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Abstract 

 

This is a publication-based thesis which focuses on the study of electrochemical 

microbiosensors for glucose detection. It investigates applications of a series of microfabricated 

gold electrodes based on several nanostructures in electrochemical biosensing technologies, 

embracing three major methodologies: direct electro-catalytic detection, enzymatic detection 

and dual-enzyme cascade detection. The study is described over five main chapters with a sixth 

providing a summary of the material presented and perspectives for the future. 

 

Chapter 1 provides an introduction to the field of the electrochemical biosensors with a specific 

focus on the chosen nanostructures and miniaturized systems, as well as a brief history of the 

biosensor. 

 

Chapter 2 presents results published in ACS Applied Nanomaterials, 2019, 2, 9, 5878-5889. It 

demonstrates the enzyme free detection of glucose via a direct electro-catalytic reaction. The 

miniaturized band array electrodes with specific width, length and inter-electrode-distance 

were integrated with homogeneously distributed copper foam nano dendrites. Such foam 

deposits presented for the first time at the micro scale were achieved using the in-situ 

hydrogen bubble template method. The resulting very high electroactive surface area of the 

porous foam deposits was one of the major advantages in terms of achieving superior 

performance from each micro band foam electrode towards glucose detection. Moreover, both 

sensors also showed a strong resistance to the poisoning effects of chloride ions and displayed 

excellent stability over a period of three months.  

 

Chapter 3 presents the first of two sets of results for the enzymatic detection of glucose, results 

published in Elsevier Electrochimica Acta, 2019, 293, 307-317.  

 

Chapter 4 then presents the second set of results on this topic which is published in and Elsevier 

Electrochimica Acta, 2019, 298, 97-105. The aim of these two chapters is to discuss the effect of 
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miniaturization on the enzymatic biosensor performance which was studied in the presence of 

a carbon quantum dot (CQD) and gold nanoparticle nanohybrid system. CQDs, are a new class 

of carbon-based materials and have been used here for the first time as a matrix component 

integrated onto microfabricated gold electrode surfaces for enzyme immobilization and further 

miniaturization. The biosensors developed were studied by electrochemistry to investigate the 

analytical performance of each device. By scaling down the surface area of the biosensor, a 13-

times increase in sensitivity was achieved towards glucose. Moreover both sensors-planar, 

micro disk array- exhibited excellent reproducibility, reusability and operational stability in 

terms of the performance of biosensors.  

 

Chapter 5 presents results published in RSC Analyst, 2020 (DOI: 10.1039/C9AN01664C). It 

demonstrates the operation of a dual-enzyme cascade which was constructed onto a micro 

band array electrode based on glucose oxidase and horseradish peroxidase enzymes. To 

achieve a very high surface area, a porous gold-foam was electrodeposited onto surface and 

then a second electrodeposition layer of chitosan and multi walled carbon nanotube nano-bio-

composite. The micro band cascade scheme developed exhibited the highest sensitivity 

towards glucose detection in comparison to other systems reported in the literature. 

 

Chapter 6 provides an insight into the field of electrochemical biosensing with the support of 

the achievements presented in this thesis. Thus, by taking advantage of the available system, 

this chapter discusses the possible future applications of the electrochemical biosensors. 

 

The thesis then ends with section 7 which presents some Appendices.  
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CHAPTER 1 
Introduction 
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1. Introduction 

 

This introduction aims to provide context relevant to this doctoral study in the form of a brief 

history of electrochemical glucose biosensors, the evolution of sensor technology towards 

miniaturized systems and a discussion of recent trends and state-of-the-art results available in 

the literature. It starts with the history of biosensors showing the recent progress made in this 

interdisciplinary research field, highlighting the most influential studies which have opened up a 

new era within the field. The literature examples of enzymatic glucose biosensors based on gold 

nanostructures, carbon nanotubes, carbon quantum dots and chitosan are described in detail. 

The systems which do not require an enzyme but successfully catalyze the glucose –so called 

“non-enzymatic” or “enzyme-free” sensors– are also highlighted by some very recent research 

examples. Finally the miniaturized systems based on microfabrication technologies are 

introduced paying particular attention to the neural sensor probes, miniaturized 

electrochemical biosensors and microbiosensor integrated devices. 

 

1.1 A Brief history of glucose biosensors 

The first enzyme-based electrode was reported by Clark and Lyons in 19621. This device was 

based on glucose oxidase entrapped within a semipermeable dialysis membrane which was 

constructed on an oxygen electrode. Following this, Clark’s patent in 1970 demonstrated the 

use of enzymes to convert electroinactive substrates to electroactive substances (Fig. 1.1). This 

system relied on two different electrode systems. The first electrode system, which consisted of 

at least one enzyme in a capillary thin layer between the electrode and the membrane, was 

responsible for the conversion of the substrate to electroactive material in the presence of 

interfering species. The second electrode system was sensitive to the interfering species 

available in the sample. By subtracting the measured current from the second electrode system 

from the measured current from the first electrode system, Clark’s device was able to monitor 

the glucose.    
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Figure 1.1. The schematic representation of first generation glucose biosensor based on oxygen electrode or 
peroxide electrode (redrawn from A.P.F. Turner, Home blood glucose biosensors: a commercial perspective

2
, first 

generation biosensors 

 

First Generation Biosensors. Clark’s technology was transferred to the Yellow Springs 

Instrument Company (Ohio, USA) and became commercial in 1975 with the successful launch of 

the first glucose analyzer based on the amperometric detection of hydrogen peroxide from 25 

µL samples of whole blood, so called model 23A YSI analyzer, Fig.1.2.  

 

 

Figure 1.2, YSI 23A glucose biosensor
2
 and sensor probe with immobilized enzyme membrane for the Yellow Springs 

Instruments
3
, 1975 

 

Clark’s electrode scheme (Fig.1.1) also shows the possibility of glucose monitoring via the 

oxidation of hydrogen peroxide produced by the enzymatic reaction which is proportional to 

the glucose concentration. Thus for the construction of the biosensor of 23A YSI analyzer, 

glucose oxidase was immobilized between two membrane layers. The first layer was a 

polycarbonate membrane which was used to permit only glucose molecules to move towards 
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the enzyme layer by blocking the many other larger substances including enzymes and proteins 

available in whole blood; thus decreasing the interference effect. Therefore, only glucose 

reached the enzyme layer where it was oxidized. The product hydrogen peroxide from this 

reaction passed through a cellulose acetate membrane which also acted as a barrier for the 

larger molecules. Finally hydrogen peroxide was amperometrically detected at the platinum 

electrode surface. The associated reactions are shown below: 

 

Reaction 1: Glucose + O2 
               
              Gluconic acid + H2O2                                     (1) 

Reaction 2: H2O2 
                   
                O2 + 2H+ + 2e-                                                          (2) 

 

The first generation biosensor of the “23A sensor probe” was relatively expensive due to the 

presence of a platinum electrode. Even though it was robust, it was not suitable for 

miniaturization since it was not based on a simple detection method. Moreover the high 

applied voltage for hydrogen peroxide detection made the system prone to interference in the 

absence of the utilized barrier membranes2. 

 

Consideration of such issues in relation to the first commercial biosensor have led to fierce 

competition in the market which in turn has established the highly interdisciplinary research 

area of biosensors (and in particular electrochemical biosensors), which aims to improve the 

characteristics and performance of the biosensors and further miniaturize the overall systems.  

 

Second Generation Biosensors. With this latter consideration in mind, the maturation of the 

fields of surface chemistry, screen-printing technologies and semiconductor integration 

technologies combined with the use of synthetic electron acceptors has resulted in major 

advances in the development of   commercial electrochemical glucose biosensors. Synthetic 

electron acceptors in the form of redox couples or mediators are able to shuttle electrons 

between the redox center of the enzyme and the surface of the electrode. Thus, many 

inorganic redox couples and organic dyes have been successfully deployed in order to shuttle 

electrons for the reaction of glucose catalysis by glucose oxidase. In the early 1980s, it was 
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realized that this method allowed the devices to operate at lower potentials, decreasing 

interference effects. In addition it was found that the reaction did not depend on the 

concentration of dissolved oxygen in the electrolyte. This was reported in 1984 as the first 

mediated amperometric biosensor toward glucose, which was the result of collaboration 

between Oxford University and Cranfield University4. Meanwhile, screen printing technologies 

were adapted for the production of disposable, small or miniaturized, robust and cheap 

electrodes for amperometric biosensors. These two innovative research initiatives gave rise to 

the first very successful home-use blood glucose biosensor based on mediators and screen 

printed electrodes. In 1987, these biosensors were launched under the brand name of ExacTech 

by the MediSense Company (whose original name was Genetics International) which was a 

company founded between the universities of Cranfield and Oxford. Fig. 1.3 shows the first 

home-use glucose biosensor and illustrates its working principle. 

 

 

Figure 1.3, The MediSense ExacTech home-use glucose biosensors
2
, 1984 and the schematic image of the mediated 

biosensor working principle, second generation biosensors 

 

To date, all subsequent MediSense (now owned by Abbott) glucose biosensors have applied 

essentially similar technology in the form of an amperometric biosensor. Briefly, this biosensor 

involves the use of the enzyme glucose oxidase and mediators deployed on a disposable strip. 

Several improvements have been implemented since the launch of the first device in 1987, 

however the concept of the biosensor has remained mostly the same. The market for glucose 

biosensors has grown rapidly. The lion’s share of this market is currently dispersed between 

Roche Diagnostics, LifeScan, Abbott and Bayer. Arguably the application of mediators and 
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screen printed electrodes was a great step-forward for the development of amperometric 

biosensors and commercial products for home-use. 

 

The “wiring” or “modification” of enzymes; toward third generation glucose biosensors: Even 

with the enormous success of the commercial, mediated glucose biosensors, the nature of the 

biochemical structure of the glucose oxidase enzyme, the relative solubility and toxicity of the 

mediators and the overall poor stability of these mediated systems towards extended 

continuous operation lead researchers to concentrate on sensors based on the direct electron 

transfer between the enzyme redox center and the electrode. The Flavin redox center of the 

enzyme (co-factor), which is deeply buried in an electrically insulated thick protein shell, is 

incapable of achieving an electrical connection with the electrode surface5-6. Thus, minimization 

of the electron-transfer distance is vital in order to ensure the performance of the sensor. 

Heller’s group reported one of the first smart routes to establishing this communication 

between the glucose oxidase active sites and the electrode using a long, flexible poly(4-

vinlypyridine) (PVP) or poly(vinylimidazole) polymer backbone which had a dense array of 

linked osmium-complex electron relays7.  

 

 

Figure 1.4, Electrical wiring of redox enzymes (a) construction of the electrical contact of the redox enzyme with the 
electrode, (b) reconstruction of the apo-enzyme on a relay-cofactor complex

8
 (inset; molecular structure of redox 

relay PQQ and co-factor amino-FAD) 
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In this way, the redox polymer penetrates and binds the enzyme which results in a three 

dimensional network. Such an immobilization technique – wiring the enzyme to the surface – 

dramatically decreases the distance between the redox center of the polymer matrix and the 

redox center of the enzyme. Since the polymer structure on the electrode surface is permeable 

to glucose and the product of the reaction, the electrons originating from the redox center of 

glucose oxidase are transferred through the matrix to electrode. Another attractive route to 

facilitate electron transfer between the glucose oxidase redox center and the electrode surface 

is the chemical modification of the enzyme itself. In 1987, Degani and Heller9 demonstrated the 

covalent attachment of ferrocenecarboxylic acid to the glucose oxidase via carbodiimide 

chemistry. When a sufficient amount of ferrocenecarboxylic acid molecules was covalently 

attached to the enzyme, it was found that an enhanced electrical communication was 

established between the redox center of the enzyme and gold, platinum or carbon electrodes. 

In 1995, Willner’s group reported a highly elegant approach to improve the electrical contact by 

treating the glucose oxidase with electron relays10. In this study, the redox center of the glucose 

oxidase – Flavin adenine dinucleotide (FAD) – was removed and modified with ferrocene. This 

was followed the reconstruction of the apo-enzyme with the ferrocene modified FAD. Fig. 1.4 

summarizes schematically both of these approaches: namely, the enzyme immobilization in the 

presence of redox polymers (Fig.1.4a) and enzyme-modification-reconstitution in the presence 

of the redox relays (Fig.1.4b). 

 

These various initiatives had a great influence on the development of the third generation 

biosensors which are based on direct electron transfer in the absence of any kind of redox 

mediator. Such biosensors are able to operate at low operating potentials; thereby greatly 

reducing interference effects. However, as mentioned earlier, part of the challenge with these 

systems arises from the molecular structure of the enzyme itself. Many attempts have been 

made to try to create a successful matrix for the transfer of electrons between the FAD and the 

electrode by integration of conductive polymers and emerging nanomaterials such as carbon-

based nanomaterials (carbon nanotubes11-15, graphene16-18, carbon/graphene quantum dots19-

21, etc.), metal nanoparticles22-26 ( gold, silver, copper, etc.), dendrimers27-28, and many more. 
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Furthermore, the developments in the silicon technologies provide excellent opportunities to 

construct micro/nano patterned miniaturized electrodes which are highly reproducibility, 

scalable, design-flexible and with multiplexed features29-31. The resulting three dimensional 

micro/nano structured electrodes serve as exceptional platforms for many research fields such 

as neuroscience32-33, microbiology34, food-marine-agriculture20, 35-36, chemistry24, 37 and many 

more. Such advanced developments have lead to a new class of sensing technologies so called 

miniaturized systems. 

 

Clearly, research in the field of electrochemical biosensors has encompassed many research 

fields including biochemistry, nanotechnology, materials, printing technologies, 

microtechnologies, etc. However, in the context of this thesis this present review focuses 

mainly on the most recent achievements of electrochemical glucose sensors from the 

perspectives of firstly the use of nanomaterials and secondly miniaturization of biosensors via 

the application of semiconductor microfabrication technologies.  

 

1.2 Nanomaterial-based electrochemical enzymatic glucose biosensors 

The enormous progress in the field of nanotechnology that has taken place over the past 

decade or so has been transferred to biosensors and bioelectronics in order to take advantage 

of some of the highly desirable features of nanomaterials. For example, in the context of 

biosensors, several methods have been developed for the synthesis of nanomaterials with 

different shapes and dimensions such as spherical particles20-21, rods38-39, cubes40, etc. In 

particular, carbon-based nanomaterials such as carbon nanotubes and graphene have given rise 

to major advances in the field41-46. The structural, electrical, chemical and mechanical 

properties of such nanostructures have made them an essential component of many detection 

technologies. In particular, due to the similar size and dimensions of nanomaterials such as gold 

nanoparticles and carbon nanotubes to the redox enzymes, such nano structures might be used 

to establish a bridge between the electrode and the redox center as electrical connectors which 

might enable an improved electron transfer 8, 47-49. An excellent example of this type of 

approach may be found by considering the work of the Willner group, Figure 1.5:  
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Figure 1.5, (A) Schematic image of the assembly of a AuNP-reconstituted GOx electrode via (a) the immobilization 
of AuNP-reconstituted GOx onto electrode surface

50
, (b) immobilization of a AuNP-FAD complex onto surface 

followed by reconstitution of apo-GOx, (B) Assembly of glucose oxidase electrode via the use of single-walled 
carbon nanotubes (SWCNTs) as a direct electrical contact

51
  

 

Willner’s group consecutively reported two interesting approaches for nanowiring of redox 

enzymes which have been accepted as seminal approaches by researchers in the field of 

biosensors and bioelectronics (Fig 1.5A)50-51. The first study was published in 2003, used 1.4 nm 

diameter gold nanoparticles (carboxylic acid functionalized) to modify the electrode surface50. 

Then, a cofactor, aminoethyl-modified FAD, was immobilized onto the gold nanoparticles 

followed by the reconstitution of the apo-enzyme on the cofactor-functionalized gold 

nanoparticles. This study showed the ability of gold nanoparticles to act as relay units 

facilitating electron transport from the FAD to the electrode surface, thus activating the 

catalytic function of the enzyme (Fig.1.5A)50. Subsequently, in 2004 the same group published a 
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second report which was based on the use of carbon nanotubes as molecular wires 

(‘nanoconnectors’)51. In this study, the aligned, reconstituted glucose oxidase on the edge of a 

single walled carbon nanotube was successfully linked to the surface thus ‘plugging’ the 

electrode into the enzyme. Electrons could then be transferred along the length of the carbon 

nanotubes (Fig.1.5B). Such an enhanced direct connection between an enzyme and an 

electrode via aligned carbon nanotubes arrays was also reported by Gooding’s group in 200552. 

