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Abstract

We analyze the lineshape of the fluorescence emitted by a cloud of optically excited cold atoms

coupled into an optical nanofiber. We examine the efficiency of the fluorescence coupling and

describe the asymmetry of the lineshape caused by the red-shift arising from both the van der Waals

and Casimir-Polder interaction of the atoms with the surface of the optical nanofiber. We conclude

that the lineshape of the fluorescence coupled into an optical nanofiber is generally influenced by

van der Waals and Casimir-Polder redshifts and, although the contribution from the Casimir-Polder

effect is small, both effects should be considered for a complete evaluation.
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I. INTRODUCTION

During the past decade there has been considerable interest in analyzing the interaction

between optically excited cold atoms and dielectric nanobodies. One important aspect

of such an interaction is the resultant modification of the spontaneous emission rate of

atoms located near nanobodies, such as dielectric nanofibers, nanospheres and nanodisks

[1–4]. Fluorescence radiation emitted by excited atoms located near the nanobody and,

subsequently, coupled into the nanobody [5, 6] is another practically important aspect that

should be considered. An experimental observation of the optical coupling efficiency in such

an “atom & nanobody” system, and the spectral dependence of the fluorescence intensity

coupled into the dielectric nanobody, may yield information about the interaction strength

between the atoms and the nanobody surface, including the strengths of the van der Waals

and Casimir-Polder interactions. The spectral dependence of the coupling efficiency is also

of importance for developing schemes for an exchange of quantum information between

single atoms, photons, and nanobodies [7, 8]. The problem is of particular significance for

developing techniques for trapping cold atoms around optical nanofibers [9–11].

The ability to fabricate optical nanofibers [12, 13] has facilitated the growth of exper-

imental studies into “atom & nanofiber” systems. Recent experimental observations have

shown that the fluorescence excitation spectrum may exhibit either a well-pronounced, long

red tail [6] or an asymmetry with an increased red wing of the spectral line [14]. In earlier

work [6], the long red tail of the spectrum was originally assigned to bound transitions of

atoms in the van der Waals potential [15]. However, in later work [14], it was highlighted

that the long red tail was only observed when no specific measures were undertaken to clean

the surface of the nanofiber prior to data acquisition. Subsequently, on cleaning the surface

by violet light, the spectrum exhibited a well-pronounced asymmetry of the spectral line

with a prevailing red side [14], rather than the previously reported long red tail.

The above observations clearly show that atom interactions with the surface of a nanofiber

may depend strongly on the degree of cleanliness of the nanofiber surface. It is, therefore,

of principal importance for experiments on atom-fiber interactions to evaluate the contribu-

tions of basic physical mechanisms to the asymmetry of the fluorescent excitation spectrum,

rather than the effects of a dirty surface. For clean surfaces, such basic mechanisms include

the van der Waals and Casimir-Polder interactions (see, for example, review paper [16]).
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Figure 1: (Color online) Conceptual diagram of the setup with an optical nanofiber surrounded by

an atom cloud, optically excited by near-resonant laser light.

The contribution of the van der Waals interaction to the redshift of the spectral line has

already been observed in the selective-reflection spectroscopy of cesium vapor located near

a dielectric surface [17], for example.

To the best of our knowledge, in the previous works [6, 14, 15] the asymmetry of the

coupled fluorescence lineshape was attributed to the redshift caused by the van der Waals

interaction alone. In this paper, we evaluate the contributions arising from both van der

Waals and Casimir-Polder interactions to the spectral dependence of the coupled fluorescent

light and we show that these two basic surface interactions are, in general, responsible for

the asymmetry of the lineshape. However, the contribution from the Casimir-Polder effect is

very small compared to the van der Waals contribution and may be negligible under certain

conditions.

