 

5 h - 40 - 

4 d 10 30 25 
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was reduced was the unsaturated alcohol 112, in only 19% yield, though there were traces of 

both the corresponding sulfide and sulfone also isolated (Scheme 1.31). The alcohol 112 was 

isolated as a diastereomeric mixture (64% de) of enantiomerically pure compounds. Further 

studies showed that the reduction was stereoselective with respect to reduction of the 

carbonyl group and that there was partial discrimination between the two sulfoxide 

enantiomers. 

 

 

 

 

 

                    (±)-111                                                            112  

 

Scheme 1.31 

 

Reduction of the β-ketosulfoxide with a trifluoromethyl moiety 113 afforded a 87 : 13 

mixture of diastereomers with the major diastereomer (Rc)-114 obtained with low 

enantiopurity of 28% ee.
74

 Reduction of the fluorinated compound 115 afforded (Sc)-116 in 

53% ee (Scheme 1.32).
74

 The stereochemistry of the sulfur atom was not assigned.  

 

 

 

 

                             113                                                          (Rc)-114  

 

 

 

 

                              115                                                          (Sc)-116 

 

Scheme 1.32 

 

Recently, all four stereoisomers of substituted phenylsulfinylpropan-2-ols 117 and 

118 were prepared simultaneously for the first time from β-sulfinylketones based on the 

combination of baker’s yeast and Candida antarctica lipase B with excellent 

enantioselectivities and high syn/anti ratios (Figure 1.5).
119

 Advantageously this 

chemoenzymatic process employs a novel diisopropyl ether/limited water system with greatly 

simplified work-up relative to aqueous bioreductions. 
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                                               117                                                  118 

 

 

 

 

 

Figure 1.5 

1.2.4.1 Asymmetric oxidation of sulfides by baker’s yeast  

While asymmetric sulfur oxidation via the Kagan
120,121

 and Modena
122

 methods is 

well established, there have been some reports of biological asymmetric sulfide oxidation.
123-

126
 Although uncommon, a small number of baker’s yeast mediated oxidation transformations 

of sulfides to sulfoxides have been reported.
89,127

 Roberts obtained the (R)-sulfoxide (R)-119 

in good yield (60%) and high enantiopurity (92% ee) by baker’s yeast mediated oxidation of 

the sulfide 120 under semi-anaerobic conditions (Scheme 1.33). This was subsequently 

employed in the synthesis of the hypocholestemic agent 121.
128,129

 

 

 

 

 

 

120                               (R)-119 (60% yield, 92% ee)                                      121  

 

Scheme 1.33 

 

 Under aerobic conditions, the thia-fatty acid 122 is converted to the (R)-sulfoxide by 

baker’s yeast in >96% ee,
130-132

 and the analogues 123 are similarly transformed (Figure 

1.6).
133,134

 Recently the effect of substrate chain length on the efficiency of the baker’s yeast 

mediated sulfoxiation of 9-thia fatty acid methyl esters was investigated.
135

 

 

 

 

                                                          122 

 

 

 

                                                          123 

          

 

Figure 1.6 

Product ee (%) syn/anti 

(Ss,Sc)-117 >99 26 : 1 

(Ss,Rc)-117 99 1 : 38 

(Rs,Sc)-117 99 1 : 29 

(Ss,Sc)-117 >99 12 : 1 

Product ee (%) syn/anti 

(Ss,Sc)-118 >99 53: 1 

(Ss,Rc)-118 >99 1 : 19 

(Rs,Sc)-118 93 1 : 8915 

(Ss,Sc)-118 98 12 : 1 



Chapter 1                                                                                                                   Introduction 

 

   

28  

 

1.2.5 Baker’s yeast mediated reduction of β-ketosulfones 

Several examples of baker’s yeast mediated reduction of β-ketosulfones have been 

reported, and these reactions generally proceed in a more efficient manner than their sulfide 

counterparts, giving synthetically versatile β-hydroxysulfones. Baker’s yeast mediated 

reduction of simple acyclic β-ketosulfones has been reported to be dependent on the nature of 

the alkyl chain. Thus, as previously described 1-(phenylsulfonyl)propan-2-one 5a afforded 

(S)-2-hydroxypropyl phenyl sulfone (S)-6a in 98% yield and >95% ee (Scheme 1.1 and entry 

1, Table 1.9).
29

 The rate of conversion was shown to depend on the ratio of substrate to 

sucrose.
29,31

  However, it was found that the efficiency and stereoselectivity achieved in the 

baker’s yeast reduction of β-ketosulfones 5a-f decreased considerably as the alkyl chain 

length increased. Thus, 5b afforded (S)-6b with 63% ee (entry 2, Table 1.9)
136

 and gave (S)-

6c with 46% ee (entry 3, Table 1.9),
137

 whereas reduction of 5d yielded only 10% of nearly 

racemic (S)-6d (entry 4, Table 1.9).
29

 No reduction by baker’s yeast was observed for 5e 

(entry 5, Table 1.9). 1-Phenyl-2-(phenylsulfonyl)ethanone 5f afforded upon reduction with 

baker’s yeast (R)-6f  (87% yield and 15% ee) (entry 6, Table 1.9).
25

 Reduction with Sake 

yeast (Saccharomyces cerevisiae) kyokai-7, however, gave (R)-6f with 84% yield and 92% 

ee.
25

 

 

Table 1.9: The baker’s yeast reduction of acyclic β-ketosulfones 5
25,29,136,137

   

 

 

 

                           5                                                          6 

 

 

In addition to phenylsulfone, tolyl- and benzyl-substituted compounds have been 

investigated. The reduction of 1-(benzylsulfonyl)propan-2-one 124 gave the corresponding 

(S)-alcohol (S)-125 in 38% yield, 95% ee while the p-tolyl analogue 126 was also reduced to 

afford the (S)-alcohol (S)-127 in 97% ee (Scheme 1.34).
136

 

 

 

 

                                    124                                           (S)-125 (38% yield, 95% ee)              

 

 

 

 

                                    126                                          (S)-127 (84% yield, 97% ee)            

 

Scheme 1.34 

Entry Ketone R Alcohol Yield ee (%) 

1 5a CH3 (S)-6a 98 >95
29

 

2 5b CH2CH3 (S)-6b 90 63
136

 

3 5c n-C3H7 (S)-6c 53 46
137

 

4 5d n-C5H11 (S)-6d 10 10
29

 

5 5e n-C6H13 (S)-6e - -
137

 

6 5f C6H5 (R)-6f 87 15
25
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The fluorinated derivative 128 was reduced by baker’s yeast to the corresponding 

alcohol 129 with (S)-configuration and high enantioselectivity >97% ee
75

 or >80% ee
76

 

(Scheme 1.35).  However the reduction of 1-chloro-1,1-difluoro-3-(p-tolylsulfonyl)propan-2-

one 130 afforded the alcohol 131 with predominantly (R)-configuration (78% ee) in 85% 

yield.
138

 

 

 

 

                                     128                                       (S)-129 (84% yield, >97% ee)
75

  

 

 

 

 

                                     130                                        (R)-131 (85% yield, 78% ee) 

 

Scheme 1.35 

 

It is evident from comparison of the baker’s yeast mediated reduction of the p-tolylsulfonyl 

substituted 1-fluoropropan-2-one 128 with the analogous sulfoxides 115 (Scheme 1.32) and 

sulfides 38 (Scheme 1.9) that the presence of the electron withdrawing sulfone leads to much 

better selectivity. Furthermore, 1-chloro-1,1-difluoro-3-tosylpropan-2-one 130 was 

selectively reduced to provide the (R)-131 alcohol in good enantiopurity (78% ee) while the 

closely related electron deficient sulfoxide 113 (Scheme 1.32) and sulfide 40 (Scheme 1.9) 

derivatives underwent limited to no reduction. 

Introduction of a hydroxyl group at the terminal carbon of the alkyl chain not only 

improved the enantioselectivity relative to the unsubstituted analogues especially in the 

longer alkyl chain compounds but also simplified conversion of the products into optically 

active lactones (Table 1.10).
139

 For example, 7-hydroxy-1-phenylsulfonylheptan-2-one 132e 

afforded the corresponding (S)-diol (S)-133e in 84% yield and 72% ee compared to 1-

phenylsulfonylheptan-2-one 5d which on reduction gave the (S)-alcohol (S)-6d in 10% yield 

and 10% ee (entry 4, Table 1.9).
29

  

 

Table 1.10: The baker’s yeast reduction of acyclic β-ketosulfones 132
139 

 

 

 

 

                                 132                                                                 (S)-133 

 

In contrast, baker’s yeast mediated reduction of the analogous methanesulfonyl 

derivatives 134a-c exhibited greater stereoselectivity even with longer alkyl chains, leading 

to recovery of the corresponding (S)-alcohols 135a-c with higher enantiopurity than the 

Entry Ketone n Alcohol Yield ee (%) 

1 132a 1 (S)-133a 87 99 

2 132b 2 (S)-133b 42 94 

3 132c 3 (S)-133c 74 93 

4 132d 4 (S)-133d 39 96 

5 132e 5 (S)-133e 84 72 
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corresponding benzenesulfonyl derivatives (Table 1.11).
140

 However, the extent of reaction 

was generally low in the transformations, with poor recoveries of 135a-c obtained. 

 

Table 1.11: The baker’s yeast reduction of methanesulfonyl derivatives 134
140

 

 

 

 

                                      134                                                          (S)-135 

 

Baker’s yeast mediated reduction of keto derivatives bearing sulfone functionalities in 

more remote positions have also been reported (Table 1.12). For example Gopalan found that 

the efficiency and selectivity of baker’s yeast mediated reduction of acyclic ketosulfone 

derivatives 136a-c decreased as distance between the keto and sulfone groups increased.
39

 

The hydroxysulfones (S)-137a-b obtained in these reactions were subsequently employed as 

chiral intermediates for the syntheses of enantiomerically pure parasorbic acid and the 

pheromone (S)-(+)-2-tridecanol.  

 

Table 1.12: The baker’s yeast reduction of remote sulfone functional groups 136
39

 

 

 

 

                                             136                                                    (S)-137 

 

Enantioselective baker’s yeast mediated reduction of β-ketosulfone derivatives has 

also been employed in the synthesis of a number of useful chiral target molecules, for 

example, treatment of 138 with baker’s yeast gave a complex mixture of products, including 

the alcohol 139 and the lactone 140; treatment of the crude product mixture with p-

toluenesulfonic acid gave 140 in good yield (Scheme 1.36).
37

 This was subsequently 

employed in the synthesis of (S)-angelica lactone 141, a versatile synthetic intermediate, 

which was obtained in high enantiomeric purity (% ee not recorded). Huet has also reported 

the preparation of several lactones in high enantiomeric excess from (S)-1-(phenylsulfonyl)-

3-butanol obtained by baker’s yeast mediated resolution.
141

 

 

 

 

 

 

 

 

Entry Ketone R Alcohol Yield ee (%) 

1 134a n-C4H9 (S)-135a 12 71 

2 134b n-C5H11 (S)-135b 26 87 

3 134c n-C6H13 (S)-135c 14 76 

Entry Ketone n Alcohol Yield ee (%) 

1 136a 2 (S)-137a 68 98 

2 136b 3 (S)-137b 44 98 

3 136c 4 (S)-137c 5 81 
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                 138                                                          139                                     140   

 

 

 

          

 

 

 

 

  

                                                          141                                         140   

 

Scheme 1.36 

 

Tanikaga and co-workers investigated the baker’s yeast reduction of -chloroketone 

derivatives such as 142, to afford the corresponding alcohol (R)-143 (Scheme 1.37).
137,142,143

 

The reduction proceeded cleanly with excellent recovery (85%) of the hydroxysulfone (R)-

143. Though the enantiomeric purity of the isolated alcohol was only 88% ee, it could be 

recrystallised to give (R)-alcohol (R)-143 in its enantiomerically pure state which can be 

transformed further by chemical methods to the epoxide 144 and subsequent alkylation with 

Grignard reagents provides the chiral alcohols (S)-145 (>98% ee) without racemisation.  

 

 

 

 

                142                                  (R)-143 (85% yield, 88% ee)                                   144            

 

 

 

 

 

 

                                                                                 

                                                                                                                                                (S)-145 (>98% ee) 

                                                                                                                              

Scheme 1.37 

 

Svatoš et al. recently investigated the microbial reduction of 3-methyl-1-

(phenylsulfonyl)hexan-2-one 146 with more than 20 yeasts.
144

 While Saccharomyces 

cerevisiae resulted in very poor conversion to the alcohol, 72% of starting material being 

recovered, other yeasts, e.g. Candida guillermondii, C. zeylanoides and Kloeckera apiculata 
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proceeded with excellent re-face stereoselectivity, >99% ee in each case, with the (R)-

enantiomer of the starting material generally reacting faster as outlined in Table 1.13.   

 

Table 1.13: The baker’s yeast reduction of 3-methyl-1-(phenylsulfonyl)hexan-2-one 146  

by selected yeasts
144

 

 

 

 

 

                                                            146 

 

 

 

 

 

 

 

        (2R,3R)-147                   (2S,3S)-147                   (2R,3S)-147                   (2S,3R)-147 

 

Yuan et al. reported a facile method for the preparation of β-hydroxysulfones 148a-h 

and β-hydroxysulfides 148i-n in medium to high yields and excellent enantiopurity.
119

 These 

bioresolutions were performed in a novel diisopropyl ether/limited water system as 

previously described for resolution of all four stereoisomers of phenylsulfinylpropan-2-ols 

117 and 118 (Figure 1.5). As evident in Table 1.14 when R
2
 was methyl, substituted 

phenylsulfonylpropan-2-ols (S)-149a-e were obtained with excellent enantioselectivities 

except for 148d, due to the poor solubility of 148d in diisopropyl ether. With the increasing 

steric hindrance of R
2
, both the yield and enantiomeric purity decreased. Substituted 

phenylthiopropan-2-ones 148i-n were also reduced, however longer reaction times were 

required presumably due to the poor electron withdrawing ability of the phenylthio group. 

 

 

 

 

 

 

 

Entry Yeast 146 
Recovered yields (%) 

(2R,3R)-147 (2S,3S)-147 (2R,3S)-147 (2S,3R)-147 

1 
Candida 

guillermondii 
46 0 10 0 43 

2 
Candida 

zeylanoides 
4 0 50 0 45 

3 
Hansenula 

anomala 
4 1 42 0 53 

4 
Kloeckera 

apiculata 
34 0 10 0 55 

5 S. uvarum 52 3 7 3 35 

6 S. cerevisiae 72 9 3 4 13 
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Table 1.14: The baker’s yeast reduction of sulfur-containing ketones 148
119

 

 

 

 

                                      148                                       (S)-149 

c. 0.5 g 148i in 600 mL baker’s yeast suspension (water). 

Crout et al. completed their investigation of the baker’s yeast mediated reduction of 

,β-unsaturated ketones with γ-sulfur functionalities with the vinyl sulfone 150 (Scheme 

1.38).
84

 The major product of the reduction was the corresponding alcohol (S)-151 in 

excellent yield (75%) and in enantiopure form. In this case, the rate of reduction of the 

carbonyl functionality by the yeast oxidoreductases was much greater than that of the carbon-

carbon double bond. As discussed earlier, the yeast reduction of a vinyl ketone (Scheme 1.17 

and 1.31) is dependent on the substituents attached to the carbon-carbon double bond, 

however, Crout has shown here that it is also dependent on the oxidation level on the sulfur 

atom.  

 

 

 

 

                         150                                                (S)-151(75% yield, >99% ee) 

 

Scheme 1.38 

 

Fujisawa et al. reported one of the first baker’s yeast mediated reduction of a cyclic β-

ketosulfone.
145

 The resolution of the highly substituted -benzenesulfonylcyclohexanone 

derivative 152 proceeded with excellent efficiency (69% combined yield) to give a 45 : 55 

mixture of the two diastereomers (1S,2R,3S)-153 and (1S,2R,3R)-153 (Scheme 1.39). Both 

isomers were isolated with excellent enantiopurity (>99% ee).  

 

 

 

 

Entry Ketone R
1
 R

2
 Time Alcohol Yield (%) ee (%) 

1 148a C6H5SO2 CH3 4 h (S)-149a 99 99 

2 148b 4-CH3C6H4SO2 CH3 5 h (S)-149b 95 99 

3 148c 4-CH3OC6H4SO2 CH3 5 h (S)-149c 85 99 

4 148d 4-NO2C6H4SO2 CH3 4 h (S)-149d 47 96 

5 148e 4-ClC6H5SO2 CH3 4 h (S)-149e 77 99 

6 148f C6H5SO2 C2H5 10 h (S)-149f 91 93 

7 148g C6H5SO2 C3H7 17 h (S)-149g 74 70 

8 148h C6H5SO2 C6H5 20 h 149h - - 

9 148i C6H5S CH3 12 h (S)-149i 97 95 

10 148i
a C6H5S -CH3 24 h 149i 35 - 

11 148j 4-CH3C6H4S CH3 12 h (S)-149j 96 99 

12 148k 4-CH3OC6H4S CH3 12 h (S)-149k 86 99 

13 148l 4-ClC6H5S CH3 18 h (S)-149l 67 98 

14 148m 4-NO2C6H4S CH3 22 h (S)-149m 92 96 

15 148n 4-BrC6H4S CH3 17 h (S)-149n 73 97 
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                      152                                         (1S,2R,3S)-153               (1S,2R,3R)-153 

 

Scheme 1.39 

 

Recently, efficient dynamic kinetic resolution in the baker’s yeast reduction of 2-

benzenesulfonylcycloalkanones was reported (Table 1.15).
146

 Although cyclopentanol and 

cyclohexanol derivatives were formed with excellent diastereo- and enantiocontrol, reduction 

of the 7- and 8-membered ring analogues was much less efficient. This is consistent with the 

trend observed for 2-carbethoxycycloalkanones, where decreased reduction efficiency with 

increasing ring size was reported.
29,71

  

 

Table 1.15: The baker’s yeast reduction of 2-benzenesulfonylcycloalkanones 154
146

  

 

 

 

 

 

                                    154                                                    (S)-155 

 

More complex ketosulfones are reduced just as efficiently; for example the β-

substituted -benzenesulfonylcyclopentanones 156a-g resulted in extremely efficient kinetic 

resolution generating the (1S,2R)-cyclopentanols 157a-g and recovery of the (2S)-

cyclopentanones 156a-g (Table 1.16).
147,148

 By variation of the conditions employed for the 

yeast reduction the efficiency, enantio- and diastereoselectivity of the transformation have 

been optimised for each of the cyclopentanone derivatives in particular for the 3-methyl, 

ethyl and propyl substituted substrates 156b, c and d respectively (entries 2-4, Table 1.16). 

However, extension of the alkyl chain resulted in dramatic decreases in both the efficiency 

and the enantioselectivity of the yeast mediated reduction. 

 

 

 

 

 

 

 

 

Entry Ketone n Alcohol Yield ee (%) dr 

1 154a 1 (S)-155a 95 >98 98 : 2 

2 154b 2 (S)-155b 78 >95 >98 : 2 

3 154c 3 (S)-155c 8 - >98 : 2 

4 154d 4 (S)-155d - - - 
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Table 1.16: Efficient kinetic resolution of 2-benzenesulfonylcyclopentanone derivatives 156 

via baker’s yeast mediated reduction
147

  

 

 

 

 

 

 

        156a-g                                       (2S,3R)-156a-e   (1S,2R,3S)-157a-e     (1S,2S,3R)-157a-e 

                                                          (2S,3S)-156f-g    (1S,2R,3R)-157f-g     (1S,2S,3S)-157f-g 

                                                                                                 Major                          Minor 

a. Diastereomeric ratio (dr) refers to the ratio of major (1S,2R)-157a-g/minor (1S,2S)-157a-g diastereomeric cyclopentanols determined 

from 1H NMR spectra.       

 

Tanikaga et al. reported the reduction of cyclohexanones 158a-e, containing a 

functional group at C-3 (Table 1.17).
149

 Baker’s yeast mediated reduction of 3-(nitromethyl)-, 

3-(phenylsulfonyl)-, and 3-[(phenylsulfonyl)methyl]- cyclohexanones 158a, c and d led to the 

delivery of a hydride to the re-face of the prochiral ketones to provide cyclohexanols (1S,3S)- 

and (1S,3R)-159a, c and d  according to the Prelog rule, with high enantioselectivities and in 

good yield (entries 1, 3 and 4, Table 1.17). In contrast, 3-butylcyclohexanone 158e (entry 5, 

Table 1.17) was found to be unreactive towards baker’s yeast, and 3-

(phenylthio)cyclohexanone 158b (entry 2, Table 1.17) was reduced with poor 

enantioselectivity and with very low yield, indicating that the remote nitro and sulfonyl 

groups may play an important role in binding to an enzyme.   

 

Table 1.17: The baker’s yeast reduction of cyclohexanones 158
149

 

 

 

 

 

            158                                            (1S,3S)-159                (1S,3R)-159    

 

 

Entry 

 

R 

 

Cyclopentanone 156 Cyclopentanol 157 

dra 
 

Yield 

(%) 
ee (%)  

Yield 

(%) 
ee (%) 

1 H 156a ~4 - (1S,2R)-157a 79 >95 97 : 3 

2 Me (2S,3R)-156b 10 >95 (1S,2R,3S)-157b 29 >95 82 : 18 

3 Et (2S,3R)-156c 28 >95 (1S,2R,3S)-157c 40 >95 94 : 6 

4 nPr (2S,3R)-156d 26 95 (1S,2R,3S)-157d 36 >95 93 : 7 

5 nBu (2S,3R)-156e 34 60 157e 32 >95 >98 : 2 

6 Ph (2S,3S)-156f 20 86 (1S,2R,3R)-157f 31 >95 >98 : 2 

7 CH2Ph (2S,3S)-156g - - (1S,2R,3R)-157g 22 >95 95 : 5 

Entry Ketone R 
(1S,3S)-159 (1S,3R)-159 

 Yield ee (%)  Yield ee (%) 

1 158a CH2NO2 (1S,3S)-159a 46 >99 (1S,3R)-159a 43 >98 

2 158b SPh (1S,3S)-159b 6 5 (1S,3R)-159b 9 6 

3 158c SO2Ph (1S,3S)-159c 45 >99 (1S,3R)-159c 40 >99 

4 158d CH2SO2Ph (1S,3S)-159d 41 90 (1S,3R)-159d 38 95 

5 158e n-C4H9 (1S,3S)-159e - - (1S,3R)-159e - - 
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1.3 Conclusion 

Both the efficiency and stereoselectivity in baker’s yeast mediated reduction of 

ketones is strongly influenced by both the presence and the position of sulfur moieties or 

indeed by use of sulfur-containing additives (Scheme 1.5 and 1.15). The oxidation level of 

the sulfur substituent has a powerful impact on the outcome of the yeast reduction, and for 

example the reduction of 2-sulfonylketones is in general very successful and significantly 

more effective than the analogous sulfide and sulfoxide derivatives. This is clearly evident in 

the baker’s yeast mediated reduction of α-sulfur functionalised acetone (Scheme 1.1) and 1-

fluoropropan-2-one derivatives (Scheme 1.9, 1.32 and 1.35) where the highest yield and 

enantioselectivity was obtained in reduction of the β-ketosulfone substrates relative to the 

sulfide or sulfoxide derivatives. Furthermore, the synthetic application of the reduction of 

ketosulfoxides is limited by the kinetic resolution of the sulfur atom. Interestingly in all cases 

[β-ketosulfide (Scheme 1.8), β-ketosulfoxide (Scheme 1.29) and β-ketosulfone (Table 1.9)], 

very little reduction occurs on extension of the alkyl (R) chain length (Figure 1.6). 

 

 

 

 

 

  

 

Figure 1.6 

 

Reduction of sulfur-containing alkenes by yeast is also possible. Reduction of the α,β-

unsaturated ketone with γ-sulfide, sulfoxide and sulfone moieties has been described (Figure 

1.7). Notably, carbonyl bond reduction was observed in all substrates but olefin bond 

reduction was dependent on the oxidation state of the sulfur atom and only occurred with the 

sulfide. Thus, baker’s yeast reduction of unsaturated sulfide (Scheme 1.17) and sulfoxide 

(Scheme 1.31) derivatives both lead to a mixture of diastereomers while the sulfone yielded 

the unsaturated alcohol as the sole product in excellent yield and enantiopurity (Scheme 

1.38). Furthermore, the nature and position of the double bond was observed to affect the 

stereochemical course of the baker’s yeast reduction of sulfides (Scheme 1.19-1.21).   

 

 

 

 

 

 

 

 

 

Figure 1.7 

 

Thus, it is apparent that use of the sulfone moiety as a substituent to influence the 

efficiency and stereoselectivity in ketone reduction is substantially more effective than the 

analogous sulfide and sulfoxide moieties. Combination with chemical methods provides a 

powerful tool for the enantioselective synthesis of optically active natural products.  
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2.1 Background to the project 

The synthesis and kinetic resolution of 2-benzenesulfonyl substituted cyclopentanone 

derivatives via baker’s yeast (Saccharomyces cerevisae) mediated reduction was initially 

explored by Kelleher.
1
 Over the last 15 years, significant developments within the research 

group have effectively extended this work to generate a wide variety of synthetically 

powerful, highly enantioenriched cyclopentanones and cyclopentanols, which have been 

employed in the asymmetric synthesis of insect pheromones.
2-7

  

While the baker’s yeast reductions of many racemic trans-3-substituted-2-sulfonyl 

cyclopentanones proceed with excellent diastereo- and enantioselectivity, poor efficiency and 

kinetic resolution were observed in the baker’s yeast catalysed resolution of (±)-trans-2-

benzenesulfonyl-3-n-butylcyclopentanone (±)-2.
1,2

 The moderate enantioselectivity observed 

of this key chiral precursor limited the application of this kinetic resolution in the asymmetric 

synthesis of the aggregation pheromone of the rhinoceros beetles of the genus Oryctes, 4-

methyloctanoic acid 1 and of the sex pheromone of the peach leafminer moth Lyonetia 

clerkella Linné, 14-methyloctadecene 3, compounds for which the stereochemistry generally 

dictates the behavioural response of the insect (Figure 2.1).
1,2,8

 

 

 

 

 

                                                   1                                               3 

 

Figure 2.1 

 

Significantly, preliminary investigations by Kelly
3
 and later exploration by Milner

8
 

have demonstrated efficient immobilised baker’s yeast (IMBY) mediated reduction of the 

(±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2 substrate in water with repeated 

sucrose additions, albeit with poor recovery of the enantiopure products (2S,3R)-2 and  

(1S,2R,3S)-4 (Scheme 2.1). 

 

 

 

 

 

 

                     trans (±)-2                                       (2S,3R)-2                 (1S,2R,3S)-4 

 

Scheme 2.1 

 

Prompted by the success of the kinetic resolution of the substrate (±)-trans-2-

benzenesulfonyl-3-n-butylcyclopentanone (±)-2, the primary aim of this work was to 

optimise the synthetic utility of this biocatalytic process on a preparative scale, thereby 

obtaining access to synthetically useful quantities of the enantiopure building blocks 

cyclopentanone (2S,3R)-2 and cyclopentanol (1S,2R,3S)-4. Access to both enantiomeric 

series in high enantiomeric purity was envisaged, and application of this chemoenzymatic 

resolution to the asymmetric synthesis of the natural insect pheromone 4-methyloctanoic acid 

1 would be subsequently explored (Scheme 2.2). 
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2.2 Objectives of the project 

The specific aims of this project may be summarised as follows: 

 

 To synthesise multi-gram quantities of the desired racemic (±)-trans-2-

benzenesulfonyl-3-n-butylcyclopentanone (±)-2, the targeted substrate for the 

biocatalytic study. 

 

 To achieve efficient baker’s yeast mediated reduction of (±)-trans-2-benzenesulfonyl-

3-n-butylcyclopentanone (±)-2 (Scheme 2.1) to obtain synthetically useful quantities 

of the generated cyclopentanol (1S,2R,3S)-4a and the recovered cyclopentanone 

(2S,3R)-2 in excellent enantiopurity. 

 

 To demonstrate the synthetic potential of this chemoenzymatic process in the 

asymmetric synthesis of both enantiomers of the aggregation pheromone of the 

rhinoceros beetles of the genus Oryctes, 4-methyloctanoic acid (R)-1 and (S)-1 

(Scheme 2.2). 

 

 

 

 

 

 

                                       (2S,3R)-2                                        (R)-1   

                                  (From baker’s yeast) 

 

 

 

 

 

 

            (1S,2R,3S)-4a                          (2R,3S)-2                                           (S)-1   

           (From baker’s yeast) 

 

Scheme 2.2 

2.3 Synthesis of substrates for baker’s yeast mediated reduction 

Highly regioselective carbenoid C-H insertion reactions of -diazocarbonyl 

compounds mediated by rhodium(II) catalysts lead to very efficient cyclopentanone 

formation. This mild and effective C-H insertion was chosen as a synthetic route for the 

preparation of  racemic (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2, the 

desired substrate for baker’s yeast reduction. The first synthetic challenge in this study 

involved preparation of the β-keto sulfone 5, followed by diazo transfer to afford the 

analogous -diazo-β-keto sulfone 6, and subsequent cyclisation to the desired 

cyclopentanone (±)-2 (Scheme 2.3).   
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Scheme 2.3 

 

2.3.1 Synthesis of β-keto sulfone  

The synthesis of β-keto sulfone products has been achieved by a variety of methods 

within the research group including the Corey and Chaykovsky sodium hydride mediated 

procedure.
1,2,9,10

 In this study, n-butyllithium was employed for the synthesis of the targeted 

1-benzenesulfonylnonan-2-one 5.
11-13

 For this purpose, n-butyllithium (2.0 equivalents) was 

added to a solution of methyl phenyl sulfone 8 (readily prepared in high yield by oxidation of 

thioanisole 9 with hydrogen peroxide)
14

, in tetrahydrofuran (THF) at 0 °C. The resulting 

yellow solution was stirred for 1.5 h at 0 °C before addition of ethyl octanoate 7 in THF to 

the reaction mixture.  

Use of 2.0 equivalents of n-butyllithium in this reaction serves to generate the dilithio 

derivative of methyl phenyl sulfone 8. Nucleophilic attack of the dilithio species at the ester 

carbonyl group, with the displacement of the ethoxy group, results in direct generation of the 

deprotonated β-keto sulfone derivative, which, upon protonation with aqueous ammonium 

chloride during work-up, provides the desired 1-benzenesulfonylnonan-2-one 5 (Scheme 2.4) 

This n-butyllithium-mediated procedure is highly advantageous relative to other methods 

employed previously within the research group.
1,2,9,10

 This one-step protocol requires only 1.0 

equivalent of methyl phenyl sulfone 8 in contrast to the 2.0 equivalents necessary in the 

Corey and Chaykovsky sodium hydride procedure and consequently chromatographic 

purification is simplified due to the lower quantities of unreacted methyl phenyl sulfone 8 

remaining in the reaction mixture. 

 

 

 

 

                           7 

 

 

 

 

 

                     5 (68% yield) 

 

Scheme 2.4 
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This synthetic protocol allowed for ready access to multi-gram quantities of the 

desired 1-benzenesulfonylnonan-2-one 5. The β-keto sulfone 5 was isolated by 

chromatographic purification as a white crystalline solid in good yield (68%) and excellent 

purity. The product is characterised by carbonyl and sulfonyl absorptions in the IR spectrum 

of the β-keto sulfone 5 at νmax 1717 cm
−1 

and νmax 1301 (symmetric stretch), 1153 

(asymmetric stretch) cm
−1

, respectively, and by the appearance of a characteristic singlet in 

the 
1
H NMR spectrum at H 4.14 ppm assigned to the C(1)H2 methylene protons adjacent to 

both the carbonyl and sulfonyl groups. All spectral characteristics of 5 were consistent with 

those previously reported by Kelleher,
1
 O’Keeffe

2
 and Milner.

8
  

2.3.2 Synthesis of -diazo-β-keto sulfone  

The application of -diazocarbonyl compounds is now widely recognised as a 

valuable synthetic tool in modern organic synthesis.
15-18

 These versatile reagents undergo a 

variety of transformations including insertion, cyclopropanation, ylide formation and Wolff 

rearrangement.
18

 One of the fundamental methods of synthesising -diazocarbonyl 

compounds, the diazo transfer reaction was developed by Regitz in 1967.
19

 Such reactions 

involve the base-mediated transfer of the diazo moiety from a donor to the active -

methylene position of a suitable carbonyl derivative. A base of sufficient strength is required 

to deprotonate the substrate yet mild enough to avoid undesired side reactions, e.g. 

triethylamine, sodium hydroxide and potassium carbonate. To ensure that the -methylene 

position is sufficiently acidic to allow efficient reaction, the presence of a second electron 

withdrawing group, in addition to the carbonyl group is required, thus β-diketones, β-keto 

esters and β-keto sulfones are generally suitable substrates.  

The diazo transfer reagent of choice in this study was p-toluenesulfonyl (tosyl) azide 

10 owing to its ease of preparation and high efficiency.
20

 However, it is potentially explosive, 

possessing a high impact sensitivity and low initiation temperature, thus extreme caution 

must be exercised in its use.
21

 Furthermore, difficulties have been experienced in the 

chromatographic separation of the desired -diazo-β-keto sulfone from excess 10 and the p-

toluenesulfonylamide byproduct following diazo transfer.
22

 During this research, p-tosyl 

azide 10 was prepared in high yield (79%) according to the procedure outlined by Curphey 

using sodium azide and p-tosyl chloride in acetone at 0 °C and utilised without further 

purification.
20

 It should be noted that spectral characterisation of p-tosyl azide 10 was not 

conducted during this study due to the hazardous nature of the diazo transfer reagent. The 

mechanism of the diazo transfer is illustrated in Scheme 2.5. 
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Scheme 2.5 

 

During this research, efficient diazo transfer to the β-keto sulfone 5 was achieved 

employing potassium carbonate and p-tosyl azide 10 in acetonitrile according to the 

procedure first described by Koskinen.
23

 A solution of p-tosyl azide 10 in acetonitrile was 

added dropwise to a mixture of potassium carbonate and 1-benzenesulfonylnonan-2-one 5 in 

acetonitrile at 0 °C. The reaction progress was monitored by TLC and diazo transfer was 

generally complete within 4 h of stirring at room temperature. The reported advantage of this 

method was that work-up consisted simply of the addition of a non-polar organic co-solvent 

to the crude reaction mixture and subsequent filtration to remove the inorganic salt and the 

sulfonamide byproduct. In practice however, the presence of residual p-tosyl amide 

necessitated further purification by column chromatography. The p-tosyl amide byproduct is 

evident in the 
1
H NMR spectrum of the crude product 6 as a singlet at H 2.43 ppm, 

indicative of the methyl protons of the toluene substituent and in the aromatic region at H 

7.31 ppm (d, J 8.4) and H 7.81 ppm (d, J 8.4). The removal of the p-tosyl amide and any 

residual 10 is often a difficult task due to the close elution of these compounds and several 

rounds of chromatographic separation were often required. 

The -diazo-β-keto sulfone 6 was isolated as a low-melting yellow solid (m.p. 44-45 

°C) in high yield (89%) and excellent purity as evident by the new carbonyl stretch in the IR 

spectrum at νmax 1662 cm
−1

, a significant shift from the corresponding band in the spectra of 

the β-keto sulfone 5 (νmax 1717 cm
−1

). Characteristic absorptions are also observed in the IR 

spectrum at νmax 2129 cm
−1

and νmax 1339 (symmetric stretch), νmax 1153 (asymmetric stretch) 

cm
−1

 representing the diazo and sulfonyl groups, respectively. Spectral analysis by 
1
H NMR 

indicated the absence of the singlet at H 4.14 ppm indicative of the diazo functionality 

replacing the two C(1)H2 protons of the β-keto sulfone 5. Spectral characteristics of 1-diazo-

1-benzenesulfonyl-nonan-2-one 6 were consistent with those reported by Kelleher
1
, 

O’Keeffe
2
 and Milner.

8
 Multi-gram quantities of the desired -diazo-β-keto sulfone 6 were 
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readily accessible via this synthetic methodology and the material can be stored for extended 

periods in the freezer without decomposition.      

2.3.3 Synthesis of cyclopentanone  

Intramolecular rhodium(II) catalysed carbenoid C-H insertion reactions of -

diazocarbonyl compounds lead to very efficient cyclopentanone formation, offering excellent 

regioselectivity in the remote functionalisation of an unactivated C-H bond.
15,16,18,24,25

 This 

synthetic methodology was originally developed by Taber,
26-29

 with -diazo-β-keto esters, 

while Monteiro
30

 later extended this work to include -diazo-β-keto sulfones. Intramolecular 

metal-catalysed C-H insertions are known to lead to the preferential formation of five-

membered rings and, when no more than one cyclopentane ring can form, these reactions 

proceed with excellent regioselectivity.
27

 In terms of stereoselectivity, trans-cyclopentanone 

products are generally produced, and insertion into equatorial C-H bonds is usually favoured 

over axial C-H insertion.  

In this study, the racemic cyclopentanone 2 required for baker’s yeast mediated 

reduction was prepared by rhodium(II) acetate catalysed intramolecular C-H insertion of the 

-diazo-β-keto sulfone 6 in dichloromethane at reflux. This cyclisation involves insertion of 

an electrophilic metal carbene into a methylene site adjacent to an n-butyl moiety. 

Rhodium(II) acetate catalysed decomposition of -diazo-β-keto sulfone 6 involved a single 

addition of 0.5 mol% of the catalyst providing the cyclopentanone 2 as an initial mixture 38 : 

62  of cis : trans products and solely trans in 55% yield following column chromatography 

on silica gel (Scheme 2.6). The moderate yield may be attributable to low catalyst loading, 

Kelleher
1
 and O’Keeffe

2
 previously reported two 0.5 mol% additions of rhodium(II) acetate 

to the reaction mixture over a 48 h reaction period, while Slattery
10

 described a single 

addition of 1.0 mol% of the catalyst and a reaction time of 0.5 h.  

  

 

 

 

 

                       6                                                         38 : 62                                    2 (55% yield) 

                        cis : trans 

 

Scheme 2.6 

 

A minor amount of competing O-H insertion into adventitious water was observed in 

the rhodium(II) acetate catalysed C-H insertion reaction. The O-H byproduct is characterised 

by the appearance of a 1H singlet at H 5.17 ppm in the 
1
H NMR spectrum of the crude 

product 2 (Scheme 2.7) in accordance with literature reports for similar hydroxyl 

compounds.
31,32

 Significantly, this byproduct was no longer observed following 

chromatographic purification. 
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Scheme 2.7 

 

Reactions were monitored by IR analysis, where reaction completion was indicated by 

the disappearance of peaks at νmax 2129 cm
−1 

(CN2) and νmax 1662 cm
−1

 (CO) characteristic of 

the -diazo-β-keto sulfone 6 and the appearance of the cyclopentanone 2 carbonyl absorption 

at νmax 1751 cm
−1

. The rhodium(II) catalysed C-H insertion reaction was complete within 1.5 

h and the crude cyclopentanone 2 was isolated by evaporation of the reaction solvent 

dichloromethane.  

 While excellent regioselectivity was observed in these transformations stereocontrol 

was less efficient with the cis isomer accounting for 38% of the crude product. The two 

diastereomers were easily distinguished by 
1
H NMR; the signal for the trans C(2)H proton 

adjacent to the sulfonyl substituent appeared as a doublet at H 3.38 ppm (d, J 6.6). For the cis 

diastereomer of the cyclopentanone 2 the corresponding signal was observed at H 3.73 ppm 

(d, J 7.8) (Figure 2.2)  

 

 

 

 

 

 

                            

                           cis (±)-2                                                                          trans (±)-2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: 1H NMR spectrum of crude (±)-cis- and (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2  

isolated from rhodium(II) catalysed C-H insertion reaction recorded in CDCl3 at 300 MHz. 

 

While the crude product may contain a mixture of cis and trans isomers, 

epimerisation to form exclusively the thermodynamically more stable trans isomer is readily 

achieved owing to the acidity of the proton  to the benzenesulfonyl moiety (pKa ~10) 

(Scheme 2.8). Hence, following column chromatography on silica gel, (±)-trans-2-

benzenesulfonyl-3-n-butylcyclopentanone (±)-2 was exclusively obtained.  
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Scheme 2.8 

 

Following chromatographic purification, the racemic (±)-trans-2-benzenesulfonyl-3-

n-butylcyclopentanone (±)-2 was isolated as a light yellow solid in 55% yield. Spectral 

characteristics for the isolated cyclopentanone (±)-2 are in agreement with previously 

reported data
i
 and the trans isomer was assigned the relative stereochemistry (2R*,3S*).

1,2
 

Characteristic carbonyl and sulfonyl absorptions are observed in the IR spectrum at  νmax 

1751 cm
−1

 and νmax 1305 (symmetric stretch) 
 
and νmax 1152 (asymmetric stretch) cm

−1
, 

 

respectively.
 
As mentioned  earlier, the 

1
H NMR spectrum of the trans cyclopentanone (±)-2 

includes a distinct doublet due to the C(2)H proton geminal to the sulfonyl group observed at 

H 3.39 ppm. Coupling with the C(3)H proton with J 6.9 Hz is consistent with a trans 

arrangement of the C(2) and C(3) protons. The signal for the cyclopentanone proton at C(3) 

appeared as a multiplet in the region of H 2.79-2.99 ppm. This reaction was readily 

conducted on a mult-gram scale, providing sufficient material for the subsequent baker’s 

yeast mediated reduction. 

2.3.4 Synthesis of cyclopentanol  

A racemic sample of (±)-2-benzenesulfonyl-3-n-butylcyclopentanol (±)-4 was 

required for comparison of spectral characteristics with the enantiomerically enriched 

cyclopentanol 4 obtained by baker’s yeast mediated reduction and also to aid in the 

development of methods for the determination of the enantiomeric purity of the 

enantioenriched cyclopentanol 4 by chiral HPLC. The racemic cyclopentanol (±)-4 was 

readily prepared by sodium borohydride reduction of the corresponding racemic trans 

cyclopentanone (±)-2. A solution of the trans cyclopentanone (±)-2 in distilled ethanol was 

added dropwise to 1.9 equivalents of sodium borohydride and ethanol at 0 °C to yield the 

desired cyclopentanol 4 as a white crystalline solid in high yield (75%) (Scheme 2.9). 

                                                 
i
 Significant difference in 

1
H NMR chemical shift and multiplicity of the CH3 signal is observed between Milner 

and spectral data obtained during this study. Milner reports, H (400 MHz) 1.29 (3H, d, J 7, CH3),
8
 while in this 

research the methyl protons appear as a triplet further upfield, H (300 MHz) 0.89 (3H, t, J 6.9, CH3). Milner 

also does not describe the chemical shifts of the 3 x CH2, n-butyl  protons. 
1
H NMR assignment in this study is 

consistent with O’Keeffe
2
 and Kelleher.

1
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                           2                                       (1R*,2S*,3R*)-4a    (1R*,2R*,3S*)-4b  

                            Major                          Minor 

                                                   dr 97 : 3 

 

Scheme 2.9 

 

The reduction proceeded with high stereocontrol as the bulky benzenesulfonyl 

functionality directs the approach of the reducing agent to the opposite, less hindered face, 

resulting in the newly formed hydroxyl group having a cis relationship to the sulfonyl moiety. 

The relative stereochemistry of the major diastereomer formed was assigned as 

(1R*,2S*,3R*). This assignment was established unequivocally by Kelleher, by X-ray 

analysis of diastereomerically pure 4a.
1
 However small amounts (~3%) of the minor 

diastereomer 4b was also detected in the 
1
H NMR spectrum by the appearance of a multiplet 

at H 4.63-4.66 ppm attributable to the C(1)H proton geminal to the hydroxyl group. The 

formation of the minor product 4b with the hydroxyl group trans to the benzenesulfonyl 

moiety resulted from hydride approach from the more hindered face of the cyclopentanone 2. 

Kelleher assigned the relative stereochemistry of the minor diastereomer 4b as 

(1R*,2R*,3S*).
1
 

 Successful product synthesis was indicated in the IR spectrum by the disappearance of 

the intense absorption band of the cyclopentanone (±)-2 carbonyl stretch at νmax 1751 cm
−1

 

and observation of a distinct broad OH stretch at νmax 3499 cm
−1

, while the characteristic 

sulfonyl asymmetric and symmetric stretching vibrations appear at νmax 1302 and 1141 cm
−1

, 

respectively. In the 
1
H NMR spectrum the C(2) proton geminal to the sulfonyl group appears 

as a doublet of doublets at H 3.03-3.07 ppm. The coupling constants for this signal are 

consistent with a cis arrangement (J 4.5 Hz) between the protons C(1) and C(2), and the 

unchanged trans arrangement (J 9.0 Hz) of the protons at C(2) and C(3). The C(1) proton 

geminal to the hydroxyl group appear in the region H 4.28-4.33 ppm. Spectral characteristics 

of cyclopentanol 4a are consistent with those previously described for this compound.
1,2,8

  

2.4 Kinetic resolution in the baker’s yeast mediated reduction of (±)-trans-

2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2 

With a synthetic route to (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2 

established, the next step undertaken was investigation of the kinetic resolution process. The 

baker’s yeast (Saccharomyces cerevisae) mediated biocatalytic reduction of the 

cyclopentanone (±)-2 was initially explored by Kelleher
1
 and O’Keeffe,

2
 who observed 

significant reduction in diastereoselectivity and enantiopurity of the recovered (2S,3R)-2-

benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, indicating both inefficient reduction and 

kinetic resolution. Significantly, Kelly
3
 discovered that the use of IMBY in an aqueous 

medium in conjunction with repeated sucrose addition over time yielded the desired 

(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a in 37% yield and >98% 

ee, and critically, the unreacted (2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-

2 was recovered in 14% yield with >95% ee (entry 1, Table 2.1). Based on Kelly’s
3
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promising one off result Milner
8
 further explored the kinetic resolution under the IMBY 

optimised reaction conditions. Excellent enantiopurity of the generated cyclopentanol 

(1S,2R,3S)-4a (>98% ee) and the recovered cyclopentanone (2S,3R)-2 (>98% ee) was 

attained, confirming Kelly’s
3
 preliminary observation. However, as evident from entry 2, 

Table 2.1 on increased scale of reaction (1.27 g), low recovery of the enantiopure products 

from the lipophilic beads, poor diastereoselectivity, and prolonged reaction times remained 

notable obstacles in the development of the synthetic utility of this biocatalytic resolution in 

the natural product asymmetric synthesis of 4-methyloctanoic acid 1. Thus, one of the 

primary aims of this research was to address the practical limitations of the preparative scale-

up of this biotransformation to obtain access to the enantio- and diastereomerically pure 

products (2S,3R)-2 and (1S,2R,3S)-4a of the baker’s yeast mediated kinetic resolution of (±)-

2 in synthetically useful quantities. 

 

Table 2.1: Baker’s yeast mediated reduction of (±)-trans-2-benzenesulfonyl-3-n-butyl 

cyclopentanone (±)-2 with IMBY in water and with repeated addition of sucrose
3,8,ii

 

  

 

 

 

 

   (±)-2                                      (2S,3R)-2             (1S,2R,3S)-4a         (1S,2S,3R)-4b 

a. IMBY in water with repeated addition of sucrose over time at t = 0, 12, 18, 24, 36, 42 and 48 h.  

b. Scale refers to the quantity of cyclopentanone (±)-2 employed for the reaction. 
c. Yields quoted are following chromatographic purification. 

d. Enantiomeric excess (ee %) determined by chiral HPLC analysis using a Chiralcel® OD-H column.  

e. Enantiomeric excess (ee %) determined (single injection) by chiral HPLC analysis using a Chiralcel® OJ-H column.  
f. Diastereomeric ratio (dr) refers to the ratio of major (4a)/minor (4b) cyclopentanols determined from 1H NMR spectra. 

g. A maximum 50% yield is possible in the resolution. 

h. Diastereomeric ratio (dr) was not reported.3  

 

In the baker’s yeast mediated reduction of (±)-trans-2-benzenesulfonyl-3-n-

butylcyclopentanone (±)-2, the (2R,3S)-enantiomer was selectively reduced and thus the 

major diastereomer formed was 4a with the hydride approach to the carbonyl opposite to the 

bulky sulfonyl group in accordance with Prelog’s prediction.
33

 However, a minor amount of 

the diastereomeric cyclopentanol 4b derived from partial reduction of the cyclopentanone 

(2S,3R)-2 with the same absolute sense of hydride attack is also observed (Scheme 2.10). 

This minor reaction pathway is believed to be catalysed by a different yeast reductase to that 

which produces the major diastereomer (1S,2R,3S)-4a as Kelleher
1
 and O’Keeffe

2
 found that 

the amount of the minor diastereomer (1S,2S,3R)-4b present varied considerably with minor 

variation of the reaction conditions.  

                                                 
ii
 Milner recorded the results in the baker’s yeast mediated resolution (entry 2, Table 2.1) as 10 and 32% 

respectively based on a maximum yield of 50%.
8
 In this study, for consistency Milner’s yields were recalculated 

based on actual recovery.  

Entry 
Reaction 

Conditions
a
 

Scale 

(g)
b
 

Reaction 

Time 

Cyclopentanone 

(2S,3R)-2 

Cyclopentanol 

(1S,2R,3S)-4a 

Cyclopentanol 

(1S,2S,3R)-4b 

ee 

(%) 

Isolated 

yield 

(%)
c
 

ee 

(%) 

Isolated 

yield 

(%)
c
 

dr
f
 

1
3
 IMBY-H2O 0.40 84 h >95

d
 14

g
 >98

d 
37

g
 -

h
 

2
8
 IMBY-H2O 1.27 74 h >98

e
 5

g
 98

e
 16

g
 89 : 11 
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                                            (2R,3S)-2                                        (1S,2R,3S)-4a 

 

 

 

 

 

 

 

                                            (2S,3R)-2                                        (1S,2S,3R)-4b 

 

Scheme 2.10 

 

Reductions with IMBY, particularly in conjunction with organic solvent systems, can 

offer significant synthetic advantages in terms of ease of product recovery from the reaction 

medium. Furthermore, immobilisation may also affect the efficiency and the stereochemical 

outcome of a reduction.
34-37

 In order to prepare the IMBY utilised in this study, an aqueous 

suspension of sodium alginate was heated at 50 °C for 1 h, then allowed to cool to ambient 

temperature. Baker’s yeast was added and the resultant mixture stirred for a further 2 h. 

Mechanical stirring was necessary, as magnetic stirring was rendered ineffective by the high 

viscosity of the alginate/yeast mixture. Dropwise addition of the resultant suspension, via a 

glass funnel of small outlet diameter (1-2 mm), to an aqueous solution (10%) of calcium 

chloride gave the required IMBY in the form of small beads (2-3 mm in diameter).
1-3,8,38

 The 

IMBY could be stored for short periods in the fridge (~4 °C) but was generally utilised within 

24 h.  

The biocatalytic reduction procedure involved preparation of a suspension of IMBY 

and sucrose in tap water which was stirred at 28-30 °C for 30 minutes. The cyclopentanone 

substrate (±)-2 in DMSO was then added dropwise over 1 minute, and the mixture was stirred 

at this temperature with repeated addition of sucrose over time to enable effective reduction. 

Reaction monitoring by chiral HPLC was conducted throughout the biotransformation, and 

on completion of the kinetic resolution, the beads were removed by filtration and washed 

with ethyl acetate. It was postulated that the poor yields observed by Kelly
3
 and Milner

8
 for 

this biotransformation were due to inadequate recovery of the crude reaction mixture trapped 

within the IMBY beads. Therefore, during this study the beads were firstly pressed and then 

sonicated at ~40 °C with ethyl acetate for 6-8 h. The beads were subsequently filtered, 

squeezed and ground with a pestle and mortar and then mechanically stirred in ethyl acetate 

overnight to ensure shearing of the IMBY beads. All organic extracts were combined and 

concentrated under reduced pressure. 

 

 

 

Major process 

Minor process 
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Table 2.2: Baker’s yeast reduction of (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone 

(±)-2 – demonstrating the reproducibility of the biotransformation 

  

 

 

    

     (±)-2                                              (2S,3R)-2               (1S,2R,3S)-4a        (1S,2S,3R)-4b  

a. IMBY-H2O with repeated addition of sucrose over time at t = 0 h, 2 h, 4 h and 6 h. 

b. IMBY-H2O with repeated addition of sucrose over time at t = 0 h, 2 h, 4 h, 6 h, 8 h, 23 h 15 min, 26 h 15 min, 28 h 45 min and 41 h 45 

min. 
c. IMBY-H2O with repeated addition of sucrose over time at t = 0 h, 2 h, 4 h and 6 h. 

d. Scale refers to the quantity of cyclopentanone (±)-2 employed for the reaction. 

e. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 
f. Purification by column chromatography was repeated, hence this contributed to a loss in yield. 

g. Poor yield attributed to experimental error during work-up leading to physical loss.  

h. The 1H NMR of pure isolated (+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a showed no evidence of the 
minor cyclopentanol (1S,2S,3R)-4b at δH (300 MHz) 4.63-4.66 (CHOH). 

 

As evident from Table 2.2, efficient kinetic resolution of (±)-trans-2-benzenesulfonyl-

3-n-butylcyclopentanone (±)-2 was achieved during this research on a preparative scale 

[2.00-3.00 g of (±)-2]. The recovered (2S,3R)-cyclopentanone (2S,3R)-2 and the generated 

(1S,2R,3S)-cyclopentanol (1S,2R,3S)-4 were isolated with excellent enantiopurity (≥98% ee). 

In general, despite the removal of aliquots of reaction mixture for chiral HPLC reaction 

monitoring, a significant improvement in the yields of the enantiopure products was 

observed, with (2S,3R)-2 and (1S,2R,3S)-4 obtained in 35% and 32% respectively following 

chromatographic purification, owing to the implementation of the additional efficient 

extraction techniques (entry 2, Table 2.2). On increase of scale to 3.00 g of substrate (±)-2 the 

kinetic resolution proved to be more sluggish requiring further additions of sucrose and 

prolonged reaction time of 47 h relative to the 2.00 g scale. The poor yield of (2S,3R)-2 and 

(1S,2R,3S)-4 observed in entry 3 Table 2.2 is attributed to experimental error during work-up.  

As mentioned above, reaction monitoring was conducted throughout the 

biotransformations, for example Table 2.3 and Figure 2.3 correlate to chiral HPLC analysis of 

the preparative-scale (2.00 g) baker’s yeast mediated resolution of (±)-trans-2-

benzenesulfonyl-3-n-butylcyclopentanone (±)-2 summarised in entry 3, Table 2.2. Aliquots 

of reaction mixture were withdrawn and following work-up chiral HPLC analysis was 

performed to determine enantiopurity and conversion. Chiral HPLC conditions were 

developed during this study to enable determination of the enantiomeric excess of the crude 

product mixture i.e. (2S,3R)-2 and (1S,2R,3S)-4a, in a single reaction injection. As evident 

from entry 2, Table 2.3 the kinetic bioresolution is essentially complete within 9 h with 

excellent enantiopurity observed of both the recovered cyclopentanone (2S,3R)-2 (>98% ee) 

and the generated cyclopentanol (1S,2R,3S)-4a (>98% ee). While extraction of the crude 

reaction mixture from the IMBY may be commenced at 9 h, in practice however, work-up of 

the baker’s yeast media was only initiated at 24 h.  

Entry 
Reaction 

Conditions 

Scale 

(g)
d
 

Reaction 

Time 

Cyclopentanone 

(2S,3R)-2 

Cyclopentanol 

(1S,2R,3S)-4a 

Cyclopentanol 

(1S,2S,3R)-4b 

ee 

(%)
e
 

Isolated 

yield 

(%) 

ee 

(%)
e
 

Isolated 

yield 

(%) 

dr 

1 IMBY-H2O
a
 2.07 23 h 99 25

f
 98 33 -

h
 

2 IMBY-H2O
b
 3.00 47 h 15 min 98 35 98 32 -

h
 

3 IMBY-H2O
c
 2.00 24 h >98 12

g
 >98 18

g
 -

h 
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Significantly, the kinetic resolutions of (±)-2 were completed in a much shorter 

reaction time relative to those reported by Milner
8
 and Kelly

3
 (Table 2.1). Critically, the 

minor cyclopentanol enantiomer (1S,2S,3R)-4b was not observed in the kinetic resolutions, 

by 
1
H NMR or chiral HPLC analysis (Figure 2.3 and Figure 2.4). Thus, in this study excellent 

diastereoselectivity was achieved indicating that the shorter reaction time relative to previous 

researchers, and thus limited exposure to yeast decreased the extent of reduction of the 

(2S,3R)-cyclopentanone (2S,3R)-2.  

 

Table 2.3: Baker’s yeast reduction of (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone 

(±)-2: Monitoring over time 

  

 

 

   (±)-2                                                (2S,3R)-2         (1S,2R,3S)-4a       (1S,2S,3R)-4b  

a. IMBY-H2O with repeated addition of sucrose over time at t = 0 h, 2 h, 4 h and 6 h. 

b. Scale refers to the quantity of cyclopentanone (±)-2 employed for the reaction. 

c. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 
d. A yield of 35% was obtained for pure (+)-(2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, 98% ee and 32% for  pure 

(+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a, 98% ee for a batch that was synthesised later (entry 2, Table 

2.2). 
e. The 1H NMR of pure isolated (+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a showed no evidence of the 

minor cyclopentanol (1S,2S,3R)-4b at δH (300 MHz) 4.63-4.66 (CHOH). 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: HPLC Trace I: Racemic (±)-(1R*,2S*,3R*)-2-Benzenesulfonyl-3-n-butylcyclopentanol 4a  and (±)-trans-2-

benzenesulfonyl-3-n-butylcyclopentanone (±)-2. Trace II: Reaction sampling 2 h. Trace III: Reaction sampling 4 h.        

Trace IV: Reaction sampling 9 h, (+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a, >98% ee, (+)-

(2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, >98% ee. For HPLC conditions see appendix I. 

Entry Reaction Conditions
a
 

Scale 

(g)
b
 

Reaction 

Time 

Cyclopentanone 

(2S,3R)-2 

Cyclopentanol 

(1S,2R,3S)-4a 

Cyclopentanol 

(1S,2S,3R)-4b 

ee 

(%)
c
 

Isolated 

yield 

(%) 

ee 

(%)
c
 

Isolated 

yield 

(%) 

dr 

1 
 

IMBY-H2O 

 

 

2.00 

 

2 h 44 - >98 - - 

2 4 h 98 - >98 - - 

3 9 h >98 - >98 - - 

4 24 h >98 12
d
 >98 18

d,e
 -

e
 

Trace I 

Racemic 

 

Trace II 

2 h 

 

Trace III 

4 h 

 

Trace IV 

9 h 

 

(1S,2R,3S)-4a 
(1R,2S,3R)-4a 

(1S,2R,3S)-4a 

>98% ee 

(2S,3R)-2 (2R,3S)-2 

>98% ee 

>98% ee 

44% ee 

98% ee 

(2S,3R)-2 

>98% ee 
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In summary, the baker’s yeast mediated resolution of (±)-trans-2-benzenesulfonyl-3-

n-butylcyclopentanone (±)-2 was demonstrated on a preparative scale [2.00 – 3.00 g of 

precursor (±)-2], obtaining access to enantio- and diastereomerically pure (1S,2R,3S)-2-

benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a and (2S,3R)-2-benzenesulfonyl-3-n-

butylcyclopentanone (2S,3R)-2 in excellent purity (Figure 2.4), increased yield and with 

shorter reaction times. Thus, for the first time the practical limitations of the scale-up of this 

biotransformation have been addressed leading to synthetically useful quantities of the 

enantiopure building blocks (1S,2R,3S)-4a and and (2S,3R)-2. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.4: 1H NMR Spectrum I: (2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, >98% ee. 

Spectrum II: (1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a, >98% ee. 

(All spectra recorded in CDCl3 at 300 MHz).  

 

2.5 Asymmetric synthesis of (R)- and (S)-4-methyloctanoic acids (R)-1 and 

(S)-1 

Rhinoceros beetles of the genus Oryctes are the main pests of coconut, oil and date 

palm plantations in Southeast Asia, North Africa, and some Pacific islands.
39-42

 The adults 

burrow galleries into the growing points of palms killing the mature trees by defoliation or 

producing wounds that favour entry points for palm weevils or deadly diseases. Despite the 

use of high doses of insecticides (e.g., carbofuran and cypermethrin) against most rhinoceros 

beetles, efficient and acceptable methods of controlling these insects are still lacking, because 

adults spend more of their life hidden in galleries and rapidly colonize new feeding and 

breeding sites, flying easily away from the initial colony.
43

 The idea to manipulate adult 

populations by luring beetles into traps with specific attractants was investigated in the 1970s. 

The attractant chosen at that time, ethyl chrysanthemate, was rapidly abandoned because of 

insufficient catches. More recently, it was reported that the main pheromone emitted by males 

of most of the rhinoceros beetles of the genus Oryctes are 4-methyloctanoic acid 1 and its 

corresponding ethyl ester.
40

 Both substances have been studied and proved to be powerful 

attractants in operational programs to control the major pest in oil palm plantations. Besides 

Spectrum I 

 

Spectrum II 

 

(2S,3R)-2 

>98% ee 

 

(1S,2R,3S)-4a 

>98% ee 

(1S,2S,3R)-4b 

No evidence by 1H NMR of minor 

cyclopentanol (1S,2S,3R)-4b at  

δH (300 MHz) 4.63-4.66 ppm CHOH 
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its activity as a pheromone, 4-methyloctanoic acid 1 is also cited in the literature for its 

contribution to the aroma of various foods.
44-46

 To date no information about the absolute 

configuration of naturally occurring 4-methyloctanoic acid 1 is available. 

 Several approaches have been reported for the synthesis of racemic 4-methyloctanoic 

acid 1.
39,43,47-49

 Conversely, the asymmetric synthesis of optically active (R)- and (S)-4-

methyloctanoic acids (R)-1 and (S)-1 has been limited to the employment of citronellol as a 

chiral starting material,
39,50

 liquid chromatographic separation of diastereomeric 

phenylglycinol amides
50

 or phenylethylamides,
51

 and induction of chirality using a 

pseudoepedrine amide as a chiral auxiliary.
52

 Enzymatic resolution of 4-methyloctanoic acid 

1 has been reported with modest success in the literature. Straathof describes the Candida 

antarctica lipase B catalysed enantioselective amidation of racemic (±)-4-methyloctanoic 

acid (±)-1 in methyl isobutyl ketone.
53

 After 3 days the (R)-enantiomer (R)-1 was selectively 

transformed with 52% yield. The enantiomers of the generated amide were not sufficiently 

separated on GC and therefore the enantiomeric ratio (E = 76) was calculated from the 

enantiomeric excess of the remaining substrate (S)-4-methyloctanoic acid (S)-1 (95% ee) 

versus degree of conversion and thus, should be interpreted with caution.
53

 This 

enantioselectivity, called the enantiomeric ratio, E, measures the ability of the enzyme to 

distinguish between enantiomers (for a further detailed explanation of E value see chapter 3 

page 78). Franssen et al. investigated use of Novozym 435
®
 for esterification of (±)-4-

methyloctanoic acid (±)-1 (E = 54) and hydrolysis of the corresponding ethyl ester (E = 12) 

leading to modest enantioselectivity.
54,55

 Novozym 435
®
 mediated esterification of (±)-4-

methyloctanoic acid (±)-1 with polyethylene glycol as donor at different water concentrations 

was also described; conversion of 50% was achieved, however, no enantioselectivity data 

was reported.
56

 More recently Boom reported the Novozym 435
® 

catalysed esterification of
 

(±)-4-methyloctanoic acid (±)-1 with ethanol in a batch reactor resulting in the isolation of 

enantiomerically enriched product (R)-4-methyloctanoic ethyl ester (81% ee) and substrate 

(S)-4-methyloctanoic acid (S)-1 (93% ee).
57

  

 Having achieved efficient kinetic resolution of (±)-trans-2-benzenesulfonyl-3-n-

butylcyclopentanone (±)-2 it was envisaged that this could lead effectively to both 

enantiomers of the aggregation pheromone 4-methyloctanoic acid (R)-1 and (S)-1 as outlined 

in Scheme 2.11 and 2.12. 

 

 

 

 

                  (2S,3R)-2                                     (R)-11                                          (R)-1 

             (From baker’s yeast) 

 

Scheme 2.11 
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                 (2R,3S)-2                                      (S)-11                                           (S)-1 

 

 

 

 

 

 

 

 

 

 

           

               (1S,2R,3S)-4a                                             

              (From baker’s yeast) 

 

Scheme 2.12 

2.5.1 Access to the complimentary enantiomeric series of cyclopentanone via Dess-

Martin oxidation 

The baker’s yeast mediated reduction and kinetic resolution of (±)-2 allowed ready 

access to enantioenriched (2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2 

(>98% ee) and (1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a (>98% 

ee) in high yields. To obtain access to both complimentary enantiomeric forms of the trans-

cyclopentanone 2, oxidation of (1S,2R,3S)-4a with retention of stereochemistry was 

performed.
1,2,8

 Subsequently, this was exploited to provide access to both enantiomers of the 

natural product aggregation pheromone of the rhinoceros beetles of the genus Oryctes, 4-

methyloctanoic acid (R)-1 and (S)-1. 

Dess-Martin periodinane (DMP), 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-

3(1H)-one 12, is one of the mildest and most convenient reagents available for the 

chemoselective oxidation of primary and secondary alcohols to aldehydes and ketones 

respectively.
58-60

 Dess-Martin oxidation of (1S,2R,3S)-2-benzenesulfonyl-3-n-

butylcyclopentanol (1S,2R,3S)-4a was conducted to obtain the (2S,3R)-2-benzenesulfonyl-3-

n-butylcyclopentanone (2S,3R)-2, the complementary cyclopentanone enantiomer to that 

recovered from the baker’s yeast mediated reduction of (±)-2 with kinetic resolution. The 

periodinane 12 was synthesised in two steps (Scheme 2.13). The first step involved the 

preparation of 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (IBX) 13 by oxidation of 2-

iodobenzoic acid 14 with Oxone
®
 (2KHSO5-KHSO4-K2SO4) in water at 70 °C according to 

Santagostino.
61

 This procedure offers distinct advantages over the original KBrO3 oxidation 

by Dess and Martin,
58

 avoiding use of hot aqueous sulfuric acid and obnoxious bromine 

vapours. Furthermore, environmentally safe sulfate salts are the only byproducts. The adduct 

13 was recovered by filtration as a white crystalline solid in good yield (75%). IBX 13 has 
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been reported to be explosive under impact or heating to >200 °C, thus 13 was handled with 

extreme care, but no difficulties were encountered in practice.
58

  

The procedure for the second step is a variation of the Dess and Martin
58

 protocol and 

is based heavily upon it.
62

 The hydroxyiodinane oxide 13 was treated with a mixture of acetic 

anhydride and acetic acid at 85 °C until all the solids dissolve to afford a colourless to clear 

yellow solution. The product 12 was recovered by slow cooling of the reaction mixture and 

vacuum filtration of the resulting crystalline solids under a nitrogen atmosphere. It is essential 

that this filtration is carried out under an inert atmosphere as exposure to air leads to loss of 

activity due to hydrolysis to re-form the hydroxyiodinane oxide 13.
58

 The periodinane 12 was 

obtained as a white solid in high yield (78%) and can be stored in the freezer under nitrogen 

in the absence of light to avoid the possibility of hydrolysis and photolytic decomposition. 

Some variability was observed in the oxidation activity of different batches of Dess Martin 

periodinane 12, with lower yields of the oxidised product (2R,3S)-2 recovered. 

Irreproducibility in the synthesis of Dess-Martin periodinane has been well documented and a 

number of solutions have been put forward.
60,63,64

 Stevenson et al. suggested that the yield 

and purity of the triacetoxyperiodinane 12 was dependent on the morphology of the batch of 

hydroxyiodine oxide 13 precursor employed.
64

 This compound can be isolated in crystalline 

or powder form, however, isolation as the microcrystalline powder has proved much more 

reactive. A facile method for converting the crystalline 1-hydroxy-1,2-benziodoxol-3(1H)-

one 1-oxide 13 to powder form has been described.
64

 In general, however, high yields were 

observed in this study when 12 was employed immediately following filtration.  

 

 

 

 

 

 

  

                 14                                         13 (75% yield)                                 12 (78% yield) 

 

Scheme 2.13 

 

Dess-Martin oxidation of the (1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol 

(1S,2R,3S)-4a involved the addition of a dichloromethane solution of the substrate 

(1S,2R,3S)-4a to a solution of Dess-Martin periodinane 12 in the same solvent. The reaction 

progress was monitored by TLC and the oxidation was complete within 4 h (Scheme 2.14). 

Reaction work-up involved extraction of the reaction mixture with saturated sodium 

bicarbonate solution containing sodium thiosulfate, enabling mild reduction of the byproduct 

acetoxyperiodinane to the even more water soluble 2-iodobenzoate and acetic acid. This led 

to the desired (2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanone (2R,3S)-2 in good yield 

(89%) and excellent purity warranting no further purification. Spectral analysis was identical 

to the previously synthesised racemic cyclopentanone (±)-2 and enantiopure (2S,3R)-2. A 

slight reduction in enantioselectivity was observed of the obtained (2R,3S)-cyclopentanone 

(2R,3S)-2 (96% ee) relative to that of the (1S,2R,3S)-cyclopentanol (1S,2R,3S)-4a (>98% ee) 

substrate. The slight decrease in enantiopurity may be due to oxidation of trace amounts of 

the minor diastereomer (1S,2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2S,3R)-4b, 



Chapter 2                                                                                                 Results and Discussion 

 

 

63  

 

although (1S,2S,3R)-4b was not observed by 
1
H NMR or chiral HPLC analysis of the 

substrate (1S,2R,3S)-4a. 

 

 

 

 

                                                                      12 
 

 

 

                            (1S,2R,3S)-4a                                              (2R,3S)-2 

                                      (>98% ee)                                                     (89% yield, 96% ee) 

 

Scheme 2.14 

 

As mentioned previously, 
1
H NMR analysis of (2R,3S)-2 was identical to that of the 

cyclopentanone (2S,3R)-2 obtained by baker’s yeast mediated kinetic resolution of (±)-2. The 

only differences observed were the opposite sign of the specific rotations of (−)-(2R,3S)-2, 

although the values were similar in magnitude to that recorded for (+)-(2S,3R)-2 and also 

different retention times by chiral HPLC, which corresponded to the opposite enantiomer to 

that obtained by baker’s yeast mediated kinetic resolution of (±)-2 (Figure 2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: HPLC Trace I: Racemic (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2. Trace II: (−)-(2R,3S)-

2-benzenesulfonyl-3-n-butylcyclopentanone (2R,3S)-2, 96% ee (from DMP oxidation). Trace III: (+)-(2S,3R)-2-

benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, 99% ee (from baker’s yeast). For HPLC conditions see appendix I. 

 

In summary, for the first time in our research group, synthetically useful quantities 

(~1.00 g) of each enantiomer of 2-benzenesulfonyl-3-n-butylcyclopentanone (2R,3S)-2 and 

(2S,3R)-2 have been obtained in essentially enantiopure form (≥96% ee), signifying a major 

step forward in the application of baker’s yeast methodology in the development of an 

asymmetric synthetic strategy to the natural product 4-methyloctanoic acid (R)-1 and (S)-1. 

Trace I 

Racemic 

 

 

 

 

Trace II 

 DMP oxidation 

 

Trace III 

Baker’s yeast reduction 

 

(2S,3R)-2 

99 % ee 

    
   +79.4 (c 0.5, CHCl3) 

(2R,3S)-2 

96% ee 

    
   −74.20 (c 0.5, CHCl3)  

 

(2S,3R)-2 (2R,3S)-2 



Chapter 2                                                                                                 Results and Discussion 

 

 

64  

 

2.5.2 Base-induced ring cleavage of the cyclopentanone derivative 

Stork and Ficini reported in 1965 that cyclic ketones bearing α-sulfonyl substituents 

can be cleaved under basic conditions in a retro-Claisen type process.
65

 More recently, 

Monteiro reported the facile ring cleavage of α-sulfonylcyclopentanones in basic solution at 

reflux to give carboxylic acid derivatives.
66

 Application of this methodology to the 

enantioenriched enantiomers of 2-benzenesulfonyl-3-n-butylcyclopentanone (2R,3S)-2 and 

(2S,3R)-2 offered an effective route to carboxylic acids bearing a γ-stereogenic centre which, 

due to the versatility of both carboxylic acid and sulfone functionalities, represent an 

important synthetic step in the desired asymmetric synthesis of the aggregation pheromone 4-

methyloctanoic acid (R)-1 and (S)-1. Both the racemic and the enantioenriched carboxylic 

acid 11 have been synthesised in previous work, however conducted on a limited scale and 

with poor enantioselectivity.
1,2,6,8

 

In this research, the racemic cyclopentanone (±)-2 was initially investigated and 

observed to undergo smooth ring cleavage in refluxing aqueous sodium hydroxide to give the 

carboxylic acid (±)-11 in high yield (entry 1, Table 2.4). Ring cleavage occurs by a retro-

Claisen type process via the mechanism depicted in Scheme 2.15. Nucleophilic attack of the 

hydroxide anion at the carbonyl carbon is followed by regiospecific ring cleavage, due to the 

activating influence of the benzenesulfonyl group, with formation of a sulfur-stabilised 

carbanion. Proton transfer results in formation of the carboxylate anion and subsequent 

acidification allows recovery of the carboxylic acid (±)-11, in high yield and without 

necessitating chromatographic purification. In general, reaction completion was achieved 

within 30 min. 

Spectral characteristics of the isolated carboxylic acid are in agreement with 

previously reported data.
1,2,8

 Characteristic broad hydroxyl and intense carbonyl absorptions 

are observed in the IR spectrum at νmax 3066 cm
−1

 and νmax 1710 cm
−1 

respectively. In the 
1
H 

NMR spectrum, the methylene protons adjacent to the sulfonyl group appear as the AB 

portion of an ABX system which appears at H 2.97-3.12 ppm. 

 

 

 

 

 

 

                      (±)-2 

 

 

 

 

 

 

 

 

 

                                                          

                                                                  (±)-11 

 

Scheme 2.15 
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It has previously been established that the base-induced ring opening proceeds with 

retention of stereochemistry at C3 of the cyclopentanone, thus enabling either enantiomer of 

the 4-substituted carboxylic acid 11 to be formed, depending on which enantiomer of the 

cyclopentanone 2 is used as starting material.
1,2,8

 Facile ring cleavage of both enantiomeric 

series of the highly enantioenriched cyclopentanone (2S,3R)-2 and (2R,3S)-2 was achieved. 

This led to the two complementary series of chiral carboxylic acids (R)-11 and (S)-11 with 

excellent enantiopurity and specific rotations of opposite sign (entries 2 and 3, Table 2.4). 

Notably, confidence in the accuracy of the optical rotations of (R)-11 and (S)-11 in this study 

were significantly improved relative to Kelleher’s,
1
 due to increased enantiomeric purity and 

sample size. The enantiopurities of the chiral carboxylic acids was determined by chiral 

HPLC analysis (see appendix I for details). Two sets of conditions were determined for 

separation of the enantiomers of (±)-11 significantly the order of elution of (R)-11 and (S)-11 

was the same in both (Figure 2.6 and 2.7). As anticipated, spectral characteristics of the 

enantioenriched carboxylic acid (R)-11 and (S)-11 are identical to the racemic (±)-11.  

After fifteen years of investigation,
1-3,8

 application of the base-induced ring cleavage 

of the enantioenriched 2-benzenesulfonyl-3-n-butylcyclopentanones (2S,3R)-2 and (2R,3S)-2 

provided for the first time an effective route to essentially enantiopure 4-

(benzenesulfonylmethyl)octanoic acid (S)-11 and (R)-11 (≥94% ee), important building 

blocks in the asymmetric synthesis of the insect pheromone 4-methyloctanoic acid (R)-1 and 

(S)-1. Significantly, in addition to the improved enantiomeric purity obtained in this study of 

(S)-11 and (R)-11, the synthetic scale of the ring cleavage reaction has been substantially 

increased [1.16 g and 1.44 g of precursor (2R,3S)-2 and (2S,3R)-2 respectively] for the first 

time providing the desired (S)-11 and (R)-11 in synthetically useful quantities with excellent 

purity, high yield and critically with retention of stereochemistry, all of which represent 

important advances in the application of baker’s yeast methodology to natural product 

asymmetric synthesis.  

 

Table 2.4: Synthesis of 4-(benzenesulfonylmethyl)octanoic acid 11 

 

 

 

 

 

            

                             2                                                                        11 

a. The base induced ring cleavage of enantioenriched cyclopentanones (2R,3S)-2 and (2S,3R)-2 providing the carboxylic acids (S)-11 and 

(R)-11 has been performed with 1.16 g and 1.44 g of precursor (2R,3S)-2 and (2S,3R)-2 respectively, with high yield (≥84%) and 

retention of stereochemistry (≥94% ee). The above experiments were performed with 170 mg of precursor (2R,3S)-2 for entry 2 and 
239 mg of precursor (2S,3R)-2 for entry 3 and are the experiments described in section 5.2.3 as they represent the highest enantiomeric 

purity obtained of (S)-11 and (R)-11 in this study. 

b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

c. 4-(Benzenesulfonylmethyl)octanoic acid 11 was of sufficient purity to warrant no further purification. 

 

Entry Cyclopentanone
a
 

ee 

(%)
b
 

Carboxylic 

acid 

Crude 

yield 

(%)
c
 

ee 

(%)
b
 

Optical rotation     
  

Experimental Literature 

1 (±)-2 - (±)-11 69 - - - 

2 (2R,3S)-2 93 (S)-11 82 94     
   −11.0 (c 1.2, CH2Cl2) 

    
   −5.6 (c 2.7, CH2Cl2), 

91% ee1 

3 (2S,3R)-2 >98 (R)-11 73 >98     
   +9.1 (c 1.2, CH2Cl2) 

    
   +6.3 (c 1.2, CH2Cl2), 

75% ee1 
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Figure 2.6: HPLC Trace I: (±)-4-(Benzenesulfonylmethyl)octanoic acid (±)-11, 
Trace II: (−)-(S)-4 -(Benzenesulfonylmethyl)octanoic acid (S)-11, 94% ee. For HPLC conditions see appendix I.  

Note the above traces correlate to chiral HPLC conditions A for 11. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.7: HPLC Trace I: (±)-4-(Benzenesulfonylmethyl)octanoic acid (±)-11.  
Trace II: (+)-(R)-4 -(Benzenesulfonyl methyl)octanoic acid (R)-11, >98% ee. For HPLC conditions see appendix I.  

Note the above traces correlate to chiral HPLC conditions B for 11. 
 

2.5.3 Reductive desulfonylation 

In the preceding section 2.5.2, stereocontrolled functionalisation at the remote 

unactivated γ-carbon of 4-(benzenesulfonylmethyl)octanoic acid 11 has been successfully 

achieved in both enantiomeric forms and with high enantiomeric purity. One of the key 

synthetic steps to application of these chiral compounds (R)-11 and (S)-11 to asymmetric 

synthesis of the natural product 4-methyloctanoic acid 1 is efficient reductive desulfonylation 

to reveal the unsubstituted methyl substitutent, characteristic of many insect pheromones. 

Kelleher
1
 and O’Keeffe

2
 have previously reported concomitant desulfonylation and 

carboxylic acid reduction of 4-(benzenesulfonylmethyl)octanoic acid (R)-11 and (S)-11 with 

retention of stereochemistry by prolonged treatment with excess lithium aluminium hydride 

Trace I 

Racemic 

 

Trace II 

 

(S)-11 (R)-11 

(S)-11 

94% ee 

    
   −11.0 (c 1.2, CH2Cl2) 

Trace I 

Racemic 

 

(S)-11 (R)-11 

(R)-11 

>98% ee 

    
   +9.1 (c 1.2, CH2Cl2) 
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in diethyl ether. However, the lithium aluminium hydride mediated tandem 

desulfonylation/reduction reaction was problematic as it was difficult to attain reaction 

completion and unexpectedly led to a mixture of the desired 4-methyloctan-1-ol 15 and a diol 

derivative 16 (Scheme 2.16).
2
 Although the products were separable by chromatographic 

purification, poor yields of 15 were achieved.
2
  

 

                                     Kelleher
1
 and O’Keeffe

2
 

 

 

 

 

 

 

                      11                                                   15 (Yield 30-40%)
2      16 (Yield 33-37%)

2 

 

            

            Milner
8
 

 

 

 

 

 

 

 

 

 

                           1 

 

Scheme 2.16 

 

Recently, Milner reinvestigated the desulfonylation step, to improve efficiency and 

yield without the reduction of the carboxylic acid moiety to form 4-methyloctanoic acid (R)-1 

and (S)-1 (Scheme 2.16).
8
 Milner reported successful desulfonylation of (R)-11 and (S)-11 

with a large excess of magnesium (50 equivalents) in methanol at room temperature to obtain 

4-methyloctanoic acid (R)-1 and (S)-1 in poor to high yield, 45%
iii

 and 94% respectively.
8
 

Notably, Milner did not achieve complete desulfonylation of (S)-11 with ~2% of the 

sulfonylated carboxylic acid (S)-11 evident by 
1
H NMR analysis of (S)-4-methyloctanoic acid 

(S)-1 following chromatographic purification. Significantly, the stereochemistry at C(4) was 

unaffected by this reaction, confirmed by chiral HPLC analysis of (R)-1 (>98% ee), however, 

optical rotation data was not recorded due to the small sample size of (R)-1.
8
 The 

enantiomeric excess of (S)-1 was not determined by Milner as an analytically pure sample 

was not obtained, however, the sulfonylated carboxylic acid precursor to (S)-1, (S)-11, was of 

moderate enantiopurity (70% ee).
8
  

                                                 
iii

 Milner reports in chapter 3, results and discussion, 45% yield of (R)-1 in the desulfonylation of (R)-11 and 

attributes the low yield to the presence of the large excess of magnesium alkoxide and the small sample size [~ 

30 mg of (R)-11], however in chapter 4, experimental a 75% yield of (R)-1 is reported.
8
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Some difficulties were encountered in this research when desulfonylation of racemic 

(±)-11 was attempted according to Milner, utilising an excess of magnesium in methanol.
8
 

Although complete desulfonylation of (±)-11 was successfully achieved in this study, a 

moderate 51% yield was obtained following column chromatography. Numerous experiments 

were conducted in which the batch of magnesium turnings and purity of methanol employed 

to desulfonylate (±)-11 as well as the reaction time were varied with negligible increase in 

yield of (±)-1. The 
1
H NMR spectrum of the crude product (±)-1 was relatively clean, with 

only the desired product (±)-1 observed with just trace evidence of unassigned peaks in the 

aromatic region, indicating the absence of a substantive competing process. Thus, the low 

yield was attributed to poor extraction of 4-methyloctanoic acid (±)-1 from the crude reaction 

mixture due to the large excess of magnesium alkoxide employed, despite acidification of the 

reaction mixture with aqueous hydrochloric acid (10%). Further studies are therefore 

warranted investigating the quantity of magnesium turnings employed in the desulfonylation 

step.    

Reactions were monitored by IR analysis, where reaction completion was indicated by 

the disappearance of the symmetric and asymmetric stretches of the sulfonyl group at νmax 

1305 cm
−1 

and νmax 1146 cm
−1

, characteristic of the sulfonyl carboxylic acid 11. The IR 

spectra of (±)-1 displays strong characteristic absorptions evident at νmax 3043 cm
−1

 and νmax 

1714 cm
−1

 attributable to the hydroxyl and carbonyl moieties. The 
1
H NMR spectrum of 

racemic (±)-1 is in accordance with the spectroscopic data of Milner,
8
 with a distinct 

multiplet at H 2.19-2.50 ppm attributable to the methylene C(2)H2 protons - to the 

carboxylic acid moiety.  
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Table 2.4: Synthesis of 4-methyloctanoic acid 1 

 

 

 

 

 

 

                                          11                                                             1 

a. Scale refers to the quantity of 4-(Benzenesulfonylmethyl)octanoic acid 11 employed for the reaction. 
b. Chiral HPLC and optical rotation analysis was not conducted on the batch of (R)-4-(benzenesulfonylmethyl)octanoic acid (R)-11 

utilised in this experiment. However, the enantiopurity of the precursor of (R)-11, (−)-(2S,3R)-cyclopentanone (2S,3R)-2 was 

determined to be 99% ee by chiral HPLC analysis and base-catalysed ring cleavage to (R)-11 proceeds with retention of 
stereochemistry (see section 2.5.2). 

c. Chiral HPLC and optical rotation analysis was not conducted on the batch of (S)-4-(benzenesulfonylmethyl)octanoic acid (S)-11 

utilised in this experiment. However, the enantiopurity of the precursor of (S)-11, (+)-(2R,3S)-cyclopentanone (2R,3S)-2 was 
determined to be 97% ee by chiral HPLC analysis and base-catalysed ring cleavage to (S)-11 proceeds with retention of 

stereochemistry (see section 2.5.2). 

d. Yields quoted are following chromatographic purification. 
e. The highest enantiomeric purity of (R)-4-methyloctanoic acid (R)-1 reported by Milner was >98% ee. Enantiomeric excess [ee (%)] of 

(R)-1 was determined by chiral HPLC analysis using a Chiralcel® OJ-H column, however no optical rotation data was obtained due to 

small sample size.8 The enantiomeric excess [ee (%)] of (S)-1 was not determined by Milner as an analytically pure sample was not 
obtained, however, the sulfonylated carboxylic acid precursor to (S)-1, (S)-11 was of moderate enantiopurity 70% ee.8  

f. Due to the low UV absorption of 4-methyloctanoic acid (R)-1 and (S)-1, chiral HPLC analysis was not possible with a PDA detector 

and enantiomeric excess [ee (%)] was therefore determined by derivatisation with 9-fluorenemethanol 17. 
g. The literature ee values were determined by chiral HPLC following derivatisation of the methyloctanoic acid derivatives (S)-1 and (R)-

1 with (R)-(−)-2,2,2-trifluoro-1-(9-anthryl)ethanol.52 

 

Significantly, the desulfonylation reaction proceeds with retention of stereochemistry 

at C(4) and for the first time in our group complete desulfonylation of (R)-11 and (S)-11 was 

successfully achieved, providing both enantiomers of the aggregation pheromone of the 

rhinoceros beetles of the genus Oryctes, 4-methyloctanoic acid (R)-1 and (S)-1 with excellent 

purity following chromatographic purification (entries 2 and 3, Table 2.4). In addition, the 

magnesium/methanol mediated desulfonylation was performed on a preparative scale [0.56 g 

and  0.74 g of precursor (S)-11 and (R)-11 respectively] to provide substantial quantities of 

the pure natural product (R)-1 and (S)-1 for full characterisation including chiral HPLC and 

optical rotatory analysis, representing an important advance in the asymmetric synthesis of 

(R)-1 and (S)-1. Notably, spectral characteristics of the enantioenriched natural product (R)-1 

and (S)-1 were identical to the racemic (±)-1 and literature reports.
51,52,67

 

Milner reported chiral HPLC analysis of (R)-1 utilising the Chiralcel
®

 OJ-H column at 

room temperature with isopropanol/hexane (10 : 90), a flow rate  of 1.0 mL/min and a 

detector wavelength of 220 nm.
8
 However, when these conditions were applied utilising a 

photodiode array (PDA) detector examining a range of wavelengths simultaneously, the 

enantiomers of (±)-1 were not observed, attributable to the low UV absorption of 4-

methyloctanoic acid (±)-1. Increased concentration of the chiral HPLC samples of (±)-1 were 

prepared (>1 mg/mL), however once again no trace of the enantiomers was observed. 

Therefore, unequivocal determination of the enantiomeric purity of acids (R)-1 and (S)-1 was 

obtained by derivatisation with 9-fluorenemethanol 17, a highly conjugated polycyclic 

aromatic hydrocarbon. It was envisaged that chiral HPLC analysis with a PDA detector 

would resolve the enantiomers of the resulting ester 18.  

Entry 

Sulfonylated 

carboxylic 

acid 

Scale 

(g)
a
 

ee 

(%) 

Desulfonylated 

carboxylic 

acid 

Yield 

(%)
d
 

ee
e 

(%)
f
 

Optical rotation     
  

Experimental Literature
g
 

1 (±)-11 1.04  - (±)-1 51 - - - 

2 (R)-11 0.74 -
b
 (R)-1 53 >98     

   −2.2 (c 1.4, CHCl3) 
    

   −1.5 (c 1.4, CHCl3), 

 94% ee52 

3 (S)-11 0.56 -
c
 (S)-1 57 97     

   +1.6 (c 1.4, CHCl3) 
    

   +1.5 (c 1.4, CHCl3),  

93% ee52 
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As evident from Table 2.5, derivatisation of racemic and enantiopure 4-

methyloctanoic acid 1 occurred in moderate yields (61-79%) in the presence of 9-

fluorenemethanol 17, dicyclohexylcarbodiimide (DCC) and N,N-dimethylaminopyridine 

(DMAP) in dichloromethane and the resulting novel esters 18 were analysed by chiral HPLC. 

Significantly, no racemisation occurred during the derivatisation step and the enantiomeric 

purity of (R)-18 and (S)-18 was determined as 99 and 97% ee respectively (Figure 2.8). Thus, 

successful synthesis of both enantiomers and the racemic form of the naturally occurring 

target compound 4-methyloctanoic acid (R)-1 and (S)-1 has been achieved in this work, with 

significant improvements in terms of synthetic scale, purity and enantiomeric excess relative 

to results reported by Milner.
8
  

 

Table 2.5: Synthesis of  (9H-fluoren-9-yl)methyl 4-methyloctanoate 18 

 

 

 

 

                                         

                                                          17 

 

 

 

  

                          1                                                                              18 

a. Yields quoted are following chromatographic purification. 
b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: HPLC Trace I: (±)-(9H-Fluoren-9-yl)methyl 4-methyloctanoate (±)-18. Trace II: (+)-(S)-(9H-Fluoren-9-

yl)methyl 4-methyloctanoate (S)-18, 97% ee. Trace III: (−)-(R)-(9H-Fluoren-9-yl)methyl 4-methyloctanoate (R)-18, 99% 

ee. For HPLC conditions see appendix I. 

Entry 

Desulfonylated 

carboxylic 

acid 

Ester 
Yield 

(%)
a
 

ee
 

(%)
b
 

Optical rotation     
  

Experimental Literature 

1 (±)-1 (±)-18 61 - - - 

2 (S)-1 (S)-18 69 97     
   +1.5 (c 1.0, CHCl3) - 

3 (R)-1 (R)-18 79 99     
   -3.4 (c 1.0, CHCl3) - 

(R)-18 (S)-18 

(S)-18 

97% ee 

    
   +1.5 (c 1.0, CHCl3) 

(R)-18 

99% ee 

    
   −3.4 (c 1.0, CHCl3) 

Trace I 

Racemic 

 

 

 

Trace II 

 

 

Trace III 
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2.6 Project conclusion 

In summary, access to both enantiomers of the natural occurring target compound (R)- 

and (S)-4-methyloctanoic acid (R)-1 and (S)-1 has been achieved in excellent enantiopurity 

(≥97% ee) for the first time via chemoenzymatic synthesis (Scheme 2.17 and 2.18), in 

addition to the racemic form (±)-1. This example illustrates the synthetic utility of the 

enantioenriched cyclopentanones (2S,3R)-2 and (2R,3S)-2 obtained from baker’s yeast 

mediated biotransformation, as chiral building blocks in natural product synthesis. Both 

enantiomers (R)-1 and (S)-1 were obtained in three and four steps respectively from racemic 

(±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2 and in a total of six and seven 

steps respectively from ethyl octanoate 7. The overall yield of (R)-1 (15%) and (S)-1 (13%) 

was determined from racemic (±)-2. Furthermore, optical rotation data in conjunction with 

chiral HPLC analysis of derivatised 18 confirm the excellent enantiopurity obtained by 

induction of chirality through baker’s yeast methodology and the retention of stereochemistry 

throughout the synthetic protocol. 

 

 

 

 

 

                (2S,3R)-2                                     (R)-11                                          (R)-1 

            (From baker’s yeast)                                  (89% yield)                                   (99% ee, 53% yield)  

            (99% ee, 31% yield)                 15% overall yield from (±)-2 

Scheme 2.17 

 

 

 

 

 

 

 

              (2R,3S)-2                                         (S)-11                                           (S)-1 

          (97% ee, 78% yield)                                       (99% yield)                                      (97% ee, 57% yield) 

                                                                                                                                   13% overall yield from (±)-2 

 

 

 

 

 

 

 

 

 

              (1S,2R,3S)-4a                                             

              (From baker’s yeast) 

             (>98% ee, 29% yield) 

Scheme 2.18 
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The key step in the asymmetric synthesis of (R)- and (S)-4-methyloctanoic acid (R)-1 

and (S)-1 is asymmetric C-C bond formation introducing the benzenesulfonylmethyl group at 

the unactivated γ-carbon of carboxylic ester 7 through a synthetically powerful combination 

of a regiospecific transition metal catalysed carbenoid insertion process (which activates an 

unactivated C-H bond at the γ-carbon) and an enantioselective kinetic resolution via 

biocatalysis (Scheme 2.19). Subsequent reductive desulfonylation reveals the unsubstituted 

methyl substituent characteristic of several insect pheromones. This distinctive moiety was 

readily obtained from the carboxylic ester 7 in both enantiomeric forms through application 

of this novel methodology. 