These pioneering studies from the Willner and Gooding groups encouraged researchers to 

further consider using nanostructures as the components of biosensors50-52. As a consequence 

growth of research in the field of glucose biosensors and nanomaterials based biosensors has 

been phenomenal, Fig. 1.6. It is noteworthy that the vast majority of glucose biosensors in 

recent times are based on what might be termed ‘emerging’ nanomaterials: 

 

Figure 1.6 Graphs on the search terms “glucose biosensor” and “nanoparticle biosensor” during the period 1996 to 
2020, using Web of Knowledge (20 March 2020) 

 

1.2.1 Gold nanostructures and their use in hybrid glucose biosensors  

Gold nanostructures alone or in combination with other nanomaterials have been extensively 

studied in order to develop excellent matrixes for biomolecules and in particular those used for 

glucose oxidase immobilization53-54. For instance, nanoporous gold (NPG) has attracted 

significant interest in the field of electrochemical biosensors due to its large surface area and 

porosity. In 2015, Wang et al.  reported a glucose biosensor based on a porous gold/enzyme 

combination55. Briefly, in this work NPG was prepared by de-alloying 12-carat white gold leaves 

in concentrated HNO3. The resulting freshly-made NPG was immediately transferred onto a 
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clean glassy carbon electrode surface and kept under vacuum. The NPG surface was later 

immersed into glucose oxidase solution for enzyme immobilization. The resulting 

GOx/NPG/GCE bio-electrode showed a sensitivity of 12.1 µA mM-1 cm-2 and a detection limit of 

1.02 µM towards glucose detection. The success of this biosensor was attributed to the three 

dimensional structure of the porous-gold matrix, which provided a good interface between the 

active sites of the enzyme and the electrode. 

 

Rivas’s group demonstrated the use of globular gold nanoparticles as components of a 

nanohybrid structure by applying a series of chemical modifications to establish a highly 

efficient immobilization matrix for glucose oxidase, Fig.1.756. For this purpose, gold 

nanoparticles were functionalized with 3-mercaptophenyl boronic acid (AuNPSs-B(OH)2). A 

clean glassy carbon electrode was drop-cast by bamboo-like multi walled carbon nanotubes 

(bMWCNTs) dispersion in polyethylene imine. Then the GCE/bMWCNTs-PEI electrode was 

treated with AuNPs-B(OH)2 and the resulting hybrid surface was used for GOx immobilization. 

This biosensor exhibited a sensitivity of 28.6 mA M−1 cm−2 and showed reasonable levels of 

stability and reproducibility such that the sensitivity was measured to be some 86.1% of the 

original value after 14 days of storage. The goal of such work was to design a novel hybrid 

nanomaterial integrating the inherent advantages of the chosen components, namely gold 

nanoparticles and carbon nanotubes. Thus, the presence of boronic acid residues allowed the 

easy immobilization of the enzyme while the bMWCNTs-PEI dispersion provided the best 

platform for the transduction of the electrochemical response. 

 

 

Figure 1.7 Schematic image of the GCE/bMWCNTs-PEI/AuNPs-B(OH)2/GOx biosensor preparation
56
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Turner’s group have shown the structuring of gold nanoparticles on two-dimensional 

molybdenum disulfide (MoS2) nanosheets which has gained attention very recently in the field 

of electrochemical biosensors as an ideal candidate for matrix development, Fig.1.857. Briefly, a 

dispersion of MoS2 nanosheets in PBS was prepared by ultrasonic treatment and then the 

dispersion of MoS2 was mixed with a commercial 5 nm diameter gold nanoparticles solution. By 

incubating the mixture at room temperature for 3 h, MoS2/AuNPs self-assembled nanosheets 

were prepared. The resulting MoS2/AuNPs were mixed with glucose oxidase enzyme and 

incubated overnight. The MoS2/AuNPs/GOx hybrid structure was assembled onto a gold 

electrode surface by drop-casting. The biosensor showed a sensitivity of 13.80 µA mM-1 cm-2. 

This novel bio-catalytic interface based on two-dimensional MoS2 and gold nanoparticles has 

the potential to be used for the immobilization of other biomolecules58-61. 

 

 

Figure 1.8 TEM images of MoS2 nanosheets at (a) low and (b) high magnifications, (c) AuNPs structured MoS2 
nanosheets, and (d) schematic display of Au nanoparticle-structuring on a MoS2 interface and mediated electron 
transfer process of the hybrid biostructure on the gold electrode surface

57
 

 

Huang et al.62 described the controlled preparation of a layered superstructure of gold nano-

octahedra and their application as a host matrix for glucose oxidase immobilization (Fig. 1.9). In 

this study, gold nanoparticles were synthesized in a PEG solution via a polyol process. The pre-
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synthesized Au nano-octahedra were attached onto the gold surface via a 1,8-octadithiol-

mediated assembly process which was repeated five times in order to obtain 5 layers of 

nanoparticles. Finally, glucose oxidase was immobilized onto the five-layer gold structures. This 

bio-electrode exhibited a sensitivity of 0.349 μA mM-1 over a wide concentration range of 0.125 

to 12 mM. 

 

 

Figure 1.9 (a) Schematic representation of the stepwise construction of the gold nananooctahedra and glucose 
oxidase base biosensor, TEM images of gold nanooctahedra particles at (b) low and (c) high magnifications
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A new method has been developed for the encapsulation of gold nanoparticles and glucose 

oxidase together into the cavity of a zeolitic imidazole framework (ZIF-8), Fig.1.1063. This study 

shows that the ZIF-8 is stable and provides a very large surface area with a unique cavity which 

can accommodate both AuNPs and GOx. Furthermore, the AuNPs were found to promote the 

electron transfer efficiency of the system due to their high conductivity and for this reason the 

authors claim that the incorporation of AuNPs improved the sensitivity of the system by up to 

10-fold. 
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Figure 1.10 FESEM images of (a) 5 nm gold coated GOx@ZIF8(AuNPs) and (b) crystalline growth of a single particle 
showing a large surface area, and (c) Schematic image of the biosensor construction
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A study of gold nanoparticles, graphene oxide and copper nanostructures incorporated into a 

glucose biosensor has been reported recently, Fig.1.1117. The biosensor matrix was established 

on a gold chip. A solution of poly(vinyl alcohol) (PVA) was prepared and mixed with graphene 

oxide (GO) under constant stirring conditions. The mixture prepared was then spin-coated on 

the surface of the gold chip to obtain GO/PVA nanofibre. This was followed the attachment of 

cysteamine-modified gold nanoparticles onto the surface of the fibres. Meanwhile, Cu-

nanoflowers were synthesized using a mixture of glucose oxidase, horse radish peroxidase and 

CuSO4 in PBS which was incubated at room temperature for 72 hours and then washed with 

PBS several times. The mechanism of nanoflower formation was explained in terms of both 

nucleation and growth processes. Basically, the formation of the Cu-protein complex acts as a 

seed for the nanoflower and these nuclei grow over the reaction time and form the petals of 

the flower. The as-prepared nanoflowers were dropped onto the AuNPs-GO/PVA electrode 

surface. This biosensor exhibited the best activity at pH 5 with very good associated analytical 

performance. Furthermore, our group has very recently reported a highly sensitive glucose 

biosensor platform based on gold nanoparticles and carbon quantum dots20-21. These results 

are presented in Chapter 3 and 4. 
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Figure 1.11 Schematic display of the fabrication of Cu-nanoflower@AuNPs-GO NFs-based electrochemical glucose 
nano-biosensor

17
 

 

1.2.2 Carbon nanotubes (CNTs) and their hybrid-based glucose biosensors 

Since their early discovery in 199164, carbon nanotubes have attracted enormous interest from 

researchers studying many different fields65-69. A considerable amount of work has been 

performed in which CNTs have been incorporated into electrochemical sensors and biosensors; 

thus in this review some of the most promising examples of CNT-glucose biosensors are 

described.  

 

Yu et al.14 have reported the preparation of poly (diallyldimethylammonium chloride) (PDDA)-

capped gold nanoparticles (AuNPs) which were then combined with functionalized graphene 

(G)/multi-walled carbon nanotubes (MWCNTs) to form a nanocomposite which was then used 

as an immobilization matrix for GOx enzyme. This biosensor exhibited a sensitivity of 29.72 mA 

M−1 cm−2 and satisfactory associated analytical performance towards glucose since the 

graphene-nanotube and gold nanoparticle composite hierarchical structure provided a 

conductive network for efficient electron transfer as well as providing more binding sites for 

the enzyme. 

  

Turner’s group70 have reported a highly sensitive glucose biosensor fabricated by the 

immobilization of glucose oxidase onto a poly(2,6-diaminopyridine)/multi-walled carbon 

nanotube/glassy carbon electrode (poly(2,6-DP)/MWNT/GCE), Fig. 1.12. The authors claim that 
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the synergistic effect of the high surface area of the poly-(2,6-DP) and the MWCNTs provided a 

remarkable improvement in the electrocatalytic performance of the developed biosensor. This 

biosensor demonstrated a sensitivity of 52.0 μA mM−1 cm−2, repeatability of 1.6% and long-term 

stability, which could make it a promising bio-electrode for the precise detection of glucose in 

the biological samples. 

 

 

Figure 1.12 Schematic illustrations of fabrication, biosensing and electron transfer mechanism of an ultra-sensitive 
glucose biosensor (a-f). (a-b) treatment and casting of MWNT on a GC electrode; (c) electrodeposition of poly(2,6-
DAP) on MWNT/GC electrode; (d) covalent-immobilization of GOx on a poly(2,6-DAP)/MWNT/GC electrode using 
gluteraldehyde as a linker and (e-f) amperometric glucose biosensing through direct electron transfer mechanism 
from I to III onto a GOx/poly(2,6-DAP)/MWNT/GC bioelectrode at physiological pH
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Lin et al.12 have reported an interesting approach to the development of a carbon nanotube-

based glucose oxidase biosensor (Fig.1.13A). Briefly, a Cr-coated Si wafer substrate of 1 cm2 

area was covered by Ni nanoparticles via an electrodeposition technique. Then, aligned CNT 

arrays were grown from those Ni nanoparticles by plasma enhanced chemical vapor deposition. 

An epoxy based polymer was spin-coated on the substrate to cover half the length of the CNTs. 

The protruding parts of the CNTs were removed by polishing. The glucose oxidase enzyme was 

later immobilized onto the tips of the CNTs via carbodiimide chemistry based on 1-ethyl-3-(3-
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dimethylaminopropyl) carbodiimide (EDC) and using N-hydroxysulfo-succinimide (sulfo-NHS) to 

obtain covalent binding. This resulting biosensor was shown to be capable of performing the 

selective electrochemical analysis of glucose in the presence of common interfering species. 

 

 

Figure 1.13 (A) Fabrication of a glucose biosensor based on CNT nanoelectrode ensembles
12

, (B) Schematic diagram 
of the preparation of the GOx/P-L-Arg/ f-MWCNTs/GCE modified electrode for use in glucose biosensors
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Vilian and Chen71 developed a glucose oxide biosensor based on multiwalled carbon nanotubes 

which was modified with the biopolymer L-arginine (Fig.1.13B). MWCNTs were treated with 

strong acids to produce surface carboxyl groups and then the functionalized MWCNTs (f-

MWCNTs) were drop-cast onto a clean glassy carbon electrode. Following this a poly(L-arginine) 

film was formed on the f-MWCNTs-modified GCE via electro-polymerization. The as-prepared P-

L-Arg/f-MWCNT/GCE electrode was then treated with GOx solution in order to immobilize the 

enzyme. The sensitivity of this biosensor was found to be 48.86 μA mM−1 cm−2 with a good 

storage stability of 25 days.   
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Figure 1.14 Schematic illustration of the enzymatic glucose biosensor fabrication; (a) Preparation of the long 
conducting enzyme-loading hybrid nanocomposite GOx@PAVE-CNTs via one-step co-assembly. (b) Preparation 
process of glucose biosensor via direct electrophoretic deposition (EPD) of GOx@PAVE-CNTs onto glassy carbon 
electrode (GCE) surface and subsequent photo-cross-linking13 

 

Xu et al.13 developed a highly interesting nanocomposite, a so-called “necklace-like” material, 

by the facile one-step co-assembly of the GOx, a copolymer and MWCNTs (Fig. 1.14). For this 

purpose, the copolymer poly(acrylic acid-r-(7-(4-vinylbenzyloxy)-4-methyl coumarin)-r-

ethylhexyl acrylate) (PAVE) which contains photo-cross-linkable coumarin segments and 

carboxylic groups was co-assembled with MWCNTs, while simultaneously encapsulating the 

GOx. This preparation process generated enzyme-loaded polymeric nano beads attached along 

the length of the MWCNTs. Then, the resulting GOx@PAVE-CNTs bio-nanocomposites were 

electrodeposited onto a glassy carbon electrode surface followed by a photo-cross-linking 

process induced by UV irradiation.  In this way a robust, complex, biosensing film having a 

porous network was achieved. The resulting biosensor exhibited highly satisfactory analytical 

performance towards glucose in terms of linear range (0.001-1.0 mM and 1.0-5.0 mM), stability 

(35 days) and reproducibility (RSD 3.27%, n= 5).  
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Figure 1.15 Schematic display of the steps involved in the preparation of the GCE/MWCNTs-Av/RuNPs/biot-GOx 
biosensor
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Recently, Rivas’s group72 have demonstrated an original supramolecular architecture based on 

a rationally-designed nanohybrid combination of MWCNTs and ruthenium nanoparticles (Fig. 

1.15). For this construction they took advantage of avidin which is a biotin-binding protein. 

Briefly, MWCNTs were functionalized by avidin creating MWCNTs-Av which then served as a 

platform for the immobilization of a biotinylated glucose oxidase enzyme. The clean glassy 

carbon electrode was drop-cast with as-prepared MWCNT-Av complex and this was followed by 

electrodeposition of Ru nanoparticles. This GCE/MWCNTs-Av/RuNPs electrode with avidin 

terminals was found to be highly suitable for the attachment of the biotinylated enzyme 

complex which was achieved by incubating the electrode with biot-GOx solution. It was shown 

that the resulting developed surface was highly sensitive towards hydrogen peroxide. Then it 

was proven that the final GCE/MWCNTs/Av/RuNPs/biot-GOx biosensor) showed a sensitivity of 

2.60 μA mM−1 cm−2 towards glucose. The authors claims that their platform acts as a pseudo-

bienzymatic glucose biosensor where glucose was first oxidized by GOx and the resulting 

hydrogen peroxide was then reduced by the MWCNTs-Av/RuNPs complex. 

 

1.2.3 Chitosan based glucose biosensors 

Chitin and chitosan are natural polyaminosaccharides. Chitosan is obtained by controlled N-

deacetylation of chitin. Chitosan is insoluble in water; however the amino groups render it 

soluble in acidic solution below pH 6.5. Most importantly it has an ability to form hydrogels and 

it is possible to produce thin hydrogel films of chitosan on solid electrode surfaces via a 

controlled electrodeposition process which makes it particular applicable to the fabrication of 

miniaturized biosensors. Moreover, the abundant amine groups of the chemical structure 

makes it a useful candidate for applications where various surface chemical methods are 
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required in order to achieve immobilization of a particular biomolecule As a result of these 

benefits together with its biocompatibility and lack of toxicity, chitosan has been widely used 

not only in the field of electrochemical biosensors73 but also in controlled release systems74-75, 

drug delivery applications76-78, wound dressing79 and tissue engineering80-82. 

 

 

Figure 1.16 (A) Schematic Displaying the Surface Modification of Pd@Pt NCs Using CS Biopolymer and the Covalent 
Immobilization of GOx to the CS by Reacting with GA to Cross-Link the Amino Group of CS and the FAD Site of 
GOx

40
, (B) Stepwise assembly of cysteamine, two layers of GOD, chitosan on an Au electrode

83
 

 

Here, we focus on the fabrication and characterization of glucose oxidase immobilized chitosan 

matrixes. For example, Krishnan et al. utilized chitosan as an immobilization matrix for glucose 

oxidase enzym40. Briefly, Pd nanocubes were synthesized with an average edge length of 13 nm 

and then a shell of Pt was deposited on their surfaces. The as-prepared nanocubes of Pd-Pt 

were then incubated with a chitosan solution to achieve the chitosan coating (Fig. 1.16A). The 

covalent immobilization of glucose oxidase on the surface of chitosan coated nanocubes was 

accomplished by reacting with gluteraldehyde followed by addition of the glucose oxidase 

enzyme. The GOx-immobilized chitosan-coated nanocubes were then deposited on a glassy 

carbon electrode surface. The sensitivity of the resulting biosensor was determined to be 6.82 

μA mM−1 cm−2.  

 

In another study chitosan was used as a protection barrier for the immobilized enzyme to 

ensure the stability and biocompatibility of the biosensor, Fig. 1. 16B83. For this purpose, a gold 

electrode was modified with cysteamine to obtain an amine-functionalized surface and then a 

solution of glucose oxidase enzyme was drop-cast onto the electrode which was then allowed 
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to dry. This process was repeated several times. Then, chitosan solution was coated onto the 

glucose oxidase layer. It was found that the response of the resulting biosensor response 

remained almost constant over a 30 day period, with the RSD range from 1.3% to 7.2%. The 

stability of the biosensor was attributed to the chitosan protection layer. 