In what follows we analyze the coupling of light emitted by 85Rb and 133Cs cold atomic

clouds. We choose 85Rb and 133Cs for our evaluations since these elements are widely used

in cold atom experiments. Specifically, we evaluate the fluorescence spectrum emitted by

optically excited atoms into the fundamental guided mode of an optical nanofiber. Results

from our study show that, for typical radii of optical nanofibers in the range from 200-

600 nm, and atomic clouds that are tightly confined around the nanofiber, the fluorescence

excitation spectrum exhibits a well-pronounced asymmetry caused by the van der Waals

redshift and a slight reduction in the asymmetry arising from the Casimir-Polder redshift.
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Figure 2: (Color online) Position of the atom (A) near an optical nanofiber and excited by laser

light (LL).

II. POWER OF FLUORESCENCE COUPLED INTO THE FIBER

We consider a collection of cold, two-level atoms in the vicinity of an optical nanofiber

as shown in Fig. 1. The atoms are excited by a laser field near-resonant to the atomic

dipole transition and they emit fluorescent light which partially propagates into the guided

modes of the fiber. We consider the case where the frequency of the fluorescent light is

below the cut-off frequencies of all modes apart from the fundamental, HE11, mode, so that

the fluorescent light can only ever propagate in the fundamental mode. The lower state of

the atom is considered to be the ground state and we assume that the upper state can only

decay to the ground state. The two-level atom model is partially justified by the fact that,

for degenerate optical transitions, different magnetic sublevels have very similar spontaneous

decay rates [4].

For a single, motionless, two-level atom placed near the optical fiber and excited by an

external laser field near-resonant to the dipole optical transition (c.f. Fig. 2) the probability

of finding the atom in the upper excited state is

pe =
1

2

Ω2

(ω − ω0)2 + γ2 + Ω2
, (1)

where Ω = dE0/2~ is the Rabi frequency defined by the atomic dipole matrix element, d,

and amplitude, E0, of the exciting laser field, ω is the frequency of the laser light, ω0 is the

position-dependent atomic transition frequency, and γ is half the position-dependent total

spontaneous decay rate, Wsp = 2γ. In the case we are considering, the spontaneous decay
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rate is made up of two position-dependent decay rates, γ(g) into the guided modes of the

fiber and γ(r) into the radiation modes of the fiber, such that

Wsp = 2γ = 2γ(g) + 2γ(r). (2)

For a single atom the probability of spontaneous photon emission into a guided mode of the

fiber per unit time is proportional to the population, pe, of the excited atomic state and the

rate of spontaneous emission, 2γ(g), into the guided mode,

W (r) = 2γ(g)(r)pe(r) =
γ(g)(r)Ω2

(ω − ω0(r))2 + γ2(r) + Ω2
. (3)

In the above equation we explicitly show that the atomic transition frequency and the

spontaneous emission rates are functions of the atom’s position, r. For an ensemble of

motionless, two-level atoms distributed near the fiber with density n (r), the light power

coupled into the fundamental guided mode is accordingly defined by the volume integral

P = ~ω
∫

γ(g) (r) Ω2

(ω − ω0(r))2 + γ2(r) + Ω2
n (r) dV. (4)

Hence, the power coupled into the optical fiber depends on the shape of the atomic cloud

and its position with respect to the axis of the fiber. Note that the power considered is the

total power coupled into the nanofiber. If one were to monitor the power output at one end

of the fiber, the observed power would be half the total power.

In the following, we consider the case of a weak optical saturation and neglect the Rabi

frequency in the denominator of the excitation probability. At weak saturation the atoms

are mostly in the ground state and, as a result, the atomic transition frequency is shifted

primarily due to a shift of the ground state. Taking into account that a contribution to

the shifts of the atomic states comes from both the van der Waals and Casimir-Polder

interactions, the shift of the atomic transition frequency can be evaluated as

ω0 (r) = ω0
0 − δω (r) , (5)

where δω (r) represents the shift due to the van der Waals or Casimir-Polder interactions.

In the case of a dielectric surface δω (r) is given by either [16, 18–21]

δωvdW (r) =
C3g

(r − a)3
, (6)

5



or

δωCP (r) =
3γ0

8π

ε− 1

ε + 1

(
λ

2π(r − a)

)4

ϕ(ε). (7)

In the above equations ω0
0 is the transition frequency, γ0 is half the natural linewidth for the

free atom, C3g is the van der Waals constant for the ground atomic state, λ is the wavelength

of the laser light, r − a is the distance between the atom and the surface of the fiber, ε is

the static relative permittivity of the fiber material, and ϕ(ε) is a slowly varying function

close to unity, 0.77 ≤ ϕ(ε) ≤ 1. The explicit structure of the function ϕ(ε) can be found in

[18, 19].