 

 

 

 

 

                   7                                           6                                              (±)-2  

 

 

 

 

 

 

 

 

 

 

                                                                                     (1S,2R,3S)-4a                  (2S,3R)-2   

 

 

 

 

 

 

 

 

 

 

                                                                                 (S)-1 (97% ee)                   (R)-1 (99% ee)  

 

Scheme 2.19 

          

Thus, while asymmetric synthesis of (R)-1 and (S)-1 can be readily envisaged starting 

from a small enantiopure synthetic precursor from the chiral pool the novelty of this approach 

is that the methyl group is selectively introduced both in terms of regio- and stereochemistry 

on the achiral octanoic acid chain. 

 

C-C bond formation 

with enantiocontrol 
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3.1 Introduction 

The use of biocatalysis in synthetic organic chemistry has grown enormously in 

popularity, from academic curiosity a century ago to a standard practise of industrial 

importance.
1,2

 One rationale for this achievement is that biocatalysis is one of the greenest 

technologies for the synthesis of chiral molecules. Biotransformations are a key tool in Green 

Chemistry, offering environmentally benign, biodegradable catalysts, which are effective 

under mild reaction conditions, and which afford excellent selectivity.
3
 Consequently, novel 

biocatalytic pharmaceutical processes are often more desirable than their conventional 

chemical counterparts from an environmental and economic standpoint.  

Lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) are ubiquitous enzymes 

belonging to the family of serine hydrolases and are unequivocally the most utilized 

biocatalysts, providing one of the most advantageous and versatile bioresolution methods in 

asymmetric synthesis.
4
 Hydrolases combine wide substrate specificity with high regio- and 

enantioselectivity enabling the resolution of organic substrates with superb efficiency and 

selectivity. Furthermore lipases do not require the use of labile co-factors and can be used in 

both free and immobilised form. These favourable attributes make lipases especially 

attractive for the pharmaceutical and agrochemical areas, where the interest for 

enantiomerically pure and specifically functionalised compounds is continuously growing. 

Kinetic resolution of racemic compounds is by far the most common transformation 

catalysed by lipases, in which the enzyme discriminates between the two enantiomeric 

constituents of a racemic mixture, so that one is more readily transformed into a product than 

the other. While a severe limitation of kinetic resolution is that the maximum yield obtainable 

is restricted to 50% and thus the resolution is usually accompanied by additional processing 

such as separation, racemisation and recycling of unwanted enantiomers this route has the 

advantage of easy preparation of both enantiomers by using a single lipase.
5
  

To more conveniently compare kinetic resolutions, a series of equations were 

developed by Sih et al. to calculate their inherent enantioselectivity.
6
 This laid the basis for 

the application of lipases and allows synthetic chemists to make highly useful predictions. 

This enantioselectivity, called the enantiomeric ratio, E, is a measure of comparing the ability 

of different enzymes to distinguish between enantiomers. In practical terms, the higher the E 

value, the more selective the bioresolution is, giving a higher yield of product at higher 

enantiomeric excess. A non-selective reaction has an E value of 1, while resolutions with an 

E value above 20 require further development. An E value of 200 is excellent and little 

optimisation will be necessary.  

To calculate E, one measures two of the three variables: enantiomeric purity of the 

starting material (ees), enantiomeric purity of the product (eep), and extent of conversion (c) 

and uses one of the three equations below (Figure 3.1). Often, enantiomeric purities are more 

precisely measured than conversion; in these cases, the third equation is more accurate. 

 

   
             

              
          

               

                
           

   
      

   
   

   

 

   
      

   
   

   

 

 

Figure 3.1 
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  It should be noted that values >200 are less accurately measured than low or moderate E 

values because the enantiomeric ratio is a logarithmic function of the enantiomeric purity. At 

E >200 small changes in the measured enantiomeric purities give large variation in the 

enantiomeric ratio.  

  A simple program developed by Kroutil et al. and publicly available at 

http://www.orgc.tugraz.at/ allows the enantiomeric ratio to be calculated using the above 

equations.
7
 Though these equations include assumptions such as an irreversible reaction, one 

substrate and product, and no product inhibition, they are reliable in the vast majority of 

cases, especially for screening studies.  

  As the most versatile class of substrates for synthetic applications, alcohols have 

received the most attention in the context of lipase-catalysed kinetic resolution. In nature, 

lipases catalyse the reversible cleavage of the ester bonds of triacylglycerol thus lipases may 

be expected to be the most effective in conversions involving esters of chiral alcohols rather 

than chiral acids.
5
 However, there are a number of examples in the literature of the 

successfully application of lipases for the resolution of highly enantioenriched chiral 

carboxylic acids. 

The simplest conventional route to enantiopure carboxylic acids is the hydrolysis of 

the carboxylic acid ester in water or biphasic mixtures of water and an organic solvent. Use of 

lipases does not require a soluble substrate and the immiscible liquid ester substrate can act as 

an organic phase. The presence of a biphasic mixture is highly advantageous because it 

activates most lipases by 10 to 100-fold.
4
 A lipid-induced change in the orientation of the lid 

(an amphiphilic -helix peptide sequence preventing access of the substrate to the catalytic 

triad) exposes the active site and increases the catalytic power of the lipase, a phenomenon 

called interfacial activation.
4
 

Studies over the past 25 years have revealed that enzymatic catalysis in non-aqueous 

media significantly extends the synthetic utility of enzymes far beyond conventional aqueous-

based hydrolysis. Klibanov and co-workers recognised the immense synthetic potential of 

enzymes in organic solvents and their fundamental pioneering studies have generated great 

interest in these systems.
8-10

 In such seemingly hostile environments enzymes can catalyse 

reactions unattainable in aqueous medium and the range of possible chemical reactions has 

broadened extensively. Carboxylic acid derivatives can be enzymatically resolved in organic 

solvents via hydrolase-catalysed esterification, transesterification and aminolysis reactions 

with suitable amines.  

Biotransformations of nitriles as precursors to enantiopure amides and carboxylic 

acids have developed substantially in recent years. Biocatalytic hydrolysis of nitriles proceeds 

with excellent chemo-, regio- and stereoselectivity under very mild aqueous conditions and is 

now firmly established in both academia and industry as a viable synthetic route to chiral 

carboxylic acids and carboxamides.
11-13

  

In the literature, the kinetic bioresolution of chiral carboxylic acids has been 

dominated by the successful resolution of commercially important 2-aryl 19 or 2-aryloxy-

propionic acids 20; the former are non-steroidal anti-inflammatory drugs NSAID’s (such as 

naproxen and ibuprofen) and the latter an important class of herbicides (such as dichlorprop 

and mecoprop). The (S)-enantiomers of 19 display therapeutic activity, while the (R)-

enantiomers of 20 are effective (Figure 3.2). 
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                      19                                20 

 

Figure 3.2 

  

While the stereocentre at the -position has been studied extensively in lipase 

resolutions of alkanoic acids, fewer reports exist where the stereocentre is further away from 

the reactive site. Therefore, the primary objective of this research was to explore the lipase-

mediated kinetic resolution of β-substituted 3-arylalkanoic acids and compare the 

enantioselectivity to that reported for their -substituted counterparts.  

3.1.1 Importance of 3-arylalkanoic acids as key synthetic intermediates 

Enantiomerically pure 3-arylalkanoic acids are important synthetic intermediates for 

the preparation of a variety of compounds with biological and pharmacological importance 

including several drug candidates.
14-16

 Optically pure 3-arylalkanoic acids are valuable chiral 

synthons in the asymmetric synthesis of antibacterial agents such as (−)-malyngolide (−)-21, 

a naturally occurring δ-lactone of algae origin (Figure 3.3).
17

  

 

 

 

 

 

                                                                      (−)-21                              

 

Figure 3.3 

 

All four individual stereoisomers of amino acid β-methyl phenylalanine 22 have been 

prepared in excellent optical purity, from enantiopure (R)- and (S)-3-phenylbutanoic acid 23 

(Scheme 3.1).
18

  

 

 

 

 

                                             (R)-23                                (2S,3R)-22 

 

Scheme 3.1 

 

Enantiopure 3-arylalkanoic acids can be efficiently reduced to their corresponding 

primary alcohols, which are key intermediates in the enantiospecific synthesis of biologically 

important bisabolene sesquiterpenes. This class of compounds, showing a wide range of 

therapeutic activities, is characterised by a benzylic stereogenic centre often carrying a 

methyl moiety at this position. For example, enantiopure 3-arylalkanols have been reported as 

chiral synthons in the enantiospecific synthesis of the therapeutic agents curcumene 24 and 
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curcuphenol 25,
19

 the structurally related cytotoxic agent turmerone 26,
20

 and the synthetic 

fragrant florhydral 27
21

 (Figure 3.4). 

 

 

 

 

 

 

 

                        (S)-24                       (S)-25                       (S)-26                     (S)-27 

 

Figure 3.4 

 

The enantiopure methyl, ethyl and isopropyl β-substituted 3-arylalkanoic acids (S)-23, 

(S)-28 and (R)-29 have been successfully cyclised via classical Friedel-Crafts reactions in the 

course of the preparation of chiral 3-alkylindanones 30. The analogous optically active 

dihydrocoumarins 31 have been synthesised by Baeyer-Villiger peracid oxidation (Scheme 

3.2).
22

   

 

  

 

 

 

 R = Me (S)-23                  30                                        31 

 R = Et (S)-28  

 R = i-Pr (R)-29 

 

Scheme 3.2 

 

Furthermore, enantiopure (R)-2-methyl-3-phenylpropanoic acid (R)-32 is a potentially 

useful compound for incorporating chiral recognition units in adenosine receptor agonists
23

 

and antagonists
24

 (Figure 3.5). 

 

 

 

 

                                                                      (R)-32 

 

Figure 3.5 

 

Within our own group, 3-arylalkanoic acids are utilised in the synthesis of aryl-

diazoketone derivatives, which in turn have been employed in Buchner cyclisation reactions 

demonstrating excellent diastereoselectivity (Scheme 3.3).
25-29
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Scheme 3.3 

 

This key transformation provides an extremely efficient asymmetric route to the 

bicyclo[5.3.0]decane skeleton, characteristic of daucane sesquiterpenoids. Synthetic 

approaches to this ring system have been extensively reviewed.
30,31

 This important synthetic 

route has been exploited by McKervey et al.
32,33

 in their work towards the synthesis of (±)-

confertin 33 and Mander et al.
34-36

 in their synthesis of harringtonolide 34. Within our 

laboratory, O’Leary and Foley have investigated the synthesis of CAF-603 35 using this 

methodology.
37,38

 More recently Stack and McDowell applied the intramolecular aromatic 

addition to the synthesis of carotol 36 with several key advanced intermediates for its 

synthesis prepared
39-41

 (Figure 3.6). 

 

 

 

 

 

 

                33    34     35                36  
 

Figure 3.6 

 

Thus, enantiopure 3-arylalkanoic acids are attractive synthetic targets and their 

enantioselective lipase-mediated resolution is the focus of this study. 

3.1.2 Background to the project 

In this section, recent advances in the kinetic bioresolutions of 3-arylalkanoic acids 

will be summarised. Following a brief survey of enantioselective biotransformations in 

organic solvents and nitrile hydrolysis as routes to enantiopure 3-arylalkanoic acids, 

traditional aqueous based hydrolysis of the analogous esters will be discussed. 

Attempted hydrolase-catalysed non-aqueous enantioselective esterification of methyl, 

ethyl, isopropyl and tert-butyl β-substituted 3-arylalkanoic acids, (±)-23, (±)-28, (±)-29 and 

(±)-37 has previously been investigated by Hedenström et al.
42

 Resolution was not achieved 

with immobilised Candida rugosa lipase, Burkholderia cepacia (Amano PS) or Candida 

antarctica lipase B (Chirazyme
®
 L-2). Substrate acids (±)-23 and (±)-28 were reported to 

esterify with a modest to slow rate with a minimal preference for the (S)-enantiomer, 

resulting in very low E values (E <2). No ester was observed under any conditions for the 

acids (±)-29 and (±)-37, with the larger substituents at the β-position despite extended 

reaction times (Scheme 3.4). 

 

 



Chapter 3                                                                                                 Results and Discussion 

                                                                                    

 

83  

 

 

 

 

 

 

     R = Me (±)-23 

     R = Et (±)-28 

 

     R = i-Pr (±)-29  

     R = t-Bu (±)-37  

 

Scheme 3.4
42 

 

Bornscheuer et al. investigated Candida antarctica lipase B (CAL-B) catalysed 

transesterification and hydrolysis of vinyl and ethyl esters of racemic aryl aliphatic carboxylic 

acids.
43

 Notably, poor enantioselectivity was observed for the transesterification (E = 13) and 

hydrolysis (E = 9) of 3-phenylbutanoic acid ethyl ester (±)-38 (Scheme 3.5). 

 

 

 

              (S)-38         (S)-38   

           22% ee           93% ee 

                                                                     

 

(±)-38 

       

          

                   (R)-39         (R)-23 

           60% ee             13% ee 

 

Scheme 3.5
43

 

 

Numerous studies have demonstrated that biotransformations of nitriles complement 

the existing asymmetric chemical and enzymatic methods for the synthesis of chiral 

carboxylic acids and their derivatives.
11-13

 The enantioselective hydration of racemic 3-

phenylbutanenitrile by Mycobacterium strain A277 afforded enantiomerically enriched (S)-3-

phenylbutanoic acid (S)-23.
44

 Furthermore, Wang et al. established that the amidase 

Rhodococcus erythropolis AJ270 showed greater activity and higher enantioselectivity 

against 3-arylpent-4-enoic acid amides, than 3-arylpentanoic acids amides.
45

 Despite the high 

sensitivity of the amidase toward the structure of the amide substrate, (S)-3-phenylpentanoic 

acid (S)-28 was isolated with good enantioselectivity (82% ee) after 26 h incubation (entry 2, 

Table 3.1). 

 

 

 

 

 

E <2 

No reaction 
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Table 3.1: Enantioselective biotransformations of racemic nitriles (±)-40 and (±)-41
45

 

 

   

 

 

a. Isolated yield. 

b. Determined by HPLC or GC analysis. 

    

Traditional aqueous Burkholderia cepacia and Pseudomonas sp. catalysed ester 

hydrolysis has been described for the successful resolution of the β-methyl substituted (S)-3-

phenylbutanoic acid (S)-23, 89% ee
44

 (entry 1, Table 3.2) and the -methyl substituted (S)-2-

methyl-3-phenylpropanoic acid (S)-32, >95% ee,
23,46

 (entry 2, Table 3.2) respectively, 

however significantly this work has not been expanded to include acid substrates 

encompassing more sterically demanding substituents at the C3 or C2 stereogenic centre.  

Carrea et al.
46

 (entry 3, Table 3.2) and Sih et al.
47

 (entry 4, Table 3.2) broadened the 

scope of this hydrolysis to include -ethyl substituted 3-aryl 2-alkyl alkanoic acid (±)-45, 

however an almost total disappearance of the enzyme capacity for stereoselection together 

with a drastic reduction of activity was observed on replacement of the methyl with the 

bulkier ethyl group at the C2 chiral centre. 

 

Table 3.2: Enantioselective aqueous hydrolysis of 3-arylalkanoic acids
23,44,46,47

 

 

 

 

 

 
 

a. Enantiopurity was not reported.46 

 

Recently the lipase-catalysed hydrolysis of substituted ethyl butanoates (±)-49 and 

(±)-50 was performed with the lipase from Pseudomonas cepacia immobilised on ceramic 

particles (PS-C) in 0.1 M phosphate buffer (pH 7.0) at 30 °C (Table 3.3). The desired acids 

(S)-51 and (S)-52 were obtained in high enantiopurity (>99% ee).
19

  

 

 

 

 

Entry R Nitrile Time 

Amide Acid 

 
Yield

a
 

(%) 

ee
b
 

(%) 
 

Yield
a
 

(%) 

ee
b
 

(%) 

1 Vinyl (±)-40 15.5 h (S)-42 47.5 95 (R)-43 47 95 

2 Et (±)-41 26 h (R)-44 48 86 (S)-28 47 82 

Entry R
1
 R

2
 Hydrolase 

Ester Acid 
E value 

 ee
 
(%)  ee (%) 

1 Me H 
Burkholderia  

cepacia 
(R)-46 >98 (S)-23 89 >50

44
 

2 H Me Pseudomonas sp. (R)-47 >95 (S)-32 >95 145
23,46

 

3 H Et Lipase PS (R)-48 -
a
 (S)-45 7 1.2

46
 

4 H Et Lipase N (Amano) (R)-48 32 (S)-45 53 -
47
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Table 3.3: Lipase-mediated hydrolysis of (±)-49 and (±)-50
19

 

 

 

 

 

 

 

Besides classical screening of microorganisms to find suitable enzymes, protein 

engineering using rational or directed evolution is a promising and often successful tool to 

create the desired biocatalyst.
48

 Recent reports in the literature have screened metagenomic 

libraries as an efficient alternative to find novel biocatalysts for the enantioselective kinetic 

resolution of (S)-3-phenylbutanoic acid (S)-23 with modest to high enantioselection.
49,50

 The 

literature also reveals a 2004 patent filed in Japan titled “Manufacture of optically active 3-

alkyl-3-arylpropionic acid and ester with lipase of Burkholderia cepacia”, however limited 

experimental detail is supplied.
51

 

In summary, an overview of the literature reveals modest enantioselection in the 

preparation of 3-arylalkanoic acids via enzymatic esterification, transesterification and nitrile 

hydrolysis. While promising results have been achieved by aqueous enantioselective 

hydrolysis of 3-arylalkanoic carboxylic esters, excellent enantioselection has been limited to 

the resolution of substrates with methyl substituents at the C2 or C3 chiral centre. Based on 

this precedent, the present study focused on aqueous hydrolysis for the resolution of a broad 

series of 3-arylalkanoic acids, expanding the range of alkyl substituents at the C2 and C3 

stereocentres and the aromatic ring.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry R 
Substrate 

ester 

Ester Acid 

 ee
 
(%)  ee (%) 

1 H (±)-49 (R)-49 92 (S)-51 >99 

2 OMe (±)-50 (R)-50 94 (S)-52 >99 
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3.2 Objectives of the project 

The overall objective of this work was to explore lipase-mediated kinetic resolutions 

as a practical synthetic route to a series of 3-arylalkanoic acids with a wider range of 

substrates than the butanoic acids (Figure 3.7).   

 

 

 

 

 

 

 

 

Figure 3.7 

 

The specific objectives of this study can be summarised as follows: 

 To prepare a series of structurally related known and novel racemic ethyl 3-

arylalkanoates and 3-arylalkanoic acids for the investigation of hydrolase-mediated 

kinetic resolution. 

 To develop chiral HPLC conditions in which both enantiomers of the ethyl ester 

substrate and carboxylic acid product for each ester hydrolysis could be seen on a 

single trace, to facilitate analysis and optimisation.   

 To perform screening assays of the ethyl 3-arylalkanoates against a series of 

hydrolases investigating the influence of each of the following on the outcome of the 

enantioselective hydrolysis both in terms of efficiency and enantioselectivity: 

o Variation of biocatalyst. 

o Alteration of reaction conditions e.g. temperature and co-solvent addition. 

o The impact of substituents at C3 and C2, specifically steric effect. 

o Both steric and electronic effects of substituents on the aromatic ring.  

o Effect of the position of the stereocentre relative to the reactive site. 

 To conduct preparative-scale synthesis of each of the enantioenriched 3-arylalkanoic 

acids under optimised conditions to demonstrate their synthetic utility. 

 To determine the absolute stereochemistry of each of the optically active 3-

arylalkanoic acids. 
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3.3 Synthesis of ethyl 3-arylalkanoates  

The initial task in this project was to synthesis a series of ethyl 3-arylalkanoates, 

bearing a range of substituents on both the carbon framework (- and β-position) and on the 

aromatic ring, as summarised below in Figure 3.8. Compounds (±)-48, (±)-53, (±)-54 and (±)-

55 are novel while each of the others have been previously characterised in the literature.
19,52-

57
 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 

 

Four synthetic routes were employed for the preparation of the ethyl 3-arylalkanoates; 

(a) esterification of commercially available 3-arylalkanoic acids; (b) three-step synthesis, 

firstly conjugate addition of alkyl or aryl Grignard reagents to ,β-unsaturated acids, 

subsequent acid chloride formation and finally reaction of the acid chloride with ethanol in 

the presence of triethylamine to yield the desired ethyl ester (Scheme 3.6);  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.6  

X R   X R  

H Me (±)-47
53

  H Me (±)-38
52

 

H Et (±)-48  H Et (±)-56
55

 

H t-Bu (±)-57
54

  H i-Pr (±)-58
56

 

    H t-Bu (±)-59
54

 

    p-Me CH3 (±)-49
19

 

    o-Me CH3 (±)-53 

    m-Me CH3 (±)-54 

    p-F CH3 (±)-55 

    p-OMe CH3 (±)-60
57
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(c) Horner-Wadsworth-Emmons reaction to produce the ,β-unsaturated ester followed by 

hydrogenation (d) treatment of ethyl 3-arylalkanoates with lithium diisopropylamide and 

subsequent reaction of the resulting anion with aryl halides.  

The method chosen for the preparation of each acid depended on the substituents 

required and position on the molecular framework; each will be addressed in turn. 

3.3.1 Esterification of commercially available 3-arylalkanoic acids 

The 3-arylalkanoic acids (±)-23, (±)-32 and (±)-61 were commercially available
58

 and 

esterification yielded the desired 3-arylalkanoates (±)-38, (±)-47 and (±)-57. Fischer 

esterification of the - and β-methyl substituted carboxylic acids, (±)-23 and (±)-32 

respectively, proceeded very smoothly to yield the analogous ethyl 3-arylalkanoates (±)-47 

and (±)-38 in excellent purity and good yields (Table 3.4). The acid-catalysed esterification 

procedure employed in this study involved heating the commercially available acid in excess 

absolute ethanol under reflux with catalytic sulfuric acid overnight. The Fischer 

esterifications were not monitored for reaction completion and it may be possible that the 

reactions were complete in a shorter period of time. A slightly lower yield is observed for the 

-methyl substituted ester (±)-47, however on analysis of the 
1
H NMR spectrum of the crude 

product no starting material (±)-32 was observed and the position of the methyl substituent on 

the carbon framework is understood to have little or no effect on the efficiency of the 

reaction. The purity of the racemic substrate for enzymatic catalysis is of utmost importance 

for the success of the asymmetric hydrolysis. Therefore, even though the ethyl esters 

appeared >99% pure on analysis of the 
1
H NMR spectrum of the crude product, purification 

by column chromatography was conducted.  

 

Table 3.4: Fischer esterification of 3-arylalkanoic acids 

 

 

 

 
 

 

a. Yield following purification by column chromatography. 

 

Esterification of the carboxylic acid (±)-61 was attempted via Fischer esterification 

however <5% of the desired product (±)-ethyl 2-benzyl-3,3-dimethylbutanoate (±)-57 was 

evident in the 
1
H NMR spectrum of the crude product (Scheme 3.7). The poor conversion is 

most likely due to the steric hindrance of the bulky -tert-butyl group, preventing 

nucleophilic attack of the alcohol. An alternative SN2 approach was adopted. Thus, acid (±)-

61 was deprotonated using potassium carbonate in acetone, and the resulting carboxylate was 

alkylated with ethyl iodide to afford the desired ester (±)-57. This reaction did not proceed to 

completion with the carboxylic acid (±)-61 (~13%) evident in the 
1
H NMR spectrum of the 

crude product. The starting material (±)-61 was easily removed upon chromatographic 

purification which yielded the pure ester (±)-57 in 53% yield (Scheme 3.7). 

 

 

Entry Alkanoic acid R
1
 R

2
 Alkanoic ester Yield (%)

a
 

1 (±)-23 CH3 H (±)-38
52

 78 

2 (±)-32 H CH3 (±)-47
53

 63 
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* 

* 

 

 

 

  

 

 

                               (±)-61               (±)-57
54

  

 A: <5% evident in 
1
H NMR of crude product. 

 B: 53% isolated yield. 

 

Scheme 3.7 

 

The ethyl esters (±)-38, (±)-47 and (±)-57 were characterised by a carbonyl absorption 

band in the IR spectra at νmax 1729-33 cm
−1

.
 
 In the 

1
H NMR spectra of the 3-arylalkanoates 

(±)-38 and (±)-47 a distinctive triplet at H 1.17-1.18 ppm and quartet at H 4.08 ppm 

attributable to the ethyl ester moiety was observed. The 3-arylalkanoate (±)-57 bearing the - 

tert-butyl substituent displayed a triplet in the 
1
H NMR spectrum at H 1.04 ppm as 

anticipated, however interestingly the methylene resonance of the ethyl moiety appears as a 

symmetrical multiplet at H 3.88-4.03 ppm reflecting their diastereotopic nature (Figure 3.9). 

 

 

 

 

    

          (±)-57 

 

 

 

 

 

 

 

 

Figure 3.9: 1H NMR spectrum of (±)-ethyl 2-benzyl-3,3-dimethylbutanoate (±)-57 

(recorded in CDCl3 at 300 MHz). 

 

In summary, the esterification of commercially available 3-arylalkanoic acids (±)-23, 

(±)-32 and (±)-61 proceeded efficiently with modest to good yields. Each of the ethyl esters 

(±)-38, (±)-47 and (±)-57 was isolated as a colourless oil. Significantly no decomposition of 

the ethyl esters (±)-38, (±)-47 and (±)-57 was identifiable by 
1
H NMR spectroscopy on 

storage of the oils on the laboratory bench at room temperature for several months. Spectral 



Chapter 3                                                                                                 Results and Discussion 

                                                                                    

 

90  

 

characteristics of each ethyl alkanoate (±)-38, (±)-47 and (±)-57 were in agreement with those 

previously described in the literature.
52-54

  

3.3.2 Three-step synthesis of 3-arylalkanoates 

Throughout the course of this work it was necessary to investigate 3-arylalkanoates 

bearing alkyl substituents at the β-position and substituents on the aromatic ring, the former 

to determine the impact of steric effects at C3 and the latter to explore both steric and 

electronic effects of the aromatic ring, on the efficiency of the kinetic resolution. The 

carboxylic acid precursors were not commercially available, therefore the first step was to 

synthesise a series of acids using the conjugate addition of alkyl or aryl Grignard reagents to 

,β-unsaturated acids.   

3.3.2.1 Addition of Grignard reagents to ,β-unsaturated acids 

3.3.2.1.1 Addition of alkyl Grignard reagents to ,β-unsaturated acids 

The primary method utilised in this study was first described by Wotiz
59

 and has been 

extensively optimised within our own research group as a route to precursors for -

diazoketones.
37-39,60-63

 This methodology was considered appealing due to the high yields 

obtained and the scalability of the reaction. The mechanism was described by Harrington.
61

 

All Grignard reagents were freshly prepared in situ, from magnesium turnings, the 

appropriate alkyl bromide in diethyl ether and a crystal of iodine as an initiator, with the 

exception of tert-butylmagnesium chloride which was commercially available as a 2.0 M 

solution in diethyl ether. The optimal conditions involved portionwise addition of 1.0 

equivalent of the ,β-unsaturated acid over 30 min to a stirring ethereal solution of 3.0-4.0 

equivalents of the Grignard reagent at 0 °C followed by heating under reflux for 3 h. After 

such time the solution was subjected to an acidic work-up.  

The reactions were not followed by TLC analysis since the products tended to streak 

on the TLC plate, but, in general, reaction time did not exceed 3 h. Previous researchers 

within the group have utilised copper(I) chloride (0.05 eq.) to promote 1,4 addition,
37,60-62

 

however during this study and throughout the work by Stack
39

 and McNamara
63

 Cu(I)Cl was 

not employed with no adverse effects on both yield or quality of product. The 1,2-addition 

product was not identified in any case in the 
1
H NMR spectrum of the crude product 

 

Table 3.5: Addition of alkyl Grignard reagents to cinnamic acid 62 

 

 

 

 
 

a. Products were not purified and were brought through as crude material to the subsequent acid chloride stage. For a more accurate 
representation of the efficiency of each reaction an examination of the yield of the acid chloride is required as this is the yield 

calculated over the two steps.  

 

Attempts by Buckley,
60

 O’Leary
37

 and Harrington
61

 to purify these acids by column 

chromatography were unsuccessful, leading to greatly diminished yields (30-45%) and no 

Entry R X Propanoic acid Crude yield (%)
a
 

1 Et Br (±)-28
39,60-62

 92 

2 i-Pr Br (±)-29
39,61,62

 83 

3 t-Bu Cl (±)-37
39,60-62

 79 
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other satisfactory technique identified. As a result of these difficulties all acids synthesised 

during this study were carried forward in their crude form and purified by distillation in the 

subsequent acid chloride stage. Therefore the pure yield of the acid chloride is more 

indicative of the efficiency of the conjugate addition. 

Thus, use of conjugate addition of alkyl Grignard reagents to cinnamic acid 62 

generated a series of crude β-substituted carboxylic acids very efficiently. Spectral 

characteristics for each of the β-substituted acids (±)-28, (±)-29 and (±)-37 agreed with those 

described by previous members of the group
39,60-62

 as well as literature reports.
26,59,64

  

3.3.2.1.2 Addition of aryl Grignard reagents to ,β-unsaturated acids 

Earlier efforts by Harrington found that when a methyl substituent was required at the 

β-position of the carboxylic acid, the standard methodology of conjugate addition of 

methylmagnesium bromide to cinnamic acid 62 was not effective and resulted in complex 

mixtures and reduced yields.
61

 However conjugate addition of the appropriate aryl Grignard 

to crotonic acid 63 proceeds very efficiently and the desired product is obtained in good yield 

and purity.
39,61,62

  

It is well-established that the preparation of Grignard reagents from alkyl halides is far 

more efficient than those from aryl halides. Specifically, low yields and poor conversions 

have been reported of Grignard reagents derived from electron-rich aryl halides, owing 

predominantly to competing formation of the biaryl side product (Wurtz coupling product).
65

  

O’Leary and Harrington previously synthesised the para-methyl, ortho-methyl and 

meta-methyl substituted carboxylic acids (±)-51, (±)-64 and (±)-65
37,61

 In addition, O’Leary 

reported the preparation of the para-methoxy substituted butanoic acid (±)-66.
37

 All 3-

arylbutanoic acids were synthesised employing the conjugate addition methodology described 

above, neither O’Leary nor Harrington had discussed formation of the Wurtz coupling 

product.
37,61

 

  Recently, O’Keeffe synthesised (±)-3-(4-methoxyphenyl)butanoic acid (±)-66 and 

found the formation of the desired acid (±)-66 and Wurtz coupling product 67 in the ratio 44 : 

56.
62

 O’Keeffe also described the synthesis of (±)-3-(2-methylphenyl)butanoic acid (±)-64 

and notably reports no competing biaryl formation. However, when the same Grignard 

reagent was generated for the synthesis of 68, anomalous peaks were detected in the 
1
H NMR 

spectrum which were tentatively assigned as the Wurtz coupling product 69 (Figure 3.10).
62

 

Furthermore, during the synthesis of the β-disubstituted acid 70, 3% of the coupling product 

71 was identified (Figure 3.10).
62

 Thus, the Wurtz coupling products 69 and 71 have 

previously only been formally identified when reacting acrylic acid with aryl Grignard 

reagents, however this does not discount their possible formation during the analogous 

conjugate addition of aryl Grignard reagents to crotonic acid 63. O’Keeffe used a basic 

extraction in the work-up to ensure isolation of the acids free from the Wurtz coupling side 

products.
62

 In this work, use of this protocol as a precautionary measure was undertaken in 

the synthesis of the 3-arylbutanoic acids (±)-51, (±)-64-66. 
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 R = p-OMe 67    68             70 

 R = p-Me 71 

 R = o-Me 69 

 R = m-Me 72 

           Wurtz Coupling Product 

 

Figure 3.10 

 

During this study the exact ratio of (±)-3-(4-methylphenyl)butanoic acid (±)-51 to 

Wurtz coupling 67 (85 : 15 respectively) was determined on only one occasion.
iv

 In all 

subsequent reactions involving aryl Grignard reagents the crude product was not isolated 

from the reaction mixture but subjected to a basic extraction. The biaryl side product was 

readily removed by extraction of the required acid into aqueous sodium hydroxide, washing 

with ethyl acetate to remove the Wurtz coupling product followed by acidification of the 

remaining aqueous layer which led to isolation of the acid in good yield and purity. This 

method successfully diminished the amount of Wurtz coupling product, with only trace 

evidence of the biaryl side product evident on analysis of the 
1
H NMR spectrum of the crude 

product.   
 

Table 3.6: Addition of aryl Grignard reagents to crotonic acid 63 

 

 

 

 
 

a. Products were not purified and were brought through as crude material to the subsequent acid chloride stage. For a more accurate 

representation of the efficiency of each reaction an examination of the yield of the acid chloride is required as this is the yield 

calculated over the two steps.  

 

Analytically pure samples of each of the carboxylic acids synthesised were required 

for chiral HPLC method development, in which both enantiomers of the ester and acid could 

be seen on a single trace. As stated earlier, purification by column chromatography of these 

3-arylalkanoic acids was not feasible, therefore in order to obtain material suitable for chiral 

HPLC analysis the corresponding acid chlorides which had been purified by vacuum 

distillation were subjected to basic hydrolysis (Table 3.7). The analytically pure acids (±)-28, 

29, 37, 51, 64-66 were regenerated in good yield and were sufficiently pure to warrant no 

further purification.  

 

 

                                                 
iv
 It should be noted that this reaction was carried out by a fourth year student.

66
 

Entry R Product acid Crude yield (%)
a
 

1 p-OMe (±)-66
37,62

 71 

2 o-Me (±)-64
37,61

 79 

3 p-Me (±)-51
37,61

 86 

4 m-Me (±)-65
37,61

 83 
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Table 3.7: Hydrolysis of distilled acid chloride 

 

 

  

 

 

a. The carboxylic acids were analytically pure and did not require further purification prior to chiral HPLC analysis. 

 

In conclusion, conjugate addition of the appropriate aryl Grignard to crotonic acid 63 

proceeded highly efficiently with a series of substituted aromatic, 3-arylbutanoic acids (±)-51, 

(±)-64-66 successfully synthesised. All spectroscopic data compiled in this study agreed with 

those previously reported.
37,61,62

 The Wurtz coupling product was easily removed with limited 

loss in yield. Analytically pure samples of each of the 3-arylalkanoic acids (±)-28, 29, 37, 51, 

64-66 were obtained by basic hydrolysis of the corresponding acid chlorides (±)-73-79 and 

were of sufficient purity for chiral HPLC development. 

3.3.2.2 Synthesis of acid chlorides 

While the direct esterification of the crude carboxylic acid was attempted via Fischer 

esterification methodology, it was found that it was simpler to obtain the ethyl esters in 

analytically pure form by first transforming the carboxylic acid isolated from Grignard 

additions to the analogous acid chloride, which was readily purified by vacuum distillation.  

Great care was taken to produce the acid chlorides in high purity, minimising 

impurities which could adversely affect the ester formation and subsequent hydrolase-

mediated kinetic resolutions. In general, the crude acid and 8.0 equivalents of thionyl chloride 

were heated under reflux for 3 h. Following concentration of the solution under reduced 

pressure, and removal of residual thionyl chloride by azeotrope with toluene, the product was 

purified by vacuum distillation. It should be noted that (±)-3-(4-methylphenyl)butanoyl 

chloride (±)-78 was synthesised with 10.0 equivalents of thionyl chloride, however there was 

no rationale to the increased equivalents of chlorinating agent and it is anticipated that the 

reaction would proceed smoothly in good yield with just 8.0 equivalents of thionyl chloride.
66

 

In recent years Stack and O’Keeffe have incorporated the use of N,N-

dimethylformamide (DMF) (3-5 drops) as a catalytic reagent in the preparation of acid 

chlorides with thionyl chloride, reporting that reaction times can be reduced to 1 h and 

thionyl chloride loading reduced to 5.0 equivalents.
39,62

 This modified procedure was not 

applied in this study due to associated hazard. When DMF is exposed to thionyl chloride N,N-

dimethylcarbamoyl chloride (DMCC) is formed, a potential carcinogen in humans.
70,71

  

In all cases the acid chlorides (±)-73-79 following distillation were of excellent purity 

as evident by the new carbonyl stretch in the IR spectrum at νmax 1790-1801 cm
−1

 and 
1
H 

NMR analysis. Yields were calculated over two steps from the respective starting cinnamic 

62 or crotonic acids 63 and yields were moderate to low (29-54%). 

Entry Acid chloride R X Product acid Yield
a 
(%) 

1 (±)-73 Et H (±)-28
26,59,64

 92 

2 (±)-74 i-Pr H (±)-29
26,64

 99 

3 (±)-75 t-Bu H (±)-37
26,59

 78 

4 (±)-76 CH3 p-OMe (±)-66
27,67

 62 

5 (±)-77 CH3 o-Me (±)-64
68

 78 

6 (±)-78 CH3 p-Me (±)-51
64

 83 

7 (±)-79 CH3 m-Me (±)-65
69

 69 
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Table 3.8: Preparation of acid chlorides from crude 3-arylalkanoic acids 

 

 

  

          63 

 

 

 

          62 
 

a. % Yield is calculated over two steps and is quoted following distillation in vacuo. Yields of (±)-73, (±)-74 and (±)-75 are quoted from 

cinnamic acid 62 and yields of (±)-76, (±)-77, (±)-78 and (±)-79 are quoted from crotonic acid 63. 
b. 10.0 Equivalents of thionyl chloride was utilised in the synthesis of the acid chloride (±)-78. For the preparation of all other acid 

chlorides (±)-73-77 and (±)-79, 8.0 equivalents of thionyl chloride was employed.  

 

In order to obtain analytically pure samples of the 3-arylalkanoic acids which are not 

amenable to chromatographic purification, the distilled acid chloride (±)-73-79 was 

hydrolysed regenerating each of the carboxylic acids as discussed in section 3.3.2.1.2.  

In summary, multi-gram quantities of the acid chlorides (±)-73-79 were prepared 

during this study. The acid chlorides were generally transformed to the corresponding ethyl 

esters within 24 h of preparation although they can be stored for short periods in the freezer 

without adverse effect. 

3.3.2.3 Synthesis of ethyl esters   

Acid chlorides are readily converted to esters when treated with the appropriate 

alcohol. A tertiary amine such as pyridine or triethylamine is used to scavenge the HCl by-

product. The general procedure adopted during this study involved dropwise addition of the 

acid chloride to a stirring solution of triethylamine, distilled ethanol and dichloromethane at 0 

°C. The addition of the acid chloride at room temperature proved quite vigorous and it was 

essential to cool the reaction mixture, however following addition the reaction mixture was 

allowed warm to room temperature and stirred overnight. Throughout this reaction 

precipitation of triethylamine hydrochloride was evident. Overall, this procedure proceeded 

extremely well with good yields and excellent purity of the desired 3-arylalkanoates 

following chromatographic purification. 

Employing this methodology, ethyl esters (±)-49, 53, 54, 56, 58-60 were synthesised 

as summarised in Table 3.9. While ethyl esters (±)-49 and (±)-56, 58-60 have previously been 

reported in the literature, ethyl esters (±)-53 and (±)-54 are novel and were fully characterised 

during the course of this work. For the known ethyl esters, spectroscopic characteristics were 

in agreement with those described previously.
19,54-57

  

Yields were reasonable in most cases ranging from 56-72% following purification by 

column chromatography. The only exception was in the case of the formation of ethyl ester 

Entry Acid R X Acid chloride Yield
a 
(%) 

1 (±)-28 Et H (±)-73
26

 31 

2 (±)-29 i-Pr H (±)-74
26

 36 

3 (±)-37 t-Bu H (±)-75
26

 54 

4 (±)-66 CH3 p-OMe (±)-76
27

 29 

5 (±)-64 CH3 o-Me (±)-77
62

 41 

6 (±)-51 CH3 p-Me (±)-78
72,b

 44 

7 (±)-65 CH3 m-Me (±)-79
37,61

 40 
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(±)-53 which required additional purification by distillation following column 

chromatography leading to a slightly reduced yield of 44%.  

As stated previously in section 3.3.2.1.2. by implementing the modified work-up 

outlined by O’Keeffe only trace evidence of the biaryl side product was observed on analysis 

of the 
1
H NMR spectrum of the crude 3-arylbutanoic acids (±)-51, (±)-64-66.

62
 Any residual 

Wurtz coupling product that was not removed by vacuum distillation of the analogous acid 

chlorides (±)-76-79 was easily separated during column chromatography of the 

corresponding ethyl 3-arylbutanoates (±)-49, 53, 54, 60. 

 

Table 3.9: Preparation of ethyl esters from acid chlorides 

 

 

  

 

 

a. % Yield is calculated following purification by column chromatography. 

b. Required additional purification by vacuum distillation. 

 

The ethyl esters were characterised by disappearance of the acid chloride carbonyl 

stretch at νmax 1790-1801 cm
−1

 and the appearance of the new ester carbonyl stretch at the 

lower frequency of νmax 1732-37 cm
−1

. Analysis by 
1
H NMR spectroscopy displays some 

interesting trends, with the methylene hydrogens of the ethyl moiety, which appears as a 

quartet between H 3.95-4.07 ppm, providing the most characteristic evidence of ethyl ester 

formation. Once again for the ethyl ester substituted with a tert-butyl group at the β-position 

(±)-59 the diastereotopic OCH2 hydrogens were seen as a multiplet as discussed earlier for 

the -tert-butyl substituted alkanoate (±)-57 (see section 3.3.1). 

Thus, this procedure proved highly successful with isolation of multi-gram quantities 

of the 3-arylalkanoates (±)-49, 53, 54, 56, 58-60, of sufficient purity for the hydrolase- 

mediated kinetic resolution screens. 

3.3.3 Horner-Wadsworth-Emmons reaction 

To introduce a methyl substituent β to the carbonyl group the general synthetic 

methodology employed was conjugate addition of aryl Grignard reagents to an ,β-

unsaturated acid (described in section 3.3.2.1.2). McNamara employed this synthetic route in 

generating (±)-3-(4-fluorophenyl)butanoic acid (±)-80 from 4-fluorophenylmagnesium 

bromide and crotonic acid 63.
63

 However, an unknown aromatic side product was observed in 

the 
1
H NMR spectrum of the crude product and the desired product was obtained in poor 

yield (23%) following purification by column chromatography.
63

 Therefore, an alternative 

method for the synthesis of the carboxylic acid (±)-80 and the corresponding ethyl ester (±)-

55 was implemented in this research. 

Entry Acid chloride R X Ethyl ester Yield
a 
(%) 

1 (±)-73 Et H (±)-56
55

 72 

2 (±)-74 i-Pr H (±)-58
56

 63 

3 (±)-75 t-Bu H (±)-59
54

 56 

4 (±)-76 CH3 p-OMe (±)-60
57

 56 

5 (±)-77 CH3 o-Me (±)-53 44
b
 

6 (±)-78 CH3 p-Me (±)-49
19

 62 

7 (±)-79 CH3 m-Me (±)-54 67 
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Marcantoni et al. reports utilising the Horner-Wadsworth-Emmons reaction to 

produce the ,β-unsaturated ester 81, followed by catalytic hydrogenation to smoothly 

provide the required ethyl ester (±)-55 which was subjected to basic hydrolysis to yield (±)-3-

(4-fluorophenyl)butanoic acid (±)-80.
73

 High yields (≥85%) and excellent purity were 

described for all synthetic steps (Scheme 3.8).
73

 Therefore, this synthetic protocol was 

engaged in this study.  

 

 

  

 

                                    82                                81 

 

 

 

 

 

 

 

 

                                            (±)-80              (±)-55 

 

Scheme 3.8 

 

Pioneering papers published by Wittig and co-workers in the early 1950’s disclosed a 

means for the olefination of ketones and aldehydes, in which carbonyl compounds were 

treated with phosphonium ylides to form the desired olefin and phosphine oxide, exhibiting 

high selectivity for the Z or E isomer depending on reaction conditions.
74,75

 In 1958, Horner
76

 

described a modified Wittig reaction employing phosphonate-stabilised carbanions and the 

scope of the reaction was further defined by Wadsworth and Emmons.
77

 This adapted 

procedure possesses significant advantages over the traditional Wittig olefination; the 

phosphonate carbanions are more nucleophilic and undergo smooth alkylation, in contrast to 

the corresponding conventional phosphonium ylides. In addition the dialkylphosphate salt by-

product is readily removed by aqueous extraction from the desired olefin.
77-80

  

In this work the initial step of the Horner-Wadsworth-Emmons reaction involved 

abstraction of the acidic proton of triethyl phosphonoacetate with NaH to yield the 

phosphonate carbanion, which underwent nucleophilic addition to commercially available p-

fluoroacetophenone 82 to form a betaine intermediate species. Irreversible decomposition of 

the betaine yielded the desired alkene 81 (Scheme 3.9). 

 

 

 

 

       82                   (E)-81 (62% yield) 

 

Scheme 3.9 
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* * 

** 

* * 

* 
* 

* 

* 

* 

* 

* * 

Marcantoni et al. reports almost exclusive formation of the E isomer of ethyl 3-(4-

fluorophenyl)but-2-enoate 81 without any appreciable formation of the Z isomer evident by 
1
H NMR analysis.

73
  In this investigation, a 76 : 24 mixture of E : Z isomers was apparent on 

examination of the 
1
H NMR spectrum of the crude product (Figure 3.11). The E and Z 

isomers were separated upon purification by column chromatography to give a pure sample 

of the E isomer in 62% yield. 

 

 

 

 

 

 

                       (E)-81                             (Z)-81 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: 1H NMR spectrum of fraction isolated during column chromatography which contained 53 : 47 mixture of 

E : Z isomers of ethyl 3-(4-fluorophenyl)but-2-enoate 81 (recorded in CDCl3 at 300 MHz). 

 

The next step in the synthesis was reduction of the olefinic bond of (E)-ethyl 3-

(4fluorophenyl)but-2-enoate (E)-81 by catalytic hydrogenation (Scheme 3.10). The ,β-

unsaturated ester (E)-81 was reacted under an atmosphere of hydrogen (15 psi) at room 

temperature for 15.5 h over 10% palladium on carbon as catalyst to yield the (±)-3-

arylalkanoate (±)-55. The hydrogenation was carried out in undistilled absolute ethanol. The 

desired ester (±)-55 was isolated in good yield (77%) following purification by column 

chromatography. (±)-Ethyl 3-(4-fluorophenyl)butanoate (±)-55 was previously described in 

the literature, however, characterisation was limited to mass spectrometry
73

, therefore full 

analysis was obtained in this study. 

 

 

          

 

 

                                        81                              (±)-55 (77% yield) 

 

Scheme 3.10 
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To access analytically pure samples of the analogous carboxylic acid for chiral HPLC 

method development the ethyl ester (±)-55 was hydrolysed under basic conditions (Scheme 

3.11). (±)-Ethyl 3-(4-fluorophenyl)butanoate (±)-55 was stirred overnight with aqueous 

sodium hydroxide (1M) to yield the carboxylic acid (±)-80 in good yield (67%) and of 

sufficient purity to warrant no further purification. Spectral characteristics were in agreement 

with those reported by McNamara.
63

 

 

 

 

 

 

                                           (±)-55                            (±)-80 (67% yield) 

 

Scheme 3.11 

 

The Horner-Wadsworth-Emmons synthetic route demonstrated a viable alternative to 

conjugate addition of aryl Grignard reagents to ,β-unsaturated acids for the synthesis of 

analytically pure 3-arylbutanoic acids. Each step proceeded in good yield and high purity. 

Significantly this route circumvents the Wurtz coupling side product and represents a shorter 

synthetic methodology to ethyl 3-arylbutanoates.  

3.3.4 Synthesis of -alkylated alkanoate 

As discussed in section 3.3.1, the -substituted ethyl esters (±)-47 and (±)-57 were 

easily obtained through esterification of their commercially available carboxylic acids. 

However, the next challenge was to alkylate  to the ester moiety where the analogous 

carboxylic acids were not commercially accessible. O’Keeffe reported the synthesis of -

alkylated carboxylic acids, however purification was not straightforward and the crude acids 

were carried through to the acid chloride stage.
62

 In this study, the methodology described by 

O’Keeffe for -alkylation of carboxylic acids was adapted to -alkylation of ethyl esters, 

therefore eliminating the need for synthesis of the acid chloride and the subsequent 

esterification step.
62

 The addition of ethyl butyrate 83 to lithium diisopropylamide at −35 °C 

generated the enolate 84. Alkylation was achieved using the appropriate benzyl halide and 

subsequent acidic work-up yielded the desired ethyl ester (±)-48 (Scheme 3.12). 

 

 

 

 

          83           84                          (±)-48 (50% yield)  

 

 

 

 

  

 

                                                                                                                       (±)-45 (66% yield) 

 

Scheme 3.12 



Chapter 3                                                                                                 Results and Discussion 

                                                                                    

 

99  

 

This modified procedure involved addition of ethyl butyrate 83 to 1.0 equivalent of 

lithium diisopropylamide, prepared from n-butyllithium and diisopropylamine in 

tetrahydrofuran at −78 °C. The reaction mixture was then warmed to −35 °C and stirred for 1 

h before benzyl bromide was added in one portion. The reaction mixture was stirred 

overnight at −35 °C before warming and subjecting to an acidic work-up. The 
1
H NMR 

spectrum of the crude product showed no evidence of residual starting ethyl butyrate 83 or 

the doubly alkylated product. The ethyl ester (±)-48 was purified by flash chromatography 

and obtained in a 50% yield. (±)-Ethyl 2-benzylbutanoate (±)-48 was previously mentioned in 

the literature however no spectral details were reported;
81

 therefore full characterisation of 

(±)-48 was conducted during this research. 

The analogous -alkylated carboxylic acid (±)-45 was obtained in 66% yield by basic 

hydrolysis of (±)-ethyl 2-benzylbutanoate (±)-48. (±)-2-Benzylbutanoic acid (±)-45 was of 

sufficient purity for chiral HPLC analysis and did not require further purification. 

3.4 Hydrolase-mediated kinetic resolution - analytical screens 

The next phase in the course of this work was hydrolase-mediated aqueous hydrolysis 

of the ethyl esters, synthesised in section 3.3. In the development of an efficient resolution 

procedure, selection of the hydrolase is critical. Consequently, screening assays were 

implemented, in which a series of lipases and esterases (kindly donated by Almac Sciences) 

was screened against each ethyl ester substrate to identify a biocatalyst that generated a high 

enantiomeric excess of both the substrate and product upon enantioselective hydrolysis. In 

order to fully determine the efficiency and stereoselectivity of these hydrolase-mediated 

biotransformations, a robust and efficient chiral HPLC technique was required.  

3.4.1 Chiral HPLC method development 

Ideally for efficient screening this project required the resolution of the enantiomeric 

pairs of both the ethyl ester substrate and carboxylic acid product of each kinetic resolution in 

one injection. A range of chiral columns were examined including the Chiralcel
®

 OD-H and 

Chiralpak
®
 IB exploring a variety of isopropanol/hexane solvent compositions, flow rates and 

temperatures for each kinetic resolution. Following a significant amount of method 

development, the Chiralcel
®
 OJ-H column was found to provide complete baseline separation 

of the individual stereoisomers of the ethyl esters and corresponding acids of all kinetic 

resolutions (see for example Figure 3.12). The only exception was in the case of substrate 

(±)-ethyl 3-(4-fluorophenyl)butanoate (±)-55 and corresponding carboxylic acid (±)-80 where 

the Chiralcel
®
 AS-H provided enantioseparation. Appendix I describes all the established 

chiral HPLC conditions implemented in the resolution of each set of enantiomeric pairs on a 

single trace.  

Thus, the conditions for the chiral HPLC analysis were developed to the point where a 

single injection of the reaction mixture enabled determination of the enantiopurity of the 

substrate and product. While quantification of the individual components was not undertaken 

in this work, this would be feasible if required to support the product ratio determined by 
1
H 

NMR analysis. Basis for the assignment of absolute stereochemistry of each of the HPLC 

peaks will be discussed later in section 3.5. 
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Trace I 

Racemic 

Trace II 

Trace III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: HPLC Trace I: A racemic mixture of (±)-ethyl 3-(2-methylphenyl)butanoate (±)-53 and (±)-3-(2-

methylphenyl)butanoic acid (±)-64. Trace II: (R)-Ethyl 3-(2-methylphenyl)butanoate (R)-53, 98% ee, from the preparative-

scale enzymatic resolution (see section 3.5.2).  Trace III: (S)-3-(2-Methylphenyl)butanoic acid (S)-64, >98% ee, from the 

preparative-scale enzymatic resolution (see section 3.5.2). For HPLC conditions see appendix I. 

3.4.2 Screening protocol – aqueous hydrolysis of esters 

Once the analytical method was established, the next stage was to develop hydrolase-

mediated resolution conditions for the enantioselective hydrolysis of the ethyl ester 

substrates. A suggested screening protocol was provided by Almac Sciences which described 

adding a spatula tip of enzyme, to ~50 mg of ethyl ester substrate in 4.5 mL of pH 7.0 

phosphate buffer.
82

 The resulting biphasic suspension was incubated on a shaking platform. 

The screening protocol advises sampling and assaying for conversion by TLC, however while 

during this work TLC analysis indicated if the desired product had formed, it was in reality 

difficult to estimate conversion via this method. Work-up involved initial filtration of the 

reaction mixture to remove the hydrolase and then extraction of the desired products with 

diethyl ether. Analysis of the crude product was conducted by 
1
H NMR and chiral HPLC. 

Because of the convenient HPLC method which had been developed, enantiopurities of both 

the ester and acid components could be assessed through a single injection of the crude 

product without requiring chromatographic purification. 

Conversion rate was determined by two means, analysis by 
1
H NMR spectroscopy 

and by the E-value calculator. In theory, formation of the desired enantiopure acid is visible 

in the 
1
H NMR by the appearance of an OH peak at H 10.00-13.20 ppm. However, 

determination of conversion by integration of this singlet proves unreliable due to its broad 

nature attributable to the exchange rate of the acid. Owing to overlapping signals the desired 

acid has no characteristic distinct 
1
H NMR signal relative to the ester substrate. Consequently 

conversion by 
1
H NMR was determined by integrating the characteristic ester 

multiplet/quartet at H 3.85-4.08 ppm of the methylene protons of the ethyl moiety against a 

neighbouring multiplet including protons from both the ester substrate and acid product.  

While for many of the acids studied the conversion determined by 
1
H NMR 

spectroscopy agreed very closely with those estimated based on the E value. In some 

instances 28, 29, 37 and 45 with a R group larger than a methyl it was observed that 

(R)-53 

98% ee 

(S)-64 

>98% ee 

(R)-53 

(S)-64 (S)-53 

(R)-64 
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percentage conversion determined via 
1
H NMR spectroscopy was not reliable, as the acid was 

recovered to a greater degree from the reaction mixture than the corresponding ethyl ester. 

This was especially evident in determination of conversions by 
1
H NMR of the sterically 

bulky C2 and C3 substituted 3-arylalkanoic acids 28, 29, 37 and 45. Consequently the 

conversions calculated by 
1
H NMR analysis proved to be deceptively high. This was not 

anticipated, in fact if anything it was predicted that the acid would not be quantitatively 

recovered from the resolution due to the formation of its corresponding salt in the phosphate 

buffer. 

All percentage conversions were therefore also calculated utilising the program 

developed by Kroutil et al. and dependent on the enantiomeric purity of the substrate and 

product.
7
 However, conversions determined with the E-value calculator where limited 

enantioselectivity is observed should be interpreted with caution (see entry 16, Table 3.10). 

As mentioned previously, all chiral HPLC conditions are detailed in appendix I. When 

the second enantiomer was absent, the enantiomeric excess was stated as >98% ee. Lipase- 

mediated resolutions where conversion was determined by 
1
H NMR analysis to be <10% 

were not analysed by chiral HPLC.   

3.4.3 Hydrolase-catalysed kinetic resolution of esters to provide enantiopure C3 

substituted alkanoic acids 

The focus of the kinetic resolution of the esters (±)-38, (±)-56, (±)-58 and (±)-59 was 

to obtain enantiopure samples of each of the methyl, ethyl, isopropyl and tert-butyl β-

substituted 3-arylalkanoic acids, 23, 28, 29 and 37, ideally in both R and S enantiopure forms 

(Figure 3.13). This series was designed to enable exploration of the steric effect of the R 

substituent on both the efficiency and enantioselectivity of the kinetic resolution. 

 

 

 

 

R = Me 23 

R = Et 28 

R = i-Pr 29 

R = t-Bu 37 

 

Figure 3.13 

3.4.3.1 Hydrolase-catalysed kinetic resolution to provide enantioenriched 3-phenylbutanoic 

acid 23 

In total, 21 lipases and 1 esterase were screened in resolving racemic (±)-ethyl 3-

phenylbutanoate (±)-38 to provide enantioenriched 3-phenylbutanoic acid 23. Each of the 

hydrolases investigated resulted in hydrolysis to a certain degree and the screening results are 

summarised in Table 3.10. Lipases Pseudomonas cepacia, Alcaligenes spp. and 

Pseudomonas fluorescens, entries 6, 11 and 15 respectively, provided (S)-3-phenylbutanoic 

acid (S)-23 and (R)-ethyl 3-phenylbutanoate (R)-38 in excellent enantiopurity. 

Burholderia cepacia hydrolysis of the analogous methyl ester of (±)-23 had 

previously been reported (E >50), providing access to the acid (S)-23 with 89% ee.
44

 Herein, 

Alcaligenes spp. yielded the acid (S)-23 with excellent enhanced enantioselectivity of 97% ee 

Steric effects at C3 
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(E >200) by hydrolysis of the corresponding ethyl ester (±)-38. Unreacted (R)-38 was 

retrieved in 98% ee providing access to both enantiomeric series in a single resolution. 

From Table 3.10, it is apparent that certain hydrolases preferentially hydrolysed the 

(R)-enantiomer of the ethyl ester substrate (±)-38, providing access to the opposite 

enantiomer of the desired (R)-3-phenylbutanoic acid (R)-23 albeit with modest enantiopurity. 

Resolution of the complementary enantiomer (R)-3-phenylbutanoic acid (R)-23, had 

previously been described via Candida antarctica lipase B catalytic hydrolysis of (±)-38, 

although at very low enantioselectivity (E <10).
43

 Candida antarctica lipase B (free and 

immobilised) also selectively hydrolysed the (R) ester in this study (entries 16 and 19, Table 

3.10) and resolution via this less common pathway has been successfully extended to include 

the hydrolases Candida cyclindracea C1, C2 and Mucor meihei (entries 1, 2 and 17, Table 

3.10 respectively). 

In practise, while use of Candida antarctica lipase B (free and immobilised), Candida 

cyclindracea C1, C2 and Mucor meihei all lead selectively to (R)-23, access to the 

enantiopure (R)-23 is more effectively achieved via isolation of enantiopure (R)-38 using 

Pseudomonas cepacia, Alcaligenes spp. and Pseudomonas fluorescens, followed by 

saponification. 

In general the extent of conversion calculated by 
1
H NMR compared favourably with 

that determined by the E-value calculator, with the exception of Candida antarctica lipase B 

hydrolysis of (±)-ethyl 3-phenylbutanoate (±)-38 (entry 16, Table 3.10). This resolution 

provided poor enantiopurity for the unresolved ester (S)-38 (13% ee) and no enantiopurity for 

the desired acid (R)-23. The minimal enantioselectivity observed generated an unreliable 

conversion by the E-value calculator, and in this instance, conversion calculated by 
1
H NMR 

analysis is presumed to be more accurate. 
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Table 3.10: Hydrolase-mediated hydrolysis of (±)-ethyl 3-phenylbutanoate (±)-38 

 

  

 

 

 

                (±)-38                                                       (S)-23              (R)-38 
 

a. Reaction went to 100% completion, no enantioselectivity observed. 

3.4.3.2 Hydrolase-catalysed kinetic resolution to provide enantioenriched 3-

phenylpentanoic acid 28 

The enzymatic hydrolysis of (±)-ethyl 3-phenylpentanoate (±)-56 proved to be 

significantly less facile than with (±)-38. Of the 16 hydrolases screened, many displayed no 

catalytic activity for hydrolysis of the substrate (±)-ethyl 3-phenylpentanoate (±)-56 (~10 

days incubation period). Thus replacement of the methyl with the slightly larger ethyl moiety 

at the stereogenic centre C3 resulted in a very significant reduction of enzymatic activity. Just 

6 of the hydrolases resulted in conversion as summarised in Table 3.11.  

Significantly, the biocatalysts which had yielded the most effective kinetic 

bioresolution with (±)-38 were ineffective for enzymatic hydrolysis of (±)-56. For the 6 

biocatalysts which resulted in ester hydrolysis the enantioselectivities were modest at best 

(Table 3.11). Interestingly, with entries 2, 3 and 5 the poor enantioselectivity is associated 

with lack of discrimination of the enantiomers by the biocatalyst with conversions ≥78% in 

each case, while Candida antarctica lipase B and Mucor meihei with (±)-38 gave very 

limited reaction. The immobilised Candida antarctica lipase B provided the most promising 

Entry Enzyme source Temp (°C) 

ee (%) 
Conversion 

(%) 
E value 

Ester 38 Acid 23 E calc. 
1
H 

NMR 

1 Candida cyclindracea C1 30 11 (S) 58 (R) 16 15 4.2 

2 Candida  cyclindracea C2 Ambient 25 (S) 59 (R) 30 41 4.9 

3 Rhizopus oryzae 30 - - - <10 - 

4 Achromobacter spp. 30 11 (R) 90 (S) 11 12 21 

5 Alcaligenes spp. 1 30 27 (R) 95 (S) 22 24 50 

6 Pseudomonas  cepacia P1 30 >98 (R) 94 (S) 51 49 170 

7 Pseudomonas stutzeri Ambient 14 (R) 61 (S) 19 23 4.7 

8 Rhizopus spp. Ambient - - - <10 - 

9 Rhizopus niveus Ambient - - - <10 - 

10 Aspergillus niger Ambient - - - <10 - 

11 Alcaligenes spp. 2 Ambient 98 (R) 97 (S) 50 54 >200 

12 Pseudomonas  cepacia P2 Ambient 96 (R) 75 (S) 56 59 26 

13 Mucor javanicus Ambient - - - <10 - 

14 Penicillium camembertii Ambient - - - <10 - 

15 Pseudomonas fluorescens 30 >98 (R) 94 (S) 51 55 170 

16 Candida antarctica B Ambient 13 (S) 0 (R) 51 96 1.4 

17 Mucor meihei Ambient 3 (S) 24 (R) 11 <10 1.7 

18 Candida antarctica A Ambient 10 (R) 68 (S) 13 17 5.8 

19 
Candida antarctica B 

(immob) 
Ambient 70 (S) 5 (R) 93 100 1.8 

20 
Porcine pancrease 

Type II 
Ambient 15 (R) 93 (S) 14 19 31 

21 
Porcine pancrease 

Grade II 
30 35 (R) 95 (S) 27 27 54 

22 Pig liver esterase Ambient 0
a
 0

a
 -

a
 100

a
 -

a
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results in this instance (E = 25); this is in direct contrast to the poor enantioselection (E = 1.8) 

of (±)-38 with Candida antarctica lipase B (immob). 

The direction of enantioselectivity in the hydrolysis of (±)-56 was consistent with that 

observed in the reactions of (±)-38 with Candida antarctica lipase B, Candida antarctica 

lipase B (immob) and Pig liver esterase providing the (R) acid selectively. Based on the initial 

promising result with Candida antarctica lipase B (immob), the reaction conditions for the 

hydrolysis were varied to determine if the outcome could be optimised.   

 

Table 3.11: Hydrolase-mediated hydrolysis of (±)-ethyl 3-phenylpentanoate (±)-56 

            

 

 

 

 

     (±)-56           (R)-28              (S)-56 

a. The following hydrolases gave no conversion Pseudomonas cepacia P2, Pseudomonas cepacia P1, Alcaligenes spp. 2, Pseudomonas 
fluorescens, Porcine Pancrease Type II, Pseudomonas stutzeri, Rhizopus niveus, Candida cyclindracea C1, Aspergillus niger and 

Mucor javanicus.    

b. Reaction went to 100% completion, no enantioselectivity observed. 

 

Temperature control in hydrolase-catalysed resolutions has been explored due to its 

simplicity and reliability for enhancement of enantioselectivity, albeit at the expense of 

longer reaction times.
83

 Lowering of the reaction temperature to below 0 °C to enhance 

enantioselectivity was first investigated by Jones and co-workers in the Pig liver esterase 

catalysed hydrolyses of C3-substituted dimethyl glutarates.
84

 The concept that 

enantioselectivity increases upon lowering the temperature was unequivocally established by 

Sheldon et al. in the ammoniolysis based kinetic resolution of phenylalanine methyl ester 85 

catalysed by the lipase from Thermomyces lanuginosus (Table 3.12).
85

 The selectivity factor 

E was observed to increase steadily by decreasing the temperature from 40 °C (E = 13) to 

−20 °C (E = 84).
85

 

 

 

 

 

 

 

 

 

Entry Enzyme source
a
 Time 

Temp 

(°C) 

ee (%) 
Conversion

 

(%) E 

value Ester  

56 

Acid 

28 

E 

calc. 

1
H 

NMR 

1 
Candida cyclindracea 

C2 
120 h Ambient 1 15 6 33 1.4 

2 Candida antarctica B 65 h Ambient 80 (S) 23 (R) 78 93 3.4 

3 Mucor meihei 67 h Ambient 0
b
 0

b
 -

b
 100

b
 -

b
 

4 Candida antarctica A 67 h Ambient 5 (R) 44
 
(S) 10 22 2.7 

5 Pig liver esterase 65 h Ambient 87 (S) 15 (R) 85 88 3.1 

6 
Candida antarctica B 

(immob) 
65 h Ambient 85 (S) 81 (R) 51 93 25 

7 
Candida antarctica B 

(immob) 
72 h 4 62 (S) 86 (R) 42 87 24 
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Table 3.12: Thermomyces lanuginosus catalysed ammoniolysis of 85  

at different temperatures
85

 

 

 

 

 

                                85                                                                   86 

a. Reaction conditions: substrate 50 mM solution in ammonia saturated tert-butyl alcohol, 50 mg mL−1 zeolite NaA, 50 mg mL−1 enzyme. 

TBME (30%) was added in reactions below 20 °C. 

 

Thus, investigation of Candida antarctica lipase B (immob) resolution of (±)-56 at 4 

C, (entry 7, Table 3.11) was warranted. A decrease in the extent of conversion to (R)-28 was 

observed despite an extended incubation period. In addition, no significant increase in the 

selectivity factor (E value) was recorded, therefore this approach was not pursued further.  

Lipases bind to the water/lipid boundary and catalyse hydrolysis at this interface, 

exhibiting high interfacial activity.
4
 Thus, utilisation of organic co-solvents or ionic liquids 

has been frequently shown to enhance the enantioselectivity of hydrolase-catalysed resolution 

of an extensive range of compounds.
86,87

 

Amoroso et al. reported Candida rugosa lipase (CRL) catalysed hydrolysis of 2-

substituted aryloxyacetic esters in the presence of dimethyl sulfoxide (DMSO) and isopropyl 

alcohol (IPA) from 0 to 80% v/v as additives in aqueous media, in an effort to improve 

enantioselectivity in enzymatic resolution (Table 3.13).
88

 Hydrolysis of (±)-87 in the absence 

of an organic co-solvent additive proceeded to >90% conversion, with minimal chiral 

discrimination (E = 0). The addition of DMSO 20% v/v to the reaction medium produced a 

dramatic enhancement of enantioselectivity (E >200).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temp (°C)
a
 Time Conversion (%) 

ee (%) 
E value 

(S)-86 

40 1 h 8 84 13 

20 1 h 11 89 20 

4 5 h 29 91 30 

−10 24 h 40 93 52 

−20 5 h 8 97 84 
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Table 3.13: Effect of addition of DMSO on the CRL mediated hydrolysis of  

ethyl 2-(4-chlorophenoxy)propanoate (±)-87 in aqueous buffer
88

 

 

 

 

 

               (±)-87                      (S)-87     (R)-88 

 

Screening reactions were therefore performed to assess the effect of a series of co-

solvents (at 17% v/v) on Candida antarctica lipase B (immob) resolution of (±)-56 (Table 

3.14). The majority of co-solvents investigated resulted in a decrease in the rate of hydrolysis, 

but notably, with the exception of tert-butyl methyl ether TBME, resulted in equivalent or 

improved enantiopurity of (R)-28. The utilisation of acetone as an additive, (entry 3, Table 

3.14) resulted in recovery of (R)-28 with 94% ee and E = 41 while with dioxane (entry 5, 

Table 3.14) E = 51. It should be noted that on one occasion the enantiomeric excess isolated 

from dioxane of (R)-28 was 97% ee, however on repeating the enzymatic resolution the high 

enantioselection was non-reproducible and the enantioselectivity of (R)-28 was determined at 

92% ee. 

Thus hydrolase-catalysed resolution can be effective as a route to enantioenriched (R)-

28 provided the biocatalyst and reaction conditions are carefully chosen. The only prior 

report of hydrolase-catalysed esterification of 28 describes very low activity and 

enantioselectivity (E <2).
42

 Furthermore, the acid (S)-28 has been resolved using amidase 

biocatalysis and again enantiopurity was lower (88% ee).
45

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMSO (% v/v) Time Conversion (%) 
ee (%) 

E value 
(S)-87 

0 7 h >90 0 - 

10 2 h 50 58 4.8 

20 1 h 55 96 >200 

30 30 min 52 90 186 

40 30 min 48 88 122 

50 2 h 47 82 65 

60-70 72 h <20 0 - 
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Table 3.14: Investigation of co-solvent effect on Candida antarctica lipase B (immob) 

hydrolysis of (±)-ethyl 3-phenylpentanoate (±)-56 

   (±)-56             (R)-28              (S)-56 

a. HPLC grade solvent. 

b. On one occasion the enantiomeric excess [ee (%)] isolated from dioxane of (R)-28 was 97% ee. 

 

It is evident in the hydrolase-catalysed kinetic resolution to provide enantioenriched 

(R)-3-phenylpentanoic acid (R)-28 and all subsequent resolutions involving sterically 

hindered C3 substituted 3-arylalkanoic acids that the conversion determined by 
1
H NMR is 

inaccurate due to greater recovery of the acid over the ester from the reaction  mixture.  

3.4.3.3 Hydrolase-catalysed kinetic resolution to provide enantioenriched 4-methyl-3-

phenylpentanoic acid 29 

Given the decrease in biocatalytic activity on increasing the C3 substituent from 

methyl to ethyl it was anticipated that enzymatic hydrolysis to form enantiopure (S)-29 and 

(S)-37 with the more sterically demanding isopropyl and tert-butyl substituents at C3 would 

prove extremely challenging. Of the 19 hydrolases screened many displayed no hydrolytic 

activity towards the isopropyl β-substituted ethyl ester (±)-58 and hydrolysis failed to occur 

even at elevated temperature and extended reaction periods. Significantly, the hydrolases that 

were identified to hydrolyse (±)-56 were also found to hydrolyse (±)-58 as depicted in Table 

3.15, thus confirming that these biocatalysts can accommodate increased steric demand in the 

“C3 region” of the enzyme pocket. 

Interestingly, the extent of reaction in entries 1, 2 and 4, Table 3.15, is decreased 

somewhat relatively to those seen with (±)-56 in Table 3.11, resulting in improved 

enantiopurities of the recovered acid (S)-29. Thus discrimination between the phenyl and 

isopropyl groups in the active site of the enzymes is improved somewhat relative to that seen 

in (±)-56 where discrimination between the ethyl and phenyl substituents is quite poor. While 

the R, S labels in the acid (S)-29 are switched relative to acids (R)-23 and (R)-28 the sense of 

enantioselection is identical in hydrolysis of the ethyl and isopropyl esters (±)-56 and (±)-58 

with the (S)-enantiomer isolated using enzymes Candida antarctica lipase B, Mucor meihei 

and Candida antarctica lipase B (immob). In this instance (S)-29 was obtained in 99% ee 

using Candida antarctica lipase B; hence no further optimisation was required.  

Once again, careful control of reaction conditions and selection of biocatalyst leads to 

efficient bioresolution of (S)-29, in direct contrast to the literature report which states it was 

not possible to resolve this acid using hydrolase catalysis.
42 

Entry Co-solvent Time 
Temp 

(°C) 

ee (%) 
Conversion 

(%) 
E value 

Ester 

(S)-56 

Acid 

(R)-28 

E 

calc. 

1
H 

NMR 

1 DMSO 64 h Ambient 93 81 53 80 31 

2 Acetonitrile
a
 64 h Ambient 28 93 23 84 36 

3 Acetone
a
 64 h Ambient 25 94 21 76 41 

4 THF 64 h Ambient 6 88 6 24 16 

5 Dioxane 64 h Ambient 72 92
b
 44 71 51 

6 TBME
a
 64 h Ambient 24 57 30 90 4.6 
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A solvent screen involving dioxane, acetone and TBME was conducted for Candida 

antarctica lipase A and Candida antarctica lipase B resolution of (±)-58 to investigate the 

effect on enantiomeric excess, but resulted in a significant reduction in activity and therefore 

was not pursued further. 

 

Table 3.15: Hydrolase-mediated hydrolysis of (±)-ethyl 4-methyl-3-phenylpentanoate (±)-58. 

 

 

 

 

                (±)-58          (S)-29                       (R)-58 

a. The following hydrolases gave no conversion Pseudomonas cepacia P2, Pseudomonas cepacia P1, Alcaligenes spp. 1, Penicillium 

camembertii,  Pseudomonas fluorescens, Porcine Pancrease Type II, Candida cyclindracea C2, Rhizopus spp., Pseudomonas stutzeri, 
Rhizopus niveus, Candida cyclindracea C1, Aspergillus niger,  Alcaligenes spp. 2 and Mucor javanicus. 

b. Reaction went to 100% completion, HPLC analysis was not conducted 

3.4.3.4 Hydrolase-catalysed kinetic resolution to provide enantioenriched 4,4-dimethyl-3-

phenylpentanoic acid 37 

Hydrolase-catalysed resolution of (±)-ethyl 4,4-dimethyl-3-phenylpentanoate (±)-59 

was achieved using the same biocatalysts which catalysed reaction of (±)-56 and (±)-58, 

albeit at much lower extent of conversion presumably due to the increased steric demand of 

the C3 substituent. However, the overall trends are very similar for (±)-56, (±)-58 and (±)-59 

with the optimum results achieved with the immobilised or free Candida antarctica lipase B, 

(Figure 3.14 and 3.15). While the extent of reaction at room temperature was extremely 

limited, increasing the temperature improved the conversion, for example see entries 2 and 6, 

Table 3.16. The direction of enantioselectivities is consistent with earlier observations for 

Candida antarctica lipase B (immob) and Candida antarctica lipase A. Interestingly the 

sense of enantioselection in the Pig liver esterase hydrolase, resulting in selective hydrolysis 

of the (R)-enantiomer, is opposite to that seen in the hydrolysis of the corresponding ethyl 

derivative (±)-56. Thus, in the ethyl derivative (±)-56 Candida antarctica lipase A provided 

the (S)-enantiomer of the acid selectively while Pig liver esterase provides the (R)-enantiomer 

selectively, whereas in the case of the tert-butyl derivative Pig liver esterase displays the 

same direction of enantioselection as Candida antarctica lipase A. 

With both the free and immobilised Candida antarctica lipase B, while the extent of 

the hydrolysis is limited, the enantioselectivity is excellent, with the acid (S)-37 isolated in 

enantiopure form. Increasing the temperature improved the conversion somewhat, thereby 

resulting in an increased enantiopurity of the unreacted ester (R)-59. 

 

 

 

 

Entry Enzyme source
a
 

ee (%) Conversion (%) 
E value 

Ester 58 Acid 29 E calc. 
1
H NMR 

1 Candida antarctica B 12 (R) >98 (S) 11 24 >200 

2 Mucor meihei 61 (R) 23 (S) 73 79 2.7 

3 Candida antarctica A 10 (S) 64 (R) 14 31 5 

4 Candida antarctica B (immob) 33 (R) 97 (S) 25 42 90 

5 Pig liver esterase -
b
 -

b
 -

b
 100 -

b
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Table 3.16: Hydrolase-mediated hydrolysis of (±)-ethyl 4,4-dimethyl-3-phenylpentanoate  

(±)-59 at variable temperature. 

 

 

 

 

       

                 (±)-59            (S)-37              (R)-59 
 

a. The following hydrolases gave no conversion Pseudomonas cepacia P1, Rhizopus niveus, Pseudomonas fluorescens, Candida 

cyclindracea C1, Pseudomonas cepacia P2 and Porcine Pancrease Type II. 

b. Time for ester hydrolysis was 66 h. 

c. Time for ester hydrolysis was 64.5 h at 35 °C temperature increased to 40 °C for the final 24 h. 

d. Time for ester hydrolysis was 72 h at 35 °C temperature increased to 40 °C for the final 24 h. 
e. Reaction went to 100% completion, no enantioselectivity observed. 

 

It is evident that once the alkyl group at the C3 stereogenic centre increases in size 

greater than a methyl substituent, a large decrease in the efficiency of the hydrolysis and 

thereby the kinetic bioresolution with regards to the enantiopurity of the ester is observed 

(Figure 3.14). 

Despite the steric hindrance within the active site, 3-arylalkanoic carboxylic acids (S)-

23, (R)-28, (S)-29 and (S)-37 can be obtained through optimisation of reaction conditions 

with excellent enantioselectivity. The acid (S)-23 was obtained in 97% ee, through 

Alcaligenes spp. 2 catalysed hydrolysis of (±)-38, while acids (R)-28, (S)-29 and (S)-37 were 

obtained in ≥94% ee via immobilised or free Candida antarctica lipase B catalysed kinetic 

bioresolution (Figure 3.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry Enzyme source
a
 

Temperature 

(°C) 

ee
 
(%) 

Conversion
 

(%) 
E value 

Ester 59 Acid 37 E 

Calc. 

1
H 

NMR 

1 
Candida antarctica  B 

Ambient
b
 2 (R) >98 (S) 2 <10 >200 

2 35 – 40 °C
c
 23 (R) >98

 
(S) 19 25 >200 

3 
Candida antarctica A 

Ambient
b
 3

 
(S) 73

 
(R) 4 6 6.6 

4 35 – 40 °C
d
 7

 
(S) 81

 
(R) 8 12 10 

5 Candida antarctica B 

(immob) 

Ambient
b
 1 (R) >98 (S) 1 15 >200 

6 35 – 40 °C
c
 30 (R) 98 (S) 23 55 132 

7 
Pig liver esterase 

Ambient
b
 32 (S) 34 (R) 48 51 2.7 

8 35 – 40 °C
c
 0

e
 0

e
 -

e
 100

e
 -

e
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Figure 3.14  

 

Comparison of enantiomeric ratio (E-value) versus  

hydrolase for C3 substituted alkanoic acids 23, 28, 29 and 37 

 

 

Figure 3.15 
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It is noteworthy that Candida antarctica lipase A provides a viable route to the 

complementary enantiomers (S)-28, (R)-29 and (R)-37, circumventing the limitation of the 

modest enantiomeric excess of the esters achieved in the resolutions using the free and 

immobilised Candida antarctica lipase B. In addition, Kingery-Wood et al. demonstrated that 

Candida antarctica lipase A has a unique ability to accept very bulky, highly sterically 

hindered substrates in the Candida antarctica lipase A catalysed resolution of the sterically 

hindered, (−)-anti-3-oxotricyclo[2.2.1.0]heptane-7-carboxylic acid, (−)-89 >99% ee (Scheme 

3.13).
89

 

 

 

 

 

 

               (±)-90                                            (−)-89(>99% ee)                   (+)-90 

 

Scheme 3.13
89

 

    

This unique ability of the Candida antarctica lipase A to accept sterically hindered 

substrates correlates with the observations herein whereby the enantiopurity of the acid 

obtained via Candida antartica lipase A catalysed resolution improved as the size of the alkyl 

substituent at C3 increased, the highest enantiopurity obtained being of (R)-37 at 81% ee 

(entry 4, Table 3.16).  

3.4.4 Hydrolase-catalysed kinetic resolution of esters to provide enantiopure C3 

substituted phenyl butanoic acids  

A series of substituted phenyl butanoic acids (±)-51, 64-66, 80 were selected for 

investigation of both the steric and electronic effect of substituents on the aryl ring on the 

efficiency of the kinetic bioresolution process (Figure 3.16). 

 

 

 

 

 

R = p-Me 51 

R = o-Me 64 

R = m-Me 65 

R = p-OMe 66 

R = p-F 80 

 

Figure 3.16 

 

The results of the enzymatic screens are summarised in Tables 3.17-3.21. In each 

case, effective kinetic bioresolution was achieved with Pseudomonas cepacia P1, 

Pseudomonas cepacia P2, and Pseudomonas fluorescens, resulting in the successful 

hydrolysis of the (S)-enantiomer with very similar outcomes to those seen with (S)-3-

phenylbutanoic acid (S)-23, indicating that the aryl substituent had little impact on the 

enzymatic hydrolysis.  

Steric and 

electronic 

effects 
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Table 3.17: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(4-methylphenyl)butanoate (±)-49 

                   

 

 

 

 

          (±)-49                                                            (S)-51                             (R)-49 

 

 

Table 3.18: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(3-methylphenyl)butanoate (±)-54 

 

 

 

 

 

                   (±)-54                    (S)-65           (R)-54  

a. Time for ester hydrolysis was 65 h with the exception of Candida cyclindracea catalysed hydrolysis which was 64 h.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry Enzyme source 
Temp 

(°C) 

ee (%) 
Conversion 

(%) 
E value 

Ester 49 Acid 51 E 

calc. 

1
H 

NMR 

1 Pseudomonas cepacia P1 30 98 (R) >98 (S) 50 62 >200 

2 Pseudomonas cepacia P2 30 >98 (R) 96 (S) 51 51 >200 

3 Pseudomonas fluorescens 30 >98
 
(R) 95 (S) 51 58 >200 

4 Candida cyclindracea 30 - - - <10 - 

5 Candida antarctica A 30 5 (R) 68 (S) 7 19 5.5 

6 
Candida antarctica B 

(immob) 
30 6 (S) 5 (R) 55 43 1.2 

Entry Enzyme source
a
 

Temp 

(°C) 

ee
 
(%) 

Conversion
 

(%) E 

value 
Ester 54 Acid 65 E calc. 

1
H 

NMR 

1 Pseudomonas cepacia P1 30 88 (R) 96 (S) 48 53 143 

2 Pseudomonas cepacia P2 30 >98 (R) 76 (S) 57 57 52 

3 Pseudomonas fluorescens 30 96 (R) 97 (S) 50 69 >200 

4 Candida cyclindracea 30 - - - <10 - 

5 
Candida antarctica B 

(immob) 
30 >98 (S) 7 (R) 93 100 4.7 
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Table 3.19: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(2-methylphenyl)butanoate (±)-53 

 

 

 

 

 

                (±)-53         (S)-64             (R)-53 
 

a. Time for ester hydrolysis was 67 h with the exception of Pseudomonas fluorescens catalysed hydrolysis which was 64 h. 

 

 

Table 3.20: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(4-methoxyphenyl)butanoate (±)-60 

 

               

 

 

 

           (±)-60             (S)-66                (R)-60 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry Enzyme source
a
 

Temp 

(°C) 

ee (%) 
Conversion

 

(%) 
E 

value 
Ester 53 Acid 64 E calc. 

1
H NMR 

1 Pseudomonas cepacia P1 30 >98
 
(R) >98 (S) 50 57 >200 

2 Pseudomonas cepacia P2 30 >98
 
(R) 80 (S) 56 53 65 

3 Pseudomonas fluorescens 30 >98 (R) >98 (S) 50 61 >200 

4 Candida cyclindracea 30 - - - <10 - 

5 
Candida antarctica B 

(immob) 
30 90 (R) 46 (S) 66 84 7.7 

Entry Enzyme source 
Temp 

(°C) 

ee (%) 
Conversion 

(%) E value 

Ester 60 Acid 66 E calc. 
1
H 

NMR 

1 Pseudomonas cepacia P1 30 98 (R) 86 (S) 53 48 60 

2 Pseudomonas cepacia P2 30 >98 (R) 88 (S) 53 54 81 

3 Pseudomonas fluorescens 30 >98 (R) 97 (S) 51 57 >200 

4 Candida antarctica A 30 4 (R) 48 (S) 8 9 3 

5 Candida cyclindracea 30 - - - <10 - 

6 
Candida antarctica B 

(immob) 
30 66 (S) 7 (R) 90 96 1.9 
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Table 3.21: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(4-fluorophenyl)butanoate (±)-55 

 

 

 

 

                    (±)-55                                                          (S)-80                     (R)-55  

  

In all cases, highly enantioenriched samples of the (3S)-acids and the (3R)-esters are 

readily obtained using the Pseudomonas biocatalysts, see Figure 3.17. Previously, (±)-3-(4-

methylphenyl)butanoic acid (±)-51 has been resolved utilising Pseudomonas cepacia 

immobilised on ceramic particles to yield (S)-51 in 99% ee.
19

 The results utilising the free 

hydrolase, entry 1, Table 3.17 correlate strongly. The only significant effect of the substituent 

seen in this series of substituted phenyl butanoic acids was with the para-fluoro substrate (±)-

55 where the conversion is increased relative to the other substrates resulting in a slight 

decrease in enantiopurity of the recovered acids. Use of the Candida cyclindracea biocatalyst 

with the substituted substrates was also explored; while Candida cyclindracea had resulted in 

some hydrolysis with the parent compound (±)-23, very little conversion was seen with the 

substituted derivatives (Figure 3.17).  

The use of Candida antarctica lipase B (immob) with the parent substrate (±)-38 

provided access to the opposite enantiomeric series (entry 19, Table 3.10), albeit with a very 

high extent of reaction. In general similar reaction patterns were seen with the substituted 

substrates resulting in recovery of the (S)-esters 49, 54, 60 and the (R)-acids 51, 65, 66. 

Notably, with the para-methyl substrate (±)-49 the extent of reaction was less, resulting in a 

decrease in enantiopurity of the recovered ester (S)-49, while with the para-fluoro substrate 

both enantiomers are indiscriminately hydrolysed. The sense of enantioselection in Candida 

antarctica lipase B (immob) resolution of the ortho-methyl substrate (±)-53 was the same as 

that seen with the Pseudomonas biocatalysts. Interestingly this biocatalyst was the one that 

was able to accommodate increased steric demand at the C3 position. The switch in 

enantioselection must be due to combined steric effects of the ortho-methyl and 3-methyl 

substituents possibly via conformational changes (Figure 3.18). 

 

 

 

 

 

 

 

Entry Enzyme source 
Temp 

(°C) 

ee (%) 
Conversion 

(%) E 

value 
Ester 55 Acid 80 E calc. 

1
H 

NMR 

1 Pseudomonas cepacia P1 30 >98 (R) 84 (S) 54 55 59 

2 Pseudomonas cepacia P2 30 >98 (R) 69 (S) 84 84 27 

3 Pseudomonas fluorescens 30 >98 (R) 94 (S) 62 62 170 

4 Candida cyclindracea 30 3 (S) 25 (R) 11 <10 1.7 

5 
Candida antarctica B 

(immob) 
30 >98 (S) 8 (R) 92 94 3.4 
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Comparison of enantiomeric ratio (E-value) versus  

hydrolase for C3 substituted phenyl butanoic acids 23, 51, 64-66 and 80 

 

Figure 3.17  
 

 

 

 

 

 

Figure 3.18 

3.4.5 Hydrolase-catalysed kinetic resolution of esters to provide enantiopure C2 

substituted alkanoic acids 

The next step was to screen a series of substrates that were alkylated  to the ester 

moiety. The primary objective of this study was to assess the effect of the position of the 

stereocentre relative to the active site on the efficiency of the bioresolution. The steric effect 

of substituents at C2 in comparison to those at C3 on enantioselection was also examined. 

The C2 substituted methyl, ethyl and tert-butyl, -substituted 3-arylalkanoic acids (±)-32, 

(±)-45 and (±)-61 were selected for investigation (Figure 3.19). 

 

 

 

R = Me 32 

R = Et 45 

R = t-Bu 61 

 

Figure 3.19 
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3.4.5.1 Hydrolase-catalysed kinetic resolution to provide enantioenriched 2-methyl-3-

phenylpropanoic acid 32 

 In total, 18 lipases were screened in the lipase-catalysed kinetic resolution to provide 

enantioenriched 2-methyl-3-phenylpropanoic acid 32 as summarised in Table 3.22. All 

enzymatic resolutions investigated resulted in at least partial hydrolysis of the (S)-enantiomer 

of (±)-ethyl 2-methyl-3-phenylpropanaote (±)-47. Alcaligenes spp. 2, Pseudomonas cepacia 

P2, and Pseudomonas fluorescens catalysed hydrolysis of (±)-47 in 0.1 M phosphate buffer 

(pH 7.0) at ambient temperature, for 20 h (entries 9, 10a and 13a, Table 3.22 respectively), 

provided the desired acid (S)-32 in excellent enantiomeric excess. The unreacted ester (R)-47 

was also recovered in high optical purity with the exception of Alcaligenes spp. 2 (entry 9, 

Table 3.22) (R)-47 with just 67% ee obtained. 

Margolin and co-workers previously reported Pseudomonas sp. (Amano) catalysed 

hydrolysis of the corresponding methyl ester of (±)-32 providing the acid (S)-32 with high 

enantiomeric excess (95% ee). Notably no lipase screening assays were reported.
23

 Herein, a 

comprehensive screening protocol was implemented which identified Alcaligenes spp. 2 in 

addition to Pseudomonas cepacia P2 and Pseudomonas fluorescens for the enzymatic 

mediated hydrolysis of (±)-47 providing highly enantioenriched (S)-2-methyl-3-

phenylpropanoic acid (S)-32. The Pseudomonas lipases afforded the (S)-acid 32 (≥92% ee) 

and (R)-ester 47 (>98% ee) in excellent enantiopurity (entries 10a and 13a, Table 3.22). 

Alcaligenes spp. 2 generated the (S)-acid 32 with an improved enantioselectivity of 97% ee 

(entry 9, Table 3.22). However the rate of the resolution was decreased (conversion 41%) and 

therefore the enantiopurity of the recovered (R)-ester 47 (67% ee) was compromised.  

Candida cyclindracea C2 and Candida antarctica lipase B (free and immobilised) 

(entries 2, 14 and 16, Table 3.22 respectively) mediated hydrolysis proceeded with 100% 

conversion to racemic acid (±)-32 exhibiting a lack of discrimination of enantiomers. 

Bornscheuer et al. reported that Candida antarctica lipase B usually displays low to moderate 

enantioselectivity toward carboxylic acids with a stereocentre at the -position.
4
 The acyl 

binding site of Candida antarctica lipase B is a shallow crevice. It is likely that the lower 

enantioselectivity toward stereocentres in the acyl part of an ester stems from fewer and/or 

weaker contacts between the acyl part and its binding site.
4
 

Significantly, Alcaligenes spp. 2 and the Pseudomonas lipases (entries 6, 11 and 15, 

Table 3.10 respectively) also yielded the highest enantiopurity on resolution of the 

structurally related β-substituted 3-phenylbutanoic acid (S)-23 (≥94% ee) and the analogous 

ethyl ester (R)-38 (>98% ee) albeit at extended reaction times (65 h). Thus, the position of the 

chiral methyl substituent relative to the reactive ester moiety has limited effect on the choice 

of biocatalyst or high enantiopurity obtainable, however notably the reaction rate is altered 

with efficient resolution achieved within 20 h for (S)-32 vs. 65 h for (S)-23. 

Candida antarctica lipase B (free and immobilised), Candida cyclindracea (C1 and 

C2) and Mucor meihei hydrolysed the (R)-enantiomer in the resolution of the β-methyl 

substituted 3-phenylbutanoic acid (R)-23, providing access to the opposite enantiomer albeit 

with low to modest enantiopurity. In this study, Candida antarctica lipase B (free and 

immobilised) and Candida cyclindracea C2 mediated hydrolysis proceeded with no 

enantioselectivity. Candida cyclindracea C1 and Mucor meihei did display enantioselectivity 

albeit at low levels (entries 1 and 15, Table 3.22) however interestingly a switch in 

enantiopreference was not observed, with the (S)-enantiomer preferentially hydrolysed. Due 

to the low levels of enantiopurity the direction of enantioselection should be interpreted with 

caution.  
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Based on the screening results in Table 3.22 use of Pseudomonas cepacia P2 and 

Pseudomonas fluorescens (entries 10a and 13a respectively) were evidently the most 

attractive from the perspective of achieving enantioenriched samples of the acid (S)-32. It is 

clear from the extent of conversion (>50%) and the slightly low enantiopurity of the acid (S)-

32 (92 or 93% ee) that a small amount of the ester (R)-47 is undergoing hydrolysis during the 

kinetic resolution. Accordingly, kinetic resolutions were undertaken with a shorter reaction 

time of 10 h, under otherwise identical reaction conditions, and significantly, as we 

anticipated, the enantiopurity of the recovered acids (S)-32 was enhanced to 97 or 96% ee. 

This observation highlights that with optimisation, highly enantioenriched samples of (S)-32 

could be obtained. 

 

Table 3.22: Hydrolase-mediated hydrolysis of (±)-ethyl 2-methyl-3-phenylpropanoate (±)-47 

 

 

 

 

     (±)-47        (S)-32             (R)-47 

a. Limited enantiopurity observed, thus direction of enantioselection should be interpreted with caution. 

b. Reaction went to 100% completion, no enantioselectivity observed. 

 

 

 

 

Entry Enzyme source Time 

ee (%) 
Conversion 

(%) E 

value Ester 

(R)-47 

Acid 

(S)-32 
E calc. 