 

Anusha et al.84 developed a glucose oxidase biosensor based on the use of chitosan 

nanoparticles taken from a squid (Fig. 1.17A). Briefly, the squid was dried at room temperature 

after removal of debris and then powdered to extract the chitin by deprotenization and 

demineralization processes. The chitin obtained was then treated to prepare the chitosan by a 

deacetylation process and the resulting chitosan was used to prepare chitosan nanoparticles. 

To construct the biosensor, electrodes were first covered with gold nanostructures to increase 

the surface area, and then these electrodes were immersed into a solution of chitosan 

nanoparticles. The resulting surfaces were then used to immobilize glucose oxidase enzyme. 

The resulting biosensor exhibited a high sensitivity of 156.27 μA mM−1 cm−2 with good 

associated analytical performance. The results were attributed to the presence of a chitosan 

nanoparticles matrix over the gold nanostructures which created a friendly environment for 

enzymes and enhanced the catalytic activity towards glucose. 

 

 

Figure 1.17 (A) Schematic illustration of electrochemical glucose biosensor fabricated over PET/Au electrode by 
immobilization of glucose oxidase on chitosan nanoparticles synthesized from gladius of squid, Uroteuthis duvauceli 
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and glucose determination of developed Au/CSNPs/GOx biosensor by electrochemical method
84

, and (B) Synthesis 
of pyrrole branched-chitosan (a), schematization of the surface of GOx immobilized gold electrode (b)

85
 

 

Another approach utilizing chitosan as a matrix component for glucose biosensor development 

was reported based on a pyrrole-branched-chitosan (Fig. 1.17B)85. This polymer composite 

structure was prepared via carbodiimide chemistry. The carboxylated pyrrole was attached to 

the amine groups of chitosan via amide binding. A chitosan-pyrrole-gold-GOx nano-

biocomposite was then prepared by mixing and incubating on the electrode surface. It was 

found that the chitosan-pyrrole (hydrogel-conductive polymer) composite was a useful host for 

the immobilization of biomolecules as well as acting as an in situ reducing agent for the 

formation of gold nanoparticles on the electrode surface. 

 

The electrodeposition of chitosan films is one of the common methods now used in biosensor 

development86-88. For example, Che et al.89 reported a simple one-step deposition of chitosan in 

the presence of MWCNTs, hollow PtCo nanochains and the dye, Prussian blue. The 

electrodeposited hybrid film was deployed as a glucose oxidase immobilization matrix and then 

coated with nafion film. Encapsulation of MWCNTs and Prussian blue in the chitosan gel layer 

was found to improve the electron transfer ability of the three dimensional matrix in 

comparison to the Prussian Blue-encapsulated chitosan matrix alone. The authors attributed 

these enhanced electrical characteristics to the interactions between the MWCNTs, the hollow 

PtCo nanochains and the Prussian blue molecules. 

 

1.2.4 Carbon/Graphene quantum dots (CQDs, GQDs)-based glucose biosensors 

Carbon or graphene quantum dots are a relatively new class of carbon-based nanomaterials. 

Since their discovery in 2004, they have attracted considerable attention from researchers due 

primarily to their highly interesting photoluminescence (PL) behavior. At the time of writing the 

use of such tiny nanostructures in the field of electrochemical biosensors is limited. Apart from 

their PL properties, carbon/graphene quantum dots have several other interesting properties 

associated with their very small size, their ability to be readily functionalized, their relatively 

cheap, easy methods of preparation and their ability to disperse readily in water20-21, 90-91. These 
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benefits combined with the fact that they are essentially non-toxic make them highly promising 

candidates as components of a biosensing matrix. For instance it has been reported that the 

graphene quantum dots are highly suitable for use as substrates for the glucose oxidase 

immobilization process19. In this report, the graphene quantum dots were prepared by a 

hydrothermal method from graphite powder. The as-prepared graphene quantum dot solution 

was drop-cast onto a ceramic carbon electrode surface and dried at room temperature. The 

resulting GQDs electrode was then activated at a potential of 1.7 V (vs. SCE) and followed by 

glucose oxidase immobilization. The sensitivity of this relatively simple biosensor based on 

GQDs was reported to be 0.085 μA μM−1 cm−2, while it showed reasonable stability over a two 

week period. Recently, our group has also reported the use of carbon quantum dots integrated 

with gold nanoparticles for glucose oxidase attachment as part of the development of an 

electrochemical biosensor development at both the bulk, planar and micro scales 20-21. These 

results are presented in Chapter 3 and 4. 

 

1.3 Non-enzymatic detection of glucose; direct glucose electro oxidation 

Glucose oxidase based biosensors have been studied extensively (as discussed above); however 

the possible decrease in catalytic activity of the enzyme arising from the immobilization process 

is still a great challenge for researchers in terms of the performance of the sensor as well as the 

long-term stability of the desired biosensor92-93. Direct electro-oxidation of glucose in the 

absence of the enzyme may bring a solution to some of the problems of enzymatic systems. 

However, the selectivity of the catalysts developed towards glucose should be investigated in 

detail if the biosensor is to be used in a highly complex matrix. It is noteworthy that at the time 

of writing most enzyme-free biosensors for glucose detection exhibit sensitivities at the highest 

end of the scale in comparison to the enzyme based glucose sensors24, 94-96. 

 

For example, a biosensor based on a simple nanohybrid composition of ZnO nanorods and CuO 

nanoparticles was reported in 2017 which showed excellent analytical performance, yielding a 

sensitivity of 2961.7 μA mM−1 cm−2,  Fig. 1.18A97. In this study, vertically-aligned ZnO nanorods 

were grown on fluorine doped tin oxide (FTO) electrodes. The hydrothermally-grown ZnO 
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nanorods on the electrode surface were then modified with CuO nanostructures through a dip-

coating and annealing process. The resulting hybrid CuO-ZnO material was coated with nafion 

to reduce possible fouling and to help limit possible interference effects. The resulting hybrid 

sensor exhibited a sensitivity of 2961.7 μA mM−1 cm−2 with excellent reproducibility, 

repeatability, stability and selectivity. Furthermore, the sensor was also used to determine the 

glucose concentration in real human serum samples. The high performance of the sensor was 

attributed to the efficient electrocatalyst behavior of the CuO-ZnO hybrid material for glucose 

oxidation.  

 

Figure 1.18 (A) Schematic illustration of non-enzymatic glucose sensor electrode fabrication and its application in 
glucose detection

97
, (B)  schematic illustration of fabrication process of the flexible Cu NPs-LIG sensor
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Recently, a flexible non-enzymatic glucose biosensor based on a laser-induced graphene 

electrode modified with copper nanoparticles has been reported (Fig. 1.18B)98. The flexible 

graphene electrodes were prepared by laser irradiation of the surface of a sample of polyimide. 

Since high-intensity laser radiation is applied, the polyimide is essentially depolymerized, which 

leads to subsequent carbonization and eventual graphitization. The resulting three-dimensional 

porous graphene electrodes (LIG) obtained were modified with Cu nanoparticles (Cu NPs). The 

as-prepared Cu NPs-LIG sensor demonstrated a glucose sensitivity of 495 μA mM−1 cm−2. The 

authors refer to the use of such a ‘simple method’ for the fabrication of a sensor device and 

suggest that their approach could be attractive in terms of the fabrication of next-generation 

flexible diagnostic devices, although the need for high intensity laser irradiation rather calls this 

presumption into question. 
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Another recent study based on the use of a novel uniform composite of an Au nanostructured 

honeycomb coated with a layer of Co3O4 nanoneedles appeared to be a highly promising 

catalyst for glucose oxidation, Fig. 1.1999. These authors achieved the deposition of the highly 

porous honeycomb-like gold nanostructures onto the electrode surface via electrodeposition in 

acidic environment. The synthesis of Co3O4 nanoneedles on the surface of the honeycomb-like 

gold was then achieved by a hydrothermal synthesis process in an autoclave and subsequent 

annealing at 450 °C. The resulting hybrid electrode was studied to determine its performance as 

a glucose sensor and exhibited a sensitivity of 2013.6 μA mM−1 cm−2 with a good selectivity 

towards glucose in alkaline media for both blood and synthetic saliva. 

 

 

Figure 19 SEM images (false colour) of Au honeycomb (left panel) and Au honeycomb coated with 100 mM 
CoCl2 (right panel) at different magnifications
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Another interesting non-enzymatic approach has been reported which involves the synthesis of 

Cu-Cu2O nanoparticles on the surface of TiO2 nanotubes which act as transducers for the direct 

electrocatalytic oxidation of glucose (Fig. 1.20)100. The TiO2 nanotubes were prepared by the 

two-step anodization of Ti foils and then the preformed Cu and Cu2O particles were coated 
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onto the TiO2 nanotubes by an electrodeposition technique. The resulting hybrid electrode was 

then used for the non-enzymatic electro-oxidation of glucose. The sensitivity of sensor was 

calculated to be 4895 μA mM−1 cm−2. Such a high sensitivity was attributed to the synergistic 

effect of the small Cu-Cu2O grain size and the very large surface area of the TiO2 nanotube 

arrays as well as to fast electron transfer. Moreover, by evaluating the results obtained from 

studies of the various deposition parameters used, the authors claim that the Cu2O helps to 

provide a broad linear range while the incorporation of the Cu nanoparticles helps to improve 

the response current and sensitivity. 

 

 

Figure 1.20 Schematic illustration of the preparation of the Cu–Cu2O/TiO2 NTA/Ti electrode and the electron 
transfer through the Cu–Cu2O/TiO2 TNA interface for the electrocatalytic oxidation of glucose

100
 

 

Li et al.101 have reported a novel hybrid non-enzymatic glucose sensor consisting of a 

freestanding Cu(OH)2 nanograss array on the surface of a nanoporous copper (NPC) substrate, 

Fig. 1.21. These authors first prepared the nanoporous copper substrate from a CuZrAl glassy 

precursor via a chemical de-alloying process. Then, the Cu(OH)2 nanograss was synthesized on 

the NPC substrate through an oxidative alkaline method, wherein the morphology of the 

nanograss was tailored by varying the etching time. The substrate was placed into a solution of 

(N2H4)2S2O8 and NaOH until the surface colour turned light blue. This process was explained in 

terms of four stages; oxidation, self-assembly, germination and growth. The resulting uniform 

hybrids also grow homogenously. It was found that the nanograss clusters exhibited high 

performance towards the oxidation of glucose, with a sensitivity of 2.09 mA mM−1 cm−2 being 

recorded 
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Figure 1.21 Schematic illustration of the growth process of the Cu(OH)2 nanograss structure on a NPC substrate (a), 
the corresponding surface SEM images at different growth stages (b, c, and d), magnified cross-section of the 
fabricated nanohybrid (e)

101
. 

 

1.4 Microfabrication and miniaturization in the development of electrochemical biosensors 

Currently, silicon is the most used material in the semiconductor industry and an entire 

technology has been developed around the use of silicon in terms of the various approaches 

needed to fabricate devices. Silicon-based microtechnologies provide excellent opportunities 

for the construction of micro/nano-scale electrodes to be used as components in biosensors 

offering a high degree of reproducibility, scalability, design flexibility and multiplexing of 

operational features. Innovative devices such as microelectrode-integrated fluidics, implantable 

chips, lab-on-a-chip, organ-on-a-chip, miniaturized diagnostic devices/biosensors and neural 

probes have been appearing rapidly in prototype forms from various research labs20-21, 31, 102-106. 

 

In general, the microfabrication of devices is based on the repeated application of unit process 

steps such as photolithography, deposition and etching. Photolithography is used to transfer a 

specific pattern onto a substrate by using a designed stencil, the so-called mask. In use, a 

photo-mask which usually consists of an optically flat glass or a quartz plate substrate with a 

metal pattern, is placed on a photoresist-coated wafer surface the wafer is exposed to UV 

radiation. This is followed by the deposition of the metal layers and the use of a so-called lift-off 

process which removes the excess metal and photoresist. For the etching process, firstly a 
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passivation layer is applied over the surface of the wafer, and then subsequently either dry or 

wet etching of the underlying material takes place29. 

 

When implemented correctly, microfabrication can either significantly improve a device in 

relation to its conventional counterparts or enable entirely new devices. An interesting example 

of an improvement to a device is the fabrication of miniaturized micro-nano electrodes for use 

in neurological recordings and as neurotransmitters for the detection of various chemical 

agents in the brain. This type of device is described in the following section: 

 

1.4.1 Microfabricated neural sensor probes 

The human brain has a highly diverse chemical environment107. Approximately two hundred 

different molecules have been identified as neurotransmitters (NTs). The classification of NTs 

can be grouped according their chemical structures such as amines (dopamine, serotonin, 

epinephrine, histamine, acetylcholine, etc.), amino acids (glutamate, γ-aminobutyric acid, 

glycine, etc.), peptides (vasopressin, somatostatin, neurotensin, etc.) and gaseous NTs (nitric 

oxide, carbon monoxide and hydrogen sulfide)108.There is an undisputed need for enhanced 

monitoring of NTs in brain tissue since such molecules may provide valuable information 

related to human brain functions. However, the major and currently long-term goal of such a 

device is to provide a greater understanding of brain function and in particular shed light on the 

nature and possible cures for several neurological disorders such as Alzheimer’s disease and 

Parkinson’s disease. 

 

One of the most successful microprobe arrays fabricated specifically for the field of 

neurotechnology was reported in 2010 as a result of a collaboration between the Ecole 

Polytechnique Fédérale de Lausanne and the University of Cambridge, Fig. 1 22109. These 

authors described the development of a brain-implantable microprobe array consisting of 

several recessed Pt microelectrodes and an integrated reference electrode. The probes were 

fabricated by applying a standard microfabrication flow process designed for Si-based 

microtechnologies. Briefly, a silicon wafer with an oxide layer was used as a substrate for the 
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transfer of the first pattern via wet etching. Subsequently a passivation layer was applied. This 

was followed by metal deposition of Pt and a lift-off process. Silicon nitride and oxide were 

used as passivation layers that was opened at the active surface to facilitate the fabrication of 

the connection pads via etching. The fabricated probes were attached to a custom-made circuit 

board and embedded in epoxy glue to mechanically protect and electrically insulate the 

connections. The microelectrodes were coated by an enzyme membrane and a semi-permeable 

m-phenylenediamine layer for the selective detection of the neurotransmitters choline and l-

glutamate at physiologically relevant concentrations. The results showed that the design of the 

probes and the surface chemistry selected to facilitate biomolecule immobilization were fully 

compatible with the simultaneous detection of several analytes in different brain target areas. 

A sensitivity of 132 ± 20 μA mM−1 cm−2 for choline and 95 ± 20 μA mM−1 cm−2 for l-glutamate 

was achieved and the authors noted that their aim was to transfer their sensor technology into 

a package for use in living animals.  

 

 

Figure 1.22 SEM micrograph of the front part of the shaft of the fabricated silicon microprobe and close up view of 
the KOH-recessed Pt microelectrode. The metal interconnection track is laid across the inclined side wall appearing 
after the KOH etch
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Ferreira et al.110 demonstrated another successful approach for the detection of 

neurotransmitters based on nanocomposite sensors consisting of carbon fibre microelectrodes 

and microelectrode biosensor arrays designed to measure ascorbate and glutamate (Fig. 1.23). 
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Carbon microfibre microelectrodes were modified with nafion and carbon nanotubes and 

calibrated towards ascorbate. Microbiosensor arrays consisting of two pairs of side-by-side Pt 

sites on a ceramic substrate were used which were fabricated via photolithography. The Pt 

surfaces were modified with glutamate oxidase and covered with 1,3-phenylenediamine to 

improve the selectivity. Both biosensors were coupled to a pulled micropipette and successfully 

used for simultaneous and real time measurement in the hippocampus of anesthetized rats. 

 

 

Figure 1.23 Schematic representation of the array composed by the ascorbate nanocomposite microsensor (left), 
the glutamate microbiosensor (right) and the micropipette (center) used for local application of solutions in the 
extracellular space of the rat hippocampus

110
. 

 

1.4.2 Miniaturized electrochemical biosensors 

Arguably, the fabrication of inexpensive but highly sensitive and accurate electrochemical 

biosensor devices will in the future rely heavily on the enhancements and developments that 

take place in the area of semiconductor micro (and/or nano) fabrication, particularly in relation 

to miniaturization or the transition from planar to micro and nano electrodes which may be 

required in order to achieve improved performance. Scaling down of the systems provides 

several advantages in terms of analytical performance of the biosensors as well as the 

decreased sample size and easy packaging. 