Finally, the total power of the fluorescent light coupled into the guided fiber mode at

weak optical saturation can be written as

P = ~ω
∫

γ(g) (r) Ω2

[ω − ω0
0 + δω (r)]

2
+ γ2(r)

n (r) dV. (8)

It is worth noting here that, for a typical dipole transition where the wavelength, λ, lies in

the visible to the near-infrared region, the border between the van der Waals and Casimir-

Polder interactions usually occurs at a distance from the surface of r − a ' λ/10 ' 50− 80

nm. Van der Waals attractions are very short ranged and contribute primarily at distances

very close to the surface, i.e at r−a ≤ λ/10. At larger distances, r−a ≥ λ/10, the Casimir-

Polder interaction replaces the van der Waals potential and, therefore, should be included

in the evaluations.

A numerical evaluation of the integral defined by Eq.(8) is given in the next section.

Before presenting the numerical results, we will briefly discuss the spatial selectivity of

the van der Waals and Casimir-Polder interactions and present numerical values of their

corresponding redshifts.

Let us assume, for simplicity, that the ensemble of cold, two-level atoms placed around

the optical fiber is spatially broad. In principle, every atom could be excited by the laser

field and, subsequently, would be able to emit fluorescent light. However, the resonance

condition restricts the spatial position of atoms which can, in reality, emit fluorescence.

According to Eq.(8), for the case of the van der Waals interaction, the atoms are essentially

excited at a mean radial position, rvdW, given by

rvdW ' a + 3

√
C3g

ω0
0 − ω

(9)
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Figure 3: Position-dependent optical absorption line. The shaded area indicates the position of

the cylindrical shell containing the excited atoms.

occupying a cylindrical shell coaxially located around the optical fiber as shown in Fig. 3.

In a similar way, the Casimir-Polder interaction is responsible for the excitation of atoms in

a cylindrical shell with mean radial position, rCP, given by

rCP ' a +
λ

2π
4

√
3γ0

8π (ω0
0 − ω)

. (10)

The spatial width, δr, of the cylindrical shell containing excited atoms is defined by a

position dependent frequency width, 2γ(r), of an optical resonance. Assuming that at the

edges of the shell the probability of atomic excitation is half that at the center of the shell,

one can evaluate the radii of the shell edges, r1 and r2, as roots of the equations

ω0 (r1,2) ' ω0 (r)∓ γ(r1,2). (11)

Hence, the spatial width of the cylindrical shell containing excited atoms is given by δr =

r2 − r1. It can be easily shown that, when the average frequency shift, ω0
0 − ω0(r), exceeds

the natural linewidth, γ(r), the spatial width of the shell is small compared to the shell

radii, i.e. δr << r1,2, and can be evaluated neglecting small variations in the spontaneous

emission rate inside the shell, i.e. making the approximation γ(r1,2) ' γ(r) ' γ0. For the

van der Waals interaction this simplification results in an estimate of the spatial width of

the shell that is given by

δrvdW ' 2(rvdW − a)4γ0

3C3g

. (12)
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Table I: Position and width of the cylindrical shell containing excited two-level atoms for van der

Waals and Casimir-Polder interactions.

ω ω0
0 − 2γ0 ω0

0 − 3γ0 ω0
0 − 4γ0

rvdW − a, nm 74 64 58

δrvdW, nm 29 16 10

rCP − a, nm 64 57 53

δrCP, nm 17 11 7

For the case of the Casimir-Polder interaction the above simplification yields a characteristic

width

δrCP ' 2λ

3

(
2π(rCP − a)

λ

)5

. (13)

The total power of the fluorescent light exciting the guided fiber mode is proportional to

the volume, V , of the cylindrical shell with inner radius, r1, and outer radius, r2, i.e. the

volume V = π (r2
2 − r2

1) l ' 2πrδrl, where l is the spatial extension of the atomic ensemble

along the fiber. Hence, the power of the fluorescent light coupled into the guided mode can

be evaluated from

P = 2π~ωγ(g) (r)
Ω2

γ2(r)
n(r)rδrl. (14)

For the van der Waals and Casimir-Polder interactions the mean radius and width of the

shell containing excited atoms can be estimated from Eqs.(9), (10), (12), and (13).