1
H NMR 

1 Candida cyclindracea C1 20 h 3
a
 3

a
 50 25 1.1 

2 Candida cyclindracea C2 20 h 0
b
 0

b
 -

b
 100 -

b
 

3 Alcaligenes spp.1 72 h 2 11 15 12 1.3 

4 Pseudomonas cepacia P1 72 h 53 68 44 55 6.4 

5 Pseudomonas stutzeri 72 h 83 50 62 69 17 

6 Rhizopus spp. 72 h 5 30 14 <10 1.9 

7 Rhizopus niveus 72 h 20 21 49 55 1.8 

8 Aspergillus niger 72 h 5 33 13 <10 2.1 

9 Alcaligenes spp.2 20 h 67 97 41 41 132 

10a Pseudomonas cepacia P2 20 h >98 93 52 79 >200 

10b  10 h 95 96 50 61 183 

11 Mucor javanicus 20 h 14 21 40 29 1.7 

12 Penicillium camembertii 72 h 3 17 15 <10 1.5 

13a Pseudomonas fluorescens 20 h >98 92 52 55 179 

13b  10 h 81 97 46 49 164 

14 Candida antarctica B 20 h 0
b
 0

b
 -

b
 100 -

b
 

15 Mucor meihei 20 h 23 0 52 97 1.9 

16 Candida antarctica B (immob) 20 h 0
b
 0

b
 -

b
 100 -

b
 

17 Porcine pancrease Type II 72 h 58 90 39 69 34 

18 Porcine pancrease Grade II 72 h 11 47 19 35 3.1 
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3.4.5.2 Hydrolase-catalysed kinetic resolution to provide enantioenriched of 2-

benzylbutanoic acid 45 

On increasing the size of the methyl moiety at the C2 site to the bulkier ethyl group, a 

sharp decrease in both efficiency and enantioselection was observed, with a number of 

hydrolases displaying no hydrolysis. This correlated strongly with literature reports
46,47

 and 

with the trends observed with the C3 substituted 3-arylalkanoic acids, (see section 3.4.3), 

demonstrating the dramatic dependence of the synthetic and stereochemical outcome of the 

reaction upon the size of the alkyl group at the stereogenic centre.  

In this study, Candida antarctica lipase B (entry 3, Table 3.23) provided the highest 

enantiopurity of (R)-2-benzylbutanoic acid (R)-45 (83% ee) via lipase-mediated hydrolysis. 

Previous to this result the highest reported lipase-mediated resolution of (S)-45 was 53% ee.
47

 

Herein Candida antarctica lipase B (free and immobilised) provided the (R)-enantiomer 

selectively, all other reported hydrolases preferentially hydrolysed the (S)-enantiomer, albeit 

with low to modest enantioselectivity.  

 

Table 3.23: Hydrolase-mediated hydrolysis of (±)-ethyl 2-benzylbutanoate (±)-48 

 

     

 

 

 

   (±)-48           (R)-45                                 (S)-48  
 

a. The following hydrolases gave no conversion Pseudomonas cepacia P2, Pseudomonas cepacia P1, Mucor javanicus, Pseudomonas 

fluorescens, Porcine Pancrease Type II, Pseudomonas stutzeri, Rhizopus niveus and Penicillium camembertii 

b. Limited enantiopurity observed, thus direction of enantioselection should be interpreted with caution. 

 

Notably, 4 of the 5 hydrolases screened which resulted in conversion (Table 3.23) had 

also displayed enantioselection for the resolution of the β-ethyl substituted 3-phenylpentanoic 

acid (±)-28, the exception being Candida cylindracea C1. In addition, under similar reaction 

conditions the same source of enzyme Candida antarctica lipase B, although the immobilised 

version rather than the free enzyme, afforded the highest enantiopurity of (R)-28 (81% ee) 

(entry 6, Table 3.11), comparable to the enantioselectivity obtained in this study for (R)-45 

(83% ee) (entry 3, Table 3.23).Thus, the position of the ethyl moiety had limited impact on 

choice of biocatalyst.  

In this study the enantiomeric excess of the unreacted ester (S)-48 was poor (35% ee) 

(entry 3, Table 3.23) relative to that of the β-substituted analogue (S)-56 (85% ee) (entry 6, 

Table 3.11), owing to the decreased conversion rate (30% vs. 51%). Increasing reaction time 

from 17 h to 43 h (entry 4, Table 3.23) did result in a higher conversion rate (49%) and 

increased optical purity of (S)-48 (74% ee), however, enantiopurity of the acid (R)-45 was 

Entry Enzyme source
a
 Time 

ee (%) 
Conversion 

(%) E 

value Ester 

48 

Acid 

45 
E calc. 

1
H 

NMR 

1 Candida cyclindracea C1 43 h 3 (R) 13 (S) 19 28 1.3 

2 Candida cyclindracea C2 17 h 20 (R) 4 (S) 83 89 1.3 

3 Candida antarctica B 17 h 35 (S) 83 (R) 30 74 15 

4 Candida antarctica B 43 h 74 (S) 71 (R) 49 79 14 

5 
Candida antarctica B 

(immob) 
43 h 17 (S) 73 (R) 19 57 7.6 

6 Pig Liver esterase 17 h 6 (R)
b
 3 (S)

b
 67 96 1.1 
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compromised (71% ee) due to partial hydrolysis of the ester (S)-48 at the extended reaction 

time. 

Thus, the enantiodiscrimination in the hydrolysis to form the -ethyl acid 45 was 

somewhat less efficient than that in the corresponding β-ethyl acid 28 despite the increased 

proximity of the stereocentre. This may be rationalised on examination of the structure 

whereby discrimination between the ethyl and benzyl substituents occurs at only one carbon 

removed from the stereogenic centre with similar methylene groups directly attached (Figure 

3.20). 

 

 

 

 

 

Figure 3.20 

 

The direction of enantioselectivity of Candida antarctica lipase B (free and 

immobilised) was consistent with that observed for the β-substituted 3-phenylpentanoic acid 

(±)-28, with the (R)-enantiomer selectively hydrolysed. Interestingly, the opposite direction 

of enantioselection was observed in this study with the Pig liver esterase relative to that of the 

β-substituted analogue. Herein, Pig liver esterase and Candida cyclindracea (C1 and C2) 

selectively resolved the (S)-enantiomer. Notably Pig liver esterase mediated resolution of  

(±)-2-benzylbutanoic acid (±)-45 proceeded with limited enantiopurity, therefore the 

direction of enantioselection should be interpreted with caution.  

3.4.5.3 Hydrolase-catalysed kinetic resolution to provide enantioenriched 2-benzyl-3,3-

dimethylbutanoic acid 61 

The next substrate investigated was the -tert-butyl substituted ester (±)-57. Given the 

decrease in efficiency and enantioselectivity for the bulky -ethyl substituted (R)-2-

benzylbutanoic acid (R)-45 relative to the -methyl substituted (S)-2-methyl-3-

phenylpropanoic acid (S)-32 a similar lack of efficiency was anticipated in this study. In the 

screening assays, none of the lipases successfully catalysed hydrolysis of (±)-57 to any 

extent, and thus, the sense of enantioselection could not be determined. This was particularly 

significant with regards to the lipase Candida antarctica lipase B. This lipase had previously 

demonstrated its unique ability to resolve sterically bulky - and β-substituted substrates, 

proving to be the lipase of choice for the mediated resolution of (R)-28, (S)-29, (S)-37 and 

(R)-45. As there was no evidence of any hydrolysis within 20 h, extended reaction times were 

not explored; use of increased reaction temperature may warrant investigation.  

The steric bulk of the large tert-butyl group  to the carbonyl carbon clearly prevents 

hydrolysis occurring. A similar trend was observed when chemical esterification was 

attempted of the analogous acid (±)-61 via Fischer esterification conditions (see section 

3.3.1), the steric hindrance present prevented nucleophilic attack of the alcohol at the 

carbonyl carbon and thus <5% of the desired ester (±)-57 was observed in the 
1
H NMR of the 

crude product. 

The presence of the tert-butyl substituent at either the - or β-position dramatically 

reduced the efficiency of enzymatic hydrolysis in each case. However, with the β-substituted 

derivative, through careful optimisation of reaction conditions, isolation of enantiopure 

samples of the acid was achieved, albeit with low extent of biotransformation. Thus, the 

Similar methylene 

groups 
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proximity of the tert-butyl group to the ester is, in this instance, significant in reducing the 

hydrolysis efficiency. 

 

Table 3.24: Hydrolase-mediated hydrolysis of (±)-ethyl 2-benzyl- 

3,3-dimethylbutanoate (±)-57 
 

                   

 

 

 

                   

               (±)-57                61     57 

 

Sinisterra et al. studied the influence of the alkyl chain on the efficiency of the 

Candida cylindracea (immob) mediated resolution of -substituted (S)-2-arylpropionic 

carboxylic acids.
90

 A large diminution in yield was reported on the resolution of ethyl 2-

phenylbutanoate 91 compared to that observed with ethyl 2-phenylpropanoate 92 with the 

same immobilised lipase. In order to explain these results the conformers of the substrates 

were analysed by a molecular mechanics methodology and it was concluded that the 

reduction in yield was attributable to the presence of steric hindrance in the M subsite in the 

active site, due to the volume of the alkyl chain in the case of the ethyl 2-phenylbutanoate 91 

(Figure 3.21) 

 

 

 

 

 

 

Figure 3.21: Steric hindrance produced in the subsite M due to the enhancement of the alkyl chain. 

 A: (S)- ethyl 2-phenylpropanoate 92 and B: (S)-ethyl 2-phenylbutanoate 91.90 

 

Sinisterra’s rationale may be applied to the substrates studied in this research where a 

similar trend of steric hindrance was observed at the -position.
90

 In this study when the 

methyl substituent increased in size to an ethyl or tert-butyl group a dramatic decrease in the 

efficiency of the hydrolysis was observed. This correlated with earlier reports in the 

literature
46,47

 and with the results observed with the β-substituted 3-arylalkanoic acids (see 

section 3.4.3). Despite the steric hindrance within the active site, (S)-2-methyl-3-

phenylpropanoic acid (S)-32 was obtained in 97% ee, through Alcaligenes spp. 2 catalysed 

hydrolysis of (±)-47 while Candida antarctica lipase B was identified as resolving the -

Entry Enzyme source Time 

ee (%) 
Conversion 

(%) E 

value Ester 

57 

Acid 

61 
E calc. 

1
H 

NMR 

1 Pseudomononas cepacia P1 20 h - - - 0 - 

2 Pseudomononas cepacia P2 20 h - - - 0 - 

3 Candida antarctica B 20 h - - - 0 - 

4 Candida antarctica B (immob) 20 h - - - 0 - 

5 Pseudomonas fluorescens 20 h - - - 0 - 

A B 

92 91 

L 

M 
M 

L 
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ethyl substituted  3-arylalkanoic acid (R)-45 (83% ee) with improved enantioselection relative 

to that achieved by Sih et al. (53% ee) (Figure 3.22 and Figure 3.23).
47

  

Interestingly we demonstrated that through variation of reaction time the 

enantiopurity of the recovered acids (S)-32 and (R)-45 can be optimised. Thus these 

biotransformations have the potential to be synthetically useful processes as the hydrolysis of 

the slower reacting enantiomer of the esters (R)-47 and (S)-48 can be minimised by careful 

reaction control.  

 

Comparison of enantiomeric ratio (E-value) versus  

hydrolase for C2 substituted alkanoic acids 32 and 45 

 

 

 

Figure 3.22 
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 Comparison of enantiomeric ratio (E-value) versus  

hydrolase for C2 substituted alkanoic acids 32 and 45 and C3 substituted acids 23 and 28 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23  

3.5 Hydrolase-mediated kinetic resolution – preparative-scale  

The kinetic resolutions were next performed on a preparative-scale in order to confirm 

the absolute configuration of the products, demonstrate the synthetic utility of the 

bioresolution protocols and examine the practical viability of the lipase-mediated processes.  

In general, the products of the biocatalysis were readily isolated by extraction with 

ethyl acetate followed by chromatographic separation on silica gel of the acid and ester. 

Column chromatography proved more effective than acid-base extraction for recovery of the 

esters (R)-38, 47, 49, 53-55, 60 and acids (S)-23, 32, 51, 64-66, 80 in this instance. For the 

bulkier 3-arylalkanoic substrates flash chromatography was less effective. In practice each of 

the esters (S)-56, (R)-58, (R)-59 and (S)-48 were recovered first by heptane extraction of the 

biotransformation mixture, then subsequent acidification
v
 and extraction with ethyl acetate 

provided the acids (R)-28, (S)-29, (S)-37 and (R)-45. Each of the products were characterised 

by 
1
H NMR with spectroscopic details identical to those for the racemic materials previously 

prepared. Enantiopurity of each of the esters and acids was established by chiral HPLC. 

Conversion was determined by the E-value calculator and by analysis of the 
1
H NMR of the 

crude reaction mixture. 

The reaction times employed for the preparative resolutions were selected based on 

the analytical screens and were conducted in general without ongoing reaction monitoring. 

With the analytical screens pH adjustment was never an issue. In the preparative-scale 

reactions use of a pH stat to maintain the pH was explored during this work, but it was found 

to have no detectable impact on the outcome of the kinetic resolution, and therefore its use 

was discontinued, with clear practical advantages in terms of experimental setup.  

                                                 
v
 In retrospect the acidification may not be required but this was not explored during this work. 

R
1
 = H R

2 
= Et 45 

R
1
 = Et R

2 
= H 28 

R
1
 = H R

2 
= Me 32 

R
1
 = Me R

2 
= H 23 

Hydrolase 

(S) - 23 

(S) - 32 

(S) - 28 

(S) - 45 

 

(S) - 23 

(S) - 32 

(S) - 28 

(S) - 45 

 

> 



Chapter 3                                                                                                 Results and Discussion 

                                                                                    

 

123  

 

3.5.1 Preparative-scale hydrolase-catalysed kinetic resolution of C3 substituted alkanoic 

esters 

Each of the hydrolyses were scaled up to synthetic batches (200-510 mg) leading to 

isolation of the β-substituted acids (S)-23, (R)-28, (S)-29 and (S)-37 in excellent 

enantiopurity. Pseudomonas fluorescens was selected for the preparative-scale hydrolysis of 

(±)-ethyl 3-phenylbutanoate (±)-38, while Candida antarctica lipase B (immob) was the 

lipase of choice for the large scale hydrolysis of the sterically hindered (±)-ethyl 3-

phenylpentanoate (±)-56, (±)-ethyl 4-methyl-3-phenylpentanoate (±)-58, and (±)-ethyl 4,4-

dimethyl-3-phenylpentanoate (±)-59 (Table 3.25). The above mentioned lipases were selected 

due to the high enantiopurity observed in the analytical screens. Notably, on scale up, the 

efficiencies and selectivities of the resolutions mirrored quite closely the outcomes seen in the 

analytical scale reactions summarised in Tables 3.10 and 3.14-3.16.  

Acids (S)-23,
91

 (S)-28,
45

 (R)-29,
92

 (S)-37
93

 and analogous esters (S)-38,
94

 (R)-56,
95

 (S)-

58
95

 were previously reported in the literature in enantioenriched form and therefore the 

assignment of the absolute stereochemistry for each of these compounds was made by 

comparison of specific rotation data. Although ethyl 4,4-dimethyl-3-phenylpentanoate 59 was 

not previously reported in enantiopure form, the absolute stereochemistry of the 

untransformed ester has to be (R)-59 on the basis of recovery of the acid (S)-37. 

The 
1
H NMR spectra and chiral HPLC traces obtained of (R)-38 and (S)-23 during the 

work-up and purification of the Pseudomonas fluorescens mediated hydrolysis of (R)-38 are 

shown below in Figure 3.24 and Figure 3.25 displaying the remarkably clean crude products 

obtained from the bioresolution. 

 

Table 3.25: Preparative-scale hydrolase-catalysed kinetic resolution of  

C3 substituted alkanoic esters 

 

 

 

 

 

a. 17% v/v dioxane co-solvent was added, see experimental for further information. 

b. During work-up the acid and ester are isolated separately from the biotransformation by sequential extraction thus conversion by 1H NMR is not feasible.   

 

 

 

 

 

 

 

R Hydrolase 

Conversion 

(%) 
Acid Ester 

Yield 

(%) 

ee (%) 

 

Optical rotation     
  

E 

calc. 

1H 

NMR 
Experimental Literature 

Me P. fluorescens 50 51 

(S)-23  34 98     
   +27.90 (c 1.0, EtOH) 

    
   +24.50 (c 1.0, EtOH), 

(S)-isomer 97% ee91 

 (R)-38 35 99     
   −27.55 (c 1.1, CHCl3) 

    
   +19.00 (c 1.1, CHCl3), 

(S)-isomer, 90% ee94 

Eta 
CAL-B 

(immob) 
42 -b 

(R)-28  22 90     
   −33.73 (c 1.4, C6H6) 

    
   +42.3 (c 8.0, C6H6), 

(S)-isomer, 83% ee45 

 (S)-56 19 65     
   +9.46 (c 0.6, CHCl3) 

    
   −18.3 (c 1.1, CHCl3), 

(R)-isomer, 97% ee95 

i-Pr 
CAL-B 

(immob) 
21 -b 

(S)-29  24 98     
   −24.35 (c 0.7, CHCl3) 

    
   +28.12 (c 1.9, CHCl3), 

(R)-isomer, 96% ee92 

 (R)-58 25 26     
   +7.05 (c 1.0, CHCl3) 

    
   −25.4 (c 1.0, CHCl3), 

(S)-isomer, 98% ee95 

t-Bu 

 

CAL-B 

(immob) 

 

11 -b 

(S)-37  13 >98     
   −10.53 (c 0.1, CHCl3) 

    
   −20.4 (c 2.2, CHCl3), 

(S)-isomer, 91% ee93 

 (R)-59 39 12     
   +0.80 (c 1.0, CHCl3) - 
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Figure 3.24: 1H NMR Spectrum I: Crude product following Pseudomonas fluorescens hydrolysis containing a mixture 

of (R)-ethyl 3-phenylbutanoate (R)-38 and (S)-3-phenylbutanoic acid (S)-23, 49 : 51 respectively. Spectrum II: Purified  

(S)-3-phenylbutanoic acid (S)-23, 98% ee, following column chromatography. Spectrum III: Purified (R)-ethyl 3-

phenylbutanoate (R)-38, 99% ee, following column chromatography (all spectra recorded in CDCl3 at 400 MHz).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: HPLC Trace I: A racemic mixture of (±)-ethyl 3-phenylbutanoate (±)-38 and (±)-3-phenylbutanoic acid 

(±)-23. Trace II: Crude product following Pseudomonas fluorescens hydrolysis containing (R)-ethyl 3-phenylbutanoate (R)- 

38 99% ee and (S)-3-phenylbutanoic acid (S)-23 98% ee. 
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3.5.2 Preparative-scale hydrolase-catalysed kinetic resolution of substituted phenyl 

butanoic esters 

 The next step in the investigation was preparative-scale hydrolysis of the aromatic 

substituted ethyl phenyl butanoates (±)-49, (±)-53-55, 60. In the analytical screens excellent 

enantioselectivities of both the untransformed ester (>98% ee) and acid product (≥94% ee) 

were attainable, with ideal 50% conversion achieved utilising the Pseudomonas lipases. Thus, 

this series was selected as the most appropriate hydrolase for preparative-scale use.  

Reaction monitoring was performed for the resolution of (S)-3-(4-

methylphenyl)butanoic acid (S)-51. At 62 h, 1 mL of reaction mixture was removed, a mini 

work-up was performed and reaction progress determined by 
1
H NMR and chiral HPLC. 

Excellent enantioselectivity of the ester (R)-49 and acid (S)-51 was observed at 62 h which 

reflected favourably the outcome of the analytical scale resolution, where the kinetic 

resolution achieved a desirable 50% conversion rate and high enantiopurity at 64 h. As the 

reaction time of the preparative-scale appears to mimic very closely that of the analytically 

scale each of the other resolutions in this series did not undergo chiral HPLC reaction 

monitoring. Ideal 50% conversion was achieved in all cases within the reaction time 

identified from the analytical screens (Table 3.26). This is hugely advantageous from a 

synthetic perspective as extracting reaction aliquots for analysis contributes significantly to 

overall loss of yield. Furthermore none of the hydrolase-mediated kinetic resolutions 

exceeded 50% conversion on scale-up, demonstrating excellent discrimination between the 

(R)- and (S)-enantiomers.  

Significantly the enantioselectivities of the large scale hydrolysis compared very 

favourably with the analytical screens. The untransformed (R)-ester was obtained in ≥94% ee 

and the (S)-acid ≥97% ee (Table 3.26). Notably, with the para-fluoro series the acid (S)-80 

was recovered in excellent enantiopurity (97% ee) improved relative to that of the small scale 

reaction (94% ee) (entry 3, Table 3.21). 

The absolute stereochemistry of each of the isolated acids (S)-51
19

, (S)-66
91

 and ester 

(R)-49
19

 was identified by comparing the specific rotation data obtained in this study with 

those reported in the literature. While (R)-ethyl 3-(4-methoxyphenyl)butanoate (R)-60 has not 

been described in enantioenriched form its absolute stereochemistry was assigned as (R)-60 

as it must be opposite to that of the recovered acid (S)-66. 

In contrast, as the enantiopure acids 65, 64, 80 and esters 54, 53, 55 have not 

previously been described, comparison of specific rotation data was not feasible. Each of the 

acids and esters were oils at room temperature and therefore absolute stereochemistry was 

difficult to determine. Attempts to solidify and crystallise the enantiopure acids by salt 

formation proved unsuccessful.  

Co-crystallisation involves generating a crystalline material consisting of more than 

one neutral compound. The combination of co-crystallisation with both X-ray diffraction and 

chiral HPLC was particularly powerful in this study for overcoming the difficulties of 

assigning absolute stereochemistry to the enantiopure 3-arylbutanoic acids 65, 64 and 80. Co-

crystallisation offers advantages over salt formation because co-crystals dissociate in 

solution, meaning identical HPLC conditions can be used for both the materials of interest 

and their co-crystals. The use of co-crystals for the determination of absolute stereochemistry 

of acids 65, 64 and  80, as an alternative to salt formation is further discussed in section 3.5.4.  

As expected the sense of enantioselection of each of the biotransformations are the 

same, providing the (R)-ester and (S)-acid. The assignment of absolute stereochemistry 

through this new technique is supported by the specific rotation data where all the (S)-acids 
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are dextrorotatory and the (R)-acids levorotatory. As observed in the analytical screening, 

from a preparative perspective presence of substituents on the aromatic ring, even with the 

ortho-substituent, had no detectable impact on the outcome of the resolution. 

 

Table 3.26: Preparative-scale hydrolase-catalysed kinetic resolution  

of C3 substituted alkanoic esters 

 

 

 

 

a. Yield may be reduced due to reaction sampling. 

b. Presence of ethyl acetate in the 1H NMR spectrum overlaps with key characteristic ester peaks of (R)-54 required for determination of conversion. 

3.5.3 Preparative-scale hydrolase-catalysed kinetic resolution of C2 substituted alkanoic 

esters 

The final series to be extended to preparative-scale was the C2 substituted 3-

arylalkanoic acids. While the -methyl (±)-47 and -ethyl (±)-48 substituted esters 

demonstrated hydrolysis via hydrolase-mediated kinetic resolution, the -tert-butyl ester (±)-

57 did not resolve to any extent; consequently, preparative-scale hydrolysis was performed on 

(±)-47 and (±)-48 only.  

Pseudomonas fluorescens was selected for preparative-scale hydrolysis of (±)-47; this 

too was the biocatalyst of choice for the resolution of (±)-3-phenylbutanoic acid (±)-23 and 

the analogous aromatic substituted (±)-3-phenylbutanoic acids (±)-51 and (±)-64-66, 

exhibiting excellent enantioselectivities in all cases. Thus, as described previously in the 

analytical screens, the aryl substituent or position of the methyl moiety on the carbon 

framework had little impact on the enzymatic hydrolysis and this carried through to 

preparative-scale. Reaction sampling was conducted at 20 h and the reaction deemed 

complete by 
1
H NMR and chiral HPLC analysis, thus work-up was undertaken at this time.  

In the analytical screens, free Candida antarctica lipase B resulted in the highest 

enantioselectivity (83% ee) of the sterically hindered -ethyl acid (R)-45. However, Candida 

antarctica lipase B (immob) was utilised in the preparative-scale as immobilised lipases offer 

significant advantages over their free counterpart in large scale resolutions. Immobilisation 

can enhance stability, enable repeated or continuous use, ease separation from the reaction 

mixture and modulate catalytic properties.
4
 In this study Candida antarctica lipase B 

(immob) mediated resolution of the -ethyl (R)-acid (R)-45 on preparative-scale resulted in 

excellent enantiopurity (82% ee) improved relative to that from the small scale reaction (73% 

ee). From the perspective of process efficiency, the fact that the level of enantioselectivity 

X Hydrolase 

Conversion 

(%) 
Acid Ester 

Yield 

(%) 
ee (%) 

Optical rotation     
  

E 

calc. 

1H 

NMR 
Experimental literature 

p-Me P. cepacia 49 47 

(S)-51  40a >98     
   +31.80 (c 1.0, CHCl3) 

    
   +34.2 (c 1.0, CHCl3),    

(S)-isomer 99% ee19 

 (R)-49 31a 97     
   −28.67 (c 3.5, CHCl3) 

    
   −26.2 (c 3.5, CHCl3),     

(R)-isomer 92% ee19 

m-Me P. fluorescens 49 -b 
(S)-65  26 >98     

   +32.32 (c 0.6, CHCl3) - 

 (R)-54 22 94     
   −24.40 (c 1.0, CHCl3) - 

o-Me P. fluorescens 50 59 
(S)-64  28 >98     

   +24.17 (c 1.4, CHCl3) - 

 (R)-53 27 98     
   −11.00 (c 1.0, CHCl3) - 

p-OMe P. fluorescens 51 50 
(S)-66  23 97     

   +26.25 (c 1.0, EtOH) 
    

   +27.50 (c 1.0, EtOH)    

(S)-isomer 94% ee91 

 (R)-60 43 >98     
   −30.03 (c 1.0, CHCl3), - 

p-F P. fluorescens 51 53 
(S)-80  35 97     

   +30.51 (c 1.0, CHCl3) - 

 (R)-55 32 >98     
   −24.34 (c 1.0, CHCl3) - 
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achieved on the preparative-scale with the immobilised biocatalyst was restored to the 

optimised level seen in the analytical screen with the free biocatalyst, is very significant.  

The direction of enantioselection of each of the recovered acids (S)-32
96

 and (R)-45
97

 

and ester (R)-47
52

 was determined by comparing the specific rotation data obtained in this 

study with those reported in the literature. Although the -ethyl substituted ester (S)-48 has 

not previously been reported in enantioenriched form its absolute stereochemistry was 

assigned as (S)-48 as it must be opposite to that of the recovered acid (R)-45. 

 

Table 3.27: Preparative-scale hydrolase-catalysed kinetic resolution of  

C3 substituted alkanoic esters 

 

 

a. Presence of ethyl acetate in the 1H NMR spectrum overlaps with key characteristic ester peaks of (R)-54 required for determination of conversion. 

b. Yield may be reduced due to reaction sampling. 

c. During work-up the acid and ester are isolated separately from the biotransformation by sequential extraction thus conversion by 1H NMR is not feasible.   

3.5.4 The use of co-crystals for the determination of absolute stereochemistry of the 

products of preparative-scale reactions 

Despite major advances in asymmetric synthesis over the past 30 years, one of the 

major challenges that remains is definitively assigning absolute stereochemistry,
98

 especially 

with materials which are not readily crystalline. This is increasingly important as new 

synthetic products are often difficult to crystallise,
99

 and many can only be isolated as viscous 

oils. 

The two main synthetic strategies which have been employed to circumvent these 

problems involve modification of the material, via either additional chemical transformations 

or salt formation.
100

 Both of these strategies, however, have limitations. The use of chemical 

transformations can be limited by the availability of only small quantities of enantiopure 

material, and furthermore, additional reaction steps may affect the stereochemical integrity of 

the required compound. For salt formation, in addition to the limitations mentioned above, 

the compound also requires ionizable sites. For both strategies, chiral HPLC analysis has to 

be developed not only for the pure material but also for the derivatives, since in many cases 

the conditions are non-transferrable.
100

 

As stated in section 3.5.2, the acids 65, 64, 80 and esters 54, 53, 55 were not 

previously reported in enantiopure form and therefore assignment of stereochemistry was not 

possible by comparison with previously reported specific rotation data. In addition, each of 

the acids and esters were isolated as oils at room temperature. The traditional approach of salt 

formation was initially explored: salts were formed with 4,4'-bipyridine, sodium and 

potassium hydroxide, which precipitated as white powders. However, single crystals of these 

salts were not attained. The materials produced were poorly crystalline and not suitable for X-

R Hydrolase 

Conversion 

(%) 
Acid Ester 

Yield 

(%) 
ee (%) 

Optical rotation     
  

E 

calc. 

1H 

NMR 
Experimental literature 

Me P. fluorescens 51 -a 

(S)-32  37b 96     
   +28.0 (c 0.82, CHCl3) 

    
   +30.2 (c 0.82, CHCl3),  

(S)-isomer 99% ee96 

 (R)-47 27b >98     
   −36.4 (c 1.0, CHCl3) 

    
   +28.4 (c 1.0, CHCl3),    

(S)-isomer, 82% ee52 

Et 
CAL-B 

(immob) 
24 -c 

(R)-45  19 82     
   −43.8 (c 1.0, CH2Cl2) 

    
   −40.0 (c 1.0, CH2Cl2),   

(R)-isomer >99% ee97 

 (S)-48 43 26     
   +6.8 (c 1.0, CH2Cl2) - 
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ray diffraction studies. Additional chemical transformations were not attempted, as the 

enantiopure samples were available in limited quantities. 

Co-crystallisation, involving crystallising two (or more) neutral molecules together in 

one crystalline material, has recently garnered great interest as an alternative to salt formation 

for improving the physical properties of active pharmaceutical ingredients, without 

detrimental effects on the chemical properties.
101-105

 Therefore, in collaboration with Dr. K. S. 

Eccles and Dr. S. E. Lawrence, Department of Chemistry, University College Cork, a study 

was conducted exploring if the absolute stereochemistry of the carboxylic acids 23, 65, 64 

and 80 could be determined through co-crystals.
106

 While (S)-23 has previously been 

described in the literature, and thus the stereochemistry of the starting material for the co-

crystal known, it was utilised in this study as a model system and the optimised procedure 

was then implemented for the three unknown samples 65, 64 and 80.  

 

 

 

 

 

 

Scheme 3.14 

 

A search of the Cambridge Structural Database
107

 revealed that monocarboxylic acids 

often co-crystallise with nicotinamide 98 and isonicotinamide 93.
108-111

 Initial co-crystal 

screening was performed by neat grinding with the racemic acid, and isonicotinamide 93 was 

identified by powder X-ray diffraction as an appropriate co-crystal former for each of the 

acids (Scheme 3.14). Suitable conditions for growing single crystals from solution were 

identified by using the racemic acids and similar conditions were then applied to the 

enantiopure analogues. The advantage of this approach was that once the conditions were 

developed, a small sample of the enantiopure material (<8 mg) was sufficient. Each of the co-

crystals, both enantiopure and racemic, were grown by slow evaporation of 

acetonitrile/acetone (70 : 30) solutions. Single crystal diffraction data, in combination with 

the chromatographic experiments, allowed the unambiguous assignment of absolute 

configuration.
112-114

  

Each enantiopure co-crystal was formed with the (S)-enantiomer of the acid (Figure 

3.26). Each of the co-crystals display a common set of intermolecular interactions (Figures 

3.27) with amide-amide [N-H
...

O=C] and acid-pyridine [COOH
...

N] hydrogen bonds linking 

the co-crystal components. 

 

 

 

 

 

 

 

X = H (S)-23 93  X = H (S)-94 

X = o-Me (S)-64   X = o-Me (S)-95  

X = m-Me (S)-65   X = m-Me (S)-96 

X = p-F (S)-80   X = p-F (S)-97 
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             (S)-95 

 

 

 

Figure 3.26: A view of co-crystal (S)-95 showing the structure and relative stereochemistry. The model has chirality C3 

(S) and C16 (S). Anisotropic displacement parameters are drawn at the 50% probability level. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27: Hydrogen bonding interactions in (S)-94. The different colours indicate unique, symmetry-independent (S)-

94 (green and blue) and isonicotinamide 93 (red and orange) molecules.  

The same motif is formed in (S)-96, (S)-97, (±)-95, and (±)-96. 

.  

Interestingly, irrespective of the chiral or enantiopure nature of the acid molecules, 

similar infinite one-dimensional hydrogen-bonded ribbons are formed in each of the co-

crystals except (±)-97, which exhibits two-dimensional puckered sheets. Thus, the overall 

core hydrogen-bonded motif is retained across the structures, with the conformation of the 

acids varying. Presumably, this conformational variation is necessary to maintain both a 

close-packed arrangement of molecules with asymmetric shapes and a (topologically) 

symmetrical hydrogen bond network. Further details of the structural features present in these 

co-crystals are contained in the accompanying CD. 

An important consideration was whether the diffraction experiment was a true 

representation of the bulk sample. To ensure this was the case, powder X-ray diffraction, 

PXRD, was performed on each of the ground materials 94-97 and compared to the theoretical 

PXRD patterns calculated from the single crystal data confirming that single crystals were 

representative of the bulk sample. 

It was anticipated that the acid molecules, once dissolved, would have the same 

properties irrespective of whether they are obtained by dissolving the pure acid or the co-

crystal, as co-crystallisation only affects the properties of the solid phase. Thus, co-

crystallisation has the clear advantage that the conditions developed to separate the 

enantiomers of the pure compound by chiral HPLC can be applied directly for analysis of the 

co-crystal employed for X-ray crystallography, enabling direct correlation with the chiral 

HPLC peak for the enantiomer. The only potential concern is the impact of the co-crystal 

former. To check for possible interference, chiral HPLC of the racemic acids, in the presence 

of isonicotinamide 93, was recorded, clearly showing that chromatographic behaviour of (±)-
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23, 65, 64 and 80 was unaffected, confirming the validity of the methodology employed. 

Thus, chiral HPLC were recorded on the individual crystals used for the X-ray diffraction 

experiments (for chiral HPLC conditions see appendix I). This enabled the use of chiral 

HPLC to directly monitor the direction of enantioselection in the enzyme-mediated 

resolutions (Figure 3.28). Thus, while (S)-23 has been described in the literature,
91,115

 this is 

the first time the absolute stereochemistry of this compound has been definitively determined 

by X-ray diffraction. Having validated the approach with the known (S)-23 then the  

procedure was successfully employed to determine the absolute stereochemistry of the novel 

enantiopure acids (S)-65, (S)-64 and (S)-80. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.28: HPLC Trace I: Racemic (±)-3-(2-methylphenyl)butanoic acid (±)-64. Trace II: Racemic (±)-3-(2-

methylphenyl)butanoic acid : isonicotinamide co-crystal (±)-95. Trace III: (S)-3-(2-Methylphenyl)butanoic acid : 

isonicotinamide co-crystal (S)-95 >98% ee. For HPLC conditions see appendix I. 

 

Co-crystallisation involving achiral compounds with enantiopure and racemic partners 

is known; in particular interest has centred on the different physical properties that are 

obtained for the racemic and enantiopure co-crystals, such as density and stability.
108,116-118

 It 

has been used to introduce heavy atoms into a chiral structure, enabling absolute 

stereochemistry determination of known materials with Mo K radiation.
119

 To date the 

stereochemistry of the starting material has always been known.  

During these studies into developing co-crystallisation as a tool for determining the 

absolute stereochemistry of materials which are hard to crystallise, it was discovered that 

subtle changes in the solvent composition had a dramatic effect on the crystallisation 

outcome. As previously mentioned for the successful co-crystallisation of substituted 3-

arylbutanoic acids with isonicotinamide, a 70 : 30 solvent mixture of acetonitrile and acetone 

respectively was employed. Interestingly the use of pure acetone as solvent gave rise to two 

new forms of isonicotinamide.
120

  

This is the first time that the application of co-crystallisation methodology was 

demonstrated to be successful for determination of the absolute stereochemistry of 

compounds that are oils or viscous liquids at ambient conditions. The advantage of co-

crystals over salt formation is that the chromatographic conditions developed to separate the 

enantiomers do not change on co-crystallisation, unless the co-crystal former interferes with 

the separation of the enantiomers. Furthermore, co-crystals do not require ionizable sites, 

Trace I 

Racemic 

Trace II 

Racemic 

Trace III 

(S)-95 

>98% ee 

(±)-64 

(±)-95 
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which in principle means that co-crystallisation should be more universally applicable than 

salt formation. In conclusion, co-crystallisation and X-ray diffraction, in combination with 

chiral HPLC, provides an effective method in synthetic research to identify absolute 

stereochemistry in novel compounds. 

3.6 Project conclusion 

At the outset of this project it was reported that 3-arylalkanoic acids with substituents 

larger than a methyl moiety at the C2 or C3 chiral centre could not be enzymatically resolved 

in high enantiopurity via lipase-mediated hydrolysis of 3-arylalkanoic carboxylic acid esters 

or transesterification.
42,46,47

 The literature precedent reported a complete disappearance of 

efficiency and, accordingly enantioselection, upon kinetic resolution of the sterically 

demanding 3-alkylalkanoic acids. However, in this study, through optimisation of reaction 

conditions, the highest reported enantiopurities of 3-arylalkanoic acids were described via 

hydrolase-mediated kinetic hydrolysis of the corresponding ethyl esters. 

The specific focus of this project was the investigation of the impact of steric effects 

at C2 and at C3 on the efficiency of the lipase-mediated kinetic hydrolysis. While resolution 

of C2 and C3 methyl substituted acids proved very straightforward, in general, the presence 

of a sterically demanding substituent larger than a methyl at the C2 or C3 stereogenic centre 

decreased the efficiency of the kinetic resolution, and therefore the enantioselectivity of the 

unreacted ethyl ester was compromised. Despite this, through comprehensive screening 

protocols and optimization of co-solvent and reaction temperature, the highest obtained 

enantiopurities of lipase-catalysed bioresolutions of 3-arylalkanoic acids were achieved, and 

in some cases, a viable route to both enantiomers has been identified. The only exception for 

which no hydrolysis was observed was with the very sterically demanding -tert-butyl 

substituent, while reaction occurred with the β-tert-butyl substituent to a limited extent.  

Furthermore, steric and electronic effects of substituents on the phenyl ring were 

explored and determined to have no detectable effect on the outcome of the kinetic resolution 

with excellent enantioselectivities attainable. Thus the hydrolases can tolerate increased steric 

demand in the aryl group even at the ortho position more readily than in the C3 or C2 

position.  

Significantly each of the successful bioresolutions were conducted on a synthetic 

scale leading to isolation of acids in excellent enantiopurity, demonstrating the synthetic 

potential of this chemoenzymatic approach. The practical aspect of the biocatalytic 

optimisation was greatly facilitated through development of HPLC conditions to enable 

analysis of the ester and acid through a single injection. A novel approach to determine the 

absolute stereochemistry of the acids which existed as oils was explored through combination 

of co-crystallisation and X-ray diffraction linked with chiral HPLC analysis. 
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4.1 Introduction  

4.1.1 Henry reaction  

The Henry or nitroaldol reaction is one of the classical named reactions in organic 

synthesis. Essentially a base-catalysed coupling reaction between a carbonyl compound and a 

nucleophilic nitroalkane bearing  hydrogens, (Scheme 4.1) it has proved to be a powerful 

carbon-carbon bond-forming process since its discovery in 1895.
1-3

  

 

 

 

 

 

Scheme 4.1 

 

This process represents an important and versatile tool for the synthesis of valuable β-

nitroalcohols, providing efficient access to highly functionalised structural motifs e.g. 

dehydration to conjugated nitroalkenes, reduction to 1,2-amino alcohols, denitration, 

oxidation to nitro carbonyl compounds and α-hydroxy carbonyl compounds via the Nef 

reaction (Scheme 4.2).
4,5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.2 

 

The Henry reaction is a useful tool in the elaboration of pharmacological important β-

amino alcohol derivatives including chloramphenicol, ephedrine, norephedrine (Figure 4.1 

and 4.2) highlighting the significance of this transformation as a source of chiral building 

blocks.
4
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Figure 4.1 
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Figure 4.2 

 

The Henry reaction is generally conducted under mild conditions at room temperature 

in the presence of typically about 10 mol% base to give the desired β-nitro alcohol in good 

yields. A vast array of basic catalysts have been utilised to perform this synthetic 

transformation; the most popular bases include carbonates, bicarbonates, alkali metal 

hydroxides, alkoxides and organic nitrogen bases. Recently considerable work concerning the 

Henry reaction mediated by unusual rare earth metal alkoxides, rare earth 

hexamethyldisilazides (HDMS) and binaphthol (BINOL)-rare earth metal complexes has 

been reported.
4,11,12

 The Henry reaction is often accompanied by unwanted side reactions: i) 

β-nitroalcohols can undergo dehydration especially when aromatic aldehydes are used as 

substrates, ii) with sterically hindered carbonyl compounds a base-catalysed self condensation 

or Cannizzaro reaction may take place and iii) the retro-Henry reaction may prevent the 

reaction from going to completion.
13

 More recent research has led to the development of mild 

reaction conditions which suppress these competitive reactions, e.g. solvent free
14,15

 or in 

aqueous media.
16

 

4.1.1.1 Enzymatic methods in the asymmetric Henry reaction  

In general, the Henry reaction results in a mixture of diastereomers and enantiomers. 

This lack of selectivity is due to the reversibility of the reaction and the ease of epimerisation 

at the nitro substituted carbon atom.
4
 The first catalytic asymmetric version of the Henry 

reaction was reported by Shibasaki in 1992.
11

 Since then, interest in this area has expanded 

considerably and principal methods to the catalytic asymmetric Henry reaction include 

transition metal- and organo-catalysed methods and these have been reviewed in detail.
1,17,18

 

In the past decade however, there has been an emergence of biocatalytic protocols due 

to their mild reaction conditions and high selectivity.
19

 There are two distinct biocatalytic 

approaches to enantioenriched products of the Henry reaction reported in the literature; direct 

enzyme-catalysed nitroaldol reaction or initial chemical formation of the β-nitroalcohol 

product followed by enzymatic kinetic resolution of the stereoisomers (Scheme 4.3). 
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                           Approach I               Approach II 

 

Scheme 4.3 

4.1.1.1.1 Approach I – Direct enzyme-mediated Henry reaction 

Hydroxynitrile lyases (HNLs, also referred to as oxynitrilases) are important 

biocatalysts for the industrial scale enantioselective synthesis of optically pure cyanohydrins 

which represent important building blocks for the synthesis of various pharmaceuticals and 

agrochemicals.
20-22

 HNLs can be isolated from a wide array of plant sources and in reversal 

of the in vivo reaction successfully catalyse the stereoselective addition of hydrogen cyanide 

to a variety of aliphatic, aromatic and heterocyclic carbonyl compounds, demonstrating 

superb efficiency and enantioselectivity (Scheme 4.4).
21,23

 In order to expand the synthetic 

applicability of HNL mediated enantioselective carbon-carbon bond formation, the 

nucleophile hydrogen cyanide was replaced by a nitroalkane in the first reported biocatalytic 

asymmetric Henry reaction.
24

 

 

 

 

 

Scheme 4.4 

 

The (S)-selective Hevea brasiliensis (HbHNL) catalysed addition of nitromethane to a 

range of aromatic, heteroaromatic and aliphatic aldehydes yielded the desired 

enantiomerically enriched β-nitro alcohols (Table 4.1). However, low conversions, high 

enzyme loading, extended incubation periods and formation of the corresponding elimination 

product (10-15%) limit the development of this enzyme-catalysed nitoaldol reaction.
24

 

The kinetics of the HbHNL mediated Henry reaction have been demonstrated to fit 

the classical mechanistic model, Rapid Equilibrium Random Bi Uni with independent 

substrate binding, which implies that the bottleneck for this biotransformation is a very low 

turnover number of the enzyme, not the binding of the substrates.
25

 The explanation of this 

has not yet been deciphered. 
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Table 4.1: H. brasiliensis (HbHNL) catalysed Henry reaction
24

 

 

 

 

 

Entry R Yield (%) ee (%) 

1 Ph 63 92 

2 3-HOC6H4 46 18 

3 4-O2NC6H4 77 28 

4 2-Furyl 57 72 

5 CH3-(CH2)5- 25 89 

  

A number of reaction parameters were subsequently examined by Griengl et al. in 

order to optimise this enzymatic transformation.
26

 Enantioselectivity increased significantly 

at pH 5.5 albeit with loss of yield (Table 4.2). In addition, a phase ratio aqueous/organic 1 : 2 

increased conversion and enantiopurity. Notably, the HNL from Manihot esculenta is also 

able to catalyze this transformation but with reduced activity and selectivity. Furthermore, the 

(R)-selective HNL Prunus amygdalus displayed no enzymatic activity   

 

Table 4.2: H. brasiliensis (HbHNL) catalysed Henry reaction: pH investigation
26

 

 

 

 

 

Entry R 
pH 7.0 pH 5.5 

Yield (%) ee (%) Yield (%) ee (%) 

1 Ph 63 93 32 97 

2 4-O2NC6H4 77 28 57 64 

3 n-Hexyl 25 89 34 96 

4 Ph(CH2)2 9 66 13 66 

5 2-Furyl 57 72 43 88 

 

 The scope of the reaction with respect to the nitroalkane was explored, and it was 

found with increase in size of the nucleophile, activity was severely decreased, for example 

substitution of nitromethane with (nitromethyl)benzene led to complete loss of enzymatic 

activity (Table 4.3). In summary, while oxynitrilases provide an attractive system for the 

asymmetric Henry reaction, the narrow substrate range and low activity is a significant 

limitation of this process. Furthermore, although the HNL from Manihot esculenta is 

commercially available, the far more active analogue form Hevea brasiliensis (HbHNL) is 

not currently available. 
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Table 4.3: Henry reaction of other nitroalkanes
26

 

 

 

 

 

 

Recently Asano and Fuhshuku reported for the first time a (R)-selective hydroxynitrile 

lyase from Arabidopsis thaliana.
27

 As evident from Table 4.4 excellent to moderate 

enantiopurity was achieved of the β-nitroalcohols. This reaction proceeded in an aqueous/n-

butyl acetate biphasic system with an optimum aqueous phase content of 50% (v/v). 

However, the scope of this biotransformation is limited to aromatic aldehydes and a 

maximum yield of 34% was reported. 

 

Table 4.4: (R)-Selective hydroxyl nitrile lyase catalysed Henry reaction
27

 

 

 

 

 

Entry R
 

Time
 

Yield (%) ee (%) 

1 Ph 2 h 30 91 

2 Ph 4 h 26 86 

3 2-MeC6H4 2 h 12 95 

4 3-MeC6H4 2 h 12 96 

5 4-MeC6H4 2 h 11 94 

6 2-MeOC6H4 2 h 13 90 

7 3-MeOC6H4 2 h 17 91 

8 4-MeOC6H4 2 h 2 79 

9 2-ClC6H4 2 h 34 68 

10 3-ClC6H4 2 h 17 91 

11 4-ClC6H4 2 h 9 87 

12 4-FC6H4 2 h 20 81 

13 4-BrC6H4 2 h 9 82 

14 2-Naphthyl 2 h 7 >99.9 

15 Me(CH2)4 2 h Trace >80 

16 Me(CH2)8 2 h No reaction - 

 

The hydroxylnitrile lyase from H. brasiliensis (HbHNL) has also been described to 

catalyse the biocatalytic retro-Henry reaction, using the cleavage of 2-nitro-1-phenylethanol 

as a model system (Scheme 4.5).
28

 This biotransformation suffered from low 

enantioselectivity and conversion due to product inhibition by benzaldehyde. Liese et al. 

overcame this product inhibition by performing the biocatalytic retro-Henry reaction in the 

presence of HCN, which reacts in situ with benzaldehyde and converts it to the less-inhibitive 

mandelonitrile. By using such a reaction cascade, it was possible to conduct the resolution 

practically to completion (95% ee, 49% conversion). Furthermore, the catalyst productivity 

Entry R
1 

R
2 

Yield (%) ee (%) 

1 H H 63 92 

2 H CH3 67 95 

3 CH3 CH3 7 80 

4 H Ph 0 0 
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achieved during the resolution was ten times higher than that in the HbHNL catalyzed 

synthesis of (S)-2-nitro-1-phenylethanol by condensation of benzaldehyde and nitromethane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.5 

 

Notably, a number of other enzyme systems including a transglutaminase from 

Streptoverticillium grisoverticillatum, D-aminoacylase from E.coli and the hydrolase from 

bovine serum albumin have been reported to display nitroaldol activity however; no 

enantioselectivity data has been reported thus far.
29-32

 

4.1.1.1.2 Approach II – Enzymatic resolution of the products of the Henry reaction 

Enzyme-mediated asymmetric carbon-carbon bond formation is one approach to 

enantiopure β-nitroalcohols. Another enzymatic route is to employ a biocatalytic resolution 

step in conjunction with the Henry reaction. One such hydrolase-mediated protocol is kinetic 

resolution of the resulting β-nitroalcohols via acetylation. 

In 1999, Kitayama and co-workers reported the Pseudomonas sp. (Amano AK) 

mediated stereoselective preparation of four β-nitroalcohols with vinyl acetate.
33

 Furthermore 

the effect of organic solvents on the course of the biotransformation was investigated with 

moderate to good enantioselectivities achieved of all four substrates in the presence of n-

propyl ether (Table 4.5).   

 

Table 4.5: Effect of solvent on the E-value of hydrolase-mediated acetylation
33

 

 

 

 

 

R 

E value 

Dioxane
 

THF
 

Benzene AcOEt Hexane 
n-Propyl 

ether 

C2H9 4.8 4.1 5.6 21.9 9.6 20.9 

C3H7 1.2 1.1 1.4 1.4 1.0 2.1 

i-C3H7 1.3 1.9 2.4 1.7 6.7 12.5 

C4H9 1.2 1.6 1.6 1.4 2.5 3.4 
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Barua et al. conducted screening studies with several lipases, investigating the 

resolution of optically pure (S)-2-nitroalcohols.
34

 The lipase from Pseudomonas fluorescens 

demonstrated high enantioselection (66-98% ee) in the asymmetric transesterification of a 

series of aromatic, aliphatic and heterocyclic 2-nitroalcohols at 30 °C with vinyl acetate. The 

elimination product was observed in the majority of the aromatic systems. 

The hydrolysis of trans-2-nitrocyclohexyl butyrate with C. cyclindracea lipase (CCL) 

to both enantiomers of 2-nitrocyclohexanol 99b has been reported in high 

enantioselectivity.
35

  While this preliminary study had limited scope, recent work within our 

own research group demonstrates potential access to all four enantiomers of 2-

nitrocyclohexanol 99a and 99b.
36

 A series of screening studies were conducted investigating 

both enantioselective transesterification and hydrolysis. Through appropriate choice of 

biocatalyst and reaction conditions, both enantiomers of cis- and trans-2-nitrocyclohexanol 

99a and 99b can be acquired in high optical purity (Table 4.7 and 4.6).
36

  

 

Table 4.6: Hydrolase-mediated transesterification of (±)-trans-2-nitrocyclohexanol in vinyl 

acetate as solvent and acyl donor
36

 

 

 

 

 

 

                         (±)-99b                                         (1R,2R)-100b        (1S,2S)-99b 
 

a. Only biotransformations that resulted in some extent of conversion are reported here. See reference 36 for further details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry
a
 Enzyme Strain 

Conversion 

(%) 

ee (%) 

E value Acetate 

(1R,2R) 

Alcohol 

(1S,2S) 

1 C. cylindracea C1 81 >98 >98 >400 

2 P. cepacia P1 13 >98 16 232 

3 P. stutzeri 53 >98 >98 >400 

4 Alcaligenes spp. 47 >98 88 >400 

5 P. cepacia 14 - - - 

6 P. fluorescens 50 >98 >98 >400 
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Table 4.7: Hydrolase-mediated transesterification of (±)-cis-2-nitrocyclohexanol  

in vinyl acetate as solvent and acyl donor
36

 

 

 

 

 

 

                          (±)-99a                                          (1R,2S)-100a       (1S,2R)-99a 

a. Only biotransformations that resulted in some extent of conversion are reported here. See reference 36 for further details. 

 

Hydrolase-mediated acylation and deacylation have been employed to gain access to 

enantio- and diastereomerically enriched β- and γ-nitroalcohols.
37-39

 Enzymatic selective 

acetylation of quaternary 2-nitropropane-1,3-diols has been reported as an asymmetric 

synthetic route to -substituted serine analogues with good enantioselectivity in some cases 

(<5-92% ee) (Scheme 4.6).
40

  

 

 

 

 

Scheme 4.6 

 

The first systematic study of a hydrolase-mediated resolution of β-nitroalcohols in 

conjunction with the Henry reaction was reported in 2004.
41

 The lipase-catalysed 

enantioselective resolution of a range of alkyl- and phenylalkyl substituted nitroalcohols, 

adducts of the Henry reaction, have been described (Table 4.8). Several biotransformation 

parameters were investigated in this study including the nature of the lipase, acyl donor and 

solvent effect. Novozym 435
® 

catalysed resolution of 1-nitro-2-alkanols in diisopropyl ether 

with succinic anhydride as acyl donor provided the highest conversion and selectivities of the 

recovered alcohol and acetylated product. 

 

 

 

 

 

 

Entry
a
 Enzyme Strain 

Conversion 

(%) 

ee (%) 

E value Acetate 

(1R,2S) 

Alcohol 

(1S,2R) 

1 C. cylindracea C1 45 >98 80 >200 

2 C. cy;indracea C2 26 - - - 

3 Alcaligenes spp. 37 98 53 168 

4 P. cepacia 39 >98 46 156 

5 P. stutzeri 59 69 89 15 

6 Rhizopus spp. 7 - - - 

7 Alcaligenes spp. 50 >98 91 >200 

8 P. cepacia P2 8 >98 6 105 

9 Mucor javavicus 2 - - - 

10 P. fluorescens 50 >98 >98 >200 

11 Mucor meihei 17 >98 32 >200 

12 C. antarctica 49 >98 98 >200 
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Table 4.8: Resolution of 1-nitro-2-alkanols with succinic anhydride in diisopropyl ether
41

 

 

 

 

 

 

 

 Recently, an enzymatic method which combines a biocatalysed nitroaldol reaction 

and lipase-mediated acyl resolution of the resulting β-nitroalcohols in organic media has been 

reported.
42

 Initial formation of the racemic β-nitroalcohols was effected by D-aminoacylase 

as catalyst and DMSO as solvent with yields being highly substrate dependent, ranging from 

12-80% (Scheme 4.7). The subsequent Burkholderia cepacia (immob) mediated kinetic 

resolution step achieved excellent conversion and enantioselectivity with vinyl acetate as acyl 

donor (Table 4.9). 

 

 

 

 

Scheme 4.7 

 

Table 4.9: Kinetic resolution of β-nitroalcohols
42

 

 

 

 

 

 

 

Ramström et al. reported the first one-pot dynamic kinetic resolution process, 

combining the base-catalysed nitroaldol reaction and lipase-catalysed transesterification of 

the corresponding adduct under mild reaction conditions.
43,44

 The first step in this resolution 

protocol was to establish a suitable catalyst for the enzymatic transformation. The 

immobilised lipase Pseudomonas cepacia CI displayed transesterification activity with high 

Entry R Conversion (%) ees (%) eep (%) E value 

1 CH3 39 57 67 28 (R) 

2 C2H5 47 44 43 4 (R) 

3 C3H7 54 92 93 82 (S) 

4 C6H5 4 3 75 7 (S) 

5 (C6H5)CH2 - - - - 

6 (C6H5)C3H4 42 71 97 96 (S) 

Entry R Conversion (%) ees (%) eep (%) E value 

1 p-NO2 48 97 >99 >200 

2 m-NO2 49 95 49 >200 

3 o-NO2 <1 - <1 - 

4 p-Cl 46 97 46 >200 

5 m-Cl 47 91 47 >200 

6 o-Cl <1 - <1 - 

7 H 47 95 47 155 

8 p-CH3 48 84 48 >200 

9 P-OCH3 49 84 49 >200 
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enantiospecificity (entry 4, Table 4.10). Moreover, in combination with increased 

temperature and enzyme loading almost complete kinetic resolution was achieved (46% 

yield) with retention of excellent enantiopurity (entry 7, Table 4.10).  

 

Table 4.10: Effect of hydrolase source on the kinetic bioresolution of  

2-methyl-2-nitro-1-(4-nitrophenyl)propan-1-ol
43

 

 

 

 

 

 

a.  30 mg enzyme, the reaction was run at 40 °C for 24 h. 

 

 The one-pot dynamic kinetic resolution process was subsequently addressed, using 

PS-CI as enzyme, triethylamine as base and p-chlorophenyl acetate as acetylating agent 

(Table 4.11). A series of different aldehyde substrates was investigated, and, in general, 

aromatic aldehydes resulted in good yields and enantioselection after a reaction time of 2-4 

days. Notably, aliphatic aldehydes lead to poor conversion and decreased enantiopurity even 

over extended incubation periods. While this paper clearly demonstrates the feasibility of a 

combination of a Henry reaction with a dynamic kinetic resolution, there are significant 

limitations to be overcome before this protocol has a broad synthetic utility.     

 

Table 4.11: Hydrolase-mediated dynamic kinetic resolution of β-nitroalcohols
43

 

 

 

 

 

 

 

 

 Thus, in recent years major improvements have been made in the biocatalytic 

approach to the asymmetric Henry reaction, especially in the kinetic resolution of the 

nitroaldol adduct with excellent enantioselectivity achieved, albeit with a maximum yield of 

Entry Enzyme Source Conversion (%) 
Acetate 

E value 
ee (%) 

1 C. antarctica B 5 78 8 

2 C. rugosa 0 0 0 

3 P. cepacia 10 0 1 

4 P. cepacia CI 11 99 >200 

5 P. cepacia CII 10 90 21 

6 P. fluorescens 7 93 30 

7
a
 P. cepacia CI 46 99 >200 

Entry R Time Yield (%) ee (%) 

1 4-O2N-C6H4 2 d 90 99 

2 4-NC-C6H4 2 d 89 91 

3 4-F3C-C6H4 3 d 89 97 

4 3-O2N-C6H4 3 d 90 91 

5 4-CH3-C6H4 4 d 35 93 

6 Thiophene-2-yl 4 d 68 46 
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50%. The dynamic biocatalytic Henry reaction does provide an attractive alternative, 

however, at present further research is required to overcome the limited substrate scope. To 

date, the direct enzyme-mediated Henry reaction is restricted to the hydroxyl nitrile lyase H. 

brasiliensis which is limited in its availability. 

4.2 Dynamic kinetic resolution of the intramolecular Henry reaction of (±)-

2-nitrocyclohexanol (±)-99 through lipase catalysis 

4.2.1 Background to the project 

Previous work in the research group was focused on the development of a biocatalytic 

protocol for the asymmetric Henry reaction.
45

 The concept involved an intramolecular Henry 

cyclisation process to form (±)-2-nitrocyclohexanol (±)-99, together with a one-pot 

hydrolase-mediated dynamic process, potentially leading to 2-nitrocyclohexyl acetate 100 

with high diastero- and enantiopurity.
45

 The strategy combined an intramolecular base-

catalysed cyclisation of the nitroaldehyde 101 coupled with hydrolase-mediated acetylation, 

with a view to selective acetylation of a single stereoisomer. Ideally this process would 

operate in a dynamic fashion giving access to quantitative yields of a single stereoisomer of 

2-nitrocyclohexyl acetate 100. 

This preliminary investigation was approached in a stepwise manner. The first step 

focused on the development of hydrolase-mediated acetylation conditions for the selective 

resolution of (±)-99a or (±)-99b. The second step involved the development of the dynamic 

interconversion process between the two diastereomers (±)-99a and (±)-99b via ring opening 

and closure of 6-nitrohexanal 101. Finally, once the two individual steps had been established 

they were combined, potentially developing a one-pot dynamic kinetic resolution of the 

intramolecular nitroaldol reaction through lipase catalysis (Scheme 4.8).  

 

 

 

 

 

      

 

 

           101 

 

 

 

 

 

Scheme 4.8 

 

Considerable progress has been made by Milner in the individual elements of the 

dynamic kinetic resolution process.
45

 The first step in the resolution protocol was to establish 

a suitable catalyst for the enzymatic transformation. In this early study, efficient kinetic 

bioresolution has been effected for both the (±)-cis- and (±)-trans-2-nitrocyclohexanols, (±)-

99a and (±)-99b, via enzyme-mediated transesterification and ester hydrolysis processes 

(Scheme 4.9). 

99a 

99b 

100 

Step 3: Develop one-pot enzymatically resolved Henry reaction 
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Scheme 4.9 

 

Through the appropriate selection of biocatalyst, three of the four enantiomers were 

obtained directly in high optical purity, while hydrolysis of the acetate (1R,2S)-100a would 

potentially lead to the alcohol (1R,2S)-99a although this is complicated by competing 

elimination of the cis-alcohol 99a to 1-nitrocyclohexene 102 via base-mediated dehydration 

(Scheme 4.10).
36

 Furthermore, this dehydration byproduct 102 was observed throughout the 

development of this biocatalytic dynamic intramolecular Henry reaction, reducing the 

efficiency of the desired one-pot process. 

 

 

 

 

 

                 (1R,2S)-100a                        (1R,2S)-99a         102 

 

Scheme 4.10 

 

In Milner’s preliminary study, any hydrolase which transformed (±)-cis-2-

nitrocyclohexanol (±)-99a with high enantioselectivity also performed efficiently for the 

transesterification of (±)-trans-2-nitrocyclohexanol (±)-99b. This lack of diastereoselectivity 

of the examined hydrolases severely hampered the progress of the research. Fundamentally, 

for an efficient dynamic process, it is essential that one enantiomer of (±)-99a or (±)-99b can 

be efficiently and selectively acetylated; lack of selective enzymatic activity for (±)-99a or 

(±)-99b is a significant barrier.  

The second step in this investigation involved the development of the base-mediated 

dynamic interconversion process between (±)-cis- and (±)-trans-2-nitrocyclohexanol, (±)-99a 

and (±)-99b. Preliminary 
1
H NMR results indicated that triethylamine accomplished the 

desired interconversion and it was assumed that this was via dynamic ring opening and 

closing (Scheme 4.11) 

 

 

 

 

(1R,2S)–99a 

 

(1R,2R)–99b 

99% ee 

(1S,2R)–99a 

>98% ee 

(1S,2S)–99b 

>98% ee 
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              (±)-99a                                 101                             (±)-99b 

 

Scheme 4.11 

 

However, towards the end of Milner’s work, when the base-mediated cyclisation of 6-

nitrohexanal 101 and dynamic interconversion was combined with the hydrolase-mediated 

acetylation, it became evident that epimerisation was the predominant process, and not 

dynamic ring opening/closure via 6-nitrohexanal 101 (Scheme 4.12). These two competing 

processes led to a significant hurdle in the development of a dynamic kinetic resolution of the 

intramolecular nitroaldol reaction.  

 

 

 

 

 

                99a                                                                           99b 

 

Scheme 4.12 

 

Towards the conclusion of Milner’s study, an enantiopure sample of (1S,2S)-trans-2-

nitrocyclohexanol (1S,2S)-99b was exposed to a series of bases and monitored closely by 

chiral HPLC.
45

 A change in the stereochemistry at the C1 carbon, thus the appearance of 

either cis-(1R,2S)-99a or trans-(1R,2R)-99b enantiomers denoted a dynamic ring 

opening/closing interconversion (Scheme 4.13). 

 

 

 

 

 

(1S,2S)-99b 

 

Scheme 4.13 

 

 Base screening indicated that, while with triethylamine only epimerisation occurs, 

use of alternative bases, such as DBU, promotes the dynamic ring opening/closure via 6-

nitrohexanal 101, in addition to the epimerisation process. This preliminary observation 

augurs well for development of an effective dynamic kinetic resolution process, although 

substantial optimisation is required.  
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4.2.2 Objectives of the project 

The previous work described by Milner indicated that a DBU-mediated dynamic 

kinetic resolution process was feasible, although a number of obstacles would first have to be 

circumvented.
45

 

 

Therefore, the initial objectives of this study at the outset were: 

 To prepare 6-nitrohexanal 101 and the racemic substrates (±)-cis- and (±)-trans-2-

nitrocyclohexanol (±)-99a and (±)-99b and (±)-cis- and (±)-trans-2-nitrocyclohexyl 

acetates (±)-100a and (±)-100b for the investigation of the dynamic hydrolase-

mediated kinetic resolution of the Henry reaction. 

 To investigate by 
1
H NMR and chiral HPLC analysis the DBU-promoted 

intramolecular nitroaldol reaction and associated interconversion of (±)-cis- and (±)-

trans-2-nitrocyclohexanol (±)-99a and (±)-99b (Scheme 4.14). 

 

 

 

 

 

                                      101                              (±)-99a              (±)-99b 

 

Scheme 4.14 

 

 To expand the series of lipases screened for the kinetic resolution of (±)-cis- and (±)-

trans-2-nitrocyclohexanol (±)-99a and (±)-99b, to ultimately identify a suitable 

hydrolase for the selective acetylation of one diastereomer and one enantiomer of 2-

nitrocyclohexanol 99 (Scheme 4.15). 

 

 

 

 

 

         (±)-99b                                                   (1R,2R)-100b       (1S,2S)-99b 

 

 

 

 

 

          

        (±)-99a 

Scheme 4.15 

 

 To explore in detail the DBU-mediated interconversion of enantiopure (1S,2S)-trans-

2-nitrocyclohexanol (1S,2S)-99b, based on the promising one off preliminary result by 

Milner (Scheme 4.16).
45

 

 

 

 

Diastereoselective 

hydrolase-mediated 

transesterification 



Chapter 4                                                                                                 Results and Discussion 

                                                                                                 

 

155  

 

 

 

 

    

 

                                      (1R,2S)-99a      (1S,2R)-99a     (1R,2R)-99b     (1S,2S)-99b 

 

 

(1S,2S)-99b 

 

 

                                                  (1S,2R)-99a      (1S,2S)-99b 

 

Scheme 4.16 

 

 To develop calibration curves for the quantitative analysis of (±)-cis- and (±)-trans-2-

nitrocyclohexanol (±)-99a and (±)-99b by chiral HPLC facilitating determination of 

product ratio and comparison with 
1
H NMR studies. 

4.2.3 Synthesis of substrates 

The investigation of a one-pot Henry reaction coupled with hydrolase-mediated 

resolution required the synthesis of a number of synthetic targets. The racemic synthesis of 

(±)-cis- and (±)-trans-2-nitrocyclohexanols (±)-99a and (±)-99b, and (±)-cis- and (±)-trans-2-

nitrocyclohexyl acetate (±)-100a and (±)-100b was essential for investigation of the lipase-

mediated kinetic resolution, and 6-nitrohexanal 101 was necessary as the precursor to the 

intramolecular Henry reaction. 

Milner previously described the successful synthesis of the (±)-2-nitrocyclohexanols 

(±)-99a and (±)-99b by sodium borohydride (NaBH4) reduction of 2-nitrocyclohexanone 103 

and subsequent acetylation to form the acetates (±)-100a and (±)-100b in good yields 

(Scheme 4.17).
45

  

 

  

 

 

                             

                           103                                          (±)-99a                (±)-99b 

 

 

 

 

 

 

                                                                           (±)-100a              (±)-100b 

 

Scheme 4.17 
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The desired starting material 2-nitrocyclohexanone 103 is commercially available,
46

 

however, it is somewhat expensive. Consequently, Milner reported the conversion of 

cyclohexanone 104 into its corresponding enol acetate 105, followed by nitration with nitric 

acid, providing access to the desired 2-nitrocyclohexanone 103 and corresponding enol 

tautomer 2-nitrocyclohexen-1-ol 106 in a ratio of 1 : 0.9 respectively (Scheme 4.18). Early 

reports by Moloney
47

 and Özbal
48

 were used as a basis for this work.   

 

 

 

 

 

              104                                      105                            103                        106 

 

Scheme 4.18 

 

However, due to the potential explosion risk during distillation of 2-nitrocyclohexanone 103, 

this synthetic route was deemed unsuitable and thus not employed in this study.  

Milner also described utilising 2-nitrocyclohexanone 103 as a precursor to 6-

nitrohexanal 101 via base-induced ring opening to the analogous carboxylic acid 107, 

followed by subsequent reduction to the alcohol 108 and PCC oxidation to the synthetic 

target 101 (Scheme 4.19).
45

  

 

 

 

 

 104               103                                 107                                108                               101 

 

Scheme 4.19 

 

Milner’s approach to the synthesis of 101 from 103, while feasible, is not 

synthetically practical, due to the prohibitive cost of 103 on a commercial basis, and total 

number of steps from cyclohexanone 104 to aldehyde 101. Therefore, an alternative synthetic 

route to the aldehyde 101 and racemic (±)-2-nitrocyclohexanols (±)-99a and (±)-99b that 

avoided the synthesis of 2-nitrocyclohexanone 103 was desirable. 

4.2.3.1 Synthesis of 6-nitrohexanal 101 

It was initially envisaged that an efficient route to multi-gram quantities of 6-

nitrohexanal 101 would provide access to the (±)-cis- and (±)-trans-2-nitrocyclohexanols (±)-

99a and (±)-99b, through the intramolecular Henry reaction, and subsequent acetylation 

would provide the (±)-cis- and (±)-trans-2-nitrocyclohexyl acetates (±)-100a and (±)-100b. 

4.2.3.1.1 Route I – Ring opening of ε-caprolactam 109 and subsequent oxidation  

The first route to 6-nitrohexanal 101 investigated was acid-catalysed ring opening of 

ε-caprolactam 109 to the hydrochloride salt 110 and subsequent ion exchange to yield the free 

amino acid 111. Oxidation of the primary amine 111 was explored to provide the desired 

nitro carboxylic acid derivative 107 (Scheme 4.20).    
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    109                         110 (~100% yield)                       111 (98% yield)                       107 (Impure)  

 

 
 

Scheme 4.20 

 

The  synthesis of 6-aminohexanoic acid 111 was adapted from a procedure described 

by Meyers and Miller.
49

 A solution of ε-caprolactam 109 and aqueous hydrochloric acid was 

heated under reflux for 1 h, yielding the resulting moist hydrochloric salt 110 in quantitative 

yield. The ε-aminocaproic acid hydrochloride 110 was converted into the free amino acid 111 

by means of an ion exchange column containing Amberlite IRA-400(OH) resin. The yield of 

6-aminohexanoic acid 111 (98%) was calculated over two steps based on the starting material 

ε-caprolactam 109.  

The direct oxidation of primary amines into the corresponding nitro derivative is very 

useful for fundamental and industrial application because it provides nitro compounds which 

may otherwise be difficult to synthesise by direct nitration methods.
4
 Oxone

®
, a 

stoichiometric commercially available oxidising reagent, was first reported by Kennedy and 

Stock in 1960 and consists of two moles of potassium peroxymonosulfate, one mole of 

potassium bisulfate and one mole of potassium sulfate.
50

 Potassium peroxymonosulfate reacts 

with acetone to produce dimethyldioxirane 112, which is a very efficient oxygen transfer 

reagent (Scheme 4.21).
51

  

 

 

 

 

 

 

 

 

 

                                 112 

 

Scheme 4.21 

 

In this work oxidation of 6-aminohexanoic acid 111 was conducted by treatment of 

the primary amine 111 with 5.0 equivalents of Oxone
®
 in acetone, sodium bicarbonate and 

water at 0 °C to room temperature for 16 hours (Scheme 4.20). The 
1
H NMR spectrum of the 

crude product showed evidence of the oxidised nitro compound 107 with a characteristic 

triplet present at H ~4.40 ppm attributable to the methylene protons geminal to the nitro 

moiety. However, a number of unidentifiable byproducts were also observed in the 
1
H NMR 

which could not be removed by flash column chromatography or acid/base extraction. This 

oxidation procedure was thus repeated with the hydrochloric salt 110 to ascertain if this 

limited the production of undesired side reactions; again oxidation was achieved, however, 
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purification remained difficult. Thus, while this route provides an efficient protocol to 6-

aminohexanoic acid 111 in excellent yield and purity, further optimisation is required in the 

oxidation step. 

4.2.3.1.2 Route II – Kornblum reaction 

The reaction of alkyl halides with metal nitrites is one of the most important methods 

for the preparation of nitroalkanes. As a metal nitrite, silver nitrite in diethyl ether (Victor-

Meyer reaction), potassium nitrite, or sodium nitrite in N,N-dimethylformamide (DMF) or in 

dimethyl sulfoxide (DMSO) (Kornblum reaction)
52-59

 have frequently been used.
4
 The 

obtained products are usually a mixture of the desired nitroalkane together with the undesired 

alkyl nitrite, which are easily separated.  

The procedure implemented in this study was previously described by Cobb and co-

workers for the synthesis of 113.
60

 Sodium nitrite was added to a 0.1 M solution of the 

commercially available primary alkyl bromide 114 in anhydrous DMF (Scheme 4.22). The 

reaction was monitored by TLC and in general reaction completion was achieved within 16 h. 

A mixture of the desired ethyl 6-nitrohexanoate 113 and a byproduct believed to be the alkyl 

nitrite 115 (76 : 24 respectively) was evident in the 
1
H NMR spectrum of the crude product. 

Cobb
60

 had not described formation of 115 as a byproduct although as mentioned previously 

there is considerable precedent in the literature for competing formation of nitrites under 

these conditions.
4,58

 

 

 

 

 

                               

 

 

Scheme 4.22 

 

The alkyl nitrite 115 was characterised by a broad multiplet at H 4.58-4.80 ppm 

representative of the methylene protons adjacent to the nitrite moiety and was not further 

analysed or characterised during this study. Alkyl nitrites exist as mixtures of syn and anti 

conformers which differ in the orientation of the alkyl group (Scheme 4.23). At room 

temperature alkyl nitrites undergo rapid interchange and the syn and anti methylene protons 

adjacent to the nitrite group are chemical shift equivalent, thus they appear as a broad 

multiplet in the 
1
H NMR of the crude product.

61-64
 

 

 

 

 

 

Scheme 4.23 

 

The alkyl nitrite 115 is easily removed upon column chromatography to give the 

desired nitroalkane 113 as a light yellow oil with a yield of 49%, which is in accordance to 

literature reports.
60

 Ethyl 6-nitrohexanoate 113 was characterised by a carbonyl absorption 

band at νmax 1733 cm
−1 

and the asymmetrical and symmetrical stretching of the nitro group at 

               114              113         115 

Product Ratio by 
1
H NMR                 76                    :            24                  
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νmax 1554 and 1377 cm
−1

, while in the 
1
H NMR spectrum, the principal signals include a 

distinctive quartet at H 4.13 ppm attributable to the ethyl ester and triplet at H 4.40 ppm due 

to the methylene protons alpha to the nitro moiety. 
 
 Thus, the reaction of alkyl halides with sodium nitrite provides a very useful 

synthetic method for nitroalkanes, although yield is slightly limited by competing formation 

of the undesired alkyl nitrite. All spectral characteristics agreed with those previously 

described.
60

 

The DIBAL-H selective reduction of ethyl 6-nitrohexanoate 113 to the corresponding 

aldehyde has been described previously.
60

 Following the literature procedure, DIBAL-H (1.1 

equivalents) was added dropwise to a solution of the ethyl ester 113 in doubly distilled 

dichloromethane at −78 °C (Scheme 4.24).
60

 After stirring for 1.5 h TLC analysis indicated 

the presence of starting material 113, desired aldehyde 6-nitrohexanal 101 and reduction 

product 6-nitrohexanol 108. An additional 0.2 equivalent of DIBAL-H was added at this 

point to encourage reaction completion and the reaction was stirred for a further 2 h. 
1
H NMR 

analysis of the crude product showed a mixture of ethyl 6-nitrohexanoate 113, 6-nitrohexanol 

108 and 6-nitrohexanal 101 (41 : 9 : 50 respectively). This DIBAL-H reduction was repeated 

several times implementing strict anhydrous conditions and temperature control; however, 

each time a mixture of reduction products, including the desired aldehyde 101 and starting 

material 113, was identified. Milner likewise was unable to achieve selective DIBAL-H 

reduction of methyl 6-nitrohexanoate 116; a mixture of methyl 6-nitrohexanoate 116, 6-

nitrohexanol 108 and 6-nitrohexanal 101 (26 : 43 : 31 respectively) was reported.
45

 The three 

products were separable by column chromatography, however, due to the poor reactions 

efficiency and lack of selectivity this route was no longer pursued. 

 

 

 

 

                  113                                      113                        108                          101 

 

Scheme 4.24 

 

Due to the limited success in the selective reduction of the ethyl ester 113 to the 

aldehyde 101, a new route was explored where the ethyl ester 113 would be reduced 

completely to the analogous alcohol 108 (Scheme 4.25). While lithium aluminium hydride 

reduction of the ester 113 to the alcohol 108 was considered, competing reduction of the nitro 

group by this powerful reducing agent was considered a significant risk, and therefore this 

route was not explored.  

A number of mono-, di- and cyclic esters have been reduced to alcohols by Miller
65

 

and Ziegler
66

 using DIBAL-H. They reported yields of 70-100%. Typically, 2.0 to 4.0 

equivalents of DIBAL-H were required. Notably, in contrast to lithium aluminium hydride, 

DIBAL-H selectively reduces carbonyls in the presence of nitro substituents.  

 

 

 

DIBAL-H  

1.1 eq. Mixture of 113, 108 and 101 by TLC 

1.3 eq. A mixture of 113, 108 and 101, 41 : 9 : 50 respectively by 
1
H NMR 
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                                            113                                108 (79% yield) 

 

Scheme 4.25 

 

In this work, DIBAL-H (3.0 equivalents) was added dropwise to a solution of ethyl 6-

nitrohexanoate 113 in dichloromethane at −78 °C. The reaction was maintained at this 

temperature for 1 h before warming to −40 °C and stirring for an additional 1 h then 

quenched. A rapid increase in temperature was observed upon slow quenching of the reaction 

mixture with dilute hydrochloric acid at −10 °C. 6-Nitrohexanol 108 was found to be of a 

highly volatile nature; therefore removal of solvent was performed under reduced pressure in 

an ice bath. Purification by column chromatography produced the alcohol 108 in high yield 

79% and excellent purity. A strong, broad OH peak at νmax 3400 cm
−1

 and nitro stretching 

bands at νmax 1552 and 1385 cm
−1

 were observed in the IR spectrum of 6-nitrohexanol 108. 

The characteristic signals in the 
1
H NMR were a broad OH singlet at H 1.76 ppm and two 

triplets at H 3.64 ppm and H 4.40 ppm attributable to the methylene hydrogens alpha to the 

alcohol C(1)H2 and nitro C(6)H2 moiety respectively.
vi

 

  Pyridinium chlorochromate (PCC), first developed by Corey and co-workers in 

1975, is used to oxidise primary alcohols to aldehydes and secondary alcohols to ketones; 

notably over-oxidation is rare.
69

 It was envisaged in this study that the final step to gain 

access to the desired 6-nitrohexanal 101 would involve oxidation of the nitro alcohol 108 by 

PCC to the corresponding aldehyde 101. The procedure adapted in this study was previously 

described by Milner and involved the addition of 6-nitrohexanol 108 to a solution of PCC and 

crushed 3Å molecular sieves in dichloromethane.
45

 Stirring was continued for 4 h under 

nitrogen. The drawback of this method is the formation of viscous tarry residues that 

complicate product isolation and limit recovery. Addition of powdered molecular sieves 

simplified the work-up somewhat; the reduced chromium salts and other reagent derived 

byproducts are deposited onto these solids which can then be readily removed by filtration. 

The pure aldehyde 101 was isolated in 38% yield as a colourless oil following column 

chromatography. Significantly Milner reported a crude yield of 72% which did not require 

further purification.
45

 It was envisaged that the decreased yield in this study was associated in 

part with the additional purification step and in part due to insufficient product recovery. 

Further optimisation of the PCC oxidation is warranted to improve the yield. However, for 

the needs of this study, ready access to multi-gram quantities of the desired aldehyde 101 was 

enabled by this method as outlined in Scheme 4.26.  

 

 

 

 

                                                 
vi
 Milner

45
 reports the C(1)H2 triplet at H 3.24 ppm in the experimental data, however, in the results and 

discussion section the 
1
H NMR spectrum is described at H 3.64 ppm, which is in agreement with the 

1
H NMR 

data reported in this study and literature reports.
67,68

 Thus it is believed Milner erroneously reported H 3.24 ppm 

for the C(1)H2 protons in the experimental data. 
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        114                               113 (49% yield)                     108 (79% yield)                    101 (38% yield) 

 

Scheme 4.26 

 

The aldehyde 101 is characterised in the IR spectrum by a carbonyl stretch at νmax 

1722 cm
−1

 and the symmetric and asymmetric bands of the nitro group at νmax 1552 and 1386 

cm
−1

. The 
1
H NMR spectrum of 6-nitrohexanal 101 has a distinct doublet of triplets (J 7.2, 

1.5) at H 2.47-2.52 ppm attributable to the methylene protons C(2)H2 alpha to the carbonyl 

group. Coupling of the aldehyde proton C(1)H with the C(2)H2 methylene protons provides a 

triplet (J 1.5) at H 9.78 ppm. All spectral characteristics were as described in the literature.
60

 

In summary a three-step synthetic route to 6-nitrohexanal 101 from inexpensive, 

commercially available ethyl 6-bromohexanoate 114 has been successfully devised. Multi-

gram quantities of the pure desired aldehyde 101 were accessible via this route despite the 

low- yielding PCC oxidation step. This synthetic sequence to 6-nitrohexanal 101 reduces the 

number of synthetic steps from five to three relative to the procedure outlined by Milner,
45

 

due to the exclusion of the synthesis of 2-nitrocyclohexanone 103, and in addition the overall 

safety of the synthetic protocol is increased. 

4.2.3.2 Synthesis of (±)-2-nitrocyclohexanol (±)-99 

The next step in this study was the synthesis of the (±)-2-nitrocyclohexanols (±)-99a 

and (±)-99b. Two methods were explored, the unreported intramolecular nitroaldol reaction 

of 6-nitrohexanal 101 and the literature procedure by Hönig,
35

 later adapted by Milner,
45

 

which involved NaBH4 reduction of 2-nitrocyclohexanone 103. Both routes were anticipated 

to readily provide a mixture of diastereomeric nitroalcohols (±)-99a and (±)-99b.  

As multi-gram quantities of 6-nitrohexanal 101 were now readily available, it was 

envisaged that access to the (±)-2-nitrocyclohexanols (±)-99a and (±)-99b could be achieved 

through the intramolecular variant of the Henry reaction. Triethylamine was added in one 

portion to a solution of 6-nitrohexanal 101 in chloroform (Scheme 4.27). Stirring was 

continued at room temperature until IR analysis indicated the disappearance of the aldehyde 

carbonyl stretch at νmax 1722 cm
−1

, signifying reaction completion. 
1
H NMR analysis of the 

crude product revealed a mixture of diastereomeric nitroalcohols (±)-99a and (±)-99b (14 : 86 

respectively).   

 

 

 

 

                         

                                 

 

 

Scheme 4.27 

 

        101      (±)-99a                 (±)-99b 

Product ratio by 
1
H NMR           14        86 

Isolated yield           4%       53% 
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The diastereomeric β-nitroalcohols (±)-99a and (±)-99b, have comparable polarity, 

but isolation of pure fractions of the (±)-cis- and (±)-trans-2-nitrocyclohexanols (±)-99a and 

(±)-99b was achievable by careful chromatographic purification. However, complete 

separation by this means was not possible, thus reduced yields are reported.  

The assignment of the relative stereochemistry of the structures of (±)-99a and (±)-

99b was determined by Milner through hydrolase-mediated acetylation of (±)-99b to 

enantiopure (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R)-100b with subsequent 

crystallographic determination of the structure.
45

 Hönig had previously described the 

synthesis of (±)-99a and (±)-99b by NaBH4 reduction and assigned the 
1
H NMR details of the 

trans-isomer (±)-99b which were consistent with our data.
35

    

Spectral characteristics for the β-nitroalcohols (±)-99a and (±)-99b agreed with those 

described by Milner
45

 as well as literature reports.
35

 As anticipated, the IR spectra of the two 

diastereomers (±)-cis-2-nitrocyclohexanol (±)-99a and the more polar (±)-trans-2-

nitrocyclohexanol (±)-99b are very similar with a broad OH absorption at νmax 3256-3427 

cm
−1

 and the characteristic nitro stretches at νmax 1551-1548 and 1376-1383 cm
−1

. 

Analysis by 
1
H NMR identifies key spectroscopic features distinct to each 

diastereomer, (±)-99a or (±)-99b (Figure 4.3). The principal signals in the 
1
H NMR of the 

(±)-cis-2-nitrocyclohexanol (±)-99a include the doublet at H 2.56 ppm for the OH peak and 

the multiplet at H 4.34-4.41 ppm representative of the proton alpha to the nitro moiety 

C(2)H. The proton geminal to the alcohol group C(1)H appears as a broad singlet at H 4.52 

ppm.  

The characteristic hydroxyl signal of the corresponding (±)-trans-diastereomer (±)-

99b appears as a doublet at H 2.61 ppm. Significantly in the more polar trans-diastereomer 

(±)-99b the order of 
1
H NMR signals for the protons alpha to the nitro C(2)H and alcohol 

moiety C(1)H are inverted relative to the cis-diastereomer (±)-99a characteristic of their 

relative stereochemistry. The C(1)H multiplet is found at H 4.04-4.12 ppm while the C(2)H 

proton appears as a multiplet at H 4.26-4.34 ppm.  
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Figure 4.3: 1H NMR Spectrum I: Crude product following intramolecular Henry reaction containing a mixture of (±)-

cis- and (±)-trans-2-nitrocyclohexanols (±)-99a and (±)-99b, 14 : 86 respectively. Spectrum II: Purified (±)-trans-2-

nitrocyclohexanol (±)-99b following column chromatography. Spectrum III: Purified (±)-cis-2-nitrocyclohexanol (±)-99a 

following column chromatography (all spectra recorded in CDCl3 at 300 MHz). 

 

As mentioned previously, the (±)-cis- and (±)-trans-2-nitrocyclohexanols (±)-99a and 

(±)-99b are also accessible via NaBH4 reduction of 2-nitrocyclohexanone 103. One of the 

initial synthetic objectives of this study was to limit utilisation of this β-nitro ketone 103 in 

the synthetic protocol due to its hazardous preparation and high commercial cost. However, 

the direct reduction of commercially available 2-nitrocyclohexanone 103 provides 

straightforward access to the desired β-nitroalcohols (±)-99a and (±)-99b, in good yield and 

high purity, thus this synthetic protocol was performed in conjunction with the development 

of a novel synthetic route to (±)-99a and (±)-99b. 

The reduction procedure was adapted from Hönig.
35

 A solution of the ketone 103 in 

distilled ethanol was added dropwise to 1.0 equivalent of sodium borohydride and ethanol at 

0 °C to yield a mixture of diastereomeric alcohols, (±)-99a and (±)-99b and the elimination 

product 1-nitrocyclohexene 102 (11 : 72 : 17 respectively) (Scheme 4.28). Milner reported a 

similar ratio of products on reduction of the 2-nitrocyclohexanone 103 (12 : 71 : 17 

respectively).
45

    

 

 

 

 

 

                 

    

 

Scheme 4.28 

       103      (±)-99a               (±)-99b    102 

Product ratio by 
1
H NMR           11         72      17 

Isolated yield           4%        36%     12% 

Spectrum I 

Spectrum II 

Spectrum III 

(±)-99a 

(±)-99a (±)-99b 

14 : 86 

(±)-99b 
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The nitro alkene 102, the most polar component of the reaction mixture was easily 

removed upon column chromatography and isolated as a yellow oil. 1-Nitrocyclohexene 102 

is characterised in the IR spectrum by the alkene stretch at νmax 1668 cm
−1

 and nitro 

absorption bands at νmax 1515 and 1333 cm
−1

. The 
1
H NMR displays a distinctive multiplet at 

H 7.31-7.35 ppm due to the vinylic proton. This side product is produced due to the 

relatively high acidity of the proton geminal to the nitro group of (±)-cis-2-nitrocyclohexanol 

(±)-99a in conjunction with the necessary antiperiplanar conformation leading to dehydration 

(Scheme 4.29).  

 

 

 

 

 

 

 

 

                                                                                                           102 

 

Scheme 4.29 

 

Notably this alkene by-product 102 is not evident in the triethylamine-catalysed 

intramolecular Henry reaction of 6-nitrohexanal 101 presumably due to less basic nature of 

triethylamine. Spectral characteristic of isolated diastereomeric alcohols (±)-99a and (±)-99b, 

were as previously described.  

Thus, the new route to nitrocyclohexanols (±)-99a and (±)-99b via the intramolecular 

Henry reaction developed during this work offers distinct advantages relative to the literature 

procedure.
35,45

 Firstly, it avoids use or synthesis of 2-nitrocyclohexanone 103 but more 

importantly, contamination with nitrocyclohexene 102 is avoided. The diastereomeric ratio of 

(±)-99a and (±)-99b from each of the routes is comparable. 

4.2.3.3 Synthesis of (±)-2-nitrocyclohexyl acetate (±)-100 

The separated (±)-cis- and (±)-trans-2-nitrocyclohexanols (±)-99a and (±)-99b, were 

successfully converted to their corresponding acetates (±)-100a and (±)-100b employing the 

optimised conditions outlined by Milner (Scheme 4.30).
45

  

Acetylation of (±)-trans-2-nitrocyclohexanol (±)-100b was achieved using acetic 

anhydride, pyridine and N,N-dimethylaminopyridine (DMAP). The trans-acetate (±)-100b 

was isolated in 69% yield as a clear oil which solidified on storage on the bench to a white 

crystalline solid. The trans-acetate (±)-100b was sufficiently pure to use for chiral HPLC 

development without further purification.  
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                                          (±)-99b                                (±)-100b (69% yield) 

 

 

 

 

                                          (±)-99a                                (±)-100a (85% yield) 

 

Scheme 4.30 

 

When these conditions were applied by Milner to the acetylation of the cis-

diastereomer (±)-99a, only starting material (±)-99a was recovered together with a trace of 

elimination product 102. Thus, a new synthetic route was developed by Milner for the 

acetylation of (±)-cis-2-nitrocyclohexanol (±)-99a which employed acetyl chloride and 

excess DMAP.
45

 This adapted methodology was applied in this study and the cis-acetate (±)-

100a was isolated as a clear oil in 85% yield (Scheme 4.30). Additional signals were apparent 

in the 
1
H NMR spectrum of the crude product which were assigned to unreacted starting 

material (±)-99a and residual DMAP; this is in accordance with earlier reports where reaction 

completion was similarly not achieved.
45

 Purification by column chromatography was not 

attempted due to the reported formation of the elimination product 102 on silica gel.
45

 Thus, 

the crude cis-acetate (±)-100a was utilised for chiral HPLC method development. 

IR analysis of the cis- and trans-diastereomers (±)-100a and (±)-100b display 

characteristic carbonyl stretches of the acetate moiety at νmax 1745 and 1737 cm
−1

 

respectively. The 
1
H NMR spectra are illustrated in Figure 4.4. The two diastereomers are 

easily identifiable due to the characteristic multiplicity and chemical shift of the C(1)H 

hydrogen alpha to the acetate moiety. In (±)-cis-2-nitrocyclohexyl acetate (±)-100a the C(1)H 

hydrogen appears as a multiplet at H 5.52-5.65 ppm. In the analogous (±)-trans-2-

nitrocyclohexyl acetate this C(1)H proton appears as a distinctive doublet of doublet of 

doublets at H 5.19-5.27 ppm. 

Assignment of the relative stereochemistry of (±)-100a and (±)-100b was confirmed 

by X-ray crystallography of (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R)-100b, acquired 

from a preparative-scale hydrolase-mediated acetylation.
45

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4                                                                                                 Results and Discussion 

                                                                                                 

 

166  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: 1H NMR Spectrum I: Crude (±)-cis-2-nitrocyclohexyl acetate (±)-100a, additional signals present due to 

(±)-cis-2-nitrocyclohexanol (±)-99a (12%) and N,N-dimethylaminopyridine (5%). Spectrum II: Crude (±)-trans-2-

nitrocyclohexyl acetate (±)-100b (all spectra recorded in CDCl3 at 300 MHz).  

4.2.4 Chiral HPLC method development 

Once the racemic materials were prepared, the next step was to develop a chiral 

HPLC method where multiple stereoisomers could be eluted on a single trace to facilitate 

analysis and optimisation. In this study, resolution of the following enantiomeric pairs in a 

single injection was required for the determination of the enantiopurity of the hydrolase-

mediated transesterification products and development of quantification calibration curves;  

 (±)-cis-2-Nitrocyclohexanol (±)-99a and (±)-cis-2-nitrocyclohexyl acetate (±)-100a  

 (±)-trans-2-Nitrocyclohexanol (±)-99b and (±)-trans-2-nitrocyclohexyl acetate (±)-

100b  

 (±)-cis-2-Nitrocyclohexanol (±)-99a and (±)-trans-2-nitrocyclohexanol (±)-99b  

Previous work within the research group had successfully resolved the enantiomeric 

pairs of both the nitroacetates (±)-100a and (±)-100b and nitroalcohols (±)-99a and (±)-99b 

in one injection, utilising the Chiralcel
® 

OJ-H column at room temperature with 

isopropanol/hexane (1 : 99), a flow rate  of 0.9 mL/min and a detector wavelength of 220 

nm.
45

 On implementation of these conditions, resolution of each of the enantiomers of (±)-

99a, (±)-99b and (±)-100b was achieved. However, baseline separation of (±)-cis-2-

nitrocyclohexyl acetate (±)-100a was not attained. Thus, under these conditions two out of 

the three desired resolutions were developed. (±)-trans-2-Nitrocyclohexanol (±)-99b and (±)-

trans-2-nitrocyclohexyl acetate (±)-100b were resolved in a single trace. Similarly (±)-cis-2-

nitrocyclohexanol (±)-99a and (±)-trans-2-nitrocyclohexanol (±)-99b were obtained in a 

single injection.  