 

Wang et al.111 developed a micro immunosensor to determine the concentration of the TAU 

proteins which are possible biomarkers for the diagnosis of Alzheimer’s disease, Fig.1.24. The 
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electrode used was a microelectrode array composed of four gold microband electrodes. The 

fabrication process was again based on standard microfabrication technology applied to a 

silicon substrate. A gold surface was modified with a self-assembled monolayer of 3,3′-dithiobis 

(sulfosuccinimidyl propionate) (DTSSP). Protein G and anti-TAU antibodies were immobilized 

onto the surface, respectively. The performance of the biosensor was investigated by applying 

electrochemical impedance spectroscopy. The assay developed was both fast and sensitive. 

 

 

Figure 1.24 Detailed image of gold microband electrodes, schematic side view of the biosensor and chemical 
structure of DTSSP which contains an amine-reactive N-hydroxysulfosuccinimide (sulfo-NHS) ester at each end and 
forms the SAM layer. From bottom to top: gold microband electrode, SAM layer, protein G layer and antibodies

111
 

 

Mir et al.112 reported the use of a method for biomolecule immobilization onto interdigitated 

electrodes via a biomolecule-friendly lithographic process (Fig. 1.25). For these purposes a 

photoresist based on a methacrylate copolymer was used, which was highly suitable for 

processing under mild conditions and thus it was possible to achieve the immobilization of the 

biomolecules via lithography. The silicon-based interdigitated electrodes consisted of 50 
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microelectrodes which were fabricated via lithography, deposition and etching. However to 

complete the process a bio-photoresist was used and in this way the biomolecules were 

successfully transferred to the surface as part of the fabrication flow. This biocompatible resist 

was composed of four different monomers which offered the necessary functional groups 

needed for the lithography process. These monomers were butyl methacrylate (TBMA), 

hydroxyethyl methacrylate (HEMA), acrylic acid (AA) and isobornyl methacrylate (IBMA). These 

researchers studied the immobilization of three different biomolecules via the same fabrication 

process. By doing so, they successfully demonstrated a biocompatible photolithography 

process. Moreover, using this approach, a gene mutation related to breast and ovarian cancer, 

has also been detected amperometrically, a patterned device has been made using a 

combination of two different enzymes GOx and SOx and hormone T4 has been detected by 

using an interdigitated electrode microarray patterned with biocompatible photolithography. 

 

 

Figure 1.25 (a) Bio-photolithographic process for biomolecules patterning on the electrode array. On the right, gold 
IDE array detail (b) DNA with different enzyme labels, ALP and HRP immobilized on each electrode, (c) sarcosine 
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and glucose enzymatic sensors, using a polyelectrolyte multilayers blocking on the first set of electrodes in order to 
avoid the non-specific adsorption from the second enzyme and (d) competitive immunoassay for T4 detection

112
 

 

Fig.1.26 shows the fabrication and use of a contact lens with an embedded sensor designed to 

measure glucose concentrations from tears113. For the construction of the contact lens, a PET 

polymer was used as a substrate and spin-coated with a resist. This was followed by metal 

deposition and lift-off in acetone. The fabricated electrodes were cut into small pieces of 1 cm 

diameter and heat molded to the shape of the contact lens. To achieve the immobilization of 

the glucose oxidase enzyme, a solution of enzyme was drop-cast on the electrode surface, and 

then the surface was suspended vertically above a titanium isopropoxide solution in a sealed 

dish to create a glucose oxidase/titania sol-gel membrane. After forming the sol-gel membrane, 

the surface was covered with nafion. This non-invasive glucose monitoring system was studied 

using amperometry. The simple micro-sized glucose sensor showed a sensitivity of 240 μA cm−2 

mM−1, however many characteristics of the sensor required improvement including its stability, 

its biocompatibility for such a ‘wearable’ device and the methods used to integrate the device 

with a read-out-communication circuit.   

 

 

Figure 1.26 The sensor fabrication process (a-e), images of a sensor after it has been cut out of the substrate (f), 
image of a completed sensor after molding held on a finger (g); the sensor may be hardwired for testing (h)

113
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Rajapaksha et al. described the microfabrication of interdigitated electrodes with 6 µm wide 

and 4 µm spacing distance, Fig. 1.27114. These authors applied photolithography, deposition and 

etching in their fabrication flow. The electrodes were modified with (3-aminopropyl) 

triethoxysilane (APTES) for the silanization of the surface SiO2 layer present between the gold 

fingers of electrode. The immobilization of probe DNA was achieved via the formation of amide 

bonding between the carboxyl groups of the pre-labeled DNA and the amine groups of APTES 

layer. When the DNA hybridized with the complementary target DNA strand, the positive 

charge associated with the APTES layer increased due to the increased total negative charge of 

the DNA layer which was studied via the I-V characteristics of the sensor towards increased 

concentration of complementary DNA. 

 

 

Figure 1.27 Fabrication of the electrode. LPM, HPM and SEM images for Au IDE electrode; (a) LPM image under 
4.5× magnification, (b) 15× and 50× magnification was used to scan the Au IDE surface using HPM under ambient 
temperature (c) SEM image for 3000× magnification114 

 

1.4.3 Microfabricated biosensor integrated fluidic devices 

The area of research into microfluidic devices integrated together with electrochemical micro-

nano biosensors is currently attracting considerable interest. At present, the most attractive 



45 
 

aspect of this research is considered to be the effects of size and in particular size reduction 

since a miniaturized, perhaps also portable analysis platform of this type would ideally only 

require small amounts of reagents and analyte without compromising and perhaps even 

enhancing sensitivity. 

 

Most of the current generations of microfluidic devices are also packed with separation or 

sample preparation units as well as a detection section having high resolution and sensitivity. A 

very recent study reported by Dincer’s group successfully demonstrates the integration of 

CRISPR technology (Clustered Regularly Interspaced Short Palindromic Repeats) with an 

electrochemical microfluidic biosensor having a cost at the time of writing of €0.838 per 

biosensor chip, Fig. 1.28102. These authors described a CRISPR-on-a-microfluidic electrochemical 

biosensor which measured the micro RNA levels of the potential brain tumor marker miR-19b in 

serum samples of patients who had been diagnosed with brain cancer. For the biosensor they 

used a polyimide substrate subjected to a fabrication process based on deposition, etching and 

lithography. The resulting microfluidic biosensor channel consisted of an immobilization area 

and electrochemical cell based on a Pt working electrode, a counter electrode and a reference 

electrode, separated by a hydrophobic stopping barrier. The surface of the immobilization area 

was pre-functionalized by applying a streptavidin. For the CRISPR powered process, the enzyme 

Cas13a was mixed with its target specific crRNA, a biotin and 6-FAM (6-fluorescein amidite) 

labeled reRNA, and the sample of interest. The mixture was incubated at 37 oC, where the 

Cas13a formed a complex with the target specific crRNA. Thus, in the presence of target 

miRNAs, the Cas13a becomes activated and subsequently a collateral cleavage of the 

surrounding reRNA is achieved. This solution was then applied directly to the immobilization 

area which was modified with streptavidin; at this point the biotin and 6-FAM labeled RNA 

molecules became bound to surface streptavidin. This was followed by the application a GOx 

enzyme coupled to anti-6FAM antibodies to the immobilization area. The biosensor assay was 

then treated with glucose solution. Thus GOx enzyme catalyzed reaction produced H2O2 which 

was amperometrically detected in the electrochemical cell of the biosensor. In this way, the 

interesting combination of CRISPR/Cas13a technology with a microfluidic biosensor was 
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demonstrated and shown to be a highly promising and unique platform for the detection of 

miRNAs in small sample volumes efficiently and accurately in a very short time. Subsequently 

the validation of the system developed with a standard quantitative real-time polymerase chain 

reaction (qRT-PCR) process has proven the capability of the system for use in miRNAs-related 

disease diagnostics. 

 

 

Figure 1.28 Combination of the CRISPR technology along with an electrochemical microfluidic biosensor for miRNA 
diagnostics. a) Schematic of the off-chip miRNA targeting b) Schematic of the single‐stranded target miRNA, 
miR‐19b, and the crRNA, where the complementary sequence is highlighted in blue. c) Working principle and photo 
of the microfluidic biosensor with its main elements 

102
 

 

Another highly promising approach towards the production of a fully on-chip, integrated rolled-

up microelectrode for DNA detection has been reported by Schmidt’s group, Fig. 1.29115. These 

authors fabricated electrodes via deposition, photolithography and etching on a sacrificial layer. 

When this layer was dissolved, it led to the rolling-up of the electrode as shown in Fig. 1.29. To 

improve the mechanical stability, SiO2 was deposited on top of the tubular electrode. This was 

followed by the integration of the rolled-up electrode into a microfluidic channel which was 

fabricated by soft-lithography. The inner part of the rolled-up electrode was modified with 11-

mercaptoundecanoic acid (11-MUA) and then the resulting surface carboxyl groups were 

activated via carbodiimide chemistry. After rinsing the electrode, amino-modified DNA was 

attached to surface. The resulting rolled-up microelectrode biosensor was used to detect DNA 
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of avian influenza A virus (AIV), subtype H1N1 without any amplification or labeling in the range 

20 aM to 2 pM.  

 

 

Figure 1.29 (a) Steps for the fabrication of tubular electrodes: (i) Ge, (ii) strained TiO2 bilayer, (iii) Cr/Au, and (iv) 
SiO2 passivation layer. (b) Layout of the electrode and fluidic design. (c) Final fabricated device. (d) View of the 
tubular electrodes inside the fluidic channel. (e) Single tubular electrode and (f) its scanning electron microscope 
image

115
 

 

Plaxco’s group116 have reported an integrated microfluidic electrochemical DNA chip which is 

capable of detecting and discriminating between closely-related Salmonella serovars, Fig. 

1.13C. For this purpose, they fabricated gold electrodes on a glass wafer which was then 

bonded to a PDMS microfluidic system which contained an amplification chamber designed to 

support the loop-mediated isothermal amplification (LAMP) process, as shown in Fig. 1.30. By 

using the LAMP-on-chip microfluidic device, they were able to demonstrate the detection of 

salmonella DNA with a detection-limit of less than 10 aM. Then, they successfully applied the 

sensor to the study of whole blood samples taken from septic mice. 
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Figure 1.30 A salmonella microfluidic sensor comprising microfluidic sample delivery, LAMP gene amplification, and 
detection electrodes

116
 

 

Yu et al.117 developed a perfusion-incubator-liver-chip for 3D cell culture (Fig.1.13D). The device 

structure consisted of a glass/silicon microfluidic circuit, a cell culture chamber, a bubble trap 

chamber and a heater as shown in Fig. 1.31. The fabrication of this microfluidic device was 

based on generic microfabrication technologies including photolithography, deposition and 

etching. By constraining rat hepotocyte spheroids between the cover glass and a porous – ultra 

thin Parylene C membrane integrated to the microfluidic chip, these authors were able to 

maintain cell viability over a period of some 24 days. 

 

 

Figure 1.31 Schematic of the PIC chip. (a) 3D view with the PIC, (b) bottom view of the chip’s layout illustrating the 
microfluidic circuit, the cell culture chamber, the bubble trap and the heater, (c) cross-section of the PIC, (d) Top and 
bottom view of the PIC

117
. 
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1.5 Conclusion and Future perspectives 

Electrochemical biosensors based on advanced nanostructures and/or miniaturized devices 

offer an important sensing and diagnosis platform having high sensitivity and selectivity 

towards various target analytes. Since the very first discovery of biosensors many breakthrough 

innovations have been demonstrated in order to improve the characteristics and performance 

of the desired sensing devices. First, second and third generation glucose biosensors, the use of 

nanomaterials or integrated polymers matrixes and highly innovative miniaturized devices 

based on the use of particular microfabrication technologies have been described in detail for a 

number of specific applications. Enhanced sensitivities have been achieved for glucose 

biosensors by applying the use of emerging nanostructures, hybrid materials and micro-nano 

technologies.  

 

 The use of non-enzymatic catalysts towards glucose has also been shown to produce excellent 

analytical performance. Since many glucose oxidase-based electrochemical biosensors have 

been used as idealized model systems for the fabrication of diverse sensing platforms, they 

have opened up the possibility of their use in a new generation of (integrated) electrochemical 

biosensors for the detection of several analytes. For example, a combination of an 

electrochemical glucose biosensor with advanced DNA technologies on a small microfluidic 

device has been developed at low cost in order to detect miRNAs102. However, there are many 

other unexplored strategies. With this in mind, there is still a high demand and expectation for 

robust, accurate, sensitive, selective and cheap sensing devices particularly for the early-stage 

detection of biomarkers associated with various cancers and diseases such as Alzheimer’s, 

multiple sclerosis, etc. It is also noteworthy that the development of sensors for the reliable, 

continuous, real-time monitoring of glucose with high selectivity and speed also currently 

presents a massive challenge in the area of diabetes control.  
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CHAPTER 2 
Enzyme free detection of glucose 
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2. Cu Nanodendrite Foams on Integrated Band Array Electrodes for the 

Nonenzymatic Detection of Glucose 

 

This work has been published in the journal of ACS Applied Nanomaterials, 2019, 2, 9, 5878-

5889 

 

2.1 Abstract 

We demonstrate the successful electrodeposition of Cu nanodendrite foams (CuFoams) onto a 

series of lithographically formed gold band electrodes at negative overpotentials in an acidic 

environment. The nanodendrite foams were deposited onto two different integrated 

microelectrode arrays fabricated using standard lithographic techniques. Each electrode 

consisted of 17 gold band electrodes deposited onto a silicon wafer substrate, labelled BA5 

(with a width of 5 µm and a length of 250 µm) and BA10 (with a width of 10 µm and a length of 

500 µm). Prior to Cu deposition the gold electrodes were characterized by scanning electron 

microscopy (SEM) in order to evaluate the morphology of each design and by cyclic 

voltammetry (CV) in order to investigate their diffusion profiles. After Cu deposition the 

resulting 3D foam structures were studied using SEM, XPS and EDX. The Cu foam/Au 

microelectrodes were then used for the electrocatalytic detection of glucose via oxidation at a 

potential of +0.45 V vs. Ag/AgCl in an alkaline medium. It was found that both types of 

electrode arrays used showed excellent analytical performance in terms of sensitivity, 

reproducibility and stability in comparison with the best performances reported in the 

literature. In particular, the BA5-CuFoam electrode exhibited an outstanding sensitivity of 

10,630 µA mM-1 cm-2 towards glucose with a wide linear range up to 22.55 mM, while the 

BA10-CuFoam electrode showed a sensitivity of 4,437 µA mM-1 cm-2. The performance of the 

proposed electrochemical sensor is attributed to a combination of the use of the very high 

surface area Cu nanodendrite foam and the enhanced radial distribution profile associated with 

the use of the smaller band microfabricated electrodes. Additionally, both sensors also showed 

a strong resistance to the poisoning effects of chlorine ions and excellent stability over a period 

of three months. 
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Graphical abstract, note that the sizes of the components shown are not drawn to scale. 

 

2.2 Introduction 

Besides the reproducibility and low variability of silicon-based microelectrodes, their use allows 

for flexibility in the design and arrangement of the array with numerous shapes, sizes and 

dimensions available for each electrode on the array1-2. Furthermore, precise batch fabrication 

may provide a cost effective solution for all the fabrication processes. In particular, the use of 

silicon based micro electrodes as neural probes in the field of neural science for in vivo 

recordings and/or implantable (bio) sensors have been extensively reported since silicon, along 

with the often applied silicon dioxide and silicon nitride insulator layers, is a biocompatible 

material1, 3-6. For example, the research article by Wei et al.7 describes an important example of 

the use of implantable silicon based microelectrode arrays (MEAs) for L-glutamate detection, 

which is the most common excitatory neurotransmitter for a wide range of neurological 

diseases. The developed MEA was capable of detecting glutamate with a sensitivity of 56 pA 

µM-1 and a detection limit of 0.5 µM. Furthermore, this study successfully demonstrated the 

results of monitoring the extracellular glutamate levels, spikes and local field potentials in vivo. 

Micro- or nano-sized silicon based micro fabricated electrodes have also been of great interest 

for (bio) electrochemical applications8-9. From the electrochemistry perspective, the approach 
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of scaling down of the electrodes has been reported by many researchers10-13 who have 

demonstrated the benefits of using these small electrodes in terms of the electro-analytical 

performance including sensitivity and detection limit.  

In a previous study, we demonstrated the positive advantage of using micron-sized array 

electrodes by developing glucose oxidase (GOx) biosensors based on both micro array8 and 

planar9 electrodes with sensitivities of 47.24 and 626.06 μA mM-1 cm-2, respectively. The 

observation of a 13-fold improvement of the sensitivity resulting from the move from planar to 

micro array electrodes clearly highlighted the advantages of successfully miniaturizing the 

developed biosensor.  