Numerical values of the mean radii and widths of the shells for the van der Waals and

Casimir-Polder interactions for typical optical dipole transition parameters are given in Table

I. The data have been calculated for a value of the van der Waals constant, C3g = 2π · 2
kHz(µm)3, a wavelength, λ = 800 nm, and for three values of the laser field frequency,

ω = ω0
0 −nγ0, with n = 2, 3, 4 and 2γ0 = 2π · 5 MHz chosen as a typical value of the natural

linewidth for the optical dipole transition. The values shown in Table I indicate clearly

that, for a typical dipole transition, both the van der Waals and Casimir-Polder interactions

produce comparable contributions to the asymmetry of the fluorescence lineshape.
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Figure 4: (Color online) Normalized spontaneous decay rate of a two-level atom into the funda-

mental guided mode, HE11, as a function of distance between the atom and the axis of the optical

nanofiber for a radius a = 200 nm.

III. NUMERICAL EVALUATIONS

In our basic Eq.(8) there are two unknown quantities: the spontaneous emission rate

into the guided mode and the spontaneous emission rate into the radiation modes. Of these

two quantities, the most important for our analysis is the rate of spontaneous emission into

the guided mode. This quantity varies sharply near the surface of the fiber and, therefore,

strongly influences the rate of coupling of spontaneously emitted light into the fiber. The

rate of spontaneous emission into the radiation modes changes weakly near the fiber, keeping

its value approximately equal to the rate of spontaneous emission into free space. In the

following analysis we will neglect the weak spatial dependence of the spontaneous emission

rate into the radiation modes and consider only the position dependence of the spontaneous

emission rate into the guided mode.

A complete evaluation of the spontaneous emission rate into the fundamental guided

mode of an optical fiber is presented in Appendices A and B. The spatial distribution of

the evanescent light field of a fundamental guided mode is given in Appendix A, while the

spontaneous emission rate into the fundamental mode is given in Appendix B. Figure 4 shows

the dependence of the spontaneous decay rate for a two-level atom as a function of distance

between the atom and the optical nanofiber surface calculated according to Eq.(B9).

We can now estimate the fluorescence emission line spectrum for 85Rb and 133Cs atoms.

We assume the atoms emit fluorescence light into an optical fiber made of fused silica, with

9
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Figure 5: (Color online) Frequency dependence of the fluorescence power from a Rb cloud coupled

into the optical nanofiber for a fiber radius a = 200 nm and an atomic cloud radius R = 600 nm

(blue), 400 nm (red), 200 nm (purple), and 150 nm (green). The solid black line shows the free

space lineshape and all lines are normalized to a maximum value of 1 for ease of comparison.

permittivity, ε = 2.1. The Rb atoms are assumed to be excited at the 5S-5P optical dipole

transition, with a wavelength of 780 nm and a spontaneous decay rate of 2γ0 = 2π· 6 MHz

[22, 23] from the upper 5P state into free space. For the ground state of Rb atoms the van

der Waals constant is evaluated as C3g = 2π ·3 kHz(µm)3 [17, 24, 25]. Cs atoms are assumed

to be excited at the 6S-6P optical transition with a wavelength of 852 nm and a spontaneous

decay rate of 2γ0 = 2π· 5.2 MHz [22] from the upper 6P state into free space. The van der

Waals constant for the ground state of Cs atom is C3g = 2π ·1.56 kHz(µm)3 [17, 24, 25]. For

both optical transitions, with relatively close wavelengths, the refractive index of the fiber

is chosen to be n1 = 1.45 and the refractive index of the outside medium is n2 = 1.