Resolution of the enantiomeric pairs of (±)-cis-2-nitrocyclohexanol (±)-99a and (±)-

cis-2-nitrocyclohexyl acetate (±)-100a was therefore explored utilising a series of chiral 

(±)-100b 

(±)-100a 

DMAP 

(±)-cis-2-Nitrocyclohexanol (±)-99a 

Spectrum I 

Spectrum II 
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columns including the Chiralcel
®

 AS-H and Chiralpak
®
 IB. A variety of isopropanol/hexane 

solvent composition, or flow rates and temperatures for each resolution was investigated. 

Following a significant amount of method development, the Chiralcel
®
 OD-H column led to 

complete baseline separation of both sets of enantiomers (±)-99a and (±)-100a at room 

temperature with identical conditions for solvent and flow rate to those outlined for the 

aforementioned successful resolutions (Figure 4.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: HPLC trace of (±)-cis-2-nitrocyclohexyl acetate (±)-100a and (±)-cis-2-nitrocyclohexanol (±)-99a.  

For HPLC conditions see appendix I. 

 

One of the primary objectives of this study was quantification of the (±)-cis- and (±)-

trans-2-nitrocyclohexanols (±)-99a and (±)-99b by chiral HPLC
 

analysis to allow 

determination of product ratios and comparison with ratios determined by 
1
H NMR 

spectroscopy if feasible. Calibration curves of (±)-cis- and (±)-trans-2-nitrocyclohexanols 

(±)-99a and (±)-99b were generated by injecting standards of five known concentrations of 

(±)-99a or (±)-99b (ranging from 0.2 mg/mL to 1.2 mg/mL) and processing response factors 

based on peak area. The linear regression of a plot of peak area versus concentration 

demonstrates the direct proportionality between the variables. It depends upon the linear 

response of the detector and also upon the accurate preparation of the standards. A least 

squares regression is employed and the value of the coefficient of determination (r
2 

value) is 

evaluated as a measure of acceptability. A linear fit with a r
2
 value >0.990 is considered 

satisfactory and all calibration curves in this study achieve this standard signifying the high 

precision of the calculation of unknown concentration. The chiral HPLC peak area of the 

unknown concentration was measured and by interpolation with the relevant calibration curve 

the concentration of the cis- or trans-2-nitrocyclohexanols 99a or 99b analyte was 

determined. Calibration curves for both the cis- and trans-diastereomers (±)-99a and (±)-99b 

for 2μL and 10 μL injection volumes were prepared during this research (Figure 4.6 and 4.7). 

The development of calibration curves to allow quantification of cis- and trans-2-

nitrocyclohexanols 99a and 99b by chiral HPLC
 
analysis denoted a significant advance in 

this study allowing for deeper understanding of the mechanistic detail of the dynamic 

interconversion process. Direct comparison of chiral HPLC and 
1
H NMR experiments 

investigating the dynamic interconversion of the two diastereomers (±)-99a and (±)-99b 

could now be conducted. 

(1R,2S)-100a 

 

(1S,2R)-100a 

 

(1R,2S)-99a 

 

(1S,2R)-99a 
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Calibration curve: (±)-cis-2-Nitrocyclohexanol (±)-99a (2 μL injection volume)
vii

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Calibration curve (±)-cis-2-nitrocyclohexanol (±)-99a (2 μL injection volume). 

Area (x 103) vs. concentration (mg/1 mL). 

 

 

 

Calibration curve: (±)-trans-2-Nitrocyclohexanol (±)-99b (2 μL injection volume)
IV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.7: Calibration curve (±)-trans-2-nitrocyclohexanol (±)-99b (2 μL injection volume). 

Area (x 103) vs. concentration (mg/1 mL). 

                                                 
vii

 Calibration curves were conducted on a Waters alliance 2690 separations module with a PDA detector. The 

Chiralcel
®
 OJ-H column was utilised at room temperature with isopropanol/hexane (1 : 99), a flow rate of 0.9 

mL/min and λmax at 209.8 nm. 
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4.2.5 Evidence of a dynamic interconversion process – 
1
H NMR analysis 

In Milner’s preliminary study 
1
H NMR analysis indicated that triethylamine-mediated 

ring closing of 6-nitrohexanal 101 to (±)-cis- and (±)-trans-2-nitrocyclohexanols, (±)-99a and 

(±)-99b, and subsequent dynamic interconversion between the two diastereomers (±)-99a and 

(±)-99b is possible.
45

 However, this initial premise was challenged on exploration of the one-

pot intramolecular nitroaldol reaction with lipase-mediated kinetic resolution. It became 

evident that the dynamic ring opening/closing of (±)-cis- and (±)-trans-2-nitrocyclohexanol 

(±)-99a and (±)-99b via 6-nitrohexanal 101 was not the predominant process taking place, 

but rather epimerisation; thus triethylamine is an ineffective base for this process. Towards 

the end of Milner’s study, a series of base screening experiments was conducted monitored 

closely by chiral HPLC analysis, and, significantly, identified that both ring opening/closing 

and epimerisation mechanisms operate when DBU is employed.
45

 Thus, this preliminary 

result suggested that optimisation of the base-mediated dynamic process may lead to an 

efficient dynamic resolution protocol. 

The first step in this investigation was to employ 
1
H NMR analysis to investigate the 

DBU-mediated ring closing of 6-nitrohexanal 101 to form the diastereomeric β-nitroalcohols 

(±)-99a and (±)-99b. Previous to this investigation only triethylamine had been explored. 

Two experiments involving 0.10 and 0.05 equivalent of DBU and the precursor aldehyde 101 

were conducted in deuterated chloroform in a NMR tube in order to enable direct monitoring 

by 
1
H NMR analysis.  

 

Table 4.12: Evidence for dynamic interconversion –  

6-nitrohexanal 101, CDCl3 and DBU (0.10 eq.) 

 

 
 

 

 

 

                        101                                                   (±)-99a               (±)-99b 

  

As is evident from Table 4.12 and Figure 4.8 6-nitrohexanal 101 cyclises readily to 

the (±)-2-nitrocyclohexanols (±)-99a and (±)-99b in the presence of 0.10 equivalent of DBU. 

Furthermore, the thermodynamic ratio of (±)-99a and (±)-99b is achieved within 4 h and was 

determined to be 16 : 84 respectively. This correlates with the thermodynamic ratio obtained 

by Milner (15 : 85 respectively) when 1.00 and 5.00 equivalents of triethylamine were 

utilised in this protocol.
45

 It is apparent from this study that the (±)-trans-2-nitrocyclohexanol 

Reaction Time 101 (%) (±)-99a (%) (±)-99b (%) 

0 min 21 19 60 

17 min 20 18 62 

27 min 14 21 65 

1 h 27 min 4 18 78 

3 h 29 min 0 18 82 

9 h 29 min 0 17 83 

15 h 29 min 0 17 83 

20 h 22 min 0 15 85 

22 h 37 min 0 16 84 

20 days 0 14 86 
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(±)-99b is the thermodynamically more stable diastereomer and the conversion to (±)-cis-2-

nitrocyclohexanol (±)-99a never exceeded 21% cis in this investigation. The variation in the 

ratio of (±)-99a and (±)-99b over time may be indicative of dynamic interconversion via ring 

opening and closing of the aldehyde 101. However, these results may also be interpreted as 

evidence of epimerisation at the C2 stereogenic centre, therefore they were interpreted with 

caution at this point in the study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Stacked 1H NMR spectra - Evidence for dynamic interconversion, 6-nitrohexanal 101 and DBU (0.10 eq.). 

 

Significantly, integration of the C(2)HNO2 signals was low in the 
1
H NMR spectra 

from reaction time 1 h 27 min onwards. This may be rationalised by deuterium exchange at 

this acidic proton. If this is the case, this is suggestive of the epimerisation process.  

Following a reaction time of 35 days the 
1
H NMR sample was diluted in chloroform 

and the DBU removed by washing with saturated aqueous ammonium chloride solution. 
1
H 

NMR analysis of the isolated products (±)-99a and (±)-99b indicated a thermodynamic ratio 

of (±)-cis-2-nitrocyclohexanol (±)-99a and (±)-trans-2-nitrocyclohexanol (±)-99b of 11 : 89 

respectively. The sample was then submitted to chiral HPLC analysis which determined both 

the (±)-cis- and (±)-trans-2-nitrocyclohexanol (±)-99a and (±)-99b to be racemic (Figure 

4.9). Additionally quantification of  (±)-99a and (±)-99b by chiral HPLC indicated a 

thermodynamic ratio of 15 : 85, supporting the ratio determined by 
1
H NMR analysis. This 

correlation between the chiral HPLC and 
1
H NMR data was very important as it enabled 

monitoring of the dynamic process by chiral HPLC.  

 

 

 

 

 

 

Spectrum I 

6-nitrohexanal 

Spectrum II 

Time 27 min 

 

Spectrum III 

Time 15 h 29 min 

 

Spectrum IV 

Time 22 h 37 min 

 

(±)-99a (±)-99b 

101 

16% : 84%  

(±)-99a : (±)-99b    

 

17% : 83%  

(±)-99a : (±)-99b  

 

14% : 21% : 65% 

101 : (±)-99a : (±)-99b   
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Figure 4.9: HPLC trace (2 μL injection volume) of  1H NMR sample DBU (0.10 eq.) and 6-nitrohexanal 101, 

reaction time 35 days. For HPLC conditions see appendix I. 

 

In contrast, in the presence of 0.05 equivalent of DBU, complete cyclisation of 6-

nitrohexanal 101 to the corresponding 2-nitrocyclohexanols (±)-99a and (±)-99b was not 

achieved within 27 h and furthermore the thermodynamic ratio was not achieved (Table 

4.13). Notably, no decrease in integration of the C(2)HNO2 signals was observed at 0.05 

equivalent of DBU.  

 

Table 4.13: Evidence for dynamic interconversion –  

6-nitrohexanal 101, CDCl3 and DBU (0.05 eq.) 

 

 

 

 

 

                           101                                                  (±)-99a                (±)-99b 

 

 

 

 

Reaction Time 101 (%) (±)-99a (%) (±)-99b (%) 

0 min 92 4 4 

5 min 92 4 4 

7 min 92 4 4 

34 min 91 4.5 4.5 

1 h 35 min 89 5 6 

3 h 35 min 86.5 6.5 7 

9 h 34 min 78 10 12 

15 h 35 min 71 14 15 

20 h 28 min 65 16 19 

22 h 43 min 62 18 20 

23 h 50 min 60 20 20 

27 h 37 min 56 22 22 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(±)-99a 

15% 

(±)-99b 

85% 
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4.2.6 Hydrolase-mediated kinetic resolution – analytical screens 

4.2.6.1 Analytical screening protocol – vinyl acetate as both acyl donor and solvent  

Essential for the development of an efficient dynamic process is that one enantiomer 

of (±)-cis-2-nitrocyclohexanol (±)-99a or (±)-trans-2-nitrocyclohexanol (±)-99b is efficiently 

and selectively acetylated. Milner conducted screening experiments with the specific aim to 

identify a hydrolase which would selectively transform one diastereomer of (±)-99a or (±)-

99b enantioselectively.
45

 The hydrolase-mediated kinetic resolution of (±)-cis-2-

nitrocyclohexanol (±)-99a and (±)-trans-2-nitrocyclohexanol (±)-99b were examined 

independently. In Milner’s study, any hydrolase which transformed the (±)-cis-2-

nitrocyclohexanol (±)-99a with high enantioselectivity and efficiency also performed 

efficiently for the transesterification of (±)-trans-2-nitrocyclohexanol (±)-99b. Thus, lack of 

hydrolase diastereoselectivity severely hampered the early development of the hydrolase- 

mediated dynamic kinetic resolution process. 

A primary objective of this study was to screen hydrolases which had not previously 

been investigated for the enzyme-mediated transesterification of (±)-trans- or/and (±)-cis-2-

nitrocyclohexanols (±)-99a and (±)-99b. Ideally identification of a lipase that selectively 

acetylated one diastereomer (±)-99a or (±)-99b efficiently and with excellent 

enantioselectivity would potentially overcome a significant limitation of the desired one-pot 

dynamic resolution process.  

All hydrolases screened were kindly donated by Almac Sciences. An optimised 

analytical screening protocol developed by Milner for transesterification of alcohols (±)-99a 

and (±)-99b was implemented in this study.
45

 A spatula tip of enzyme was added to ~20 mg 

of the (±)-2-nitrocyclohexanol substrate (±)-99a or (±)-99b in 1 mL of vinyl acetate and 

incubated on a shaking platform for 24 h at 24 °C and 3 h at 40 °C unless otherwise stated. 

Use of vinyl acetate as both acyl donor and solvent is highly advantageous as this enol ester 

irreversibly forces the enzymatic process in the forward direction preventing loss of 

enantioselectivity associated with the reversible nature of the transesterification.
70

 The 

reaction is irreversible due to the formation of vinyl alcohol which tautomerises rapidly and 

essentially irreversibly to acetaldehyde (Scheme 4.31). Furthermore, vinyl acetate is 

inexpensive and volatile and thus easily removed upon work-up.  

 

 

 

 

 

 

 

 

Scheme 4.31 

 

The work-up of the analytical screens involved initial filtration of the reaction mixture 

through Celite
®
 to remove the hydrolase. The Celite

®
 was then washed with ethyl acetate and 

all organic extracts combined and concentrated under reduced pressure. The crude product 

was analysed by 
1
H NMR spectroscopy to determine product ratio and extent of conversion. 

Significantly the conversion determined by 
1
H NMR analysis agreed very closely with those 
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estimated based on the enantiomeric ratio. In this study the E-value was calculated using the 

program developed by Kroutil et al.
71

  

For efficiency, chiral HPLC was only conducted for conversions >10% where the 

enantiopurities of both the substrate alcohol 99 and generated acetate 100 could be 

determined via a single injection of the crude reaction mixture without chromatographic 

separation. All chiral HPLC conditions are detailed in appendix I. When the second 

enantiomer was absent, the enantiomeric excess was stated as >98% ee.   

4.2.6.2 Stereochemical assignment of the products of transesterification 

The enantioselectivities of lipases are largely dependent on the structure of the 

substrate as formulated by Kazlauskas.
72,73

 This empirical rule is highly effective for lipase 

action on secondary alcohols, predicting which enantiomer reacts faster based on the relative 

sizes of the substituents at the stereocentre.  

 

 

 

 

 

Figure 4.10 

 

This rule generalizes the observed enantioselectivity of hydrolases in both hydrolysis and 

tranesterifications reactions. In transesterification reactions, the enantiomer shown in Figure 

4.10 reacts faster; in hydrolysis reactions, the ester of the enantiomer shown is preferentially 

catalysed. Accordingly, the Kazlauskas’s rule is useful as a guideline for predicting substrates 

that can be efficiently resolved by lipases as well as the stereochemistry of resolved 

substrates. 

 When this rule was applied to the hydrolase-mediated transesterification of (±)-cis- 

and (±)-trans-2-nitrocyclohexanol (±)-99a and (±)-99b the following stereochemical outcome 

was predicted (Scheme 4.32). 

  

 

 

                               (±)-99b                                       (1R,2R)-100b      (1S,2S)-99b 

 

 

 

                               (±)-99a                                       (1R,2S)-100a       (1S,2R)-99a 

 

Scheme 4.32 

  

The predicted assignment by Kazlauskas’s rule was in direct agreement with Milner’s 

study.
45

 In the preparative-scale Pseudomonas fluorescens mediated transesterification of (±)-

trans-2-nitrocyclohexanol (±)-99b, Milner isolated the (1R,2R)-trans-2-nitrocyclohexyl 

acetate (1R,2R)-100b in >99% ee. The absolute stereochemistry of enantiopure (1R,2R)-100b 
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was confirmed by single crystal X-ray diffraction and assigned as (1R,2R)-trans-2-

nitrocylohexylacetate (1R,2R)-100b. The absolute stereochemistry of the untransformed 

alcohol therefore has to be (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b. Furthermore, this 

stereochemical outcome agreed with Hönig’s assignment of absolute stereochemistry of the 

products of the Candida cylindracea mediated hydrolysis of a butyrate of (±)-99b providing 

access to the complementary enantiopure alcohol (1R,2R)-99b.
35

 

Due to the ease of formation of the elimination product 102 during purification Milner 

was unable to obtain an analytically pure sample of enantioenriched cis-2-nitrocyclohexyl 

acetate 100a or cis-2-nitrocyclohexanol 99a.
45

 Thus, it should be noted that in this study the 

stereochemical assignment of the transesterification products of (±)-cis-2-nitrocyclohexanol 

(±)-99a were tentatively assigned as (1R,2S)-cis-2-nitrocyclohexyl acetate (1R,2S)-100a and 

(1S,2R)-cis-2-nitrocyclohexanol (1S,2R)-99a by analogy to the transesterification of (±)-

trans-2-nitrocyclohexanol (±)-99b and in accordance to Kazlauskas’s rule.
72,73

  

4.2.6.3 Hydrolase-mediated transesterification of (±)-cis-2-nitrocyclohexanol (±)-99a 

 The first substrate screened was (±)-cis-2-nitrocyclohexanol (±)-99a utilising 

enzymes that had not previously been investigated for this resolution. The primary objective 

of this screen was to compare efficiencies and enantioselectivities of the resolution of the (±)-

cis-2-nitrocyclohexanol (±)-99a with that of the (±)-trans-2-nitrocyclohexanol (±)-99b to 

identify a hydrolase selective to one diastereomer. Notably, some of the lipases listed in 

Table 4.14 have previously been screened by Milner in the resolution of the trans-

diastereomer (±)-99b
45

 and thus comparison between the enantioselectivities obtained in the 

kinetic resolution of (±)-cis-2-nitrocyclohexanol (±)-99a in this study with Milner’s results of 

the kinetic resolution of (±)-trans-2-nitrocyclohexanol (±)-99b was conducted.
36,45

 In the case 

of Candida antarctica lipase B (immob), Candida antarctica lipase A, and Achromobacter 

spp., screening was performed on both diastereomers (±)-99a or (±)-99b before efficiency 

and enantioselectivity was compared.  

 It is apparent from Table 4.14 that many of the hydrolases resulted in limited 

transesterification with conversions <10% recorded. Significantly some extent of acetylation 

was observed with each of the hydrolases Candida antarctica lipase B (immob), Alcaligenes 

spp. 1, and Candida antarctica lipase A (entries 1, 2 and 8, Table 4.14). The rate of 

conversions of Candida antarctica lipase B (immob) and Alcaligenes spp. 1 mediated kinetic 

resolution of (±)-cis-2-nitrocyclohexanol (±)-99a was deduced by 
1
H NMR to be 19% and 

18% respectively. The limited efficiency of the transesterification restricted the enantiopurity 

of the recovered alcohol (1S,2R)-99a, however, the generated acetate (1R,2S)-100a was 

obtained in high enantiomeric excess (≥92% ee). In the case of Candida antarctica lipase A a 

lack of discrimination was displayed of the enantiomers of (±)-cis-2-nitrocyclohexanol (±)-

99a with a conversion greater than the ideal 50% achieved, thus low enantiopurity of the 

generated acetate (1R,2S)-100a was observed. Notably no elimination product 102 was 

observed in the 
1
H NMR spectrum of the crude products. 
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Table 4.14: Hydrolase-mediated transesterification of (±)-cis-2-nitrocyclohexanol  

(±)-99a in vinyl acetate 
 

 

 

 

 

                         (±)-99a                                       (1R,2S)-100a       (1S,2R)-99a 

a. The ratio of (±)-cis-2-nitrocyclohexanol (±)-99a to (±)-trans-2-nitrocyclohexanol (±)-99b in the starting material, determined by 1H 

NMR spectroscopy. 

b. Time for tranesterification of the nitroalcohol was 51 h at 24 °C. 
c. Unknown impurity observed in the crude 1H NMR. 

 

Previous research by Milner had established that Rhizopus spp., Aspergillus niger, 

Porcine pancrease Type II, and Pig liver esterase also proceeded with trace transesterification 

(<10% conversion) in the resolution of (±)-trans-2-nitrocyclohexanol (±)-99b.
45

 Thus, these 

lipases were concluded to be unsuitable for the development of a dynamic kinetic resolution 

process due to their lack of reactivity for both diastereomers. 

  Milner had also previously screened Alcaligenes spp. 1 and Mucor meihei for the 

transesterification of the (±)-trans-2-nitrocyclohexanol (±)-99b (see Table 4.15).
45

 Poor 

conversion (37% and 17% respectively) and thus low enantiopurity of the recovered alcohol 

(53% ee and 32% ee respectively) was reported.
45

 In both cases the rate of acetylation was 

considered to be too similar to that observed in this study for the Alcaligenes spp. 1 and 

Mucor meihei mediated resolution of the (±)-cis-2-nitrocyclohexanol (±)-99a (entries 2 and 5, 

Table 4.14) and this, together with the poor enantioselection observed, deemed these lipases 

unsuitable for implementation in a dynamic kinetic process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry Enzyme Source 

Ratio 

99a : 99b
a
 

Conversion  

(%) 

ee  

(%) 
E 

Value 
E Calc. 

1
H 

NMR 

Alcohol 

cis-99a 

(1S,2R) 

Acetate 

cis-100a 

(1R,2S) 

1 Candida antarctica B (immob)
b
 96 : 4 23 19 29 95 51 

2 Alcaligenes spp. 1 96 : 4 20 18 23 92 30 

3 Rhizopus spp. 96 : 4 - <10 - - - 

4 Aspergillus niger 96 : 4 - <10 - - - 

5 Mucor meihei 96 : 4 - <10 - - - 

6 Porcine pancrease Type II 95 : 5 - <10 - - - 

7 Pig liver esterase 96 : 4 - <10 - - - 

8 Candida antarctica A 96 : 4 60 60
c
 80 54 7.8 

9 Achromobacter spp. 96 : 4 - <10 - - - 
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Table 4.15: Hydrolase-mediated transesterification of (±)-trans-2-nitrocyclohexanol 

(±)-99b in vinyl acetate
36,45

 
 

 

 

 

 

     (±)-99b                   (1R,2R)-100b       (1S,2S)-99b 

4.2.6.4 Hydrolase-mediated transesterification of (±)-trans-2-nitrocyclohexanol (±)-99b 

 The transesterification of the (±)-trans-2-nitrocyclohexanol (±)-99b was next 

investigated employing the conditions utilised for the resolution of the cis-diastereomer (±)-

99a. Achromobacter spp. and Candida antarctica lipase A (entries 2 and 3, Table 4.16) 

resulted in limited extent of conversion <10%. Excellent enantioselectivity was observed in 

the Candida antarctica lipase B (immob) mediated resolution of (±)-trans-2-

nitrocyclohexanol (±)-99b with an ideal conversion of 50% achieved (entry 1, Table 4.16). 

This hydrolase had previously been screened by Milner with similar excellent 

enantioselectivity observed for both the alcohol (1S,2S)-99b and acetate (1R,2R)-100b.
45

  

 

Table 4.16: Hydrolase-mediated transesterification of (±)-trans-2-nitrocyclohexanol 

(±)-99b in vinyl acetate 

 

 

 

 

 

     (±)-99b                   (1R,2R)-100b     (1S,2S)-99b 
 

a. Time for tranesterification of the nitroalcohol was 51 h at 24 °C. 

b.  The ratio of (±)-cis-2-nitrocyclohexanol (±)-99a to (±)-trans-2-nitrocyclohexanol (±)-99b in the starting material, determined by 1H 

NMR spectroscopy. 
c. Unknown impurity observed in the 1H NMR of the crude product, conversion could not be obtained satisfactorily due to overlapping 

peaks. 

 

In this study, Achromobacter spp. also displayed limited transesterification in the 

resolution of (±)-cis-2-nitrocyclohexanol (±)-99a (entry 9, Table 4.14) and therefore was not 

considered suitable for the dynamic resolution process.  

Entry Enzyme Source 

Ratio 

99a : 99b
a
 

Conversion (%) ee (%) 

E 

Value E Calc. 
1
H NMR 

Alcohol 

trans-99b 

(1S,2S) 

Acetate 

trans-100b 

(1R,2R) 

1 Alcaligenes spp. 1 0 : 100 - 37 53 98 168 

2 Mucor meihei 0 : 100 - 17 32 >98 272 

Entry Enzyme Source 
Ratio 

99a : 99b
b
 

Conversion 

(%) 

ee  

(%) 

E value 

E Calc. 
1
H 

NMR 

Alcohol 

trans-99b 

(1S,2S) 

Acetate 

trans-100b 

(1R,2R) 

1 
Candida antarctica B 

(immob)
a
 

1 : 99 50 49 >98 >98 >200 

2 Candida antarctica A 1 : 99 9 -
c
 8 77 8.3 

3 Achromobacter spp. 1 : 99 - <10 - - - 
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In direct contrast to the limited transesterification (<10% conversion) observed with 

the (±)-trans-2-nitrocyclohexanol (±)-99b, Candida antarctica lipase A mediated 

transesterification of (±)-cis-2-nitrocyclohexanol (±)-99a (entry 8, Table 4.14) proceeded 

with 60% conversion albeit with poor stereocontrol. The substantial difference in relative 

rates of acetylation between the two diastereomers (±)-99a and (±)-99b supports further 

optimisation of Candida antarctica lipase A mediated transesterification to improve 

enantioselection of (±)-cis-2-nitrocyclohexanol (±)-99a and to extensively investigate the 

apparent diastereoselectivity.   

Candida antarctica lipase B (immob) demonstrated excellent enantioselectivity in the 

resolution of (±)-trans-2-nitrocyclohexanol (±)-99b with a 50% optimum conversion 

obtained. This compared favourably with the resolution of (±)-cis-2-nitrocyclohexanol (±)-

99a in this study with only 19% conversion reported under the same reaction conditions 

(entry 1, Table 4.14). This significant difference in rates of transesterification, together with 

the excellent enantioselection observed with Candida antarctica lipase B (immob) mediated 

resolution of (±)-trans-2-nitrocyclohexanol (±)-99b, demonstrates the greatest potential for 

development of a hydrolase-mediated diastereoselective resolution process. In this research, 

the identification of Candida antarctica lipase B (immob) as a lipase that demonstrates 

apparent diastereoselectivity signifies a major advancement in the development of a dynamic 

kinetic resolution of 2-nitrocyclohexanol 99.  

4.2.6.5 Diastereoselective hydrolase-mediated transesterification of (±)-cis- and (±)-trans-

2-nitrocyclohexanol (±)-99a and (±)-99b 

Further investigation of the relative rates of acetylation of the Candida antarctica 

lipase B (immob) mediated biotransformation of a equimolar mixture of diastereomers (±)-

99a and (±)-99b was warranted, with careful examination of the appearance of acetates 100a 

and 100b both by 
1
H NMR and chiral HPLC analysis over time. This potential 

diastereoselective process would ideally lead to faster kinetic resolution of the trans-

diastereomer (±)-99b in high enantioselectivity, leaving the cis-diastereomer (±)-99a 

unchanged. 

 A 50 : 50 mixture of (±)-cis- and (±)-trans-2-nitrocyclohexanol (±)-99a and (±)-99b 

was dissolved in vinyl acetate and Candida antarctica lipase B (immob) was charged to the 

reaction vessel. For the initial 15 h of the transesterification the reaction mixture was shaken 

at room temperature (~19 °C) however for the subsequent 33 h reaction temperature was set 

at 24 °C. Reaction monitoring by 
1
H NMR analysis was conducted throughout the incubation 

period. Aliquots of reaction mixture (~1 mL) were removed at regular intervals, filtered 

through Celite
®
 and concentrated prior to 

1
H NMR analysis. Due to overlapping signals in the 

1
H NMR spectrum quantification of cis-2-nitrocyclohexanol 99a could only be determined by 

integration of the C(2)H multiplet (4.34-4.41 ppm) however this resonance was in very close 

proximity to the C(2)H multiplet of the trans-diastereomer 99b (4.26-4.34 ppm) and thus 

accurate quantification of 99a was difficult in the presence of the acetates 100a and 100b. 

As anticipated from the preliminary analytical screens conducted on the individual 

diastereomers (±)-99a and (±)-99b, the dominant kinetic process was resolution of the (±)-

trans-2-nitrocyclohexanol (±)-99b (Table 4.17). After 15 h only 1% of the minor cis-acetate  

(1R,2S)-100a relative to 19% of the major trans-acetate (1R,2R)-100b was evident by 
1
H 

NMR spectroscopy demonstrating the inherent diastereoselectivity of the lipase Candida 

antarctica lipase B (immob). As the resolution progressed partial transformation of the less 

favoured diastereomer (±)-cis-2-nitrocyclohexanol (±)-99a was observed with 8% of the cis-
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acetate (1R,2S)-100a evident at 48 h, however this diastereomer still only constituted a minor 

component of the overall reaction mixture.  

Furthermore, chiral HPLC analysis conducted on the final extraction (48 h) indicated 

excellent enantiopurity of the trans-alcohol (1S,2S)-99b (>98% ee) and trans-acetate 

(1R,2R)-100b (98% ee) demonstrating efficient kinetic resolution as observed in entry 1, 

Table 4.16. High enantioselectivity was also observed of the minor cis-acetate (1R,2S)-100a 

however enantiopurity of the cis-alcohol (1S,2R)-99a was poor due to limited conversion. 

Notably as chiral HPLC conditions were not developed to allow resolution of all eight 

enantiomers of (±)-99a, (±)-99b, (±)-100a and (±)-100b on a single trace (see section 4.2.4), 

the reaction mixture was analysed under two different sets of HPLC conditions (see appendix 

I), allowing determination of enantiomeric excess of all reaction components.  

      In summary, Candida antarctica lipase B (immob) exhibited significant potential as a 

biocatalyst in the dynamic kinetic resolution process demonstrating good diastereoselectivity 

with excellent enantioselection of (1S,2S)-99b especially if the transesterification reaction 

time was limited to 15 h. Most significantly the observation that (±)-99b can be selectively 

transformed in the presence of (±)-99a by the biocatalyst Candida antarctica lipase B 

indicates that with detailed process development and variation of the biotransformation 

conditions and/or enzyme evolution that the diastereocontrol could be further optimised 

leading to essentially exclusive transformation of (±)-99b.  

 

Table 4.17: Diastereoselective hydrolase-mediated transesterification of (±)-cis- and  

(±)-trans-2-nitrocyclohexanol (±)-99a and (±)-99b in vinyl acetate 

  

 

 

                        (±)-99b                           (1R,2R)-100b      (1S,2S)-99b 

 

 

 

 

 

  

 

                       (±)-99a                             (1R,2S)-100a       (1S,2R)-99a 
 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the spectrum of the mixture of the 

crude material not mass recovery. 

b. The principal enantiomer was (1S,2R)-cis-2-nitrocyclohexanol (1S,2R)-99a. 

c. The principal enantiomer was (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b. 

d. The principal enantiomer was (1R,2S)-cis-2-nitrocyclohexyl acetate (1S,2R)-100a. 
e. The principal enantiomer was (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R) 100b. 

Enzyme 

Source 

Reaction 

Time 
Temp (°C) 

Alcohol (±)-99 Acetate (±)-100 

cis-99a 

(%)
a
 

[ee (%)]
b
 

trans-99b 

(%)
a
 

[ee (%)]
c
 

cis-100a 

(%)
a
 

[ee (%)]
d
 

trans-100b 

(%)
a
 

[ee (%)]
e
 

Candida 

antarctica 

B (immob) 

15 h 19 45 35 1 19 

24 h 24 48 28 3 21 

39 h 24 43 29 6 22 

48 h 24 
42 

[23] 

30 

[>98] 

8 

[96] 

20 

[98] 
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4.2.7 Evidence of a dynamic interconversion process – chiral HPLC 

In Milner’s preliminary study on combination of the triethylamine-mediated 

cyclisation of 6-nitrohexanal 101 with the Pseudomonas fluorescens catalysed 

transesterification it became apparent that kinetic resolution was occurring albeit with lack of 

diastereoselectivity (see section 4.2.1).
45

 Both cis- and trans-enantiomers (1R,2S)-cis- and 

(1R,2R)-trans-2-nitrocyclohexanol (1R,2S)-99a and (1R,2R)-99b were acetylated with 

excellent enantioselectivity observed of the generated acetates (1R,2S)-100a and (1R,2R)-

100b. Significantly this process failed to go to completion with residual (1R,2S)-cis- and 

(1R,2R)-trans-2-nitrocyclohexanol (1R,2S)-99a and (1R,2R)-99b clearly visible by chiral 

HPLC; thus a further addition of triethylamine was added to promote dynamic 

interconversion and reaction completion. Critically there was no change as seen by chiral 

HPLC in these minor enantiomers with no interconversion visible.
45

 

Thus, it was postulated in this early study that the triethylamine cis and trans 

interconversion process, believed at the time of investigation to operate via a dynamic ring 

opening/closing of 6-nitrohexanal 101, was in fact effected via epimerisation of the acidic 

proton  to the nitro moiety. While (1R,2S)-99a and (1R,2R)-99b enantiomers are 

interconverted, and similarly (1S,2S)-99b and (1S,2R)-99a are interconverted by 

epimerisation, interconversion between (1R,2S)-99a and (1R,2R)-99b with (1S,2R)-99a and 

(1S,2S)-99b is not possible as the epimerisation mechanism does not allow scrambling of the 

stereochemical integrity at C1 (Scheme 4.33). 

 

             (1R,2S)-99a                                                           (1S,2R)-99a  

 

 

 

 

 

 

 

 

 

                                                                     101 

 

 

 

 

             

             (1R,2R)-99b                                                          (1S,2S)-99b 

 

Scheme 4.33 

 

In order to confirm this theory, an investigation into the base-mediated 

interconversion process examining the stereochemistry at C1 and C2 by chiral HPLC was 

explored. Exposure of enantiopure (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b to a range 

of bases was investigated. Appearance of an enantiomer with variation of the stereochemistry 

at C1 i.e. appearance of the enantiomers (1R,2R)-99b and (1R,2S)-99a would indicate 

dynamic ring opening/closing process. Employing this protocol Milner identified DBU as a 
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potential base where both epimerisation and dynamic ring opening/closing mechanisms were 

tentatively observed.
45

 

The objective in this study was to explore in detail the DBU-mediated interconversion 

of enantiopure (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b, based on this promising one 

off preliminary result.
45

 The first step in this investigation was preparative-scale hydrolase-

mediated transesterification of (±)-trans-2-nitrocyclohexanol (±)-99b to access enantiopure 

(1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b for the DBU-mediated chiral HPLC 

investigation. The large scale resolution of (±)-trans-2-nitrocyclohexanol (±)-99b was 

adapted from a procedure described from Milner.
45

  

Pseudomonas fluorescens was the lipase of choice in Milner’s study for preparative-

scale demonstrating excellent efficiency and enantioselectivity in the analytical screens.
45

 In 

this study, an immobilised version of Pseudomonas fluorescens obtained commercially
46

 was 

analytically screened for the transesterification of (±)-trans-2-nitrocyclohexanol (±)-99b 

(Table 4.18). It was envisaged that an immobilised lipase would enhance stability, enable 

repeated use and facilitate the separation of the enzyme catalyst easily from the reaction 

mixture during preparative-scale. However, in the analytical screen the Pseudomonas 

fluorescens (immob) demonstrated limited efficiency achieving only 38% conversion after 

73.5 h. While high enantioselectivity of the trans-acetate (1R,2R)-100b was observed (>98% 

ee), the enantiopurity of the trans-alcohol (1S,2S)-99b suffered (61% ee) due to the poor 

conversion rate. Thus this immobilised lipase was considered unsuitable for preparative-scale 

and the free Pseudomonas fluorescens lipase employed by Milner was utilised instead.
45

 

 

Table 4.18: Pseudomonas fluorescens (immob) mediated transesterification of  

(±)-trans-2-nitrocyclohexanol(±)-99b in vinyl acetate 
 

 

 

  

                      

                          (±)-99b                       (1R,2R)-100b      (1S,2S)-99b 

a. Pseudomonas fluorescens (immob) was obtained commercially from Sigma-Aldrich.46 
b. The ratio of (±)-cis-2-nitrocyclohexanol (±)-99a to (±)-trans-2-nitrocyclohexanol (±)-99b in the starting material, determined by 1H 

NMR spectroscopy. 

 

In this study reaction monitoring of the preparative-scale free Pseudomonas 

fluorescens mediated transesterification of (±)-trans-2-nitrocyclohexanol (±)-99b was 

conducted at 28 h and 55 h; an aliquot was withdrawn and following work-up, 
1
H NMR and 

chiral HPLC analysis was performed to determine conversion and enantiopurity (Table 4.19). 

During the transesterification reaction, for the initial 28 h the reaction mixture was shaken at 

room temperature (<18 °C) however for the subsequent 51 h reaction temperature was fixed 

at 24 °C. An ideal 50% conversion estimated by the E-value calculator
71

 was obtained after 

79 h; significantly this was a far greater reaction time relative to Milner’s study where 50% 

Enzyme Source 
Ratio 

99a : 99b
b
 

Conversion 

(%) 

ee  

(%) 

E value 

E Calc. 
1
H NMR 

Alcohol 

trans-99b 

(1S, 2S) 

Acetate 

trans-100b 

(1R, 2R) 

Pseudomonas fluorescens 

(immob)
a
 

1 : 99 38 38 61 >98 185 
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conversion was achieved after 28 h at 20 °C.
45

 It was postulated that denaturation and 

decrease in catalytic activity of the hydrolase Pseudomonas fluorescens may have occurred 

over prolonged storage resulting in the increased reaction time.  

On reaction completion the reaction mixture was filtered through Celite
®

 to remove 

the hydrolase, and the hydrolase washed with ethyl acetate. The combined organic extracts 

were concentrated under reduced pressure. The alcohol (1S,2S)-99b and acetate (1R,2R)-100b 

in the crude reaction mixture were isolated by column chromatography and analysed by 
1
H 

NMR. Spectroscopic details were in agreement with those of the racemic material previously 

prepared (Figure 4.11 and 4.12). 

While analysis by chiral HPLC of the crude product mixture showed 97% ee for 

(1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b, on chromatographic purification the 

enantiomeric excess of isolated pure (1S,2S)-99b was determined to be 95% ee obtained in a 

45% yield. The enantiopure (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R)-100b was 

isolated in 30% yield after purification with >98% enantiomeric excess. Although the 

enantioselectivity obtained in this study of the acetate (1R,2R)-100b was similar to that 

observed by Milner the enantioselectivity of the isolated alcohol (1S,2S)-99b was slightly 

lower (95% ee vs. >99% ee).
45

 In addition, the yield of the isolated alcohol (1S,2S)-99b and 

acetate (1R,2R)-100b was slightly decreased relative to that reported by Milner. However this 

was anticipated due to the two aliquots of reaction mixture removed during reaction 

monitoring.
45

 

 

Table 4.19: Large scale Pseudomonas fluorescens mediated transesterification of  

(±)-trans-2 nitrocyclohexanol (±)-99b in vinyl acetate 

 

 

 

 

                        (±)-99b                       (1R,2R)-100b      (1S,2S)-99b 

a. While analysis by chiral HPLC of the crude product mixture showed 97% ee for (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b, on 

chromatographic purification the enantiomeric excess [ee (%)] of isolated (1S,2S)-99b was determined to be 95% ee. 
b. Isolated yield following column chromatography. 

Entry 
Reaction 

Time 

Temperature 

(°C) 

Conversion 

(%) 

ee  

(%) 

E value 

E Calc. 

1
H 

NMR 

Alcohol 

trans-99b 

(1S,2S) 

[yield %]
b
 

Acetate 

trans-100b 

(1R,2R) 

[yield %]
b
 

1 28 h rt 24 25 31 >98 134 

2 55 h 24 44 - 78 >98 >200 

3 79 h 24 50 50 
97

a 

[45] 

>98 

[30] 
>200 
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Figure 4.11: HPLC Trace I: A racemic mixture of (±)-trans-2-nitrocyclohexyl acetate (±)-100b and (±)-trans-2-

nitrocyclohexanol (±)-99b. Trace II: Reaction sampling 28 h. Trace III: Reaction sampling 55 h. Trace IV: Reaction 

sampling 79 h, (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R)-100b, >98% ee, (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-

99b, 97% ee. For HPLC conditions see appendix I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: 1H NMR Spectrum I and HPLC Trace I: Crude product following preparative-scale transesterification 

containing a mixture of enantiopure (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R)-100b, >98% ee and enantioenriched 

(1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b, 97% ee, 49 : 51 respectively. 1H NMR Spectrum II and HPLC Trace II: 

Purified (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R)-100b >98% ee following column chromatography. 1H NMR 

Spectrum III and HPLC Trace III: Purified (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b 95% ee following column 

chromatography (1H NMR recorded in CDCl3 at 300 MHz) 
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Once the enantioenriched (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b was 

obtained the next step was to investigate the progress of the DBU-mediated interconversion 

by chiral HPLC. Appearance of the enantiomer (1S,2R)-cis-2-nitrocyclohexanol (1S,2R)-99a 

only would indicate an epimerisation process, whereas appearance of either enantiomers 

(1R,2S)-cis- or (1R,2R)-trans-2-nitrocyclohexanol (1R,2S)-99a and (1R,2R)-99b can only be 

rationalised via a dynamic ring opening/closing process. Two experiments were performed 

investigating 1.0 equivalent and 0.5 equivalent of DBU (Table 4.20). The base was added to 

the enantioenriched material (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b (50.0 mg, 95 % 

ee) in tert-butyl methyl ether (TBME) (10 mL) and the reaction mixture was assayed by 

chiral HPLC after 24 h and 48 h. Quantification of the cis- and trans-2-nitrocyclohexanol 

diastereomers 99a and 99b by chiral HPLC was conducted during this study (Figure 4.13 and 

4.14). Peak area of the cis- and trans-2-nitrocyclohexanols 99a and 99b was measured, 

compared to the corresponding calibration curve of peak area versus concentration at the 

appropriate injection volume and concentration determined. This facilitated direct 

comparison of chiral HPLC analysis to the 
1
H NMR studies investigating the dynamic ring 

opening/closing process.  

 

Table 4.20: Enantioenriched (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b, 94% ee  

following exposure to 1.0 eq. and 0.5 eq. of DBU at 24 h and 48 h 
 

a. The principal enantiomer was (1S,2R)-cis-2-nitrocyclohexanol (1S,2R)-99a. 

b. The principal enantiomer was (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

DBU 

(eq.) 
Reaction Time 

Alcohol (±)-99 

cis-99a 

(%) 

[ee (%)]
a
 

trans-99b 

(%) 

[ee (%)]
b
 

1 

0 h - 
100 

[94] 

24 h 
16 

[31] 

84 

[34] 

48 h 
17 

[24] 

83 

[23] 

0.5 

0 h - 
100 

[94] 

24 h 
15 

[2] 

85 

[3] 

48 h 
13 

[4] 

87 

[1] 

(1R, 2R)-48b 1 eq DBU 24 h 

10 μL injection volume 

1 eq DBU 48 h 

10 μL injection volume 16% Cis 

31% ee 
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Figure 4.13: (1S,2S)-trans-2-Nitrocyclohexanol (1S,2S)-99b 94% ee after 

exposure to 1.0 equivalent of DBU at 24 h and 48 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: (1S,2S)-trans-2-Nitrocyclohexanol (1S,2S)-99b 94% ee after 

 exposure to 0.5 equivalent of DBU at 24 h and 48 h. 
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In both studies chiral HPLC analysis demonstrates clear evidence for formation of the 

enantiomers (1R,2S)-cis- or (1R,2R)-trans-2-nitrocyclohexanol (1R,2S)-99a and (1R,2R)-99b 

with R stereochemistry at the C1 position; thus, dynamic ring opening/closing via 6-

nitrohexanal 101 occurs at both DBU concentrations (0.5 and 1.0 equivalent).  

When 1.0 equivalent of DBU was employed it appeared that the epimerisation process 

at C2 also operated in conjunction with the dynamic ring opening/closing mechanism, evident 

by the dominant enantiomers (1S,2S)-trans- and (1S,2R)-cis-2-nitrocyclohexanol (1S,2R)-99a 

and (1S,2S)-99b at 24 h and 48 h. Furthermore, the prevalence of the (1S,2R)-99a and 

(1S,2S)-99b as the principal enantiomers over time suggests that the epimerisation process 

was in fact the leading contributor to the interconversion of (1S,2S)-trans-2-

nitrocyclohexanol (1S,2S)-99b not dynamic ring opening/closing. Furthermore, complete 

racemisation of the cis- and trans-2-nitrocyclohexanols 99a and 99b was not achieved within 

48 h. This postulation may be supported by the 
1
H NMR experiments conducted where 

deuterium exchange of C(2)HNO2 proton was observed at 0.1 equivalent of DBU which was 

tentatively taken as evidence of the epimerisation process. In addition the thermodynamic 

ratio of (±)-99a and (±)-99b (17 : 83 respectively) observed in this chiral HPLC study agrees 

with the 
1
H NMR investigation of the DBU-mediated ring closing (16 : 84 respectively). The 

agreement in the thermodynamic ratios is particularly good considering different solvents 

(CDCl3 vs. TBME), concentrations and amounts of DBU were employed. The rate at which 

the interconversion occurs from these experiments cannot be readily compared to the earlier 

data in the 
1
H NMR studies due to these changes.  

Surprisingly, at the lower concentration of DBU (0.5 equivalent) isomerisation and 

complete racemisation of the enantioenriched (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b 

was complete after 24 h with a thermodynamic ratio of (±)-cis- and (±)-trans-2-

nitrocyclohexanols (±)-99a and (±)-99b 13 : 87 respectively. This agreed with the 

thermodynamic ratio achieved during 
1
H NMR analysis of the DBU (0.1 equivalent) 

mediated ring closing of 6-nitrohexanal 101. Additionally there was no clear evidence in this 

study to suggest that epimerisation was occurring in conjunction with the dynamic ring 

opening/closing process. However further investigation of the DBU (0.5 equivalent) mediated 

process incorporating shorter time intervals between assays is warranted due to the 

unexpected observation of more rapid racemisation in this study than with 1.0 equivalent of 

DBU. The difference in the studies illustrated in Figures 4.13 and 4.14 may reflect sensitivity 

to minor changes in the reaction conditions for example the presence of water. The data as 

shown were based on one off experiments and not reproduced. 

In summary, while it is evident that DBU successfully mediated interconversion of 

(1S,2S)-99b via the dynamic ring opening and closing mechanism, epimerisation at the C2 

position was also evident. 

4.2.8 Project conclusion 

In summary, considerable progress towards the mechanistic understanding of the 

DBU-mediated dynamic kinetic resolution process of (±)-2-nitrocyclohexanol (±)-99 has 

been achieved. For the first time, two hydrolases Candida antarctica lipase B (immob) and 

Candida antarctica lipase A have been identified that demonstrate diastereoselectivity in the 

resolution of (±)-2-nitrocyclohexanol (±)-99 signifying a major step forward in the 

development of a dynamic kinetic resolution process. Further investigation of the relative 

rates of Candida antarctica lipase B (immob) mediated transesterification of an equimolar 

mixture of diastereomers (±)-99a and (±)-99b with detailed monitoring by 
1
H NMR and 
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chiral HPLC analysis demonstrated selective efficient acetylation of the trans-diastereomer 

(±)-99b with excellent enantioselection.  

 Interconversion of the (±)-cis- and (±)-trans-2-nitrocyclohexanols (±)-99a and (±)-

99b in the presence of DBU has been examined by both 
1
H NMR and chiral HPLC analysis. 

Significantly, direct comparison of these two analytical methods was facilitated by the 

quantification of (±)-99a and (±)-99b by chiral HPLC. While interconversion of the 

diastereomers (±)-99a and (±)-99b was evident by 
1
H NMR generating a thermodynamic 

ratio of 16 : 84 respectively, 
1
H NMR analysis alone was unable to definitively define the 

mechanistic pathway.  

Thus, the DBU-mediated interconversion of enantioenriched (1S,2S)-trans-2-

nitrocyclohexanol (1S,2S)-99b was monitored by chiral HPLC. Appearance of the 

enantiomers (1R,2R)-99b and (1R,2S)-99a with a change in the stereochemical integrity at 

C1, was evident by chiral HPLC, providing conclusive evidence that the ring opening/closing 

mechanism via 6-nitrohexanal 101 operated in the DBU-mediated interconversion. However, 

this investigation also provided evidence of the competing epimerisation process which was 

tentatively assigned as the dominant process of interconversion. Thus, although DBU 

operates through dynamic ring opening and closing, epimerisation is still a significant 

competing pathway and thereby complicates the development of an effective dynamic kinetic 

resolution process.  

Therefore extension of this work to (±)-2-methyl-2-nitrocyclohexanol (±)-117 was 

undertaken at this point as it was envisaged that the epimerisation mechanism for 

interconversion in this substrate would be blocked by a methyl moiety and accordingly cis 

(±)-117a and trans (±)-117b interconversion can only occur via ring opening/closing of 6-

nitroheptanal 118 eliminating a significant complication in the development of a dynamic 

kinetic resolution process. 
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4.3 Dynamic kinetic resolution of the intramolecular Henry reaction of (±)-

2-methyl-2-nitrocyclohexanol (±)-117 through lipase catalysis 

4.3.1 Background to the project 

Significant progress has been achieved in this study towards the development of a 

one-pot intramolecular Henry reaction of 6-nitrohexanal 101 with dynamic kinetic lipase-

mediated resolution of (±)-2-nitrocyclohexanol (±)-99. However, a significant complication 

in this process is competing epimerisation via deprotonation  to the nitro group (pKa 

CH3NO2 ~10.2). Therefore investigation of a modified substrate (±)-2-methyl-2-

nitrocyclohexanol (±)-117 was envisaged that would avoid epimerisation at C2 due to the 

presence of a methyl moiety geminal to the nitro group and consequently interconversion of 

the (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-117b can only 

occur through ring opening and closing of the aldehyde 6-nitroheptanal 118 (Scheme 4.34). 

 

 

 

   

 

 

                         (±)-117a                                 118                             (±)-117b 

 

Scheme 4.34 

 

Furthermore, the absence of an acidic proton alpha to the nitro group removes the 

elimination pathway to form the dehydration product 1-nitrocyclohexene 102 which 

complicated the development of a dynamic kinetic resolution of (±)-2-nitrocyclohexanol (±)-

99 (Scheme 4.35). 

 

 

 

 

                                        (±)-99a                                        102 

 

 

 

 

                                       

                                        (±)-117a 

 

Scheme 4.35 

 

Finally, increasing the steric bulk at C2 was envisaged to assist hydrolase selectivity 

and increase diastereoselectivity (Figure 4.15). 
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Figure 4.15 

4.3.2 Objectives of the project 

At the outset this project was investigated in a stepwise manner (Scheme 4.36). 

Similar to Milner’s
45

 approach towards the bioresolution of an intramolecular Henry reaction 

of 6-nitrohexanal 101, the first step in this study involved examination of the lipase-mediated 

kinetic resolution of the racemic (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanols (±)-

117a and (±)-117b, establishing the most efficient hydrolase(s) to perform this 

biotransformation diastereoselectively.  

The second step was examination by 
1
H NMR analysis of the base-mediated 

intramolecular Henry reaction and associated interconversion process between the resultant 

(±)-cis- and (±)-trans-diastereomers (±)-117a and (±)-117b through ring opening and closing 

via the aldehyde 6-nitroheptanal 118 

Once the objectives of the two individual steps has been achieved it was envisaged 

that combination of the dynamic interconversion of the (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexanols (±)-117a and (±)-117b with the lipase-mediated diastereoselective and 

enantioselective transesterification would selectively lead to quantitative yields of a single 

stereoisomer of 2-methyl-2-nitrocyclohexyl acetate 119. 

 

 

 

 

                                            

                                                (±)-117b 

 

 

           118                                                                                                                 119 

 

 

                                                (±)-117a 

 

 

 

Scheme 4.36 

 

The specific objectives of this project can be summarised as follows; 

 To prepare the racemic synthetic targets (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117a and (±)-117b and (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexyl acetate (±)-119a and (±)-119b for investigation of hydrolase-

mediated kinetic resolution. 

Step 3: Develop one-pot enzymatically resolved Henry reaction 
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 To develop chiral HPLC conditions where all four enantiomeric pairs of the β-

nitroalcohols (±)-117a and (±)-117b and nitro acetates (±)-119a and (±)-119b are 

resolved on a single trace, facilitating efficient analysis. 

 To perform individual screening assays of the (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117a and (±)-117b against a series of hydrolases investigating 

optimal reaction conditions for transesterification and identifying a suitable hydrolase 

for the selective hydrolase-mediated acetylation of one diastereomer and one 

enantiomer of (±)-2-methyl-2-nitrocyclohexanol (±)-117. 

 To prepare the aldehyde 6-nitroheptanal 118 and establish analytical evidence by 
1
H 

NMR of the dynamic interconversion process between the two diastereomers (±)-

117a and (±)-117b via ring opening and closing of 6-nitroheptanal 118. 

 To combine the intramolecular Henry reaction with the dynamic interconversion of 

the β-nitroalcohols (±)-117a and (±)-117b and the lipase-mediated transesterification 

in a dynamic kinetic resolution process.   

4.3.3 Synthesis of substrates 

The first objective in this investigation was to synthesise the following novel racemic 

synthetic targets: (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-117b 

and (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexyl acetate (±)-119a and (±)-119b. It was 

envisaged that synthesis of 2-methyl-2-nitrocyclohexanone 120 would provide access to the 

alcohol diastereomers (±)-117a and (±)-117b by sodium borohydride reduction (Scheme 

4.37), as this synthetic protocol was successfully implemented in the synthesis of (±)-cis- and 

(±)-trans-2-nitrocyclohexanol (±)-99a and (±)-99b via the reduction of 2-nitrocyclohexanone 

103. 

 

 

 

 

                       120                                   (±)-117a           (±)-117b 

 

Scheme 4.37 

4.3.3.1 Synthesis of 2-methyl-2-nitrocyclohexanone 120 

Direct electrophilic nitration of ketones with nitric acid as a synthetic method to -

nitroketones suffers from the formation of a variety of oxidised byproducts. Alternatively, 

initial activation of the ketones to their enolates, enol acetates and silyl enol ethers followed 

by nitration provides ready access to the desired -nitroketones.
4
 A number of synthetic 

routes have been reported in the literature to 2-methyl-2-nitrocyclohexanone 120.
74-77

 Zajac 

has described the preparation of the -nitroketone 120 by nitration of the enol acetate 2-

methyl-1-acetoxycyclohexene 121 with nitric acid in acetic anhydride (Scheme 4.38).
76

 

However, the ring cleavage product, 6-oxoheptanoic acid 122 was reported as the major 

component with low yields of the desired 2-methyl-2-nitrocyclohexanone 120. Significantly, 

alternative use of the more powerful nitrating agent trifluoroacetyl nitrate prepared from 

ammonium nitrate and trifluoroacetic anhydride provided quantitative yield of 2-methyl-2-

nitrocyclohexanone 120 (Scheme 4.38).
77

  

 

 



Chapter 4                                                                                                 Results and Discussion 

                                                                                                 

 

190  

 

 

 

 

                                                                           

                                                                   120 (21% yield)                 122 (26% yield)  

 

 

    123                          121 

 

 

                                   120 (~100% yield) 

 

Scheme 4.38
76,77

 

 

Rathore reports a facile method for the nitration of kinetic and thermodynamic silyl 

enol ethers 124 and 125 with tetranitromethane to give 2-methyl-2-nitrocyclohexanone 120 in 

76% and 68% yield respectively (Scheme 4.39).
74

 The mechanism has been rationalised to 

incorporate an electron transfer pathway from the silyl enol ether 124 or 125 to 

tetranitromethane. A subsequent fast homolytic coupling of the resultant cation radical of the 

silyl enol ether 125 with NO2
•
 leads to -nitroketones.  

 

 

 

 

 

                        124                           120                                125 

 

Scheme 4.39
74

 

 

In this study, the first approach investigated was the procedure adapted from Zajac 

involving nitration of the silyl enol ether 125 with nitronium tetrafluoroborate in 

acetonitrile.
76

 2-Methylcyclohexanone 123 was converted to the thermodynamic silyl enol 

ether 125 by means of chlorotrimethylsilane, triethylamine and pre-dried sodium iodide in 

distilled acetonitrile by the method of Zhang (Scheme 4.40).
78

 Nitration of the crude silyl 

enol ether 125 with nitronium tetrafluoroborate in acetonitrile led to the desired 2-methyl-2-

nitrocyclohexanone 120; however, 2-methylcyclohexene-1-nitrate 126 (~33%) was also 

evident which could not be removed by column chromatography upon several attempts. Zajac 

also reports troublesome purification of 2-methyl-2-nitrocyclohexanone 120 with trace 

evidence of the nitrate ester byproduct 126 observed in the 
1
H NMR spectrum, following 

attempted purification of 120 by vacuum distillation.
76

  

A fraction obtained from the attempted chromatographic purification contained a 

mixture of 2-methyl-2-nitrocyclohexanone 120 and the nitrate ester 126 (59 : 41 respectively) 

which was brought forward to the sodium borohydride reduction. The desired (±)-2-methyl-

2-nitrocylohexanols (±)-117a and (±)-117b were successfully isolated following column 

chromatography, notably, with no trace of the nitrate ester 126. However, the reduction 

proceeded in poor yield due to the impure starting material. Thus, this synthetic route 
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warranted further optimisation to minimise the formation of 126 to access analytically pure 2-

methyl-2-nitrocyclohexanone 120. 

 

 

 

 

 

          123                            125 (crude yield 42%)                    120                    126                  

                      (Crude yield 49%)    

 

 

 

 

 

                                                                                        

 

                                                                                          (±)-117a                  (±)-117b 

                                                                                                                         (Crude yield 39%)    

 

Scheme 4.40             

 

An alternative approach to the synthesis of 2-methyl-2-nitrocyclohexanone 120 was 

explored, involving the direct introduction of a methyl moiety by alkylation of the -

nitroketone 103.
76

 Initially, direct methylation of 2-nitrocyclohexanone 103 was attempted 

with methyl iodide and sodium hydride, resulting in recovery of starting material. The 

methylation was then investigated under phase-transfer conditions. 2-Nitrocyclohexanone 

103 was successfully methylated by employing 40% aqueous tetrabutylammonium hydroxide 

(TBAOH) in dichloromethane and methyl iodide leading to a crude mixture of 2-methyl-2-

nitrocyclohexanone 120, methyl 6-nitrohexanoate 116 and methyl 6-nitroheptanoate 127 (76 : 

13 : 11 respectively). The ring cleavage products methyl 6-nitroheptanoate 127 and methyl 6-

nitrohexanoate 116 were identified in the 
1
H NMR spectrum by the characteristic signals of 

the proton(s) alpha to the nitro moiety (Scheme 4.41). The desired 2-methyl-2-

nitrocyclohexanone 120 was isolated as a colourless oil in moderate yield (36%) and 

excellent purity following purification by column chromatography. Spectral characteristics of 

120 agreed with previous literature reports.
74-77

  

 

 

 

 

 

                                                                                                    

Scheme 4.41 

       103    120 116        127 

Product Ratio by 
1
H NMR     76                :  13                 :          11 

Isolated yield    36%   
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4.3.3.2 Synthesis of (±)-2-methyl-2-nitrocyclohexanol (±)-117 

With a synthetic route to 2-methyl-2-nitrocyclohexanone 120 established, the next 

step was sodium borohydride reduction of the ketone 120 to the (±)-cis- and (±)-trans-2-

methyl-2-nitrocyclohexanols (±)-117a and (±)-117b (Scheme 4.42). This was performed 

according to the procedure outlined for the reduction of 2-nitrocyclohexanone 103 and 

yielded a crude mixture of diastereomeric β-nitroalcohols (±)-117a and (±)-117b (41 : 59 

respectively). The disappearance of the carbonyl stretch at νmax 1732 cm
−1

 indicated reaction 

completion. The diastereomers are distinguishable in the 
1
H NMR spectrum with two sets of 

signals observed. Significantly there is no evidence by 
1
H NMR analysis of a competing 

dehydration side reaction, in contrast to the reduction of 2-nitrocyclohexanone 103. As 

expected the presence of a methyl group geminal to the nitro moiety in 2-methyl-2-

nitrocyclohexanone 120 prevents elimination occurring.  

 

 

 

 

                                                             

 

 

 

Scheme 4.42 

 

The (±)-cis- and (±)-trans-diastereomers (±)-117a and (±)-117b have similar polarity. 

Nevertheless, pure samples of each isomer (±)-117a and (±)-117b were obtained by careful 

column chromatography on silica gel. However, low yields were obtained of the isolated 

diastereomers (±)-117a and (±)-117b due to their persistent co-elution and hence difficult 

purification. In an effort to achieve better separation between the two diastereomers (±)-117a 

and (±)-117b purification by column chromatography on neutral alumina was investigated; 

however, the (±)-cis- and (±)-trans-diastereomers (±)-117a and (±)-117b were unresolved by 

this method. 

The (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanols (±)-117a and (±)-117b had 

previously been reported in the literature.
79

 Ranu successfully reduced 2-methyl-2-

nitrocyclohexanone 120 employing zinc borohydride in 1,2-dimethoxyethane to give a crude 

mixture (55 : 45) of diastereomers (±)-117a and (±)-117b, however no stereochemical 

assignment or characterisation data was reported in this paper.
79

 In this study, the assignment 

of the relative stereochemistry of (±)-117a and (±)-117b was initially investigated by a NOE 

experiment at 600 MHz on the major diastereomer (±)-117b. No enhancement of signals was 

observed after irradiation of C(2)CH3 at 1.60 ppm, C(1)OH at 2.63 ppm and C(1)H at 4.28 

ppm. However, relative stereochemistry was confirmed after derivatisation of (±)-117a to 

(±)-cis-2-methyl-2-nitrocyclohexyl acetate (±)-119a and subsequent crystallographic 

determination of the structure (see section 4.3.3.3). 

 

 

 

 

 

 

       120     (±)-117a    (±)-117b 

Product ratio by 
1
H NMR 41         59 

Isolated yield 19%        28% 
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Figure 4.16: 1H NMR Spectrum I: Purified (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b following column 

chromatography. Spectrum II: Purified (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a following column chromatography 

(all spectra recorded in CDCl3 at 600 MHz).  

 

The IR spectra of the two diastereomers (±)-117a and (±)-117b are characterised by a 

broad OH peak at νmax 3376-3445 cm
−1

 and asymmetrical and symmetrical stretching of the 

nitro group at νmax 1538-1539 cm
−1

 and νmax 1340-1352 cm
−1

. Interestingly the 

aforementioned bands absorb at a higher frequency in (±)-cis-2-methyl-2-nitrocyclohexanol 

(±)-117a relative to the trans-diastereomer (±)-117b. Analysis by 
1
H NMR identifies key 

spectroscopic features distinct to each diastereomer (±)-117a or (±)-117b (Figure 4.16). A 

larger deshielding effect is observed in (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b for 

the proton geminal to the hydroxyl group (H 4.28-4.29 ppm) relative to the (±)-cis-

diastereomer (±)-117a (H 3.91 ppm) due to its proximity in space to the nitro group. 

Conversely the signal for the OH proton in (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a 

appears further downfield as a doublet at H 2.84 ppm relative to the (±)-trans-diastereomer 

(±)-117a at H 2.74 ppm. 

Significant broadening of the C(5)H2, C(3)H2 and C(1)H signal is observed in the 
13

C 

NMR spectrum for (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a (Figure 4.17). The slow 

interconversion of the two chair forms may be contributing to this broadening effect. If the 

chair forms are interconverting, decreasing the temperature should slow down the 

interconversion and might be expected to lead to a splitting of the signals. Broadening is 

observed to a lesser extent for the signals C(2)CH3 and C(3)H2 in the 
13

C NMR spectrum of 

(±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b. 

 

 

 

 

Spectrum II 

Spectrum I 

(±)-117a 

(±)-117b 
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Figure 4.17: 13C NMR Spectrum I: Purified (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b following column 

chromatography. Spectrum II: Purified (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a following column chromatography 

(all spectra recorded in CDCl3 at 600 MHz).  

4.3.3.3 Synthesis of (±)-2-methyl-2-nitrocyclohexyl acetate (±)-119 

The procedure employed in the acetylation of the (±)-cis-2-nitrocyclohexanol (±)-99a 

utilising acetyl chloride and excess DMAP in dichloromethane was adapted for the 

acetylation of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a. This reaction failed to go to 

completion after stirring under nitrogen for 12 h. Starting material (±)-117a and the desired 

acetylated product (±)-119a (38 : 62 respectively) were evident in the 
1
H NMR spectrum of 

the crude reaction mixture. Therefore the acetylation was repeated with acetic anhydride in 

pyridine with a catalytic amount of DMAP. This procedure had previously worked 

successfully for the acetylation of (±)-trans-2-nitrocyclohexanol (±)-99b and in this study 

when applied for the acetylation of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a reaction 

completion was achieved after 16 h. The (±)-cis-acetate (±)-119a was obtained as a white 

solid in good yield (88%). Significantly, the crude (±)-cis-2-methyl-2-nitrocyclohexyl acetate 

(±)-119a was of excellent purity and further purification was not required. This is in direct 

contrast to the crude (±)-cis-2-nitrocyclohexyl acetate (±)-100b in which starting material 

(±)-99b and DMAP were evident in the 
1
H NMR spectrum and chromatographic purification 

was not feasible due to the ease of formation of the dehydration product 102 on silica gel.  

The same reaction conditions were utilised for the acetylation of (±)-trans-2-methyl-

2-nitrocyclohexanol (±)-117b and the trans-acetate (±)-119b was obtained as a light yellow 

oil in good yield (71%) and of sufficient purity to warrant no further purification (Scheme 

4.43).  

 

 

 

 

CH3 

C(4)H2 C(5)H2 C(6)H2 

C(3)H2 

Spectrum II 

C(5)H2 

C(4)H2 

CH3 
C(6)H2 

C(3)H2 

Spectrum I 

(±)-117b 

(±)-117a 
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                                         (±)-117a                             (±)-119a (88% yield) 

 

 

 

 

 

                                         (±)-117b                             (±)-119b (71% yield) 

 

Scheme 4.43 

 

The (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexyl acetates (±)-119a and (±)-119b 

had not previously been reported in the literature and thus full characterisation was obtained 

during this research. The molecular ion peak for an aliphatic mononitro compound is seldom 

observed and in this study the molecular ion of the novel acetates (±)-119a and (±)-119b was 

weak or absent in the nominal mass spectrum with the main peaks attributable to the 

hydrocarbon fragment minus the nitro moiety. High resolution mass spectrometry was 

successfully obtained of this hydrocarbon fragment. The relative stereochemistry of (±)-119a 

and (±)-119b was determined by single crystal X-ray diffraction on a crystalline sample of  

(±)-cis-2-methyl-2-nitrocyclohexyl acetate (±)-119a recrystallised from deuterated 

chloroform (Figure 4.18).
80

 Full structural details are contained on the accompanying CD.  

 

 

 

 

 

 

                                                                                    (±)-119a 

 

 

 

Figure 4.18: A view of (±)-cis-2-methyl-2-nitrocyclohexyl acetate (±)-119a showing the structure and relative 

stereochemistry. Anisotropic displacement parameters are drawn at the 30% probability level. 

 

IR analysis of the acetates (±)-119a and (±)-119b demonstrates a strong carbonyl 

stretch at νmax 1738 and 1748 cm
−1 

respectively. 
1
H NMR spectroscopy aided by COSY and 

HETCOR 2D NMR experiments identified characteristic peaks attributable to each 

diastereomer (±)-119a and (±)-119b (Figure 4.19). The signal for the C(1)H proton in (±)-

119b appears further downfield (H 5.50-5.55 ppm) relative to (±)-119a (H 5.26-5.29 ppm) 

attributable to its proximity in space to the electron withdrawing nitro group. 
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Figure 4.19: 1H NMR Spectrum I: Crude (±)-trans-2-methyl-2-nitrocyclohexyl acetate (±)-119b. Spectrum II: Crude 

(±)-cis-2-methyl-2-nitrocyclohexyl aceate (±)-119a (all spectra recorded in CDCl3 at 300 MHz).  

4.3.3.4 Synthesis of 6-nitroheptanal 118 

The next synthetic target in this study was preparation of the aldehyde 6-nitroheptanal 

118 for investigation of the intramolecular nitroaldol reaction. Unlike the synthesis of 6-

nitrohexanal 101 the parent secondary alkyl bromide ethyl 6-bromoheptanoate 128 was not 

commercially available for the synthesis of 6-nitroheptanal 118 thus the formation of the 

nitroalkane via the Kornblum reaction was not considered.  

Direct alkylation of ethyl 6-nitrohexanoate 113 and 6-nitrohexanol 108 under phase-

transfer conditions were initially explored. The optimum reaction conditions identified for the 

methylation of 2-nitrocyclohexanone 123 were applied. However on both occasions only 

trace evidence of the desired methylated product 129 or 130 was evident by 
1
H NMR 

analysis, identified by the multiplet in the region of H 4.50-4.65 ppm attributable to the 

C(6)H proton geminal to the nitro and methyl moiety (Scheme 4.44) 

 

 

 

 

                             113                                                                                 129 (Trace)     

 

 

 

                             108                                                                                 130 (Trace) 

 

Scheme 4.44 

 

(±)-119b 

Spectrum II 

(±)-119a 

Spectrum I 



Chapter 4                                                                                                 Results and Discussion 

                                                                                                 

 

197  

 

The next synthetic route investigated treatment of 2-nitrocyclohexanol 103 with 2.0 

equivalents of TBAOH and 3.0 equivalents of methyl iodide. Zajac had reported the ring 

cleavage product methyl 6-nitroheptanoate 127 as the major product under these reaction 

conditions (Scheme 4.45).
76

  

 

 

 

 

 

 

Scheme 4.45 

   

Although a larger percentage of methyl 6-nitroheptanoate 127 was evident in the 
1
H NMR 

spectrum of the crude material relative to that observed when 1.0 equivalent of base was 

utilised (35 vs. 11%) (see section 4.3.3.1), 2-methyl-2-nitrocyclohexanol 120 remained the 

major product. Further optimisation of this protocol is warranted based on Zajac’s report.
76

 

Nucleophilic attack of aqueous base or alcohol to -nitrocycloalkanones produces 

ring cleavage with the formation of -nitroacids and -nitroesters. Recently Milner reported 

treating 2-nitrocyclohexanone 103 with potassium fluoride in dry methanol to afford the 

nitroester 116 in high yield according to the procedure reported by Barua et al.
81

 Milner also 

described the synthesis of 6-nitrohexanoic acid 107 in good yield via base-catalysed ring 

cleavage of 2-nitrocyclohexanone 103 (Scheme 4.46). 

 

 

 

                                              116 (85% yield) 

                               

                             103 

                                               107 (89% yield) 

 

Scheme 4.46
45

 

 

In this study, 2-methyl-2-nitrocyclohexanone 120 in sodium hydroxide (1M) was 

heated under reflux for 2 h according to Milner’s synthetic protocol for the ring opening of 2-

nitrocyclohexanone 103 (Scheme 4.47).
45

 However, the anticipated ring cleavage product 6-

nitroheptanoic acid 131 was not observed in the 
1
H NMR spectrum. There were no signals 

evident in the region of ~4.40 ppm characteristic of a methine proton alpha to the nitro 

moiety, thus ring cleavage appears to have not occurred in the absence of an acidic proton 

geminal to the nitro group. 

 

 

 

 

 

 

    103         120 116        127 

Product Ratio by 
1
H NMR           52              : 13                 :         35 
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                   120                                                               131 

 

Scheme 4.47 

 

Furthermore no residual starting material 120 was evident in the 
1
H NMR spectrum of the 

crude product. While a compound was isolated which appeared to be a single product by 
1
H 

NMR its structure was not determined (see section 5.6.1). Both cyclohexane-1,2-dione 132 

and 2-hydroxy-2-methylcyclohexanone 133 were considered as possible products, however 

literature 
1
H NMR data does not agree (Figure 4.20).

82,83
  

 

 

 

 

 

                                     132                                 133 

 

Figure 4.20 

 

Thus, a novel synthetic route to 6-nitroheptanal 118 was required. It was envisaged 

that a base-catalysed nitroaldol reaction with nitroethane and methyl 5-oxopentanoate 134 

would successfully introduce the methyl moiety alpha to the nitro group and subsequent 

reductive elimination of the β-nitroalcohol 135 would generate the nitroalkane 127. The 

desired aldehyde 118 would be readily accessible via reduction of the ester 127 (Scheme 

4.48). While the sequence outlined in scheme 4.48 has not been previously described as a 

route to 118, each of the individual synthetic steps is precedented in related compounds.  

 

 

 

                        134                                                                  135   

 

 

 

 

 

                                    118                                                                  127 

  

Scheme 4.48 

 

According to literature procedure it was anticipated that ring opening of -

valerolactone 136 by methanol and subsequent oxidation would provide the substrate methyl 

5-oxopentanoate 134 (Scheme 4.49).
84,85

 The methanolysis protocol employed in this study 

involved heating the commercially available -valerolactone 136,
46

 in excess methanol with 

catalytic sulfuric acid under reflux for 48 h, generating the parent straight-chain bifunctional 
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ester 137 as a milky white oil in excellent yield (97%) which required no further purification. 

This ring opening procedure was not monitored for reaction completion and it is envisaged 

that the starting lactone 136 was consumed in a shorter reaction time. Subsequent PCC 

oxidation of the primary alcohol 137 to the aldehyde methyl 5-oxopentanoate 134 proceeded 

in moderate yield (50%) and excellent purity following vacuum distillation. All spectral 

characteristics of 137  and 134 were in agreement with those previously reported.
84,85

  

 

 

 

 

       136                                       137 (97% yield)                                                  134 (50% yield) 

 

Scheme 4.49 

 

Critical to this synthetic strategy is the carbon-carbon bond forming Henry reaction 

allowing control of the position of the nitro group alpha to a methyl moiety. The nitrolaldol 

procedure described by Morrow in the synthesis of nitroalkene fatty acids was implemented 

in this research.
86

 Condensation of methyl 5-oxopentanoate 134 with nitroethane and a 

catalytic amount of potassium tert-butoxide successfully afforded the β-nitro alcohol 135 as 

an essentially equimolar diastereomeric mixture in good yield (76%) and sufficient purity 

(>95% pure by 
1
H NMR spectroscopy) to warrant no further purification (Scheme 4.50). No 

attempt was made to separate the diastereomers of 135 as both would lead to the same 

product 127. 

 

 

 

 

                              134                                                                     135 (76% yield) 

 

 

Scheme 4.50 

 

Methyl 5-hydroxy-6-nitroheptanoate 135 was previously identified in the literature, however 

spectral characterisation had not been conducted, thus in this study full analysis was 

obtained.
87

 The anti and syn diastereomers of 135 were distinguishable in the 
1
H NMR 

spectrum with two characteristic sets of signals observed. The signal for the proton geminal 

to the nitro group appears at H 4.47–4.59 ppm for the two diastereomers whereas the proton 

geminal to the hydroxyl group appears as two distinct diastereomeric sets of signals at H 

3.90-3.98 ppm and H 4.14-4.21 ppm due to hydrogen bonding between the hydroxyl and 

nitro group leading to a difference in the vicinal coupling constant.  

A viable synthetic route envisaged for the generation of the nitroalkane 127 from the 

β-nitro alcohol 135 was acylation followed by reductive elimination. The reduction of 

nitroalkyl acetates to nitroalkanes with sodium borohydride is well established and believed 

to proceed via elimination of acetic acid and formation and subsequent reduction of the 

corresponding nitro olefin.
88

 

Early published reports on reductive elimination were not synthetically viable as they 

involved isolation of the acetate and alkene intermediates which lead to poor overall yields 

Equimolar diastereomeric mixture 
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(14-33%).
89,90

 The low yields result in part from isolation steps and in part from the 

occurrence of side reactions leading to dimeric byproducts. In 1972, Bachman described a 

significant advance in the synthesis of nitroalkanes. A one-pot procedure was reported where 

the lower primary nitroalkanes may be converted to the higher nitroalkanes involving 

successive nitroaldol reaction, acylation and sodium borohydride reduction with significantly 

greater yields observed (75-80%).
88

 Notably, this procedure involves no isolation of 

intermediates.  

On the basis of Bachman’s report the one-pot acetylation of the nitroalcohol 135 and 

mild reduction of the corresponding nitro acetate 138 with sodium borohydride was 

investigated. Acetylation of 135 proceeds smoothly with acetic anhydride using DMAP as a 

catalyst. In one instance, 
1
H NMR analysis was obtained to confirm formation of the acetate 

138, again as an equimolar mixture, however, in general the crude acetate intermediate 138 

was not isolated. 

The reduction of the nitroalkyl acetate 138 to the corresponding nitroalkane 127 by 

the action of sodium borohydride was first conducted in ethanol at 0 °C.
91

 However poor 

reduction to the nitroalkane 127 was observed with the nitroalkene product 139 evident in the 

crude 
1
H NMR in ~18% (Figure 4.21). 

1
H NMR analysis suggests the exclusive formation of 

the E isomer of 139 as the alkene proton displays a characteristic chemical shift of 

approximately H 7.04-7.15 ppm (1H, dt, J 7.9, 1.0), in accordance with literature reports for 

similar E-nitroalkenes, while the alkene proton of Z-nitroalkenes has a distinct chemical shift 

of approximately H 5.80 ppm.
91-93

 Attempted separation of the undesired E-nitroalkene 139 

from the nitroalkane 127 by column chromatography was unsuccessful. 

 

 

 

 

                                                                           

                                                                      (E)-139 

 

Figure 4.21 

 

Bachman reports optimum conversions to nitroalkanes utilising sodium borohydride 

in DMSO.
88

 In this study, to increase the efficiency of the reduction, Bachman’s conditions 

were implemented at 0 °C and excellent conversion to the desired nitroalkane 127 was 

observed with no trace of the nitroalkene byproduct 139 (Scheme 4.51). Methyl 6-

nitroheptanaote 127 was isolated in 74% yield for the two steps and of sufficient purity 

(>95% pure by 
1
H NMR spectroscopy) to warrant no further purification. Spectral 

characteristics were in agreement with the literature report discussed earlier where 127 was 

obtained via ring cleavage and methylation of 2-nitrocyclohexanone 120 (Scheme 4.45).
76

 

This method described herein provides a convenient and high-yielding synthesis of 

nitroalkane 127 from the β-nitroalcohol 135. 
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        135                                                                            138 

 

 

 

 

 

 

                                                                                               

                                                                                             

                139      127 (74% yield) 

 

 

 

                                                                        127 

 

Scheme 4.51 

 

Now that a synthetic route to methyl 6-nitroheptanoate 127 was developed, the next 

step was reduction of the ester functional group to the desired aldehyde 118. Previous studies 

in this project investigated the selective DIBAL-H reduction of ethyl 6-nitrohexanoate 113 to 

6-nitrohexanal 101. However, following optimisation studies selective reduction was not 

achieved with a mixture of products 6-nitrohexanal 101, ethyl 6-nitrohexanoate 113 and 6-

nitrohexanol 108 evident by 
1
H NMR spectroscopy (section 4.2.3.1.2, Scheme 4.24). 

Therefore, DIBAL-H reduction of methyl 6-nitroheptanoate 127 to aldehyde 118 was not 

examined, and alternatively the ester 127 was reduced successfully to the analogous alcohol 

130 with 3.0 equivalents of DIBAL-H (Scheme 4.52). Purification by column 

chromatography produced the alcohol 130 in moderate yield (58%) and excellent purity. IR 

analysis reads a strong broad OH peak at νmax 3365 cm
−1 

and nitro stretching bands at νmax 

1553 and 1391 cm
−1 

while in the 
1
H NMR spectrum the characteristic multiplet at H 4.52-

4.63 ppm is indicative of the proton alpha to the nitro moiety. 

Subsequent PCC oxidation of the primary alcohol 130 yielded the desired aldehyde 

118 in 65% yield and excellent purity following chromatographic purification (Scheme 4.52). 

The aldehyde 6-nitroheptanal 118 was found to be unstable in the lab atmosphere and easily 

oxidised to the carboxylic acid 131. Storage in the freezer at −20 °C was found to slow down 

the oxidation process but not halt it. Therefore 6-nitroheptanal 118 was freshly purified by 

column chromatography prior to use. 6-Nitroheptanal 118 had not previously been reported in 

the literature and full characterisation was obtained during this study. A characteristic 

carbonyl stretch is evident in the IR spectrum at νmax 1724 cm
−1 

in addition to the asymmetric 

and symmetric bands of the nitro group at νmax 1549 and 1392 cm
−1

, while in the 
1
H NMR 

spectrum a distinct triplet is seen downfield at H 9.77 ppm indicative of the aldehyde proton 

C(1)H. 

 

 

 

Equimolar diastereomeric mixture Equimolar diastereomeric mixture 

 

    18% : 82% 

             139 : 127 



Chapter 4                                                                                                 Results and Discussion 

                                                                                                 

 

202  

 

 

 

 

                                         127                                                         130 

 

 

 

 

 

                                                                118 

 

Scheme 4.52 

 

In summary, although the synthetic route to 6-nitroheptanal 118 is rather long, multi-

gram quantities of the aldehyde 118 were successfully obtained in good yield for 

investigation of the dynamic kinetic resolution of the intramolecular nitroaldol reaction 

through lipase catalysis 

4.3.4 Hydrolase-mediated kinetic resolution – analytical screens 

In order to develop a one-pot hydrolase-mediated dynamic process leading to 2-

nitrocyclohexyl acetate 119 together with high diastero- and enantiopurity, a complete 

understanding of the hydrolase-mediated kinetic resolution of (±)-cis- and (±)-trans-2-

methyl-2-nitrocyclohexanol (±)-117a and (±)-117b was required. The specific aim of this 

investigation was to identify a hydrolase which would selectively acetylate one diastereomer 

of (±)-2-methyl-2-nitrocyclohexanol (±)-117a or (±)-117b with excellent enantioselectivity. 

Therefore, each diastereomer (±)-117a and (±)-117b was screened independently against a 

series of hydrolases. The efficiency and enantioselectivity of the hydrolase-mediated 

resolution of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a was then compared to that of the 

(±)-trans-diastereomer (±)-117b facilitating detection of diastereoselectivity. In order to 

efficiently assess enantiopurities from the screening protocol with minimal work-up, a 

reliable and robust analytical chiral HPLC technique was developed.   

4.3.4.1 Chiral HPLC method development 

Once the racemic starting materials (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117a or (±)-117b and (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexyl acetate (±)-119a or (±)-119b were prepared, a chiral HPLC method was 

developed which resolved all four enantiomeric pairs with a single injection. This facilitated 

direct analysis of the crude reaction mixtures obtained from the lipase-mediated kinetic 

resolution screening assays and of the one-pot dynamic kinetic resolution process. A series of 

chiral columns were investigated for this resolution including the Chiralcel
®

 OD-H, AS-H 

and Chiralpak
®
 IB, examining a range of different isopropanol/hexane solvent compositions, 

flow rates and temperatures. Following a significant amount of method development the 

Chiralcel
®

 OJ-H column was determined to achieve baseline separation of all four 

enantiomeric pairs under three sets of conditions: 

i) room temperature with isopropanol/hexane (3 : 97), a flow rate of 0.50 

mL/min and a detector wavelength of 209.8 nm (Appendix I, Conditions A) 

(see Figure 4.22).  
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ii) room temperature with isopropanol/hexane (0.5 : 99.5), a flow rate of 0.50 

mL/min and a detector wavelength of 209.8 nm (Appendix I, Conditions 

B).  

iii) room temperature with isopropanol/hexane (3 : 97), a flow rate of 0.75 

mL/min and a detector wavelength of 209.8 nm (Appendix I, Conditions 

C).   

It should be noted that the above chiral HPLC methods in general successfully resolved all 

four enantiomeric pairs, however, as eight enantiomers were eluted on a single trace with 

similar retention times small changes in column temperature or pressure may result in co-

elution and thus the chiral HPLC method may need to be modified on a day to day basis.  

Further experimental details concerning chiral HPLC methods can be found in appendix I.   

In summary, the conditions for chiral HPLC were developed to a point where a single 

injection of the reaction mixture enabled determination of enantiopurity of each of the 

components 117a, 117b, 119a and 119b. The assignment of stereochemistry of 117a, 117b, 

119a and 119b is discussed in section 4.3.5.3, notably the stereochemical assignment of 117b 

and 119b were determined by analogy to the transesterification of (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a but not definitively confirmed. Quantification of the individual 

compounds by chiral HPLC was not undertaken in this study but, if required, would be 

determined by the protocol implemented in the quantification of (±)-cis- and (±)-trans-2-

nitrocyclohexanol (±)-99a and (±)-99b as discussed in section 4.2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: HPLC trace of a racemic mixture of (±)-cis-2-methyl-2-nitrocyclohexyl acetate (±)-119a, (±)-trans-2-

methyl-2-nitrocyclohexyl acetate (±)-119b, (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b. For HPLC conditions see appendix I.  

Note the above traces correlate to chiral HPLC conditions A. 

4.3.4.2 Analytical screening protocol – vinyl acetate as both acyl donor and solvent 

Once the analytical method was developed the next step was to examine the 

hydrolase-mediated resolution for the enantioselective transesterification of the (±)-cis- and 

(±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-117b. The optimum reaction 

conditions developed by Milner for the kinetic resolution of (±)-cis- and (±)-trans-2-

nitrocyclohexanol (±)-99a and (±)-99b employing vinyl acetate as both solvent and acyl 

donor were investigated in this study for the transesterification of (±)-2-methyl-2-

nitrocyclohexanol diastereomers (±)-117a and (±)-117b.
45

 All hydrolases screened were 

(1R,2R)-119b 

 

(1S,2S)-119b 

 

(1R,2S)-119a 

 

(1S,2R)-119a 

 

(1S,2R)-117a 

 

(1S,2S)-117b 

 

(1R,2S)-117a 

 

(1R,2R)-117b 
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kindly donated by Almac Sciences. In this screening protocol the alcohol substrate (±)-117a 

or (±)-117b (~20 mg) was added to 1 mL of vinyl acetate with the biocatalyst and the 

resulting reaction mixture was incubated and agitated at 750 rpm at 24 °C. While TLC 

analysis indicated if the desired product had formed, no detailed chiral HPLC reaction 

monitoring was conducted during analytical screens. Work-up involved filtration of the 

reaction solution to remove the hydrolase and subsequent concentration of the organic phase. 

Analysis of the crude product was conducted by 
1
H NMR spectroscopy and chiral HPLC. 

Significantly, the crude alcohol (±)-117a or (±)-117b and acetate (±)-119a or (±)-119b did 

not require separation prior to chiral HPLC analysis as the enantiopurities of both 

components can be conveniently assessed in a single injection. 

Conversion was estimated by 
1
H NMR analysis and by the E-value calculator.

71
 

Notably in some instances (entry 2, Table 4.22) slightly higher conversions were obtained by 
1
H NMR spectroscopy relative to the E-value. For conversions determined by 

1
H NMR 

spectroscopy to be <10%, chiral HPLC analysis was not conducted. In addition where the 

second enantiomer was not observed the enantiopurity is stated as >98% ee.  

4.3.4.3 Hydrolase-mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b 

The hydrolase-mediated transesterification of  (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b employing vinyl acetate as both acetylating donor and solvent was initially 

investigated. The hydrolases screened were selected on the basis that they had demonstrated 

conversion in the resolution of (±)-cis- and (±)-trans-2-nitrocyclohexanol (±)-99a and (±)-

99b in some instances with excellent enantioselection.
45

  

 

Table 4.21: Hydrolase-mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b in vinyl acetate  

 

 

 

 

              

                          (±)-117b                             (1R,2R)-119b      (1S,2S)-117b 

 

As is evident in Table 4.21 the vinyl acetate screen was very promising, with 

excellent enantioselection achieved via Candida antarctica lipase B (immob) and 

Pseudomonas stutzeri mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b (entries 3 and 4, Table 4.21). Optimum conversions of ~50% were attained in both 

Entry Enzyme Source 

Reaction 

Time 

 

Conversion 

(%) 

ee  

(%) 

E value 
E 

Calc. 

1
H 

NMR 

Alcohol 

trans-

117b 

(1S,2S) 

Acetate 

trans-

119b 

(1R,2R) 

1 Candida cylindracea C1 48 h 33 43 61 >98 185 

2 Pseudomonas cepacia P2 48 h - <10 - - - 

3 Candida antarctica B (immob) 72 h 49 48 96 >98 >200 

4 Pseudomonas stutzeri 48 h 50 51 97 >98 >200 

5 Pseudomonas fluorescens 113.5 h - <10 - - - 
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resolutions and the generated acetate (1R,2R)-119b (>98% ee) and recovered alcohol (1S,2S)-

117b (≥96% ee) were acquired with excellent enantiopurity. A lower rate of conversion was 

observed with Candida cylindracea C1 catalysed resolution (entry 1, Table 4.21) and 

although excellent enantiopurity of the acetate (1R,2R)-119b (>98% ee) was achieved the 

poor efficiency of the bioresolution resulted in a reduced enantiopurity of the alcohol (1S,2S)-

117b (61% ee). Significantly, minimal transesterification was observed utilising the 

Pseudomonas cepacia P2 and Pseudomonas fluorescens biocatalysts (entries 2 and 5, Table 

4.21) and chiral HPLC analysis was not conducted in these resolutions. 

In the transesterification of (±)-trans-2-nitrocyclohexanol (±)-99b Milner reports high 

enantiopurity of both the nitrocyclohexanol (1S,2S)-99b and nitroacetate (1R,2R)-100b with 

Pseudomonas fluorescens and Candida antarctica lipase B (immob) (Figure 4.23). 

Significantly in the transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b 

Candida antarctica lipase B (immob) also demonstrated excellent enantioselection 

confirming that this biocatalyst can accommodate increased steric demand in the “C2 region” 

of the enzyme active site. In direct contrast Pseudomonas fluorescens demonstrated limited 

efficiency with the bulkier substrate (±)-117b. Furthermore, while Pseudomonas stutzeri 

mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b proceeded 

with excellent enantioselection (E >200), this hydrolase displayed poor enantiopreference in 

the transesterification of the less sterically hindered (±)-trans-2-nitrocyclohexanol (±)-99b (E 

= 15). 

 

Comparison of enantioselection (E-value) for transesterification of (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b and (±)-trans-2-nitrocyclohexanol (±)-99b versus hydrolase 

 

Transesterification of (±)-117b 

Transesterification of (±)-99b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 
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4.3.4.4 Hydrolase-mediated transesterification of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-

117a 

Based on the efficient resolution achieved in the transesterification of (±)-trans-2-

methyl-2-nitrocyclohexanol (±)-117b, attention was now focused on resolution of the (±)-cis-

isomer (±)-117a employing the same optimised acetylation conditions developed for (±)-

117b, that is vinyl acetate as both solvent and acyl donor. 

 

Table 4.22: Hydrolase-mediated transesterification of (±)-cis-2-methyl-2-nitrocyclohexanol 

(±)-117a in vinyl acetate  

 

 

 

   

   

      (±)-117a                              (1R,2S)-119a        (1S,2R)-117a 

 

Of the four hydrolases screened, no hydrolase was identified which resolved both the 

cis-acetate (1R,2S)-119a and cis-alcohol (1S,2R)-117a with excellent enantioselectivity. Both 

Candida antarctica lipase B (immob) and Pseudomonas fluorescens (entries 2 and 3, Table 

4.22)  achieved high enantiopurity of the generated acetate (1R,2S)-119a (≥96% ee) however 

the enantiopurity of the alcohol (1S,2R)-117a was poor due to low rate of acetylation. 

Conversely, Pseudomonas stutzeri (entry 3, Table 4.22) mediated resolution proceeded with a 

high rate of conversion and limited enantiopreference with poor enantiopurity of the 

recovered acetate (1R,2S)-119a (27% ee). However, the recovered alcohol (1S,2R)-117a 

displayed excellent enantiopurity albeit with very low recovery due to over acetylation in this 

biotransformation. Finally Pseudomonas cepacia P2 demonstrated limited efficiency in the 

kinetic resolution of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a (entry 1, Table 4.22) and 

no chiral HPLC analysis was conducted. 

In the resolution of (±)-cis-2-nitrocyclohexanol (±)-99a, Milner reports efficient 

conversions and enantioselectivities with the Pseudomonas stutzeri and Pseudomonas 

fluorescens biocatalysts.
45

 In this study these enzymes demonstrate poorer enantioselection 

towards the resolution of the more sterically demanding (±)-cis-2-methyl-2-nitrocyclohexanol 

(±)-117a, with inefficient conversion for acetylation catalysed by Pseudomonas fluorescens 

while over acetylation occurs in the reaction mediated by Pseudomonas stutzeri (Figure 

4.24). Variation of the reaction conditions and times for these enzyme-mediated 

transformations may result in a better overall outcome. 

 

 

Entry Enzyme Source 

Reaction 

Time 

 

Conversion 

(%) 
ee (%) 

E value 
E 

Calc. 