Another potential way to enhance the performance of a glucose sensor is to utilize the electro-

oxidation of glucose which requires a catalyst such as nickel14, gold15, copper16 or cobalt17, 

instead of employing an enzymatic reaction. Among the possible catalytic metals  copper (Cu) - 

a 3d transition metal - is considered to be  a highly promising candidate for many applications in 

nanotechnology since Cu-based nanomaterials can promote and undergo a variety of reactions 

due to  the presence of two  accessible oxidation states which enable reactivity via both one- 

and two-electron pathways18.  

Cu based nanocrystals have found many applications in electrocatalysis19, photocatalysis20, 

biosensors21 and electrochemical sensors22. The morphology of the Cu-based nanoparticles on 

the solid electrode surface has a great impact on the catalytic reaction of glucose. The size and 

shape of these nano structures is highly dependent on the synthesis approach and precursors 

used. For instance, a variety of copper23, cupric oxide24, cuprous oxide25 nanomaterials with 

different sizes and shapes, often in combination26 have been used to prepare non-enzymatic 

sensors and have demonstrated a high sensitivity towards glucose. The most remarkable 

advantage of those sensors is the increased stability which has been observed, since stability 

represents the biggest problem for enzymatic sensors due to the nature of the biomolecule 

itself, (Table S1; latest enzymatic glucose sensors and their analytical performances). However, 

until now, CuFoam deposited micro fabricated band array electrodes have not been 

investigated for glucose electro-oxidation.  
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In this present work we demonstrate the excellent performance of CuFoam micro band array 

electrodes for glucose oxidation. We show that CuFoam formed in an acidic environment via 

negative overpotential deposition exhibit well-ordered porous electro-active surfaces for the 

electrocatalytic detection of glucose. The resulting miniaturized CuFoam sensors showed 

superior electro-analytical performance as a result of the reduction in geometric surface area of 

each design combined with the increased electro-active surface area of the porous CuFoam. We 

successfully demonstrate the impact of the miniaturization of foam electrodeposits and their 

use as anode materials towards glucose electro-oxidation. The morphologies of the bare and 

modified electrodes were studied with scanning electron microscopy (SEM). Gold band array 

electrodes with different widths and lengths were microfabricated on a silicon substrate by 

applying deposition, lithography and etching and were then characterized electrochemically by 

applying cyclic voltammetry (CV). CuFoam nanostructures were electrochemically grown on the 

array electrodes in an acidic environment at high negative overpotentials in order to obtain 

foam shaped porous deposition layer. 

 The sensors developed here showed excellent performance even in the presence of the 

chloride ions and other potentially interfering species. Furthermore, the micro array electrodes 

exhibited large linear ranges and showed considerably better sensitivities towards glucose than 

electrocatalytic sensors available in the literature, please see Table 2. 
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Scheme 2.1. Schematic illustration of in situ bubble template formation and copper foam electrodeposition onto 
microfabricated band array electrode 

 

2.3 Results and discussion 

2.3.1 Fabrication and investigation of gold micro band array electrodes  

In this section we describe the lithographic fabrication of two different geometrical types of 

microelectrode arrays consisting of 17 gold band electrodes placed on top of a silicon wafer 

substrate. The silicon fabrication process included oxide layer growth on the silicon substrate 

after a series of cleaning steps of the substrate. Table 1 summarizes the two different band 

array geometries fabricated and studied here. Electrodes were fabricated in several process 

steps by lithography, deposition and etching as described previously9 with a specific mask 

having been designed for the band array electrodes. This was followed by dicing to separate 

each electrode. To evaluate the success or otherwise of the fabrication process we performed 

detailed characterization of clean, bare micro array electrodes, as described below. 

The arrangement, size and dimensions of the bare electrodes were analyzed by scanning 

electron microscopy (SEM). As can be seen in Fig. 2.1A and B, SEM micrographs clearly show 

the arrangement of the 17 individual band electrodes that are arranged  on the  Si3N4 insulation 

layer with 100 µm inter electrode distance between electrodes. Fig. 2.1C shows a higher 

magnification image of electrode array BA5 with a width of 5 µm and a length of 250 µm, 

placed at 100 µm inter electrode distance. Fig. 2.1D shows a higher magnification image of 

electrode BA10 had a width of 10 µm and a length of 500 µm, placed at 100 µm inter electrode 

distance. Each design of the array electrodes consisted of an isolated connection track and an 

etched large surface area connection pad, as illustrated in Fig. 2.1G.  

For the initial electrochemical characterization of the bare gold electrodes cyclic voltammetry 

(CV) was performed in the presence of the redox probe Fe(CN)6
3-/4- in 0.01 M PBS, containing 

0.1 M KCl. As shown in Fig. 2.1E, BA5 exhibits a sigmoidal voltammogram which is characteristic 

behavior for most microelectrodes. However, in Fig. 2.1 F, BA10 shows a voltammogram which 

displays the characteristic peaks associated with a conventional reversible redox couple. While 

each band array design has the same inter electrode distance, the increased (×2) width and 

length of BA10 may result in an increased diffusion profile diameter which then creates an 
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overlapping diffusion zone between the adjacent band electrodes. Thus, BA10 shows a 

characteristic voltammogram shape which is a combination of that expected for both planar 

electrodes and microelectrodes. Representative diffusion profiles are shown as inset graphs of 

Fig. 2.1E and F.  Moreover, BA10 displays increased current levels in comparison to BA5, which 

may attributed to increased total surface area with increased number of the electrodes on the 

array, Table 1. The effect of scan rate on the band array electrodes was investigated. The 

relationship of scan rate versus anodic and cathodic peak currents were illustrated in Fig. 2.S1 

(Supporting Information). The linear relationships of anodic and cathodic peak currents with 

increased scan rates from 0.05 to 0.9 V s-1 (as shown in Fig. 2.S1, Supporting Information) 

confirm the excellent redox reaction of electroactive species on the band array electrodes’ 

surfaces as a surface controlled electrochemical process. 

  

Table 2.1.  Characteristics of the micro band array electrodes 

BAND Width 
(µm) 

Length 
(µm) 

Inter electrode 
distance (µm) 

Electrodes Recess depth 
(nm) 

Geometric 
surface area 
(cm

2
) 

BA5 5 250 100 17 200 2.13×10
-4

 

BA10 10 500 100 17 200 8.50×10
-4
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Figure 2.1. SEM images of gold band array electrodes; lower magnification images of BA5 (A) and BA10 (B), higher 
magnification images of the band electrodes of BA5 (C) and BA10 (D), cyclic voltammograms recorded for BA5 (E) 
and BA10 (F) at a scan rate of 0.01 V s-1. The solution is 5 mM Fe(CN)63-/4- as a redox probe in 0.01 M PBS (pH 
7.4), containing 0.1 M KCl, each design repeated 3 times (inset pictures are the representative images of diffusion 
profiles of BA5 and BA10, not drawn to scale). Illustration of the band array electrode (not drawn to scale) (G). 

 

2.3.2 Electrodeposition of CuFoam and electrocatalytic behavior of CuFoam deposited band 

array electrodes 

CuFoam modified band arrays were prepared by electrodeposition using a condition that can 

concurrently reduce water to H2. The H2 bubbles formed on gold working electrode served as 

an in situ generated bubble template to deposit porous CuFoam27-28, as illustrated in Scheme 1. 

Nikolic et al.29 studied in detail the effect of the H2SO4 concentration over the morphology of Cu 

deposits by keeping the concentration of Cu2+ constant in the solution. In our study, the acidity 

of the solution also played a crucial role in the formation of well-ordered 3D roll-shaped 

CuFoam deposits over each gold band electrodes. We studied concentrations of H2SO4 of 1 M 

(Fig. 2.2A), 0.5 M (Fig. 2.2B) and 0.05 M (Fig. 2.2C) to demonstrate the effect of acidity while 

the Cu2+ concentration was kept constant. With decreased acid concentrations, we observed a 

decrease in the thickness of the Cu dendrites. In the case of the 0.05 M H2SO4 concentration, 

we observed random deposits over the electrode surface with the needle-shaped fragile Cu 

dendrites which were weakly attached to the surface (Fig. 2.2C). This result shows the acidity of 

the electrodeposition solution has an important impact on the adhesion of Cu nanodendrites 

on the gold electrode surface.  
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Figure 2.2. SEM images of BA10-CuFoam electrodes prepared at different H2SO4 concentrations; (A, A-i and A-ii; 
increased magnification), 1M H2SO4, (B, B-i and B-ii; increased magnifications) 0.5M H2SO4, (C, C-i and C-ii; 
increased magnifications) 0.05M H2SO4at a applied voltage of -6 V vs. Ag/AgCl in the solution containing 0.87 mg 
Cu2+  

 

The determination of the optimum Cu2+ ion concentration (0.05, 0.20, 0.50 and 1.5 mg) in the 

solution was further investigated (Fig. 2.S2, Supporting Information). The solution of 0.05 mg 

Cu2+ in 2.5 M H2SO4 showed minimal growth of Cu nanodendrites over the band electrodes.  

With increased concentration of Cu2+, led to an increased spread of formations. However the 

concentration higher than the 0.87 mg Cu2+ showed a very high accumulation of the foam 

structure which decreased the distance dramatically between the band electrodes. Due to the 

highly uniform formation of CuFoam across the surface of each band electrode on the array, all 
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electrodes were then prepared a solution of 0.87 mg Cu2+ in 2.5 mM H2SO4. As might be 

expected, the use of shorter deposition periods led to a decrease in the density of the CuFoam 

deposits over the band electrode surface. Fig.2.S3 (Supporting Information) shows the SEM 

micrographs of BA10-CuFoam electrodes which were prepared after 15, 20, 30 and 35 seconds 

of electrochemical deposition. Due to the microelectrode diffusion characteristics, we observed 

that the Cu deposits became denser only at the ends of the each band electrode in the array at 

shorter deposition times and with increased deposition time we obtained a more uniform foam 

distribution through the middle of the single band electrode. However, for each design of band 

array electrode, we obtained a denser accumulation of the Cu dendrites at the both ends of the 

electrodes and the diameter of the pores in the copper deposits was found to increase towards 

the outer surfaces of the deposits. Furthermore, the use of silicon based gold electrodes limits 

the deposition time since high acid concentration may damage the electrode in the long time 

period. Thus it is very important to determine the optimum deposition time for each design. Fig 

2.3A and B shows the BA5 20 seconds and BA10 25 second depositions, respectively, as a result 

of determined optimum deposition times.  Moreover, it was found that applied voltage also 

had a significant impact on the nature of the deposits along each band electrode, Fig.2.S4 

(Supporting Information). While applied lower negative potentials resulted in decreased 

accumulation of the CuFoam deposits over the each band on the electrode surface as shown in 

Fig.2.S4, high negative voltage led to an increase in the density of CuFoam deposits. Therefore, 

in the presence of a suitable concentration of ions, using an optimized applied potential and 

deposition time as explained in the experimental section, Cu dendrites were grown in the 

interstitial spaces of the dynamic hydrogen bubble template which was generated in situ on the 

working electrode, the result being the formation of a microporous 3D CuFoam on the 

surface27, 30, as illustrated in Scheme 2.1. The resulting optimum Cu dendrites were grown at 

high concentration of SO4
2- and high negative overpotentials of -5.0 and -6.0 V vs. Ag/AgCl in 

the case of BA5 and BA10, respectively. Fig. 2.3A and B show the 3D CuFoam deposited onto 

BA5 and BA10, respectively. The wall of the CuFoam deposits is composed of dendritic 

nanostructures resulting in the increased surface area as can be seen in the higher 

magnification of SEM micrographs of both electrodes, Fig. 2.3C, D, and E. 
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Figure 2.3. SEM images of CuFoam band array electrodes showing (A) BA5 and (B) BA10 foam structure, (C) porous 
foam of single band and (D and E) foam wall and Cu nanodendrites at higher magnifications. 

 

The as-prepared CuFoam band array electrodes were used to investigate glucose electro-

oxidation in alkaline environment. Fig. 2.4A shows the electrochemical behavior of the CuFoam 

band array electrode in an alkaline solution and Fig. 2.4B and C show the changes of the 

voltammograms in the absence and presence of glucose. In the anodic sweep in 0.1 M NaOH 

solution (Fig. 2.4A), the first multiple peaks observed at around -0.04 V vs Ag/AgCl may 

attributed to oxidation of Cu(0) to Cu(I) and the subsequent formation of Cu20, according to 

following equation31-33; 

 

                                                                                                   (1) 

 

The broad peak at around 0.13 V vs Ag/AgCl may be attributed to further oxidation of Cu(I) to 

Cu(II) and Cu(0) to Cu(II), according to following equations 32; 
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                                                                                                  (2) 

                                                                                              (3) 

 

In the cathodic sweep, the peak at around -0.52 V is the reduction of copper oxide species. 

After addition of glucose into the electrochemical cell (Fig. 2.4B and C, red lines), both 

electrodes give rise to  voltammograms that show the electro-oxidation potential of glucose at 

+0.45 V vs Ag/AgCl while there are no other obvious peaks at the same potential in the absence 

of the glucose. The most possible explanation for the glucose-electro-oxidation in NaOH 

solution by Cu has been postulated as the formation of Cu(III) oxides (such as CuOOH). During 

the cyclic voltammetry scanning, the exterior surface of the foam is oxidized to CuO and further 

to Cu3+ which is rapidly reduced to Cu(II) at 0.64 V vs Ag/AgCl 34-36; 

 

                                                                                                                      (4) 

                                                                                                   (5) 

               
    
                    

    
                                            (6) 

 

As the aim of the present work was to study the oxidation of the glucose, +0.45 V vs Ag/AgCl 

was selected as the potential for use in the subsequent analytical studies. To analyze the 

optimum NaOH concentration for glucose electro oxidation, BA10-CuFoam electrodes were 

studied in various concentrations of NaOH at an applied potential of + 0.45 V towards glucose. 

As is seen in Fig.2.S5 (Supporting Information), the Cu nanodendrites exhibit the higher 

response in the solutions of 0.1 M and 0.5 M NaOH. Thus, all electrochemical studies were then 

applied in 0.1 M NaOH solution. 
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Figure 2.4. Cyclic voltammogram of CuFoam electrode in 0.1M NaOH solution (A), Cyclic voltammograms of the 
BA5-CuFoam (B) and BA10-CuFoam (C) microelectrodes in 0.1 M NaOH (black), and in the presence of 2 mM 
glucose (red), at a scan rate of 0.01 V s-1, SEM images of the deposited BA10-Cu nanodendrite before (D) and after 
(E) glucose electro oxidation. 

 

Fig. 2.4D shows a high magnification SEM image of the CuFoam dendritic nanostructure. The 

CuFoam structure and Cu dendrites remained stable after electro-oxidation of glucose (Fig. 

2.4E). However, the surface roughness changed with the appearance of the very small spike-like 

features over the surface of Cu dendrites (Fig. 2.4E). Those small features may be responsible 

for the catalytic performance of the CuFoam electrodes27. Nam et al. 27 observed very similar 

features appearing over a CuFoam surface after the electrochemical oxidation of 5-

hydroxymethylfurfural. They claimed that these spike-like features covering the surface of Cu 

crystals were composed of similar amounts of CuO and Cu(OH)2 on the surface which was 

demonstrated with X-ray photoelectron spectroscopy (XPS) results. Indeed, it has been 

reported that the electrocatalytic oxidation of glucose on copper electrodes happens via copper 
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oxide/hydroxide intermediates37-39. Therefore, the surface chemical composition of the CuFoam 

electrodeposits before and after glucose electro-oxidation was studied by analyzing Cu 2p 

peaks obtained by XPS. Fig 2.5A shows the measured and fitted curves of CuFoam deposits and 

Fig. 2.5C exhibits the whole survey of the surface presents all the elements detected. Due to 

the existence of only C (from atmosphere), O and Cu, it suggests that only copper oxides were 

formed on the surface. High resolution spectra of Cu 2p (Fig. 2.5A) reveals clearly that indeed a 

mixture of elemental copper and copper-oxide species are present on the surface. The peaks 

located at approximately 932.6 and 952.5 eV were attributed to Cu2O and Cu0. The peaks at 

954.6 eV and 934.9 eV were assigned to CuO and Cu(OH)2, respectively. We remark the 

limitation of the XPS analysis of the surface layer, because the Cu 2p peaks of Cu+ and Cu0 

cannot be differentiated, which means that the Cu2O peak may include the peak from the 

underlying elemental copper lies beneath the copper oxides surface layer27. After the electro-

oxidation of glucose, the surface of the CuFoam electrode was reexamined with XPS. The whole 

survey of the used surface (Fig. 2.5D) shows clearly that the surface of the CuFoam deposits are 

still composed of a mixture of copper oxide species, similar with Fig. 2.5C.  However, the high 

resolution spectra of the foam surface demonstrates the significant changes of the composition 

of the existing species (Fig. 2.5B). The peak at 932.6 eV attributed to Cu+/Cu0 decreased 

significantly and the Cu2+ at 934.9 eV increased. Similarly, the peak of Cu2+ (CuO) at 954.3 eV 

was increased, while the peak of Cu+ at 952.5 eV decreased.  The increase of the Cu2+ species – 

Cu(OH)2 and CuO- is most likely due to the result of reduction of CuOOH to Cu2+ after the 

electro oxidation of glucose, Eqs. 2, 3 and 6.  
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Figure 2.5. Cu 2p XPS spectra of CuFoam deposits (A) before and (B) after glucose electro-oxidation, XPS survey 
scans of CuFoam (C) before and (D) after glucose electro-oxidation (The quantification results of high resolution 
spectras are shown in Table 2.S2, supporting information) and (E) EDX spectra of CuFoam electrodeposits (insets; 
SEM image, EDX mapping analysis and Map Sum spectrum) 

 

The other technique used here to analyze the chemical structure of the CuFoam electrodes is 

the energy-dispersive X-ray spectroscopy (EDX). Fig. 2.5E shows the EDX analysis and 

corresponding mapped SEM image of the analysis. The copper appears in red colour which 

covers the entire surface or the analysis area with the ratio of % 83.4. The result of the EDX 

analysis confirms the copper and copper oxides as the main constituent in the structure in the 

presence of gold (Au) and silicon (Si). These two elements are presented less corresponds to 

the existence of the electrode material based on silicon and gold.  