We assume that the cold atoms are distributed in a spherically symmetric cloud centered

on the axis of the optical fiber. The cloud is assumed to have a Gaussian density distribution,

n(r), in the radial direction with half width, R, such that

n(r) = n(r) =
N

π
√

πR3
exp

[
−

( r

R

)2
]

, (15)

where N is the total number of atoms and is given by

N = 4π

∫
n(r)r2dr. (16)
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Figure 6: (Color online) Frequency dependence of the fluorescence power from a Cs cloud coupled

into the optical nanofiber for a cloud radius R = 300 nm and a nanofiber radius of 200 nm (red),

300 nm (blue), and 350 nm (green). The solid black line represents the free space lineshape. All

lines are normalized to a maximum value of 1 for ease of comparison.

Figure 5 shows the coupled fluorescence spectrum calculated from Eq.(4) and only taking

the van der Waals shift into account for rubidium atoms. As one can see, the asymmetry of

the fluorescence lineshape increases when the radius of the atomic cloud decreases. In other

words, the tighter the cloud around the fiber the more pronounced the asymmetry becomes.

As the radius of the cloud increases the atoms located further from the nanofiber are less

influenced by the change in the van der Waals frequency shift and, hence, the shape of the

fluorescence spectrum approaches that of the symmetrical, free space distribution.

In Fig. 6 we present the reverse situation for cesium atoms, i.e. the atom cloud size is

kept constant while varying the size of the nanofiber. As can be seen, a very similar result is

obtained. As we increase the fiber radius, more of the fluorescing atoms are very close to the

surface of the fiber and, as a result, the van de Waals potential affects a greater proportion

of the total atoms in the cloud, leading to more pronounced asymmetry in the lineshape.

If we now consider a combination of the van der Waals and Casimir-Polder effects we

see that a similar phenomenon is observed (c.f. Fig. 7 for cesium atoms). Note that it is

not physically realistic to talk in terms of the Casimir-Polder effect on its own; hence, Fig.7

shows a combination of the the van der Waals + Casimir Polder effect for a fixed cloud radius

of R = 400 nm and varying nanofiber radii. In order to evaluate the total effect, we divided
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Figure 7: (Color online) Frequency dependence of the fluorescence power from a Cs cloud coupled

into the optical nanofiber for redshift contributions from both the van der Waals and Casimir-

Polder effects. The cloud radius is R = 400 nm and the nanofiber radius is varied. The solid black

line shows the free space lineshape and all lines are normalized to a maximum value of 1 for ease

of comparison.

the integral into two regions of space, one where the van der Waals effect is dominant and

another where the Casimir-Polder effect is dominant. We calculated the total power coupled

into the fiber for the corresponding effect in each region and added the results. It is clear

that the most pronounced effect is observed when the fiber radius approaches that of the

effective cloud radius. This arises since there is a greater population of atoms fluorescing

near the fiber surface under such conditions. In the case where the fiber radius and cloud

radius are equal, we obtain the most pronounced asymmetry, as illustrated in Fig. 7 for

a = 400 nm. Note that inclusion of the Casimir-Polder effect has resulted in an overall

reduction of the redshift to the lineshape compared to that obtained for the van der Waals

interaction alone (c.f. Fig. 6).

Since the redshift should be almost entirely due to atoms either on or very near the fiber,

the next question to address is whether or not the redshift is due to the van der Waals

interaction near the fiber surface, bearing in mind that Casimir-Polder effects are more

significant at larger distances and, therefore, may prove to be negligible. Contributions from

the Casimir-Polder potential exceed the van der Waals contributions at distances greater
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Figure 8: (Color online) Frequency dependence of the fluorescence power from a Cs cloud coupled

into the optical nanofiber for different lineshape contributions: van der Waals effect only (black),

Casimir-Polder + van der Waals (red), for different cloud radii and fiber radii. All lines are

normalized to a maximum value of 1 and the free space lineshape is provided for ease of comparison

between the curves.

than 28.3 nm from the fiber for Rb atoms and 67.2 nm for Cs atoms, regardless of the size of

the fiber. Despite the fact that this changeover from one regime to another is very close to

the fiber, the effect this has on the lineshape of the power coupled into the fiber is relatively

insignificant.