1
H 

NMR 

Alcohol 

cis-117a 

(1S, 2R) 

Acetate 

cis-119a 

(1R, 2S) 

1 Pseudomonas cepacia P2 48 h - <10 - - - 

2 Candida antarctica B (immob) 72 h 33 47 49 >98 159 

3 Pseudomonas stutzeri 48 h 78 85 >98 27 6.4 

4 Pseudomonas fluorescens 113.5 h 40 45 64 96 95 
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Figure 4.24 

 

Significantly, on comparison of the efficiency and enantioselection of the resolution 

of the (±)-trans-2-methyl-2-nitrocyclohexanol with that of the (±)-cis-diastereomer both 

Candida antarctica lipase B (immob) and Pseudomonas stutzeri demonstrated potential 

diastereoselectivity. Excellent enantioselection in the resolution of the (±)-trans-alcohol (±)-

117b was observed, and crucially, different rates of transesterification (as evidenced by 

extent of transformation at the same reaction time) were determined relative to the cis-isomer 

(±)-117a. Thus these hydrolases are possible biocatalysts for the diastereoselective resolution 

of (±)-2-methyl-2-nitrocyclohexanol (±)-117. 

4.3.4.5 Diastereoselective hydrolase-mediated transesterification of (±)-cis- and (±)-trans-

2-methyl-2-nitrocyclohexanol (±)-117a or (±)-117b 

Further investigation of the potential diastereoselectivity of Pseudomonas stutzeri and 

Candida antarctica lipase B (immob) in the resolution of (±)-2-methyl-2-nitrocyclohexanol 

(±)-117, with particular examination of the rates of acetylation of the two diastereomers (±)-

117a or (±)-117b was required. The objective was that the hydrolases would selectively 

acetylate one diastereomer (±)-117a or (±)-117b in high efficiency and excellent 

enantioselectivity while the opposite diastereomer (±)-117a or (±)-117b would remain 

unchanged. A 50 : 50 mixture of (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanols (±)-

117a and (±)-117b was dissolved in vinyl acetate and the appropriate hydrolase was charged 

to the reaction vessel. Reaction monitoring by 
1
H NMR analysis was conducted throughout 

the incubation period. Aliquots of reaction mixture (0.5–1.0 mL) were isolated and filtered 

prior to concentration. The sample was then analysed by 
1
H NMR spectroscopy and the 

relative conversions of the cis- and trans-alcohols 117a and 117b to their respective cis- and 

trans-acetates 119a and 119b was determined (Table 4.23). The diastereoselectivity is 

represented by the relative extent of transformation of the two diastereomers (±)-117a and 

(±)-117b. 

> 
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The final extraction, in addition to 
1
H NMR analysis, was also subjected to chiral 

HPLC and enantioselection determined. As an efficient and convenient chiral HPLC method 

had been developed, enantiopurities of all four enantiomeric pairs 117a, 117b, 119a and 119b 

could be determined on a single trace, thus obviating prior separation of the acetates 119a and 

119b and alcohols 117a and 117b by column chromatography. 

 

Table 4.23: Diastereoselective hydrolase-mediated transesterification of (±)-cis- and  

(±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a or (±)-117b in vinyl acetate  

  

 

 

                        (±)-117b                           (1R,2R)-119b     (1S,2S)-117b 

 

 

 

 

 

  

 

                        (±)-117a                            (1R,2S)-119a      (1S,2R)-117a 
 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the spectrum of the mixture of the 
crude material not mass recovery. 

b. The principal enantiomer was (1S,2R)-cis-2-methyl-2-nitrocyclohexanol (1S,2R)-117a. 

c. The principal enantiomer was (1S,2S)-trans-2-methyl-2-nitrocyclohexanol (1S,2S)-117b. 

d. The principal enantiomer was (1R,2S)-cis-2-methyl-2-nitrocyclohexyl acetae (1S,2R)-119a. 

e. The principal enantiomer was (1R,2R)-trans-2-methyl-2-nitrocyclohexyl acetate (1R,2R)-119b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enzyme Source Reaction Time 

Alcohol (±)-117 Acetate (±)-119 

cis-117a 

(%)
a
 

[ee (%)]
b
 

trans-117b 

(%)
a
 

[ee (%)]
c
 

cis-119a 

(%)
a
 

[ee (%)]
d
 

trans-119b 

(%)
a
 

[ee (%)]
e
 

Pseudomonas 

stutzeri 

18.5 h 12 27 39 22 

40.5 h 
10 

[14] 

22 

[3] 

42 

[54] 

26 

[>98] 

Candida 

antarctica B 

(immob) 

12 h 44 38 3 15 

18.5 h 43 36 4 17 

40.5 h 41 30 6 23 

62.5 h 
27 

[15] 

30 

[74] 

11 

[>98] 

32 

[>98] 
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*Note: Conversion (%) illustrated as percentage of material in the crude product. 

 

Figure 4.25  

 

 As anticipated from the preliminary screens conducted on the individual 

diastereomers, Pseudomonas stutzeri demonstrated a higher rate of acetylation for the (±)-cis-

2-methyl-2-nitrocyclohexanol (±)-117a relative to the trans-alcohol (±)-117b (Figure 4.25). 

However the difference in acetylation rates was minor and transesterification of (±)-trans-2-

methyl-2-nitrocyclohexanol (±)-117b was also a significant process in the Pseudomonas 

stutzeri mediated resolution with the trans-acetate 119b responsible for 22% of the overall 

product ratio after 18.5 h. Enantiopurity of the dominant cis-acetate (1R,2S)-119a was poor 

(54% ee) demonstrating the lipase’s lack of enantiopreference towards (±)-117a. Thus, the 

poor enantiopurity of the faster generated acetate (1R,2S)-119a and limited 

diastereoselectivity observed deemed Pseudomonas stutzeri unsuitable for the development 

of a dynamic kinetic resolution process. 

 The hydrolase Candida antarctica lipase B (immob) mediated transesterification 

proceeded with high diastereoselectivity towards (±)-2-methyl-2-nitrocyclohexanol (±)-117a 

and (±)-117b (Figure 4.25). The dominant process was resolution of the (±)-trans-alcohol 

(±)-117b with excellent enantiopurity observed of the acetate (1R,2R)-119b (>98% ee). After 

18.5 h only 4% of the minor cis-acetate (1R,2S)-119a relative to 17% of the major trans-

acetate (1R,2R)-119b was generated, demonstrating good diastereoselectivity. This was a 

marked improvement relative to the Pseudomonas stutzeri mediated transesterification of (±)-

2-methyl-2-nitrocyclohexanol (±)-117. 

 In summary, Candida antarctica lipase B (immob) demonstrated the greatest potential 

for the development of a dynamic resolution process of (±)-2-methyl-2-nitrocyclohexanol 

(±)-117, with good diastereoselectivity and high enantiopurity observed in the preliminary 

screens. Optimisation through variation of reaction conditions may well lead to enhanced 

selectivity.  
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4.3.5 Hydrolase-mediated kinetic resolution – preparative-scale 

The kinetic resolutions were next undertaken on a preparative-scale to demonstrate 

the synthetic utility of the hydrolase-mediated transesterification and to determine the 

absolute stereochemistry of the enantiopure products. 

4.3.5.1 Preparative-scale hydrolase-catalysed transesterification of (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b 

A preparative-scale hydrolase-mediated transesterification of (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b (1.30 mmol) was first investigated. The lipase Pseudomonas 

stutzeri was selected due to the optimum conversion observed and the excellent 

enantioselectivity achieved in the analytical kinetic resolution screens.  

In this study, reaction monitoring of the preparative-scale Pseudomonas stutzeri 

mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b was 

conducted at 48 h; an aliquot was removed and, following work-up, 
1
H NMR and chiral 

HPLC analysis were performed to determine conversion and enantioselectivity (entry 1, 

Table 4.24). Due to the low enantiopurity of the alcohol (1S,2S)-117b (95% ee) the reaction 

mixture was incubated for a further 7 h at 24 °C and filtered at 55 h through Celite
®

 to 

remove the hydrolase. The combined organic extracts were concentrated under reduced 

pressure. Purification by column chromatography separated the enantiopure trans-alcohol 

(1S,2S)-117b and trans-acetate (1R,2R)-119b as clear oils in 35% and 36% yield respectively 

with spectral characteristics identical to those for the racemic materials previously prepared 

(Figure 4.26 and 4.27). Due to the removal of a reaction aliquot, reaction monitoring may 

have led to a decreased yield. An optimum conversion rate of 50% was achieved during the 

large scale transesterification with excellent enantiopurity of the trans-alcohol (1S,2S)-117b 

(>98% ee) and the trans-acetate (1R,2R)-119b (>98% ee) obtained. Notably, on scale up the 

efficiencies and selectivities of the resolution of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-

117b mirrored the outcome seen in the analytical scale resolution in Table 4.21. The 

assignment of the absolute stereochemical outcome of this reaction is discussed further in 

section 4.3.5.3. 

 

Table 4.24: Large scale Pseudomonas stutzeri mediated transesterification of  

(±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b in vinyl acetate 

 

 

 

 

 

                          (±)-117b                             (1R,2R)-119b     (1S,2S)-117b 

a. Chiral HPLC analysis was conducted on the crude reaction mixture aliquot acquired at 48 h.  

b. Chiral HPLC analysis was conducted after purification by column chromatography and isolation of (1S,2S)-117b and (1R,2R)-119b. 

c. Isolated yield following column chromatography. 

Entry 
Reaction 

Time 

Temperature 

(°C) 

Conversion 

(%) 

ee (%) 

[yield (%)]
c
 

E 

value 
E Calc. 

1
H 

NMR 

Alcohol 

trans-117b 

(1S,2S) 

Acetate 

trans-119b 

(1R,2R)  

1
a
 48 h 24 49 52 95 >98 >200 

2
b
 52.5 h 24 50 50 

>98 

[35]
c
 

>98 

[36]
c
 

>200 
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Figure 4.26: HPLC Trace I: A racemic mixture of (±)-trans-2-methyl-2-nitrocyclohexyl acetate (±)-119b and (±)-trans-

2-methyl-2-nitrocyclohexanol (±)-117b. Trace II: Purified (1R,2R)-trans-2-methyl-2-nitrocyclohexyl acetate (1R,2R)-119b 

>98% ee following column chromatography. Trace III: Purified (1S,2S)-trans-2-methyl-2-nitrocyclohexanol (1S,2S)-117b 

95% ee following column chromatography. For HPLC conditions see appendix I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27: 1H NMR Spectrum I: Crude product following preparative-scale transesterification containing a mixture 

of enantioenriched (1R,2R)-trans-2-methyl-2-nitrocyclohexyl acetate (1R,2R)-119b and (1S,2S)-trans-2-methyl-2-nitro 

cyclohexanol (1S,2S)-117b 50 : 50 respectively. Spectrum II: Purified (1S,2S)-trans-2-methyl-2-nitrocyclohexanol (1S,2S)-

117b, >98% ee following column chromatography. Spectrum III: Purified (1R,2R)-trans-2-methyl-2-nitrocyclohexyl acetate 

(1R,2R)-119b, >98% ee following column chromatography (all spectra recorded in CDCl3 at 300 MHz). 
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4.3.5.2 Preparative-scale hydrolase-catalysed transesterification of (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a 

The preparative-scale hydrolase-mediated transesterification of (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a (0.51 mmol) was next investigated. The lipase Candida 

antarctica lipase B (immob) was selected as this lipase resulted in the highest observed 

enantioselectivity in the analytical screens (E = 159).  

In this study, reaction monitoring of the enantioselective Candida antarctica lipase B 

(immob) catalysed acetylation of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a was 

conducted at 72 h. An aliquot (0.25 mL) was removed, filtered and concentrated under 

reduced pressure before conversion and enantioselectivity were determined by chiral HPLC 

analysis. It should be noted that 
1
H NMR spectroscopy was not conducted at this point in the 

investigation. Poor conversion and low enantioselectivity of the recovered alcohol (1S,2R)-

117a was observed (entry 1, Table 4.25) and thus, the bioresolution was shaken and 

incubated at 24 °C for a further 7 h before filtration of the reaction mixture through Celite
®
 to 

remove the immobilised lipase. The lipase was washed with ethyl acetate and all combined 

organic extracts concentrated under reduced pressure.  

The enantioenriched alcohol (1S,2R)-117a and acetate (1R,2S)-119a in the crude 

reaction mixture were isolated by column chromatography on silica gel in 33% and 30% 

yield respectively and analysed by 
1
H NMR and chiral HPLC (Figure 4.28 and 4.29). 

1
H 

NMR spectra were identical to those for the racemic materials previously prepared. The 

enantioselectivity of the preparative-scale (entry 2, Table 4.25) reflected very closely that of 

the analytical scale (entry 2, Table 4.22). While excellent enantiopurity of the (1R,2S)-cis-2-

methyl-2-nitrocyclohexyl acetate (1R,2S)-119a was observed (>98% ee), the enantiopurity of 

the (1S,2R)-cis-2-methyl-2-nitrocyclohexanol (1S,2R)-117a was low (45% ee) due to the poor 

conversion rate (32%).  

Significantly, in Milner’s study, isolated enantiopure samples of (1S,2R)-cis-2-

nitrocyclohexanol (1S,2R)-99a and (1R,2S)-cis-2-nitrocyclohexylacetate (1R,2S)-100a were 

not obtainable due to the formation of the elimination product 1-nitrocyclohexene 102 on 

attempted purification of the enantioenriched products (1S,2R)-99a and (1R,2S)-100a on 

silica gel. Thus, the stereochemistry of the transesterification products of (±)-cis-2-

nitrocyclohexanol (±)-99a were tentatively assigned by analogy to the transesterification of 

(±)-trans-2-nitrocyclohexanol (±)-99b and in accordance to Kazlauskas’s rule (see section 

4.2.6.2). In contrast, no competing dehydration process was evident in this study thus the 

absolute stereochemistry of the transesterification products of (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a, (1R,2S)-119a and (1S,2R)-117a can be unequivocally assigned 

by single crystal X-ray diffraction on a crystalline sample of (1R,2S)-cis-2-methyl-2-

nitrocyclohexyl acetate (1R,2S)-119a (see section 4.3.5.3). 

Thus, three of the four resolution products, (1S,2S)-117b, (1R,2R)-119b and (1R,2S)-

119a, were obtained in excellent enantiopurity and reasonable yields while (1S,2R)-117a is 

obtained in only modest enantiopurity (45% ee). Interestingly, the preparative-scale reactions 

reproduced very closely the outcomes of the analytical scale reactions, even in the case of 

117a where the resolution does not easily proceed to the ideal 50% conversion, either 

overshooting or undershooting depending on the biocatalyst applied. 
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Table 4.25: Large scale Candida antarctica lipase B (immob) mediated transesterification of 

(±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a in vinyl acetate 

 

 

 

 

 

                          (±)-117a                                     (1R,2S)-119a      (1S,2R)-117a 

a. Chiral HPLC analysis was conducted on the crude reaction mixture aliquot acquired at 72 h.  

b. Chiral HPLC analysis was conducted after purification by column chromatography and isolation of (1R,2S)-119a and (1S,2R)-117a.  

c. Isolated yield following column chromatography. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 4.28: HPLC Trace I: A racemic mixture of (±)-cis-2-methyl-2-nitrocyclohexyl acetate (±)-119a and (±)-cis-2-

methyl-2-nitrocyclohexanol (±)-117a. Trace II: Purified (1S,2R)-cis-2-methyl-2-nitrocyclohexanol (1S,2R)-117a, 45% ee 

following column chromatography. Trace III: Purified (1R,2S)-cis-2-methyl-2-nitrocyclohexyl acetate (1R,2S)-119a, >98% 

ee following column chromatography. For HPLC conditions see appendix I. 

 

 

 

 

 

 

 

Entry 
Reaction 

Time 

Temperature 

(°C) 

Conversion 

(%) 

ee (%) 

[yield (%)]
c
 

E value 

E Calc. 

1
H 

NMR 

Alcohol 

trans-117a 

(1S,2R) 

Acetate 

trans-119a 

(1R,2S) 

1
a
 72 h 24 27 - 37 >98 142 

2
b
 79 h 24 31 32 

45 

[33]
c
 

>98 

[30]
c
 

154 

Trace I 

Racemic 

Trace II 

Trace III 

 

>98% ee 

>98% ee 

>98% ee 97% ee 

(1S,2R)-117a (1R,2S)-117a 
(1R,2S)-119a 

(1R,2S)-119b 

>98% ee 

 

(1S,2R)-117a 

45% ee 

 

(1S,2R)-119a 
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Figure 4.29: 1H NMR Spectrum I: Crude product following preparative-scale transesterification containing a mixture 

of enantioenriched (1S,2R)-cis-2-methyl-2-nitro cyclohexanol (1S,2R)-117a and (1R,2S)-cis-2-methyl-2-nitrocyclohexyl 

acetate (1R,2S)-119a  68 : 32 respectively (recorded in CDCl3 at 300 MHz). Spectrum II: Purified (1R,2S)-cis-2-methyl-2-

nitrocyclohexyl acetate (1R,2S)-119a, >98% ee following column chromatography (recorded in CDCl3 at 400 MHz). 

Spectrum III: Purified (1S,2R)-cis-2-methyl-2-nitrocyclohexanol (1S,2R)-117a, 45% ee following column chromatography 

(recorded in CDCl3 at 400 MHz). 

4.3.5.3 Stereochemical assignment of the products of preparative-scale reactions 

As discussed in section 4.2.6.2, Kazlauskas’s rule can be employed to predict which 

enantiomer of secondary alcohols reacts faster in reactions catalysed by hydrolases.
72,73

 The 

stereochemical outcome of the reaction from the hydrolase-mediated transesterification of 

(±)-cis and (±)-trans-2-nitrocyclohexanol (±)-99a and (±)-99b, were confirmed by Milner 

through single crystal X-ray diffraction and, significantly, agreed with Kazlauskas’s rule.
45

 

When this rule was applied to the preparative-scale hydrolase-mediated bioresolutions of (±)-

cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-117b the following 

outcome was anticipated (Scheme 4.53). 

 

 

 

 

                               (±)-117b                                      (1R,2R)-119b    (1S,2S)-117b 

 

 

 

 

 

                               (±)-117a                                      (1R,2S)-119a     (1S,2R)-117a 

  

Scheme 4.53 

(1S,2R)-117a 

45% ee 

Spectrum III 

(1R,2S)-119a 

>98% ee 

(1S,2R)-117a (1R,2S)-119a 

68 : 32  

Spectrum II 

Spectrum I 
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The absolute stereochemical assignment of the enantioenriched (1S,2R)-117a alcohol 

and enantiopure acetate (1R,2S)-119a isolated from the preparative-scale Candida antarctica 

lipase B (immob) mediated resolution of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a was 

initially examined (Scheme 4.54).  

 

 

 

 

 

 

  

 

 

Scheme 4.54 

                      

The absolute stereochemistry of (1R,2S)-119a was determined by single crystal X-ray 

diffraction on a crystalline sample of enantiopure 119a recrystallised from HPLC grade 

acetonitrile (Figure 4.30).
80

 Full structural details are contained on the accompanying CD. 

Significantly this assignment is in agreement with Kazlauskas’s rule (Scheme 4.53). The 

absolute stereochemistry of the enantioenriched untransformed alcohol therefore is assigned 

as (1S,2R)-117a. 

 

 

 

 

 

 

                                                                                                   (1R,2S)-119a 

 

 

 

Figure 4.30: A view of (1R,2S)-cis-2-methyl-2-nitrocyclohexyl acetate (1R,2S)-119a showing the structure and relative 

stereochemistry. The model has chirality C1 (R) and C2 (S). Anisotropic displacement parameters are drawn at the 30% 

probability level. 

 

The stereochemical assignment of the products of the preparative-scale hydrolase-

mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b was next 

examined (Scheme 4.55).   

 

 

 

 

 

 

 

 

 

Scheme 4.55 

              (±)-117a  (1R,2S)-119a (1S,2R)-117a 

     
   −46.2 (c 0.5, CHCl3) +0.7 (c 0.5, CHCl3) 

  >98% ee 45% ee 

  (±)-117b  (1R,2R)-119b (1S,2S)-117b 

     
   −32.6 (c 1.0, CHCl3) +42.0 (c 1.0, CHCl3) 

  >98% ee >98% ee 
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The absolute stereochemistry of the isolated enantiopure trans-acetate (1R,2R)-119b 

and trans-alcohol (1S,2S)-117b could not be determined by single crystal X-ray diffraction as 

both enantiopure products were obtained as oils. Thus, stereochemical assignment of the 

transesterification products of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b were 

tentatively assigned as (1R,2R)-trans-2-methyl-2-nitrocyclohexyl acetate (1R,2R)-119b and 

(1S,2S)-trans-2-methyl-2-nitrocyclohexanol (1S,2S)-117b by analogy to the 

transesterification of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and in accordance to 

Kazlauskas’s rule. 

Furthermore, the absolute stereochemistry of the products of the lipase-mediated 

transesterification of both the (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b 

and (±)-117b are in agreement with the stereochemical assignment of the products of 

preparative-scale transesterification of (±)-cis- and (±)-trans-2-nitrocyclohexanol (±)-99a and 

(±)-99b.
36,45

 

4.3.6 One-pot hydrolase-mediated dynamic resolution screens 

Crucial to the success of the hydrolase-mediated dynamic kinetic resolution was 

selection of the correct base. One of the fundamental requirements of the selected base is 

catalysis of the dynamic interconversion process between the (±)-cis- and (±)-trans-2-methyl-

2-nitrocyclohexanols (±)-117a and (±)-117b. Once the dynamic process was confirmed by 
1
H 

NMR spectroscopy it was then envisaged that combination with the established 

diastereoselective lipase-mediated transesterification would lead to a one-pot dynamic kinetic 

resolution of the intramolecular nitroaldol reaction through lipase catalysis.  

The objective of this study was to identify a base that fulfils the following criteria:  

 Effectively ring closes 6-nitroheptanal 118 via the intramolecular Henry 

reaction to form the (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanols (±)-

117a and (±)-117b. 

 Catalyses the dynamic interconversion process between (±)-117a and (±)-117b 

via ring opening and closing via 6-nitroheptanal 118.  

 Can be combined in the dynamic process with the diastereoselective lipase-

mediated transesterification in a dynamic kinetic resolution protocol. 

 

Conversions were determined throughout this study by 
1
H NMR spectroscopy (Figure 4.31) 

and are derived from integration of; 

 1H, br s, C(1)HOH at 3.91 ppm in (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a.  

 1H, m, C(1)HOH, at 4.28-4.29 ppm in (±)-trans-2-methyl-2-nitrocyclohexanol (±)-

117b 

 1H, m, C(6)HNO2 at 4.51-4.63 ppm in 6-nitroheptanal 118  

 1H, m, C(1)HOAc at 5.26-5.29 ppm in (±)-cis-2-methyl-2-nitrocyclohexyl acetate, 

(±)-119a 

 1H, m, C(1)HOAc at 5.50-5.55 ppm in (±)-trans-2-methyl-2-nitrocyclohexyl acetate, 

(±)-119b 
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Figure 4.31: 1H NMR Spectrum: Mixture of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a, (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b, 6-nitroheptanal 118, (±)-cis-2-methyl-2-nitrocyclohexyl acetate, (±)-119a and (±)-trans-2-

methyl-2-nitrocyclohexyl acetate, (±)-119b (19 : 18 : 31 : 14 : 18 respectively) recorded in CDCl3 at 300 MHz. 

4.3.6.1 Triethylamine  

As discussed in section 4.1.1.1.2, Ranström successfully synthesised highly 

enantioenriched β-nitroalkanol derivatives by an intermolecular Henry reaction between a 

series of aldehydes and nitropropane combined with an enzyme-mediated 

transesterification.
43

 High yields and enantiopurities were achieved with a range of aromatic 

aldehydes. However, the bioresolution is restricted by a narrow substrate range with aliphatic 

aldehydes and electron donating para substituted aromatics (entries 5 and 6, Table 4.26) 

resolved with poor yields. In addition, limited enantioselectivity is observed with thiophene 

derivatives (entry 7, Table 4.26). 

 

Table 4.26: Hydrolase-mediated dynamic kinetic resolution of β-nitroalcohols
43

 

 

 

 

 

 

 

 

Entry Ar Time Yield (%) ee (%) 

1 4-O2N-C6H4 2 d 90 99 

2 4-NC-C6H4 2 d 89 91 

3 4-F3C-C6H4 3 d 89 97 

4 3-O2N-C6H4 3 d 90 91 

5 4-CH3-C6H4 4 d 35 93 

6 4-CH3O-C6H4 4 d 28 99 

7 Thiophene-2-yl 4 d 68 46 

(±)-117a 

(±)-117b 

118 

(±)-119a 

(±)-119b 
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This one-pot procedure was performed at 40 °C in toluene with between 2.0 and 5.0 

equivalents of triethylamine, and thus, based on this preceding report, initial experiments in 

this study were conducted investigating triethylamine as a suitable catalyst for dynamic 

interconversion of (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-

117b.  

4.3.6.1.1 Cyclisation of 6-nitroheptanal 118 via the intramolecular Henry reaction 

The objective of the initial series of experiments was to investigate if triethylamine 

could successfully effect ring closure of 6-nitroheptanal 118 via the intramolecular nitroaldol 

reaction to form the β-nitroalcohols (±)-117a and (±)-117b and subsequently determine the 

associated thermodynamic ratio between the diastereomeric alcohols (±)-117a and (±)-117b. 

As vinyl acetate had been applied for the lipase-mediated transesterification in both the 

analytical and preparative-scale, ideally the base-mediated investigation should be effected in 

the same solvent to ultimately enable combination of the two processes in a single pot. Four 

experiments were conducted, either at room temperature or 40 °C, with 6-nitroheptanal 118 

in vinyl acetate together with varying amounts of triethylamine. Aliquots were removed at 

regular time intervals and concentrated under reduced pressure to enable direct monitoring of 

the formation of (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanols (±)-117a and (±)-117b 

by 
1
H NMR analysis.  

While cyclisation of 6-nitroheptanal 118 by triethylamine in vinyl acetate can be 

achieved, as is evident from Table 4.27 and Figure 4.32 complete cyclisation of 118 to the 

diastereomeric alcohols (±)-117a and (±)-117b in the presence of between 1.0-2.0 equivalents 

of triethylamine was not observed. After 72 h at room temperature with 1.0, 1.5 and 2.0 

equivalents of triethylamine (entries 2, 3 and 4, Table 4.27), 65-78% of the starting aldehyde 

118 remained. The most promising result was achieved when the temperature was increased 

to 40 °C with 2.0 equivalents of triethylamine (entry 1, Table 4.27). Under these conditions 

only 9% of the aldehyde 118 was evident by 
1
H NMR analysis at 72 h with the predominant 

products being the (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanols (±)-117a and (±)-

117b, 24 : 67 respectively. Thus, the dynamic interconversion between (±)-117a and (±)-

117b via ring closing and opening of 6-nitroheptanal 118 warrants investigation under these 

optimum reaction conditions.  

In these screens, the (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b was clearly the 

more stable diastereomer, formed to a greater extent than the (±)-cis-diastereomer (±)-117b in 

all cases. In terms of our overall objective, the increased amount of (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b fortuitously coincides with the observation of enhanced Candida 

antarctica lipase B (immob) mediated kinetic resolution of the trans-diastereomer (±)-117b 

when the biocatalysis was conducted with an equimolar mixture of (±)-117a and (±)-117b 

(see section 4.3.4.5). Indeed, with the thermodynamic ratio favouring (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b coupled with the enhanced enzyme-mediated transformation of 

this trans-diastereomer (±)-117b the potential to lead to a genuinely selective dynamic kinetic 

resolution is strengthened.  
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Table 4.27: Triethylamine-mediated cyclisation of 6-nitroheptanal 118  

with vinyl acetate as solvent 

      118                                        (±)-117a         (±)-117b            (±)-119a            (±)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery. 

 

From a practical prospective the absence of any significant side reactions in this study 

such as the aldol condensation augurs well for optimisation of this process. Significantly 

there was no evidence of acetylation with vinyl acetate in the absence of a lipase, which is 

crucial in terms of achieving a combined one-pot dynamic kinetic resolution process. In 

contrast to this study, Milner reports rapid cyclisation of 6-nitrohexanal 101 to the (±)-2-

nitrocyclohexanols (±)-99a and (±)-99b with just 1.0 equivalent of triethylamine at room 

temperature.
45

 Thus, the presence of a methyl moiety geminal to the nitro group appears to 

reduce the efficiency of the intramolecular Henry reaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry 
Triethylamine 

(eq.) 

Temp 

(°C) 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis 

(±)-117a 

(%)
a
 

trans 

(±)-117b 

(%)
a
 

cis 

(±)-119a 

(%)
a
 

trans 

(±)-119b 

(%)
a
 

1 2.0 

 

40 

 

24 h 62 14 24 - - 

48 h 37 24 39 - - 

72 h 9 24 67 - - 

2 2.0 Ambient 

24 h 89 4 7 - - 

48 h 76 9 15 - - 

72 h 65 12 23 - - 

3 1.5 Ambient 

24 h 90 3 7 - - 

48 h 79 7 14 - - 

72 h 67 11 22 - - 

7 days 34 22 44 - - 

4 1.0 Ambient 

24 h 92 3 5 - - 

48 h 85 5 10 - - 

72 h 78 7 15 - - 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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exposure of 6-nitroheptanal 118 to different equivalents of triethylamine at room temperature  

or 40 °C at 72 h 

 

 

 

                 

 

 

 

 

 

 

 

 
 

 

Figure 4.32 

4.3.6.1.2 Dynamic interconversion process 

The next step in this investigation was to examine the dynamic interconversion 

process between (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-117b. 

The first study involved diastereomerically pure (±)-cis-2-methyl-2-nitrocyclohexanol (±)-

117a dissolved in deuterated chloroform with 2.0 equivalents of triethylamine at room 

temperature (Table 4.28). This experiment was conducted in a NMR tube enabling direct 

analysis of the ratios of the β-nitroalcohols (±)-117a and (±)-117b over time. As is evident 

from Table 4.28 and Figure 4.33 limited dynamic interconversion was observed with only 

28% of the more stable (±)-trans-diastereomer (±)-117b evident after 17 days. Thus, 2.0 

equivalents of triethylamine in deuterated chloroform were ineffective in catalysing the 

dynamic interconversion process. This was not unexpected due to the limited cyclisation 

observed of 6-nitroheptanal 118 with 2.0 equivalents of triethylamine in vinyl acetate (entry 

2, Table 4.27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

6-Nitroheptanal 118 

(±)-cis-2-Methyl-2-nitrocyclohexanol (±)-117a 

(±)-trans-2-Methyl-2-nitrocyclohexanol (±)-117b 
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Table 4.28:
 
 Evidence for dynamic interconversion - (±)-cis-2-methyl-2-nitrocyclohexanol  

(±)-117a and triethylamine (2.0 eq.) in CDCl3. 

 

 

 

 

 

                 

                  (±)-117a                                        118                                        (±)-117b 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33: Stacked 1H NMR spectra: Investigation of dynamic interconversion –  

(±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and NEt3 (2.0 eq.) (Recorded in CDCl3 at 300 MHz). 

 

 

 

 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

10 min 100 - 

1 h 23 min 100 - 

5 h 46 min 100 - 

11 h 30 min 100 - 

3 days 95 5 

7 days 90 10 

17 days 72 28 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(±)-117b 

72% cis (±)-117a 

28% trans (±)-117b 

Spectrum I 

11.5 h 

(±)-117a 

90% cis (±)-117a 

10% trans (±)-117b 

95% cis (±)-117a 

5% trans (±)-117b 

100% cis (±)-117a 

Spectrum II 

3 days 

Spectrum III 

7 days 

Spectrum IV 

17 days 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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The next study investigated the dynamic interconversion process under the optimum 

reaction conditions identified in the base-mediated intramolecular nitroaldol reaction (entry 1, 

Table 4.27). Diastereomerically pure (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b was 

dissolved in vinyl acetate with 2.0 equivalents of triethylamine and heated to 40 °C. Aliquots 

were removed at regular time intervals and analysed by 
1
H NMR spectroscopy.  

This dynamic interconversion would require transformation of the more 

thermodynamically stable diastereomer (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b to 

the cis-diastereomer (±)-117a. In this investigation, no interconversion to the (±)-cis-

diastereomer (±)-117a was observed by 
1
H NMR analysis even at the elevated temperature 

and prolonged reaction time. The dynamic interconversion process was briefly explored with 

a higher amount of triethylamine (8.0 equivalents) however there was negligible 

improvement in the efficiency of the dynamic interconversion process. 

In direct contrast to this investigation, Milner reported interconversion between (±)-

cis- and (±)-trans-2-nitrocyclohexanol (±)-99a and (±)-99b in the presence of as little as 0.01 

equivalent of triethylamine achieving a thermodynamic ratio of 15 : 85 over time. 

Significantly, this reported process was later determined to operate solely via an 

epimerisation mechanism and dynamic interconversion via ring opening and closing of 6-

nitrohexanal 101 with triethylamine was not achieved. Accordingly these results seen with 

(±)-117b are consistent with Milner’s results even though the outcome is different. 

 

Table 4.29: Evidence for dynamic interconversion – (±)-trans-2-methyl-2-nitrocyclohexanol  

(±)-117b and triethylamine (2.0 eq.)in vinyl acetate at 40 °C 

 

 

 

 

 

 

                   (±)-117b                                           118                                         (±)-117a 

 

 

 

 

 

 
 

The absence of interconversion of (±)-117a and (±)-117b on exposure to 

triethylamine and vinyl acetate represents a significant challenge to the objective of a 

dynamic kinetic resolution process as interconversion of the stereocentres at C1 and C2 in 

situ is an intrinsic requirement of the process. On the positive side the interconversion of (±)-

117a and (±)-117b with triethylamine in deuterated chloroform (Table 4.28) does offer 

potential for the interconversion. 

4.3.6.1.3 Dynamic one-pot kinetic resolution process 

The combined one-pot dynamic kinetic resolution protocol was subsequently 

investigated with triethylamine. At the outset this investigation was complicated by the lack 

of evidence of a triethylamine-mediated dynamic interconversion process between (±)-117a 

and (±)-117b, see above section 4.3.6.1.2. The combined process was investigated with 2.0 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

1 day - 100 

2 days - 100 

3 days - 100 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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equivalents of triethylamine at 40 °C as under these reaction conditions 6-nitroheptanal 118 

was almost completely cyclised to the corresponding alcohol diastereomers (±)-117a and (±)-

117b (entry 1, Table 4.27). Candida antarctica lipase B (immob) was selected, as this 

hydrolase had previously demonstrated excellent diastereoselectivity in the kinetic resolution 

of (±)-117 (see section 4.3.4.5). 

The aldehyde 6-nitroheptanal 118 was the predominant component after 72 h (Table 

4.30), which was not anticipated as in the preliminary cyclisation screens only 9% of the 

aldehyde 118 was detected at 72 h with 2.0 equivalents of triethylamine in vinyl acetate at 40 

°C (entry 1, Table 4.27). Therefore, the presence of the lipase, Candida antarctica lipase B 

(immob) in this study appears to inhibit the base and thus reduce the efficiency of the 

intramolecular Henry reaction signifying a further complication in the triethylamine-mediated 

dynamic kinetic resolution process. While no exploration of the mechanism of the base 

inactivation was undertaken, it is possible that the base is protonated and/or complexed to the 

surface of the protein. 

 

Table 4.30: Cyclisation of 6-nitroheptanal 118 with CAL-B (immob) catalysed 

transesterification to 2-methyl-2-nitrocyclohexyl acetate 119 in vinyl acetate with 

triethylamine (2.0 eq.) as catalyst 

     118                                       (1S,2R)-117a     (1S,2S)-117b     (1R,2S)-119a    (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery. 

b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

 

In the 
1
H NMR spectrum of the crude product, in addition to the unreacted aldehyde 

118, the presence of the alcohols (1S,2R)-117a and (1S,2S)-117b and the acetates (1R,2S)-

119a and (1R,2R)-119b were evident and critically, chiral HPLC analysis indicated that the 

acetates (1R,2S)-119a and (1R,2R)-119b were essentially enantiopure while the alcohols 

(1S,2R)-117a and (1S,2S)-117b displayed modest enantiopurity (Figure 4.34 and 4.35). Based 

on the investigation of each of the individual steps discussed earlier these results are entirely 

consistent with triethylamine-mediated ring closure of 118 via intramolecular Henry reaction 

to form (±)-117a and (±)-117b followed by kinetic resolution via enzyme-mediated 

transformation of each of the cyclohexanols (±)-117a and (±)-117b, independently. There is 

no evidence that the dynamic process for interconversion of (±)-117a and (±)-117b via ring 

opening and ring closure via 118 is operating. The differences in the outcome in terms of 

enantiopurity of the alcohols (1S,2R)-117a and (1S,2S)-117b relative to the data in Table 4.23 

can be rationalised based on the different starting ratios of (±)-117a and (±)-117b, thus in 

Table 4.23 the Candida antarctica lipase B (immob) mediated resolution was explored with a 

Enzyme 

Source 

 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol 117 Acetate 119 

cis-117a 

(%)
a
 

[ee (%)]
b
 

trans-117b 

(%)
a
 

[ee (%)]
b
 

cis-119a 

(%)
a
 

[ee (%)]
b
 

trans-119b 

(%)
a
 

[ee (%)]
b,f

 

Candida 

antarctica B 

(immob) 

72 h 31 
16 

[65] 

23 

[58] 

10 

[>98] 

20 

[>98] 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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50 : 50 mixture of (±)-117a and (±)-117b, while in the cyclisation of 118 it is envisaged that 

(±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b is formed selectively (see Table 4.27) 

accordingly the higher enantiomeric excess of (1S,2R)-cis-2-methyl-2-nitrocyclohexanol 

(1S,2R)-117a is simply due to more efficient transformation of (±)-117a at the reduced 

overall concentration. 

In conclusion, while 2.0 equivalents of triethylamine at 40 °C catalysed the 

intramolecular nitroaldol reaction with 6-nitroheptanal 118 at least partially, dynamic 

interconversion was not observed under these reaction conditions and thus a dynamic kinetic 

resolution process was unattainable. Instead two parallel kinetic resolution processes with 

(±)-117a and (±)-117b independently were observed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34: 1H NMR Spectrum: Candida antarctica lipase B (immob) and triethylamine-mediated dynamic kinetic 

resolution process. Mixture of cis-2-methyl-2-nitrocyclohexanol 117a, trans-2-methyl-2-nitrocyclohexanol 117b, 6-

nitroheptanal 118, cis-2-methyl-2-nitrocyclohexyl acetate 119a and trans-2-methyl-2-nitrocyclohexyl acetate 119b (16 : 23 : 

31 : 10 : 20 respectively) recorded in CDCl3 at 300 MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1S,2S)-117b 

(1S,2R)-117a 

118 (1R,2S)-119a 
(1R,2R)-119b 
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Figure 4.35: HPLC Trace I: A racemic mixture of  (±)-trans-2-methyl-2-nitrocyclohexyl acetate (±)-119b, (±)-cis-2-

methyl-2-nitrocyclohexyl acetate (±)-119a, (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b. Trace II: Candida antarctica lipase B (immob) and triethylamine-mediated dynamic kinetic 

resolution process. (1R,2R)-trans-2-Methyl-2-nitrocyclohexyl acetate (1R,2R)-119b, >98% ee, (1R,2S)-cis-2-methyl-2-

nitrocyclohexyl acetate (1R,2S)-119a, >98% ee, (1S,2R)-cis-2-methyl-2-nitrocyclohexanol (1S,2R)-117a, 65% ee and 

(1S,2S)-trans-2-methyl-2-nitrocyclohexanol (1S,2S)-117b, 58% ee. For HPLC conditions see appendix I.  

Note the above traces correlate to chiral HPLC conditions B. 

4.3.6.2 1,8-Diazabicycloundec-7-ene (DBU) 

Due to the limited triethylamine-mediated interconversion between the (±)-cis- and 

(±)-trans-2-methyl-2-nitrocyclohexanols (±)-117a and (±)-117b via ring opening and closing 

of 6-nitroheptanal 118 especially in the presence of the biocatalyst, it was envisaged that a 

stronger base was required to catalyse the intramolecular Henry reaction together with the 

dynamic interconversion process. DBU was selected as its conjugate acid has a higher pKa 

(pKa 12.0 in H2O)
94

 relative to triethylamine (pKa 10.75 in H2O).
95

  

4.3.6.2.1 Cyclisation of 6-nitroheptanal 118 via the intramolecular Henry reaction 

The first series of experiments investigated the base-catalysed nitroaldol reaction. 

These studies were performed with 6-nitroheptanal 118 with DBU in vinyl acetate at room 

temperature. A range of amounts of DBU was investigated in order to examine the efficiency 

of this process. At regular time intervals aliquots were removed, concentrated under reduced 

pressure and analysed by 
1
H NMR spectroscopy. As is evident from entries 1 and 2, Table 

4.31, 1.00 and 0.50 equivalent of DBU result in complete cyclisation of 6-nitroheptanal 118 

within 24 h. Clearly DBU-mediated cyclisation of 118 is more efficient than the 

corresponding reaction mediated by triethylamine, as expected. However, the anticipated 

alcohols (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-117b were not 

evident in the 
1
H NMR spectrum as they were acetylated with vinyl acetate in the presence of 

DBU to form (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexyl acetate (±)-119a and (±)-

(1R,2R)-119b 

>98% ee 

(1R,2S)-119a 

>98% ee 
(1S,2R)-117a 

65% ee 

(1S,2S)-117b 

58% ee 

(±)-119b 

(±)-119a 

(±)-117a 

(±)-117b 

Trace I 

Racemic 

Trace II 
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119b in a ratio of 40 : 60 respectively. Thus, in the absence of a lipase, chemical acetylation 

occurs under the aforementioned reaction conditions, leading to racemic acetates (±)-119a 

and (±)-119b. This result highlights yet another significant hurdle in this research in the 

development of a DBU-mediated one-pot dynamic kinetic resolution process to a single 

stereoisomer of 2-methyl-2-nitrocyclohexyl acetate 119. 

As the amount of DBU was reduced so did the efficiency of the chemical acetylation 

process. At 24 h with 0.10 equivalent of DBU (entry 3, Table 4.31) complete cyclisation of 6-

nitroheptanal 118 was observed. Notably both the (±)-cis- and (±)-trans-alcohols (±)-117a 

and (±)-117b and (±)-cis- and (±)-trans-acetates (±)-119a and (±)-119b were evident in the 
1
H NMR spectrum at 24 h. However, as the reaction proceeded, the cis-alcohol (±)-117a was 

completely acetylated over time and only 25% of the trans-alcohol (±)-117b remained after 7 

days reaction time. Thus, chemical acetylation competes effectively with the intramolecular 

Henry under these reaction conditions.  

Significantly, only trace evidence of the (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexyl acetates (±)-119a and (±)-119b were observed at 0.05 equivalent of DBU 

(entry 4, Table 4.31) and no chemical acetylation was determined at 0.01 equivalent of DBU 

(entry 5, Table 4.31). However, conversely at these low concentrations of DBU the efficiency 

of the desired cyclisation of 6-nitroheptanal 118 via the intramolecular Henry reaction was 

limited. Nevertheless, these results indicate that, in principle at least, the cyclisation to form 

(±)-117a and (±)-117b can be effected under these conditions which avoid competing 

chemical acetylation. This observation augurs well for the development of the dynamic 

kinetic resolution process. 

In summary, while DBU in the presence of vinyl acetate efficiently ring closed 6-

nitroheptanal 118 via the Henry reaction, a major complication was the observed chemical 

acetylation at 0.05 equivalent and greater of DBU. At 0.01 equivalent of DBU no chemical 

acetylation was detected, however, minimal ring closure of 6-nitroheptanal 118 was 

observed. Thus, a delicate balance must be achieved where the base DBU in the presence of 

vinyl acetate mediates the desired intramolecular nitroaldol reaction but does not catalyse the 

racemic chemical acetylation process.  
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Table 4.31: DBU-mediated cyclisation of 6-nitroheptanal 118 with vinyl acetate as solvent 

 

 

 

 

      118                                        (±)-117a         (±)-117b            (±)-119a            (±)-119b 
 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 
mass recovery. 

 

 Due to the undesired chemical acetylation with vinyl acetate in the presence of DBU, 

ethyl acetate was investigated as an alternative solvent and less active acyl transfer agent 

(Table 4.32). Ethyl acetate has been employed as both solvent and acyl donor in lipase- 

mediated transesterification reactions.
96-98

 The same protocol as previously described was 

employed in this study, with 6-nitroheptanal 118 and 0.1 equivalent of DBU in ethyl acetate. 

Reaction monitoring was conducted at 24 h and 48 h. Significantly, in direct contrast to the 

vinyl acetate study, ethyl acetate did not promote chemical acetylation with 0.1 equivalent of 

DBU. 6-Nitroheptanal 118 was successfully converted to the (±)-cis- and (±)-trans-2-methyl-

2-nitrocyclohexanols (±)-117a and (±)-117b with a thermodynamic ratio of 29 : 71 achieved 

within 24 h with no evidence of the acetates (±)-119a and (±)-119b by 
1
H NMR 

spectroscopy. Although this result is extremely promising, the lipase-mediated 

transesterification must first be established with ethyl acetate before this acetylating agent can 

be considered for the one-pot dynamic kinetic resolution process. 

 

 

 

 

 

 

 

Entry 
DBU 

(eq.) 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis 

(±)-117a 

(%)
a
 

trans 

(±)-117b 

(%)
a
 

cis 

(±)-119a 

(%)
a
 

trans 

(±)-119b 

(%)
a
 

1 1.00 

24 h - - - 40 60 

48 h - - - 40 60 

72 h - - - 39 61 

2 0.50 

24 h - - - 42 58 

48 h - - - 40 60 

72 h - - - 39 61 

7 days - - - 39 61 

3 0.10 

24 h - 11 52 22 15 

48 h - - 30 37 33 

72 h - - 28 37 35 

7 days - - 25 40 35 

4 0.05 

24 h 48 15 36 1 - 

48 h 50 16 31 2 1 

71 h 55.5 11 31 2 0.5 

5 0.01 

24 h 94 2 4 - - 

48 h 93 2 5 - - 

72 h 91 3 6 - - 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Table 4.32: DBU (0.1 eq.) mediated cyclisation of 6-nitroheptanal 118  

with ethyl acetate as solvent 

 

 

 

     

       118                                       (±)-117a         (±)-117b             (±)-119a    (±)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery. 

 

Due to the complete absence of chemical acetylation with ethyl acetate in the presence 

of DBU, the transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b was 

explored with ethyl acetate as both solvent and acetylating donor (Table 4.33). Candida 

antarctica lipase B (immob) and Pseudomonas stutzeri mediated transesterification of (±)-

trans-2-methyl-2-nitrocyclohexanol (±)-117b with vinyl acetate as both solvent and 

acetylating agent achieved excellent enantioselection (Table 4.21); thus these lipases were 

selected for screening during the ethyl acetate study (Table 4.33). In the analytical screens, 

both resolutions resulted in poor conversions <19%. Pseudomonas stutzeri (entry 2, Table 

4.33) reported <10% conversion and thus no HPLC analysis was conducted. Although 

excellent enantiopurity was observed of the acetate (1R,2R)-119b with Candida antarctica 

lipase B (immob) (entry 1, Table 4.33), the poor conversion resulted in minimal enantiopurity 

of the recovered alcohol (1S,2S)-117b.   

Thus, DBU-mediated intramolecular nitroaldol cyclisation of 6-nitroheptanal 118 

occurs readily in the presence of ethyl acetate without any evidence of chemical acetylation 

detected. If the excellent efficiency and enantioselectivity observed with vinyl acetate in the 

lipase-mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b can 

be achieved with ethyl acetate as the acyl donor through modification of conditions this 

would be a significant advance in this project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acetylating 

agent 

 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis 

(±)-117a 

(%)
a
 

trans 

(±)-117b 

(%)
a
 

cis 

(±)-119a 

(%)
a
 

trans 

(±)-119b 

(%)
a
 

Ethyl Acetate 
24 h - 29 71 - - 

48 h - 30 70 - - 
(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Table 4.33: Hydrolase-mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b in ethyl acetate  

 

 

                      

 

                         (±)-117b                                    (1R,2R)-119b      (1S,2S)-117b 

 

 At this point in the study, the amount of DBU and an alternative acetylating agent 

have both been investigated in order to inhibit chemical acetylation. The next series of 

experiments examined the introduction of a solvent in the kinetic resolution of (±)-trans-2-

methyl-2-nitrocyclohexanol (±)-117b, thereby reducing the amount of vinyl acetate. It was 

envisaged that by employing a solvent in the bioresolution, the non-enzymatic chemical 

acetylation might be avoided with the vinyl acetate (5.0 equivalents) only acting as an acyl 

donor in the lipase-mediated transesterification. However, this process is reliant on obtaining 

excellent efficiency and enantioselectivity in the kinetic resolution of the trans-alcohol (±)-

117b in the presence of a solvent with vinyl acetate acting solely as acyl donor. 

The hydrolase Pseudomonas stutzeri was selected for investigation in the analytical 

screens as this lipase had produced high enantioselectivity in the resolution of the (±)-trans-2-

methyl-2-nitrocyclohexanol (±)-117b with neat vinyl acetate as both solvent and acetylating 

agent (Table 4.21). A range of solvents of different properties in terms of polarity and 

hydrogen bonding potential was selected as summarised in Table 4.34. The substrate (±)-

117b (~20 mg) was dissolved in the appropriate solvent (2.5 mL) with 5.0 equivalents of 

vinyl acetate and a spatula tip of lipase. The concentration of the substrate (±)-117b in the 

medium was unchanged to ensure comparability of the results with earlier screens. The 

reaction mixture was agitated for 48 h at 24 °C. Although excellent enantiopurity was 

obtained for the acetate (1R,2R)-119b in each of the Pseudomonas stutzeri mediated 

transesterifications, the resolutions failed to achieve the optimum 50% conversion rate and 

thus the enantiopurity of the alcohol (1S,2S)-117b was compromised. The highest 

enantioselectivity was observed with diisopropyl ether as solvent (entry 3, Table 4.34), 

however, even with this solvent the enantiopurity of the alcohol (1S,2S)-117b was reduced 

(84% ee) relative to that achieved when vinyl acetate was employed as both solvent and 

acetylating agent (>98% ee). 

  

 

 

 

 

 

Entry Enzyme Source 

Reaction 

Time 

 

Conversion 

(%) 

ee  

(%) 

E value 
E 

Calc. 

1
H 

NMR 

Alcohol 

trans-

117b 

(1S,2S) 

Acetate 

trans-

119b 

(1R,2R) 

1 Candida antarctica B (immob) 72 h 16 18 19 >98 119 

2 Pseudomonas stutzeri 48 h - <10 - - - 
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Table 4.34: Hydrolase-mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b in vinyl acetate as acyl donor and alteration of solvents 

 

 

 

                                 

                    

                       (±)-117b                                    (1R,2R)-119b     (1S,2S)-117b 

a. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

 

In all cases, the precursor (±)-117b dissolved readily in the reaction medium and 

therefore the relative efficiencies in Table 4.34 appear to reflect varying enzymatic activity in 

these different solvents. Entries 2 and 3 in the ether solvents show a potential to lead to 

efficient kinetic resolution through variation of the biocatalysis conditions to enable complete 

conversion of (1S,2S)-117b. 

In summary, the introduction of a solvent to the hydrolase-mediated transesterification 

of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b with vinyl acetate decreases the 

efficiency of the transesterification and accordingly the enantiopurity of the recovered alcohol 

(1S,2S)-117b is somewhat compromised. Critically the acetate (1R,2R)-119b is formed with 

excellent enantiopurity which is the key point required to enable the dynamic kinetic 

resolution process. Therefore, further studies are warranted investigating the cyclisation of 6-

nitroheptanal 118 in the presence of DBU, diisopropyl ether and only 5.0 equivalents of vinyl 

acetate to determine if the lower concentration of vinyl acetate obviated chemical acetylation. 

 4.3.6.2.2 Dynamic interconversion process 

The next series of experiments in this investigation explored the DBU-catalysed 

dynamic interconversion mechanism. Diastereomerically pure samples of (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b were 

dissolved in deuterated chloroform and 0.1 and 0.5 equivalent of DBU were added to the 

appropriate NMR tube. Monitoring by 
1
H NMR was conducted and the formation of the 

analogous diastereomer (±)-117a or (±)-117b examined over time. Significantly in each of 

the experiments summarised in Tables 4.35-4.37 conversion to the opposite diastereomer (±)-

117a or (±)-117b was observed immediately. As indicated in Tables 4.35-4.37 below, the 

thermodynamic ratio of 35 : 65 (±)-117a : (±)-117b was attained in each of the experiments 

within 24 h irrespective of whether the experiment was conducted starting from the (±)-cis- 

(±)-117a or the (±)-trans-diastereomer (±)-117b and with 0.1 or 0.5 equivalent (Figure 4.36-

4.38). Thermodynamic equilibrium was achieved in a similar timeframe with either 0.1 or 

Entry Enzyme Source Solvent 

Conversion (%) ee (%)
a
 

E value E 

Calc. 

1
H 

NMR 

Alcohol 

trans-

117b 

(1S,2S) 

Acetate 

trans-

119b 

(1R,2R) 

1 Pseudomonas stutzeri Heptane 40 41 66 >98 197 

2 Pseudomonas stutzeri Diethyl ether 46 44 82 >98 >200 

3 Pseudomonas stutzeri 
Diisopropyl 

ether 
46 45 84 >98 >200 

4 Pseudomonas stutzeri Toluene 20 21 24 >98 125 

5 Pseudomonas stutzeri Acetonitrile 25 26 32 >98 135 
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0.05 equivalent of DBU. Notably, chemical acetylation was not observed as these 

experiments were conducted free from an acetylating agent. 

 

Table 4.35: Evidence for dynamic interconversion – (±)-cis-2-methyl-2-nitrocyclohexanol  

(±)-117a and DBU (0.1 eq.) in CDCl3  

 

 

 

 

 

     

     (±)-117a                                        118                                       (±)-117b 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

15 min 96 4 

33 min 93 7 

1 h 8 min 87 13 

2 h 4 min 80 20 

3 h 31 min 70 30 

4 h 52 min 63 37 

7 h 17 min 53 47 

9 h 48 52 

24 h 45 min 35 65 

32 h 47 min 34 66 

73 days 33 67 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Figure 4.36: Stacked 1H NMR spectra: Evidence for dynamic interconversion -    

(±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and DBU (0.1 eq.) recorded in CDCl3 at 300 MHz. 

 

Table 4.36: Evidence for dynamic interconversion – (±)-cis-2-methyl-2-nitrocyclohexanol  

(±)-117a and DBU (0.05 eq.) in CDCl3 

 
 

 

 

 

 

                   (±)-117a                                       118                                      (±)-117b 
 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

2 h 11 min 78 22 

18 h 14 min 37 63 

25 h 49 min 34 66 

7 days 35 65 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(±)-117b (±)-117a 

Spectrum II 

1 h 8 min 

Spectrum IV 

24 h 45 min 

Spectrum III 

4 h 52 min 

 

4% : 96% 

(±)-117b : (±)-117a 

Spectrum I 

15 min 

65% : 35% 

 (±)-117b : (±)-117a 
 

37% : 63% 

(±)-117b :  (±)-117a 
 

13% : 87%  

(±)-117b : (±)-117a 



Chapter 4                                                                                                 Results and Discussion 

                                                                                                 

 

233  

 

Table 4.37: Evidence for dynamic interconversion – (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b and DBU (0.1 eq.) in CDCl3 

 

 

 

 

 

 

                  (±)-117b                                       118                                        (±)-117a 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37: Stacked 1H NMR spectra: Evidence for dynamic interconversion –  

(±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b and DBU (0.1 eq.) recorded in CDCl3 at 300 MHz. 

 

 

 

 

 

 

 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

15 min 3 97 

24 min 5 95 

1 h 12 min 11 89 

4 h 16 min 24 76 

4 h 49 min 25 75 

5 h 51 min 28 72 

21 h 52 min 33 67 

14 days 33 67 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

Spectrum IV 

14 days 

67% : 33%   

(±)-117b : (±)-117a 

Spectrum III 

5 h 51 min 

Spectrum II 

4 h 16 min 

Spectrum I 

24 min 

 

 

95% : 5% 

(±)-117b : (±)-117a 
 

 

 

76% : 24% 

(±)-117b : (±)-117a 
 

 

 

72% : 28% 

(±)-117b : (±)-117a 
 

(±)-117a (±)-117b 
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Figure 4.38: Comparison of  1H NMR spectra recorded and thermodynamic ratio achieved of cis (±)-117a on exposure 

to (0.1 eq.) DBU and trans (±)-117b on exposure to (0.1 eq.) DBU. 

 

It is evident from these studies that in the presence of DBU (just 0.05 equivalent), 

dynamic interconversion of (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and 

(±)-117b occurs. The (±)-trans-diastereomer is the thermodynamically more stable 

diastereomer with a thermodynamic ratio of 35 : 65 (±)-117a : (±)-117b attained. As the site 

of epimerisation is blocked by a methyl moiety, the interconversion observed in this instance 

must occur via ring opening and closing, which is promising for the development of the 

dynamic hydrolase-mediated process. Notably, this is the first time the dynamic 

interconversion of nitrocyclohexanols (±)-117a and (±)-117b, exclusively via the reversible 

intramolecular Henry reaction, has been observed. 

 From the observations of the earlier studies conducted examining the intramolecular 

nitroaldol reaction with the base DBU and vinyl acetate as solvent (section 4.3.6.2.1), 

chemical acetylation was anticipated when 0.1 equivalent of DBU were employed in the 

presence of vinyl acetate in the dynamic interconversion process. To confirm this, DBU (0.1 

equivalent) was added in one portion to a stirred solution of (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b in vinyl acetate at room temperature (Table 4.38). At 24 h and 48 

h an aliquot was removed and concentrated under reduced pressure before 
1
H NMR analysis 

was conducted. Dynamic interconversion to the cis-diastereomer (±)-117a was observed at 24 

h however the trans-acetate (±)-119b was the predominant product (56%) indicating that 

chemical acetylation competes efficiently with the ring opening and closing process. At 48 h 

the trans-alcohol (±)-117b and trans-acetate (±)-119b were the only two species evident by 
1
H NMR spectroscopy. Thus, although there was initial evidence for the dynamic 

Thermodynamic Ratio 

65% : 35%  

 (±)-117b : (±)-117a 

 

Spectrum I 

15 min 
 

 

Spectrum II 

24 h 45 min  
 

 

Spectrum II 

21 h  52 min 
 

 

Spectrum I 

15 min 
 

 

(±)-cis-2-Methyl-2-nitrocyclohexanol (±)-117a 

and DBU (0.1 eq.) recorded in CDCl3 at 300 MHz. 

 

(±)-trans-2-Methyl-2-nitrocyclohexanol (±)-117b 

and DBU (0.1 eq.) recorded in CDCl3 at 300 MHz. 

 

(±)-117a (±)-117b 

Thermodynamic Ratio 

67% : 33%  

 (±)-117b : (±)-117a 
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interconversion mechanism at 24 h through appearance of the (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a by 
1
H NMR, chemical acetylation was evidently the dominant 

process at 48 h. 

 

Table 4.38: Evidence for chemical acetylation - (±)-trans-2-methyl-2-nitrocyclohexanol  

(±)-117b and DBU (0.1 eq.) in vinyl acetate
 

 

 

 

 

    

               (±)-117b                                        118                                        (±)-117a 

 

 

 

 

 

 

 

                                                 (±)-119b         (±)-119a 

 

 

 

 

 

 

4.3.6.2.3 Dynamic one-pot kinetic resolution process 

The dynamic kinetic resolution process was next investigated. From the preliminary 

studies conducted with DBU in the presence of vinyl acetate, this process was anticipated to 

be complicated by competing chemical acetylation. Initially a series of control experiments 

were performed and in the absence of both base and hydrolase, the aldehyde 118 was 

encouragingly determined not to cyclise or react with vinyl acetate over 48 h (entry 1, Table 

4.39). When the hydrolase Candida antarctica lipase B (immob) was introduced to the vinyl 

acetate system in the absence of base, again gratifyingly no cyclisation was observed (entry 2, 

Table 4.39). The final control experiment involved DBU (0.1 equivalent) and vinyl acetate 

with no hydrolase; complete ring closure of 6-nitroheptanal 118 was achieved. However, 

significantly of the anticipated β-nitroalcohols (±)-117a and (±)-117b only the more stable 

trans-alcohol (±)-117b was evident by 
1
H NMR spectroscopy (entry 3, Table 4.39). The 

predominant process observed was that of chemical acetylation evident by the cis- and trans-

acetates (±)-119a and (±)-119b correlating with earlier results and signifying a major barrier 

in the development of a dynamic kinetic resolution process. The slightly different outcome 

when starting from the aldehyde 118 (entry 3, Table 4.39) in comparison to the outcome in 

Table 4.38 starting from the (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b is interesting 

and not immediately rationalised. This was not pursued as it was not of value in achieving our 

overall objective. 

Reaction 

Time 

Alcohol (±)-117
a
 Acetate (±)-119

a
 

trans 

(±)-117b 

(%) 

cis 

(±)-117a 

(%) 

trans 

(±)-119b 

(%) 

cis 

(±)-119a 

(%) 

24 h 32 13 56 - 

48 h 31 - 69 - 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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When all four variables, DBU (0.05 or 0.10 equivalent), hydrolase, vinyl acetate and 6-

nitroheptanal 118 were combined in a dynamic kinetic resolution process (entries 4-6, Table 

4.39), unexpectedly no cyclisation of 6-nitroheptanal 118 was observed and thus no chemical 

acetylation detected. In the previous control experiment (entry 3, Table 4.39) when 0.10 

equivalent of DBU with vinyl acetate and 6-nitroheptanal 118 were examined in the absence 

of a lipase cyclisation to (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and 

(±)-117b was evident with chemical acetylation. Thus, the addition of a hydrolase to the 

process appears to severely inhibit the activity of the base. In fact, while partial inhibition of 

the triethylamine-mediated process had been observed (see section 4.3.6.1.3), the DBU-

catalysed process is essentially completely blocked by the presence of the enzyme in entries 

4-6, Table 4.39.  

On increasing the amount of DBU to 0.20 equivalent (entry 7, Table 4.39), promisingly 

cyclisation was observed albeit to a limited extent. Thus, the amount of base was further 

increased to 0.5 and 1.0 equivalent (entries 8 and 9, Table 4.39). Complete cyclisation of 6-

nitroheptanal 118 was observed at the increased amount of DBU and any base inhibition by 

the hydrolase Pseudomonas stutzeri, significantly, did not affect the efficiency of the 

intramolecular Henry reaction. However, conversely, chemical acetylation predominated 

under these reaction conditions with racemic (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexyl acetate (±)-119a and (±)-119b the major products by 
1
H NMR and by chiral 

HPLC analysis after 48 hours. While in both studies, the chiral HPLC indicates high 

enantiomeric excess for the recovered alcohols (1S,2R)-117a and (1S,2S)-117b, the very low 

levels present means that the accuracy of the data is questionable.        

 In summary, in contrast to the triethylamine-mediated transformations, DBU is clearly 

capable of effecting the interconversion of (±)-117a and (±)-117b via the reversible 

intramolecular Henry reaction. When conducted in the presence of vinyl acetate, chemical 

acetylation of the resulting alcohols (±)-117a and (±)-117b to form the racemic acetates (±)-

119a and (±)-119b competes effectively with the cyclisation although the relative rate can be 

controlled by reducing the amount of DBU. However, use of DBU in the presence of the 

biocatalyst at least at the levels which give effective cyclisation is not possible due to 

complete deactivation of the base, and conversely, increased concentration of DBU promotes 

competing chemical acetylation. 
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Table 4.39: Cyclisation of 6-nitroheptanal 118 with hydrolase-catalysed transesterification to 

2-methyl-2-nitrocyclohexylacetate 119 in vinyl acetate with DBU as catalyst 

       

 

 

 

118                                      (1S,2R)-117a    (1S,2S)-117b     (1R,2S)-119a    (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 
mass recovery. 

b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

4.3.6.3 Base screening 

4.3.6.3.1 Cyclisation of 6-nitroheptanal 118 via the intramolecular Henry reaction 

At this juncture in the investigation, it was decided to screen a series of bases with 6-

nitroheptanal 118 and vinyl acetate. The objective was to identify a base that cyclised 6-

nitroheptanal 118 to (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-

117b in the presence of vinyl acetate, with no chemical acetylation. These series of 

experiments were conducted with the aldehyde 118 in vinyl acetate and the appropriate base. 

Reaction monitoring was performed as previously described by 
1
H NMR spectroscopy at 

regular time intervals. A number of the bases chosen have previously been employed in the 

Henry reaction and the selected bases allowed exploration of a range of pka values.
4
  

As is evident from Table 4.40 (entries 1, 2, 4 and 5), limited or no cyclisation to the 

diastereomeric alcohols (±)-117a and (±)-117b was observed when diethylamine, piperidine, 

Hünig’s base and aqueous sodium hydroxide (1M) were investigated. As the aforementioned 

bases were unsuccessful in catalysing the intramolecular nitroaldol reaction, further 

investigation into their mediated dynamic interconversion process was not pursued. 

The base 1,4-diazabicyclo[2.2.2]octane (DABCO) effectively mediated ring closing 

of 6-nitroheptanal 118 within 24 h forming the (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexanols (±)-117a and (±)-117b with a thermodynamic ratio of 40 : 60 respectively 

(entry 3, Table 4.40). Interestingly, this ratio differed slightly to that previously obtained 

when DBU was employed in the intramolecular Henry reaction (40 : 60 vs. 35 : 65). 

Significantly, no chemical acetylation was observed by 
1
H NMR spectroscopy, vital for the 

development of a one-pot dynamic kinetic resolution process. Further studies were therefore 

Entry 
Enzyme 

Source 

DBU 

(eq.) 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis-117a 

(%)
a
 

trans-

117b (%)
a
 

cis-119a 

(%)
a
 

trans-119b 

(%)
a
 

1 - - 48 h 100 - - - - 

2 
CAL-B 

(immob) 
- 72 h 100 - - - - 

3 - 0.10 48 h - - 28 (±) 36 (±) 36 (±) 

4 P.stutzeri 0.05 48 h 100 - - - - 

5 
CAL-B 

(immob) 
0.10 72 h 100 - - - - 

6 P. stutzeri 0.10 48 h 100 - - - - 

7 P. stutzeri 0.20 48 h 77 3 10 5 5 

8 P. stutzeri 0.5 

24 h - 11 4 39 46 

48 h - 
6 

[>98] 

4 

[>98] 

37 

[1] 

53 

[1] 

9 P. stutzeri 1.0 48 h - 
6 

[>98] 

3 

[>98] 

53 

[1] 

38 

[0] 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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required to establish analytical evidence of the DABCO-mediated dynamic interconversion 

process before combination with the established diastereoselective kinetic resolution 

protocol.  

The base 1,1,3,3-tetramethylguanidine (TMG) was also investigated (entry 6, Table 

4.40). Initial studies explored 0.1 equivalent of TMG and limited cyclisation of 6-

nitroheptanal 118 was observed by 
1
H NMR analysis after 24 h. Thus, an additional 2.0 

equivalents of base were added at this point in the study to promote the intramolecular Henry 

reaction. Notably, at 48 h with the increased concentration of base only 6% of the aldehyde 

118 remained and significantly, chemical acetylation was evident only in trace amounts (≤ 

5%). Thus, the TMG-mediated dynamic interconversion of (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117a and (±)-117b was also further explored. 

  

Table 4.40: Base-mediated cyclisation of 6-nitroheptanal 118 with vinyl acetate as solvent  

    

 

 

 

   118                                           (±)-117a        (±)-117b               (±)-119a            (±)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery 
b. At 24 h after analysis by 1H NMR spectroscopy an additional 2.0 equivalents of TMG (2.0 eq., 95 μL, 86.8 mg, 0.75 mmol) were 

added to the reaction vessel and stirred at room temperature for a further 24 h. 

 

 

 

 

Entry Base pKa 
Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis 

(±)-117a 

(%)
a
 

trans 

(±)-117b 

(%)
a
 

cis 

(±)-119a 

(%)
a
 

trans 

(±)-119b 

(%)
a
 

1 DEA (2 eq.) 
11.3 

(H2O)
99

 

24 h 83 8 9 - - 

48 h 82 8 10 - - 

2 
Piperidine  

(2 eq.) 

11.3 

(H2O)
99

 

24 h 100 - - - - 

48 h 100 - - - - 

72 h 100 - - - - 

3 
DABCO  

(2 eq.) 

8.82, 

2.97 

(H2O)
95

 

24 h - 39 61 - - 

48 h - 40 60 - - 

72 h - 39 61 - - 

4 
Hünigs Base 

(2 eq.) 

11.4 

(H2O)
100

 

48 h 85 5 10 - - 

72 h 79 7 14 - - 

5 1M NaOH ~13.8 
24 h 100 - - - - 

48 h 100 - - - - 

6 
TMG (0.1 eq.) 13.6 

(H2O)
101

 

24 h 69 10 21 - - 

(0.1 - 2.1 eq.)
b
 48 h 6 30 57 5 2 
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4.3.6.4 1,4-Diazabicyclo[2.2.2]octane (DABCO) 

4.3.6.4.1 Dynamic interconversion process 

As DABCO effectively catalysed the intramolecular nitroaldol reaction in the 

presence of vinyl acetate with no adverse chemical acetylation the dynamic interconversion 

process was next explored. A 
1
H NMR sample was prepared with diastereomerically pure 

(±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and DABCO (2.0 equivalents) in deuterated 

chloroform. While this base successfully mediated the ring closure of 6-nitroheptanal 118 

(entry 3, Table 4.40), significantly in this study no dynamic interconversion to the trans-

diastereomer (±)-117b was observed over an extended reaction period of 10 days at room 

temperature (Table 4.41). 

 

Table 4.41: Evidence for dynamic interconversion – (±)-cis-2-methyl-2-nitrocyclohexanol  

(±)-117a and DABCO (2.0 eq.) in CDCl3 

 

 

 

 

 

         

      (±)-117a                                         118                                        (±)-117b 

 

 

 

 

 

 

 
 

4.3.6.4.2 Dynamic one-pot kinetic resolution process 

Although dynamic interconversion was not achieved, the kinetic resolution process 

was investigated with DABCO to determine if base inhibition in the presence of a lipase, as 

had been observed with DBU, was evident in the DABCO study. The initial investigation 

examined the dynamic kinetic resolution process with no lipase (entry 1, Table 4.42) and as 

anticipated from earlier studies complete ring closure was achieved within 48 h to the (±)-cis- 

and (±)-trans-2-methyl-2-nitrocyclohexanols (±)-117a and (±)-117b (40 : 60). However, on 

introduction of the hydrolase Pseudomonas stutzeri under similar reaction conditions (entry 

2, Table 4.42) a significant reduction in the efficiency of the intramolecular nitroaldol 

reaction was observed with the aldehyde 6-nitroheptanal 118 evident as the major component 

by 
1
H NMR spectroscopy (75%) after 48 h. Thus, base inhibition in the presence of a 

hydrolase is not restricted to DBU, but also observed with DABCO. Interestingly for the 

small amounts of the alcohol (1S,2R)-117a and (1S,2S)-117b and acetate (1R,2S)-119a and 

(1R,2R)-119b observed there is some evidence of kinetic resolution in line with the results 

seen in section 4.3.4.5. 

Although DABCO favourably catalysed the intramolecular Henry reaction, a major 

limitation of this base was that it was unsuccessful in mediating the dynamic interconversion 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

42 min 100 - 

3 h 10 min 100 - 

1 day 100 - 

4 days 100 - 

10 days 100 - 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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process between the (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanols (±)-117a and (±)-

117b, and, thus, DABCO was no longer considered in this investigation. 

 

Table 4.42: Cyclisation of 6-nitroheptanal 118 with P. stutzeri catalysed transesterification to 

2-methyl-2-nitrocyclohexyl acetate 119 in vinyl acetate with DABCO (2.0 eq.) as catalyst 

  

 

 

 

      118                                        (1S,2R)-117a     (1S,2S)-117b    (1R,2S)-119a   (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 
mass recovery. 

b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

c. The HPLC trace displays an unknown impurity which co-eluted with the trans-2-methyl-2-nitrocyclohexanol 117b, therefore 
enantiomeric excess [ee (%)] is an estimation. 

4.3.6.5 1,1,3,3-Tetramethylguanidine (TMG) 

4.3.6.5.1 Dynamic interconversion process 

The base TMG at 2.1 equivalents had previously been demonstrated to successfully 

catalyse the ring closure of 6-nitroheptanal 118 (entry 6, Table 4.40) with limited chemical 

acetylation in the presence of vinyl acetate and thus, the dynamic interconversion process 

between (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-117b was next 

explored. The more stable diastereomer (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b and 

TMG (2.0 equivalents) were dissolved in deuterated chloroform in a NMR tube allowing for 

efficient analysis by 
1
H NMR spectroscopy. The cis-diastereomer (±)-117a was evident 

within 50 min after the initial addition of TMG and a thermodynamic ratio of cis-alcohol (±)-

117a/trans-alcohol (±)-117b, 28 : 72 was observed after 3 days (Table 4.43). Thus, TMG is 

effective in mediating the dynamic interconversion process and in addition this base 

successfully catalysed the intramolecular nitroaldol reaction with minimal chemical 

acetylation in the presence of vinyl acetate, therefore TMG holds the greatest potential for the 

development of a dynamic kinetic resolution process. 

 

 

 

 

 

 

 

 

 

 

 

Entry 

Enzyme 

Source 

 

Reaction 

Time 

 

Aldehyde 

118 

(%)
a
 

Alcohol 117 Acetate 119 

cis-117a 

(%)
a 

[ee (%)]
b
 

trans-117b 

(%)
a 

[ee (%)]
b
 

cis-119a 

(%)
a 

[ee (%)]
b
 

trans-119b 

(%)
a 

[ee (%)]
b
 

1 - 48 h - 40 60 - - 

2 
Pseudomonas 

stutzeri 
48 h 75 

4 

[77] 

11 

[24]
c
 

5 

[72] 

5 

[>98] (±)-Trans-2-nitrocyclohexanol (±)-48b  
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Table 4.43: Evidence for dynamic interconversion – (±)-trans-2-methyl-2-nitrocyclohexanol  

(±)-117b and TMG (2.0 eq.) in CDCl3 

 

 

 

 

 

       

      (±)-117b                                         118                                          (±)-117a 

 

 

 
 

 

 

 

4.3.6.5.2 Dynamic one-pot kinetic resolution process 

The combined dynamic one-pot kinetic resolution process was next explored with 6-

nitroheptanal 118, TMG (2.0 equivalents), and Candida antarctica lipase B (immob) or 

Pseudomonas stutzeri in vinyl acetate (Table 4.44). Significantly, there was limited effect of 

base inhibition observed in this study with efficient TMG-mediated intramolecular 

cyclisation of 6-nitroheptanal 118 achieved in the presence of both hydrolases Candida 

antarctica lipase B (immob) or Pseudomonas stutzeri (entries 1 and 2, Table 4.44). 

 Surprisingly, the hydrolase Candida antarctica lipase B (immob) catalysed dynamic 

transesterification led to almost racemic samples of the cis- and trans-2-methyl-2-

nitrocyclohexanol 117a and 117b with no trace of the cis- and trans-acetate 119a or 119b 

evident by 
1
H NMR spectroscopy despite the extended reaction time of 5 days (entry 1, Table 

4.44). It appears that the activity of the enzyme is completely switched off by the presence of 

TMG possibly due to protein denaturing. This is in direct contrast to the earlier Candida 

antarctica lipase B (immob) mediated diastereoselective study (see section 4.3.4.5) 

conducted with an equimolar mixture of the cis- and trans-alcohols (±)-117a and (±)-117b in 

the absence of TMG. The transesterification of the (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b was the predominant process operating in the earlier diastereoselective study, with 

excellent enantiopurity achieved for the (1R,2R)-trans-acetate (1R,2R)-119b. 

 The Pseudomonas stutzeri and TMG-catalysed dynamic kinetic resolution process 

provided the most promising results to date (entry 2, Table 4.44). The intramolecular 

nitroaldol reaction was efficiently mediated by TMG and the predominant products observed 

after 48 h were the (1S,2R)-cis- and (1S,2S)-trans-alcohols (1S,2R)-117a and (1S,2S)-117b 

albeit with poor enantioselectivity (Figure 4.39). Significantly the (1R,2S)-cis- and (1R,2R)-

trans-acetates (1R,2S)-119a and (1R,2R)-119b displayed moderate to good enantiopurity 

(Figure 4.39) indicating for the first time that the base-mediated ring closure and kinetic 

resolution of (±)-117a and (±)-117b can be successfully conducted in a one pot process. 

While chemical acetylation may be competing to a minor extent it is clear from the 

enantiopurity of (1R,2S)-119a and (1R,2R)-119b that enzyme-mediated transformation is 

dominant. 

In summary, TMG displayed for the first time the potential of a genuine dynamic 

kinetic resolution process, avoiding both competing chemical acetylation in the presence of 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

49 min 14 88 

5 h 7 min 26 74 

3 days 28 72 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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vinyl acetate and base inhibition in the presence of the hydrolase leading to the acetates 

(1R,2S)-119a and (1R,2R)-119b in good enantiopurities. Limited efficiency and conversions 

and low diastereoselection are evident and therefore further investigation is warranted to 

optimise this process.  

   

Table 4.44: Cyclisation of 6-nitroheptanal 118 with hydrolase-catalysed transesterification to 

2-methyl-2-nitrocyclohexyl acetate 119 in vinyl acetate with TMG (2 eq.) as catalyst 

      118                                         (1S,2R)-117a    (1S,2S)-117b    (1R,2S)-119a   (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery 

b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

 

 

 

 

 

 

 

 

 

 

Figure 4.39: HPLC Trace I:  A racemic mixture of (±)-trans-2-methyl-2-nitrocyclohexyl acetate (±)-119b, (±)-cis-2-

methyl-2-nitrocyclohexyl acetate (±)-119a, (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b. Trace II: Pseudomonas stutzeri and TMG-mediated  dynamic resolution process, (1R,2R)-

trans-2-methyl-2-nitrocyclohexyl acetate (1R,2R)-119b, 75% ee, (1R,2S)-cis-2-methyl-2-nitrocyclohexyl acetate (1R,2S)-

119a, 80% ee, (1S,2R)-cis-2-methyl-2-nitrocyclohexanol (1S,2R)-117a, 35% ee and (1S,2S)-trans-2-methyl-2-

nitrocyclohexanol (1S,2S)-117b, 6% ee. For HPLC conditions see appendix I. Note the above traces correlate to chiral 

HPLC conditions C. 

 

 

Entry 

 

Enzyme 

Source 

 

 

TMG 

 

 

Reaction 

Time 

 

Aldehyde 

118 

(%)
a
 

Alcohol 117 Acetate 119 

cis-117a 

(%)
a 

[ee (%)]
b
 

trans-117b 

(%)
a 

[ee (%)]
b
 

cis-119a 

(%)
a 

[ee (%)]
b
 

trans-119b 

(%)
a 

[ee (%)]
b
 

1 

Candida 

antarctica B 

(immob) 

2 eq. 5 days 7 
26 

[2] 

67 

[1] 

- 

 

- 

 

2 
Pseudomonas 

stutzeri 
2 eq. 48 h 15 

22 

[35] 

50 

[6] 

9 

[75] 

4 

[80] 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(1R,2R)-119b 

75% ee 

 

(±)-119a 

(±)-119b 

 

(±)-117a (±)-117b 

(1R,2S)-119a 

80% ee 

 
(1S,2R)-117a 

35% ee 

 

(1S,2S)-117b 

6% ee 

 

Trace I 

Racemic 

 

Trace II 
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4.3.6.6 Polymer-bound 1,8-Diazabicycloundec-7-ene [DBU (immob)] 

4.3.6.6.1 Cyclisation of 6-nitroheptanal 118 via the intramolecular Henry reaction 

Use of polymer-bound DBU was next investigated as it was envisaged that the rate of 

chemical acetylation with the immobilised base would be reduced. Furthermore, deactivation 

of the immobilised base in the presence of the hydrolase may be avoided. However, on 

investigation of the intramolecular nitroaldol reaction in TBME, DBU (immob) was found to 

be far less effective in catalysing the cyclisation of 6-nitroheptanal 118 relative to its free 

counterpart. With 0.1 equivalent of DBU (immob) at room temperature, the diastereomeric 

alcohols (±)-cis- and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-117b were not 

evident by 
1
H NMR analysis after 13 h (entry 1, Table 4.45). In direct contrast the same 

amount of free base successfully mediated the intramolecular nitroaldol reaction, albeit with 

chemical acetylation in the presence of vinyl acetate. 

The cyclisation of 6-nitroheptanal 118 was therefore investigated with an increased 

amount (1.0 equivalent) of DBU (immob) (entry 2, Table 4.45). At room temperature with 

1.0 equivalent of base, limited cyclisation was observed after 22.5 h thus an additional 1.0 

equivalent of DBU (immob) was charged to the reaction flask and the reaction temperature 

was increased to 40 °C. Gratifyingly, almost complete cyclisation was observed at the 

increased concentration of DBU (immob) and elevated reaction temperature, and thus the 

dynamic interconversion process was next studied under these optimised reaction conditions.  

 

Table 4.45: Polymer-bound DBU mediated cyclisation of 6-nitroheptanal 118  

with TBME as solvent 

 

 

 

 

                               

                          118                                                   (±)-117                (±)-117b 

a. At 22.5 h after analysis by 1H NMR spectroscopy an additional equivalent of polymer-bound DBU (1.0 eq., 273.7 mg, 0.31 mmol) was 
added to the reaction vessel and stirred at 40 °C for a further 21.5 h. 

4.3.6.6.2 Dynamic interconversion process 

To examine the dynamic interconversion process 2.0 equivalents of DBU (immob) 

were investigated with diastereomerically pure (±)-trans-2-methyl-2-nitrocyclohexanol (±)-

117b in TBME at 40 °C (Table 4.46). However, with such high catalyst loading of the 

polymer-bound base (1.15 mmol N per g) the 
1
H NMR spectrum obtained after 19 h were too 

complex to decipher conversions, despite filtration to remove the beads.  

Thus, although DBU (immob) did successfully ring close 6-nitroheptanal 118, the 

increased loading of the immobilised base resulted in unknown impurities in the 
1
H NMR 

Entry 
Polymer-bound DBU 

(eq.) 

Reaction 

Time 
Temp (°C) 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 

cis 

(±)-117a 

(%)
a 

trans 

(±)-117b 

(%)
a 

1 0.1 13 h Ambient 100 - - 

2 
1.0 22.5 h Ambient 92 3 5 

1.0 – 2.0
a
 44 h 40 °C 11 24 65 
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spectrum from the crude dynamic interconversion reaction mixture, and thus this base was no 

longer investigated. 

 

Table 4.46: Evidence for dynamic interconversion - (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b and polymer-bound DBU in TBME at 40 °C 

. 

 

 

 

 

                   

       (±)-117b                                                      118                                                 (±)-117b 

 

 

 
 

 

 

 

4.3.6.7 Influence of base strength 

The link between the pKa of the conjugate acids of the bases and the efficiency of 

both the Henry nitroaldol and the enzyme-mediated acetylation was explored. Focussing 

initially on the ring closure the Henry nitroaldol was mediated by both strong and weak bases 

with no evidence of direct correlation between efficiency and base strength. However, the 

competing chemical acetylation with vinyl acetate is definitely linked with base strength, with 

increased chemical acetylation in the presence of DBU and TMG, while no chemical 

acetylation is seen with DABCO and NEt3. In terms of base inhibition by the presence of the 

enzyme, it was envisaged that this might be linked to base strength, but as summarised below 

in Table 4.47, there was no direct correlation evident. In considering the data summarised in 

the table it should be noted that the pKa values were determined in water and accordingly the 

outcome should be considered in the context that the base strengths in the organic media may 

differ somewhat. 

 

Table 4.47: Influence of base strength 

 

Entry Base pKa (H2O) 

Cyclisation of 

6-nitroheptanal 118 with  

vinyl acetate 
Base inhibition with 

lipase 
Intramolecular 

Henry reaction 

Chemical 

acetylation 

1 DABCO 8.7/4.2
95

  x x 

2 NEt3 10.8
95

  x  (partial) 

3 Piperidine 11
99

 x - - 

4 DEA 11
99

 (partial) - - 

5 Hünig’s base 11.4
100

 (partial) - - 

6 DBU 12
94

    

7 TMG 13.6
101

  (partial) (partial) 

8 NaOH (1M) 13.8 x - - 

 

Entry Polymer-bound DBU Reaction Time (±)-117b (%) (±)-117a (%) 

1 2 eq. 19 h -
a
 -

a
 

2 3 eq. 19 h -
a
 -

a
 

a. The crude 1H NMR spectrum was too complex to decipher conversions. 
(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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4.3.7 Two-pot hydrolase-mediated dynamic resolution screens 

At this point in the investigation it was apparent that there were two major barriers in 

the development of a one-pot dynamic kinetic resolution process. Firstly, employment of a 

base in the presence of vinyl acetate can lead to competing racemic chemical acetylation. 

Secondly, base inhibition in the presence of the hydrolase can hinder the intramolecular 

nitroaldol cyclisation and thus result in poor dynamic interconversion. Therefore, a two-pot 

system was developed, where the dynamic interconversion process and diastereoselective 

kinetic resolution protocol were performed independently (Figure 4.40). Ultimately recycling 

of the reaction mixture between the two vessels in a flow system can be envisaged. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40 

 

The intramolecular nitroaldol reaction and associated dynamic interconversion 

process (Step A) was first examined. The aldehyde 6-nitroheptanal 118 was dissolved in 

TBME with DBU (0.2 equivalent) and stirred at room temperature overnight. In this reaction 

vessel, vinyl acetate was not employed thus no chemical acetylation was observed. In 

addition, no base inhibition was detected due to the absence of a hydrolase. The DBU was 

subsequently removed by washing the reaction mixture with water. The organic layers were 

then concentrated under reduced pressure before analysis by 
1
H NMR spectroscopy. 

Complete cyclisation of 6-nitroheptanal 118 to the (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexanols (±)-117a and (±)-117b was achieved with a thermodynamic ratio of 30 : 

70.  

The crude β-nitroalcohols (±)-117a and (±)-117b were then dissolved in vinyl acetate 

and treated with Candida antarctica lipase B (immob) (Step B). This lipase was selected as it 

had previously demonstrated excellent diastereoselectivity in the resolution of (±)-2-methyl-

2-nitrocyclohexanol (±)-117 (see section 4.3.4.5). The reaction mixture was shaken at 24 °C 

for 18 h, the hydrolase was then removed by filtration and the reaction mixture dried and 

concentrated under reduced pressure before 
1
H NMR and chiral HPLC analysis. In this study, 

as anticipated, the lipase-mediated transesterification of (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b was the dominant kinetic resolution process in step B, with the 

(1R,2R)-trans-acetate (1R,2R)-119b accounting for 33% of the overall product ratio. 

Excellent diastereoselectivity was also observed with limited transformation of (±)-cis-2-

methyl-2-nitrocylohexanol (±)-117a.  

The two individual steps, A and B were then continuously repeated. In the dynamic 

interconversion process, step A, the ratio of trans-alcohol 117b was observed to increase 

relative to the ratio determined in the kinetic resolution protocol step B due to DBU-mediated 
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ring opening and closing of 6-nitroheptanol 118 to form the more stable trans-diastereomer 

117b. Significantly, the ratios of the cis- and trans-acetates 119a and 119b were not altered. 

In the kinetic resolution process step B, the enantioselective acetylation of (±)-trans-2-

methyl-2-nitrocyclohexanol (±)-117b was the major process in all cases. It is evident from 

Table 4.48 that the efficiency of both steps A and B, the dynamic interconversion and kinetic 

resolution process, was hindered significantly as the reaction progressed with minimal change 

in conversion observed between the last two processes. The (1R,2R)-trans-2-methyl-2-

nitrocyclohexanol (1R,2R)-119b was the dominant product observed in the dynamic 

interconversion process prior to work-up (57%) highlighting the significant potential of this 

dynamic process to provide a single stereoisomer (1R,2R)-119b. 

 

Table 4.48: Two pot dynamic kinetic resolution of the intramolecular 

 nitroaldol reaction through lipase catalysis 

      118                                        (1S,2R)-117a    (1S,2S)-117b    (1R,2S)-119a    (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery. 
b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix 1 for conditions. 

 

The crude β-nitroalcohols (1S,2R)-117a and (1S,2S)-117b and β-nitroacetates 

(1R,2S)-119a and (1R,2R)-119b were separated by column chromatography. The individual 

diastereomers of 2-methyl-2-nitrocyclohexanol (1S,2R)-117a and (1S,2S)-117b were not 

isolated in this case. However if separation was required the column chromatographic 

conditions as outlined in section 4.3.3.2 would be applied. Thus, chiral HPLC analysis was 

conducted on the cis and trans mixture 117a and 117b. Poor enantiopurity for (1S,2R)-117a 

and (1S,2S)-117b was observed, however this was anticipated due to the dynamic 

interconversion process which scrambles the stereochemistry at C1 and C2. A low yield was 

obtained of the β-nitroalcohols (1S,2R)-117a and (1S,2S)-117b attributable to the multiple 

work-ups required during this investigation 

The (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R)-119b was successfully separated 

from the (1R,2S)-cis-diastereomer (1R,2S)-119a, and chiral HPLC and optical rotation 

analysis was conducted on the enantiopure sample (1R,2R)-119b. Although the isolated yield 

was poor, excellent enantioselectivity was achieved (≥98% ee) demonstrating the significant 

potential of this process for the development of a formal dynamic kinetic resolution of the 

Step 

DBU 

(eq.) 

 

Vinyl 

acetate 

(eq.) 

Candida 

antarctica B 

(immob) 

(% w/w) 

Alcohol 117 Acetate 119 

cis-117a 

(%)
a 

[ee (%)]
b,c

 

trans-117b 

(%)
a 

[ee (%)]
b,d

 

cis-119a 

(%)
a 

[ee (%)]
b,e

 

trans-119b 

(%)
a 

[ee (%)]
b,f

 

A 0.2 - - 30 (±) 70 (±) - - 

B - 138 18 25 37 5 33 

A 0.2 - - 19 41 6 34 

B - 138 18 16 29 8 47 

A 0.2 - - 13 30 8 49 

B - 138 18 11 22 10 57 

A 0.2 - - 
10 

[10] 

22 

[37] 

10 

[>98] 

57 

[>98] 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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intramolecular Henry reaction of 6-nitroheptanal 118 through Candida antarctica lipase B 

(immob) catalysis. While the cycling of the material through the two steps is tedious, 

development of this protocol through engineering of a flow system can be envisaged to 

provide an efficient process (Figure 4.41).  

A pure sample of the cis-acetate (1R,2S)-119a was not obtained free from the trans-

diastereomer (1R,2R)-119b and chiral HPLC analysis was conducted on the cis and trans 

mixture 119a and 119b. Although the enantioselective transesterification of (±)-cis-2-methyl-

2-nitrocyclohexanol (±)-117a was a minor process relative to the transesterification of (±)-

trans-2-methyl-2-nitrocyclohexanol (±)-117b, high enantiopurity was achieved for the 

generated acetate (1R,2S)-119a (≥98% ee). While the experiment summarised in Table 4.48 

was commenced with 291.5 mg of 118, inevitably product loss in the multiple steps and 

isolation meant that there was a limit to the total number of cycles which could be 

undertaken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41 

4.3.8 Project conclusion 

 Significant progress has been made in the individual elements of the dynamic 

resolution process as outlined in the original objectives. Efficient kinetic resolution has been 

effected for the (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b through Pseudomonas 

stutzeri mediated transesterification. The enantioselective acetylation of (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a has also been explored. Critically, Candida antarctica lipase B 

(immob) displayed high diastereoselectivity, selectively acetylating the (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b diastereomer efficiently and with excellent enantioselectivity. 

Furthermore, both the lipase-mediated transesterification of the (±)-cis- and (±)-trans-2-

methyl-2-nitrocyclohexanols have been performed on a preparative-scale accessing the trans-

alcohol (1S,2S)-117b and cis- and trans-acetates (1R,2S)-119a and (1R,2R)-119b in excellent 

enantioselectivity (≥98% ee). 

A series of bases were investigated to mediate the intramolecular nitroaldol reaction 

and associated dynamic interconversion process. DBU and TMG were definitively 
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established by 
1
H NMR spectroscopy to fulfil both criteria with interconversion of the (±)-

cis- and (±)-trans-2-methyl-2-nitrocyclohexanols (±)-117a and (±)-117b via ring opening and 

closing of 6-nitroheptanal 118. However, chemical acetylation in the presence of vinyl 

acetate and lipase-mediated base inhibition presented significant barriers to the development 

of a one-pot dynamic kinetic resolution process. Despite the considerable limitations present, 

TMG displayed significant potential in the dynamic resolution process with high 

enantioselectivity obtained of the generated acetates (1R,2S)-119a and (1R,2R)-119b with 

negligible competing chemical acetylation or base inhibition evident. However, further 

investigation is required to improve the poor conversion and limited diastereoselectivity 

observed. 

To circumvent the competing processes of chemical acetylation and base inhibition in 

the one-pot system, a two-pot dynamic kinetic resolution process was explored whereby the 

dynamic interconversion process was performed independently of the lipase-mediated kinetic 

resolution. In the dynamic interconversion process vinyl acetate was not employed thus no 

chemical acetylation was observed. In addition, no base inhibition was detected due to the 

physical separation of the hydrolase. Significantly, excellent diastereoselectivity was 

observed with Candida antarctica lipase B in the two-pot system with the transesterification 

of the (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b the dominant kinetic resolution 

process. Thus the trans–acetate (1R,2R)-119b was the major component (57%) of the 

reaction mixture and isolated in excellent enantioselectivity (≥98% ee) albeit in low yield, 

attributable to the multiple work-ups required during this investigation. This two-pot system 

augurs well for the development of a flow chemistry model where the intensive work-ups 

may be avoided and thus loss of yield minimised; however, the removal of vinyl acetate 

before the dynamic interconversion may prove problematic. 