 

To demonstrate the relationship between the concentration of deposited Cu crystals on surface 

and the sensitivity of the sensors, we measured calibration curves for the BA-CuFoam 

electrodes prepared using different Cu deposition times.  The fittings of BA5-CuFoam with 20 

seconds deposition time  (■; J(µA/cm2) = 10,630 [Cglucose](mM) + 53, R2=0.997), 15 seconds 
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deposition time (●; J (µA/cm2) = 7136 [Cglucose](mM) + 1284, R2=0.989), 10 seconds deposition 

time (▲; J(µA/cm2) = 6369 [Cglucose](mM) + 17,  R2=0.955) and the fitting equations of BA10-

CuFoam  with 25 seconds deposition time (■; J(µA/cm2) = 4437 [Cglucose](mM) – 24, R2=0.999), 20 

seconds deposition time (●; J(µA/cm2) = 3903 [Cglucose](mM) + 6, R2=0.996), 15 seconds 

deposition time (▲; J (µA/cm2) = 2882 [Cglucose](mM) + 41, R2= 0.990) are given in Fig. 2.6A and B 

as calibrations curves for each deposition times. As expected, lower Cu deposition times 

produced electrodes that showed decreased sensitivity due to a decrease in the electro-active 

surface area. Furthermore we observed a decreased correlation coefficient for electrodes 

grown with decreased Cu deposition time since the sensors’ saturation levels decreased. In this 

regard it was found that for the BA5 electrodes growth of less than 20 seconds resulted in a 

marked decrease in both sensitivity and dynamic range for glucose detection, while for the 

BA10 electrodes this critical growth period was 25 seconds. 

 

 

Figure 2.6. Calibration curves of BA5-CuFoam (A) with 20 seconds (■), 15 seconds (●), and 10 seconds (▲) 
deposition times and BA10-CuFoam (B) with 25 seconds (■), 20 seconds (●),  and 15 seconds (▲), illustrating the 
linear relationship observed between glucose concentration and current density for BA5-CuFoam (C) and BA10-
CuFoam (D) sensors with a correlation co-efficient R2=0.99 for both electrodes  and linear sweep voltammograms 
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of BA5-CuFoam (C-inset) and BA10 (D-inset) sensors in 0.1 M NaOH towards increase concentration of glucose at a 
scan rate of 0.01 V s-1  

 

The linear sweep voltammograms (LSV) obtained as a function of increasing glucose 

concentration over the CuFoam deposited BA5 and BA10 electrodes are shown in Fig. 2.6C and 

D. The anodic peak at +0.45 V increases with increasing concentration of glucose as shown in 

inset graphs. While the peak shape is the same for both designs, the BA10-CuFoam array 

electrode exhibits higher current levels than the BA5-CuFoam array electrode. Fig. 2.6C and D 

reveal the corresponding glucose concentration vs. current density graph for the BA5 and BA10 

electrodes, respectively. These obviously linear responses towards glucose demonstrate that 

the CuFoam deposited band array electrodes exhibit a uniform response to glucose and show 

excellent electrocatalytic behavior.  

 

2.3.3 Chronoamperometric detection of glucose and analytical parameters of the CuFoam 

deposited array electrodes 

The as-prepared CuFoam deposited band array electrodes were studied as glucose sensing 

anode materials. Fig. 2.7A, B shows the chronoamperometric responses and corresponding 

calibration curves of both the BA5 and BA10 electrodes modified by Cu deposition. 

Chronoamperometry was applied as a function of increasing concentrations of glucose in 0.1 M 

NaOH solution at room temperature under non-stirred conditions. After each addition of 

glucose, the solution was stirred to obtain a homogenous distribution of glucose in the 

electrochemical cell and then kept stable for 15 seconds in order to reach equilibrium before 

the measurement. The inset graphs on Fig. 2.7A, B show the magnified images of six 

chronoamperograms. The current obtained at the 40th second was used to prepare the 

calibration curves. Fig. 2.7C and D show the corresponding calibration curves of BA5 and BA10 

CuFoam sensors, respectively. Both calibration curves exhibit a linear region in the range of 

concentrations between 0.01 mM - 22.55 mM. The fitting equation of BA5, Fig. 2.7C, is J 

(µA/cm2) = 10,630 [Cglucose](mM) + 54 with a correlation coefficient of 0.997 and the fitting 

equation of BA10, Fig. 2.7D, is J (µA/cm2) = 4,437 [Cglucose](mM) – 24 with a correlation 

coefficient of 0.999. The slope of the calibration curves demonstrates the sensitivities of the 
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BA5 and BA10 to be 10,630 µA mM-1 cm-2 and 4,437 µA mM-1 cm-2, respectively.  Both sensors 

showed excellent sensitivities towards glucose in comparison to many other array- based 

sensors reported in the literature, Table 2.2. The increased sensitivity of BA5 in comparison to 

the sensitivity of BA10 is due to the further miniaturization of the array and the advanced 

microelectrode properties arising from the diffusion profile of the miniaturized electrode. This 

result clearly shows the positive advantage of the miniaturized systems in terms of the 

analytical performance of the desired (bio)-sensors.  

 

 

Figure 2.7. Chronoamperograms of the BA5-CuFoam (A) and BA10-CuFoam (B) sensors obtained in 0.1 M NaOH 
solution as a function of increasing concentration of glucose at an applied potential of + 0.45 V (inset graphs show 
the magnified image of first six chronoamperograms at 40th second), and corresponding calibration curves for the  
BA5-CuFoam (C) and BA10-CuFoam (D) sensors. 

 

Table 2.2 presents a summary comparison of the main characteristics of the array based non-

enzymatic glucose sensors reported in the literature and the BA5, BA10 CuFoam sensors 
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fabricated in this study.  The sensors developed in this study show the widest linear range for 

glucose detection up to 22.55 mM among all the array based sensors reported in Table 2.2.  The 

sensitivity of BA5 CuFoam electrode is one of the highest sensitivity among the listed sensors. 

These performance characteristics may be attributed to the high quality fabrication of the array 

electrode with the smaller surface area of 2.13×10-4 cm2. Hence it is proposed that the 

electrochemical characteristics of the designed electrode are highly suitable for the 

development of sensors. The relatively easy, one-step deposition of 3-D structured porous 

CuFoam onto the band array electrode provides very a large electro-active surface area for 

glucose oxidation with superior sensitivity of 10,630 µA mM-1 cm-2. It is therefore critical to 

utilize the optimized deposition process in order to achieve maximum sensor performance.  

This is clearly demonstrated in the results presented here, which are based on a simple, cheap 

and rapid method for the preparation of high performance sensors for glucose electro-

oxidation. 

 

Table 2.2. A comparison of the performances of the BA5 and BA10-CuFoam sensors with other copper and array 
based non-enzymatic glucose sensors 

Electrode  Potential (V)  Linear range  Sensitivity Ref. 

CuO@Cu nanowires 
array 

+0.65 vs. Ag/AgCl 1.0x10
-6

 – 1.0x10
-2

 
M 

1250.8 µA mM
-1

 cm
-2

 
40

 

Cu(OH)2 NGA@NPC 
hybrid 

+0.52 vs. Ag/AgCl 0.2 – 9 mM 2.09 mA cm
−2

 mM
−1

, 
41

 

Cu2O/MoS2 +0.7 vs Hg/Hg2Cl2  0.01–4 mM 3108.08 µA mM
-1

 cm
-2

 
42

 

CuO-ZnO NRs + 0.62 vs. Ag/AgCl Up to 8.45 mM 2961.7 µA mM
−1

 cm
−2

 
43

 

Cu2O PLNWs/Cu 
foam 

+0.5 vs. SCE 0.001–1.8 mM 6.6807 mA M
−1

 cm
−2

 
44

 

Cu/graphene/NF +0.6 vs. Ag/AgCl Linear response 
range of 100 µM 

 7.88 mA mM
−1

 cm
−2

  
45

 

Micro-Pt/Cu 
NFs/nafion/GOD/PU 

+0.6 vs. Ag/AgCl 0 – 20 mM 42.38 nA mM
−1

 
46

 

Co3O4 nanosheets +0.5 vs Ag/AgCl Up to 0.31 mM 12.97 mA mM
−1

 cm
−2

 
47

 

Helical 
Cu2O/TiO2 nanotube
s array 

+0.65 vs. SCE 3 - 9 mM 14.56 μA mM
−1

 cm
−2

 
48

 

Hierarchical 
Co3O4/Ni 

+0.5 vs. SCE 0.04 – 3.6 mM 13,855 μA mM
−1

 cm
−2

 
49

 

CuFoam/BA10 +0.45 vs. Ag/AgCl 0.01 - 22.55 mM 4,437 µA mM
-1

 cm
-2

 This 
work 

CuFoam/BA5 +0.45 vs. Ag/AgCl 0.01 - 22.55 mM 10,630 µA mM
−1

 cm
−2

 This 
work 
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The selectivity of the sensors was studied in the presence of ascorbic acid, uric acid and 

acetaminophen, which can possibly coexist with glucose in human blood. Considering that the 

concentration of glucose in the human blood is more than 30 times that of the interfering 

species, the experiments designed to test the robustness of the electrodes towards these 

potential interfering species interference were conducted at both BA5 and BA10-CuFoam 

sensors by making a series of additions of 1 mM glucose and 0.1 mM interfering species into 

the electrochemical cell48. Fig. 2.S6A and B (Supporting Information) shows the 

chronoamperograms of BA5 and BA10 recorded in response to each addition of glucose, 

ascorbic acid, uric acid, acetaminophen and glucose, respectively. The response of the glucose 

in the presence of interfering species showed a 5.8 % increase in the case of BA5 and a 3.1 % 

decrease in the case of BA10 (Fig. 2.8A). It is therefore concluded that the very small changes of 

the measured responses resulting from the addition of the interfering species clearly 

demonstrate the selectivity of the developed sensors towards glucose. Herein, the most 

common interfering species (ascorbic acid, uric acid and acetaminophen) were studied to 

demonstrate the selectivity of the developed sensors, however, we note that it is possible to 

include the other interfering species such as cysteine, mono- or disaccharides etc. to extend the 

study. The other significant effect to consider when using noble metal-based electrochemical 

sensors is the possible poisoning of the surface by chloride ions, which are abundant in 

physiological fluids. For this reason we also studied the performance of the sensors developed 

here in response to serial additions of 1 mM glucose into electrochemical cell in the absence 

and presence of 0.1 M NaCl.  Fig. 2.8B shows the corresponding linear responses of both the 

BA5 and BA10 electrodes. The slopes of the BA5 and BA10 calibration curves in 0.1 M NaOH are 

11,740 µA mM−1 cm−2 and 4,772 µA mM−1 cm−2, respectively. Interestingly, the slope of BA5 and 

BA10 electrode calibration curves   in a solution of 0.1 M NaOH containing   0.1 M NaCl are 

12,610 µA mM−1 cm−2 and 5,016 µA mM−1 cm−2 respectively.  The changes calculated are some 

7.4 % for BA5 and 5.1 % for BA10 in the presence of the chloride ions. These results 

demonstrate that the sensors developed here not greatly perturbed by possible poisoning by 

chloride ions. 
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Figure 2.8. Interference effect (A), Poisoning effect (B), reusability (C), long term stability (D) and reproducibility (E) 
of BA5-CuFoam and BA10-CuFoam sensors 

 

The reusability of the sensors was studied to investigate their operational stability. The sensors 

were examined 10 times in terms of their response towards 0.15 mM glucose and the resulting 

current densities are shown in Fig. 2.8C. The calculated relative standard deviations of the 

results from the BA5 and BA10 electrodes within 10 consecutive experiments are 1.5 % and 2.1 

%, respectively. Thus it may be seen that both sensors exhibited excellent operational stability.  

 

The long term stabilities of both sensors were also tested over a period of three months. Fig. 

2.8D shows the corresponding current densities recorded towards glucose every 30 days. The 

sensors were then stored at room temperature in the dark when not in use. The current density 

of the BA5 electrode measured on the first day increased 1.9 % and the current density of the 

BA10 electrode decreased 1.35 % after three months. These negligible changes in the responses 

towards 0.15 mM glucose after three months suggest that both biosensors showed excellent 

long-term stabilities. The reproducibility of both the BA5 and BA10 electrodes are shown in Fig. 
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2.8E. Six as-prepared samples of BA5 were tested towards glucose by applying 

chronoamperometry and the relative standard deviation of the recorded current densities was 

calculated to be 3.0 % for BA5. Similarly, six BA10 biosensors were measured at the same 

conditions. The calculated relative standard deviation in this case was found to be 2.7 %. These 

statistics demonstrate the high degree of reproducibility associated with both the BA5 and 

BA10 sensors. 

 

Table 2.3. Real sample analysis with spiked sterile human serum 

  

BA5-CuFoam biosensor BA10-CuFoam biosensor 

Sample 

 

Spiked serum  

(mM) 

Measured  

(mM) 

Recovery  

(%) 

Measured  

(mM) 

Recovery 

(%) 

1 4.4 4.7 (± 0.04) 106 5.0 (± 0.07) 112 

2 6.1 6.2 (± 0.06) 101 6.6 (± 0.29) 109 

3 10 9.8 (± 0.35) 98 10.4 (± 0.15) 104 

 

Finally, we have used the two sensors developed here for the detection of glucose in sterile 

human serum. Four different spiked sterile human serum samples were prepared; 4.4, 6.1 and 

10 mM. Each spiked serum concentration was studied three times and after each addition of 

the prepared sample into electrochemical cell, the current responses were recorded at +0.45 V 

vs. Ag/AgCl. By substituting the resulting current values into the calibration curves of the 

sensors, the concentrations of the samples were calculated and the corresponding results are 

shown in Table 2.3. The recovery values of the BA5 electrode are in the range of 97.7 - 105.7 %. 

The recovery values of the BA10 electrode are in the range of 103.6 - 112.4 %. These results 

show that the developed BA5 and BA10-CuFoam biosensor electrodes can successfully 

determine the glucose concentrations in human serum. 

 

2.4 Conclusions 

In summary, two different band array electrodes were designed. Both designs had 17 band 

electrodes, 100 µm inter electrode distance and 200 nm recess depth. Silicon based micro band 

array electrodes, namely BA5 (with 5 µm width and 250 µm length) and BA10 (with 10 µm 
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width and 500 µm length) were fabricated by applying microfabrication technologies including 

lithography, deposition and etching. The fabrication technologies used permit the precise and 

reproducible fabrication of electrodes using methods which are proven to be cost-effective for 

the batch production of devices. Scanning electron microscopy and electrochemistry were used 

for characterization of the bare electrodes.  The fabricated electrodes were then used as 

substrates for Cu dendrites deposition at high negative overpotentials in an acidic environment. 

We observed that the increased acidity of the electrodeposition solution gave rise to a 

significant improvement in terms of the morphology and adhesion of the deposits. The CuFoam 

deposited band array electrodes were used as high performance electro catalysts for glucose 

detection. Both designs showed excellent electrocatalytic activity towards glucose. While the 

BA10-CuFoam biosensor showed a sensitivity of 4,437 µA mM-1 cm-2, the BA5-CuFoam 

biosensor in particular exhibited an outstanding sensitivity of 10,630 µA mM-1 cm-2 with a wide 

concentration range of 0.01 mM – 22.55 mM. This result is one of the highest sensitivity ever 

recorded among the non-enzymatic glucose sensors reported up to now in the literature. 