The slight reduction in the observable redshift due to inclusion of the Casimir-Polder effect

is evident from the plots in Fig. 8. Hence, while the van der Waals interaction is clearly the

dominant influence on the lineshape, the overall lineshape should include the contributions

from the Casimir-Polder effect in order to obtain a precise prediction of the fluorescence

coupled into a nanofiber. A comparative investigation of this behavior for different values of

a and R is given, in order to determine under what conditions this change to the lineshape,

arising from the Casimir-Polder effect, can be neglected. Clearly, irrespective of the values

chosen for a and R, no appreciable difference arises when one includes the Casimir-Polder
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Figure 9: (Color online) Power coupled into a nanofiber as a function of fiber radius. The power

shown is the maximum power for each value of fiber radius. The data was plotted for a Rb cloud

with R = 500 nm.

effect. In fact, we see that the overall redshift decreases with increasing values of a and R.

For a = R = 200 nm there is a small, but identifiable, difference between the two spectra

as shown in Fig. 8(a). For larger values of R with respect to a (Figs. 8(b) and (c)), the

difference between the lineshapes reduces as the spectra approach the free space lineshape.

Even in the case of a = R = 600 nm (Fig. 8(d)), any difference between the two regimes

is essentially unresolvable. One explanation behind this result is that when a = R very few

atoms experience the Casimir-Polder interaction as the cloud density has decreased by a

factor of exp(a+λ/10
R )

2

in the region where Casimir-Polder dominance begins. When R > a

the density of atoms has also reduced significantly at the crossover region, thereby yielding

a very small contribution to the lineshape from the distant atoms.

Note that, for ease of comparison, we have normalized all powers coupled into the

nanofiber to a maximum value of 1 in Figs. 5-8. In reality, there are large differences

in the total power coupled into nanofibers of different radii. In Fig. 9 we plot the total

power coupled into a nanofiber as a function of nanofiber radius and, as expected, the power

reduces significantly with increasing fiber radius for a fixed atom cloud size.

IV. CONCLUSION

We have examined the efficiency of coupling the fluorescence emitted from an ensemble

of cold, two-level atoms into an optical nanofiber and we have calculated the frequency
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dependence of fluorescence power coupled into the fundamental guided mode of the optical

nanofiber. We evaluated the coupled fluorescence spectrum by taking into consideration the

two redshifts due to contributions from both van der Waals and Casimir-Polder interactions.

Our evaluations show that both the van der Waals and Casimir-Polder potentials contribute

to the asymmetry of the fluorescence line and the asymmetry is more pronounced for atomic

ensembles that are tightly confined around the optical nanofiber. In the case where the

cloud is very much larger than the nanofiber, the contribution from the Casimir-Polder

interactions is negligible. We also found that the asymmetry of the fluorescence line increases

as the fiber radius is increased. We conclude that for a correct and accurate comparison

of the experimentally obtained profile of the lineshape with the theoretical lineshape one

should consider both the van der Waals and Casimir-Polder redshifts. This is particularly

important if one considers atom clouds that are very tightly confined around the nanofiber.

If the power coupled into the fiber were monitored at both ends of the fiber, correlations

between the modes emitted in two opposite directions could be studied. This may lead to

the possibility of observing photon bunching or anti-bunching.
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Appendix A: Spatial distribution of the electric field for the fundamental

guided mode, HE11, of an optical nanofiber

We represent the operator of a quantized vacuum electric field of the guided modes of a

nanofiber in a standard form

E =
∑

Eλaλ + h.c., (A1)

where Eλ is the electric field of a single vacuum guided mode, aλ is the photon annihilation

operator, and index λ describes the direction of propagation and polarization of a single

vacuum guided mode. The electric field of a single guided mode can be represented as [26]