In summary, achieving dynamic kinetic resolution in the intramolecular Henry is 

extremely challenging due to the number of competing processes arising. By careful 

exploration of the conditions including variation of biocatalyst, base and solvent we have 

demonstrated for the first time the feasibility of this process. Introduction of the methyl group 

in (±)-117a and (±)-117b to avoid epimerisation via deprotonation as seen in (±)-99a and (±)-

99b was critical to the success of this outcome. 
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5.1 General procedures 

Solvents were distilled prior to use as follows: dichloromethane was distilled from 

phosphorus pentoxide and when doubly distilled dichloromethane was used it was further 

distilled from calcium hydride and stored over 4 Å molecular sieves. Ethyl acetate was 

distilled from potassium carbonate and ethanol was distilled from magnesium in the presence 

of iodine and stored over 3 Å molecular sieves.
1
 Hexane was distilled prior to use. 

Tetrahydrofuran (THF) was distilled from sodium and benzophenone.
1
 Molecular sieves were 

dried by heating at 150 ºC overnight. Organic phases were dried using anhydrous magnesium 

sulfate.  

All commercial reagents were used without further purification unless otherwise 

stated. The rhodium(II) acetate dimer catalyst employed was kindly donated by Johnson 

Matthey. In the baker’s yeast reductions, sucrose obtained from Siúcra Irish Granulated Sugar 

and Sigma type II baker’s yeast (BY; Saccharomyces cerivisae) was employed. Ordinary tap 

water was used as solvent. All hydrolases were kindly donated by Almac Sciences.  

Infrared spectra were recorded as thin films on sodium chloride plates for oils or as 

potassium bromide (KBr) discs for solids on a Perkin Elmer Paragon 1000 FT-IR 

spectrometer. Bulb to bulb distillations were carried out on an Aldrich Kugelrohr apparatus 

and the oven temperature is given as the boiling point of the substrate. Melting points were 

carried out on a uni-melt Thomas Hoover Capillary melting point apparatus and are 

uncorrected. 
1
H (300 MHz) and 

13
C (75.5 MHz) NMR spectra were recorded on a Bruker Avance 

300 MHz NMR spectrometer. 
1
H (400 MHz) NMR spectra were recorded on a Bruker 

Avance 400 MHz NMR spectrometer. All spectra were recorded at room temperature (~20 

°C) in deuterated chloroform (CDCl3) unless otherwise stated using tetramethylsilane (TMS) 

as an internal standard. 
1
H NMR spectra that were recorded in deuterated dimethylsulfoxide 

(DMSO-d6) were assigned using the DMSO peak as the reference peak. Chemical shifts (H 

& C) are reported in parts per million (ppm) relative to TMS and coupling constants are 

expressed in Hertz (Hz).  

Splitting patterns in 
1
H spectra are designated as s (singlet), br s (broad singlet), br d 

(broad doublet), br t (broad triplet), d (doublet), t (triplet), q (quartet), dd (doublet of 

doublets), dt (doublet of triplets) and m (multiplet). 
13

C NMR spectra were assigned with the 

aid of DEPT experiments. Compounds which were assigned with the aid of DEPT 

experiments were assigned by identifying both the carbon, (CH3, CH2, CH or C) and also the 

atom number of the carbon, for example [CH3, C(3)H3]. All spectroscopic details for 

compounds previously made were in agreement with those previously reported unless 

otherwise stated. 

Low resolution mass spectra were recorded on a Waters Quattro Micro triple 

quadrupole spectrometer in electrospray ionization (ESI) mode using 50% water/acetonitrile 

containing 0.1% formic acid as eluant; samples were made up in acetonitrile. High resolution 

mass spectra (HRMS) were recorded on a Waters LCT Premier Time of Flight spectrometer 

in electrospray ionization (ESI) mode using 50% water/acetonitrile containing 0.1% formic 

acid as eluant; samples were made up in acetonitrile. 

Elemental analysis were performed by the Microanalysis Laboratory, National 

University of Ireland, Cork, using Perkin-Elmer 240 and Exeter Analytical CE440 elemental 

analysers. Wet flash chromatography was performed using Kieselgel silica gel 60, 0.040-

0.063 mm (Merck). Thin layer chromatography (TLC) was carried out on precoated silica gel 

plates (Merck 60 PF254). Visualisation was achieved by UV (254nm) light detection, 
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potassium permanganate, vanillin, phosphomolybdic acid (PMA) and bromocresol green 

staining. 

Enantiomeric excess were measured by high performance liquid chromatography 

(HPLC), using a Chiralpak
® 

AS-H, Chiralcel
®
 OD-H and Chiralcel

®
 OJ-H column. Details of 

the column condition and mobile phases are included in Appendix I. HPLC analysis was 

performed on a Waters alliance 2690 separations module. All chiral columns were purchased 

from Daicel Chemical Industries Limitied. All solvents employed were of HPLC grade. Low 

temperature chiral HPLC analysis was obtained using an Igloo-Cil
®
 column cooler. PDA 

detection was used in all cases. When only one single enantiomer could be detected, the 

enantiomeric excess is quoted as >98%. Optical rotations were measured on a Perkin-Elmer 

141 polarimeter at 589 nm in a 10 cm cell; concentrations (c) are expressed in g/100 mL. 

     
   is the specific rotation of a compound and is expressed in units of 10

1
 deg cm

2
 g

1
. All 

hydrolase enzymatic reactions were performed on a VWR Incubating Mini Shaker 4450.  

Mechanical grinding experiments were conducted in a Retsch MM400 Mixer mill, 

equipped with stainless steel 5 mL grinding jars and one 2.5 mm stainless steel grinding ball 

per jar. The mill was operated at a rate of 30 Hz for 30 min. Powder X-ray diffraction 

(PXRD) data were collected using a STÖE STADI MP diffractometer with Cu Kα1 radiation 

(λ = 1.5406 Å), 40 kV, 40mAusing a linear PSD over the 2θ range (3.5 – 60°) with a step size 

equal to 0.5 and step time of 60 s. 

Single crystal X-ray data was collected by Dr. S. E. Lawrence and Dr. K. S. Eccles, 

Department of Chemistry, University College Cork on a Bruker APEX II DUO 

diffractometer at temperature 100 K using graphite monochromatic Mo Kα (λ = 0.7107 Å) 

radiation fitted with an Oxford Cryosystems Cobra low-temperature device.. The structures 

were solved using direct methods and refined on F
2
 using SHELXL-97. Analysis was 

undertaken with the SHELX suite of programs
2
 and diagrams prepared with Mercury 3.0.

3 
All 

non-hydrogen atoms were located and refined with anisotropic thermal parameters. Hydrogen 

atoms were included in calculated positions or they were located and refined with isotropic 

thermal parameters.   
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5.2 Baker’s yeast mediated asymmetric synthesis of (R)- and (S)-4-

methyloctanoic acid (R)-1 and (S)-1 

5.2.1 Synthesis of cyclopentanone and cyclopentanol  

Methyl phenyl sulfone 8
4-7

 

Hydrogen peroxide (30%, 150 mL) was added over 5 min to a stirring 

solution of thioanisole 9 (19 mL, 161.66 mmol) in acetic acid (100 mL) at 

room temperature. The reaction mixture was then stirred at reflux for 30 

min, following which it was cooled by addition of water (100 mL) and 

extracted with dichloromethane (3  100 mL). The combined organic 

extracts were washed with a saturated aqueous solution of sodium bicarbonate (3  50 mL) 

followed by brine (50 mL), dried, filtered and concentrated under reduced pressure to give 

the crude sulfone 8 (21.64 g, 86%) as a white crystalline solid; m.p. 84-87 °C (lit.,
4
 85-88 

°C); max/cm
−1

 (KBr) 1285, 1147 (SO2); H (300 MHz) 3.06 (3H, s, CH3), 7.55-7.61 (2H, m, 

ArH), 7.64-7.70 (1H, m, ArH), 7.94-7.98 (2H, m, ArH).  

 

1-Benzenesulfonylnonan-2-one 5
4,5,7,8 

Methyl phenyl sulfone 8 (4.53 g, 29.00 mmol) 

was placed under an atmosphere of nitrogen in a 

flame dried round bottom flask in an ice bath. 

THF (175 mL) was added to the flask followed 

by the addition of n-butyllithium (2.3 M solution in hexanes; 25.3 mL, 58.19 mmol) over a 20 

minute period. The resulting cloudy yellow solution was stirred for 1.5 h at 0 °C after which a 

solution of ethyl octanoate 7  (6.0 mL, 30.20 mmol) in THF (15 mL) was added over 15 min 

producing a light orange solution. The reaction mixture was stirred overnight at room 

temperature under a blanket of nitrogen. The solution was quenched with saturated 

ammonium chloride solution (75 mL). The organic layer was isolated and the aqueous layer 

washed with diethyl ether (3  50 mL). The organic layers were combined and washed with 

brine (50 mL), dried, filtered and concentrated under reduced pressure to give the crude β-

ketosulfone 5 (7.32 g) as a yellow oil. Purification by column chromatography on silica gel 

using hexane/ethyl acetate 80/20 as eluent gave the pure β-ketosulfone 5 (5.83 g, 68%) as a 

white crystalline solid; m.p. 54-56 °C (lit.,
8
 55-56 °C); max/cm

−1
 (KBr) 1717 (CO), 1301, 

1153 (SO2); δH (300 MHz) 0.89 [3H, t, J 6.8, C(9)H3], 1.14-1.38 [8H, m, C(5), (6), (7) and 

(8)H2], 1.46-1.63 [2H, m, C(4)H2], 2.69 [2H, t, J 7.2, C(3)H2CO], 4.14 [2H, s, C(1)H2SO2], 

7.53-7.64 (2H, m, ArH), 7.66-7.72 (1H, m, ArH), 7.85-7.93 (2H, m, ArH). 
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p-Toluenesulfonyl azide (p-Tosyl azide) 10
4,5,7,9 

A solution of p-toluenesulfonyl chloride (5.61 g, 29.43 mmol) in 

acetone (15 mL) was added over 5 min to a solution of sodium 

azide (2.11 g, 32.46 mmol) in water (10 mL) and acetone (15 

mL) at 0 °C. The reaction mixture was stirred for 2 h and then 

concentrated under reduced pressure until no acetone remained. 

Dichloromethane (15 mL) was added and the layers separated. The organic layer was washed 

with water (2  15 mL), dried, filtered and concentrated under reduced pressure to give the 

azide 10 (4.57 g, 79%) as a colourless oil which solidifies upon storage at low temperature. 

 
Note: 

1. Previous researchers have reported recrystallising p-toluenesulfonyl chloride before use.4,5,7 Recrystallisation was 

not conducted in this research with no impact on yield or quality of  p-tosyl azide 10. 

2. As all azides are potentially explosive caution was exercised in their handling. p-Tosyl azide 10 was stored in the 

freezer and transferred as an oil due to its high impact sensitivity. 

 

1-Benzenesulfonyl-l-diazononan-2-one 6
4,5,7

 

Potassium carbonate (2.82 g, 20.40 mmol) was 

added to a solution of 1-benzenesulfonylnonan-

2-one 5 (4.40 g, 15.58 mmol) in acetonitrile (75 

mL). The mixture was stirred at room 

temperature under an atmosphere of nitrogen 

and a solution of p-tosyl azide 10 (3.10 g, 15.72 mmol) in acetonitrile (11 mL) added over 2 

min. The reaction mixture was stirred for 4 h, after which diethyl ether (10 mL) and hexane 

(20 mL) was added to precipitate the amide salts and the resultant mixture was filtered 

through a short pad of Celite
®
 and the filtrate concentrated under reduced pressure gave the 

crude α-diazo-β-keto sulfone 6 (8.45 g) as an orange solid. Purification by column 

chromatography on silica gel using hexane/ethyl acetate 65/35 as eluent gave the pure α-

diazo-β-keto sulfone 6 (4.29 g, 89%) as a yellow crystalline solid; m.p. 44-45 °C (lit.,
4 

39-41 

°C); max/cm
−1

 (KBr) 2129 (CN2), 1662 (CO), 1339, 1153 (SO2); δH (300 MHz) 0.86 [3H, t, J 

6.8, C(9)H3], 1.11-1.34 [8H, m, C(5), (6), (7) and (8)H2], 1.44-1.65 [2H, m, C(4)H2], 2.54 

[2H, t, J 7.4, C(3)H2CO], 7.56-7.62 (2H, m, ArH), 7.65-7.72 (1H, m, ArH), 7.97-8.01 (2H, m, 

ArH).  

 

(±)-trans-2-Benzenesulfonyl-3-n-butylcyclopentanone (±)-2
4,5,7

 

A solution of 1-benzenesulfony-l-diazononan-2-one 6 (2.00 g, 6.49 

mmol) in doubly distilled dichloromethane (115 mL) was added 

dropwise over 1.5 h to a refluxing solution of rhodium(II) acetate 

(14.9 mg, 0.5 mol%) in doubly distilled dichloromethane (233 mL) 

while stirring under nitrogen. The mixture was maintained at reflux 

for 1 h then allowed cool to room temperature and concentrated 

under reduced pressure to give the crude cyclopentanones (2.26 g) as 

a dark brown oil in a 38 : 62 mixture of cis : trans isomers. Purification by column 

chromatography on silica gel using hexane/ethyl acetate 90/10 as eluent gave the pure trans 

cyclopentanone 2 (1.00 g, 55%) as a yellow oil. The pure trans cyclopentanone 2 was 

obtained as a light yellow solid for a batch that was synthesised later;  m.p. 33-35 °C (lit.,
7 

34-

35 °C); max/cm
−1

 (KBr) 1751 (CO), 1305, 1152 (SO2); δH (300 MHz) 0.89 [3H, t, J 6.9, 

CH3], 1.18-1.43 [5H, m, (CH2)2CH3 and one of CH2(CH2)2CH3], 1.46-1.60 [1H, m, one of 
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C(4)H2], 1.63-1.80 [1H, m, one of CH2(CH2)2CH3], 2.21-2.50 [3H, m, C(5)H2, one of 

C(4)H2], 2.79-2.99 [1H, m, C(3)H
n
Bu], 3.39 [1H, d, J 6.9, C(2)HSO2Ph], 7.55-7.60 (2H, m, 

ArH), 7.65-7.72 (1H, m, ArH), 7.85-7.88 (2H, m, ArH). 
1
H NMR spectral assignment was 

aided by COSY and HETCOR 2D NMR experiments. 

 
Note: 

1. A signal for the cis isomer of cis-2 was detected in the 1H NMR of the crude product spectrum at δH (300MHz) 3.73 

[1H, d, J 7.8 C(2)HSO2Ph]. 

2. Significant difference in 1H NMR chemical shift and multiplicity of the CH3 signal is observed between Milner5 and 

data described above. Milner reports; H (400 MHz) 1.29 (3H, d, J 7, CH3). Milner also does not report the 

chemical shifts of the 3 x CH2, n-butyl  protons. 1H NMR assignment in this study is consistent with O’Keeffe7 and 

Kelleher.4 

 

(±)-(1R*,2S*,3R*)-2-Benzenesulfonyl-3-n-butylcyclopentanol 4a
4,5,7

 

A solution of (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone 

2 (0.55 g, 1.98 mmol) in distilled ethanol (10 mL) was added 

dropwise over 10 min to a stirred suspension of NaBH4 (0.14 g, 3.81 

mmol) in distilled ethanol (25 mL) at 0 °C under nitrogen and 

stirring was continued for 5 h at 0 °C. The ice bath was then 

removed and aqueous hydrochloric acid (10%) was added to adjust 

to pH 1. The solution was concentrated under reduced pressure and 

the resulting residue was partitioned between water (10 mL) and dichloromethane (10 mL). 

The aqueous phase was extracted with dichloromethane (3 × 10 mL) and the combined 

organic extracts were washed with brine (30 mL), dried, filtered and concentrated under 

reduced pressure to give the crude cyclopentanol 4a (0.42 g, 75%) as a white crystalline solid 

which was sufficiently pure to use without further purification; m.p. 47-49 °C (lit.,
7 

47-49 

°C); max/cm
−1

 (KBr) 3499 (OH), 1302, 1141 (SO2); δH (300 MHz) 0.85 (3H, t, J 6.6, CH3), 

1.08-1.49 [6H, m, one of C(4)H2, one of CH2(CH2)2CH3 and (CH2)2CH3], 1.51-1.89 [3H, m, 

one of C(5)H2, one of C(4)H2, and one of CH2(CH2)2CH3], 2.16-2.29 [1H, m, one of C(5)H2], 

2.61-2.77 [1H, m, C(3)H
n
Bu], 3.03-3.07 [1H, dd, J 9.0, 4.5, C(2)HSO2Ph], 3.51 (1H, d, J 2.7, 

OH), 4.28-4.33 (1H, sym m, CHOH), 7.54-7.72 (3H, m, ArH), 7.89-8.01 (2H, m, ArH). 
 

Note: 

1. Signals due to the minor diastereomer (±)-(1R*,2R*,3S*)-4b (~3%) could be detected in the 1H NMR spectrum at 

δH (300 MHz) 4.63-4.66 (CHOH). 

2. Previous researchers have reported a broad singlet for the OH peak, in this study this was observed as a finely 

split doublet. 4,5,7  

3. Previous researchers have reported a ddd for the CHOH peak, in this study it was assigned as a multiplet. 4,5,7 

5.2.2 Kinetic resolution in the immobilised baker’s yeast mediated reduction of (±)-

trans-2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2 

Immobilisation of baker’s yeast on alginate
5,10-12

 

Sodium alginate (20.00 g) was added portionwise to stirring tap water (1.0 L) at 50 °C. The 

reaction mixture was stirred using an overhead mechanical stirrer for 1 h at 50 °C. The oil 

bath was then removed and the reaction mixture allowed to slowly cool to room temperature 

while stirring. Following this, baker’s yeast (80.00 g) was added portionwise and the mixture 

stirred for a further 2 h at room temperature, then poured into a stirring aqueous solution 10% 

calcium chloride (1.0 L) via a glass funnel with a small diameter hole (1-2 mm). The resultant 

beads were filtered and washed with water to give 975 mL of immobilised baker’s yeast 

(IMBY) beads. It was then stored in the fridge at 4 °C and used the following day.  
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IMBY mediated reduction with kinetic resolution of racemic (±)-trans-2-

benzenesulfonyl-3-n-butylcyclopentanone (±)-2
5,13

 

A mixture of IMBY (975 mL, which contained 

approximately 80.00 g free baker’s yeast), sucrose 

(81.00 g), and tap water (406 mL) was stirred 

using an overhead mechanical stirrer at 28-30 °C 

for 30 min. A solution of (±)-trans-2-

benzenesulfonyl-3-n-butylcyclopentanone (±)-2 

(2.07 g, 7.39 mmol) in DMSO (8 mL) was added 

dropwise over 1 min and the mixture stirred for 2 h. Sucrose (4  25.00 g) was then added at 

2, 4, 6 and 9 h, the mixture was then stirred for a further 14 h (overnight) at 28-30 °C. 

Reaction sampling was performed at 23 h as follows: 15 mL of reaction solution was 

withdrawn with a plastic syringe and transferred to a separation funnel containing 10 mL of 

ethyl acetate, the organic layer was removed and the aqueous layer was extracted with (3  10 

mL) of ethyl acetate. The combined organic layers were washed with brine (15 mL), dried, 

filtered and concentrated under reduced pressure. The crude product was dissolved in a 

mixture of isopropanol/hexane [10 : 90 (HPLC grade)] and enantioselectivity determined by 

chiral HPLC, (see appendix I for conditions).  

 

Upon reaction completion, the mixture was filtered at 23 h to remove the IMBY beads and 

the beads were washed and pressed with ethyl acetate (3  100 mL). The pressed beads were 

placed in a beaker, covered with ethyl acetate and sonicated at ~40 °C for 6-8 h. The mixture 

was then filtered and the sonciated beads were washed with ethyl acetate (3  100 mL). The 

beads were then compressed with a pestle and mortor and stirred quickly with an overhead 

stirrer in ethyl acetate overnight. The solution was once again filtered and the compressed 

beads washed with ethyl acetate (3  100 mL). The combined aqueous filtrate was extracted 

with ethyl acetate (3  100 mL) and the combined organic extracts dried, filtered and 

concentrated under reduced pressure. Purification by column chromatography on silica gel 

using hexane/ethyl acetate 90/10 as eluent gave the pure (+)-(1S,2R,3S)-2-benzenesulfonyl-

3-n-butylcyclopentanol (1S,2R,3S)-4a (0.69 g, 33%) as a white solid     
  

 +33.1 (c 0.5, 

CHCl3), 98% ee, lit
4
     

  
 +22.4 (c 11.5, CH2Cl2), >95% ee; >98 : 2 dr and the crude ketone 

(2S,3R)-2 which required further purification by column chromatography on silica gel using 

hexane/ethyl acetate 97/3 as eluent to give the pure (+)-(2S,3R)-2-benzenesulfonyl-3-n-

butylcyclopentanone (2S,3R)-2 (0.53 g, 25%) as a light yellow oil     
  

 +79.4 (c 0.5, CHCl3), 

99% ee, lit
4
     

  
 +21.3 (c 8.6, CH2Cl2), 33% ee. 

1
H NMR spectra were identical to those for 

the racemic materials previously prepared. 

 
Note: 

1. The 1H NMR of pure (+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a shows no evidence 

of the minor cyclopentanol (1S,2S,3R)-4b at δH (300 MHz) 4.63-4.66 (CHOH). 

2. As it was necessary to repeat flash chromatography in order to obtain a pure sample of (+)-(2S,3R)-2-

benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2 this contributed to a loss in yield. A yield of 35% was 

obtained for pure (+)-(2S 3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, 98% ee and 32% for  pure 

(+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a, 98% ee for a batch that was synthesised 

later that required purification by column chromatography only once (entry 2, Table 5.1). 
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Table 5.1: Baker’s yeast reduction of (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone 

(±)-2 – demonstrating the reproducibility of the biotransformation 

  

 

 

    

    (±)-2                                                (2S,3R)-2            (1S,2R,3S)-4a         (1S,2S,3R)-4b  

a. IMBY-H2O with repeated addition of sucrose over time at t = 0 h, 2 h, 4 h and 6 h. 

b. IMBY-H2O with repeated addition of sucrose over time at t = 0 h, 2 h, 4 h, 6 h, 8 h, 23 h 15 min, 26 h 15 min, 28 h 45 min and 41 h 45 

min. 
c. IMBY-H2O with repeated addition of sucrose over time at t = 0 h, 2 h, 4 h and 6 h. 

d. Scale refers to the quantity of cyclopentanone (±)-2 employed for the reaction. 

e. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 
f. Purification by column chromatography was repeated, hence this contributed to a loss in yield. 

g. Poor yield attributed to experimental error during work-up leading to physical loss.  

h. The 1H NMR of pure isolated (+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a showed no evidence of the 
minor cyclopentanol (1S,2S,3R)-4b at δH (300 MHz) 4.63-4.66 (CHOH). 

 

Reaction monitoring was conducted throughout the biotransformations, for example Table 

5.2 and Figure 5.1 and 5.2 correlate to chiral HPLC analysis of the preparative-scale (2.00 g) 

baker’s yeast mediated resolution of (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone 

(±)-2 summarised in entry 3, Table 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry 
Reaction 

Conditions 

Scale 

(g)
d
 

Reaction 

Time 

Cyclopentanone 

(2S,3R)-2 

Cyclopentanol 

(1S,2R,3S)-4a 

Cyclopentanol 

(1S,2S,3R)-4b 

ee 

(%)
e
 

Isolated 

yield 

(%) 

ee 

(%)
e
 

Isolated 

yield 

(%) 

dr 

1 IMBY-H2O
a
 2.07 23 h 99 25

f
 98 33 -

h
 

2 IMBY-H2O
b
 3.00 47 h 15 min 98 35 98 32 -

h
 

3 IMBY-H2O
c
 2.00 24 h >98 12

g
 >98 18

g
 -

h 
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Table 5.2: Baker’s yeast reduction of (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone 

(±)-2: Monitoring over time 

  

 

 

  (±)-2                         (2S,3R)-2       (1S,2R,3S)-4a     (1S,2S,3R)-4b  

a. IMBY-H2O with repeated addition of sucrose over time at t = 0 h, 2 h, 4 h and 6 h. 
b. Scale refers to the quantity of cyclopentanone (±)-2 employed for the reaction. 

c. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

d. A yield of 35% was obtained for pure (+)-(2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, 98% ee and 32% for  pure 
(+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a, 98% ee for a batch that was synthesised later (entry 2, Table 

5.1). 

e. The 1H NMR of pure isolated (+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a showed no evidence of the 
minor cyclopentanol (1S,2S,3R)-4b at δH (300 MHz) 4.63-4.66 (CHOH). 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.1: HPLC Trace I: Racemic (±)-(1R*,2S*,3R*)-2-Benzenesulfonyl-3-n-butylcyclopentanol 4a  and (±)-trans-2-

benzenesulfonyl-3-n-butylcyclopentanone (±)-2. Trace II: Reaction sampling 2 h. Trace III: Reaction sampling 4 h.        

Trace IV: Reaction sampling 9 h, (+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a, >98% ee, (+)-

(2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, >98% ee. For HPLC conditions see appendix I. 

 

 

  

Entry Reaction Conditions
a
 

Scale 

(g)
b
 

Reaction 

Time 

Cyclopentanone 

(2S,3R)-2 

Cyclopentanol 

(1S,2R,3S)-4a 

Cyclopentanol 

(1S,2S,3R)-4b 

ee 

(%)
c
 

Isolated 

yield 

(%) 

ee 

(%)
c
 

Isolated 

yield 

(%) 

dr 

1 
 

IMBY-H2O 

 

 

2.00 

 

2 h 44 - >98 - - 

2 4 h 98 - >98 - - 

3 9 h >98 - >98 - - 

4 24 h >98 12
d
 >98 18

d,e
 -

e
 

Trace I 

Racemic 

 

Trace II 

2 h 

 

Trace III 

4 h 

 

Trace IV 

9 h 

 

(1S,2R,3S)-4a 
(1R,2S,3R)-4a 

(1S,2R,3S)-4a 

>98% ee 

(2S,3R)-2 (2R,3S)-2 

>98% ee 

>98% ee 

44% ee 

98% ee 

(2S,3R)-2 

>98% ee 

 



Chapter 5                                                                                                                 Experimental 

                                                                                                 

 

265  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.2: 1H NMR Spectrum I: (2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, >98% ee. 

Spectrum II: (1S,2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanol (1S,2R,3S)-4a, >98% ee. 

(All spectra recorded in CDCl3 at 300 MHz).  

 

5.2.3 Asymmetric synthesis of (R)- and (S)-4-methyloctanoic acids (R)-1 and (S)-1 

1-Hydroxy-1,2-benziodoxol-3-(1H)-one-1-oxide (IBX) 13
14-16

 

2-Iodobenzoic acid (10.00 g, 40.32 mmol) was added all at once to a 

solution of Oxone
®
 (36.20 g, 58.89 mmol) in water (130 mL) in a 500 

mL 2-necked round bottomed flask. The reaction mixture was warmed 

to 70-73 °C (internal temperature) over 20 min and stirred using an 

overhead mechanical stirrer at this temperature for 3h. The initial thick 

slurry coating the walls of the flask eventually became a finely 

dispersed easy to stir suspension of a small amount of solid that 

sedimented easily upon stopping the stirring The suspension was then cooled to ~5 °C with 

an ice bath and left at this temperature for 1.5 h with slow magnetic stirring. The mixture was 

filtered through a sintered glass funnel and the solid was repeatedly rinsed with cold water (6 

 20 mL) and acetone (2  20 mL) to give the pure IBX 13 (8.42 g, 75%) as a moist white 

crystalline solid; m.p. 232-233 °C (violent decomposition) (lit.,
15 

232-233 °C); δH (300 MHz, 

DMSO) 7.84 (1H, t, J 6.6, ArH), 7.96-8.07 (2H, m, ArH), 8.15 (1H, d, J 8.1, ArH). 
 

Note: Literature 1H NMR data reports, δH (DMSO-d6) 8.01 (1H, d), 7.98 (1H, t), however in this study the aromatic protons 

in this region are reported as a multiplet due to overlapping peaks.16 

 

 

 

 

 

 

 

Spectrum I 

 

Spectrum II 

 

(2S,3R)-2 

>98% ee 

 

(1S,2R,3S)-4a 

>98% ee 

(1S,2S,3R)-4b 

No evidence by 1H NMR of minor 

cyclopentanol (1S,2S,3R)-4b at  

δH (300 MHz) 4.63-4.66 ppm CHOH 
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1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3-(1H)-one (Dess-Martin periodinane) 

12
17

 

1-Hydroxy-1,2-benziodoxol-3-(1H)-one-1-oxide (IBX) 13 (8.42 g, 

30.06 mmol) was added to a stirring mixture of acetic anhydride (29 

mL, 307.36 mmol) and glacial acetic acid (14 mL, 244.56 mmol)  

under nitrogen. The reaction mixture was heated to 85 °C (internal 

temperature) over 30 min and kept at this temperature until all the 

solids dissolved (~20 min) to afford a colourless to clear yellow 

solution. Heating and stirring were discontinued and the reaction 

mixture was allowed to cool slowly to room temperature in the oil bath overnight. A large 

quantity of colourless crystals separate during this time. The resulting crystalline solids are 

isolated by careful vacuum Schlenk filtration under a nitrogen atmosphere, followed by 

washing of the solids with diethyl ether (3  10 mL). The solids were allowed to dry under 

vaccum within the Schlenk filter for 2 h to give the crude Dess-Martin periodinane 12 (10.00 

g, 78% ) as a white free-flowing crystalline solid which was used immediately; m.p. 133-134 

°C (lit.,
15 

133-134 °C); δH (300 MHz, CDCl3) 2.01 (6H, s, 2 x CH3), 2.34 (3H, s, CH3), 7.86-

8.37 (4H, m, ArH). 
 

Note: 

1. Literature states that the Dess-Martin periodinane 12 can be stored in a dark bottle under nitrogen at −20 °C in a freezer, 

however best results were obtained in this study if 12 was used immediately following filtration.17 

2. During this research it was found that the Dess-Martin periodinane 12 did not fully dissolve when an opened bottle of deuterated 

chloroform (CDCl3) was used, and filtration of the 1H NMR sample was essential.  This correlates with literature reports that a 

freshly opened bottle of CDCl3 was required to dissolve 12.17 

3. Signals and multiplicity for the aromatic protons were difficult to decipher due to overlap with aromatic proton signals of the 

incompletely acetylated products. Integration of signals was slightly higher than anticipated due to these impurity peaks and the 

presence of acetic acid ~62 mol%, ~19 mass%. 

 

(−)-(2R,3S)-2-Benzenesulfonyl-3-n-butylcyclopentanone (2R,3S)-2
4,5,7

 

A solution of (+)-(1S,2R,3S)-2-benzenesulfonyl-3-n-butyl 

cyclopentanol (1S,2R,3S)-4 (1.38 g, 4.63 mmol), 98% ee in 

dichloromethane (60 mL) was added to a solution of 1,1,1-

triacetoxy-1,1-dihydro-1,2-benziodoxol-3-(1H)-one 12 (3.93 g, 9.27 

mmol) in dichloromethane (80 mL) and the mixture was stirred for 4 

h. The mixture was poured onto a saturated aqueous solution of 

sodium bicarbonate (300 mL) containing sodium thiosulfate (14.00 

g) and stirred for ~15 min. The layers were separated and the organic layer was washed with 

a saturated aqueous solution of sodium bicarbonate (2  150 mL) and water (100 mL), dried, 

filtered and concentrated under reduced pressure to give the pure (−)-(2R,3S)-cyclopentanone 

(2R,3S)-2 (1.16 g, 89%) as a yellow oil     
  

 −74.20 (c 0.5, CHCl3), 96% ee, lit
4
     

  
 −46.3 

(c 4.3, CH2Cl2), 75% ee. 
1
H NMR spectra were identical to those for the racemic materials 

previously prepared. 
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Figure 5.3: HPLC Trace I: Racemic (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2. Trace II: (-)-(2R,3S)-

2-benzenesulfonyl-3-n-butylcyclopentanone (2R,3S)-2, 96% ee (from DMP oxidation). Trace III: (+)-(2S,3R)-2-

benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2, 99% ee (from baker’s yeast). For HPLC conditions see appendix I. 

 

(±)-4-(Benzenesulfonylmethyl)octanoic acid (±)-11
4,5,7

 

A solution of (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone 2 

(1.42 g, 5.07 mmol) in aqueous sodium hydroxide (1M, 150 mL) was 

heated under reflux for 30 min. The reaction mixture was cooled to 

room temperature and washed with diethyl ether (50 mL). The aqueous 

layer was acidified to pH 2 with aqueous hydrochloric acid (10%) and 

extracted with ethyl acetate (3  100 mL). The combined organic layers 

were washed with water (100 mL), dried, filtered and concentrated 

under reduced pressure to give the pure carboxylic acid (±)-11 (1.04 g, 69%) as a viscous 

light orange oil; max/cm
−1

 (film) 3066 (OH), 1710 (CO), 1305, 1146 (SO2); δH (300 MHz) 

0.85 (3H, t, J 6.9, CH3), 1.06-1.48 [6H, m, CH2(CH2)2CH3], 1.66-1.92 [1H, m, C(3)H2], 1.98-

2.12 [1H, sym m, J 6.2 C(4)H
n
Bu], 2.34 [2H, t, J 7.8, C(2)H2], 3.00 [1H, dd, A of ABX, JAB 

14.4, JAX 6.3, one of C(5)H2], 3.08 [1H, dd, B of ABX, JAB 14.4, JBX 5.7, one of C(5)H2], 

7.51-7.72 (3H, m, ArH), 7.87-7.96 (2H, m, ArH), 9.05 (1H, br s, OH).  

 
Note: Following work-up it was found to be difficult to fully remove the ethyl acetate due to the viscous nature of (±)-11, 

therefore (±)-11 was analysed with ethyl acetate present ~7% and integration was slightly higher for peaks that overlaped 

with residual ethyl acetate.  

 

(−)-(S)-4-(Benzenesulfonylmethyl)octanoic acid (S)-11
4,5,7

 

This was prepared following the procedure described for racemic (±)-11 

from (−)-(2R,3S)-2-benzenesulfonyl-3-n-butylcyclopentanone (2R,3S)-2 

(170.7 mg, 0.61 mmol), 93% ee and aqueous sodium hydroxide (1M, 20 

mL) to give the pure (−)-(S)-carboxylic acid (−)-(S)-11 (149.1 mg, 

82%) as a viscous light yellow oil     
  

 −11.0 (c 1.2, CH2Cl2), 94% ee, 

lit
4     

  
 −5.6 (c 2.7, CH2Cl2), 91% ee. 

1
H NMR spectra were identical 

to those for the racemic materials previously prepared. 

 
Note: Ethyl acetate (~3%) was evident in the 1H NMR spectrum.  

Trace I 

Racemic 

 

 

 

 

Trace II 

 DMP oxidation 

 

Trace III 

Baker’s yeast reduction 

 

(2S,3R)-2 

99 % ee 

    
   +79.4 (c 0.5, CHCl3) 

(2R,3S)-2 

96% ee 

    
   −74.20 (c 0.5, CHCl3)  

 

(2S,3R)-2 (2R,3S)-2 
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Figure 5.4: HPLC Trace I: (±)-4-(Benzenesulfonylmethyl)octanoic acid (±)-11, 
Trace II: (−)-(S)-4 -(Benzenesulfonylmethyl)octanoic acid (S)-11, 94% ee. For HPLC conditions see appendix I.  

Note the above traces correlate to chiral HPLC conditions A for 11. 
 

(+)-(R)-4-(Benzenesulfonylmethyl)octanoic acid (R)-11
4,5,7

 

This was prepared following the procedure described for racemic (±)-11 

from (+)-(2S,3R)-2-benzenesulfonyl-3-n-butylcyclopentanone (2S,3R)-2 

(239.1 mg, 0.85 mmol), >98% ee and aqueous sodium hydroxide (1M, 

22 mL) to give the pure (+)-(R)-carboxylic acid (-)-(R)-11 (185.0 mg, 

73%) as a viscous light yellow oil     
  

 +9.1 (c 1.2, CH2Cl2), 99% ee, 

lit
4     

  
 +6.3 (c 1.2, CH2Cl2), 75% ee. 

1
H NMR spectra were identical 

to those for the racemic materials previously prepared. 

 
Note: Ethyl acetate (~5%) was evident in the 1H NMR spectrum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.5: HPLC Trace I: (±)-4-(Benzenesulfonylmethyl)octanoic acid (±)-11.  
Trace II: (+)-(R)-4 -(Benzenesulfonyl methyl)octanoic acid (R)-11, >98% ee. For HPLC conditions see appendix I.  

Note the above traces correlate to chiral HPLC conditions B for 11. 
 

Trace II 

 

(S)-11 (R)-11 

(S)-11 

94% ee 

    
   −11.0 (c 1.2, CH2Cl2) 

Trace I 

Racemic 

 

(S)-11 (R)-11 

(R)-11 

>98% ee 

    
   +9.1 (c 1.2, CH2Cl2) 

 

 

 

Trace II 

 

Trace I 

Racemic 
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(±)-4-Methyloctanoic acid (±)-1
5,18,19

 

Magnesium turnings (2.15 g, 89.54 mmol) were added to a stirred solution of 

(±)-4-(benzenesulfonylmethyl)octanoic acid (±)-11 (1.04 g, 3.48 mmol) in 

methanol (150 mL) and the mixture was stirred for 10 h after which a further 

addition of magnesium (2.15 g, 89.54 mmol) was made and the slurry was 

stirred for an additional 18 h at room temperature under nitrogen. The reaction 

mixture was then carefully poured onto aqueous hydrochloric acid (10%, ~300 

mL) and ice (~100 g). The layers were separated and the aqueous layer was 

extracted with ethyl acetate (3 × 100 mL). The combined organic layers were washed with a 

saturated aqueous solution of sodium bicarbonate (3 × 50 mL), brine (100 mL), dried, filtered 

and concentrated under reduced pressure to give the crude desulfonylated acid (±)-1 (0.64 g) 

as a yellow oil. Purification by column chromatography on silica gel using dichloromethane 

as eluent gave the pure desulfonylated acid (±)-1 (0.28 g. 51%) as a clear oil; max/cm
−1

 (film) 

3043 (OH), 1714 (CO); δH (300 MHz) 0.78-0.98 (6H, m, 2 x CH3), 1.04-1.36 [6H, m, 

CH2(CH2)2CH3], 1.37-1.55 [2H, m, one of C(3)H2 and C(4)H], 1.57-1.81 [1H, m, one of 

C(3)H2], 2.19-2.50 [2H, sym m, C(2)H2], 10.55 (1H, br s, OH). 
1
H NMR spectral assignment 

was aided by COSY and HETCOR 2D NMR experiments. 

 

(+)-(S)-4-Methyloctanoic acid (S)-1
5,18,19

 

This was prepared following the procedure described for racemic (±)-1 from 

(S)-4-(benzenesulfonylmethyl)octanoic acid (S)-11 (0.56 g, 1.88 mmol), 

magnesium turnings (2.26 g, 94.17 mmol) and methanol (75 mL) to give the 

crude desulfonylated acid (S)-1 (0.28 g) as a yellow oil. Purification by 

column chromatography on silica gel using dichloromethane as eluent gave 

the pure desulfonylated acid (S)-1 (0.17 g. 57%) as a clear oil     
  

 +1.6 (c 

1.4, CHCl3), lit
20     

  
 +1.5 (c 1.4, CHCl3), 93% ee. 

1
H NMR spectra were 

identical to those for the racemic materials previously prepared. 

 
Note: 

1. Chiral HPLC and optical rotation analysis was not conducted on the batch of (S)-4-(benzenesulfonylmethyl)octanoic 

acid (S)-11 utilised in this experiment. However, the enantiopurity of the precursor (-)-(2R,3S)-cyclopentanone 

(2R,3S)-2 was determined to be 97% ee by chiral HPLC analysis and base-catalysed ring cleavage to the (S)-

carboxylic acid (S)-11 proceeds with retention of enantioselectivity. 

2. Due to the low UV absorption of (+)-(S)-4-methyloctanoic acid (S)-1, chiral HPLC analysis was not possible with a 

PDA detector and enantiomeric excess [ee (%)] was determined as 97% ee by derivatisation with 9-fluorenemethanol 

17. 

3. The literature ee values were determined by derivatisation of (+)-(S)-methyloctanoic acid (S)-1 with (R)-(−)-2,2,2-

trifluoro-1-(9-anthryl)ethanol.20 
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(−)-(R)-4-Methyloctanoic acid (R)-1
5,18,19

 

This was prepared following the procedure described for racemic (±)-1 from 

(R)-4-(benzenesulfonylmethyl)octanoic acid (R)-11 (0.74 g, 2.49 mmol), 

magnesium turnings (2.98 g, 124.17 mmol) and methanol (100 mL) to give 

the crude desulfonylated acid (R)-1 (0.35 g) as a yellow oil. Purification by 

column chromatography on silica gel using dichloromethane as eluent gave 

the pure desulfonylated acid (R)-1 (0.21 g. 53%) as a clear oil     
  

 −2.2 (c 

1.4, CHCl3), lit
20     

   −1.5 (c 1.4, CHCl3), 94% ee. 
1
H NMR spectra were 

identical to those for the racemic materials previously prepared. 

 
Note: 

1. Chiral HPLC and optical rotation analysis was not conducted on the batch of (R)-4-

(benzenesulfonylmethyl)octanoic acid (R)-11 utilised in this experiment. However, the enantiopurity of the 

precursor (−)-(2S,3R)-cyclopentanone (2S,3R)-2 was determined to be 99% ee by chiral HPLC analysis and 

base-catalysed ring cleavage to the (R)-carboxylic acid (R)-11 proceeds with retention of enantioselectivity. 

2. Due to the low UV absorption of (−)-(R)-4-methyloctanoic acid (R)-1, chiral HPLC analysis was not possible 

with a PDA detector and enantiomeric excess [ee (%)] was determined as 99% ee by derivatisation with 9-

fluorenemethanol 17. 

3. The literature ee values were determined by derivatisation of (−)-(R) methyloctanoic acid (R)-1 with (R)-(−)-

2,2,2-trifluoro-1-(9-anthryl)ethanol.20 

 

(±)-(9H-Fluoren-9-yl)methyl 4-methyloctanoate (±)-18 

9-Fluorenemethanol 17 (431.0 mg, 2.20 mmol) in doubly 

distilled dichloromethane (3 mL) was added to a solution of  

(±)-4-methyloctanoic acid (±)-1 (86.8 mg, 0.55 mmol), 

dicyclohexylcarbodiimide (DCC) (340.0 mg, 1.65 mmol) and 

N,N-dimethylaminopyridine (67.0 mg, 0.55 mmol) in doubly 

distilled dichloromethane (5 mL). The resulting suspension 

was stirred for 72 h at room temperature under nitrogen. The 

reaction mixture was then concentrated under reduced pressure to give the crude ester (±)-18 

(928.4 mg) as a light yellow oil. Purification by column chromatography on silica gel using 

dichloromethane as eluent gave the pure ester (±)-18 (113.6 mg. 61%) as a clear oil; (Found 

C, 81.75; H 8.35. C23H28O2 requires C, 82.10; H, 8.39%);  max/cm
−1

 (film) 2956, 2827 (CH), 

1737 (CO), 1450 (CH2), 1167 (C-O); δH (300 MHz) 0.78-0.97 (6H, m, 2 x CH3), 1.03-1.53 

[8H, m, CH2(CH2)2CH3, C(4)H and one of C(3)H2], 1.57-1.76 [1H, m, one of C(3)H2], 2.25-

2.50 [2H, sym m, C(2)H2], 4.20 (1H, t, J 7.1, OCH2CH), 4.39 (2H, d, J 6.9, OCH2), 7.29-7.34 

(2H, dt, J 1.2, 7.5, ArH), 7.40 (2H, t, J 7.2 ArH), 7.60 (2H, d, J 7.5, ArH), 7.76 (2H, d, J 7.2, 

ArH); δC (75.5 MHz) 14.1, 19.3 (2 x CH3), 23.0, 29.1 [2 x CH2, two of CH2(CH2)2CH3], 31.9 

[CH2, C(3)H2], 32.1 [CH2, C(2)H2], 32.3 [CH, C(4)H], 36.3 [CH2, one of CH2(CH2)2CH3], 

46.9 (CH, OCH2CH), 66.2 (CH2, OCH2CH), 120.0, 125.0, 127.1, 127.8 (8 x CH, ArCH), 

141.3, 143.9 (4 x C, ArC), 174.0 [C, C(1)]; m/z (ES−) 336.5 (M
−
, tentative). 

1
H NMR 

spectral assignment was aided by COSY and HETCOR 2D NMR experiments. m/z (ES+) 

64.2 [(SO2)+, 100%], 239.1 [(M+H)+, 

 
Note: Water (~13%) was evident in the 1H NMR spectrum. 
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(+)-(S)-(9H-Fluoren-9-yl)methyl 4-methyloctanoate (S)-18 

This was prepared following the procedure described for 

racemic (±)-18 from 9-fluorenemethanol 17 (235.0 mg, 1.20 

mmol) in doubly distilled dichloromethane (1.6 mL) was 

added to a solution of  (S)-4-methyloctanoic acid (S)-1 (47.3 

mg, 0.30 mmol), [sample from experiment described above, 

    
  

 +1.6 (c 1.4, CHCl3)], dicyclohexylcarbodiimide (DCC) 

(186.0 mg, 0.90 mmol), N,N-dimethylaminopyridine (36.0 mg, 

0.29 mmol) in doubly distilled dichloromethane (3 mL) to give the crude ester (S)-18 (50.0 

mg) as a light yellow oil. Purification by column chromatography on silica gel using 

dichloromethane as eluent gave the pure ester (S)-18 (69.7 mg. 69%) as a clear oil     
  

 +1.5 

(c 1.0, CHCl3), 97% ee. 
1
H NMR spectra were identical to those for the racemic materials 

previously prepared. 

 

(−)-(R)-(9H-Fluoren-9-yl)methyl 4-methyloctanoate (R)-18 

This was prepared following the procedure described for 

racemic (±)-18 from 9-fluorenemethanol 17 (245.0 mg, 1.25 

mmol) in doubly distilled dichloromethane (1.6 mL) was 

added to a solution of  (R)-4-methyloctanoic acid (R)-1 (49.4 

mg, 0.31 mmol), [sample from experiment described above, 

    
  

 −2.2 (c 1.4, CHCl3)], dicyclohexylcarbodiimide (DCC) 

(194.0 mg, 0.94 mmol), N,N-dimethylaminopyridine (38.0 mg, 

0.31 mmol) in doubly distilled dichloromethane (3 mL) to give the crude ester (R)-18 (50.7 

mg) as a light yellow oil. Purification by column chromatography on silica gel using 

dichloromethane as eluent gave the pure ester (R)-18 (82.2 mg. 79%) as a clear oil     
  

 −3.4 

(c 1.0, CHCl3), >98% ee. 
1
H NMR spectra were identical to those for the racemic materials 

previously prepared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: HPLC Trace I: (±)-(9H-Fluoren-9-yl)methyl 4-methyloctanoate (±)-18. Trace II: (+)-(S)-(9H-Fluoren-9-

yl)methyl 4-methyloctanoate (S)-18, 97% ee. Trace III: (−)-(R)-(9H-Fluoren-9-yl)methyl 4-methyloctanoate (R)-18, 99% 

ee. For HPLC conditions see appendix I. 

(R)-18 (S)-18 

(S)-18 

97% ee 

    
   +1.5 (c 1.0, CHCl3) 

(R)-18 

99% ee 

    
   −3.4 (c 1.0, CHCl3) 

Trace I 

Racemic 

 

 

 

Trace II 

 

 

Trace III 

 

 



Chapter 5                                                                                                                 Experimental 

                                                                                                 

 

272  

 

5.3 Kinetic resolutions of β-substituted 3-aryl alkanoic acids 

5.3.1 Synthesis of hydrolase substrates 

5.3.1.1 Synthesis of carboxylic acids 

(±)-3-Phenylpentanoic acid (±)-28
21-23

 

Ethyl magnesium bromide was freshly prepared from magnesium 

(2.85 g, 117.23
 
mmol), iodine (one crystal) in diethyl ether (30 

mL) and ethyl bromide (8.7 mL, 116.56 mmol) in diethyl ether 

(30 mL) at 0 C under nitrogen and the mixture was stirred for 

30 min at 0 ºC. Cinnamic acid 62 (5.00 g, 33.75 mmol) was 

added portionwise while stirring at 0 C, then the reaction 

mixture was heated under reflux for 3 h. The reaction mixture was subsequently cooled to 

room temperature and carefully poured onto aqueous hydrochloric acid (10%, ~100 mL) and 

ice (~65 g). The layers were separated and the aqueous layer was washed with diethyl ether 

(3 × 50 mL). The combined organic layer was washed with aqueous hydrochloric acid (10%, 

50 mL), water (50 mL), brine (50 mL), dried, filtered and concentrated under reduced 

pressure to give the crude acid (±)-28 (5.54 g, 92%) as an orange oil which was used without 

further purification; νmax/cm
−1

 (film) 2965 (OH), 1708 (CO), 1603, 1495, 1454; H (400 

MHz) 0.79 [3H, t, J 7.4, C(5)H3], 1.46-1.83 [2H, m, C(4)H2], 2.60 [1H, dd, A of ABX, JAB 

15.6, JAX 7.9, one of C(2)H2], 2.68 [1H, dd, B of ABX, JAB 15.6, JBX 7.1, one of C(2)H2], 

2.89-3.08 [1H, m, X of ABX, C(3)H], 7.09-7.38 (5H, m, ArH). 

 

Preparation of the analytically pure acid (±)-28 by basic hydrolysis of the corresponding 

acid chloride (±)-73.  

Aqueous potassium hydroxide (20%, 35 mL) was added to a sample of 3-phenylpentanoyl 

chloride (±)-73 (0.51 g, 2.60 mmol) under nitrogen. The reaction mixture was heated to 

reflux and stirred under reflux overnight. The reaction mixture was then cooled to room 

temperature and acidified to pH 1 with aqueous hydrochloric acid (10%), which resulted in a 

white precipitate. The suspension was then extracted with dichloromethane (3 × 50 mL), and 

the combined organic layers where washed with brine (100 mL), dried, filtered and 

concentrated under reduced pressure to give the pure acid (±)-28 (428 mg, 92%) as a cream 

solid, m.p. 59-62 ºC (Lit.,
24

 60-61 ºC) and with spectral characteristics identical to those 

described above.    

 

(±)-4-Methyl-3-phenylpentanoic acid (±)-29
21,23

 

This was prepared following the procedure described for (±)-28 

from isopropyl magnesium bromide [freshly prepared from 

magnesium (2.70 g,  111.07 mmol), iodine (one crystal) in 

diethyl ether (30 mL), and isopropyl bromide (11.3 mL, 119.82 

mmol) in diethyl ether (30 mL)] and cinnamic acid 62 (5.00 g, 

33.75 mmol) to give the crude acid (±)-29 (5.38 g, 83%) as an 

orange oil, which was used without further purification; vmax/cm
−1

 (film) 2963 (OH), 1709 

(CO), 1602, 1495, 1454; H (400 MHz) 0.74, 0.92 [2 × 3H, 2 × d, J 6.7, J 6.7, C(4)HCH3 and 

C(5)H3], 1.79-1.91 [1H, m, C(4)H], 2.60 [1H, dd, A of ABX, JAB 15.5, JAX 9.5, one of 

C(2)H2], 2.72-2.92 [2H, m, BX of ABX, one of C(2)H2 and C(3)H], 7.10-7.28 (5H, m, ArH). 
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Preparation of the analytically pure acid (±)-29 by basic hydrolysis of the corresponding 

acid chloride (±)-74.  

This was prepared following the procedure described for (±)-28, from aqueous potassium 

hydroxide (20%, 50 mL) and 4-methyl-3-phenylpentanoyl chloride (±)-74 (1.00 g, 4.75 

mmol) to give the pure acid (±)-29 (0.90 g, 99%) as a cream, white solid, m.p. 48-50 C 

(Lit.,
21

 46-48 ºC) and with spectral characteristics identical to those described above. 

 

(±)-4,4-Dimethyl-3-phenylpentanoic acid (±)-37
21,22

 

This was prepared following the procedure described for (±)-28, 

from tert-butyl magnesium chloride (2 M in diethyl ether, 106 

mL, 212.00 mmol) and cinnamic acid 62 (7.85 g, 52.98 mmol) to 

give the crude acid (±)-37 (8.63 g, 79%) as a yellow solid, which 

was used without further purification. max/cm
−1

 (KBr) 2955 

(OH), 1726 (CO), 1638, 1453; H (400 MHz) 0.87 [9H, s, 

C(CH3)3], 2.73 [1H, dd, A of ABX, JAB 15.8, JAX 10.8, one of C(2)H2], 2.81 [1H, dd, B of 

ABX, JAB 15.8, JBX 4.5, one of C(2)H2], 2.93 [1H, dd, X of ABX, JAX 10.8, JBX 4.5, C(3)H], 

7.07-7.33 (5H, m, ArH).  

 

Preparation of the analytically pure acid (±)-37 by basic hydrolysis of the corresponding 

acid chloride (±)-75.  

This was prepared following the procedure described for (±)-28, from aqueous potassium 

hydroxide (20%, 8 mL) and 4,4-dimethyl-3-phenylpentanoyl chloride (±)-75 (214 mg, 0.95 

mmol) to give the pure acid (±)-37 (153 mg, 78%) as a white solid, m.p. 108-110 C (Lit.,
21

 

114–116 C) and with spectral characteristics identical to those described above. 

 

(±)-3-(4-Methylphenyl)butanoic acid (±)-51
23

 

p-Tolyl magnesium bromide was freshly prepared from 

magnesium (10.00 g, 411.44 mmol), iodine (one crystal) in 

diethyl ether (80 mL) and 4-bromotoluene (51.6 mL, 419.34 

mmol) in diethyl ether (60 mL) at 0 °C under nitrogen and the 

mixture was stirred for 30 min. Crotonic acid 63 (12.00 g, 

139.39 mmol) was added portionwise while stirring at 0 °C, 

then the reaction was heated under reflux for 3 h. The reaction mixture, containing the 

product (±)-51 and the Wurtz coupling product 71, was acidified to pH 2 and the aqueous 

layer washed with diethyl ether (2 × 100 mL). The combined diethyl ether extracts were 

washed with sodium hydroxide (20%, 2 × 100 mL) the aqueous layer was acidified to pH 1 

with conc. hydrochloric acid and extracted with diethyl ether (3 × 100 mL). The organic layer 

was dried, filtered and concentrated under reduced pressure to give the crude acid (±)-51 as a 

viscous yellow oil (21.19 g, 86%) which was used without further purification; vmax/cm
−1 

(film) 2926 (OH),
 
1704 (CO), 1515, 1455, 1416; δH (300 MHz) 1.30 [3H, d, J 7.0, C(4)H3], 

2.31 [3H, s, C(4')CH3], 2.55 [1H, dd, A of ABX, JAB 15.5, JAX 8.2, one of C(2)H2], 2.65 [1H, 

dd, B of ABX, JAB 15.5, JBX 6.9, one of C(2)H2], 3.18-3.30 [1H, m, X of ABX, C(3)H], 7.11 

(4H, s, ArH). 
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Preparation of the analytically pure acid (±)-51 by basic hydrolysis of the corresponding 

acid chloride (±)-78.  

This was prepared following the procedure described for (±)-28, from aqueous potassium 

hydroxide (20%, 8 mL) and 3-(4-methylphenyl)butanoyl chloride (±)-78 (200 mg, 1.02 

mmol) to give the pure acid (±)-51 (152 mg, 83%) as a white solid, m.p. 91-92 C (Lit.,
23

 92-

93 C) and with spectral characteristics identical to those described above. 

 

(±)-3-(3-Methylphenyl)butanoic acid (±)-65
25

 

This was prepared following the procedure described for (±)-

51 from 3-tolyl magnesium bromide [freshly prepared from 

magnesium (4.24 g, 174.45 mmol) and iodine (one crystal) in 

diethyl ether (40 mL), and 3-bromotoluene (21 mL, 172.99 

mmol) in diethyl ether (40 mL)] and crotonic acid 63 (5.00 g, 

58.08 mmol) to give the crude acid (±)-65 (8.55 g, 83%) as an 

orange oil, which was used without further purification; vmax/cm
−1 

(film) 2971 (OH),
 
1718 

(CO), 1608, 1490, 1455; δH (300 MHz) 1.30 [3H, d, J 7.0, C(4)H3], 2.33 [3H, s, C(3')CH3], 

2.55 [1H, dd, A of ABX, JAB 15.5, JAX 8.4, one of C(2)H2], 2.66 [1H, dd, B of ABX, JAB 

15.5, JBX 6.7, one of C(2)H2], 3.14-3.31 [1H, m, X of ABX, C(3)H], 6.91-7.22 (4H, m, ArH). 

 

Preparation of the analytically pure acid (±)-65 by basic hydrolysis of the corresponding 

acid chloride (±)-79.  

This was prepared following the procedure described for (±)-28, from aqueous potassium 

hydroxide (20%, 150 mL) and 3-(3-methylphenyl)butanoyl chloride (±)-79 (4.59 g, 23.36 

mmol) to give the pure acid (±)-65 (2.87 g, 69%) as a clear oil and with spectral 

characteristics identical to those described above. 

 

(±)-3-(2-Methylphenyl)butanoic acid (±)-64
26

 

This was prepared following the procedure described for (±)-

51 from 2-tolyl magnesium bromide [freshly prepared from 

magnesium (4.22 g, 173.59 mmol) and iodine (one crystal) in 

diethyl ether (40 mL), and 2-bromotoluene (21 mL, 174.59 

mmol) in diethyl ether (40 mL)] and crotonic acid 63 (5.00 g, 

58.08 mmol) to give the crude acid (±)-64 (8.21 g, 79%) as an 

orange oil, which was used without further purification; vmax/cm
−1 

(film) 2973 (OH),
 
1712 

(CO), 1605, 1492, 1460; δH (400 MHz) 1.27 [3H, d, J 6.9, C(4)H3], 2.36 [3H, s, C(2')CH3], 

2.55 [1H, dd, A of ABX, JAB 15.7, JAX 8.6, one of C(2)H2], 2.67 [1H, dd, B of ABX, JAB 

15.6, JBX 6.3, one of C(2)H2], 3.45-3.58 [1H, m, X of ABX, C(3)H], 7.06-7.27 (4H, m, ArH). 

 

Preparation of the analytically pure acid (±)-64 by basic hydrolysis of the corresponding 

acid chloride (±)-77.  

This was prepared following the procedure described for (±)-28, from aqueous potassium 

hydroxide (20%, 100 mL) and 3-(2-methylphenyl)butanoyl chloride (±)-77 (3.10 g, 15.75 

mmol) to give the pure acid (±)-64 (2.20 g, 78%) as a yellow solid, m.p. 46-48 ºC (Lit.,
26

 46-

47 C) and with spectral characteristics identical to those described above. 
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(±)-3-(4-Methoxyphenyl)butanoic acid (±)-66
27,28

 

This was prepared following the procedure described for (±)-

51 from para-methoxyphenyl magnesium bromide [freshly 

prepared from magnesium (10.22 g, 420.49 mmol) and iodine 

(one crystal) in diethyl ether (80 mL), and 4-bromoanisole (52 

mL, 415.36 mmol) in diethyl ether (100 mL)] and crotonic 

acid 63 (12.00 g, 139.39 mmol) to give the crude acid (±)-66 

(19.17 g, 71%) as a yellow oil, which was used without further purification; vmax/cm
−1 

(film) 

2963 (OH),
 
1711 (CO), 1611, 1511, 1458; δH (400 MHz) 1.29 [3H, d, J 7.0, C(4)H3], 2.54 

[1H, dd, A of ABX, JAB 15.4, JAX 8.1, one of C(2)H2], 2.62 [1H, dd, B of ABX, JAB 15.4, JBX 

7.0, one of C(2)H2], 3.17-3.29 [1H, m, X of ABX, C(3)H], 3.77 (3H, s, OCH3), 6.79-6.88 

[2H, m, C(3’)H, C(5’)H], 7.11-7.16 [2H, m, C(2’)H, C(6’)H].  

 

Preparation of the analytically pure acid (±)-66 by basic hydrolysis of the corresponding 

acid chloride (±)-76.  

This was prepared following the procedure described for (±)-28, from aqueous potassium 

hydroxide (20%, 8 mL) and 3-(4-methoxyphenyl)butanoyl chloride (±)-76 (200 mg, 0.94 

mmol) to give the pure acid (±)-66 (114 mg, 62%) as a cream solid, m.p. 66-68 C (Lit.,
27

 67-

69 C) and with spectral characteristics identical to those described above. 

5.3.1.2 Synthesis of acid chlorides 

The acid chlorides were prepared from crude acids. The yield given below is the yield of acid 

chloride over two steps calculated from the unsaturated precursor for the acid. 

 

(±)-3-Phenylpentanoyl chloride (±)-73
21

 

3-Phenylpentanoic acid (±)-28 (5.01 g, 28.13 mmol) in thionyl 

chloride (16 mL, 219.34 mmol) was heated under reflux for 3 h 

while stirring under nitrogen. Excess thionyl chloride was 

evaporated under reduced pressure to give the crude acid 

chloride (±)-73 as a brown oil. Purification by vacuum 

distillation gave the pure acid chloride (±)-73 (2.07 g, 31%) as a 

bright yellow oil, b.p. 72-76C at 0.09 mmHg (Lit.,
21

 113-115 C at 0.5 mmHg); vmax/cm
−1

 

(film) 1799 (CO), 1604, 1495, 1454; H (400 MHz) 0.80 [3H, t, J 7.4, C(5)H3], 1.58-1.80 

[2H, m, C(4)H2], 3.04-3.23 [3H, m, C(2)H2 and C(3)H], 7.16-7.34 (5H, m, ArH). 

 

(±)-4-Methyl-3-phenylpentanoyl chloride (±)-74
21

 

This was prepared following the procedure described for (±)-73, 

from crude 4-methyl-3-phenylpentanoic acid (±)-29 (5.28 g, 

27.46 mmol) and thionyl chloride (16 mL, 219.34 mmol) to give 

the crude acid chloride (±)-74 as a brown oil.  Purification by 

distillation gave the pure acid chloride (±)-74 (2.54 g, 36%) as a 

clear oil, b.p. 78-80 C at 0.15 mmHg (Lit.,
21

 90-94 C at 0.08 

mmHg); max/cm
−1

 (film) 1799 (CO), 1602, 1495, 1454; H (400 MHz) 0.76, 0.97 [2 × CH3, 2 

× d, J 6.7, J 6.7, C(4)HCH3 and C(5)H3], 1.82-1.94 [1H, m, C(4)H], 2.92-2.98 [1H, m, X of 

ABX, C(3)H], 3.18 [1H, dd, A of ABX, JAB 16.4, JAX 9.7, one of C(2)H2], 3.34 [1H, dd, B of 

ABX, JAB 16.4, JAX 5.2, one of C(2)H2], 7.09-7.35 (5H, m, ArH) 
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(±)-4,4-Dimethyl-3-phenylpentanoyl chloride (±)-75
21

 

This was prepared following the procedure described for (±)-73, 

from crude 4,4-dimethyl-3-phenylpentanoic acid (±)-37 (8.63 g 

41.84 mmol) and thionyl chloride (24 mL, 329.02 mmol) to give 

the crude acid chloride (±)-75 as a brown oil. Purification by 

distillation gave the pure acid chloride (±)-75 (5.04 g, 54%) as a 

bright yellow solid, b.p. 84-86 C at 0.12 mmHg (Lit.,
21 

123-125 

C at 0.1 mmHg); vmax/cm
−1

 (KBr) 1793 (CO), 1601, 1494, 1453; H (400 MHz) 0.91 [9H, s, 

C(CH3)3], 3.04 [1H, dd, X of ABX, J 8.9, 6.1, C(3)H], 3.26-3.39 [2H, m, C(2)H2], 7.14-7.31 

(5H, m, ArH).  

 

(±)-3-(4-Methylphenyl)butanoyl chloride (±)-78
29

 

This was prepared following the procedure described for (±)-

73, from crude 3-(4-methylphenyl)butanoic acid (±)-51 

(21.19 g, 118.89 mmol) and thionyl chloride (86 mL, 

1179.00 mmol) to give the crude acid chloride (±)-78 as a 

black oil. Purification by distillation gave the pure acid 

chloride (±)-78 (12.09 g, 44%) as a dark orange oil, b.p. 66-

68 C at 0.2 mmHg (Lit.,
29 

127 C at 0.20 mmHg); vmax/cm
−1

 (film) 1800 (CO), 1649, 1516, 

1455; δH (300 MHz) 1.32 [3H, d, J 7.0, C(4)H3], 2.32 [3H, s, C(4')CH3], 3.07 [1H, dd, A of 

ABX, JAB 16.4, JAX 7.9, one of C(2)H2], 3.17 [1H, dd, B of ABX, JAB 16.4, JBX 6.4, one of 

C(2)H2], 3.27-3.38 [1H, m, X of ABX, C(3)H], 7.04-7.21 (4H, m, ArH). 

 

(±)-3-(3-Methylphenyl)butanoyl chloride (±)-79
30,31

 

 This was prepared following the procedure described for 

(±)-73, from crude 3-(3-methylphenyl)butanoic acid (±)-65 

(8.55 g, 47.97 mmol) and thionyl chloride (28 mL, 383.86 

mmol) to give the crude acid chloride (±)-79 as a black oil. 

Purification by distillation gave the pure acid chloride (±)-79 

(4.59 g, 40%) as a bright yellow oil, b.p. 77-80 C at 0.2 

mmHg (Lit.,
30

 60 °C at 0.01 mmHg); vmax/cm
−1

 (film) 1800 (CO), 1608, 1491, 1456; δH (300 

MHz) 1.32 [3H, d, J 6.9, C(4)H3], 2.33 [3H, s, C(3')CH3], 3.06 [1H, dd, A of ABX, JAB 16.5, 

JAX 8.0, one of C(2)H2], 3.17 [1H, dd, B of ABX, JAB 16.5, JBX 6.5, one of C(2)H2], 3.25-

3.36 [1H, m, X of ABX, C(3)H], 6.98-7.05 [3H, m, C(4’)H, C(5’)H and C(6’)H, ArH], 7.17-

7.22 [1H, m, C(2’)H, ArH].  

 

(±)-3-(2-Methylphenyl)butanoyl chloride (±)-77
32

  

This was prepared following the procedure described for (±)-

73, from crude 3-(2-methylphenyl)butanoic acid (±)-64 (8.21 

g, 46.04 mmol) and thionyl chloride (27 mL, 370.15 mmol) to 

give the crude acid chloride (±)-77 as a black oil. Purification 

by distillation gave the pure acid chloride (±)-77 (4.68 g, 

41%) as a bright yellow oil, b.p. 64-66 C at 0.09 mmHg 

(Lit.,
30

 55-56 °C at 0.007 mmHg); vmax/cm
−1

 (film) 1801 (CO), 1605, 1492, 1459; δH (400 

MHz) 1.27 [3H, d, J 7.0, C(4)H3], 2.35 [3H, s, C(2')CH3], 3.03 [1H, dd, A of ABX, JAB 

16.6, JAX 8.2, one of C(2)H2], 3.16 [1H, dd, B of ABX, JAB 16.6, JBX 6.3, one of C(2)H2], 

3.54-3.63 [1H, m, X of ABX, C(3)H], 7.07-7.28 (4H, m, ArH). 
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(±)-3-(4-Methoxyphenyl)butanoyl chloride (±)-76
27

 

This was prepared following the procedure described for 

(±)-73, from crude 3-(4-methoxyphenyl)butanoic acid 

(±)-66 (19.17 g, 98.70 mmol), thionyl chloride (57 mL, 

781.43 mmol) to give the crude acid chloride (±)-76 as a 

black oil. Purification by distillation gave the pure acid 

chloride (±)-76 (8.69 g, 29%) as a orange brown oil, b.p. 

102-110 C at 0.35 mmHg (Lit.,
27

 100 °C at 0.5 mmHg); vmax/cm
−1

 (film) 1790 (CO), 1614, 

1515, 1463; δH (400 MHz) 1.32 [3H, d, J 7.0, C(4)H3], 3.07 [1H, dd, A of ABX, JAB 16.4, JAX 

7.8, one of C(2)H2], 3.15 [1H, dd, B of ABX, JAB 16.4, JBX 6.8, one of C(2)H2], 3.27-3.36 

[1H, m, X of ABX, C(3)H],  3.78 (3H, s, OCH3), 6.84-6.87 [2H, m, C(3’)H and C(5’)H, 

ArH], 7.11-7.15 [2H, m, C(2’)H and C(6’)H, ArH].  

5.3.1.3 Synthesis of ethyl esters 

(±)-Ethyl 3-phenylbutanoate (±)-38
33

 

Sulfuric acid (conc. 95-97%, 1.0 mL, 18.76 mmol) was added 

to a solution of 3-phenylbutanoic acid (±)-23 (0.99 g, 6.08 

mmol) in absolute ethanol (20 mL) and refluxed overnight. 

Excess ethanol was evaporated under reduced pressure. The 

crude product was dissolved in dichloromethane (45 mL) and 

washed with water (2 × 45 mL), a saturated aqueous solution 

of sodium bicarbonate (2 × 45 mL), brine (50 mL), dried, filtered and concentrated under 

reduced pressure to give the crude ester (±)-38 (972 mg) as a clear oil. Purification by column 

chromatography on silica gel using hexane/ethyl acetate 60/40 as eluent gave the pure ester 

(±)-38 (0.91 g, 78%) as a clear oil; vmax/cm
−1

 (film) 2969 (CH), 1733 (CO), 1604, 1495, 1454 

(Ar), 1174 (C-O); H (400 MHz) 1.17 (3H, t, J 7.1, OCH2CH3), 1.30 [3H, d, J 7.0, C(4)H3], 

2.53 [1H, dd, A of ABX, JAB 15.0, JAX 8.2, one of C(2)H2], 2.61 [1H, dd, B of ABX, JAB 

15.0, JBX 7.0, one of C(2)H2], 3.23-3.32 [1H, sym. m, X of ABX, C(3)H], 4.08 (2H, q, J 7.1, 

OCH2CH3), 7.17-7.34 (5H, m, ArH).  

 

(±)-Ethyl 3-phenylpentanoate (±)-56
34

 

3-Phenylpentanoyl chloride (±)-73 (1.96 g, 9.96 mmol) in 

dichloromethane (10 mL) was added dropwise to a solution of 

triethylamine (1.7 mL, 11.98 mmol), dichloromethane (10 

mL) and distilled ethanol (1.5 mL, 24.83 mmol), at 0 °C. The 

reaction mixture was stirred at room temperature overnight. 

The crude product was dissolved in dichloromethane (30 mL) 

and washed with water (2 × 50 mL), aqueous hydrochloric acid (10%, 2 × 50 mL), brine (100 

mL), dried, filtered and concentrated under reduced pressure to give the crude ester (±)-56 

(1.64 g) as a deep orange oil. Purification by column chromatography on silica gel using 

hexane/diethyl ether 97/3 as eluent gave the pure ester (±)-56 (1.49 g, 72%) as a clear oil; 

vmax/cm
−1

 (film) 2967 (CH), 1735 (CO), 1603, 1493, 1454 (Ar), 1167 (C-O); H (400 MHz) 

0.79 [3H, t, J 7.4, C(5)H3], 1.13 (3H, t, J 7.1, OCH2CH3), 1.55-1.76 [2H, m, C(4)H2], 2.55 

[1H, dd, A of ABX, JAB 15.0, JAX 8.2, one of C(2)H2], 2.63 [1H, dd, B of ABX, JAB 15.0, JBX 

7.1, one of C(2)H2], 2.96-3.04 [1H, m, X of ABX, C(3)H], 4.02 (2H, q, J 7.1, OCH2CH3), 

7.17-7.30 (5H, m, ArH).   
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(±)-Ethyl 4-methyl-3-phenylpentanoate (±)-58
35

 

This was prepared following the procedure described for (±)-

56, from 4-methyl-3-phenylpentanoyl chloride (±)-74 (2.43 g, 

11.52 mmol), triethylamine (1.9 mL, 13.82 mmol), 

dichloromethane (10 mL) and distilled ethanol (1.7 mL, 28.79 

mmol) to yield the crude ester (±)-58 (2.02 g) as a yellow - 

orange oil. Purification by column chromatography on silica 

gel using hexane/diethyl ether 97/3 as eluent gave the pure ester (±)-58 (1.60 g, 63%) as a 

clear oil; vmax/cm
−1

 (film) 2961 (CH), 1736 (CO), 1602, 1494, 1453 (Ar), 1162 (C-O); H 

(400 MHz) 0.75, 0.95 [2 × 3H, 2 × d, J 6.7, J 6.7, C(4)HCH3 and C(5)H3], 1.05 (3H, t, J 7.1, 

OCH2CH3) 1.79-1.91 [1H, sym m, C(4)H], 2.58 [1H, dd, A of ABX, JAB 14.9, JAX 9.9, one of 

C(2)H2], 2.77 [1H, dd, B of ABX, JAB 14.9, JBX 5.6, one of C(2)H2], 2.85-2.91 [1H, m, X of  

ABX, C(3)H], 3.95 (2H, q, J 7.1, OCH2CH3), 7.14-7.28 (5H, m, ArH). 

 

(±)-Ethyl 4,4-dimethyl-3-phenylpentanoate (±)-59
36

 

This was prepared following the procedure described for (±)-

56, from 4,4-dimethyl-3-phenylpentanoyl chloride (±)-75 

(5.04 g, 22.44 mmol), triethylamine (3.8 mL, 26.93 mmol), 

dichloromethane (30 mL) and distilled ethanol (3.3 mL, 56.17 

mmol) to yield the crude ester (±)-59 (3.81 g) as a bright 

yellow oil. Purification by column chromatography on silica 

gel using hexane/diethyl ether 97/3 as eluent gave the pure ester (±)-59 (2.94 g, 56%) as pale 

yellow oil; vmax/cm
−1

 (film) 2965 (CH), 1737 (CO), 1602, 1473, 1454 (Ar), 1152 (C-O); H 

(400 MHz) 0.89 [9H, s, C(CH3)3], 0.99 (3H, t, J 7.1 OCH2CH3) 2.71 [1H, dd, A of ABX, JAB 

15.2, JAX 10.9, one of C(2)H2], 2.79 [1H, dd, B of ABX, JAB 15.2, JBX 5.0, one of C(2)H2], 

2.98 [1H, dd, X of ABX, JAX 10.9, JBX 5.0, C(3)H], 3.85-3.97 (2H, m, OCH2CH3), 7.13-7.26 

(5H, m, ArH).  

 

(±)-Ethyl 3-(4-methylphenyl)butanoate (±)-49
37

 

This was prepared following the procedure described for (±)-

56, from 3-(4-methylphenyl)butanoyl chloride (±)-78 (12.09 g, 

61.47 mmol), triethylamine (10.3 mL, 73.76 mmol), 

dichloromethane (25 mL) and distilled ethanol (8.9 mL, 

152.42 mmol) to yield the crude ester (±)-49 (9.41 g) as a deep 

orange oil. Purification by column chromatography on silica 

gel using hexane/diethyl ether 97/3 as eluent gave the pure ester (±)-49 (7.84 g, 62%) as a 

clear oil; vmax/cm
-1

 (film) 2967 (CH), 1732 (CO), 1516, 1456 (Ar), 1166 (C-O); H (400 

MHz) 1.19 (3H, t, J 7.1, OCH2CH3), 1.28 [3H, d, J 7.0, C(4)H3], 2.32 [3H, s, C(4')CH3], 2.51 

[1H, dd, A of ABX, JAB 15.0, JAX 8.2, one of C(2)H2], 2.59 [1H, dd, B of ABX, JAB 15.0, JBX 

7.0, one of C(2)H2], 3.20-3.29 [1H, m, X of ABX, C(3)H], 4.07 (2H, q, J 7.2, OCH2CH3), 

7.11 (4H, s, ArH). 
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(±)-Ethyl 3-(3-methylphenyl)butanoate (±)-54 

This was prepared following the procedure described for (±)-

56, from 3-(3-methylphenyl)butanoyl chloride (±)-79 (7.32 g, 

37.20 mmol), triethylamine (6.2 mL, 44.64 mmol), 

dichloromethane (30 mL) and distilled ethanol (5.4 mL, 92.99 

mmol) to yield the crude ester (±)-54 (6.53 g) as a dark brown 

oil. Purification by column chromatography on silica gel using 

hexane/diethyl ether 97/3 as eluent gave the pure ester (±)-54 (5.16 g, 67%) as a clear oil; 

(Found C, 75.13; H 8.77. C13H18O2 requires C, 75.69; H, 8.80%); vmax/cm
−1

 (film) 2968 (CH), 

1733 (CO), 1608, 1490, 1461 (Ar), 1177 (C-O); δH (400 MHz) 1.18 (3H, t, J 7.1, OCH2CH3), 

1.28 [3H, d, J 7.0, C(4)H3], 2.32 [3H, s, C(3')CH3], 2.51 [1H, dd, A of ABX, JAB 15.0, JAX 

8.3, one of C(2)H2], 2.59 [1H, dd, B of ABX, JAB 15.0, JBX 6.9, one of C(2)H2], 3.19-3.28 

[1H, m, X of ABX, C(3)H], 4.07 (2H, q, J 7.1, OCH2CH3), 6.97-7.05 [3H, m, C(4’)H, 

C(5’)H and C(6’)H, ArH], 7.13-7.19 [1H, m, C(2’)H, ArH]; δC (75.5 MHz) 14.2 (CH3, 

OCH2CH3), 21.5 [CH3, C(3’)CH3] 21.8 [CH3, C(4)H3], 36.5 [CH, C(3)H], 43.0 [CH2, 

C(2)H2], 60.3 [CH2, OCH2CH3], 123.7, 127.1, 127.6 [3 x CH, C(4’)H, C(5’)H and C(6’)H, 

ArCH] 128.4 [CH, C(2’)H, ArCH], 138.0, 145.8 (2 x C, ArC), 172.5 [C, C(1)]; HRMS 

(ES+): Exact mass calculated for C13H19O2 [M+H]
+
 207.1385. Found 207.1390; m/z (ES+) 

207.1 [(M+H)
+
, 57%], 202.1 (100%), 161.1 [(M-C2H5O)

+
, 60%], 151.0 (23%), 141.0 (7%).  

NMR spectral assignment was aided by COSY and HETCOR 2D NMR experiments. 

 

 (±)-Ethyl 3-(2-methylphenyl)butanoate (±)-53  

This was prepared following the procedure described for (±)-

56, from 3-(2-methylphenyl)butanoyl chloride (±)-77 (4.68 g, 

23.79 mmol), triethylamine (4.0 mL, 28.54 mmol), 

dichloromethane (20 mL) and distilled ethanol (3.5 mL, 59.46 

mmol) to yield the crude ester (±)-53 (2.85 g) as a yellow oil. 

Purification by column chromatography on silica gel using 

hexane/diethyl ether 97/3 as eluent gave the semi pure ester (±)-53 (2.50 g, 67%) as a clear 

oil. Further purification by distillation gave the pure ester (±)-53 (2.14 g, 44%) as a clear oil; 

b.p. 96 °C at 0.06 mmHg; (Found C, 75.43; H 8.67. C13H18O2 requires C, 75.69; H, 8.80%); 

vmax/cm
−1

 (film) 2975 (CH), 1733 (CO), 1605, 1492, 1462 (Ar), 1175 (C-O); δH (400 MHz) 

1.17 (3H, t, J 7.1, OCH2CH3), 1.25 [3H, d, J 6.9, C(4)H3], 2.37 [3H, s, C(2')CH3], 2.52 [1H, 

dd, A of ABX, JAB 15.2, JAX 8.5, one of C(2)H2], 2.61 [1H, dd, B of ABX, JAB 15.2, JBX 6.6, 

one of C(2)H2], 3.46-3.61 [1H, m, X of ABX, C(3)H], 4.07 (2H, q, J 7.1, OCH2CH3), 7.07-

7.19 (4H, m, ArH); δC (75.5 MHz) 14.2 (CH3, OCH2CH3) 19.5 [CH3, C(2’)CH3], 21.3 [CH3, 

C(4)H3], 31.5 [CH, C(3)H], 42.2 [CH2, C(2)H2], 60.3 [CH2, OCH2CH3], 125.1, 126.1, 126.3, 

130.4 (4 x CH, ArCH), 135.3, 143.9 (2 x C, ArC), 172.6 [C, C(1)]; HRMS (ES+): Exact mass 

calculated for C13H19O2 [M+H]
+
 207.1385. Found 207.1393; m/z (ES+) 207.1 [(M+H)

+
, 

71%], 202.1 (100%), 161.1 [(M-C2H5O)
+
, 48%], 151.0 (68%), 141.0 (24%). NMR spectral 

assignment was aided by COSY and HETCOR 2D NMR experiments. 
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(±)-Ethyl 3-(4-methoxyphenyl)butanoate (±)-60
38

 

This was prepared following the procedure described for (±)-

56, from 3-(4-methoxyphenyl)butanoyl chloride (±)-76 (8.49 

g, 39.90 mmol), triethylamine (6.7 mL, 47.88 mmol), 

dichloromethane (50 mL) and distilled ethanol (5.8 mL, 99.75 

mmol) to yield the crude ester (±)-60 (6.68 g) as an orange oil. 

Purification by column chromatography on silica gel using 

hexane/ethyl acetate as eluent (gradient elution 0-10% ethyl acetate) gave the pure ester (±)-

60 (5.32 g, 56%) as a clear oil; vmax/cm
−1

 (film) 2966 (CH), 1732 (CO), 1613, 1513, 1461 

(Ar), 1174 (C-O); δH (400 MHz) 1.18 (3H, t, J 7.1, OCH2CH3), 1.27 [3H, d, J 7.0, C(4)H3], 

2.50 [1H, dd, A of ABX, JAB 15.2, JAX 8.0, one of C(2)H2], 2.57 [1H, dd, B of ABX, JAB 

14.8, JBX 7.2, one of C(2)H2], 3.17-3.29 [1H, m, X of ABX, C(3)H], 3.77 (3H, s, OCH3), 4.07 

(2H, q, J 7.1, OCH2CH3), 6.81-6.85 [2H, m, C(3’)H and C(5’)H, ArH], 7.12-7.16 [2H, m, 

C(2’)H and C(6’)H, ArH]. 

5.3.1.4 Synthesis of fluorine substituted hydrolase substrates 

(E)-Ethyl 3-(4-fluorophenyl)but-2-enoate 81
39-41

 

Sodium hydride (1.47 g of 60% dispersion in mineral oil, 

36.75 mmol) was placed in a 3-necked round bottomed flask 

under an atmosphere of nitrogen. Following washing with 

hexane (3 × 20 mL), dry tetrahydrofuran (90 mL) was added 

and the resulting suspension was stirred for 10 min. A solution 

of triethyl phosphonoacetate (7.58 g, 33.81 mmol) in dry 

tetrahydrofuran (10 mL) was added dropwise over 30 min to the reaction mixture. The 

reaction mixture was stirred for 30 min, then a solution of 4-fluoroacetophenone 82 (4.00 g, 

28.96 mmol) in dry tetrahydrofuran (25 mL) was added dropwise over 20 min. The mixture 

was refluxed while stirring for 24 h and then cooled with a water bath. A saturated aqueous 

ammonium chloride solution (20 mL) was added dropwise to the cold mixture. The aqueous 

phase was extracted with diethyl ether (4 × 100 mL), and the combined organic phase was 

washed with brine (3 × 50 mL), dried, filtered and concentrated under reduced pressure to 

give the crude ester 81 (6.69 g) as an orange oil in a 76 : 24 mixture of E : Z isomers. 

Purification by column chromatography on silica gel using hexane/ethyl acetate 95/5 as 

eluent gave the pure E ester 81 (3.67 g, 62%) as a clear oil; vmax/cm
−1

 (film) 2982 (CH), 1714 

(CO), 1632, 1602, 1510 (Ar), 1161 (C-O); δH (300 MHz) 1.31 (3H, t, J 7.2, OCH2CH3), 2.55 

[3H, d, J 1.2, C(4)H3], 4.21 (2H, q, J 7.2, OCH2CH3), 6.09 [1H, q, J 1.2, C(2)H], 7.00-7.08 

[2H, m, C(3')H and C(5')H, ArH], 7.42-7.48 [2H, m, C(2')H and C(6')H, ArH].  

 
Note: During purification by column chromatography of the crude ester 81 a fraction was isolated which contained 53 : 47 

mixture of E : Z isomers. Spectral characterisation of the minor Z isomer of 81; δH (300 MHz) 1.12 (3H, t, J 7.1, OCH2CH3), 

2.16 [3H, d, J 1.5, C(4)H3], 4.01 (2H, q, J 7.2, OCH2CH3), 5.91 [1H, q, J 1.5, C(2)H], 6.96-7.12 obscured by signals for the 

major E isomer [2H, m, C(3')H and C(5')H, ArH], 7.13-7.24 [2H, m, C(2')H and C(6')H, ArH].  
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 (±)-Ethyl 3-(4-fluorophenyl)butanoate (±)-55
40

 

(E)-Ethyl 3-(4-fluorophenyl)but-2-enoate 81 (3.00 g, 14.41 

mmol) in absolute ethanol (25 mL) was hydrogenated at 15 psi 

over palladium on activated carbon (10%, 0.70 g) for 15.5 h. 

The crude reaction mixture was filtered through
 
Celite

® 
with 

absolute ethanol as the eluent to remove the hydrogenation 

catalyst. The filtrate was evaporated under reduced pressure to 

produce the crude ester (±)-55 (2.74 g, 91% yield) as a yellow oil. Purification by column 

chromatography on silica gel using hexane/ethyl acetate 95/5 as eluent gave the pure ester 

(±)-55 (2.34 g, 77%) as a clear oil; (Found C, 68.34; H 6.82. C12H15FO2 requires C, 68.55; H, 

7.19%); vmax/cm
−1

 (film) 2970 (CH), 1733 (CO), 1605, 1512, 1462 (Ar), 1160 (C-O); δH (300 

MHz) 1.17 (3H, t, J 7.2, OCH2CH3), 1.28 [3H, d, J 7.2, C(4)H3], 2.51 [1H, overlapping dd, A 

of ABX, JAB 15.0, JAX 7.8, one of C(2)H2], 2.57 [1H, overlapping dd, B of ABX, JAB 15.0, 

JAX 7.5, one of C(2)H2], 3.27 [1H, apparent sextet, X of ABX, J 7.2 C(3)H], 4.06 (2H, q, J 

7.1 OCH2CH3), 6.93-7.01 [2H, m, C(3')H and C(5')H, ArH], 7.14-7.21 [2H, m, C(2')H and 

C(6')H, ArH]; δC (75.5 MHz) 14.1 (CH3, OCH2CH3) 21.9 [CH3, C(4)H3], 35.8 [CH, C(3)H], 

43.0 [CH2, C(2)H2], 60.2 [CH2, OCH2CH3], 115.2 [CH, d, 
2
JCF 21.2, C(3')H and C(5')H, 

ArCH], 128.2 [CH, d, 
3
JCF 7.8, C(2')H and C(6')H, ArCH], 141.3 [C, d, 

4
JCF 3.2, C(1'), ArC], 

161.4 [C, d, 
1
JCF 243.9, C(4')F], 172.1 [C, C(1)]; HRMS (ES+): Exact mass calculated for 

C12H16FO2 [M+H]
+
 211.1134 Found 211.1127; m/z (ES+) 211.3 [(M+H)

+
, 45%], 236.1 

(100%), 238.1 (53%), 111.3 (58%). NMR spectral assignment was aided by COSY and 

HETCOR 2D NMR experiments. 

 

3-(4-Fluorophenyl)butanoic acid (±)-80
40,42,43

 

Aqueous sodium hydroxide (1M, 20 mL) was added to ethyl 

3-(4-fluorophenyl)butanoate (±)-55 (0.52 g, 2.45 mmol) and 

the emulsion was stirred overnight at room temperature. The 

reaction mixture was extracted with diethyl ether (2 × 30 mL) 

and the ethereal solution was discarded. The aqueous phase 

was acidified to pH 1 with aqueous hydrochloric acid (10%) 

and then extracted with diethyl ether (3 × 30 mL) and the combined organic extracts were 

washed with brine (50 mL), dried, filtered and concentrated under reduced pressure to give 

the pure acid (±)-80 (300 mg, 67%) as a white solid, m.p. 68-69 °C (Lit.,
42

 53-57 ºC);  

νmax/cm
−1

 (KBr) 2979 (OH), 1705 (CO), 1607, 1511, 1432 (Ar); δH (300 MHz) 1.30 [3H, d, J 

7.2, C(4)H3], 2.57 [1H, overlapping dd, A of ABX, JAB 15.6, JAX 7.8, one of C(2)H2], 2.64 

[1H, overlapping dd, B of ABX, JAB 15.6, JAX 7.8, one of C(2)H2], 3.27 [1H, apparent sextet, 

X of ABX, J 7.2 C(3)H], 6.95-7.03 [2H, m, C(3')H and C(5')H, ArH], 7.14-7.22 [2H, m, 

C(2')H and C(6')H, ArH]. 
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5.3.2 Hydrolase-mediated kinetic resolution - analytical screens 

General procedure for the hydrolase-mediated kinetic resolution of the β-substituted 3-

aryl alkanoic ethyl esters (±)-38, 49, 53-56, 58-60
 

Procedure followed was kindly supplied by Almac Sciences
44

 

A spatula tip of enzyme (~5-10 mg, amount not critical) was added to the ester substrate (±)-

38, 49, 53-56, 58-60 (~50 mg) in 0.1 M phosphate buffer, pH 7 (4.5 mL). Co-solvents (17% 

v/v) were added if required as indicated in Table 5.5. The small test tubes were sealed and 

agitated at 700-750 rpm and incubated for the appropriate length of time and temperature. 

The aqueous layer was extracted with diethyl ether (3 × 5 mL) and the combined organic 

extracts were filtered through Celite
®
 and concentrated under reduced pressure. The sample 

was analysed by 
1
H NMR spectroscopy, reconcentrated and dissolved in a mixture of 

isopropanol/hexane [10 : 90 (HPLC grade)] and enantioselectivity determined by chiral 

HPLC. The results of the screens are summarised in the Tables 5.3-5.12. 

 
Note: 

1. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

2. Conversion (%) and enantiomeric ratio (E-value) was calculated from enantiomeric excess [ee (%)] of substrate 

ester (ees) and product acid (eeP) employing the E-value calculator.45 Values >200 should be interpreted with 

caution, due to the inaccuracies associated with the determination of enantiomeric excess [ee (%)] by chiral HPLC, 

GC, NMR; a small variation in the enantiomeric excess [ee (%)] of the substrate and or the product may result in a 

significant change in the E-value. 

3. As stated in the general procedures when the second enantiomer is not observed enantiomeric excess [ee (%)] is 

stated as >98% ee. 

4. In all cases spectroscopic characteristics were in agreement with previously reported data. 

5. For conversions determined by 1H NMR spectroscopy of the crude products to be <10%, chiral HPLC analysis 

was not conducted.  
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Table 5.3: Hydrolase-mediated hydrolysis of (±)-ethyl 3-phenylbutanoate (±)-38 

 

  

 

 

 

                (±)-38                                                        (S)-23                               (R)-38 
 

a. Reaction went to 100% completion, no enantioselectivity observed. 

 

 

 

 

 

 

 

 

  

Entry Enzyme source Temp (°C) 

ee (%) 
Conversion 

(%) 
E value 

Ester 38 Acid 23 E calc. 
1
H 

NMR 

1 Candida cyclindracea C1 30 11 (S) 58 (R) 16 15 4.2 

2 Candida  cyclindracea C2 Ambient 25 (S) 59 (R) 30 41 4.9 

3 Rhizopus oryzae 30 - - - <10 - 

4 Achromobacter spp. 30 11 (R) 90 (S) 11 12 21 

5 Alcaligenes spp. 1 30 27 (R) 95 (S) 22 24 50 

6 Pseudomonas  cepacia P1 30 >98 (R) 94 (S) 51 49 170 

7 Pseudomonas stutzeri Ambient 14 (R) 61 (S) 19 23 4.7 

8 Rhizopus spp. Ambient - - - <10 - 

9 Rhizopus niveus Ambient - - - <10 - 

10 Aspergillus niger Ambient - - - <10 - 

11 Alcaligenes spp. 2 Ambient 98 (R) 97 (S) 50 54 >200 

12 Pseudomonas  cepacia P2 Ambient 96 (R) 75 (S) 56 59 26 

13 Mucor javanicus Ambient - - - <10 - 

14 Penicillium camembertii Ambient - - - <10 - 

15 Pseudomonas fluorescens 30 >98 (R) 94 (S) 51 55 170 

16 Candida antarctica B Ambient 13 (S) 0 (R) 51 96 1.4 

17 Mucor meihei Ambient 3 (S) 24 (R) 11 <10 1.7 

18 Candida antarctica A Ambient 10 (R) 68 (S) 13 17 5.8 

19 
Candida antarctica B 

(immob) 
Ambient 70 (S) 5 (R) 93 100 1.8 

20 
Porcine pancrease 

Type II 
Ambient 15 (R) 93 (S) 14 19 31 

21 
Porcine pancrease 

Grade II 
30 35 (R) 95 (S) 27 27 54 

22 Pig liver esterase Ambient 0
a
 0

a
 -

a
 100

a
 -

a
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Table 5.4: Hydrolase-mediated hydrolysis of (±)-ethyl 3-phenylpentanoate (±)-56 

            

 

 

 

 

     (±)-56                                                       (R)-28               (S)-56 

a. The following hydrolases gave no conversion Pseudomonas cepacia P2, Pseudomonas cepacia P1, Alcaligenes spp. 2, Pseudomonas 
fluorescens, Porcine Pancrease Type II, Pseudomonas stutzeri, Rhizopus niveus, Candida cyclindracea C1, Aspergillus niger and 

Mucor javanicus.    

b. Reaction went to 100% completion, no enantioselectivity observed. 