Furthermore, both developed sensors showed a strong resistance to the poisoning effects of 

chloride ions while also exhibiting excellent reproducibility, reusability, and negligible 

interference effects in the presence of ascorbic acid, uric acid and acetaminophen. The 

electrodes and sensors described in this work are suitable for further miniaturization and 

packaging. Moreover, this study shows the promising advantages of the foam modified array 

electrodes in terms of the stability, increased electroactive surface area and analytical 

performance. 

 

2.5 Methods 

 

2.5.1 Chemicals and instrumentation 

Copper(II) chloride dihydrate (CuCl2·2H2O), glucose, ascorbic acid, uric acid, acetaminophen, 

potassium ferrocyanide (K4[Fe(CN)6]), potassium ferricyanide (K3[Fe(CN)6]), uric acid, 

acetaminophen, phosphate buffer saline tablets (PBS, 0.01 M, pH7.4), sodium hydroxide 

(NaOH), sulfuric acid and potassium chloride were obtained from Sigma-Aldrich. All solutions 
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were prepared with double distilled 18.3 MΩ deionized water which was obtained by 

ELGAPurelab Ultra. Electrochemical measurements were performed on an Autolab 

electrochemical workstation (Metrohm, UK) equipped with a conventional 3-electrode setup 

consisting of a micro band array electrode (working electrode, see fabrication below), a spiral Pt 

wire counter electrode and Ag/AgCl (1 M KCl) reference electrode. The surface morphology and 

the nanostructure of the bare and modified electrodes was studied by scanning electron 

microscopy (SEM) (Zeiss Supra 40 SEM at accelerating voltages in the range of 5-10 kV). The 

chemical composition of the surface was characterized by using an X-ray photoemission 

spectrometer (XPS, Kratos AXIS ULTRA) with Al Kα at 1486.58 eV. All the XPS data were 

calibrated by the carbon 1s peak at 284.8 eV. The energy dispersive X-ray analyses (EDX) was 

studied by using SEM Quanta 650 Field Emission Gun (FEG) attached with EDX unit, with 

accelerating voltage of 20 kV.  

 

2.5.2 Microfabrication of electrodes  

Silicon-based gold array electrodes were fabricated by a general microfabrication flow which 

included lithography, deposition and etching as we reported earlier 8-9. The masks consisted of 

a series of the array geometries required were designed specifically for band array fabrication. 

In the first step of the fabrication process, a silicon oxide layer was grown on the silicon 

substrate followed by spin coating of a photoresist. The metal layers - titanium first and then 

gold - were deposited and patterned by a lift-off process. A 200 nm thick silicon nitride layer 

was deposited as the passivation layer. Finally the mask was used for a passivation lithography 

process and the etching of the arrays and contact pad. The overall wafer was covered with a 

resist layer to protect the electrodes during dicing. 

 

2.5.3 Electrochemical measurements and CuFoam electrode preparation 

All electrochemical experiments were performed at room temperature, in 5mL total electrolyte 

volume. Prior to each electrochemical study, electrodes were treated with organic solvents and 

plasma cleaned to remove the resist layer. Firstly, electrodes were kept in hot acetone (56 °C; 

boiling point) for 3 minutes and then rapidly transferred into isopropyl alcohol and treated in an 



86 
 

ultrasonic bath for 3 minutes. After the organic solvent cleaning process, the electrodes were 

washed with deionized water and dried under nitrogen flow. Dry electrodes were placed into 

the plasma cleaner to increase the hydrophilicity of the surface and remove the organic 

residues or oxides from the surface. Electrodes were then washed with deionized water and 

dried under N2 flow. The clean electrodes were then used immediately.  

Cyclic voltammetry of the bare electrodes was typically performed at a scan rate of 0.01 V s-1, in 

a stationary solution of 5 mM [Fe(CN)6]3-/4- prepared in 0.01 M PBS (pH 7.4), containing 0.1 M 

KCl. Electrodeposition of copper was carried out by applying chronoamperometry in 6mL 2.5 M 

H2SO4 solution containing 0.87 mg Cu2+ with suitable applied voltage and time for each design. 

Prior to each electrodeposition process electrochemical cell was pre-conditioned for 2 seconds 

at 0 V. Band array 5 (BA5) with 5 µm width, 250 µm length was applied -5 V for 20 seconds. 

Band array 10 (BA10) with 10 µm width, 500 µm length was studied at -6 V for 25 seconds. Both 

band arrays have 17 electrodes. Both electrodes have 200 nm recess depth. After deposition, 

the CuFoam electrodes were rinsed with double distilled water and dried in air. Cyclic 

voltammetry of CuFoam deposited microelectrodes was performed in alkaline media, 0.1 M 

NaOH at a scan rate of 0.01 V s-1 in the absence and presence of glucose. Oxidation of the 

glucose was firstly studied by linear sweep voltammetry (LSV) at a scan rate of 0.01 V s-1. 

Calibration of glucose sensors was prepared by measuring the chronoamperometric response 

at the 40th second of applied potential of +0.45 V in 0.1 M NaOH solution. Firstly, electrodes 

were studied in the absence of glucose to determine the base current value at 40th second. 

After addition of the glucose the current value was obtained at 40th second under the same 

conditions used for the base study and the difference between the values was taken as an 

analytical signal. All sensitivities were determined by dividing the slope of the calibration curves 

by total geometric surface area of each array electrode. 
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2.8 Supporting Information 

 

Table 2.S1. Latest enzymatic sensors and their analytical performances 

Electrode Sensitivity Linear 

range 

Stability  Ref. 

PAA-VS-

PANI/GPL-

FePc/GOx-CH  

18.11 μA mM
−1

 cm
−2

 1- 20 mM 50 continuous CV scans showed similar 

pattern 

1
 

GOx@PAVE-CNTs High sensitivity, Linear 

regression equation; 

I(μA) = 0.0268 + 2.1971

Cglucose(mM)  

1.0 μM 

∼ 5 mM 

after 35 days, the current response to 

initial value still retain at 92.4% 

2
 

GOx-SiO2/Lig/CPE 0.78 μA mM
−1

 0.5 – 9 

mM 

The response current was reduced to 82% 

and 73% of its initial value after two and 

three weeks, respectively 

3
 

PNE/GOD/AuNPs

@PNE/Au) 

35.4 μA mM
−1

 cm
−2

 0.003 – 

3.43 mM 

After a week, the response was 

approximately 99.1% of the initial value 

4
 

Nafion/GOx/ZnO 

NRs/ITO 

48.75 µA/mM  0.05 – 1 

mM 

The modified electrode retained 90% of its 

initial response after 7 days, 85% after 14 

days and 57% after 35 days. 

5
 

stretchable fiber-

based glucose 

sensor 

11.7 μA mM
-1

 cm
-2

 0-500 

µM 

The sensor gave stable 

chronoamperometric responses in 6 h 

operation and 8 days of storage 

6
 

GCE/MWCNTs-

ConA/GOx 

(2.22 ± 0.03) μA mM
−1

  5 - 1200 

μM 

a loss of sensitivity of 20% after 44 days 

and 22% after the 65
th

 day 

7
 

 

 

 

Figure 2.S1. The relationship of anodic and cathodic peak currents versus the scan rate; BA5 (A) and BA10 (B). The 
scan rate is 0.05, 0.1, 0.3, 0.5, 0.7 and 0.9 V s-1 in a solution of 5 mM Fe(CN)63-/4- as a redox probe in 0.01 M PBS 
(pH 7.4), containing 0.1 M KCl 
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Figure 2.S2. SEM images of BA5-CuFoam electrodes prepared at different Cu2+ concentrations; (A,B) 0.05 mg 
Cu2+/2.5 M H2SO4, (C,D) 0.20 mg Cu2+/2.5 M H2SO4, (E,F) 0.50 mg Cu2+/2.5 M H2SO4 and (G, H) 1.5 mg Cu2+/2.5 
M H2SO4 at  a applied voltage of -5 V vs Ag/AgCl, deposition time is 20 seconds. 
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Figure 2.S3. SEM images of BA10-Cu foam electrodes prepared at different deposition times; (A-low magnification, 
B-high magnification) 15 seconds, (C-low magnification, D-high magnification) 20 seconds, (E-low magnification, F-
high magnification) 30 seconds and (G-low magnification, H-high magnification) 35 seconds at a applied voltage of 
-6 V vs. Ag/AgCl in a solution of 2.5 M H2SO4 containing 0.87 mg Cu2+  
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Figure 2.S4. SEM images of BA10-Cu foam electrodes prepared at different applied voltages at – 4 V (A-low 
magnification, B-high magnification), -5 V (C-low magnification, D-high magnification) and -7 V (E-low 
magnification, F-high magnification) for 30 seconds in a solution of 2.5 M H2SO4 containing 0.87 mg Cu2+ 

 

 

Figure 2.S5. The amperometric response of BA10-CuFoam electrode toward 2 mM glucose in various concentrations 
of NaOH at a applied potential of 0.45 V; 0.001 M, 0.01 M, 0.1 M, 0.5 M and 1 M NaOH 
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Table 2.S2. Quantification from survey scan and high resolution spectras of Cu-2p3/2 peaks 

  Compound Name Position FWHM R.S.F. % Conc. 
C

u
Fo

am
 s

u
rf

ac
e

 

survey scan 

O 1s 530.6 1.7 2.93 33.9 

C 1s 284.9 1.2 1 26.4 

Cu 2p 932.6 1.0 16.7 39.7 

Cu2O, Cu(OH)2 O 1s_1 530.6 1.0 2.93 18.6 

O from organics O 1s_2 531.7 1.4 2.93 14.9 

C-C,C=C C 1s_1 284.8 1.1 1 17.1 

C-O C 1s_2 286.1 1.5 1 4.0 

O-C=O C 1s_3 288.2 1.0 1 2.1 

CO3 C 1s_4 289.2 1.5 1 3.0 

Cu2O, Cu(0) Cu 2p_1 932.6 1.0 16.7 31.8 

Cu(OH)2 Cu 2p_2 934.9 1.3 16.7 1.9 

  Cu 2p_3 936.3 1.8 16.7 1.1 

satellite Cu 2p_4 940.7 2.7 16.7 1.4 

satellite Cu 2p_5 944.1 2.5 16.7 2.8 

satellite Cu 2p_6 946.8 1.1 16.7 0.8 

A
ft

e
r 

gl
u

co
se

 e
le

ct
ro

ca
ta

ly
si

s 

survey scan 

O 1s 530.7 2.8 2.93 40.7 

C 1s 284.9 1.3 1 25.0 

Cu 2p 932.8 1.2 16.7 34.3 

Cu2O O 1s_1 530.2 1.6 2.93 22.1 

O from organics O 1s_2 531.7 1.5 2.93 18.6 

C-C,C=C C 1s_1 284.8 1.2 1 15.7 

C-O C 1s_2 286.0 1.5 1 4.2 

O-C=O C 1s_3 288.4 1.4 1 3.5 

CO3 C 1s_4 289.5 1.5 1 1.6 

Cu2O, Cu(0) Cu 2p_1 932.7 1.1 16.7 15.6 

Cu(OH)2 Cu 2p_2 934.6 2.6 16.7 11.0 

satellite Cu 2p_3 941.6 2.5 16.7 4.2 

satellite Cu 2p_4 944.1 1.9 16.7 3.5 
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Figure 2.S6.  Chronoamperograms of the BA5-Cu foam (A) and BA10-Cufoam (B) sensors obtained in 0.1 M NaOH 
solution towards 1 mM glucose, 0.1 mM ascorbic acid, 0.1 mM acetaminophen, 0.1 mM uric acid, 1 mM glucose 
and 1 mM glucose, respectively, at an applied potential of + 0.45 V (inset graphs show the magnified image of  the 
chronoamperograms at 40th second)  

 

References 

1. Al-Sagur, H.; Shanmuga sundaram, K.; Kaya, E. N.; Durmuş, M.; Basova, T. V.; Hassan, A., 

Amperometric glucose biosensing performance of a novel graphene nanoplatelets-iron 

phthalocyanine incorporated conducting hydrogel. Biosensors and Bioelectronics 2019, 139, 

111323. 

2. Xu, S.; Zhang, Y.; Zhu, Y.; Wu, J.; Li, K.; Lin, G.; Li, X.; Liu, R.; Liu, X.; Wong, C.-P., Facile 

one-step fabrication of glucose oxidase loaded polymeric nanoparticles decorating MWCNTs for 

constructing glucose biosensing platform: Structure matters. Biosensors and Bioelectronics 

2019, 135, 153-159. 

3. Jędrzak, A.; Rębiś, T.; Klapiszewski, Ł.; Zdarta, J.; Milczarek, G.; Jesionowski, T., Carbon 

paste electrode based on functional GOx/silica-lignin system to prepare an amperometric 

glucose biosensor. Sensors and Actuators B: Chemical 2018, 256, 176-185. 

4. Liu, Y.; Nan, X.; Shi, W.; Liu, X.; He, Z.; Sun, Y. N.; Ge, D. T., A glucose biosensor based on 

the immobilization of glucose oxidase and Au nanocomposites with polynorepinephrine. Rsc 

Adv 2019, 9 (29), 16439-16446. 

5. Ridhuan, N. S.; Razak, K. A.; Lockman, Z., Fabrication and Characterization of Glucose 

Biosensors by Using Hydrothermally Grown ZnO Nanorods. Sci Rep-Uk 2018, 8. 



98 
 

6. Zhao, Y. M.; Zhai, Q. F.; Dong, D. S.; An, T. C.; Gong, S.; Shi, Q. Q.; Cheng, W. L., Highly 

Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor 

Glucose in the Sweat. Anal Chem 2019, 91 (10), 6569-6576. 

7. Ortiz, E.; Gallay, P.; Galicia, L.; Eguílaz, M.; Rivas, G., Nanoarchitectures based on multi-

walled carbon nanotubes non-covalently functionalized with Concanavalin A: A new building-

block with supramolecular recognition properties for the development of electrochemical 

biosensors. Sensors and Actuators B: Chemical 2019, 292, 254-262. 

  



99 
 

 

CHAPTER 3 
Enzymatic glucose detection at planar and micro scale 
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3. Fabrication and evaluation of a carbon quantum dot/gold nanoparticle 

nanohybrid material integrated onto planar micro gold electrodes for 

potential bioelectrochemical sensing applications 

 

This work has been published in the journal of ELSEVIER Electrochimica Acta, 2019, 293, 307-317 

 

3.1 Abstract  

We have developed a hybrid nanomaterial based on both of carbon quantum dots (CQDs)/gold 

nanoparticles (AuNPs), such that the cheapness and versatility on the CQDs is directly combined 

with the inertness and electrochemical activity of the AuNPs to create a new electrochemical 

biosensor. Here, for the first time, we demonstrate how this interesting materials combination 

can be applied in the development of an enzymatic biosensor that is easily manufacturable 

using standard semiconductor processing methods. To demonstrate the potential and 

performance of the CQDs as an immobilization matrix, glucose oxidase (GOx) enzyme was 

chosen as a model system. The analytical performance of the developed biosensor was 

examined using chronoamperometry and the developed CQDs/AuNPs-GOx biosensor exhibited 

a sensitivity of 47.24μA mM-1 cm-2 and a detection limit of 17µM (S/N=3) with a linear response 

to glucose ranging from 0.05mM to 2.85mM (R=0.987). Furthermore, this new biosensor 

showed a high level of reproducibility and was also shown to be very selective towards glucose 

in the presence of the possible interference species uric acid and acetaminophen. Finally, it is 

demonstrated that the sensor is also capable of reliably detecting glucose levels in human 

serum.  

 

Key words: Carbon quantum dots, gold nanoparticles, nano-hybrid materials, electrochemical 

biosensors, semiconductor fabrication 
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Graphical abstract, note that the sizes of the components shown are not drawn to scale. 

 

3.2 Introduction 

The development of enzyme-coupled electrochemical biosensors is of significant importance 

since they offer the possibility of high sensitivity and selectivity, and are amenable to 

miniaturization which opens up a wide range of application areas [1]. Additionally, the kinetics 

of reactions that take place at the electrochemical biosensor interface are substantially 

influenced by the surface characteristics [2].  Thus, various types of nanomaterials have been 

exploited to decrease the space between the surface and the active site of the enzyme and take 

advantage of the nano-size and shape. In particular, it has been found that the use of hybrid 

nanomaterial systems is an attractive option for such sensing platforms due to their excellent 

donor-acceptor behavior [3].  This study concentrates on hybrid carbon quantum dot (CQD) and 

gold nanoparticle (AuNP) systems, whose electrochemical properties and analytical 

performance when deployed on solid transducer surfaces have, to the best of our knowledge, 

not been extensively studied previously. 