Eλ = i

√
~ωλ

2ε0L
ẽλe

iβλz+imϕ, (A2)

where ωλ is a mode frequency, βλ is a propagation constant, ẽλ = ẽλ(r, φ) is a normalized

amplitude of the electric field, m is a quantum number of the mode angular momentum,

and L is the length of a one-dimensional ”box” which is defined by a spatial periodicity of

the field. The electric field amplitude of a single guided mode is normalized as

∫ 2π

0

∫ ∞

0

n2(r) |ẽλ|2 dϕrdr = 1, (A3)

where n(r) is the value of the refractive index equal to n1 inside the fiber and n2 = 1 outside

the fiber. The above representation of the vacuum field corresponds to a standard form of

the vacuum field Hamiltonian

Hvac = 2ε0ε
∑ ∫

dV |Eλ|2
(
a†λaλ + 1

2

)
=

∑
~ωλ

(
a†λaλ + 1

2

)
. (A4)

For the fundamental guided mode, HE11, the propagation constant β is defined by the

eigenvalue equation as

J0 (ha)

haJ1 (ha)
=−

(
n2

1 + n2
2

2n2
1

)
K ′

1 (qa)

qaK1 (qa)
+

1

h2a2

−
[(

n2
1 − n2

2

2n2
1

)2 (
K ′

1 (qa)

qaK1 (qa)

)2

+

(
β

n1k

)2 (
1

h2a2
+

1

q2a2

)2
]1/2

,

where Jm are Bessel functions of the first kind, Km are modified Bessel functions of the

second kind, k = ω/c, and

h =
√

n2
1k

2 − β2, q =
√

β2 − n2
2k

2,
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. We note that there are four different field distributions for the fundamental mode HE11:

two with opposite directions of propagation and two with opposite circular polarizations.

In what follows, we write the field distribution for a guided mode with positive propagation

constant and positive circular polarization using decomposition over cylindrical unit vectors

ẽ = erẽr + eϕẽϕ + ez ẽz.

The cylindrical components of a normalized electric field amplitude for the HE11 mode

in the core region are given by [27]

ẽr = iA
q

h

K1(qa)

J1(ha)
[(1− s)J0(hr)− (1 + s)J2(hr)] ,

ẽϕ = −A
q

h

K1(qa)

J1(ha)
[(1− s)J0(hr) + (1 + s)J2(hr)] ,

ẽz = 2A
q

β

K1(qa)

J1(ha)
J1(hr),

and outside of the core region are given by

ẽr = iA [(1− s)K0(qr) + (1 + s)K2(qr)] ,

ẽϕ = −A [(1− s)K0(qr)− (1 + s)K2(qr)] ,

ẽz = 2A (q/β) K1(qr).

In the above equations s is a dimensionless parameter such that

s =
1/h2a2 + 1/q2a2

S
,

where the denominator is as

S = J ′1(ha)/haJ1(ha) + K ′
1(qa)/qaK1(qa),

The normalization constant defined from Eq. (A3) is

A =
β

2q

J1 (ha) /K1 (qa)√
2πa2 (n2

1N1 + n2
2N2)

, (A5)

where

N1 =
β2

4h2

{
(1− s)2

[
J2

0 (ha) + J2
1 (ha)

]
+ (1 + s)2

[
J2

2 (ha)− J1(ha)J3(ha)
]}

+
1

2

[
J2

1 (ha)− J0(ha)J2(ha)
]
,
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N2 =
J2

1 (ha)

2K2
1(qa)

{
β2

2q2

[
(1− s)2

[
K2

1(qa)−K2
0(qa)

]− (1 + s)2
[
K2

2(qa)−K1(qa)K3(qa)
]]

−K2
1(qa) + K0(qa)K2(qa)

}
.

The intensity distribution of the electric field inside the core is defined by a quantity

|ẽ(r)|2 = 2A2K2
1(qa)

J2
1 (ha)

{
q2

h2

[
(1− s)2J2

0 (hr) + (1 + s)2J2
2 (hr)

]
+

2q2

β2
J2

1 (hr)

}
, (A6.a)

and outside the core it is defined by the quantity

|ẽ(r)|2 = 2A2

[
(1− s)2K2

0(qr) + (1 + s)2K2
2(qr) +

2q2

β2
K2

1(qr)

]
. (A6.b)