 

Table 5.5: Investigation of co-solvent effect on Candida antarctica lipase B (immob) 

hydrolysis of (±)-ethyl 3-phenylpentanoate (±)-56 

  (±)-56                                                (R)-28              (S)-56 

a. HPLC grade solvent. 

b. On one occasion the enantiomeric excess [ee (%)] isolated from dioxane of (R)-28 was 97% ee. 

 

 

 

  

Entry Enzyme source
a
 Time 

Temp 

(°C) 

ee (%) 
Conversion

 

(%) E 

Value Ester  

56 

Acid 

28 

E 

calc. 

1
H 

NMR 

1 
Candida cyclindracea 

C2 
120 h Ambient 1 15 6 33 1.4 

2 Candida antarctica B 65 h Ambient 80 (S) 23 (R) 78 93 3.4 

3 Mucor meihei 67 h Ambient 0
b
 0

b
 -

b
 100

b
 -

b
 

4 Candida antarctica A 67 h Ambient 5 (R) 44
 
(S) 10 22 2.7 

5 Pig liver esterase 65 h Ambient 87 (S) 15 (R) 85 88 3.1 

6 
Candida antarctica B 

(immob) 
65 h Ambient 85 (S) 81 (R) 51 93 25 

7 
Candida antarctica B 

(immob) 
72 h 4 62 (S) 86 (R) 42 87 24 

Entry Co-solvent Time 
Temp 

(°C) 

ee (%) 
Conversion 

(%) 
E value 

Ester 

(S)-56 

Acid 

(R)-28 

E 

calc. 

1
H 

NMR 

1 DMSO 64 h Ambient 93 81 53 80 31 

2 Acetonitrile
a
 64 h Ambient 28 93 23 84 36 

3 Acetone
a
 64 h Ambient 25 94 21 76 41 

4 THF 64 h Ambient 6 88 6 24 16 

5 Dioxane 64 h Ambient 72 92
b
 44 71 51 

6 TBME
a
 64 h Ambient 24 57 30 90 4.6 
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Table 5.6: Hydrolase-mediated hydrolysis of (±)-ethyl 4-methyl-3-phenylpentanoate (±)-58. 

 

 

 

 

                 (±)-58                                                   (S)-29                        (R)-58 

a. The following hydrolases gave no conversion Pseudomonas cepacia P2, Pseudomonas cepacia P1, Alcaligenes spp. 1, Penicillium 
camembertii,  Pseudomonas fluorescens, Porcine Pancrease Type II, Candida cyclindracea C2, Rhizopus spp., Pseudomonas stutzeri, 

Rhizopus niveus, Candida cyclindracea C1, Aspergillus niger,  Alcaligenes spp. 2 and Mucor javanicus. 

b. Reaction went to 100% completion, HPLC analysis was not conducted 

 

 

Table 5.7: Hydrolase-mediated hydrolysis of (±)-ethyl 4,4-dimethyl-3-phenylpentanoate  

(±)-59 at variable temperature. 

 

 

 

       

                (±)-59                                             (S)-37                        (R)-59 
 

a. The following hydrolases gave no conversion Pseudomonas cepacia P1, Rhizopus niveus, Pseudomonas fluorescens, Candida 
cyclindracea C1, Pseudomonas cepacia P2 and Porcine Pancrease Type II. 

b. Time for ester hydrolysis was 66 h. 
c. Time for ester hydrolysis was 64.5 h at 35 °C temperature increased to 40 °C for the final 24 h. 

d. Time for ester hydrolysis was 72 h at 35 °C temperature increased to 40 °C for the final 24 h. 

e. Reaction went to 100% completion, no enantioselectivity observed. 

  

Entry Enzyme source
a
 

ee (%) Conversion (%) 
E value 

Ester 58 Acid 29 E calc. 
1
H NMR 

1 Candida antarctica B 12 (R) >98 (S) 11 24 >200 

2 Mucor meihei 61 (R) 23 (S) 73 79 2.7 

3 Candida antarctica A 10 (S) 64 (R) 14 31 5 

4 Candida antarctica B (immob) 33 (R) 97 (S) 25 42 90 

5 Pig liver esterase -
b
 -

b
 -

b
 100 -

b
 

Entry Enzyme source
a
 

Temperature 

(°C) 

ee
 
(%) 

Conversion
 

(%) E value 

Ester 59 Acid 37 E 

Calc. 

1
H 

NMR 

1 
Candida antarctica  B 

Ambient
b
 2 (R) >98 (S) 2 <10 >200 

2 35 – 40 °C
c
 23 (R) >98

 
(S) 19 25 >200 

3 
Candida antarctica A 

Ambient
b
 3

 
(S) 73

 
(R) 4 6 6.6 

4 35 – 40 °C
d
 7

 
(S) 81

 
(R) 8 12 10 

5 Candida antarctica B 

(immob) 

Ambient
b
 1 (R) >98 (S) 1 15 >200 

6 35 – 40 °C
c
 30 (R) 98 (S) 23 55 132 

7 
Pig liver esterase 

Ambient
b
 32 (S) 34 (R) 48 51 2.7 

8 35 – 40 °C
c
 0

e
 0

e
 -

e
 100

e
 -

e
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Table 5.8: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(4-methylphenyl)butanoate (±)-49 

                   

 

 

 

 

          (±)-49                                                           (S)-51                               (R)-49 

 

 

Table 5.9: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(3-methylphenyl)butanoate (±)-54 

 

 

 

 

                   (±)-54                                            (S)-65                       (R)-54  

a. Time for ester hydrolysis was 65 h with the exception of Candida cyclindracea catalysed hydrolysis which was 64 h.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry Enzyme source 
Temp 

(°C) 

ee (%) 
Conversion 

(%) 
E value 

Ester 49 Acid 51 E 

calc. 

1
H 

NMR 

1 Pseudomonas cepacia P1 30 98 (R) >98 (S) 50 62 >200 

2 Pseudomonas cepacia P2 30 >98 (R) 96 (S) 51 51 >200 

3 Pseudomonas fluorescens 30 >98
 
(R) 95 (S) 51 58 >200 

4 Candida cyclindracea 30 - - - <10 - 

5 Candida antarctica A 30 5 (R) 68 (S) 7 19 5.5 

6 
Candida antarctica B 

(immob) 
30 6 (S) 5 (R) 55 43 1.2 

Entry Enzyme source
a
 

Temp 

(°C) 

ee
 
(%) 

Conversion
 

(%) E 

value 
Ester 54 Acid 65 E calc. 

1
H 

NMR 

1 Pseudomonas cepacia P1 30 88 (R) 96 (S) 48 53 143 

2 Pseudomonas cepacia P2 30 >98 (R) 76 (S) 57 57 52 

3 Pseudomonas fluorescens 30 96 (R) 97 (S) 50 69 >200 

4 Candida cyclindracea 30 - - - <10 - 

5 
Candida antarctica B 

(immob) 
30 >98 (S) 7 (R) 93 100 4.7 
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Table 5.10: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(2-methylphenyl)butanoate (±)-53 

 

 

 

 

 

                (±)-53                                                    (S)-64                                  (R)-53 
 

a. Time for ester hydrolysis was 67 h with the exception of Pseudomonas fluorescens catalysed hydrolysis which was 64 h. 

 

 

Table 5.11: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(4-methoxyphenyl)butanoate (±)-60 

 

               

 

 

 

           (±)-60                                    (S)-66                 (R)-60 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry Enzyme source
a
 

Temp 

(°C) 

ee (%) 
Conversion

 

(%) 
E 

value 
Ester 53 Acid 64 E calc. 

1
H NMR 

1 Pseudomonas cepacia P1 30 >98
 
(R) >98 (S) 50 57 >200 

2 Pseudomonas cepacia P2 30 >98
 
(R) 80 (S) 56 53 65 

3 Pseudomonas fluorescens 30 >98 (R) >98 (S) 50 61 >200 

4 Candida cyclindracea 30 - - - <10 - 

5 
Candida antarctica B 

(immob) 
30 90 (R) 46 (S) 66 84 7.7 

Entry Enzyme source 
Temp 

(°C) 

ee (%) 
Conversion 

(%) E value 

Ester 60 Acid 66 E calc. 
1
H 

NMR 

1 Pseudomonas cepacia P1 30 98 (R) 86 (S) 53 48 60 

2 Pseudomonas cepacia P2 30 >98 (R) 88 (S) 53 54 81 

3 Pseudomonas fluorescens 30 >98 (R) 97 (S) 51 57 >200 

4 Candida antarctica A 30 4 (R) 48 (S) 8 9 3 

5 Candida cyclindracea 30 - - - <10 - 

6 
Candida antarctica B 

(immob) 
30 66 (S) 7 (R) 90 96 1.9 
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Table 5.12: Hydrolase-mediated hydrolysis of (±)-ethyl 3-(4-fluorophenyl)butanoate (±)-55 

 

 

 

 

                    (±)-55                                                          (S)-80                      (R)-55  

  

5.3.3 Hydrolase-mediated kinetic resolution – preparative-scale 

Large scale hydrolase-mediated hydrolysis of (±)-ethyl 3-phenylbutanoate (±)-38 

Pseudomonas fluorescens (108 mg) was added to ethyl 3-

phenylbutanoate (±)-38 (510 mg, 2.65 mmol) in 0.1 M 

phosphate buffer, pH 7 (20 mL) and this was shaken at 750 rpm 

for 64 h at 30 ºC. The solution was filtered through a pad of 

Celite
®
 and the hydrolase washed with water (2 × 20 mL) and 

ethyl acetate (10 × 10 mL).  The layers were separated and the 

aqueous layer was extracted with ethyl acetate (2 × 30 mL) and 

then acidified with aqueous hydrochloric solution (10%) and 

extracted with a further (3 × 30 mL) ethyl acetate. The combined organic layers were washed 

with brine (1 × 100 mL) dried, filtered and concentrated under reduced pressure to produce a 

clear oil (395 mg). Conversion estimated by E-value calculator at 50%.
45

 Purification by 

column chromatography on silica gel using hexane/ethyl acetate as eluent (gradient elution 

10-40% ethyl acetate) gave the pure ester (R)-38 (178 mg, 35%) as a clear oil     
  

 −27.55 (c 

1.1, CHCl3), >98% ee, lit
46

     
  

 +19.00 (c 1.1, CHCl3), (S)-isomer, 90% ee and pure acid 

(S)-23 (147 mg, 34%) as a clear oil     
  

 +27.90 (c 1.0, EtOH), 98% ee, lit
43

     
   +24.50 (c 

1.0, EtOH), 97% ee. 
1
H NMR spectra were identical to those for the racemic materials 

previously prepared. 

 

 

 

 

 

 

 

 

 

 

Entry Enzyme source 
Temp 

(°C) 

ee (%) 
Conversion 

(%) E 

value 
Ester 55 Acid 80 E calc. 

1
H 

NMR 

1 Pseudomonas cepacia P1 30 >98 (R) 84 (S) 54 55 59 

2 Pseudomonas cepacia P2 30 >98 (R) 69 (S) 84 84 27 

3 Pseudomonas fluorescens 30 >98 (R) 94 (S) 62 62 170 

4 Candida cyclindracea 30 3 (S) 25 (R) 11 <10 1.7 

5 
Candida antarctica B 

(immob) 
30 >98 (S) 8 (R) 92 94 3.4 
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Large scale hydrolase-mediated hydrolysis of (±)-ethyl 3-phenylpentanoate (±)-56  

Candida antarctica lipase B (immob) (410 mg) was added to ethyl 

3-phenylpentanoate (±)-56 (408 mg, 1.98 mmol) in 0.1 M 

phosphate buffer, pH 7 (20 mL) and dioxane (17% v/v, 4 mL). The 

reaction mixture was shaken at 750 rpm for 62 h at 30 ºC, the 

solution was filtered through a pad of Celite
®
 and the hydrolase 

washed with water (2 × 20 mL) and heptane (10 × 10 mL). The 

layers were separated and the aqueous layer was extracted with 

heptane (3 × 30 mL). The combined organic layers were washed 

with brine (1 × 100 mL), dried, filtered and concentrated under reduced pressure to produce 

the pure ester (S)-56 (79.2 mg, 19%) as a light yellow oil.     
  

 +9.46 (c 0.6, CHCl3), 65% 

ee, lit
47

     
  

 −18.3 (c 1.1, CHCl3), (R)-isomer, 97% ee. The aqueous layer was acidified with 

aqueous hydrochloric solution (10%) and extracted with (3 × 30 mL) ethyl acetate. The 

combined organic layers were washed with brine (1 × 100 mL), dried, filtered and 

concentrated under reduced pressure to produce the pure acid (R)-28 (77.6 mg, 22%) as a 

yellow oil.     
  

 −33.73 (c 1.4, C6H6), 90% ee, lit
48

     
  

 +42.3 (c 8.0, C6H6), (S)-isomer, 

83% ee. Conversion estimated by E-value calculator at 42%.
45

 
1
H NMR spectra were 

identical to those for the racemic materials previously prepared. 

 

Large scale hydrolase-mediated hydrolysis of (±)-ethyl 4-methyl-3-phenylpentanoate 

(±)-58 

This was prepared following the procedure described for the 

hydrolase-mediated hydrolysis of (±)-56 from Candida antarctica 

lipase B (immob) (426 mg) and ethyl 4-methyl-3-phenylpentanoate 

(±)-58 (428 mg, 1.94 mmol) in 0.1 M phosphate buffer, pH 7 (20 

mL). The reaction mixture was shaken at 750 rpm for 63 h at 30 ºC 

to produce the pure ester (R)-58 (107 mg, 25%) as a clear oil     
  

 

+7.05 (c 1.0, CHCl3), 26% ee, lit
30

     
  

 −25.4 (c 1.0, CHCl3), (S)-

isomer, 98% ee, and the pure acid (S)-29 (88 mg, 24%) as a clear oil 

    
  

 −24.35 (c 0.655, CHCl3), 98% ee, lit
49

     
   +28.12 (c 1.855, CHCl3), (R)-isomer, 96% 

ee. Conversion estimated by E-value calculator at 21%.
45

 
1
H NMR spectra were identical to 

those for the racemic materials previously prepared. 

 

Large scale hydrolase-mediated hydrolysis of (±)-ethyl 4,4-dimethyl-3-phenylpentanoate 

(±)-59 

This was prepared following the procedure described for the 

hydrolase-mediated hydrolysis of (±)-56 from Candida antarctica 

lipase B (immob) (200 mg) and ethyl 4,4-dimethyl-3-

phenylpentanoate (±)-59 (200 mg, 0.85 mmol) in 0.1 M phosphate 

buffer, pH 7 (20 mL). The reaction mixture was shaken at 750 rpm for 

~65 h at 35 ºC and at 40 ºC for the final 24 h to produce the pure ester 

(R)-59 (79 mg, 39%) as a clear oil.     
  

 +0.80 (c 1.0, CHCl3), 12% ee 

and the pure acid (S)-37 (23 mg, 13%) as a yellow oil which solidified 

overnight     
  

 −10.53 (c 0.1, CHCl3), >98% ee, lit
50

     
   −20.4 (c 2.2, CHCl3), 91% ee. 

Conversion estimated by E-value calculator at 11%.
45

 
1
H NMR spectra were identical to 

those for the racemic materials previously prepared. 
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Large scale hydrolase-mediated hydrolysis of (±)-ethyl 3-(4-methylphenyl)butanoate 

(±)-49 

This was prepared following the procedure described for the 

hydrolase-mediated hydrolysis of (±)-38 from Pseudomonas 

cepacia P1 (95 mg) and ethyl 3-(4-methylphenyl)butanoate 

(±)-49 (446 mg, 2.26 mmol) in 0.1 M phosphate buffer, pH 7 

(20 mL). The reaction mixture was shaken at 750 rpm at 30 ºC. 

An aliquot of reaction mixture (1 mL) was withdrawn at 62 h. 

Following a mini work-up chiral HPLC analysis was 

conducted. Conversion estimated by E-value calculator at 

49%.
45 

The reaction mixture was filtered at 62 h to produce a yellow oil (361 mg). 

Purification by column chromatography on silica gel using hexane/ethyl acetate as eluent 

(gradient elution 10-40% ethyl acetate) gave the pure ester (R)-49 (145 mg, 31%) as a clear 

oil     
  

 −28.67 (c 3.5, CHCl3), 97% ee, lit
37

     
   −26.2 (c 3.5, CHCl3), 92% ee and the 

pure acid (S)-51 (163 mg, 40%) as a yellow oil which solidified overnight     
  

 +31.80 (c 

1.0, CHCl3), >98% ee, lit
37

     
   +34.2 (c 1.0, CHCl3), 99% ee. 

1
H NMR spectra were 

identical to those for the racemic materials previously prepared. 

 

Large scale hydrolase-mediated hydrolysis of ethyl 3-(3-methylphenyl)butanoate (±)-54 

This was prepared following the procedure described for the 

hydrolase-mediated hydrolysis of (±)-38 from Pseudomonas 

fluorescens (94 mg) and ethyl 3-(3-methylphenyl)butanoate 

(±)-54 (471 mg, 2.28 mmol) in 0.1 M phosphate buffer, pH 7 

(20 mL). The reaction mixture was shaken at 750 rpm for 62 h 

at 30 ºC to produce a yellow oil (232 mg). Conversion 

estimated by E-value calculator at 49%.
45

 Purification by 

column chromatography on silica gel using hexane/ethyl 

acetate as eluent (gradient elution 10-40% ethyl acetate) gave the pure ester (R)-54 (105 mg, 

22%) as a yellow oil     
   −24.40 (c 1.0, CHCl3), 94% ee and acid (S)-65 (107 mg, 26%) as 

a clear oil     
   +32.32 (c 0.6, CHCl3), >98% ee. 

1
H NMR spectra were identical to those for 

the racemic materials previously prepared. 

 

Large scale hydrolase-mediated hydrolysis of ethyl 3-(2-methylphenyl)butanoate (±)-53 

This was prepared following the procedure described for the 

hydrolase-mediated hydrolysis of (±)-38 from Pseudomonas 

fluorescens (74 mg) and ethyl 3-(2-methylphenyl)butanoate (±)-53 

(371 mg, 1.80 mmol) in 0.1 M phosphate buffer, pH 7 (20 mL). The 

reaction mixture was shaken at 750 rpm for 66 h at 30 ºC to produce 

a yellow oil (268 mg). Conversion estimated by E-value calculator 

at 50%.
45

 Purification by column chromatography on silica gel using 

hexane/ethyl acetate as eluent (gradient elution 10-40% ethyl 

acetate) gave the pure ester (R)-54 (100 mg, 27%) as a clear oil     
   −11.00 (c 1.0, CHCl3), 

98% ee and the pure acid (S)-65 (90 mg, 28%) as a yellow oil     
   +24.17 (c 1.4, CHCl3), 

>98% ee. 
1
H NMR spectra were identical to those for the racemic materials previously 

prepared.  



Chapter 5                                                                                                                 Experimental 

                                                                                                 

 

291  

 

Trace I 

Racemic 

Trace II 

Trace III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5.7: HPLC Trace I: A racemic mixture of (±)-ethyl 3-(2-methylphenyl)butanoate (±)-53 and (±)-3-(2-

methylphenyl)butanoic acid (±)-64. Trace II: (R)-Ethyl 3-(2-methylphenyl)butanoate (R)-53, 98% ee, from the preparative-

scale enzymatic resolution (see section 3.5.2).  Trace III: (S)-3-(2-Methylphenyl)butanoic acid (S)-64, >98% ee, from the 

preparative-scale enzymatic resolution (see section 3.5.2). For HPLC conditions see appendix I. 

 

Large scale hydrolase-mediated hydrolysis of (±)-ethyl 3-(4-methoxyphenyl)butanoate 

(±)-60 

This was prepared following the procedure described for the 

hydrolase-mediated hydrolysis of (±)-38 from Pseudomonas 

fluorescens (100 mg) and ethyl 3-(4-

methoxyphenyl)butanoate (±)-60 (498 mg, 2.24 mmol) in 

0.1 M phosphate buffer, pH 7 (20 mL). The reaction mixture 

was shaken at 750 rpm for 64 h at 30 ºC to produce an 

orange oil (428 mg). Conversion estimated by E-value 

calculator at 51%.
45

 Purification by column chromatography 

on silica gel using hexane/ethyl acetate as eluent (gradient elution 10-40% ethyl acetate) gave 

the pure ester (R)-60 (212 mg, 43%) as a clear oil     
   −30.03 (c 1.0, CHCl3), >98% ee and 

the pure acid (S)-66 (99 mg, 23%) as a yellow oil     
   +26.25 (c 1.0, EtOH), 97% ee, lit

43
 

    
  

 +27.50 (c 1.0, EtOH) 94% ee. 
1
H NMR spectra were identical to those for the racemic 

materials previously prepared. 

 

 

 

 

 

 

 

 

 

 

(R)-53 

98% ee 

(S)-64 

>98% ee 

(R)-53 

(S)-64 (S)-53 

(R)-64 
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Large scale hydrolase-mediated hydrolysis of (±)-ethyl 3-(4-fluorophenyl)butanoate (±)-

55 

This was prepared following the procedure described for the 

hydrolase-mediated hydrolysis of (±)-38 from Pseudomonas 

fluorescens (45 mg) and ethyl 3-(4-fluorophenyl)butanoate 

(±)-55 (221 mg, 1.05 mmol) in 0.1 M phosphate buffer, pH 7 

(20 mL). The reaction mixture was shaken at 750 rpm for 64 h 

at 30 ºC to produce a yellow oil (171 mg). Conversion 

estimated by E-value calculator at 51%.
45

 Purification by 

column chromatography on silica gel using hexane/ethyl 

acetate as eluent (gradient elution 10-40% ethyl acetate) gave the pure ester (R)-55 (71 mg, 

32%) as a clear oil     
   −24.34 (c 1.0, CHCl3), >98% ee, and the pure acid (S)-80 (67 mg, 

35%) as a brown oil     
   +30.51 (c 1.0, CHCl3), 97% ee. 

1
H NMR spectra were identical to 

those for the racemic materials previously prepared. 

5.3.4 Determination of absolute stereochemistry 

5.3.4.1 Synthesis of isonicotinamide co-crystals 

Grinding and crystal growth experiments, PXRD and single crystal X-ray analysis was 

conducted in partnership with Eccles.
51,52

 

 

(±)-3-(3-Methylphenyl)butanoic acid : isonicotinamide co-crystal (±)-96 

(±)-3-(3-Methylphenyl) butanoic   

acid (±)-65 (26 mg, 0.15 mmol) and 

isonicotinamide 93 (17 mg, 0.14 

mmol) were placed in the grinding 

jars and the mill was operated at 30 

Hz for 30 min. The material obtained 

was analyzed by PXRD. It was then dissolved in a minimum amount of acetonitrile. Acetone 

was added until the solvent ratio was 70 : 30 acetonitrile : acetone. The solution was allowed 

to stand at ambient conditions and crystals suitable for single crystal diffraction were 

obtained by slow evaporation over 3-4 days. After single crystal analysis, chiral HPLC 

analysis was performed on the co-crystal used in the diffraction experiment; mp 71-73 C. 

Crystal data: C17H20N2O3, M = 300.35, triclinic, a = 5.5847(9) Å, b = 7.8959(12) Å, c = 

17.784(3) Å, α = 84.990(4)°, β = 85.314(4)°, γ = 83.194(4)°, V = 773.7(2) Å
3
, T = 100.(2) K, 

space group P-1, Z = 2, 16279 reflections measured, 2987 unique (Rint = 0.0600). The final R1 

values were 0.0656 (I > 2σ(I)) and 0.0868 (all data). The final wR(F
2
) values were 0.1833 (I 

>2σ(I)) and 0.1980 (all data). Full details are given on the accompanying CD.  

 
Note: That spontaneous resolution occurs for some of the sample during grinding and thus there is also a mixture of 

enantiopure (S)-65 and (R)-65 present, as evidenced by the DSC and PXRD data.  
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(S)-3-(3-Methylphenyl)butanoic acid : isonicotinamide co-crystal (S)-96  

Isonicotinamide 93 (8 mg, 0.07 

mmol) and (S)-3-(3 methylphenyl) 

butanoic acid (S)-65 (11 mg, 0.06 

mmol) were dissolved in a minimum 

amount of acetonitrile. Acetone was 

added until the solvent ratio was 70 : 

30 acetonitrile : acetone. The solution was allowed stand at ambient conditions and crystals 

suitable for single crystal diffraction were obtained by slow evaporation over 3-4 days. After 

single crystal analysis, chiral HPLC analysis was performed on the co-crystal used in the 

diffraction experiment; m.p. 89-91C. Crystal data: C17H20N2O3, M = 300.35, triclinic, a = 

6.0360(2) Å, b = 9.4615(4) Å, c = 14.6013(5) Å, α = 83.438(2)°, β = 84.291(2)°, γ = 

71.750(2)°, V = 784.95(5) Å
3
, T = 100.(2) K, space group P1, Z = 2, 17372 reflections 

measured, 4835 unique (Rint = 0.0361). The final R1 values were 0.0317 (I > 2σ(I)) and 0.0323 

(all data). The final wR(F
2
) values were 0.0831 (I > 2σ(I)) and 0.0840 (all data). Flack 

parameter = 0.06(14), Hooft y parameter = 0.02(8).  Full details are given on the 

accompanying CD. Found C, 68.45; H, 6.80; N, 9.06, C17H20N2O3 requires C, 67.98; H, 6.71; 

N, 9.33%. 

 

(±)-3-(2-Methylphenyl)butanoic acid : isonicotinamide co-crystal (±)-95  

This was prepared following the procedure 

described for (±)-96 from (±)-3-(2-methyl 

phenyl)butanoic acid (±)-64 (40 mg, 0.22 

mmol) and isonicotinamide 93 (27 mg, 0.22 

mmol), m.p. 84-86 °C. Crystal data: 

C17H20N2O3, M = 300.35,  triclinic, a = 

9.6495(16) Å , b = 12.915(2) Å , c = 13.390(2) Å,  = 102.007(3)°, β = 103.616(4)°, γ = 

92.047(4)°, V = 1580.0(4)Å
3
, T = 100.(2) K, space group P-1, Z = 4, 43120 reflections 

measured, 7818 unique (Rint = 0.0647). The final R1 values were 0.0402 (I > 2σ(I)) and 

0.0570 (all data). The final wR(F
2
) values were 0.1009 (I > 2σ(I)) and 0.1070 (all data). Full 

details are given on the accompanying CD. 

 

(S)-3-(2-Methylphenyl)butanoic acid : isonicotinamide co-crystal (S)-95  

This was prepared following the procedure 

described for (S)-96 from (S)-3-(2-methyl 

phenyl)butanoic acid (S)-64 (7 mg, 0.05 

mmol) and isonicotinamide 93 (5 mg, 0.06 

mmol), m.p. 89-91 °C. Crystal data: 

C17H20N2O3, M = 300.35, triclinic, a = 

7.1279(4) Å, b = 8.8202(5) Å, c = 13.1405(8) Å, = 102.542(3)º, β = 92.659(3)º, γ = 

95.430(3)º, V = 800.90(8) Å
3
, T = 100.(2) K, space group P1, Z = 2, 18797 reflections 

measured, 5028 unique (Rint = 0.0238). The final R1 values were 0.0278 (I > 2σ(I)) and 

0.0285 (all data). The final wR(F
2
) values were 0.0773 (I > 2σ(I)) and 0.0781 (all data). Flack 

parameter = -0.10(9), Hooft y parameter = 0.05(6). Full details are given on the 

accompanying CD. 
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Figure 5.8: HPLC Trace I: Racemic (±)-3-(2-methylphenyl)butanoic acid (±)-64. Trace II: Racemic (±)-3-(2-

methylphenyl)butanoic acid : isonicotinamide co-crystal (±)-95. Trace III: (S)-3-(2-Methylphenyl)butanoic acid : 

isonicotinamide co-crystal (S)-95 >98% ee. For HPLC conditions see appendix I. 

 

 

(±)-3-(4-Fluorophenyl)butanoic acid : isonicotinamide co-crystal (±)-97 

This was prepared following the 

procedure described for (±)-96 from 

isonicotinamide 93 (11 mg, 0.09 

mmol) and (±)-3-(4-fluorophenyl) 

butanoic acid (±)-80 (16 mg, 0.09 

mmol), m.p. 100-102 C. Crystal 

data: C16H17FN2O3, M = 304.32, monoclinic, a = 13.397(5) Å, b = 9.956(3) Å, c = 12.273(4) 

Å, β = 110.812(8)°, V = 1530.2(9) Å
3
, T = 100.(2) K, space group P21/c, Z = 4, 14546 

reflections measured, 2660 unique (Rint = 0.0594). The final R1 values were 0.0615 (I > 2σ(I)) 

and 0.0830 (all data). The final wR(F
2
) values were 0.1601 (I > 2σ(I)) and 0.1842 (all data). 

Full details are given on the accompanying CD. Found C, 62.99; H, 5.67; N, 9.08, 

C16H17FN2O3 requires C, 63.15; H, 5.63; N, 9.21%. 

 

(S)-3-(4-Fluorophenyl)butanoic acid : isonicotinamide co-crystal (S)-97  

This was prepared following the 

procedure described for (S)-96 from 

isonicotinamide 93 (5 mg, 0.04 

mmol) and (S)-3-(4-fluoro phenyl) 

butanoic acid (S)-80 (8 mg, 0.04 

mmol), m.p. 91-93 C. Crystal data: 

C16H17FN2O3, M = 304.32, a = 8.8898(4) Å, b = 12.0610(5) Å, c = 15.2167(7) Å, α = 

72.416(2)°, β = 81.661(3)°, γ = 75.268(3)°, V = 1500.05(11) Å
3
, T = 100.(2) K, space group 

P1, Z = 4, 23873 reflections measured, 8800 unique (Rint = 0.0334). The final R1 values were 

0.0356 (I > 2σ(I)) and 0.0398 (all data). The final wR(F
2
) values were 0.0890 (I > 2σ(I)) and 

0.0928 (all data). Flack parameter = -0.10(9), Hooft y parameter = -0.01(6). Full details are 

given on the accompanying CD. 

 

Trace I 

Racemic 

Trace II 

Racemic 

Trace III 

(S)-95 

>98% ee 

(±)-64 

(±)-95 
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(±)-3-Phenylbutanoic acid : isonicotinamide co-crystal (±)-94  

This was prepared following the procedure 

described for (±)-96 from isonicotinamide 93 

(17 mg, 0.14 mmol) and (±)-3-

phenylbutanoic acid (±)-23 (24 mg, 0.15 

mmol), m.p. 84-86 C. Crystal data: 

C16H18N2O3, M = 286.32, triclinic, a = 

9.684(2) Å, b = 12.086(3) Å, c = 13.299(3) Å, α = 81.860(6)°, β = 82.501(5)°, γ = 74.533(4)°, 

V = 1478.0(6) Å
3
, T = 100.(2) K, space group P-1, Z = 4, 30199 reflections measured, 5266 

unique (Rint = 0.0390). The final R1 values were 0.0544 (I > 2σ(I)) and 0.0683 (all data). The 

final wR(F
2
) values were 0.1340 (I  > 2σ(I)) and 0.1450 (all data). Full details are given on 

the accompanying CD.  

 
Note: The crystal of (±)-94 was disordered and only of sufficient quality to confirm its identity. 

 

(S)-3-Phenylbutanoic acid : isonicotinamide co-crystal (S)-94  

This was prepared following the procedure 

described for (S)-140 from isonicotinamide 93 

(7 mg, 0.06 mmol) and (S)-3-phenylbutanoic 

acid (S)-23 (9 mg, 0.05 mmol), m.p. 78-80 

C. Crystal data: C16H18N2O3, M = 286.32, 

triclinic, a = 5.9580(2) Å, b = 9.2476(3) Å, c 

= 14.1993(5) Å, α = 91.391(2)°, β = 97.183(2)°, γ = 107.512(2)°, V = 738.64(4) Å3, T = 

100.(2)K, space group P1, Z = 2, 16675 reflections measured, 4575 unique (Rint = 0.0270). 

The final R1 values were 0.0292 (I > 2σ(I)) and 0.0297 (all data). The final wR(F
2
) values 

were 0.0833 (I > 2σ(I)) and 0.0837 (all data). Flack parameter = 0.01(11). Hooft y parameter, 

as calculated by Platon = 0.08(6). Full details are given on the accompanying CD. Found C, 

67.34; H, 6.40; N, 9.77, C16H18N2O3 requires C, 67.12; H, 6.34; N, 9.78%. 

 

5.4 Kinetic resolutions of -substituted 3-aryl alkanoic acids 

5.4.1 Synthesis of hydrolase substrates 

(±)-Ethyl 2-methyl-3-phenylpropanoate (±)-47
53

 

This was prepared following the procedure described for (±)-

38 from sulfuric acid (conc. 95-97%, 2.1 mL, 39.4 mmol), 2-

methyl-3-phenylpropanoic acid (±)-32 (2.21 g, 13.46 mmol) 

and absolute ethanol (40 mL) to give the crude ester (±)-47 

(1.67 g) as a clear oil. Purification by column chromatography 

on silica gel using hexane/ethyl acetate 60/40 as eluent gave 

the pure ester (±)-47 (1.62 g, 63%) as a clear oil; vmax/cm
−1

 (film) 2979 (CH), 1733 (CO), 

1605, 1496, 1455 (Ar), 1176 (C-O); H (400 MHz) 1.15 [3H, d, J 6.8, C(2)CH3], 1.18 (3H, t, 

J 7.2, OCH2CH3), 2.63-2.76 (2H, m, AB of ABX, CH2Ph), 3.01 [1H, dd, X of ABX, JAX 6.4, 

JBX 12.8, C(2)H], 4.08 (2H, q, J 7.2, OCH2CH3), 7.15–7.21 [3H, m, C(3')H, C(4')H and 

C(5')H, ArH], 7.25-7.28 [2H, m, C(2')H and C(6')H, ArH]. 
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(±)-Ethyl 2-benzylbutanoate (±)-48
54

  

n-Butyllithium (1.9 M in hexanes, 27 mL, 51.45 mmol) was 

added dropwise to freshly distilled diisopropylamine (8.5 mL, 

60.65 mmol) in freshly distilled tetrahydrofuran (40 mL) at 

−78 ºC under an atmosphere of nitrogen. Once the addition 

was complete the reaction mixture was warmed to −35 ºC. 

Ethyl butyrate 83 (6.5 mL, 49.13 mmol) in tetrahydrofuran (35 

mL) was then added dropwise to the solution and once addition was complete the reaction 

mixture was stirred for 1.5 h at −35 °C. Benzyl bromide (6.4 mL, 53.81 mmol) was then 

added in one portion. The reaction mixture was stirred overnight at −35 °C. The reaction was 

quenched by pouring the mixture onto aqueous hydrochloric acid (10%, 400 mL) and diethyl 

ether (200 mL). The layers were separated and the aqueous layer extracted with diethyl ether 

(2 × 100 mL). The combined organic layer was washed with water (100 mL), brine (100 mL), 

dried, filtered and concentrated under reduced pressure to give the crude ester (±)-48 (10.14 

g) as a yellow oil. Purification by column chromatography on silica gel using 

dichloromethane as eluent gave the pure ester (±)-48 (5.08 g, 50%) as a clear oil; (Found C, 

74.80; H 8.73. C13H18O2 requires C, 75.69; H, 8.80%); vmax/cm
−1

 (film) 2966 (CH), 1732 

(CO), 1605, 1496, 1456 (Ar), 1163 (C-O); H (300 MHz) 0.92 [3H, t, J 7.4, C(4)H3], 1.15 

(3H, t, J 7.2, OCH2CH3), 1.44-1.77 [2H, m, C(3)H2], 2.53-2.62 [1H, m, X of ABX, C(2)H], 

2.74 [1H, dd, A of ABX, JAB 13.5, JAX 6.6, one of CH2Ph], 2.93 [1H, dd, B of ABX, JAB 

13.5, JBX 8.4, one of CH2Ph], 4.06 (2H, q, J 7.1, OCH2CH3), 7.15-7.29 (5H, m, ArH); δC 

(75.5 MHz) 11.7 [CH3, C(4)H3],14.2 (CH3, OCH2CH3), 25.2 [CH2, C(3)H2] 38.2 (CH2, 

CH2Ph), 49.2 [CH, C(2)H], 60.1 (CH2, OCH2CH3), 126.2 [CH, C(4')H, ArCH], 128.3, 128.9 

[4 x CH, C(2')H, C(6')H, C(3')H and C(5')H, ArCH], 139.6 [C, C(1'), ArC], 175.5 [C, C(1)]; 

HRMS (ES+): Exact mass calculated for C13H18O2 [M+H]
+
 207.1385 Found 207.1388; m/z 

(ES+) 207.3 [(M+H)
+
, 30%], 277.2 (26%), 161.3 (18%), 248.3 (17%). NMR spectral 

assignment was aided by COSY and HETCOR 2D NMR experiments. 

 

(±)-2-Benzylbutanoic acid (±)-45
55

 

Aqueous sodium hydroxide (1M, 6 mL) was added to (±)-

ethyl 2-benzylbutanoate (±)-48 (88.5 mg, 0.43 mmol). The 

reaction mixture was maintained at reflux while stirring 

overnight then allowed cool to room temperature and extracted 

with diethyl ether (2 × 5 mL). The ethereal solution was 

discarded. The aqueous phase was acidified to pH 1 with 

aqueous hydrochloric acid (10%) and then extracted with diethyl ether (3 × 5 mL) and the 

combined organic extracts were washed with brine (10 mL), dried, filtered and concentrated 

under reduced pressure to give the pure acid (±)-45 (50.3 mg, 66%) as a light orange oil; 

vmax/cm
−1

 (film) 2966 (OH), 1705 (CO), 1605, 1496, 1456 (Ar); H (300 MHz) 0.96 [3H, t, J 

7.5, C(4)H3], 1.50-1.77 [2H, m, C(3)H2], 2.57-2.66 [1H, m, X of ABX, C(2)H], 2.75 [1H, dd, 

A of ABX, JAB 13.8, JAX 6.9, one of CH2Ph], 2.98 [1H, dd, B of ABX, JAB 13.5, JBX 7.8, one 

of CH2Ph], 7.09-7.34 (5H, m, ArH). 
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(±)-Ethyl 2-benzyl-3,3-dimethylbutanoate (±)-57 

Potassium carbonate (0.63 g 4.58 mmol) was added to a 

solution of 2-benzyl-3,3-dimethylbutanoic acid 61  (0.94 g, 

4.58 mmol) in HPLC grade acetone (40 mL). Once the addition 

was complete the reaction mixture was stirred for 10 min 

before iodoethane (1.53 g, 9.81 mmol) was added in one 

portion. The reaction mixture was stirred at room temperature 

overnight, and then filtered to remove the potassium carbonate. Acetone was evaporated 

under reduced pressure and at this point further filtration was performed to remove excess 

potassium carbonate. The crude product was dissolved in dichloromethane (50 mL) and 

washed with water (2 × 20 mL), a saturated aqueous solution of sodium bicarbonate (2 × 20 

mL), aqueous hydrochloric acid (5%, 2 × 25 mL) and brine (30 mL). The organic extract was 

dried, filtered and concentrated under reduced pressure to give a mixture of 2-benzyl-3,3-

dimethylbutanoic acid (±)-61 and ethyl 2-benzyl-3,3-dimethylbutanoate (±)-57 (0.67 g) as a 

clear oil in the ratio 13 : 87. Purification by column chromatography on silica gel using 

hexane/ethyl acetate 90/10 as eluent gave the pure ester (±)-57 (0.57 g, 53%) as a clear oil; 

vmax/cm
−1

 (film) 2963 (CH), 1729 (CO), 1605, 1496, 1456 (Ar), 1152 (C-O); H (300 MHz) 

1.04 (3H, t, J 7.1, OCH2CH3), 1.05 [9H, s, C(CH3)3], 2.45 [1H, dd, X of ABX, JAX 11.4, JBX 

3.9, C(2)H], 2.79-2.93 (2H, m, AB of ABX, CH2Ph), 3.88-4.03 (2H, sym. m, OCH2CH3), 

7.13–7.27 (5H, m, ArH).  
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5.4.2 Hydrolase-mediated kinetic resolution - analytical screens 

The general procedure outlined in section 5.3.2 for the hydrolase-mediated kinetic resolution 

of the β-substituted 3-aryl alkanoic ethyl esters also applies to the resolution of the -

substituted esters.  

 

Table 5.13: Hydrolase-mediated hydrolysis of (±)-ethyl 2-methyl-3-phenylpropanoate (±)-47 

 

 

 

 

     (±)-47                                          (S)-32                                 (R)-47 
 

a. Limited enantiopurity observed, thus direction of enantioselection should be interpreted with caution. 

b. Reaction went to 100% completion, no enantioselectivity observed. 

 

 

 

 

 

 

 

 
 

 

 

 

 

Entry Enzyme source Time 

ee (%) 
Conversion 

(%) E 

value Ester 

(R)-47 

Acid 

(S)-32 
E calc. 

1
H NMR 

1 Candida cyclindracea C1 20 h 3
a
 3

a
 50 25 1.1 

2 Candida cyclindracea C2 20 h 0
b
 0

b
 -

b
 100 -

b
 

3 Alcaligenes spp.1 72 h 2 11 15 12 1.3 

4 Pseudomonas cepacia P1 72 h 53 68 44 55 6.4 

5 Pseudomonas stutzeri 72 h 83 50 62 69 17 

6 Rhizopus spp. 72 h 5 30 14 <10 1.9 

7 Rhizopus niveus 72 h 20 21 49 55 1.8 

8 Aspergillus niger 72 h 5 33 13 <10 2.1 

9 Alcaligenes spp.2 20 h 67 97 41 41 132 

10a Pseudomonas cepacia P2 20 h >98 93 52 79 >200 

10b  10 h 95 96 50 61 183 

11 Mucor javanicus 20 h 14 21 40 29 1.7 

12 Penicillium camembertii 72 h 3 17 15 <10 1.5 

13a Pseudomonas fluorescens 20 h >98 92 52 55 179 

13b  10 h 81 97 46 49 164 

14 Candida antarctica B 20 h 0
b
 0

b
 -

b
 100 -

b
 

15 Mucor meihei 20 h 23 0 52 97 1.9 

16 Candida antarctica B (immob) 20 h 0
b
 0

b
 -

b
 100 -

b
 

17 Porcine pancrease Type II 72 h 58 90 39 69 34 

18 Porcine pancrease Grade II 72 h 11 47 19 35 3.1 
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Table 5.14: Hydrolase-mediated hydrolysis of (±)-ethyl 2-benzylbutanoate (±)-48 

 

     

 

 

 

     (±)-48                                               (R)-45                       (S)-48 
 

a. The following hydrolases gave no conversion Pseudomonas cepacia P2, Pseudomonas cepacia P1, Mucor javanicus, Pseudomonas 

fluorescens, Porcine Pancrease Type II, Pseudomonas stutzeri, Rhizopus niveus and Penicillium camembertii 

b. Limited enantiopurity observed, thus direction of enantioselection should be interpreted with caution. 

 

Table 5.15: Hydrolase-mediated hydrolysis of (±)-ethyl 2-benzyl-3,3-dimethylbutanoate  

(±)-57 
 

                   

 

 

 

                         

               (±)-57                                                                  61                           57 

 

 

 

 

 

 

 

 

 

 

Entry Enzyme source
a
 Time 

ee (%) 
Conversion 

(%) E 

value Ester 

48 

Acid 

45 
E calc. 

1
H 

NMR 

1 Candida cyclindracea C1 43 h 3 (R) 13 (S) 19 28 1.3 

2 Candida cyclindracea C2 17 h 20 (R) 4 (S) 83 89 1.3 

3 Candida antarctica B 17 h 35 (S) 83 (R) 30 74 15 

4 Candida antarctica B 43 h 74 (S) 71 (R) 49 79 14 

5 
Candida antarctica B 

(immob) 
43 h 17 (S) 73 (R) 19 57 7.6 

6 Pig Liver esterase 17 h 6 (R)
b
 3 (S)

b
 67 96 1.1 

Entry Enzyme source Time 

ee (%) 
Conversion 

(%) E 

value Ester 

57 

Acid 

61 
E calc. 

1
H 

NMR 

1 Pseudomononas cepacia P1 20 h - - - 0 - 

2 Pseudomononas cepacia P2 20 h - - - 0 - 

3 Candida antarctica B 20 h - - - 0 - 

4 Candida antarctica B (immob) 20 h - - - 0 - 

5 Pseudomonas fluorescens 20 h - - - 0 - 
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5.4.3 Hydrolase-mediated kinetic resolution – preparative-scale 

Large scale hydrolase-mediated hydrolysis of ethyl 2-methyl-3-phenylpropanoate (±)-47 

This was prepared following the procedure described for the 

hydrolase-mediated hydrolysis of (±)-38 from Pseudomonas 

fluorescens (48.0 mg) and (±)-ethyl 2-methyl-3-phenylpropanoate 

(±)-47 (232.0 mg, 1.21 mmol) in 0.1 M phosphate buffer, pH 7 (20 

mL). The reaction mixture was shaken at 750 rpm at 24 ºC. An 

aliquot of reaction mixture (1 mL) was withdrawn at 20 h. 

Following a mini work-up chiral HPLC analysis was conducted. 

Conversion estimated by E-value calculator at 51%.
45

 The reaction 

mixture was filtered at 20 h to produce a light yellow oil (186.8 mg). Purification by column 

chromatography on silica gel using hexane/ethyl acetate 90/10 as eluent gave the pure ester 

(R)-47 (63.7 mg, 27%) as a clear oil     
   −36.4 (c 1.0, CHCl3), >98% ee, lit

33
     

   +28.4 (c 

1.0, CHCl3), (S)-isomer, 82% ee, and the pure acid (S)-32 (76.6 mg, 37%) as a clear oil     
   

+28.0 (c 0.82, CHCl3), 96% ee, lit
56

     
   +30.2 (c 0.82, CHCl3), 99% ee. 

1
H NMR spectra 

were identical to those for the racemic materials previously prepared. 

 

Large scale hydrolase-mediated hydrolysis of ethyl 2-benzylbutanoate (±)-48 

This was prepared following the procedure described for the 

hydrolase-mediated hydrolysis of (±)-56 from Candida antarctica 

lipase B (immob) (407.8 mg) and (±)-ethyl 2-benzylbutanoate (±)-48 

(401.4 mg, 1.95 mmol) in 0.1 M phosphate buffer, pH 7 (20 mL). 

The reaction mixture was shaken at 750 rpm for 45 h at 24 ºC 

followed by solvent partitioning with heptane and ethyl acetate to 

produce the pure ester (S)-48 (172.1 mg, 43%) as a clear oil     
  

 

+6.8 (c 1.0, CH2Cl2), 26% ee and the pure acid (R)-45 (66.2 mg, 

19%) as a clear oil     
  

 −43.8 (c 1.0, CH2Cl2), 82% ee, lit
57

     
   

−40.0 (c 1.0, CH2Cl2), >99% ee. Conversion estimated by E-value calculator at 24%.
45

 
1
H 

NMR spectra were identical to those for the racemic materials previously prepared. 
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5.5 Dynamic kinetic resolution of 2-nitrocyclohexanol (±)-99 

5.5.1 Synthesis of substrates 

6-Aminohexanoic hydrochloride 110 and 6-aminohexanoic acid 111
58

 

ε-Caprolactam 109 (10.00 g, 88.37 mmol) was added to a  

solution of conc. hydrochloric acid (9 mL) in water (30 mL) and 

refluxed for 1 h. The crude product was decolurised with 

charcoal and concentrated under reduced pressure to give the 

moist hydrochloric salt 110 (16.34 g, >100%) as a white solid, 

m.p. 112-115 °C (Lit.,
59

 132-133 °C); vmax/cm
−1

 (KBr) 3367 (OH) 

2945 (CH), 1725 (CO), 1216; H (400 MHz, D2O) 1.25-1.35 [2H, m, C(4)H2], 1.45-1.65 [4H, 

sym m, C(3)H2 and C(5)H2], 2.29 [2H, t, J 7.4, C(2)H2], 2.89 [2H, t, J 7.6, C(6)H2]. 

 
Note: The experimental melting point of 110 differs significantly to the literature as the hydrochloric salt was not dried prior 

to analysis. However, the experimental melting point remains significant as it is a reference for the formation of the free 

amino acid 111. 

 

The resulting hydrochloric salt 110 was coverted into the amino acid 

111 by means of an ion-exchange column containing Amberlite IRA-

400(OH) resin (6 inches). Aqueous hydrochloric acid (1%) was 

passed through the column until the pH of the solution leaving the 

column decreased from 5.5-6.5 to ~2.0. An aqueous sodium 

hydroxide solution (1%) was then passed through the column until 

the solution leaving the column was strongly alkaline. The resin was then washed with water 

(1 L) to remove all salts and the pH of the washings were 5.6-6.6. The column was now ready 

for use. The solid 110 (16.34 g) was dissolved in water (200 mL) and drawn onto the column. 

The column was then eluted with water (~800 mL) and detection of the amino acid 111 was 

by ninhydrin stain. The fractions containing the product were combined and concentrated 

under reduced pressure to a volume of about 20 mL. Absolute ethanol (60 mL) and diethyl 

ether (100 mL) were then added. Following vigourous shaking the pure amino acid 111 

[11.36 g, 98% (from ε-caprolactam 109)] formed and was collected by filtration as a white 

solid, m.p. 202-205 °C (Lit.,
58

 202-203 °C); vmax/cm
−1

 (KBr) 3030 (OH), 2944 (CH), 1729 

(CO), 1229; H (400 MHz, D2O) 1.21-1.29 [2H, m, C(4)H2], 1.43-1.51 [2H, q, J 7.5 C(3)H2 

or C(5)H2], 1.51-1.59 [2H, q, J 7.6 C(3)H2 or C(5)H2], 2.07 [2H, t, J 7.3, C(2)H2], 2.88 [2H, t, 

J 7.5, C(6)H2]. 

 

 Attempted oxidation of 6-aminohexanoic acid 111 

A saturated aqueous solution of sodium bicarbonate (25 

mL) was added to a solution of 6-aminohexanoic acid 111 

(0.50 g, 3.81 mmol) in acetone (50 mL) and the resulting 

white precipitate was cooled to 0 °C for 1 h under nitrogen. 

A solution of Oxone
®

 (11.72 g, 19.06 mmol) in water (30 mL) was then added dropwise to 

the solution and the mixture was stirred overnight.The reaction mixture was filtered through a 

sintered glass funnel containing a layer of Celite
®
 and washed with diethyl ether ( 2  100 

mL). The filtrate was transferred to a separating funnel and the layers separated. The aqueous 

solution was extracted with diethyl ether (100 mL) and the combined organic extracts were 

washed with water (100 mL) and brine (100 mL), dried, filtered and concentrated at reduced 

pressure to give the crude product (0.08 g) as yellow/orange viscous oil. A 
1
H NMR spectrum 

110 

111 
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of the crude product was recorded, which showed the presence of signals pertaining to 6-

nitrohexanoic acid 107 H (400 MHz) 2.39 [2H, t, J 7.4, C(2)H2], 4.40 [2H, t, J 7.0, C(6)H2], 

10.98 (1H, br s, OH). Numerous attempts of purification by column chromatography on silica 

gel and acid/base extraction were unsuccessful in removing unidentifiable byproducts.  

 

Ethyl 6-nitrohexanoate 113
60

 

Sodium nitrite (4.60 g, 67.23 mmol) was added to a 0.1 M 

solution of ethyl 6-bromohexanoate 114 (10.00 g, 44.82 

mmol) in dry DMF (450 mL). The reaction mixture was 

stirred overnight at room temperature under a blanket of 

nitrogen, then poured onto water (100 mL) and ice (~80 g). The aqueous phase was extracted 

with diethyl ether (3 × 100 mL). The combined organic layer was washed with brine (100 

mL), dried, filtered and concentrated under reduced pressure to give a crude mixture (10.74 

g) of ethyl 6-nitrohexanoate 113 and ethyl 6-(nitrosooxy)hexanoate 115 (76 : 24 respectively) 

as a yellow oil. Purification by column chromatography on silica gel using hexane/diethyl 

ether 85/15 as eluent gave the pure nitro ester 113 (4.17 g, 49%) as a light yellow oil; 

vmax/cm
−1

 (film) 2940 (CH), 1733 (CO), 1554 (NO2), 1377 (NO2), 1187; H (300 MHz) 1.26 

(3H, t, J 7.2, OCH2CH3), 1.38-1.49 [2H, m, C(3)H2], 1.64-1.74 [2H, m, C(4)H2], 1.99-2.09 

[2H, m, C(2)H2], 2.33 [2H, t, J 7.4, C(5)H2], 4.13 (2H, q, J 4.1, OCH2CH3), 4.40 [2H, t, J 

7.1, C(1)H2]. 
 

Note: Signals for ethyl 6-(nitrosooxy)hexanoate 115 was detected in the 1H NMR of the crude product spectrum at δH 

(300MHz) 4.58-4.80 (2H, br m, CH2ONO). 

 

6-Nitrohexan-1-ol 108
5,61,62

 

DIBAL-H (54 mL, 54.00 mmol, 1M solution in hexanes) 

was added dropwise to a solution of ethyl 6-

nitrohexanonate 113 (3.30 g, 17.44 mmol) in doubly 

distilled dichloromethane (135 mL) at −78 ºC under nitrogen. The reaction mixture was 

stirred at -78 ºC for 1 h, then warmed to −40 ºC and stirred for a further 1 h. The temperature 

was then increased to -10 ºC and the reaction carefully quenched with aqueous hydrochloric 

acid (1M, 20 mL). Vigorous stirring and further addition of aqueous hydrochloric acid (1M, 

20 mL) was required to degrade the gelatinous nature of the aluminium salt precipitate. The 

solution was transferred to a separating funnel and the layers were separated.  The aqueous 

layer was extracted with dichloromethane (2 × 50 mL). The combined organic layer was 

washed with aqueous hydrochloric acid (1M, 100 mL), brine (100 mL), dried, filtered and 

concentrated under reduced pressure in an ice cold water bath to give the crude nitro alcohol 

108 (2.31 g) as a light yellow oil. Purification by column chromatography on silica gel using 

dichloromethane/methanol 90/10 as eluent gave the pure nitro alcohol 108 (2.02 g, 79%) as a 

clear oil; vmax/cm
−1

 (film) 3400 (OH), 2936 (CH), 1552 (NO2), 1385 (NO2), 1198; H (300 

MHz) 1.30-1.50 [4H, m, C(3)H2 and C(4)H2], 1.52-1.66 [2H, m, C(2)H2], 1.76 (1H, br s, 

OH), 1.92-2.12 [2H, m, C(5)H2], 3.64 [2H, t, J 6.5, C(1)H2], 4.40 [2H, t, J 7.1, C(6)H2]. 
1
H 

NMR spectral assignment was aided by COSY and HETCOR 2D NMR experiments. 

 
Note: Significant difference in 1H NMR chemical shift of the C(1)H2 triplet is observed between Milner5 and data described 

above. Milner5 reports; H (400 MHz) 3.24 [2H, t, J 6.4, C(1)H2]. Literature reference Ballini61 reports; H (300 MHz) 3.65 

(2H, t, J 6.2) with spectral characteristics consistent with the experimental data obtained during this project. 
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6-Nitrohexanal 101
5,60

  

Pyridinium chlorochromate (PCC) (10.64 g, 49.36 mmol) 

and crushed 3Å molecular sieves (3.00 g) were added to a 

solution of 6-nitrohexan-1-ol 108 (3.56 g, 24.19 mmol) in 

doubly distilled dichloromethane (100 mL) under nitrogen 

at room temperature. Stirring was continued for 4 h. The reaction mixture was diluted with 

diethyl ether (100 mL) and filtered through a sintered glass funnel containing a layer each of 

Celite
®
 and silica gel. The filtrate was concentrated under reduced pressure. The resulting oil 

was diluted with diethyl ether (40 mL), washed with water (2 × 50 mL), brine (50 mL), dried, 

filtered and concentrated under reduced pressure to give the crude aldehyde 101 (1.88 g) as a 

light green oil (discolouration due to presence of residual PCC). Purification by column 

chromatography on silica gel using hexane/ethyl acetate 90/10 as eluent gave the pure 

aldehyde 101 (1.33 g, 38%) as a clear oil; vmax/cm
−1

 (film) 2938 (CH), 1722 (CO), 1552 

(NO2), 1386 (NO2); H (300 MHz) 1.34-1.51 [2H, m, C(4)H2], 1.60-1.77 [2H, m, C(3)H2], 

1.95-2.13 [2H, m, C(5)H2], 2.47-2.52 [2H, dt, J 1.5, 7.2, C(2)H2], 4.41 [2H, t, J 6.9 C(6)H2], 

9.78 [1H, t, J 1.5, C(1)H].  

 

(±)-2-Nitrocyclohexanol (±)-99
5,63,64

 

 

Method I: Sodium borohydride reduction of 2-nitrocyclohexanone 103 

A solution of 2-nitrocyclohexanone 103 (1.00 g, 6.99 mmol) in 

distilled ethanol (10 mL) was added dropwise over 10 min to a 

stirred suspension of NaBH4 (264 mg, 6.99 mmol) in distilled 

ethanol (30 mL) at 0 °C under nitrogen and stirring was 

continued for 5 h  at 0 °C. The ice bath was then removed and  

aqueous hydrochloric acid (10%) was added to adjust to pH 1. 

The solution was concentrated under reduced pressure and the resulting residue was 

partitioned between water (10 mL) and dichloromethane (10 mL). The aqueous phase was 

extracted with dichloromethane (3 × 10 mL) and the combined organic extracts were washed 

with brine (30 mL), dried, filtered and concentrated under reduced pressure to give a crude 

mixture (0.78 g) of nitroalcohols (±)-99a, (±)-99b and nitroalkene 102 (11 : 72 : 17 

respectively) as an orange oil. Purification by column chromatography on silica gel using 

hexane/ethyl acetate as eluent (gradient elution 3-10% ethyl acetate) gave four fractions.  

 

The first (least polar) fraction was the pure 1-nitrocyclohex-1-ene 102 

(107.0 mg, 12%) as a yellow oil; vmax/cm
−1

 (film) 1668 (C=C), 1515 

(NO2), 1333 (NO2); H (300 MHz) 1.57-1.70 [2H, m, C(3)H2 or C(4)H2 

or C(5)H2], 1.72-1.82 [2H, m, C(3)H2 or C(4)H2 or C(5)H2], 2.30-2.38 

[2H, sym m, C(3)H2 or C(4)H2 or C(5)H2], 2.54-2.61 [2H, sym m, 

C(6)H2], 7.31-7.35 [1H, sym m, C(2)H]; δC (75.5 MHz) 20.7, 21.8, 23.9, 24.8 [4 x CH2, 

C(3)H2, C(4)H2, C(5)H2 and C(6)H2], 134.4 [CH, C(2)H], 149.7 [C, C(1)]. 
1
H NMR spectral 

assignment was aided by COSY and HETCOR 2D NMR experiments. 

 

The second fraction was the pure (±)-cis-2-nitrocyclohexanol (±)-99a (41.7 mg, 4%) as a 

clear oil; vmax/cm
−1

 (film) 3427 (OH), 2943 (CH), 1548 (NO2), 1383 (NO2); H (300 MHz) 

1.19-2.35 [8H, m, C(3)H2, C(4)H2, C(5)H2 and C(6)H2], 2.63 (1H, d, J 3.6, OH), 4.34-4.41 

[1H, m, C(2)H], 4.51 [1H, br s, C(1)H]; δC (75.5 MHz) 18.8, 23.5, 24.6, 31.4 [4 x CH2, 
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C(3)H2, C(4)H2, C(5)H2 and C(6)H2], 67.1 [CH, C(1)H], 86.9 [CH, C(2)H]. 
1
H NMR spectral 

assignment was aided by COSY and HETCOR 2D NMR experiments. 

 

The third fraction was a 17 : 83 mixture of cis : trans (±)-2-nitrocyclohexanols, (±)-99a and 

(±)-99b (135.9 mg, 13%) as a clear oil. 

 

The fourth (most polar) fraction was the pure (±)-trans-2-nitrocyclohexanol (±)-99b (367.0  

mg, 36%) as a clear oil which solidified upon cooling to a white crystalline solid, m.p. 46-48 

°C (Lit.,
65

 46-47 °C); vmax/cm
−1

 (KBr) 3256 (OH), 2952 (CH), 1551 (NO2), 1376 (NO2); H 

(300 MHz) 1.20-1.46 [3H, m, one of C(4)H2, one of C(5)H2 and one of C(6)H2], 1.68-1.93 

[3H, m, one of C(4)H2, one of C(5)H2 and one of C(3)H2], 2.03-2.18 [1H, m, one of C(6)H2], 

2.27-2.41 [1H, m, one of C(3)H2], 2.70 (1H, d, J 4.5, OH), 4.04-4.12 [1H, m, C(1)H], 4.26-

4.34 [1H, m, C(2)H]; δC (75.5 MHz) 23.6, 24.0 [2 x CH2, C(4)H2 and C(5)H2], 30.4 [CH2, 

C(3)H2], 32.8 [CH2, C(6)H2], 71.1 [CH, C(1)H], 91.3 [CH, C(2)H]. 
1
H NMR spectral 

assignment was aided by COSY and HETCOR 2D NMR experiments. 

 

Note: Milner reports (±)-trans-2-nitrocyclohexanol (±)-99b; H (300 MHz) 1.12-1.46 [3H, m, one of C(6)H2 and C(5)H2], 

1.70-1.89 [3H, m, one of C(3)H2 and C(4)H2].5 In the experimental data described above the C(4)H2  and the C(5)H2 protons 

are split between the two multiplets. All remaining spectroscopic characteristics were in agreement with previously reported 

data. 

 

Method II: Henry reaction 

Triethylamine (1.6 mL, 11.35 mmol) was added in one portion 

to a stirring solution of 6-nitrohexanal 101 (0.82 g, 5.68 mmol) 

in chloroform (20 mL). Stirring was continued for 3 h at room 

temperature. Aqueous hydrochloric acid (10%) was added 

dropwise to the reaction mixture to adjust to pH 2. The solution 

was transferred to a separating funnel and the layers were 

separated.  The aqueous layer was extracted with dichloromethane (2 × 20 mL). The 

combined organic layer was washed with brine (20 mL), dried, filtered and concentrated 

under reduced pressure to give a crude mixture (0.78 g) of nitro alcohols (±)-99a and (±)-99b 

(14 : 86 respectively) as a clear oil. Purification by column chromatography on silica gel 

using hexane/ethyl acetate 90/10 as eluent gave three fractions.  

 

The first (least polar) fraction gave the pure (±)-cis-2-nitrocyclohexanol (±)-99a (32.6 mg, 

4%) as a clear oil.  

 

The second fraction gave a 15 : 85 mixture of cis : trans (±)-2-nitrocyclohexanols, (±)-99a 

and (±)-99b (7.4 mg, 1%) as a clear oil.  

 

The third (most polar) fraction gave the pure (±)-trans-2-nitrocyclohexanol (±)-99b (436.6 

mg, 53%) as a clear oil which solidified upon cooling to a white crystalline solid. Spectral 

characteristics were consistent with data described above. 
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(±)-cis-2-Nitrocyclohexyl acetate (±)-100a
5,63,66

 

(±)-cis-2-Nitrocyclohexanol (±)-99a (451.0 mg, 3.11 mmol) and acetyl 

chloride (2.3 mL, 32.35 mmol) were stirred in dichloromethane (15 mL) 

under nitrogen. N,N-Dimethylaminopyridine (0.54 g, 4.42 mmol) was 

added and stirring continued at room temperature for 12 h. A saturated 

aqueous solution of sodium bicarbonate (10 mL) was added and the 

mixture was transferred to a separating funnel. The aqueous phase was 

extracted with dichloromethane (3 × 20 mL) and the combined organic layers were washed 

with brine (50 mL), dried, filtered and concentrated under reduced pressure to give the crude 

acetate (±)-100a (0.49 g, 85%) as a clear oil; vmax/cm
−1

 (film) 2947 (CH), 1745 (CO), 1549 

(NO2), 1381 (NO2); H (300 MHz) 1.28–1.71 [4H, m, one of C(4)H2, one of C(6)H2 and 

C(5)H2], 1.87–1.99 [1H, m, one of C(4)H2], 2.05 (3H, s, COCH3), 2.10–2.23 [3H, m, one of 

C(6)H2 and C(3)H2], 4.46–4.52 [1H, m, C(2)H], 5.52–5.65 [1H, m, C(1)H]; δC (75.5 MHz) 

19.5 [CH2, C(5)H2], 20.9 (CH3, COCH3), 22.8 [CH2, C(4)H2], 24.9 [CH2, C(3)H2], 28.7 

[CH2, C(6)H2], 69.5 [CH, C(1)H], 84.0 [CH, C(2)H],169.8 (C, COCH3). 
1
H NMR spectral 

assignment was aided by COSY and HETCOR 2D NMR experiments. 

 
Note: Additional signals present due to unreacted starting material (±)-cis-2-nitrocyclohexanol (±)-99a 12% and residual 

N,N-dimethylaminopyridine 5% were evident in the crude 1H NMR spectrum. Attempted purification by column 

chromatography resulted in the formation of the elimination product 1-nitrocyclohex-1-ene 102. 

 

(±)-trans-2-Nitrocyclohexyl acetate (±)-100b
5,63,66

 

N,N-Dimethylaminopyridine (2.0 mg, 0.02 mmol) was added to a stirring 

solution of (±)-trans-2-nitrocyclohexanol (±)-99b (250.0 mg, 1.72 mmol), 

acetic anhydride (1.1 mL, 11.66 mmol) and pyridine (0.6 mL, 7.45 mmol) 

in dichloromethane (6 mL). The reaction mixture was stirred at room 

temperature for 21 h under nitrogen. A saturated aqueous solution of 

sodium bicarbonate (10 mL) was added and the mixture stirred for 30 

min. The solution was transferred to a separating funnel and washed with a saturated aqueous 

solution of CuSO4 (20 mL), water (20 mL), a saturated aqueous solution of sodium 

bicarbonate (20 mL) and brine (20 mL). The organic extract was dried, filtered and 

concentrated under reduced pressure to give the crude acetate (±)-100b (221.7 mg, 69%) as a 

clear oil which solidified on cooling to a white crystalline solid, which was sufficiently pure 

to use without further purification, m.p. 44-46 °C (Lit.,
5
 40-42 °C); vmax/cm

−1
 (KBr) 2954 

(CH), 1737 (CO), 1548 (NO2), 1376 (NO2); H (300 MHz) 1.24–1.55 [3H, m, one of C(4)H2, 

one of C(5)H2 and one of C(6)H2], 1.74–1.94 [3H, m, one of C(3)H2, one of C(4)H2 and one 

of C(5)H2], 2.02 (3H, s, COCH3), 2.18–2.28 [1H, m, one of C(6)H2], 2.34–2.42 [1H, m, one 

of C(3)H2], 4.47–4.55 [1H, m, C(2)H], 5.19–5.27 [1H, ddd appears as a dt, J 4.7, 10.5, 

C(1)H]; δC (75.5 MHz) 20.9 (CH3, COCH3), 23.2, 23.7 [2 x CH2, C(4)H2 and C(5)H2], 29.9 

[CH2, C(6)H2], 30.8 [CH2, C(3)H2], 72.6 [CH, C(1)H], 87.7 [CH, C(2)H], 169.7 (C, COCH3). 
1
H NMR spectral assignment was aided by COSY and HETCOR 2D NMR experiments. 
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Large scale hydrolase-mediated transesterfication of (±)-trans-2-nitrocyclohexanol (±)-

99b
5
 

Pseudomonas fluorescens (41.0 mg) was added to (±)-trans-2-

nitrocyclohexanol (±)-99b (423.0 mg, 2.91 mmol) in vinyl 

acetate (5 mL) and this was shaken at 750 rpm for 28 h at room 

temperature and 51 h at 24 °C. Aliquots of reaction mixture 

(0.5 mL) were withdrawn at 28 h and 55 h. Following a mini 

work-up, 
1
H NMR and chiral HPLC analysis was conducted. The solution was filtered at 79 h 

through a pad of Celite
®
 and the hydrolase washed with ethyl acetate (4 × 5 mL). Conversion 

estimated by E-value calculator at 50%.
45

 The organic extracts were concentrated under 

reduced pressure to produce a light orange oil (215.8 mg). Purification by column 

chromatography on silica gel using hexane/ethyl acetate as eluent (gradient elution 3-25% 

ethyl acetate) gave the pure (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R)-100b (81.1 mg, 

30%) as a clear oil which solidified on cooling to a white crystalline solid     
  

 -41.0 (c 1.0, 

CH2Cl2), >98% ee, lit
5
     

  
 −40.6 (c 1.0, CH2Cl2), >98% ee and the pure (1S,2S)-trans-2-

nitrocyclohexanol (1S,2S)-99b (96.0 mg, 45%)  as a clear oil     
  

 +42.6 (c 0.3, CH2Cl2), 

95% ee, lit
63

     
   +48.6 (c 1.0, CH2Cl2), >98% ee. 

1
H NMR spectra were identical to those 

for the racemic materials previously prepared. 

 
Note: Yield may be reduced due to samples being withdrawn during reaction monitoring. 

 

Table 5.16: Large scale Pseudomonas fluorescens mediated transesterfication of  

(±)-trans-2 nitrocyclohexanol (±)-99b in vinyl acetate 

 

 

 

 

                        (±)-99b                      (1R,2R)-100b       (1S,2S)-99b 

a. While analysis by chiral HPLC of the crude product mixture showed 97% ee for (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b, on 
chromatographic purification the enantiomeric excess [ee (%)] of isolated (1S,2S)-99b was determined to be 95% ee. 

b. Isolated yield following column chromatography. 

 

 

 

 

 

 

 

 

Entry 
Reaction 

Time 

Temperature 

(°C) 

Conversion 

(%) 

ee  

(%) 

E value 

E Calc. 

1
H 

NMR 

Alcohol 

trans-99b 

(1S,2S) 

[yield %]
b
 

Acetate 

trans-100b 

(1R,2R) 

[yield %]
b
 

1 28 h rt 24 25 31 >98 134 

2 55 h 24 44 - 78 >98 >200 

3 79 h 24 50 50 
97

a 

[45] 

>98 

[30] 
>200 
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Figure 5.9: HPLC Trace I: A racemic mixture of (±)-trans-2-nitrocyclohexyl acetate (±)-100b and (±)-trans-2-

nitrocyclohexanol (±)-99b. Trace II: Reaction sampling 28 h. Trace III: Reaction sampling 55 h. Trace IV: Reaction 

sampling 79 h, (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R)-100b, >98% ee, (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-

99b, 97% ee. For HPLC conditions see appendix I. 

5.5.2 Evidence of a dynamic interconversion process – 
1
H NMR 

A solution of 6-nitrohexanal 101 (80.4 mg, 0.55 mmol) in deuterated chloroform, CDCl3 (1.6 

mL) was prepared. An aliquot (400 μL, 20.1 mg or 0.14 mmol of 101) was dispensed into 

each NMR tube. A second solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (6.29 mg, 

0.04 mmol) in deuterated chloroform, CDCl3 (0.6 mL) was prepared. Aliquots of (0.10 eq, 

200 μL, 0.014 mmol of DBU) or (0.05 eq, 100 μL, 0.007 mmol of DBU) were dispensed into 

the appropriate NMR tube with the 6-nitrohexanal 101 solution, agitated and analysed by 
1
H 

NMR (600 MHz) spectroscopy at regular time intervals. The ratio of trans relative to cis was 

calculated by analysis of the integrals of the 1H, m, C(1)HOH, at 4.04-4.12 ppm in (±)-trans-

2-nitrocyclohexanol (±)-99b and the 1H, br s, C(1)HOH, at 4.51 ppm in (±)-cis-2-

nitrocyclohexanol (±)-99a (Figure 5.10). The results of the spectroscopic analysis are 

summarised in Table 5.17 and 5.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trace I 

Racemic 

 

Trace II 

28 h 

T = 28 h 

Trace III 

55 h 

Trace IV 

79 h 

31% ee 

>98% ee 

>98% ee 

>98% ee 

78% ee 

97% ee 

>98% ee 

>98% ee 

(1R,2R)-99b (1S,2S)-99b 
(1R,2R)-100b 

(1S,2S)-99b 

97% ee 

 

(1R,2R)-100b 

>98% ee 

 

(1S,2S)-100b 
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Table 5.17: Evidence for dynamic interconversion –  

6-nitrohexanal 101, CDCl3 and DBU (0.10 eq.) 

 

 
 

 

 

 

                        101                                                   (±)-99a               (±)-99b 

 
Note: Integration of the C(2)HNO2 signals was low in the 1H NMR spectra from reaction time 1 h 27 min onwards. This may 

be due to deuterium exchange of this acidic C(2)HNO2 proton of cis and trans 2-nitrocyclohexanol (±)-99a and (±)-99b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Stacked 1H NMR spectra - Evidence for dynamic interconversion, 6-nitrohexanal 101 and DBU (0.10 eq.). 

 

 

Reaction Time 101 (%) (±)-99a (%) (±)-99b (%) 

0 min 21 19 60 

17 min 20 18 62 

27 min 14 21 65 

1 h 27 min 4 18 78 

3 h 29 min 0 18 82 

9 h 29 min 0 17 83 

15 h 29 min 0 17 83 

20 h 22 min 0 15 85 

22 h 37 min 0 16 84 

20 days 0 14 86 

Spectrum I 

6-nitrohexanal 

Spectrum II 

Time 27 min 

 

Spectrum III 

Time 15 h 29 min 

 

Spectrum IV 

Time 22 h 37 min 

 

(±)-99a (±)-99b 

101 

16% : 84%  

(±)-99a : (±)-99b    

 

17% : 83%  

(±)-99a : (±)-99b  

 

14% : 21% : 65% 

101 : (±)-99a : (±)-99b   
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Following  spectroscopic analysis over time (reaction time 35 days), the 
1
H NMR sample 

(DBU 0.10 eq.) was dissolved in chloroform (2 mL) and washed with saturated aqueous 

ammonium chloride solution (3 × 3 mL) to remove the DBU. The organic layer was then 

washed with brine (3 mL), dried, filtered and concentrated under reduced pressure to yield a 

clear oil. The sample was analysed by 
1
H NMR spectroscopy and gave a crude mixture of 

(±)-cis-2-nitrocyclohexanol (±)-99a and (±)-trans-2-nitrocyclohexanol (±)-99b, 11 : 89 

respectively. The sample was reconcentrated and dissolved in a mixture of 

isopropanol/hexane [10 : 90 (HPLC grade)] and analysed by chiral HPLC (Figure 5.11) in 

conjunction with 2 μL injection volume calibration curves (Figure 5.12 and 5.13) to give (±)-

cis-2-nitrocyclohexanol (±)-99a and (±)-trans-2-nitrocyclohexanol (±)-99b 15 : 85 

respectively. 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: HPLC trace (2 μL injection volume) of  1H NMR sample DBU (0.10 eq.) and 6-nitrohexanal 101, 

reaction time 35 days. For HPLC conditions see appendix I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-99a 

15% 

(±)-99b 

85% 
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Calibration curve: (±)-cis-2-Nitrocyclohexanol (±)-99a (2 μL injection volume) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Calibration curve (±)-cis-2-nitrocyclohexanol (±)-99a (2 μL injection volume). 

Area (x 103) vs. concentration (mg/1 mL). 

 

 

 

Calibration curve: (±)-trans-2-Nitrocyclohexanol (±)-99b (2 μL injection volume) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.13: Calibration curve (±)-trans-2-nitrocyclohexanol (±)-99b (2 μL injection volume). 

Area (x 103) vs. concentration (mg/1 mL). 
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Table 5.18: Evidence for dynamic interconversion –  

6-nitrohexanal 101, CDCl3 and DBU (0.05 eq.) 

 

 

 

 

 

                           101                                                  (±)-99a               (±)-99b 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction Time 101 (%) (±)-99a (%) (±)-99b (%) 

0 min 92 4 4 

5 min 92 4 4 

7 min 92 4 4 

34 min 91 4.5 4.5 

1 h 35 min 89 5 6 

3 h 35 min 86.5 6.5 7 

9 h 34 min 78 10 12 

15 h 35 min 71 14 15 

20 h 28 min 65 16 19 

22 h 43 min 62 18 20 

23 h 50 min 60 20 20 

27 h 37 min 56 22 22 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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5.5.3 Hydrolase-mediated kinetic resolution - analytical screens 

5.5.3.1 Analytical screen – vinyl acetate as both acyl donor and solvent 

General procedure for the hydrolase-mediated transesterification of the (±)-2-

nitrocyclohexanol (±)-99a or (±)-99b with vinyl acetate as both acyl donor and solvent.
5
 

A spatula tip of enzyme (~5-10 mg, amount not critical) was added to the alcohol substrate 

(±)-99a or (±)-99b (~20 mg) in vinyl acetate (1 mL). The small test tubes were sealed and 

agitated at 750 rpm for 24 h at 24 °C and for 3 h at 40 °C, unless otherwise stated. The 

solution was filtered through Celite
®
, washed with ethyl acetate and concentrated under 

reduced pressure. The sample was analysed by 
1
H NMR spectroscopy, reconcentrated and 

dissolved in a mixture of isopropanol/hexane [10 : 90 (HPLC grade)] and enantioselectivity 

determined by chiral HPLC. The results of the screen are summarised in Table 5.19 and 5.20. 

 
Note:  

1. Notes 1-5 in section 5.3.2 (General procedure for the hydrolase-mediated kinetic resolution of the β-substituted 3-

aryl alkanoic ethyl esters) apply to this screening protocol. 

2. 1H NMR conversion was calculated for the hydrolase-mediated transesterification of (±)-cis-2-nitrocyclohexanol 

(±)-99a by analysis of the integrals 1H, br s, C(1)HOH, at 4.51 ppm in (±)-cis-2-nitrocyclohexanol (±)-99a and 

the 1H, m, C(1)HOAc at 5.58–5.60 ppm in (±)-cis-2-nitrocyclohexylacetate (±)-100a. 

3. 1H NMR conversion was calculated for the hydrolase-mediated transesterification of (±)-trans-2-nitrocyclohexanol 

(±)-99b by analysis of the integrals  1H, m, C(1)HOH, at 4.04-4.12 ppm in (±)-trans-2-nitrocyclohexanol (±)-99b 

and the 1H, ddd appears as a dt, C(1)HOAc at 5.19–5.27 ppm in (±)-trans-2-nitrocyclohexylacetate (±)-100b. 
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Table 5.19: Hydrolase-mediated transesterification of (±)-cis-2-nitrocyclohexanol  

(±)-99a in vinyl acetate 
 

 

 

 

 

                         (±)-99a                                       (1R,2S)-100a       (1S,2R)-99a 

a. The ratio of (±)-cis-2-nitrocyclohexanol (±)-99a to (±)-trans-2-nitrocyclohexanol (±)-99b in the starting material, determined by 1H 

NMR spectroscopy. 

b. Time for tranesterification of the nitroalcohol was 51 h at 24 °C. 
c. Unknown impurity observed in the crude 1H NMR. 

 

Table 5.20: Hydrolase-mediated transesterification of (±)-trans-2-nitrocyclohexanol 

(±)-99b in vinyl acetate 

 

 

 

 

 

     (±)-99b                    (1R,2R)-100b     (1S,2S)-99b 

a. Time for tranesterification of the nitroalcohol was 51 h at 24 °C. 

b. The ratio of (±)-cis-2-nitrocyclohexanol (±)-99a to (±)-trans-2-nitrocyclohexanol (±)-99b in the starting material, determined by 1H 

NMR spectroscopy. 
c. Unknown impurity observed in the 1H NMR of the crude product, conversion could not be obtained satisfactorily due to overlapping 

peaks. 

d. Pseudomonas fluorescens (immob) was obtained commercially from Sigma-Aldrich. 
 

Entry Enzyme Source 

Ratio 

99a : 99b
a
 

Conversion (%) ee (%) 

E 

Value E Calc. 
1
H 

NMR 

Alcohol 

cis-99a 

(1S,2R) 

Acetate 

cis-100a 

(1R,2S) 

1 Candida antarctica B (immob)
b
 96 : 4 23 19 29 95 51 

2 Alcaligenes spp. 1 96 : 4 20 18 23 92 30 

3 Rhizopus spp. 96 : 4 - <10 - - - 

4 Aspergillus niger 96 : 4 - <10 - - - 

5 Mucor meihei 96 : 4 - <10 - - - 

6 Porcine pancrease Type II 95 : 5 - <10 - - - 

7 Pig liver esterase 96 : 4 - <10 - - - 

8 Candida antarctica A 96 : 4 60 60
c
 80 54 7.8 

9 Achromobacter spp. 96 : 4 - <10 - - - 

Entry Enzyme Source 
Ratio 

99a : 99b
b
 

Conversion 

(%) 

ee  

(%) 

E value 

E Calc. 
1
H 

NMR 

Alcohol 

trans-99b 

(1S,2S) 

Acetate 

trans-100b 

(1R,2R) 

1 
Candida antarctica B 

(immob)
a
 

1 : 99 50 49 >98 >98 >200 

2 Candida antarctica A 1 : 99 9 -
c
 8 77 8.3 

3 Achromobacter spp. 1 : 99 - <10 - - - 

4 
Pseudomonas 

fluorescens (immob)
d
 

1 : 99 38 38 61 >98 185 
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5.5.3.2 Diastereoselective hydrolase-mediated transesterification of (±)-cis- and (±)-trans-

2-nitrocyclohexanol (±)-99a and (±)-99b 

Candida antarctica lipase B (immob) (130.0 mg) was added to a equimolar mixture of (±)-cis 

and (±)-trans-2-nitrocyclohexanol (±)-99a and (±)-99b (154.8 mg, 1.07 mmol) dissolved in 

vinyl acetate (7.3 mL). The reaction mixture was shaken at 750 rpm at 19 °C for the first 15 h 

and then 24 °C for 33 h. Reaction monitoring was conducted as follows; an aliquot (1 mL) of 

reaction mixture was isolated and filtered through Celite
®
, washed with ethyl acetate and 

concentrated under reduced pressure. The sample was analysed by 
1
H NMR spectroscopy. 

The final extraction following 
1
H NMR spectroscopy was dissolved in a mixture of 

isopropanol/hexane [10 : 90 (HPLC grade)] and enantioselectivity determined by chiral 

HPLC. The results of the screens are summarised in Table 5.21. 

 

Table 5.21: Diastereoselective hydrolase-mediated transesterification of (±)-cis- and  

(±)-trans-2-nitrocyclohexanol (±)-99a and (±)-99b in vinyl acetate 

  

 

 

                       (±)-99b                                       (1R,2R)-100b      (1S,2S)-99b 

 

 

 

 

 

  

 

                       (±)-99a                              (1R,2S)-100a      (1S,2R)-99a 
 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the spectrum of the mixture of the 

crude material not mass recovery. 

b. The principal enantiomer was (1S,2R)-cis-2-nitrocyclohexanol (1S,2R)-99a. 
c. The principal enantiomer was (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b. 

d. The principal enantiomer was (1R,2S)-cis-2-nitrocyclohexyl acetate (1S,2R)-100a. 

e. The principal enantiomer was (1R,2R)-trans-2-nitrocyclohexyl acetate (1R,2R) 100b. 

 

 

 

 

 

 

Enzyme 

Source 

Reaction 

Time 
Temp (°C) 

Alcohol (±)-99 Acetate (±)-100 

cis-99a 

(%)
a
 

[ee (%)]
b
 

trans-99b 

(%)
a
 

[ee (%)]
c
 

cis-100a 

(%)
a
 

[ee (%)]
d
 

trans-

100b 

(%)
a
 

[ee (%)]
e
 

Candida 

antarctica 

B (immob) 

15 h 19 45 35 1 19 

24 h 24 48 28 3 21 

39 h 24 43 29 6 22 

48 h 24 
42 

[23] 

30 

[>98] 

8 

[96] 

20 

[98] 



Chapter 5                                                                                                                 Experimental 

                                                                                                 

 

315  

 

5.5.4 Evidence of a dynamic interconversion process - chiral HPLC 

A solution of (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b (100.0 mg, 0.69 mmol, 94% ee) 

in tert-butyl methyl ether (TBME) (20 mL) was prepared and aliquots [10 mL, 50.0 mg or 

0.34 mmol of (1S,2S)-99b] were dispensed into two round bottom flasks. DBU (1.0 eq., 52 

μL, 52.4 mg, 0.34 mmol) or (0.5 eq., 24 μL, 24.4 mg, 0.16 mmol) was added to the 

appropriate round bottom flask and stirred under nitrogen at room temperature. Reaction 

sampling was performed at 24 h as follows: 5 mL of reaction solvent was withdrawn and 

acidified to pH 1 with aqueous hydrochloric acid (10%). The mixture was extracted with 

TBME (3 × 5 mL), dried, filtered and concentrated under reduced pressure. The crude 

product was dissolved in a mixture of isopropanol/hexane [10 : 90 (HPLC grade)] and 

analysed by chiral HPLC in conjunction with 10 μL injection volume calibration curves. The 

remaining reaction mixture was stirred for a further 24 h. Following work-up as per reaction 

sampling, analysis was again conducted by chiral HPLC in conjunction with 10 μL injection 

volume calibration curves (Figures 5.14 - 5.17). 

 

Table 5.22: Enantioenriched (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b, 94% ee  

following exposure to 1.0 eq. and 0.5 eq. of DBU at 24 h and 48 h 
 

a. The principal enantiomer was (1S,2R)-cis-2-nitrocyclohexanol (1S,2R)-99a. 
b. The principal enantiomer was (1S,2S)-trans-2-nitrocyclohexanol (1S,2S)-99b. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

DBU 

(eq.) 
Reaction Time 

Alcohol (±)-99 

cis-99a 

(%) 

[ee (%)]
a
 

trans-99b 

(%) 

[ee (%)]
b
 

1 

0 h - 
100 

[94] 

24 h 
16 

[31] 

84 

[34] 

48 h 
17 

[24] 

83 

[23] 

0.5 

0 h - 
100 

[94] 

24 h 
15 

[2] 

85 

[3] 

48 h 
13 

[4] 

87 

[1] 

(1S, 2R)-48a 

 

(1R, 2R)-48b 1 eq DBU 24 h 

10 μL injection volume 

1 eq DBU 48 h 

10 μL injection volume 16% Cis 

31% ee 
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Figure 5.14: (1S,2S)-trans-2-Nitrocyclohexanol (1S,2S)-99b 94% ee after 

exposure to 1.0 equivalent of DBU at 24 h and 48 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: (1S,2S)-trans-2-Nitrocyclohexanol (1S,2S)-99b 94% ee after 

 exposure to 0.5 equivalent of DBU at 24 h and 48 h. 
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Trace II 
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Trace III 

1.0 eq. DBU 
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Trace I 
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Trace II 
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Calibration curve: (±)-cis-2-Nitrocyclohexanol (±)-99a (10 μL injection volume) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Calibration curve (±)-cis-2-nitrocyclohexanol (±)-99a (10 μL injection). 

Area (x 103) vs. concentration (mg/1 mL). 

 

 

Calibration curve: (±)-trans-2-Nitrocyclohexanol (±)-99b (10 μL injection volume) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5.17: Calibration curve (±)-trans-2-nitrocyclohexanol (±)-99a (10 μL injection). 

Area (x 103) vs. concentration (mg/1 mL). 
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5.6 Dynamic kinetic resolution of  2-methyl-2-nitrocyclohexanol (±)-117 

5.6.1 Synthesis of nitro substituted hydrolase substrates 

The molecular ion peak for an aliphatic mononitro compound is seldom observed. The main 

peaks are attributable to the hydrocarbon fragments up to M – NO2.
67,68

 Therefore where the 

nitro compound is novel and nominal mass spectrometry shows the molecular ion peak to be 

weak or absent, high resolution mass spectrometry is obtained where possible of the 

hydrocarbon fragment. 

 

Methyl 5-hydroxypentanoate 137
69

 

Sulfuric acid (conc. 95-97%, 1 mL, 18.76 mmol) was added 

to a stirred solution of δ-valerolactone 136 (15.00 g, 149.82 

mmol) in methanol (269 mL). The reaction mixture was 

maintained at reflux while stirring for 48 h and then cooled 

to 0 °C and NaHCO3 (1.90 g) added. The mixture was 

stirred for 10 min at 0 °C, then it was filtered through Celite
®
 and the solvent removed under 

reduced pressure to give the crude methyl ester 137 (19.12 g, 97%) as a milky white oil which 

was used without further purification; vmax/cm
−1

 (film) 3418 (OH), 2954 (CH), 1732 (CO), 

1441; δH (300 MHz) 1.53-1.62 [2H, m, C(3)H2], 1.64-1.76 [2H, m, C(4)H2], 2.36 [2H, t, J 

7.4, C(2)H2], 3.52 (1H, br s, OH), 3.61 [2H, t, J 6.3, C(5)H2], 3.67 (3H, s, OCH3). 

 

Methyl 5-oxopentanoate 134
69,70

 

Methyl 5-hydroxypentanoate 137 (13.00 g, 98.36 mmol) 

was added to a solution of pyridinium chlorochromate 

(PCC) (31.50 g, 146.39 mmol) and crushed 4Å molecular 

sieves (4.80 g) in dichloromethane (473 mL) at 0 °C under 

nitrogen and allowed to warm slowly to room temperature. 

The mixture was stirred for 2 h and then diluted with diethyl ether (250 mL). The mixture 

was filtered through a sintered glass funnel containing a layer each of silica gel and Celite
®
. 

The filtrate was concentrated under reduced pressure and the residue redissolved in diethyl 

ether and the filtration process repeated to remove the remaining chromium residues. The 

resultant solution was concentrated under reduced pressure to produce the crude aldehyde 

134 (9.96 g) as a light yellow oil. Purification by vacuum distillation gave the aldehyde 134 

(6.44 g, 50%) as a clear oil; b.p. 34-49 °C at 0.1 mmHg (Lit.,
71

 80 °C at 0.2 mmHg); 

vmax/cm
−1

 (film) 2936 (CH), 1733 (CO), 1198; δH (300 MHz) 1.91-2.01 [2H, quintet, J 7.2, 

C(3)H2], 2.38 [2H, t, J 7.2, C(2)H2], 2.54 [2H, dt, J 1.2, 7.2, C(4)H2], 3.68 (3H, s, OCH3), 

9.78 [1H, t, J 1.2, C(1)H]. 

 

Methyl 5-hydroxy-6-nitroheptanoate 135
72

 

Powdered potassium tert-butoxide (0.92 g, 8.21 mmol) was 

added to a solution of methyl 5-oxopentanoate 134 (5.36 g, 

41.22 mmol) and nitroethane (8.8 mL, 123.83 mmol) in tert-

butanol : tetrahydrofuran (1 : 1, 50 mL) at 0 °C under 

nitrogen. The reaction mixture was stirred at room 

temperature overnight, and then diluted with diethyl ether (100 mL) and water (100 mL). The 

solution was transferred to a separating funnel and the layers were separated. The organic 

layer was washed with a saturated aqueous solution of sodium bicarbonate (100 mL) and 
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brine (100 mL). The combined aqueous layers were extracted with diethyl ether (2 × 200 mL) 

and the combined organic layers were dried, filtered, and concentrated under reduced 

pressure to give a crude equimolar mixture of nitro alcohol diastereomers 135 (10.05 g) as a 

yellow oil. Purification by column chromatography on silica gel using hexane/ethyl acetate 

90/10 as eluent gave a equimolar mixture of pure nitro alcohol diastereomers 135 (5.25 g, 

62%) as a light yellow oil; (Found C, 46.89; H 7.37; N 6.56. C8H15NO5 requires C, 46.82; H, 

7.37; N, 6.83%); vmax/cm
−1

 (film) 3444 (OH), 2955 (CH), 1728 (CO), 1557 (NO2), 1393; H 

(300 MHz) 1.38-1.62 {5H, m containing 2 × d, 1.54 [1.5H, d, J 6.9, C(7)H3 of 1 

diastereomer], 1.55 [1.5H, d, J 6.9, C(7)H3 of 1 diastereomer] and [2H, m, C(4)H2 of 2 

diastereomers]}, 1.63-1.96 [2H, m, C(3)H2 of 2 diastereomer], 2.39 [2H, t, J 7.1, C(2)H2 of 2 

diastereomers], 2.91-2.95 (1H, OH, of 2 diastereomers), 3.68 (3H, s, OCH3, of 2 

diastereomers), 3.90-3.98 [0.5H, m, C(5)H, of 1 diastereomer], 4.14-4.21 [0.5H, m, C(5)H, of 

1 diastereomer], 4.47-4.59 [1H, m, C(6)H of 2 diasteromers]. δC (75.5 MHz) 12.5, 16.1 [2 x 

CH3, C(7)H3 of 2 diastereomer], 20.3, 21.0 [2 x CH2, C(3)H2 of 2 diastereomer], 32.1, 32.3 [2 

x CH2, C(4)H2 of 2 diastereomer], 33.3 [CH2, C(2)H2 of 2 diastereomers], 51.7 (CH3, OCH3 

of 2 diastereomers), 71.7, 72.4 [2 x CH, C(5)H, of 2 diastereomers], 86.4, 87.7 [2 x CH, 

C(6)H, of 2 diastereomers], 174.0 [C, C(1) of 2 diastereomers]; HRMS (ES+): Exact mass 

calculated for C8H16NO5 (M+H)
+
 206.1028 Found 206.1024; m/z (ES+) 206.3 [(M+H)

+
, 8%], 

152.5 (14%), 233.2 (9%), 269.2 (8%), 391.3 (18%). NMR spectral assignment was aided by 

COSY and HETCOR 2D NMR experiments. 

 
Note:  

1. Potassium tert-butoxide and nitroethane were obtained commercially from Sigma-Aldrich and used without further 

purification. 

2.  An additional signal present due to tert-butanol ~51%, δH (300MHz) 1.27 [9H, s, C(CH3)3] was evident in the 

crude 1 H NMR spectrum which lead to an increased crude yield (10.05 g, ~119%)  

3. Purification by column chromatography on silica gel was conducted in the above procedure in order to obtain 

analytically pure nitro alcohol 135 for full characterisation. In all subsequent reactions the crude nitro alcohol 

135 (typical crude yield 76%, >95% pure by 1H NMR spectroscopy) was used without further purification. 

 

Methyl 5-acetoxy-6-nitroheptanoate 138
72

 and methyl 6-nitroheptanoate 127
73

 

A solution of an equimolar mixture of  methyl 5-hydroxy-

6-nitroheptanoate 135 diastereomers (5.00 g, 24.37 mmol), 

N,N-dimethylaminopyridine (150 mg, 1.23 mmol), acetic 

anhydride (2.5 mL, 26.71 mmol) and diethyl ether (62 mL) 

was stirred for 4 h at room temperature under nitrogen and 

concentrated under reduced pressure to yield the crude 

equimolar mixture of nitro acetate diastereomers 138 as a 

bright green oil; H (300 MHz) 1.548 [1.5H, d, J 6.9, 

C(7)H3 of 1 diastereomer] 1.554 [1.5H, d, J 6.9, C(7)H3 of 1 diastereomer], 1.58-1.80 [4H, m, 

C(3)H2 and C(4)H2 of 2 diastereomers], 2.06 (1.5H, s, COCH3 of 1 diastereomer) 2.09 (1.5H, 

s, COCH3 of 1 diastereomer), 2.25-2.47 [2H, m, C(2)H2 of 2 diastereomers], 3.68 (3H, s, 

OCH3 of 2 diastereomers), 4.65-4.77 [1H, m, C(5)H of 2 diasteromers], 5.29-5.35 [1H, m, 

C(6)H of 2 diasteromers]. 

 
Note:  

1. Integration of the 3H, s, COCH3 of 1 diastereomer at δH (300MHz) 2.09 is slightly higher due to overlap with 

acetic acid. 

2. To distinguish between the diastereomers, signals are reported to three decimal places for the C(7)H3 doublet.  

 

127 

138 
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A suspension of NaBH4 (0.68 g, 17.98 mmol) in dimethylsulfoxide (63 mL) was added 

dropwise to the crude nitro acetates 138 at 0 °C under nitrogen and the solution was stirred 

overnight at room temperature. The reaction mixture was then acidified with aqueous 

hydrochloric acid (1M), extracted with diethyl ether (3 × 100mL), dried, filtered and 

concentrated under reduced pressure to yield the crude methyl ester 127 (3.42 g, 74%) as a 

clear oil which was used without further purification (>95% pure by 
1
H NMR spectroscopy); 

vmax/cm
−1

 (film) 2953 (CH), 1738 (CO), 1552 (NO2), 1361 (NO2); H (300 MHz) 1.26-1.44 

[2H, m, C(4)H2], 1.53 [3H, d, J 6.9, C(7)H3], 1.61-1.80 [3H, m. C(3)H2 and one of C(5)H2], 

1.92-2.13 [1H, m, one of C(5)H2], 2.32 [2H, t, J 7.4, C(2)H2], 3.67 (3H, s, OCH3), 4.51-4.62 

[1H, sym m, C(6)H]. 
1
H NMR spectral assignment was aided by COSY and HETCOR 2D 

NMR experiments. 
 

Note: This procedure was adapted from Morrow74 

 

6-Nitroheptan-1-ol 130 

This was prepared following the procedure described for 

108 from methyl 6-nitroheptanoate 127 (2.54 g, 13.45 

mmol), doubly distilled dichloromethane (100 mL) and  

DIBAL-H (38 mL, 38.00 mmol, 1M solution in hexanes) to 

give the crude nitro alcohol 130 (1.67 g) as a cloudy yellow oil (~95% pure by 
1
H NMR 

spectroscopy). Purification by chromatography on silica gel using hexane/ethyl acetate 80/20 

as eluent gave the pure nitro alcohol 130 (1.26 g, 58%) as a clear oil; (Found C, 52.18; H 

9.21; N 8.33. C7H15NO3 requires C, 52.16; H, 9.38; N, 8.69%);  vmax/cm
−1

 (film) 3365 (OH), 

2940 (CH), 1553 (NO2), 1391 (NO2); H (300 MHz) 1.26-1.48 [4H, m, C(3)H2 and C(4)H2], 

1.52-1.61 {5H, m containing 1.53 [3H, d, J 6.6, C(7)H3] and [2H, m, C(2)H2]2, 1.64-1.79 

[1H, m, one of C(5)H2], 1.86 (1H, br s, OH), 1.96-2.08 [1H, m, one of C(5)H2], 3.63 [2H, t, J 

6.5, C(1)H2], 4.52-4.63 [1H, sym m, C(6)H]; δC (75.5 MHz) 19.2 [CH3, C(7)H3], 25.2, 25.5 

[2 x CH2, C(3)H2 and C(4)H2], 32.2 [CH2, C(2)H2], 35.1 [CH2, C(5)H2], 62.5 [CH2, C(1)H2], 

83.5 [CH, C(6)H]; Exact mass calculated for C7H16NO3 (M+H)
+
 162.1130 Found 162.1122; 

m/z (ES+) 102 (86%), 143 (59%), 284 (52%), 334 (100%), 336 (60%), 466 (50%). 
1
H NMR 

spectral assignment was aided by COSY and HETCOR 2D NMR experiments.  

 

6-Nitroheptanal 118 

This was prepared following the procedure described for 

101 from pyridinium chlorochromate (PCC) (2.00 g, 9.28 

mmol), crushed 3Å molecular sieves (0.42 g), 6-nitrohexan-

1-ol 108 (0.68 g, 4.19 mmol) and doubly distilled 

dichloromethane (24 mL) to yield the crude aldehyde 118 

(0.58 g) as a light brown oil (~72% pure by 
1
H NMR spectroscopy).  Purification by column 

chromatography on silica gel using hexane/ethyl acetate 90/10 as eluent gave the pure 

aldehyde 118 (0.44 g, 65%) as a clear oil; (Found C, 52.55; H 8.20; N 8.71. C7H13NO3 

requires C, 52.82; H, 8.23; N, 8.80%); vmax/cm
−1

 (film) 2943 (CH), 1724 (CO), 1549 (NO2), 

1392 (NO2); H (300 MHz) 1.27-1.47 [2H, m, C(4)H2], 1.53 [3H, d, J 6.6, C(7)H3], 1.59-1.82 

[3H, m. C(3)H2 and one of C(5)H2], 1.94-2.12 [1H, m, one of C(5)H2], 2.44-2.50 [2H, dt, J 

1.2, 7.2, C(2)H2], 4.51-4.63 [1H, m, C(6)H], 9.77 [1H, t, J 1.4 C(1)H]; δC (75.5 MHz) 19.2 

[CH3, C(7)H3], 21.3 [CH2, C(3)H2], 25.2 [CH2, C(4)H2], 34.8 [CH2, C(5)H2], 43.4 [CH2, 

C(2)H2], 83.2 [CH, C(6)H], 201.8 [CH, C(1)H]; Exact mass calculated for C7H14NO3 (M+H)
+
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160.0974 Found 160.0972; m/z (ES+) 135 (48%), 143 (100%). 
1
H NMR spectral assignment 

was aided by COSY and HETCOR 2D NMR experiments.  

 
Note: 6-Nitroheptanal 118 was found to be unstable in the lab atmosphere and easily oxidised to the carboxylic acid. 

Storage in the freezer at -20 °C was found to slow down the oxidation process but not to halt it. Therefore 6-nitroheptanal 

118 was freshly purified by column chromatography prior to use.    

 

2-Methyl-2-nitrocyclohexanone 120
73

 

2-Nitrocyclohexanone 103 (2.50 g, 17.47 mmol) in dichloromethane (19 

mL) was added in one portion to a stirred solution of tetrabutylammonium 

hydroxide (11.33 g, of a 40% aq. solution, 17.47 mmol) in water (17 mL) 

under nitrogen. The reaction mixture was stirred for 10 min, and then 

methyl iodide (4.4 mL, 69.87 mmol) was added in one portion. The 

reaction mixture was stirred vigorously for 36 h at room temperature. The 

reaction mixture was then transferred to a separating funnel and layers separated. The organic 

layer was washed with water (20 mL). The aqueous phase was extracted with 

dichloromethane (2 × 30 mL) and the combined organic fractions were dried, filtered and 

concentrated under reduced pressure in an ice cold water bath. Diethyl ether (60 mL) was 

added to precipitate the tetrabutylammonium iodide salt, the solution was filtered and 

concentrated under reduced pressure in an ice cold water bath to give a crude mixture (1.54 g) 

of 2-methyl-2-nitrocyclohexanone 120 and ring cleavage products, methyl 6-nitrohexanoate 

116 and methyl 6-nitroheptanoate 127 (76 : 13 : 11 respectively) as an orange oil. Purification 

by column chromatography on silica gel using hexane/diethyl ether 97/3 as eluent gave the 

pure -nitro ketone 120 (0.78 g, 36%) as a colourless oil; vmax/cm
−1

 (film) 2950, 2873 (CH), 

1732 (CO), 1549 (NO2); H (600 MHz) 1.67 [3H, s, C(2)CH3], 1.69-1.85 (4H, m, ring 

protons), 1.98-2.10 (1H, m, ring protons), 2.55-2.64 (2H, m, ring protons), 2.86-2.90 (1H, m, 

ring protons).  
 

Note: Signals for methyl 6-nitroheptanoate 127 and methyl 6-nitrohexanoate 116 were detected in the 1H NMR of the crude 

product spectrum at δH (300MHz) 4.49-4.68 (1H, sym m, CHNO2) and at δH (300MHz) 4.40 (2H, t, J 7.1 CH2NO2) 

respectively. 

 

Attempted ring opening of 2-methyl-2-nitrocyclohexanone 120
5
 

 

 

 

 

 

                      120                                                                                131 

   

A solution of 2-methyl-2-nitrocyclohexanone 120 (166.5 mg, 1.06 mmol) in aqueous sodium 

hydroxide (20 mL, 1.0 M) was heated under reflux for 2 h. The reaction mixture was allowed 

to cool to room temperature and washed with diethyl ether (20 mL). The aqueous layer was 

acidified to pH 1-2 with aqueous hydrochloric acid (10%) and subsequently extracted with 

ethyl acetate (3 × 20 mL). The combined organic extracts were washed with water (20 mL), 

brine (20 mL) and the combined organic fractions were dried, filtered and concentrated under 

reduced pressure to give the crude product (94.7 mg) as a bright blue oil. A 
1
H, 

13
C NMR and 

IR spectrum of the crude product were recorded, with signals characteristic of a single 

product however the signals did not correspond to 6-nitroheptanoic acid 131 and the structure 
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of the crude product was not determined; vmax/cm
−1

 (film) 3421, 2937, 1711 (CO), 1568 

(NO2), 1412 (NO2), 1199; H (300 MHz) 1.52-1.76 (~6H, m), 2.15 (~3H, s), 2.33-2.40 (3H, 

m), 2.42-2.51 (2H, m), 9.61 (br s); δC (75.5 MHz) 23.0, 24.1 (2 × CH2), 29.8 (CH3), 33.7, 

43.2 (2 × CH2), 179.2, 208.9 (2 × C). 

 

(±)-2-Methyl-2-nitrocyclohexanol (±)-117
75

 

This was prepared following the procedure described 

for 99 from 2-methyl-2-nitrocyclohexanone 120 (0.98 

g, 6.24 mmol) in distilled ethanol (10 mL) and NaBH4 

(0.24 g, 6.24 mmol) in distilled ethanol (25 mL) to 

give a crude mixture (0.72 g) of  nitroalcohols (±)-

117a and (±)-117b (41 : 59 respectively) as a yellow 

oil. Purification by column chromatography on silica gel using hexane/ethyl acetate 97/3 as 

eluent gave three fractions. 

 

The first (least polar) fraction was the pure (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a 

(186.6 mg, 19%) as a light yellow low melting solid, m.p. 33-35 °C; (Found C, 52.30; H 

8.02; N 8.50. C7H13NO3 requires C, 52.82; H, 8.23; N, 8.80%); vmax/cm
−1

 (film) 3445 (OH), 

2945 (CH), 1539 (NO2), 1352 (NO2); δH (600 MHz) 1.39-1.46 [1H, m, one of C(5)H2], 1.48-

1.52 [2H, m, C(4)H2], 1.63 [3H, s, C(2)CH3], 1.68-1.77 [3H, m, one of C(5)H2, one of C(3)H2 

and one of C(6)H2], 1.82-1.87 [1H, m, one of C(6)H2], 2.43-2.48 [1H, m, one of C(3)H2], 

2.84 [1H, d, J 8.4, OH], 3.91 [1H, br s, C(1)H]; δC (150 MHz) 21.5 [CH2, br, C(5)H2], 21.9 

[CH2, C(4)H2], 24.2 [CH3, C(2)CH3], 30.6 [CH2, C(6)H2], 32.9 [CH2, br, C(3)H2], 73.1 [CH, 

br, C(1)H], 91.5 [C, C(2)]; HRMS (ES+): Exact mass calculated for C7H14NO3 [M+H]
+
 

160.0974 Found 206.0974; m/z (ES+) 118 (22%), 242 (48%), 243 (32%). 
1
H NMR spectral 

assignment was aided by COSY and HETCOR 2D NMR experiments. 

The second fraction was a 28 : 72 mixture of cis : trans (±)-2-methyl-2-nitrocyclohexanol, 

(±)-117a and (±)-117b (38.5 mg, 4%) as a clear oil. 

 

The third (most polar) fraction was the pure (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b 

(274.6 mg, 28%) was isolated as a white crystalline solid, m.p. 38-41 C; (Found C, 53.06; H 

8.17; N 8.62. C7H13NO3 requires C, 52.82; H, 8.23; N, 8.80%); vmax/cm
−1

 (KBr) 3376 (OH), 

2947 (CH), 1538 (NO2), 1340 (NO2); δH (600 MHz) 1.33-1.47 [3H, m, one of C(4)H2, one of 

C(5)H2 and one of C(6)H2], 1.61 [3H, s, C(2)CH3], 1.70-1.73 [1H, m, one of C(4)H2] 1.76-

1.79 [1H, m,  one of C(5)H2], 1.86-1.91 [1H, m, one of C(3)H2], 1.95-1.99 [1H, m, one of 

C(6)H2], 2.13-2.16 [1H, m, one of C(3)H2], 2.74 [1H, s, OH], 4.28-4.29 [1H, m, C(1)H]; δC 

(150 MHz) 16.3 [CH3, br, C(2)CH3], 22.1 [CH2, C(4)H2], 23.5 [CH2, C(5)H2], 30.6 [CH2, 

C(6)H2], 35.9 [CH2, br, C(3)H2], 72.4 [CH, C(1)H], 93.0 [C, C(2)]; ]; HRMS (ES+): Exact 

mass calculated for C7H12NO2 [(M+H)
+
-H2O]

+
 142.0868 Found 142.0864; m/z (ES+) 141 

{[(M+H)
+
-H2O]

+
, 100%}, 245.3 (28%). 

1
H NMR spectral assignment was aided by COSY 

and HETCOR 2D NMR experiments. 
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(±)-cis-2-Methyl-2-nitrocyclohexyl acetate (±)-119a 

This was prepared following the procedure for (±)-100b, from N,N-

dimethylaminopyridine (2 mg, 0.02 mmol), (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a (131.8 mg, 0.83 mmol), acetic anhydride (0.5 

mL, 5.80 mmol) and pyridine (0.3 mL, 3.39 mmol) in dichloromethane (5 

mL) to give the crude acetate (±)-119a (145.8 mg, 88%) as a clear oil. 

which solidified on cooling to a white crystalline solid which was 

sufficiently pure to use without further purification, m.p. 46-48 °C; (Found C, 54.04; H 7.52; 

N 6.00. C9H15NO4 requires C, 53.72; H, 7.51; N, 6.96%); vmax/cm
−1

 (KBr) 2960 (CH), 1738 

(CO), 1544 (NO2), 1362 (NO2); H (300 MHz) 1.26–1.48 [3H, m, C(5)H2 and one of C(4)H2], 

1.54-1.67 {4H, m containing 1.54 [3H, s, C(2)CH3] and [1H, m, one of C(6)H2]}, 1.70-1.82 

[1H, m, one of C(4)H2], 1.88-2.05 {5H, m containing 1.95 [3H, s, COCH3] and [2H, m, one 

of C(6)H2 and one of C(3)H2]}, 2.22-2.32 [1H, m, one of C(3)H2], 5.26-5.29 [1H, m, C(1)H]; 

δC (75.5 MHz) 18.6 [CH2, C(5)H2], 19.9 [CH3, C(2)CH3], 20.9 [CH2, C(4)H2], 22.1 [CH3, 

COCH3], 25.8 [CH2, C(6)H2], 29.7 [CH2, C(3)H2], 72.4 [CH, C(1)H], 87.5 [C, C(2)], 168.6 

[C, COCH3]; ]; HRMS (ES+): Exact mass calculated for C9H15O2 (M-NO2)
+
 155.1072 Found 

155.1065; m/z (ES+) 94.2 (100%), 155.4 [(M-NO2)
+
, 18%], 242.5 (90%), 243.5 (20%). 

1
H 

NMR spectral assignment was aided by COSY and HETCOR 2D NMR experiments.  

 

The structure of  (±)-119a was determined by single crystal X-ray diffraction on a crystalline 

sample of (±)-119a recrystallised from slow evaporation of deuterated solvent CDCl3.
76

 

Crystal data: C9H15NO4, M = 201.22, orthorhombic, a = 20.418(8) Å, b = 25.919(16) Å, c 

=8.013(2) Å, V = 4241.(3)Å
3
, T = 296.(2) K, space group Fdd2, Z = 16, 11831 reflections 

measured, 2148 unique (Rint =  0.0597). The final R1 values were 0.0396 (I > 2σ(I)) and 

0.0643 (all data). The final wR(F2) values were 0.0912 (I > 2σ(I)) and 0.1022 (all data). Full 

structural details are contained on the accompanying CD. 

 

 (±)-trans-2-Methyl-2-nitrocyclohexyl acetate (±)-119b 

This was prepared following the procedure for (±)-100b, from N,N-

dimethylaminopyridine (2 mg, 0.02 mmol), (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b (152.8 mg, 0.96 mmol), acetic anhydride (0.6 

mL, 6.68 mmol) and pyridine (0.3 μL, 3.97 mmol) in dichloromethane (5 

mL) to give the crude acetate (±)-119b (137.5 mg, 71%) as a light yellow 

oil which was sufficiently pure to use without further purification; (Found 

C, 54.34; H 7.62; N 6.78. C9H15NO4 requires C, 53.72; H, 7.51; N, 6.96%); vmax/cm
−1

 (film) 

2950 (CH), 1748 (CO), 1538 (NO2), 1361 (NO2); H (300 MHz) 1.33–1.52 [3H, m, one of 

C(4)H2, one of C(5)H2 and one of C(6)H2], 1.62-1.81 {5H, m containing 1.65 [3H, s, 

C(2)CH3] and [2H, m, one of C(5)H2 and one of C(4)H2]}, 1.95-2.19 {6H, m containing 2.03 

(3H, s, COCH3) and [3H, m, C(3)H2 and one of C(6)H2]}, 5.50-5.55 [1H, m, C(1)H]; δC (75.5 

MHz) 17.6 [CH3, C(2)CH3], 20.9 [CH3, COCH3], 21.9, 22.7 [CH2, C(5)H2, and C(4)H2], 28.1 

[CH2, C(6)H2], 36.5 [CH2, C(3)H2], 73.9 [CH, C(1)H], 90.4 [C, C(2)], 169.5 (C, COCH3); 

Exact mass calculated for C9H15O2 (M-NO2)
+
 155.1072 Found 155.1072; m/z (ES+) 141 

(78%), 242 (54%), 300 (43%), 344 (100%), 388 (86%). 
1
H NMR spectral assignment was 

aided by COSY and HETCOR 2D NMR experiments. 
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5.6.2 Hydrolase-mediated kinetic resolution – analytical screens 

Note:  

1. Notes 1-5 in section 5.3.2 (General procedure for the hydrolase-mediated kinetic resolution of the β-substituted 3-

aryl alkanoic ethyl esters) apply to all screening protocols. 

2. 1H NMR conversion was calculated for the hydrolase-mediated transesterification of (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a by analysis of the integrals 1H, br s, C(1)HOH at 3.91 ppm in (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a and the 1H, m, C(1)HOAc at 5.26-5.29 ppm in (±)-cis-2-methyl-2-

nitrocyclohexylacetate (±)-119a. 

3. 1H NMR conversion was calculated for the hydrolase-mediated transesterification of (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b by analysis of the integrals 1H, m, C(1)HOH, at 4.28-4.29 ppm in (±)-trans-2-methyl-

2-nitrocyclohexanol (±)-117b and the 1H, m, C(1)HOAc at 5.50-5.55 ppm in (±)-trans-2-methyl-2-

nitrocyclohexylacetate (±)-119b. 

5.6.2.1 Analytical screen – acetylating agent as both acyl donor and solvent 

General procedure for the hydrolase-mediated transesterification of (±)-2-methyl-2-

nitrocyclohexanol (±)-117a or (±)-117b with an acyl donor as both acetylating agent and 

solvent. 

Procedure followed was kindly supplied by Almac Sciences
44

 

A spatula tip of enzyme (~5-10 mg, amount not critical) was added to the alcohol substrate 

(±)-117a or (±)-117b (~20 mg) dissolved in the appropriate acyl donor, vinyl acetate (1 mL), 

vinyl pivalate (1 mL) or ethyl acetate (1 mL). The small test tubes were sealed and agitated at 

750 rpm at 24 °C. The solution was filtered through Celite
®
, washed with ethyl acetate and 

concentrated under reduced pressure. The sample was analysed by 
1
H NMR spectroscopy, 

reconcentrated and dissolved in a mixture of isopropanol/hexane [10 : 90 (HPLC grade)] and 

enantioselectivity determined by chiral HPLC. The results of the screens are summarised in 

Table 5.23 - 5.25. 

                           

Table 5.23: Hydrolase-mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b in vinyl acetate 

 

 

 

 

              

                          (±)-117b                             (1R,2R)-119b      (1S,2S)-117b 

 

 

 

 

Entry Enzyme Source 

Reaction 

Time 

 

Conversion 

(%) 

ee  

(%) 

E value 
E 

Calc. 

1
H 

NMR 

Alcohol 

trans-

117b 

(1S,2S) 

Acetate 

trans-

119b 

(1R,2R) 

1 Candida cylindracea C1 48 h 33 43 61 >98 185 

2 Pseudomonas cepacia P2 48 h - <10 - - - 

3 Candida antarctica B (immob) 72 h 49 48 96 >98 >200 

4 Pseudomonas stutzeri 48 h 50 51 97 >98 >200 

5 Pseudomonas fluorescens 113.5 h - <10 - - - 
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Table 5.24: Hydrolase-mediated transesterification of (±)-cis-2-methyl-2-nitrocyclohexanol 

(±)-117a in vinyl acetate  

 

 

 

   

   

     (±)-117a                              (1R,2S)-119a      (1S,2R)-117a 

 

Table 5.25: Hydrolase-mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b in ethyl acetate  

 

 

                      

 

 

                         (±)-117b                             (1R,2R)-119b      (1S,2S)-117b 

5.6.2.2 Analytical screen – vinyl acetate as acyl donor and alteration of solvents 

General procedure for the hydrolase-mediated transesterification of (±)-2-methyl-2-

nitrocyclohexanol (±)-117a or (±)-117b with vinyl acetate as acyl donor and alteration of 

solvents. 

Procedure followed was kindly supplied by Almac Sciences
44

 

A spatula tip of Pseudomonas stutzeri (~5-10 mg, amount not critical) was added to the 

alcohol substrate (±)-117a or (±)-117b (~20 mg, 0.13 mmol) dissolved in the appropriate 

solvent (2.5 mL). Vinyl acetate (5 eq., 58 μL, 54.1 mg, 0.63 mmol) was added to each test 

tube. The small test tubes were sealed and agitated at 750 rpm at 24 °C for 48 h. The solution 

was filtered through Celite
®
, washed with ethyl acetate and concentrated under reduced 

pressure. The sample was analysed by 
1
H NMR spectroscopy, reconcentrated and dissolved 

Entry Enzyme Source 

Reaction 

Time 

 

Conversion 

(%) 

ee  

(%) 

E value 
E 

Calc. 

1
H 

NMR 

Alcohol 

cis-

117a 

(1S, 

2R) 

Acetate 

cis-119a 

(1R, 2S) 

1 Pseudomonas cepacia P2 48 h - <10 - - - 

2 Candida antarctica B (immob) 72 h 33 47 49 >98 159 

3 Pseudomonas stutzeri 48 h 78 85 >98 27 6.4 

4 Pseudomonas fluorescens 113.5 h 40 45 64 96 95 

Entry Enzyme Source 

Reaction 

Time 

 

Conversion 

(%) 

ee 

(%) 

E Value 
E 

Calc. 

1
H 

NMR 

Alcohol 

trans-

117b 

(1S, 2S) 

Acetate 

trans-

119b 

(1R, 2R) 

1 Candida antarctica B (immob) 72 h 16 18 19 >98 119 

2 Pseudomonas stutzeri 48 h - <10 - - - 
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in a mixture of isopropanol/hexane [10 : 90 (HPLC grade)] and enantioselectivity determined 

by chiral HPLC. The results of the screens are summarised in Table 5.26. 

 

Table 5.26: Hydrolase-mediated transesterification of (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b in vinyl acetate as acyl donor and alteration of solvents 

 

 

 

                                 

                    

                       (±)-117b                                     (1R,2R)-119b     (1S,2S)-117b 

a. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

5.6.2.3 Diastereoselective hydrolase-mediated transesterification of (±)-cis- and (±)-trans-

2-methyl-2-nitrocyclohexanol (±)-117a or (±)-117b 

Pseudomonas stutzeri (39.4 mg) or Candida antarctica lipase B (immob) (88.6 mg) was 

added to a equimolar mixture of (±)-cis and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a 

and (±)-117b (105.4 mg, 0.66 mmol) dissolved in vinyl acetate (5 mL). The reaction mixture 

was shaken at 750 rpm at 24 °C. Reaction monitoring was conducted as follows; an aliquot 

(0.5 - 1 mL) of reaction mixture was isolated and filtered through Celite
®
, washed with ethyl 

acetate and concentrated under reduced pressure. The sample was analysed by 
1
H NMR 

spectroscopy. The final extraction following 
1
H NMR spectroscopy was dissolved in a 

mixture of isopropanol/hexane [10 : 90 (HPLC grade)] and enantioselectivity determined by 

chiral HPLC. The results of the screens are summarised in Table 5.27 and Figure 5.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry Enzyme Source Solvent 

Conversion (%) ee (%)
a
 

E value E 

Calc. 

1
H 

NMR 

Alcohol 

trans-

117b 

(1S,2S) 

Acetate 

trans-

119b 

(1R,2R) 

1 Pseudomonas stutzeri Heptane 40 41 66 >98 197 

2 Pseudomonas stutzeri Diethyl ether 46 44 82 >98 >200 

3 Pseudomonas stutzeri 
Diisopropyl 

ether 
46 45 84 >98 >200 

4 Pseudomonas stutzeri Toluene 20 21 24 >98 125 

5 Pseudomonas stutzeri Acetonitrile 25 26 32 >98 135 



Chapter 5                                                                                                                 Experimental 

                                                                                                 

 

327  

 

Table 5.27: Diastereoselective hydrolase-mediated transesterification of (±)-cis- and  

 (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117a or (±)-117b in vinyl acetate  

  

 

 

                        (±)-117b                           (1R,2R)-119b      (1S,2S)-117b 

 

 

 

 

 

  

 

                        (±)-117a                            (1R,2S)-119a       (1S,2R)-117a 
 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the spectrum of the mixture of the 

crude material not mass recovery. 

b. The principal enantiomer was (1S, 2R)-cis-2-methyl-2-nitrocyclohexanol (1S,2R)-117a. 
c. The principal enantiomer was (1S, 2S)-trans-2-methyl-2-nitrocyclohexanol (1S,2S)-117b. 

d. The principal enantiomer was (1R, 2S)-cis-2-methyl-2-nitrocyclohexyl acetae (1S,2R)-119a. 

e. The principal enantiomer was (1R, 2R)-trans-2-methyl-2-nitrocyclohexyl acetate (1R,2R)-119b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enzyme Source Reaction Time 

Alcohol (±)-117 Acetate (±)-119 

cis-117a 

(%)
a
 

[ee (%)]
b
 

trans-117b 

(%)
a
 

[ee (%)]
c
 

cis-119a 

(%)
a
 

[ee (%)]
d
 

trans-119b 

(%)
a
 

[ee (%)]
e
 

Pseudomonas 

stutzeri 

18.5 h 12 27 39 22 

40.5 h 
10 

[14] 

22 

[3] 

42 

[54] 

26 

[>98] 

Candida 

antarctica B 

(immob) 

12 h 44 38 3 15 

18.5 h 43 36 4 17 

40.5 h 41 30 6 23 

62.5 h 
27 

[15] 

30 

[74] 

11 

[>98] 

32 

[>98] 
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Compound 

Comparison of conversion (%) and enantiomeric excess (ee %) of 117a, 117b, 119a and 119b 

following diastereoselective hydrolase-mediated transesterification 

 

 

                  

 

 

 

 

  

 

 

 

 

 
*Note: Conversion (%) illustrated as percentage of material in the crude product. 

 

Figure 5.18  

5.6.3 Hydrolase-mediated kinetic resolution – preparative-scale 

Large scale hydrolase-mediated transesterfication of (±)-trans-2-methyl-2-nitro 

cyclohexanol (±)-117b 

This was prepared following the procedure described for the 

hydrolase-mediated tranesterification of (±)-99b from 

Pseudomonas stutzeri (60.0 mg) and (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b (207.6 mg, 1.30 mmol) in vinyl 

acetate (7 mL). The reaction mixture was shaken at 750 rpm at 

24 °C. An aliquot of reaction mixture (0.5 mL) was withdrawn at 48 h. Following a mini 

work-up, 
1
H NMR and chiral HPLC analysis was conducted. The solution was filtered at 52.5 

h to produce a clear oil (156.3 mg). Purification by column chromatography on silica gel 

using hexane/ethyl acetate as eluent (gradient elution 3-25% ethyl acetate) gave the pure 

(1R,2R)-trans-2-methyl-2-nitrocyclohexyl acetate (1R,2R)-119b (95.5 mg, 36%) as a clear oil 

    
  

 −32.6 (c 1.0, CHCl3), >98% ee, and the pure (1S,2S)-trans-2-methyl-2-

nitrocyclohexanol (1S,2S)-117b (72.1 mg, 35%) as a clear oil     
  

 +42.0 (c 1.0, CHCl3), 

98% ee. Conversion estimated by E-value calculator at 50%.
45

 
1
H NMR spectra were 

identical to those for the racemic materials previously prepared. 

 
Note: 

1. Yield may be reduced due to sample being withdrawn during reaction monitoring at 48 h. 

2. Chiral HPLC analysis was not conducted on the crude reaction mixture at 52.5 h, but rather on the isolated 

products (1S,2S)-117b and (1R,2R)-119b following purification by column chromatography. 
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Pseudomonas stutzeri 40.5 h  Candida antarctica lipase B(immob) 62.5 h  
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Table 5.28: Large scale Pseudomonas stutzeri mediated transesterification of  

(±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b in vinyl acetate 

 

 

 

 

 

                         (±)-117b                            (1R,2R)-119b      (1S,2S)-117b 

a. Chiral HPLC analysis was conducted on the crude reaction mixture aliquot acquired at 48 h.  

b. Chiral HPLC analysis was conducted after purification by column chromatography and isolation of (1S,2S)-117b and (1R,2R)-119b. 

c. Isolated yield following column chromatography. 

 

Large scale hydrolase-mediated transesterfication of (±)-cis-2-methyl-2-nitro 

cyclohexanol (±)-117a 

This was prepared following the procedure described for the 

hydrolase-mediated tranesterification of (±)-99b from Candida 

antarctica lipase B (immob) (70.0 mg) and (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a (80.5 mg, 0.51 mmol) in vinyl 

acetate (3 mL). The reaction mixture was shaken at 750 rpm at 

24 °C. An aliquot of reaction mixture (0.25 mL) was withdrawn at 72 h. Following a mini 

work-up, chiral HPLC analysis was conducted. The solution was filtered at 79 h to produce a 

clear oil (91.1 mg). Purification by column chromatography on silica gel using hexane/ethyl 

acetate 97/3 as eluent gave the pure (1R,2S)-cis-2-methyl-2-nitrocyclohexyl acetate (1R,2S)-

119a (30.9 mg, 30%) as a clear oil     
  

 −46.2 (c 0.5, CHCl3), >98% ee, and the pure 

(1S,2R)-cis-2-methyl-2-nitrocyclohexanol (1S,2R)-117a (26.7 mg, 33%) as a clear oil     
  

 

+0.7 (c 0.5, CHCl3), 45% ee. Conversion estimated by E-value calculator at 31%.
45

 
1
H NMR 

spectra were identical to those for the racemic materials previously prepared. 

 
Note: 

1. Yield may be reduced due to sample being withdrawn during reaction monitoring at 72 h. 

2. Chiral HPLC analysis was not conducted on the crude reaction mixture at 79 h, but rather on the isolated 

products (1S,2R)-117a and (1R,2S)-119a following purification by column chromatography. 

 

The absolute stereochemical assignment of the enantiopure acetate (1R,2S)-119a was 

determined by single X-ray diffraction on a crystalline sample of (1R,2S)-119a recyrstallised 

from slow evaporation of acetonitrile (HPLC grade).
76

 Crystal data: C9H15NO4, M = 201.22, 

orthorhombic, space group P212121, a = 6.0502(2), b = 10.5734(3), c = 15.6769(5) Å, V = 

1002.87(5)Å
3
, Z = 4, Dc = 1.333 g cm

-3
, F000 = 432, Cu-Ka radiation, λ = 1.54178 Å, T = 

100(2) K, 2θmax = 66.09°, μ = 0.881 mm
-1

, 6459 reflections collected, 1706 unique (Rint = 

0.027). Final GooF = 1.329, R1 = 0.0260, wR2 = 0.0657 (obs. data: I > 2σ(I) , R1 = 0.0268, 

wR2 =  0. 0.0661 (add data). Full structural details are contained on the accompanying CD. 

 

Entry 
Reaction 

Time 

Temperature 

(°C) 

Conversion 

(%) 

ee (%) 

[yield (%)]
c
 

E 

value 
E Calc. 

1
H 

NMR 

Alcohol 

trans-117b 

(1S,2S) 

Acetate 

trans-119b 

(1R,2R)  

1
a
 48 h 24 49 52 95 >98 >200 

2
b
 52.5 h 24 50 50 

>98 

[35]
c
 

>98 

[36]
c
 

>200 
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Table 5.29: Large scale Candida antarctica lipase B (immob) mediated transesterification of 

(±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a in vinyl acetate 

 

 

 

 

 

                          (±)-117a                                       (1R,2S)-119a      (1S,2R)-117a 

a. Chiral HPLC analysis was conducted on the crude reaction mixture aliquot acquired at 72 h.  

b. Chiral HPLC analysis was conducted after purification by column chromatography and isolation of (1R,2S)-119a and (1S,2R)-117a.  

c. Isolated yield following column chromatography. 

5.6.4 Analytical dynamic kinetic resolution screens 

 

Conversions were determined throughout this study by 
1
H NMR spectroscopy (Figure 5.19) 

and are derived from integration of; 

 1H, br s, C(1)HOH at 3.91 ppm in (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a.  

 1H, m, C(1)HOH, at 4.28-4.29 ppm in (±)-trans-2-methyl-2-nitrocyclohexanol (±)-

117b 

 1H, m, C(6)HNO2 at 4.51-4.63 ppm in 6-nitroheptanal 118  

 1H, m, C(1)HOAc at 5.26-5.29 ppm in (±)-cis-2-methyl-2-nitrocyclohexyl acetate, 

(±)-119a 

 1H, m, C(1)HOAc at 5.50-5.55 ppm in (±)-trans-2-methyl-2-nitrocyclohexyl acetate, 

(±)-119b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entry 
Reaction 

Time 

Temperature 

(°C) 

Conversion 

(%) 

ee (%) 

[yield (%)]
c
 

E value 

E Calc. 

1
H 

NMR 

Alcohol 

trans-117a 

(1S, 2R) 

Acetate 

trans-119a 

(1R, 2S) 

1
a
 72 h 24 27 - 37 >98 142 

2
b
 79 h 24 31 32 

45 

[33]
c
 

>98 

[30]
c
 

154 
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Figure 5.19: 1H NMR Spectrum: Mixture of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a, (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117b, 6-nitroheptanal 118, (±)-cis-2-methyl-2-nitrocyclohexyl acetate, (±)-119a and (±)-trans-2-

methyl-2-nitrocyclohexyl acetate, (±)-119b (19 : 18 : 31 : 14 : 18 respectively) recorded in CDCl3 at 300 MHz. 

5.6.4.1 Analytical dynamic kinetic resolution screens: Triethylamine 

5.6.4.1.1 
1
H NMR study - Investigation of the cyclisation of 6-nitroheptanal 118 

1
H NMR spectroscopic investigation: Triethylamine-mediated cyclisation of 6-

nitroheptanal 118 with vinyl acetate as solvent 

Four solutions of 6-nitroheptanal 118 (45.8 mg, 0.29 mmol) in vinyl acetate (2.3 mL, 24.95 

mmol) were prepared. Triethylamine (2.0 eq., 80 μL, 58.2 mg, 0.58 mmol), (1.5 eq., 60 μL, 

43.7 mg, 0.43 mmol) or (1.0 eq., 40 μL, 29.1 mg, 0.29 mmol) was added to the appropriate 

round bottom flask and stirred at room temperature or 40 °C. At regular time intervals an 

aliquot of reaction mixture was removed and concentrated under reduced pressure. The 

sample was analysed by 
1
H NMR (300 MHz) spectroscopy and the results summarised in 

Table 5.30 and Figure 5.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-117a 

(±)-117b 

118 

(±)-119a 

(±)-119b 
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Table 5.30: Triethylamine-mediated cyclisation of 6-nitroheptanal 118  

with vinyl acetate as solvent 

       118                                       (±)-117a         (±)-117b            (±)-119a    (±)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery. 

 

 Comparison of  conversion (%) of 6-nitrohetptanal 118,  (±)-cis-2-methyl-2-

nitrocyclohexanol (±)-117a and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b following 

exposure of 6-nitroheptanal 118 to different equivalents of triethylamine at room temperature  

or 40 °C  at 72 h 

 

 

 

                 

 

 

 

 

 

 

 

 
 

 

Figure 5.20 

Entry 
Triethylamine 

(eq.) 

Temp 

(°C) 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis 

(±)-117a 

(%)
a
 

trans 

(±)-117b 

(%)
a
 

cis 

(±)-119a 

(%)
a
 

trans 

(±)-119b 

(%)
a
 

1 2.0 

 

40 

 

24 h 62 14 24 - - 

48 h 37 24 39 - - 

72 h 9 24 67 - - 

2 2.0 Ambient 

24 h 89 4 7 - - 

48 h 76 9 15 - - 

72 h 65 12 23 - - 

3 1.5 Ambient 

24 h 90 3 7 - - 

48 h 79 7 14 - - 

72 h 67 11 22 - - 

7 days 34 22 44 - - 

4 1.0 Ambient 

24 h 92 3 5 - - 

48 h 85 5 10 - - 

72 h 78 7 15 - - 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

6-Nitroheptanal 118 

cis-2-Methyl-2-nitrocyclohexanol (±)-117a 

trans-2-Methyl-2-nitrocyclohexanol (±)-117b 
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5.6.4.1.2 
1
H NMR study - Evidence for dynamic interconversion 

1
H NMR spectroscopic investigation: (±)-cis-2-Methyl-2-nitrocyclohexanol (±)-117a and 

triethylamine (2.0 eq.) in CDCl3. 

A 
1
H NMR sample of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a (20.2 mg, 0.13 mmol) 

in deuterated chloroform, CDCl3 (0.6 mL) was prepared. Triethylamine (2.0 eq., 35 μL, 25.7 

mg, 0.25 mmol) was dispensed into the NMR tube, agitated and analysed by 
1
H NMR (300 

MHz) spectroscopy at regular time intervals. The results of the spectroscopic analysis are 

summarised in Table 5.31 and Figure 5.21.  

 

Table 5.31:
 
 Evidence for dynamic interconversion - (±)-cis-2-methyl-2-nitrocyclohexanol  

(±)-117a and triethylamine (2.0 eq.) in CDCl3 

 

 

 

 

 

                 

                 (±)-117a                                        118                                         (±)-117b 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

10 min 100 - 

1 h 23 min 100 - 

5 h 46 min 100 - 

11 h 30 min 100 - 

3 days 95 5 

7 days 90 10 

17 days 72 28 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Figure 5.21: Stacked 1H NMR spectra: Investigation of dynamic kinetic resolution –  

(±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and NEt3 (2.0 eq.). Recorded in CDCl3 at 300 MHz. 

 
1
H NMR spectroscopic investigation: (±)-trans-2-Methyl-2-nitrocyclohexanol (±)-117b 

and triethylamine (2.0 eq.) in vinyl acetate at 40 °C. 

Triethylamine (2.0 eq., 105 μL, 76.3 mg, 0.75 mmol) was added in one portion to a stirred 

solution
 
of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b (60.0 mg, 0.38 mmol) in vinyl 

acetate (3 mL, 32.55 mmol) at 40 °C. At regular time intervals an aliquot of reaction mixture 

was removed and concentrated under reduced pressure. The sample was analysed by 
1
H 

NMR (300 MHz) spectroscopy and the results are summarised in Table 5.32.  

 

Table 5.32: Evidence for dynamic interconversion – (±)-trans-2-methyl-2-nitrocyclohexanol  

(±)-117b and triethylamine (2.0 eq.)in vinyl acetate at 40 °C 

 

 

 

 

 

 

                   (±)-117b                                            118                                         (±)-117a 

 

 

 

 

 

 
 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

1 day - 100 

2 days - 100 

3 days - 100 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-117b 

72% cis (±)-117a 

28% trans (±)-117b 

Spectrum I 

11 h 30 min 

(±)-117a 

90% cis (±)-117a 

10% trans (±)-117b 

95% cis (±)-117a 

5% trans (±)-117b 

100% cis (±)-117a 

Spectrum II 

3 days 

Spectrum III 

7 days 

Spectrum IV 

17 days 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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5.6.4.1.3 
1
H NMR study – One pot hydrolase-mediated dynamic resolution of 2-methyl-2-

nitrocyclohexanol (±)-117 
1
H NMR and chiral HPLC spectroscopic investigation: Cyclisation of 6-nitroheptanal 

118 with CAL-B (immob) catalysed transesterification to 2-methyl-2-

nitrocyclohexylacetate 119 in vinyl acetate with triethylamine (2.0 eq.) as catalyst. 

A spatula tip of Candida antarctica lipase B (immob) (~5-10 mg) was added to a solution of 

6-nitroheptanal 118 (20.0 mg, 0.13 mmol), triethylamine (2.0 eq., 35 μL, 25.4 mg, 0.25 

mmol) in vinyl acetate (1 mL, 10.85 mmol). The solution was magnetically stirred for 72 h at 

40 °C. Water (1 mL) was added, the layers were separated, and the organic layer was filtered 

and concentrated under reduced pressure. The sample was analysed by 
1
H NMR spectroscopy 

(300 MHz) and chiral HPLC. The results are summarised in Table 5.33. 

 

Table 5.33: Cyclisation of 6-nitroheptanal 118 with CAL-B (immob) catalysed 

transesterification to 2-methyl-2-nitrocyclohexyl acetate 119 in vinyl acetate with 

triethylamine (2.0 eq.) as catalyst 

      118                                       (1S,2R)-117a     (1S,2S)-117b     (1R,2S)-119a   (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery. 
b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

 

 

 

 

 

 

 

 

 

 

 

Enzyme 

Source 

 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol 117 Acetate 119 

cis-117a 

(%)
a
 

[ee (%)]
b
 

trans-117b 

(%)
a
 

[ee (%)]
b
 

cis-119a 

(%)
a
 

[ee (%)]
b
 

trans-119b 

(%)
a
 

[ee (%)]
b,f

 

Candida 

antarctica B 

(immob) 

72 h 31 
16 

[65] 

23 

[58] 

10 

[>98] 

20 

[>98] 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 



Chapter 5                                                                                                                 Experimental 

                                                                                                 

 

336  

 

5.6.4.2 Analytical dynamic kinetic resolution screens: 1,8-diazabicycle[5.4.0]undec-7-ene 

(DBU) 

Note: Aliquots of DBU above 10 μL were added directly to the reaction mixture via a micropipette. To accurately dispense 

concentrations requiring aliquots of DBU <10 μL a standard solution of DBU in CDCl3 or TBME was prepared. 

5.6.4.2.1 
1
H NMR study - Evidence for dynamic interconversion 

1
H NMR spectroscopic investigation: (±)-cis-2-Methyl-2-nitrocyclohexanol (±)-117a and 

DBU in CDCl3. 

Two 
1
H NMR samples of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a (20.3 mg, 0.13 

mmol) in deuterated chloroform, CDCl3 (0.6 mL) were prepared. DBU (0.10 eq., 2 μL, 1.94 

mg, 0.013 mmol) or (0.05 eq., 1 μL, 0.97 mg, 0.006 mmol) was dispensed where appropriate 

to the NMR tube, agitated and analysed by 
1
H NMR (300 MHz) spectroscopy at regular time 

intervals. The results of the spectroscopic analysis are summarised in Table 5.34 and 5.35.  

 

Table 5.34: Evidence for dynamic interconversion – (±)-cis-2-methyl-2-nitrocyclohexanol  

(±)-117a and DBU (0.10 eq.) in CDCl3  

 

 

 

 

 

     

     (±)-117a                                      118                                        (±)-117b 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

15 min 96 4 

33 min 93 7 

1 h 8 min 87 13 

2 h 4 min 80 20 

3 h 31 min 70 30 

4 h 52 min 63 37 

7 h 17 min 53 47 

9 h 48 52 

24 h 45 min 35 65 

32 h 47 min 34 66 

73 days 33 67 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Table 5.35: Evidence for dynamic interconversion – (±)-cis-2-methyl-2-nitrocyclohexanol  

(±)-117a and DBU (0.05 eq.) in CDCl3 

 
 

 

 

 

 

                  (±)-117a                                            118                                  (±)-117b 
 

 

 

 

 

 

 

 

 
1
H NMR spectroscopic investigation: (±)-trans-2-Methyl-2-nitrocyclohexanol (±)-117b 

and DBU (0.1 eq.) in CDCl3. 

A 
1
H NMR sample of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b (22.2 mg, 0.14 

mmol) in deuterated chloroform, CDCl3 (0.6 mL) was prepared. DBU (0.1 eq., 2 μL, 2.12 

mg, 0.014 mmol) was dispensed to the NMR tube, agitated and analysed by 
1
H NMR (300 

MHz) spectroscopy at regular time intervals and the results are summarised in Table 5.36.  

 

Table 5.36: Evidence for dynamic interconversion – (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b and DBU (0.1 eq.) in CDCl3 

 

 

 

 

 

 

                   (±)-117b                                      118                                        (±)-117a 

 

 

 

 

 

 

 

 
a.   

 

 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

2 h 11 min 78 22 

18 h 14 min 37 63 

25 h 49 min 34 66 

7 days 35 65 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

15 min 3 97 

24 min 5 95 

1 h 12 min 11 89 

4 h 16 min 24 76 

4 h 49 min 25 75 

5 h 51 min 28 72 

21 h 52 min 33 67 

14 days 33 67 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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5.6.4.2.2 
1
H NMR study - Investigation of the cyclisation of 6-nitroheptanal 118 

1
H NMR spectroscopic investigation: DBU-mediated cyclisation of 6-nitroheptanal 118 

with vinyl acetate as solvent. 

Five solutions of 6-nitroheptanal 118 (45.8 mg, 0.29 mmol) in vinyl acetate (2.3 mL, 24.95 

mmol) were prepared. DBU (1.00 eq., 43 μL, 43.8 mg, 0.29 mmol), (0.50 eq., 22 μL, 21.9 

mg, 0.14 mmol), (0.10 eq., 4 μL, 4.38 mg, 0.03 mmol), (0.05 eq., 2 μL, 2.19 mg, 0.02 mmol) 

or (0.01 eq., 0.4 μL, 0.44 mg, 0.003 mmol) was added to the appropriate round bottom flask 

and stirred at room temperature. At regular time intervals an aliquot of reaction mixture was 

removed and concentrated under reduced pressure. The sample was analysed by 
1
H NMR 

(300 MHz) spectroscopy and the results summarised in Table 5.37. 

 

Table 5.37: DBU-mediated cyclisation of 6-nitroheptanal 118 with vinyl acetate as solvent 

 

 

 

 

       118                                       (±)-117a         (±)-117b             (±)-119a            (±)-119b 
 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery. 
 

 

 

 

 

 

 

 

Entry 
DBU 

(eq.) 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis 

(±)-117a 

(%)
a
 

trans 

(±)-117b 

(%)
a
 

cis 

(±)-119a 

(%)
a
 

trans 

(±)-119b 

(%)
a
 

1 1.00 

24 h - - - 40 60 

48 h - - - 40 60 

72 h - - - 39 61 

2 0.50 

24 h - - - 42 58 

48 h - - - 40 60 

72 h - - - 39 61 

7 days - - - 39 61 

3 0.10 

24 h - 11 52 22 15 

48 h - - 30 37 33 

72 h - - 28 37 35 

7 days - - 25 40 35 

4 0.05 

24 h 48 15 36 1 - 

48 h 50 16 31 2 1 

71 h 55.5 11 31 2 0.5 

5 0.01 

24 h 94 2 4 - - 

48 h 93 2 5 - - 

72 h 91 3 6 - - 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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1
H NMR spectroscopic investigation: DBU (0.1 eq.) mediated cyclisation of 6-

nitroheptanal 118 with ethyl acetate as solvent. 

A solution of 6-nitroheptanal 118 (60.0 mg, 0.38 mmol) in ethyl acetate (3.2 mL, 32.58 

mmol) was prepared. DBU (0.1 eq., 5.6 μL, 5.74 mg, 0.04 mmol) was added to the reaction 

mixture and stirred at room temperature. At regular time intervals an aliquot of reaction 

mixture was removed and concentrated under reduced pressure. The sample was analysed by 
1
H NMR (300 MHz) spectroscopy and the results summarised in Table 5.38. 

 

Table 5.38: DBU (0.1 eq.) mediated cyclisation of 6-nitroheptanal 118  

with ethyl acetate as solvent 

 

 

 

     

      118                                         (±)-117a         (±)-117b             (±)-119a   (±)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 
mass recovery. 

5.6.4.2.3
 1

H NMR study - Evidence for chemical acetylation in the dynamic interconversion 

process 

1
H NMR spectroscopic investigation: (±)-trans-2-Methyl-2-nitrocyclohexanol (±)-117b 

and DBU (0.1 eq.) in vinyl acetate 
 

DBU (0.1 eq., 3.9 μL, 4.02 mg, 0.03 mmol) was added in one portion to a stirred solution of 

(±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b (42.0 mg, 0.26 mmol) in vinyl acetate (2 

mL, 21.70 mmol) at room temperature. At regular time intervals an aliquot of reaction 

mixture was removed and concentrated under reduced pressure. The sample was analysed by 
1
H NMR (300 MHz) spectroscopy and the results summarised in Table 5.39. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acetylating 

agent 

 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis 

(±)-117a 

(%)
a
 

trans 

(±)-117b 

(%)
a
 

cis 

(±)-119a 

(%)
a
 

trans 

(±)-119b 

(%)
a
 

Ethyl Acetate 
24 h - 29 71 - - 

48 h - 30 70 - - 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Table 5.39: Evidence for chemical acetylation - (±)-trans-2-methyl-2-nitrocyclohexanol  

(±)-117b and DBU (0.1 eq.) in vinyl acetate
 

 

 

 

 

    

               (±)-117b                                        118                                        (±)-117a 

 

 

 

 

 

 

 

                                                 (±)-119b         (±)-119a 

 

 

 

 

 

 

 

5.6.4.2.4
 1

H NMR study - One pot hydrolase-mediated dynamic resolution of 2-methyl-2-

nitrocyclohexanol (±)-117 
1
H NMR and chiral HPLC spectroscopic investigation: Cyclisation of 6-nitroheptanal 

118 with hydrolase-catalysed tranesterification to 2-methyl-2-nitrocyclohexylacetate 119 

in vinyl acetate with DBU as catalyst. 

Nine solutions of 6-nitroheptanal (0.20 mg, 0.13 mmol) in vinyl acetate (1 mL, 10.85 mmol) 

were prepared. DBU (0.05 eq., 1 μL, 0.96 mg, 0.006 mmol), (0.10 eq., 2 μL, 1.9 mg, 0.01 

mmol), (0.20 eq., 4 μL, 3.8 mg, 0.03 mmol), (0.50 eq., 9 μL, 9.6 mg, 0.063 mmol) or (1.00 

eq., 19 μL, 19.1 mg, 0.13 mmol) and a spatula tip (~5-10 mg) of hydrolase were added to the 

appropriate test tubes and the mixture was agitated for the required length of time at 24 °C. In 

the case of the samples which contained DBU, water (1 mL) was added, the layers were 

separated and the organic layer was filtered and concentrated under reduced pressure. When 

DBU was not used, the organic layer was filtered and concentrated under reduced pressure. 

All samples were analysed by 
1
H NMR (300 MHz) spectroscopy and entries 8 and 9, Table 

5.40 by chiral HPLC. The results of the screen are summarised in Table 5.40. 

 

 

 

 

 

 

 

Reaction 

Time 

Alcohol (±)-117
a
 Acetate (±)-119

a
 

trans 

(±)-117b 

(%) 

cis 

(±)-117a 

(%) 

trans 

(±)-119b 

(%) 

cis 

(±)-119a 

(%) 

24 h 32 13 56 - 

48 h 31 - 69 - 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Table 5.40: Cyclisation of 6-nitroheptanal 118 with hydrolase-catalysed transesterification to 

2-methyl-2-nitrocyclohexylacetate 119 in vinyl acetate with DBU as catalyst 

       

 

 

 

      118                                      (1S,2R)-117a     (1S,2S)-117b    (1R,2S)-119a     (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 
mass recovery. 

b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

5.6.4.3 Analytical dynamic kinetic resolution screens: Alteration of base 
1
H NMR spectroscopic investigation: Base-mediated cyclisation of 6-nitroheptanal 118 

with vinyl acetate as solvent. 

Six solutions of 6-nitroheptanal 118 (60.0 mg, 0.38 mmol) in vinyl acetate (3 mL, 32.55 

mmol) were prepared. The following bases were added to the appropriate round bottom flask 

and stirred at room temperature; 

 Diethylamine (DEA) (2.0 eq., 78 μL, 55.1 mg, 0.75 mmol) 

 Piperidine (2.0 eq., 74 μL, 64.2 mg, 0.75 mmol)  

 1,4-Diazabicyclo[2.2.2]octane (DABCO) (2.0 eq., 84.6 mg, 0.75 mmol)  

 N,N-Diisopropylethylamine (Hünigs base) (2.0 eq., 131 μL, 97.4 mg, 0.75 mmol)  

 Aqueous sodium hydroxide (1M, 1mL) 

 1,1,3,3-Tetramethylguanidine (TMG) (0.1 eq., 5 μL, 4.3 mg, 0.04 mmol)  

At regular time intervals an aliquot of reaction mixture was removed. In the case of the 1M 

NaOH trial the layers were separated and the aqueous phase was extracted with diethyl ether 

(3  1 mL) and then concentrated under reduced pressure. In all other case the reaction 

aliquot was concentrated under reduced pressure with no work-up. The samples were 

analysed by 
1
H NMR (300 MHz) spectroscopy and the results summarised in Table 5.41.  

 

 

 

 

 

Entry 
Enzyme 

Source 

DBU 

(eq.) 

Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis-117a 

(%)
a
 

trans-117b 

(%)
a
 

cis-119a 

(%)
a
 

trans-119b 

(%)
a
 

1 - - 48 h 100 - - - - 

2 
CAL-B 

(immob) 
- 72 h 100 - - - - 

3 - 0.10 48 h - - 28 (±) 36 (±) 36 (±) 

4 P.stutzeri 0.05 48 h 100 - - - - 

5 
CAL-B 

(immob) 
0.10 72 h 100 - - - - 

6 P. stutzeri 0.10 48 h 100 - - - - 

7 P. stutzeri 0.20 48 h 77 3 10 5 5 

8 P. stutzeri 0.50 

24 h - 11 4 39 46 

48 h - 
6 

[>98] 

4 

[>98] 

37 

[1] 

53 

[1] 

9 P. stutzeri 1.00 48 h - 
6 

[>98] 

3 

[>98] 

53 

[1] 

38 

[0] 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Table 5.41: Base-mediated cyclisation of 6-nitroheptanal 118 with vinyl acetate as solvent  

    

 

 

 

     118                                        (±)-117a        (±)-117b             (±)-119a             (±)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery 
b. At 24 h after analysis by 1H NMR spectroscopy an additional 2.0 equivalents of TMG (2.0 eq., 95 μL, 86.8 mg, 0.75 mmol) were 

added to the reaction vessel and stirred at room temperature for a further 24 h. 

 

5.6.4.4 Analytical dynamic kinetic resolution screens: 1,4-diazabicyclo[2.2.2]octane 

(DABCO) 

5.6.4.4.1 
1
H NMR study - Evidence for dynamic interconversion 

1
H NMR spectroscopic investigation: (±)-cis-2-Methyl-2-nitrocyclohexanol (±)-117a and 

DABCO (2.0 eq.) in CDCl3. 

A 
1
H NMR sample of (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a (21.4 mg, 0.13 mmol) 

in deuterated chloroform, CDCl3 (0.3 mL) was prepared. A solution of DABCO (2.0 eq., 30.2 

mg, 0.27 mmol) in deuterated chloroform, CDCl3 (0.3 mL) was dispensed to the NMR tube 

agitated and analysed by 
1
H NMR (300 MHz) spectroscopy at regular time intervals. The 

results of the spectroscopic analysis are summarised in Table 5.42.  

 

 

 

 

 

 

 

 

 

 

Entry Base pKa 
Reaction 

Time 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 Acetate (±)-119 

cis 

(±)-117a 

(%)
a
 

trans 

(±)-117b 

(%)
a
 

cis 

(±)-119a 

(%)
a
 

trans 

(±)-119b 

(%)
a
 

1 DEA (2.0 eq.) 
11.3 

(H2O)
77

 

24 h 83 8 9 - - 

48 h 82 8 10 - - 

2 
Piperidine  

(2.0 eq.) 

11.3 

(H2O)
77

 

24 h 100 - - - - 

48 h 100 - - - - 

72 h 100 - - - - 

3 
DABCO  

(2.0 eq.) 

8.82, 2.97 

(H2O)
78

 

24 h - 39 61 - - 

48 h - 40 60 - - 

72 h - 39 61 - - 

4 
Hünigs Base 

(2.0 eq.) 

11.4 

(H2O)
79

 

48 h 85 5 10 - - 

72 h 79 7 14 - - 

5 1M NaOH ~13.8 
24 h 100 - - - - 

48 h 100 - - - - 

6 
TMG (0.1 eq.) 13.6 

(H2O)
80

 

24 h 69 10 21 - - 

(0.1 - 2.1 eq.)
b
 48 h 6 30 57 5 2 
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Table 5.42: Evidence for dynamic interconversion – (±)-cis-2-methyl-2-nitrocyclohexanol  

(±)-117a and DABCO (2.0 eq.) in CDCl3 

 

 

 

 

 

         

      (±)-117a                                        118                                         (±)-117b 

 

 

 

 

 

 

 
 

5.6.4.4.2 
1
H NMR study – One pot hydrolase-mediated dynamic resolution of 2-methyl-2-

nitrocyclohexanol (±)-117 
1
H NMR and chiral HPLC spectroscopic investigation: Cyclisation of 6-nitroheptanal 

118 with P. stutzeri catalysed tranesterification to 2-methyl-2-nitrocyclohexylacetate 119 

in vinyl acetate with DABCO (2.0 eq.) as catalyst 

DABCO (2.0 eq., 28.2 mg, 0.25 mmol) was added to two solutions of 6-nitroheptanal (0.20 

mg, 0.13 mmol) in vinyl acetate (1 mL, 10.85 mmol). A spatula tip (~5-10 mg) of 

Pseudomonas stutzeri was added to the appropriate test tube and the reaction mixtures were 

agitated for 48 h at 24 °C. Water (1 mL) was added, the layers were separated and the organic 

layer was filtered and concentrated under reduced pressure. The sample was analysed by 
1
H 

NMR (300 MHz) spectroscopy and chiral HPLC. The results of the screen are summarised in 

Table 5.43. 

 

Table 5.43: Cyclisation of 6-nitroheptanal 118 with P. stutzeri catalysed transesterification to 

2-methyl-2-nitrocyclohexyl acetate 119 in vinyl acetate with DABCO (2.0 eq.) as catalyst 

  

 

 

 

      118                                       (1S,2R)-117a    (1S,2S)-117b    (1R,2S)-119a     (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery. 

b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

c. The HPLC trace displays an unknown impurity which co-eluted with the trans-2-methyl-2-nitrocyclohexanol 117b, therefore 
enantiomeric excess [ee (%)] is an estimation. 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

42 min 100 - 

3 h 10 min 100 - 

1 day 100 - 

4 days 100 - 

10 days 100 - 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

Entry 

Enzyme 

Source 

 

Reaction 

Time 

 

Aldehyde 

118 

(%)
a
 

Alcohol 117 Acetate 119 

cis-117a 

(%)
a 

[ee (%)]
b
 

trans-117b 

(%)
a 

[ee (%)]
b
 

cis-119a 

(%)
a 

[ee (%)]
b
 

trans-119b 

(%)
a 

[ee (%)]
b
 

1 - 48 h - 40 60 - - 

2 
Pseudomonas 

stutzeri 
48 h 75 

4 

[77] 

11 

[24]
c
 

5 

[72] 

5 

[>98] 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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 5.6.4.5 Analytical dynamic kinetic resolution screens: 1,1,3,3-Tetramethylguanidine 

(TMG)  

5.6.4.5.1 
1
H NMR study - Evidence for dynamic interconversion 

1
H NMR spectroscopic investigation: (±)-trans-2-Methyl-2-nitrocyclohexanol (±)-117b 

and TMG (2.0 eq.) in CDCl3. 

A 
1
H NMR sample of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b (15.6 mg, 0.10 

mmol) in deuterated chloroform, CDCl3 (0.6 mL) was prepared. TMG (2.0 eq., 25 μL, 22.6 

mg, 0.20 mmol) was dispensed to the NMR tube agitated and analysed by 
1
H NMR (300 

MHz) spectroscopy at regular time intervals. The results of the spectroscopic analysis are 

summarised in Table 5.44.  

 

Table 5.44: Evidence for dynamic interconversion – (±)-trans-2-methyl-2-nitrocyclohexanol  

(±)-117b and TMG (2.0 eq.) in CDCl3 

 

 

 

 

 

       

      (±)-117b                                         118                                          (±)-117a 

 

 

 
 

 

 

 

 

5.6.4.5.2 
1
H NMR study – One pot hydrolase-mediated dynamic resolution of 2-methyl-2-

nitrocyclohexanol (±)-117 
1
H NMR and chiral HPLC spectroscopic investigation: Cyclisation of 6-nitroheptanal 

118 with hydrolase-catalysed transesterification to 2-methyl-2-nitrocyclohexylacetate 

119 in vinyl acetate with TMG (2 eq.) as catalyst. 

TMG (2 eq., 32 μL, 28.9 mg, 0.25 mmol) was added to two solutions of 6-nitroheptanal 118 

(20.0 mg, 0.13 mmol) in vinyl acetate (1 mL, 10.85 mmol). A spatula tip of Pseudomonas 

stutzeri or Candida antarctica lipase B (immob) (~5-10 mg) were added to the appropriate 

test tubes and the mixture was agitated for the required length of time at 24 °C.  Water (1 mL) 

was added, the layers were separated, and the organic layer was filtered and concentrated 

under reduced pressure. The sample was analysed by 
1
H NMR spectroscopy (300 MHz) and 

chiral HPLC. The results summarised in Table 5.45 and Figure 5.22. 

 

 

 

 

 

 

Reaction Time (±)-117a (%)
a
 (±)-117b (%)

a
 

49 min 14 88 

5 h 7 min 26 74 

3 days 28 72 

a. 6-Nitroheptanal 118 was not detected in the 1H NMR spectra. 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Table 5.45: Cyclisation of 6-nitroheptanal 118 with hydrolase-catalysed transesterification to 

2-methyl-2-nitrocyclohexyl acetate 119 in vinyl acetate with TMG (2 eq.) as catalyst 

      118                                      (1S,2R)-117a     (1S,2S)-117b     (1R,2S)-119a    (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 
mass recovery 

b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix I for conditions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: HPLC Trace I:  (±)-trans-2-methyl-2-nitrocyclohexyl acetate (±)-119b, (±)-cis-2-methyl-2-nitrocyclohexyl 

acetate (±)-119a, (±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b. 

Trace II: Pseudomonas stutzeri and TMG-mediated  dynamic resolution process, (1R,2R)-trans-2-methyl-2-nitrocyclohexyl 

acetate (1R,2R)-119b, 75% ee, (1R,2S)-cis-2-methyl-2-nitrocyclohexyl acetate (1R,2S)-119a, 80% ee, (1S,2R)-cis-2-methyl-

2-nitrocyclohexanol (1S,2R)-117a, 35% ee and (1S,2S)-trans-2-methyl-2-nitrocyclohexanol (1S,2S)-117b, 6% ee.  

For HPLC conditions see appendix I. Note the above traces correlate to chiral HPLC conditions C. 

 

 

Entry 

 

Enzyme 

Source 

 

 

TMG 

 

 

Reaction 

Time 

 

Aldehyde 

118 

(%)
a
 

Alcohol 117 Acetate 119 

cis-117a 

(%)
a 

[ee (%)]
b
 

trans-117b 

(%)
a 

[ee (%)]
b
 

cis-119a 

(%)
a 

[ee (%)]
b
 

trans-119b 

(%)
a 

[ee (%)]
b
 

1 

Candida 

antarctica B 

(immob) 

2 eq. 5 days 7 
26 

[2] 

67 

[1] 

- 

 

- 

 

2 
Pseudomonas 

stutzeri 
2 eq. 48 h 15 

22 

[35] 

50 

[6] 

9 

[75] 

4 

[80] 

(±)-Trans-2-nitrocyclohexanol (±)-48b  

 

(1R,2R)-119b 

75% ee 

 

(±)-119a 

(±)-119b 
 

(±)-117a (±)-117b 

(1R,2S)-119a 

80% ee 

 
(1S,2R)-117a 

35% ee 

 

(1S,2S)-117b 

6% ee 

 

Trace I 

Racemic 

 

Trace II 
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5.6.4.6 Analytical dynamic kinetic resolution screens: Polymer-bound 1,8-

diazabicycle[5.4.0]undec-7-ene (DBU) 

5.6.4.6.1 
1
H NMR study - Investigation of the cyclisation of 6-nitroheptanal 118 

1
H NMR spectroscopic investigation: Polymer-bound DBU-mediated cyclisation of 6-

nitroheptanal 118 with TBME as solvent. 

Two solutions of 6-nitroheptanal 118 (50.1 mg, 0.31 mmol) in TBME (5 mL) were prepared. 

Polymer-bound DBU, 1.15 mmol N per g loading, (0.1 eq., 27.4 mg, 0.03 mmol) or (1.0 eq., 

273.7 mg, 0.31 mmol) was added to the appropriate round bottom flask and stirred at room 

temperature or 40 °C. At regular time intervals an aliquot of reaction mixture was removed, 

filtered to remove the immobilised beads which were washed with TBME and combined 

organic extracts concentrated under reduced pressure. The sample was analysed by 
1
H NMR 

(300 MHz) spectroscopy and the results summarised in Table 5.46. 

 

Table 5.46: Polymer-bound DBU-mediated cyclisation of 6-nitroheptanal 118  

with TBME as solvent 

 

 

 

 

                               

                          118                                                   (±)-117a    (±)-117b 

a. At 22.5 h after analysis by 1H NMR spectroscopy an additional equivalent of polymer-bound DBU (1.0 eq., 273.7 mg, 0.31 mmol) was 

added to the reaction vessel and stirred at 40 °C for a further 21.5 h. 

5.6.4.6.2 
1
H NMR study - Evidence for dynamic interconversion 

1
H NMR spectroscopic investigation: (±)-trans-2-Methyl-2-nitrocyclohexanol (±)-117b 

and polymer-bound DBU in TBME at 40 °C.  

To a solution of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b (49.2 mg, 0.31 mmol) in 

TBME (2 mL), polymer-bound DBU (2 eq., 537.5 mg, 0.62 mmol) was added. To a solution 

of (±)-trans-2-methyl-2-nitrocyclohexanol (±)-117b (49.2 mg, 0.31 mmol) in TBME (5 mL), 

polymer-bound DBU (3 eq., 806.3 mg, 0.93 mmol) was added. Both reaction mixtures were 

stirred at 40 °C for 19 h. The reaction mixture was filtered to remove the immobilised beads 

which were washed with TBME. The combined organic extracts were concentrated under 

reduced pressure and analysed by 
1
H NMR (300 MHz) spectroscopy. The results of the 

spectroscopic analysis are summarised in Table 5.47.  

 

 

 

 

Entry 
Polymer-bound DBU 

(eq.) 

Reaction 

Time 
Temp (°C) 

Aldehyde 

118 

(%)
a
 

Alcohol (±)-117 

cis 

(±)-117a 

(%)
a 

trans 

(±)-117b 

(%)
a 

1 0.1 13 h Ambient 100 - - 

2 
1.0 22.5 h Ambient 92 3 5 

1.0 – 2.0
a
 44 h 40 °C 11 24 65 
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Table 5.47: Evidence for dynamic interconversion - (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b and polymer-bound DBU in TBME at 40 °C 

. 

 

 

 

 

                   

       (±)-117b                                                      118                                                  (±)-117b 

 

 

 
 

 

 

5.6.5 Two pot hydrolase-mediated dynamic resolution of (±)-2-methyl-2-

nitrocyclohexanol (±)-117 

DBU-mediated dynamic interconversion 

DBU (0.2 eq., 55 μL, 55.8 mg, 0.37 mmol) was added to a solution of 6-nitroheptanal 118 

(291.5 mg, 1.83 mmol) in TBME (3 mL) and stirred at room temperature overnight. The 

reaction mixture was washed with water (3 × 2 mL), dried, filtered and concentrated under 

reduced pressure to give a crude mixture (258.0 mg, 89%) of nitroalcohols (±)-117a and  (±)-

117b as a clear oil The sample was analysed by 
1
H NMR spectroscopy and conversions to 

(±)-cis-2-methyl-2-nitrocyclohexanol (±)-117a and (±)-trans-2-methyl-2-nitrocyclohexanol 

(±)-117b determined by integration of the crude material (Table 5.48). The 
1
H NMR sample 

was then reconcentrated for lipase-mediated kinetic resolution. 

 

Candida antarctica lipase B (immob) mediated kinetic resolution. 

Candida antarctica lipase B (immob) (228.0 mg, 88% w/w) was added to a solution of the 

crude  nitroalcohols  (±)-117a and  (±)-117b (258.0 mg, 1.62 mmol) in vinyl acetate (12.9 

mL, 12.05 g, 139.95 mmol) and shaken at 750 rpm at 24 °C for 18 h. The solution was 

filtered through Celite
®
, washed with ethyl acetate and concentrated under reduced pressure 

to give a crude mixture (274.6 mg) of nitroalcohols 117a, 117b and nitroacetates 119a, 119b 

as a clear oil. The sample was analysed by 
1
H NMR spectroscopy and conversions to cis-2-

methyl-2-nitrocyclohexyl acetate 119a and trans-2-methyl-2-nitrocyclohexyl acetate 119b 

determined by integration of the crude material (Table 5.48). The 
1
H NMR sample was then 

reconcentrated for base-mediated dynamic resolution. 

 

The DBU-mediated dynamic interconversion procedure followed by Candida antarctica 

lipase B (immob) mediated kinetic resolution was repeated as per Table 5.48 to give a crude 

mixture of nitroalcohols 117a, 117b and nitroacetates 119a, 119b (88.5 mg) as a clear oil. 

 

Purification by column chromatography on silica gel using hexane/ethyl acetate as eluent 

(gradient elution 1-25% ethyl acetate) gave four fractions.  

The first (least polar) fraction was the pure (1R,2R)-trans-2-methyl-2-nitrocyclohexyl acetate 

(1R,2R)-119b (10.4 mg, 3%) as a clear oil     
  

 +56.4 (c 0.4, CHCl3), >98% ee. 
1
H NMR 

spectra were identical to those for the racemic materials previously prepared. 

Entry Polymer-bound DBU Reaction Time (±)-117b (%) (±)-117a (%) 

1 2 eq. 19 h -
a
 -

a
 

2 3 eq. 19 h -
a
 -

a
 

a. The crude 1H NMR spectrum was too complex to decipher conversions. (±)-Trans-2-nitrocyclohexanol (±)-48b  
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The second fraction was a 22 : 78 mixture of (1R,2S)-cis-2-methyl-2-nitrocyclohexyl aceate 

(1R,2S)- 119a, >98% ee and (1R,2R)-trans-2-methyl-2-nitrocyclohexyl acetate (1R,2R)-119b, 

>98% ee (19.9 mg, 5%) as a clear oil.  

 

The third fraction was a 83 : 17 mixture of (1R,2S)-cis-2-methyl-2-nitrocyclohexyl aceate 

(1R,2S)-119a, >98% ee and (1R,2R)-trans-2-methyl-2-nitrocyclohexyl acetate (1R,2R)-119b, 

>98% ee (3.1 mg, 0.8%) as clear oil. 

 

The third most polar fraction was a 24 : 76 mixture of (1S,2R)-cis-2-methyl-2-

nitrocyclohexanol (1S,2R)-117a, 10% ee and (1S,2S)-trans-2-methyl-2-nitrocyclohexanol 

(1S,2S)-117b, 37% ee (15.6 mg, 5%) as clear oil. 

 

Table 5.48: Two pot dynamic kinetic resolution of the intramolecular 

 nitroaldol reaction through lipase catalysis 

      118                                        (1S,2R)-117a    (1S,2S)-117b    (1R,2S)-119a    (1R,2R)-119b 

a. The conversions were determined by 1H NMR spectroscopy and are derived from integration of the mixture of the crude material not 

mass recovery. 
b. Enantiomeric excess [ee (%)] was determined by chiral HPLC, see Appendix 1 for conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

Step 

DBU 

(eq.) 

 

Vinyl 

acetate 

(eq.) 

Candida 

antarctica B 

(immob) 

(% w/w) 

Alcohol 117 Acetate 119 

cis-117a 

(%)
a 

[ee (%)]
b,c

 

trans-117b 

(%)
a 

[ee (%)]
b,d

 

cis-119a 

(%)
a 

[ee (%)]
b,e

 

trans-119b 

(%)
a 

[ee (%)]
b,f

 

A 0.2 - - 30 (±) 70 (±) - - 

B - 138 18 25 37 5 33 

A 0.2 - - 19 41 6 34 

B - 138 18 16 29 8 47 

A 0.2 - - 13 30 8 49 

B - 138 18 11 22 10 57 

A 0.2 - - 
10 

[10] 

22 

[37] 

10 

[>98] 

57 

[>98] 

(±)-Trans-2-nitrocyclohexanol (±)-48b  
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Appendix I Chiral HPLC data 

 

 

 Samples for chiral HPLC analysis were prepared at a concentration of ~1 mg/mL. 

 

 The retention times can change per injection (particularly for long run times), 

however, in general the elution sequence of enantiomers remains the same.  

 

 In the resolution of all four enantiomeric pairs of (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexanol (±)-117a and (±)-117b and (±)-cis- and (±)-trans-2-methyl-2-

nitrocyclohexyl acetate (±)-119a and (±)-119b in a single trace three sets of 

conditions are described. Notably under conditions A and C the sequence of elution of 

all eight enantiomers remains the same. However, under conditions B elution of the 

enantiomeric pairs of the diastereomeric alcohol differs relative to A and C.  

 

 Stereochemical assignments of known enantioenriched products were made by 

comparison to previously reported polarimetry, and chiral HPLC data (where known).  

 

 In general, the absolute stereochemistry of novel enantioenriched products was 

assigned by single crystal analysis and chiral HPLC analysis of the isolated single 

crystal.  

 

 Wherever feasible, the crystals employed for X-ray diffraction to determine absolute 

stereochemistry were subsequently analysed by chiral HPLC to unambiguously 

confirm the absolute stereochemistry corresponding to each HPLC peak. In some 

instances the detection of the weak signals from the single crystal proved challenging.  

 

 In this study for some compounds there are more than one set of chiral HPLC 

conditions described. What conditions were employed was dependent on the 

requirements of the resolution i.e. if multiple compounds were required to be resolved 

in a single injection e.g. (±)-trans-2-benzenesulfonyl-3-n-butylcyclopentanone (±)-2 

page iii. 

 

 Notably chiral HPLC conditions of known compounds are not all identical to previous 

workers in the group.  

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

(±)-2 

(±)-2 

Baker’s yeast mediated asymmetric synthesis of 

(R)- and (S)-4-methyloctanoic acid (R)-1 and (S)-1 

 

Compound Column 

Injection  

volume  

(μl) 

Flow 

(mL/min) 

λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

 

Chiralcel

OJ-H 
2 0.40 220.0 

Gradient  

0 min:  
96 : 4 

30 min:  
99 : 1 

Rt 

(1S,2R,3S)-

4a 
58 

(1R,2S,3R)-

4a 
64 

 

(2S,3R)-2 232 

(2R,3S)-2 256 

 

Chiralcel

OJ-H 
10 0.80 220.0 99 : 1 rt 

(2S,3R)-2 119 

(2R,3S)-2 142 

Conditions A 

Chiralcel

OJ-H 
10 0.50 209.8 

IPA mobile phase 
consists of 3% 

TFA 

93 : 7 

rt 

(S)-11 78 

(R)-11 99 

Conditions B 

Chiralcel

OJ-H 
10 0.50 209.8 93 : 7 rt 

(S)-11 68 

(R)-11 83 

 

Chiralcel

OD-H 
8 0.50 220 98 : 2 rt 

(R)-18 96 

(S)-18 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-4a 

(±)-11 

(±)-18 

(±)-11 



iv 

 

(±)-23 

Hydrolase-mediated kinetic resolutions of 3-arylalkanoic acids 

 

Compound Column 

Injection  

volume  

(μl) 

Flow 

(mL/min) 

λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

 
Chiralcel

OJ-H 
10 0.50 209.8 

IPA mobile phase 

consists of  

3% TFA 
95 : 5 

0 

(R)-38 28 

(S)-38 33 

 

(S)-23 38 

(R)-23 51 

 

Chiralcel

OJ-H 
10 0.50 209.8 

IPA mobile phase 
consists of  

3% TFA 

99 : 1 

0 

(S)-56 12 

(R)-56 20 

 

(S)-28 61 

(R)-28 86 

 

Chiralcel

OJ-H 
10 0.50 209.8 

IPA mobile phase 
consists of  

3% TFA 

98 : 2 

0 

(R)-58 22 

(S)-58 28 

 

(R)-29 35 

(S)-29 58 

 

Chiralcel
OJ-H 

10 0.25 209.8 

IPA mobile phase 

consists of  
3% TFA 

96 : 4 

 
20 

 

(S)-59 26 

(R)-59 32 

 

(R)-37 45 

(S)-37 58 

  

Chiralcel
OJ-H 

 

10 0.50 211.0 

IPA mobile phase 
consists of 

3% TFA 

99.5 : 0.5 

 

0 
 

(S)-49 30 

(R)-49 32 

 

(S)-51 120 

(R)-51 155 

 

 

(±)-38 

(±)-56 

(±)-28 

(±)-58 

(±)-29 

(±)-37 

(±)-59 

(±)-49 

(±)-51 



v 

 

(±)-65 

Compound Column 

Injection  

volume  

(μl) 

Flow 

(mL/min) 

λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

 
Chiralcel

OJ-H 
10 0.25 209.8 

IPA mobile phase 

consists of  
3% TFA 

98 : 2 

0 

(R)-54 36 

(S)-54 40 

 

(S)-65 73 

(R)-65 84 

 
Chiralcel

OJ-H 
10 0.25 209.8 

IPA mobile phase 

consists of  

3% TFA 
94 : 6 

0 

(R)-53 30 

(S)-53 45 

 

(S)-64 34 

(R)-64 64 

 Chiralcel

OJ-H 
10 0.25 216.9 

IPA mobile phase 
consists of  

3% TFA 
82 : 18 

0 

(R)-60 45 

(S)-60 51 

 

(S)-66 42 

(R)-66 59 

 

Chiralcel

AS-H 
10 

Gradient  

0 min:  
1.00 

30 min:  
0.25 

256.0 

IPA mobile phase 

consists of  

3% TFA 
Gradient  

0 min:  
99.7 : 0.3  

30 min:  
94 : 6  

0 

(R)-55 9 

(S)-55 11 

 

(S)-80 34 

(R)-80 49 

 

Chiralcel

OJ-H 

 

2 

Gradient  

0 min:  
0.20 

50 min:  
1.00 

 

209.8 

IPA mobile phase 

consists of 
 3% TFA 

Gradient  

0 min:  
99.5 : 0.5  

50 min:  
95 : 5 

 

45 

(R)-47 38 

(S)-47 41 

 
 

(R)-32 57 

(S)-32 58 

 

 

 

 

 

 

 

(±)-54 

(±)-53 

(±)-64 

(±)-60 

(±)-66 

(±)-80 

(±)-55 

(±)-47 

(±)-32 



vi 

 

(±)-45 

Compound Column 

Injection  

volume  

(μl) 

Flow 

(mL/min) 

λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

 

Chiralcel

OJ-H 
2 0.5 209.8 

IPA mobile phase 
consists of 

 3% TFA 

95 : 5 

rt 

(R)-48 11 

(S)-48 13 

 

(R)-45 14 

(S)-45 16 

 

Chiralcel

OJ-H 
10 0.50 209.8 

IPA mobile phase 
consists of  

3% TFA 

99.5 : 0.5 

rt 

57 9 

57 10 

 

61 40 

61 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-61 

(±)-48 

(±)-57 



vii 

 

The use of co-crystals for the determination of absolute stereochemistry of the 

products of preparative-scale reactions 

 

(±)-3-(3-Methylphenyl)butanoic acid (±)-65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-3-(3-Methylphenyl)butanoic acid : isonicotinamide co-crystal (±)-96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additional peaks due to 

trace (±)-ethyl 3-(3-

methyl phenyl)butanoate 

(±)-5  

 

(±)-65 

(±)-96 
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(S)-3-(3-Methylphenyl)butanoic acid : isonicotinamide co-crystal (S)-96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chiral HPLC conditions for (±)-3-(3-methylphenyl)butanoic acid (±)-65 and (±)-3-(3-

methylphenyl)butanoic acid : isonicotinamide co-crystal (±)-96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column 

Injection  

volume  

(μl) 

Flow (mL/min) 
λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

Chiralcel OJ-H 10 0.25 209.8 

IPA mobile phase 

consists of 
 3% TFA 

96 : 4 

0 

(S)-65 / 96 44 

(R)-65 / 96 49 

(S)-96 



ix 

 

(±)-3-(2-Methylphenyl)butanoic acid (±)-64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-3-(2-Methylphenyl)butanoic acid : isonicotinamide co-crystal (±)-95 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

(±)-64 

(±)-95 



x 

 

(S)-3-(2-Methylphenyl)butanoic acid : isonicotinamide co-crystal (S)-95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chiral HPLC conditions for (±)-3-(2-methylphenyl)butanoic acid (±)-64 and (±)-3-(2-

methylphenyl)butanoic acid : isonicotinamide co-crystal (±)-95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column 

Injection  

volume  

(μl) 

Flow (mL/min) 
λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

Chiralcel OJ-H 10 0.25 209.8 

IPA mobile phase 
consists of 

 3% TFA 

96 : 4 

0 

(S)-64 / 95 33 

(R)-64 / 95 61 

(S)-95 



xi 

 

(±)-3-(4-Fluorophenyl)butanoic acid (±)-80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-3-(4-Fluorophenyl)butanoic acid : isonicotinamide co-crystal (±)-97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-80 

(±)-97 



xii 

 

(S)-3-(4-Fluorophenyl)butanoic acid: isonicotinamide co-crystal (S)-97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chiral HPLC conditions for (±)-3-(4-fluorophenyl)butanoic acid (±)-80 and (±)-3-(4-

fluoro phenyl)butanoic acid: isonicotinamide co-crystal (S)-97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column 

Injection  

volume  

(μl) 

Flow (mL/min) 
λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

Chiralcel OJ-H 10 0.25 256.0 

IPA mobile phase 

consists of 
 3% TFA 

96 : 4 

0 

(S)-80 / 97 30 

(R)-80 / 97 40 

(S)-97 



xiii 

 

(±)-3-Phenylbutanoic acid (±)-23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-3-Phenylbutanoic acid : isonicotinamide co-crystal (±)-94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-23 

(±)-94 



xiv 

 

(S)-3-Phenylbutanoic acid : isonicotinamide co-crystal (S)-94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chiral HPLC conditions for (±)-3-Phenylbutanoic acid (±)-23 and (±)-3-Phenylbutanoic 

acid : isonicotinamide co-crystal (±)-94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column 

Injection  

volume  

(μl) 

Flow (mL/min) 
λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

Chiralcel OJ-H 10 0.50 209.8 

IPA mobile phase 

consists of 

 3% TFA 
95 : 5 

0 

(S)-23 / 94 24 

(R)-23 / 94 27 

(S)-94 



xv 

 

(±)-99a 

Dynamic kinetic resolution of the intramolecular nitroaldol reaction  

through lipase catalysis 

 

 

Compound Column 

Injection  

volume 

(μl) 

Flow 

(mL/min) 

λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

 

Chiralcel 

OJ-H 
10 0.90 209.8 99 : 1 rt 

(1R,2R)-100b 17 

(1S,2S)-100b 19 

 

(1S,2R)-99a 58 

(1R,2S)-99a 65 

 

(1R,2R)-99b 74 

(1S,2S)-99b 78 

 

Chiralcel 

OD-H 
10 0.90 209.8 99 : 1 rt 

(1R,2S)-100a 23 

(1S,2R)-100a 30 

 

(1R,2S)-99a 39 

(1S,2R)-99a 51 

Conditions A 

Chiralcel 
OJ-H 

10 0.50 209.8 97 : 3 rt 

(1R,2R)-119b 18 

(1S,2S)-119b 19 

Conditions A 

(1R,2S)-119a 23 

(1S,2R)-119a 27 

Conditions A 

(1S,2R)-117a 33 

(1R,2S)-117a 40 

Conditions A 

(1S,2S)-117b 36 

(1R,2R)-117b 43 

 

 

 

(±)-100b 

(±)-99b 

(±)-100a 

(±)-99a 

(±)-119a 

(±)-117a 

(±)-117b 

(±)-119b 



xvi 

 

Compound Column 

Injection  

volume 

(μl) 

Flow 

(mL/min) 

λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

Conditions B 

Chiralcel 
OJ-H 

10 0.50 209.8 99.5 : 0.5 rt 

(1R,2R)-119b 26 

(1S,2S)-119b 32 

Conditions B 

(1R,2S)-119a 40 

(1S,2R)-119a 49 

Conditions B 

(1R,2S)-117a  95 

(1S,2R)-117a 108 

Conditions B 

(1S,2S)-117b 134 

(1R,2R)-117b 156 

Conditions C 

Chiralcel 
OJ-H 

10 0.75 209.8 97 : 3 rt 

(1R,2R)-119b 12 

(1S,2S)-119b 13 

Conditions C 

(1R,2S)-119a 16 

(1S,2R)-119a 18 

Conditions C 

(1S,2R)-117a 23 

(1R,2S)-117a 26 

Conditions C 

(1S,2S)-117b 25 

(1R,2R)-117b 28 

 

 

 

 

 

 

 

 

 

 

(±)-119a 

(±)-117a 

(±)-117b 

(±)-119b 

(±)-119a 

(±)-117a 

(±)-117b 

(±)-119b 



xvii 

 

Compound Column 

Injection  

volume 

(μl) 

Flow 

(mL/min) 

λ Max 

(min) 

Mobile phase  

(hexane : IPA) 

Temp 

(°C) 

Retention time 

Enantiomer min 

 

Chiralcel 

OJ-H 
10 0.90 209.8 96 : 4 rt 

(1R,2S)-119a 12 

(1S,2R)-119a 14 

 

(1S,2R)-117a 17 

(1R,2S)-117a 18 

 

Chiralcel 
OJ-H 

2 0.50 209.8 97 : 3 rt 

(1R,2R)-119b 18 

(1S,2S)-119b 20 

 

(1S,2S)-117b 37 

(1R,2R)-117b 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±)-117a 

(±)-119a 

(±)-117b 

(±)-119b 
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Appendix II List of abbreviations 
 

aq.     aqueous 

Ar      aryl  

Bn      benzyl  

bp      boiling point  

br s     broad singlet 

Bu      butyl  

BuLi      butyllithium  

COSY      correlation spectroscopy  

DABCO    1,4-diazabicyclo[2.2.2]octane 

DBU     1,8-diazabicyclo[5.4.0]undec-7-ene  

DCC     dicyclohexylcarbodiimide 

DCM      dichloromethane  

dd     doublet of doublets 

DEPT      distortionless enhancement of polarisation transfer  

DMAP     (dimethylamino)pyridine  

DMF      dimethylformamide  

DMP     Dess-Martin periodinane 

DMSO     dimethylsulfoxide  

dr     diastereomeric ratio 

ee      enantiomeric excess  

eq.     equivalents  

Et      ethyl  

EtOAc     ethyl acetate 

EtOH     ethanol 

E-value    enantiomeric value 

g      gram  

h      hour(s)  

HETCOR     heteronuclear correlation  

HPLC     high performance liquid chromatography  

HRMS     high resolution mass spectrometry  

Hz     Hertz 

i      iso  

IMBY     immobilised baker’s yeast 

IPA     iso-propyl alcohol 

IR     infrared  

LDA     lithium diisopropyl amide 

lit      literature  

M      molar  

m     multiplet 

Me      methyl  

mg      milligram  

MHz      megahertz  

min      minute(s)  

mL     millilitre 

mmol     millilitre 

mol     mole 

mp      melting point  

NAD     nicotinamide adenine dinucleotide 

NADP     nicotinamide adenine dinucleotide phosphate 

NMR      nuclear magnetic resonance  

OAc     acetate 

PCC      pyridinium chlorochromate  

Ph      phenyl  



xix 

 

Pr      propyl  

psi     pounds per square inch 

rt      room temperature  

t      tert  

t     triplet 

TBME     tert-butyl methyl ether 

TFA     trifluoroacetic acid 

THF      tetrahydrofuran  

TLC      thin layer chromatography  

TMG     tetramethylguanidine 

TMS     tetramethylsilane 

tosyl      toluenesulfonyl 

UV     ultraviolet 
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Lipase catalysed kinetic resolutions of 3-aryl alkanoic acids 

Rebecca E. Deasy, Maude Brossat, Thomas S. Moody, Anita R. Maguire 
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The Use of Co-crystals for the Determination of Absolute Stereochemistry: An 

Alternative to Salt Formation 

Kevin S. Eccles, Rebecca E. Deasy, László Fábián, Anita R. Maguire, Simon E. Lawrence 

J. Org. Chem., 2011, 76, 1159-1162. 

 

Expanding the crystal landscape of isonicotinamide: concomitant polymorphism and 

co-crystallisation 

Kevin S. Eccles, Rebecca E. Deasy, László Fábián, Doris E. Braun, Anita R. Maguire, Simon 

E. Lawrence 

CrystEngComm, 2011, 13, 6923-6925. 


	title
	abstract etc. corrections
	introduction for thesis corrections
	combined chap 2&3&4&5 corrections
	Appendix