Appendix B: Evaluation of the spontaneous decay rate into the fundamental

guided mode

The following derivation of the spontaneous emission rate follows a standard approach

based on the Hamiltonian for a system ”two-level atom + vacuum field” given by

H = ~ω0b
+b +

∑

λ

~ωλ

(
a+

λ aλ + 1
2

)− d·
∑

λ

(Eλb
+aλ + E∗λba+

λ

)
, (B1)

where b+ and b are the atomic excitation and de-excitation operators, a+ and a the creation

and annihilation operators, and d is a matrix element of the atomic dipole moment. For

the Hamiltonian (B1) the equations for probability amplitudes for the simplest case of a

vacuum field initially in the vacuum state are

·
ce,0 =

i

~
∑

λ

d·Eλe
−i∆λtcg,1λ

, (B2.a)

·
cg,1λ

=
i

~
d·E∗λei∆λtce,0, (B2.b)

where cg,1λ
are the probability amplitudes of the states which include the ground atomic

state and the state of the vacuum field with one photon in mode λ and ce,0 is a probability

amplitude of the state which includes the excited atomic state and the state of the vacuum

field with zero photon numbers in all the modes.

Taking a formal solution of the second equation in the above set

cg,1λ
=

i

~
d·E∗λ

∫ t

t0

ei∆λt′ce,0(t
′)dt′, (B3.a)
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and substituting it into the first equation one can obtain an equation which describes the

spontaneous decay of the upper atomic state

·
ce,0 = − 1

~2

∑

λ

|d·Eλ|2
∫ t

t0

ei∆λ(t′−t)ce,0(t
′)dt′. (B3.b)

An application of the above equation to the vacuum modes of free space gives a well-known

decay equation
·
ce,0 = −γ0ce,0, (B4)

where γ0 is half the spontaneous decay rate into free space,

Wsp = 2γ0 =
1

4πε0

4d2ω3
0

3~c3
. (B5)

We now apply basic equation (B3.b) to the fundamental guided mode HE11 of the vacuum

field. The vacuum field of a single guided mode can be considered as periodic with spatial

period, L, and the periodicity condition can be written as βαL = 2πnα, where nα = 1, 2, 3, ...

defines different values of the propagation constant, βα. By making use of the periodicity

condition, the sum over discrete numbers, nα, in Eq. (B3.b) can be replaced by an integral

such that ∑
→ L

2π

∫
dβ.

Taking into account a one-to-one correspondence between values of the propagation constant

and frequencies of the vacuum modes, β = β(ω), one can replace dβ by dβ = β̃′dω, where

β̃′ = dβ/dω. This gives ∑
→ L

2π

∫
β̃′dω.

Next, integrating Eq. (B3.b) over frequency and time and using an equation

∫
ei(ω−ω0)(t′−t)dω = 2πδ(t− t′),

while taking into account that the fundamental mode HE11 has two directions of propagation

and two polarizations, Eq. (B3.b) can be rewritten as

·
ce,0 = −γ(g)ce,0, (B6)

where γ(g) is half the spontaneous decay rate into the guided mode

W (g)
sp = 2γ(g) =

ω0β̃
′

ε0~
|d · ẽ|2 . (B7)
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In the last equation ẽ is an amplitude of the guided mode with a positive propagation con-

stant and positive circular polarization. Note that Eq. (B7) coincides with a corresponding

equation from [4].

Assuming d = d+ is a spherical component of the atomic dipole moment one can finally

rewrite the spontaneous decay rate into the fundamental guided mode HE11 as

W (g)
sp (r) = 2γ(g) = 2A2d2ω0β̃

′

ε0~

[
(1− s)2K2

0(qr) + (1 + s)2K2
2(qr) +

2q2

β2
K2

1(qr)

]
, (B8)

where the constant A is defined by Eq. (A5). Equation (B8) can be rewritten in a convenient

form by introducing a dimensionless derivative, β′ = dβ/dk = cβ̃′, and making use of Eq.

(B5) for the spontaneous decay rate into free space,

W (g)
sp (r) = 2γ(g) = γ0

3A2λ2β′

π

[
(1− s)2K2

0(qr) + (1 + s)2K2
2(qr) +

2q2

β2
K2

1(qr)

]
. (B9)
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