 

CQDs, a new class of carbon based materials, have attracted increasing interest in recent years 

due to their promising applications in the field of bioimaging [4], drug delivery [5] and sensors 

[6] and their attractive features of low cost, environmental friendliness and chemical inertness. 

They are very small (< 10 nm) quasi-spherical particles which consist of two main regions, 

namely the core and surface regions. The core regions of CQDs consist of sp2 hybridized carbon 

or graphene flakes while the surface regions contain functional groups such as carboxyl or/and 

hydroxyl groups together with various defects in an amorphous structure.  
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The other part of the system studied here –AuNPs– have been well-exploited in many areas 

including biosensors, immunoassays, drug delivery, bioimaging etc. [7]. The ability of AuNPs to 

permit the fast and direct electron transfer between the redox site of the biomolecule and 

electrode surface has been proven [8], which facilitates the development of mediator-free 

electrochemical sensing.  There have been many reports in the literature which demonstrate 

successfully the potential use of AuNPs as a Surface Enhanced Raman Spectroscopy (SERS) 

substrate for sensing applications since AuNPs can amplify SPR (surface plasmon resonance) 

signal intensity depending on their size, shape and surface properties, see for example 

references[9, 10].  

Up to now, most research has been focused on the improvement of the fluorescence intensity 

of CQDs by doping [11], passivating [12] or combining with metal nanoparticles such as gold or 

silver [13-15]. For example, Zong et al. [3] reported the conjunction of gold nanoparticles and 

carbon dots via PAMAM dendrimers to provide a specific gap between materials. They 

demonstrated that the protected specific distance between metal and carbon dot could 

enhance the photoluminescence (PL) of carbon dots.  However, to the best of our knowledge, 

there are only very limited studies which aim to study the electrochemical interface properties 

of CQDs in the conjunction with metal nanoparticles and biomolecules as a potential 

bioelectrochemical sensing device [16]. 

 

Herein, in addition to the nanomaterials themselves, the other critical component is the 

electrode that provides a platform to create a suitable interface for the biological reaction. In 

this study, we fabricated wafer-scale silicon-based gold electrodes by applying conventional 

microfabrication techniques including lithography, deposition and etching. We demonstrate 

that by combining such techniques with the assembly of the nanomaterials in question, we are 

able to generate patterned, functional electrodes suitable for a range of biological sensing 

applications [17]. The microfabricated gold devices demonstrated here are highly suitable for 

future miniaturization and packaging having enormous flexibility in terms of geometry and size.  

 



103 
 

In this work, our aim was to apply CQDs as an immobilization matrix as part of the development 

of a micro fabricated gold electrode based detection platform towards glucose. For the first 

time, we report the fabrication and characterization of a CQD/AuNP-GOx immobilized 

microfabricated gold electrode with high analytical performance towards glucose detection. 

Scheme 1 represents the overall immobilization process of the hybrid nanoparticles onto the 

biosensor. The developed biosensor showed a high sensitivity of 47.24 μA mM-1 cm-2 and 

selectivity towards glucose. We demonstrate that the CQDs/AuNPs matrix represents a 

successful proof-of-concept material for inclusion in the design of an enzymatic electrochemical 

biosensor based on GOx enzyme as a model system. Thus, we envision that CQDs based 

immobilization matrix will become an important platform for construction of other 

electrochemical and bioelectrochemical sensors in the future. 

 

Scheme 3.1. The preparation of CQD/AuNP nano-hybrid materials and a schematic illustration of the immobilization 
process employed in the fabrication of the biosensor developed here. Note that the sizes of the components shown 
are not drawn to scale. 
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3.3 Materials and methods 

 

3.3.1 Chemicals and instrumentation 

Glucose oxidase (EC 1.1.3.4, from Aspergillus niger), glucose, potassium chloride (KCl), sodium 

chloride (NaCl), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N-hydroxysuccinimide 

(NHS), potassium ferrocyanide (K4[Fe(CN)6]), potassium ferricyanide (K3[Fe(CN)6]), uric acid, 

acetaminophen, ascorbic acid, ethanol, cysteamine (CA), sterile human serum, phosphate 

buffer saline tablets (PBS, 0.01 M, pH7.4), gold(III)chloride trihydrate, sodium citrate  were 

obtained from Sigma-Aldrich. Absolute ethanol was obtained from Ocon Chemicals-Ireland. 

Glucose stock solutions were prepared one day before use to allow mutarotation and kept in 

the fridge at +4˚C.  

The gold working electrodes with 0.095 cm2 active surface area were patterned on silicon 

substrates by microfabrication technology [18, 19]. Fabrication and characterization of gold 

electrodes are detailed in supplementary information (Fig.3.S1). 

All electrochemical experiments were carried out using an Autolab electrochemical station 

(PGSTAT302N, Metrohm, UK) in a three-electrode cell including a gold working electrode, a 

platinum (Pt) wire counter electrode and Ag/AgCl (3M) reference electrode. Electrochemical 

impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry were used to 

investigate the electrochemical performance of the developed biosensor. All electrochemical 

results and fittings were studied by using OriginPro2016 software.  

 

3.3.2 Preparation of CQDs/AuNPs nanohybrid material 

The synthesis of carbon quantum dots (CQDs) was carried out using a previously reported 

method [20], with slight modifications. Briefly, a three-electrode system was used for the 

electrochemical carbonization process of ethanol in alkaline environment including two Pt wire 

electrodes and one Ag/AgCl saturated reference electrode. 15mL ethanol was mixed with 

saturated NaOH solution. Amperometry was applied under stirred conditions at 4V for 30 

minutes. The resulting product with a white turbidity was kept in the dark overnight resulting in 

a color change from white to yellow. Following this the solution was evaporated at 80˚C leaving 
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behind a pellet of material. The pellet was dissolved in water and adjusted to neutral pH. To 

remove the salt and large molecules, centrifugation at 16,200 rpm was applied for 30 minutes, 

the supernatant was filtered for further purification and the pale-yellow CQDs solution was 

kept in the fridge at +4˚C. The concentration of CQDs was determined as being 10.35 (±1.53) 

mg/mL. To investigate the immobilization efficiency of synthesized CQDs via carbodiimide 

chemistry, we applied EIS and AFM for both bare and modified gold electrodes. For this 

purpose, clean gold electrodes were immersed in cysteamine solution and incubated overnight. 

Activation of carboxyl groups was employed using very well-known carbodiimide chemistry. 

Briefly, a mixture of NHS/EDC (molar ratio 1:4) was added to the CQDs solution and the 

resulting mixture was shaken for 2 hours for incubation. 5 µL of activated CQDs solution was 

drop-casted on each amine-functionalized gold electrode surface and allowed to dry. Then, 

electrodes were washed with distilled water and dried under N2 flow. AFM and EIS were 

performed in order to investigate the efficacy of the immobilization process. AuNPs were 

prepared according to the procedure described by Turkevich et al. [21]. 25 mL % 0.02 

tetrachloroauric acid solution was boiled under stirring conditions in a round bottom reaction 

flask with a reflux connected. % 1 trisodium citrate solution was then added rapidly to the 

reaction flask. The colour of solution changed from pale yellow to colorless, dark blue/black and 

then very bright magenta, respectively, which indicated the formation of gold nanoparticles. 

The solution was cooled to room temperature under stirring.  The resulting colloidal gold 

nanoparticles solution was transferred in a brown vial and kept at +4˚C.  

The CQD/AuNP hybrids were prepared by conjugating using carbodiimide chemistry (Scheme 1, 

red dashes). Typically, 4µL 0.01 mM cysteamine (CA) was added to 246µL of AuNPs colloidal 

solution and incubated by shaking for 24 hours at room temperature. The carboxyl groups of 

the CQDs were activated by 40µL of NHS/EDC solution (molar ratio of 1:4) which was added to 

the cysteamine modified AuNP solution and shaken overnight at room temperature. The 

preparation steps of the nanohybrid was studied by UV/VIS spectrophotometer. 

3.3.3 Preparation of the CQD/AuNP-GOx modified electrodes 

Gold electrodes were immersed into CA solution to obtain the amine functionalized surface and 

incubated overnight at room temperature. 5 µL of the prepared CQD/AuNP solution was drop-
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casted and allowed to dry at room temperature. Then the electrodes were washed with 

distilled water and dried under a N2 flow. Finally, 5µL of 0.04U GOx and glutaraldehyde (%1) 

were dropped-casted, respectively and electrodes were kept in the fridge until dried. Then 

electrodes were washed gently with PBS and kept in the fridge at +4˚C.   

 

3.4 Results and discussions 

 

3.4.1 Characterization of CQDs, AuNPs and CQDs/AuNPs nanohybrid material 

The UV-Vis absorption and PL emission spectra of the CQDs at 300nm excitation is shown in Fig. 

3.1A. The CQDs showed an absorption peak at 268nm and a tail extending into the visible range 

in the UV-Vis spectra [22]. This can be attributed to the existence of aromatic structures in the 

CQDs. The excitation of CQDs at 300 nm wavelength exhibited a blue fluorescent emission 

spectrum at 410nm. To further explore the fluorescent properties of the as-prepared CQDs, the 

PL intensity was studied by 20nm increments of excitation wavelengths ranging from 260 to 

500nm (Fig. 3.1B). With the increase of the excitation wavelength, different energy levels were 

probed and as a consequence, a red shift was observed in the emission spectrum. The shift to 

longer wavelengths with a gradual decrease in the PL intensity may be attributed to the 

excitation-dependent photoluminescence phenomenon of CQDs [23].  The pre-synthesized 

CQDs were studied on the gold electrode surface to investigate the immobilization process as 

shown in Fig. 3.1C. The assembly process of the CQDs was studied by EIS. Fig. 3.1D shows 

Nyquist plots of the bare gold electrode, the cysteamine modified gold surface and the gold 

electrode with CQDs attached. This latter modified electrode exhibited a dramatic increase in 

Rct in comparison to the bare gold electrode, arising from the accumulation of the 

nanoparticles on the gold surface 

AFM measurements were also applied in order to characterize the morphological changes of 

the electrode surface obtained after CQD immobilization. Fig. 3.1E-i and ii depicts a 

representative 2D AFM image of a bare gold electrode and CQDs modified surfaces, 

respectively. The AFM image of CQDs attached to a gold electrode surface clearly shows the 

formation of several clusters the diameter of which varied from 5 nm to 50 nm dispersed 
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homogenously over the gold electrode surface. Moreover, the CQD-modified surface was 

rougher than that of the bare gold electrode surface. This necessarily provided a significant 

increase in the effective surface area which could lead to a higher degree of immobilization of 

the biomolecules.  

 

Figure 3.1. (A) absorption (black) and photoluminescence spectra (red)  at 300 nm excitation(inset: the CQDs 
solution under UV light) and (B) emission spectra of CQDs with 20 nm increments of excitation wavelength between 
260 nm and 500 nm (C) Schematic illustration of the immobilization process used for the  CQDs, (D) Nyquist plots of 
the impedance spectra of bare gold electrode (■, black), cysteamine modified surface (●, red), and CQDs 
immobilized gold electrode (▲, blue) in the presence of 2.5 mM Fe(CN)63-/4- as a redox probe in 0.01 M PBS (pH 
7.4) solution containing 0.1 M KCl, over the frequency range from 105 to 0.01 Hz, a bias potential of +0.24 V vs 
Ag/AgCl and an amplitude of 0.01 V (E) AFM images of the bare gold electrode (i), gold electrode with CQDs 
attached (ii). 

 

AuNPs were synthesized by the reduction of HAuCl4 with sodium citrate which exhibited a very 

bright magenta color and showed a characteristic surface plasmon resonance peak at 525 nm 

which was related to the size of the particles (Fig. 3.2A, and inset). As seen in Fig. 3.2B, the 
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synthesized AuNPs were spherical-shaped. The size distribution histogram of nanoparticles (Fig. 

3.2C) showed an average diameter of 25.2 nm (n=342). The concentration and extinction 

coefficient (ε) of the AuNPs solution was calculated to be 1.34 x 10-9 M and (1.23 ± 0.058) x 109 

M-1 cm-1, respectively [24].  

 

Figure 3.2. (A) UV-Vis Spectrum (inset: image of the colloidal AuNPs), (B) TEM image and (C) size distribution 
histogram of AuNPs 

 

The formation of the CQD/AuNP nano-hybrid material was studied using UV/Vis 

spectrophotometry and TEM. Fig. 3.3A shows the UV/Vis response to the CA modification of 

the AuNPs. With increasing concentration of CA, a decrease of the main absorbance peak of the 

AuNPs was observed while at longer wavelengths, increasing CA concentration induced a linear 

increase of the absorbance peak after around 650 nm which could be attributed to CA induced 

aggregation of the AuNPs. It is known that aggregation of nanoparticles can lead to broadening 

together with a red shift in the position of the associated absorption band. Thus, 0.16 µM CA 

was chosen as the optimum concentration due to the minimum changes of the absorbance 

peak height and shape as compared to the spectrum of the bare AuNPs. 

Fig. 3.3B illustrates the formation of the CQD/AuNP material. In Fig. 3.3B the black trace depicts 

the absorption spectrum of the amine-functional AuNPs. The other traces show the effects of 

adding increasing amounts of the treated CQDs to the AuNPs. Increasing the concentration of 

the CQDs causes a progressive reduction in the intensity of the plasmon absorption of the 

AuNPs near 525 nm. At the same time the absorption near 750 nm increases with increasing 

CQD concentration. In this case it is suggested that addition of the CQDs simply draws the 

AuNPs closer together. It is known that a process such as this could induce a rise in the levels of 
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absorption in this region of the spectrum [25-28]. This proposal is further supported by TEM 

images, Fig. 3.3D and E. 

FTIR spectra were recorded in order to examine the chemical processes occurring when the 

amine terminated AuNPs were added to the CQDs, Fig. 3.3C. The spectrum corresponding to 

the CQDs only exhibits a broad feature centered around 3360cm-1 which would be consistent 

with the presence of the bonded OH groups and C-H stretching modes found on a carboxylic 

acid. Further evidence for the existence of carboxylic acid groups is presented via the 

appearance of two characteristic infrared stretching absorptions at 1631cm-1 and 1761cm-1 

which corresponded to C=O symmetric coupled stretching and asymmetric coupled vibrations 

respectively, which form due to delocalization of the negative charge over the structure [29]. 

After addition of the AuNPs these particular features change significantly. The resulting feature, 

centered around 1631cm-1, would be consistent with a C=O stretching mode of a species which 

is no longer delocalized, suggesting disruption to the carboxylic acid grouping.  In addition, the 

band at 1381cm-1 decreases in intensity significantly upon addition of the AuNPs. This band is 

most likely attributed to an O-H bending mode of the carboxylic acid and again suggests 

disruption of the carboxylic acid grouping to some degree. Any system arising from the surface 

reaction of the nanoparticles employed here will inevitably be a mixed species. Some carboxylic 

acid and/or other carbon oxygen species will remain unreacted, while some amine species will 

similarly remain unreacted. However, the spectra depicted in Fig. 3.3C are not inconsistent with 

the formation of a species such as an amide or some other nitrogen-containing moieties. 

The TEM images shown in Fig. 3.3D and E clearly reveal the AuNPs as black cores surrounded by 

the small grayish CQDs (highlighted by red arrows). It is important to note that AuNPs help to 

visualize CQDs easily in TEM since it is very difficult to collect clear images of bare CQDs. 

However, in places, instead of the roughly spherical CQDs, the AuNPs were surrounded by a 

continuous gray layer having very similar contrast to the CQDs - see the bottom of Fig. 3.3D and 

E. It is thought that this material could have arisen due to the possible reaction of the CQDs in 

the electron beam. Fig. 3.3F shows the detailed structure of an individual CQD with a lattice 

spacing distance of 0.24 nm, representing that the CQDs displayed a high-crystalline graphitic 

structure [30]. 
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Figure 3.3. (A) UV-Vis spectrum of CA modification of AuNPs, (B) CQD/AuNP hybrids with different molar ratio, (C) 
FTIR spectrum of CQDs (a, black) and CQD/AuNP (b, red), (D,E) TEM images of the CQD/AuNP hybrid material with 
different magnifications and showing the detailed structure of the CQDs (E, F) 

 

3.4.2 Optimization of the CQDS/AuNPs-GOx biosensor and electrochemical impedance 

spectroscopy 

Effect of enzyme concentration and pH 

Responses of the biosensors prepared using 5 different concentrations of GOx enzyme are 

presented in Fig. 3.4A. The optimum concentration of enzyme determined to be 0.04U. 
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Increased concentrations of the biomolecule on the electrode surface showed decreased 

amperometric responses probably due to oversaturation of the matrix and limited 

conformational flexibility of the enzyme which results as a catalytic activity loss [31]. 

The pH-dependent response of the CQD/AuNPs-GOx biosensor was also evaluated since the pH 

is an important factor which influences the current response of the glucose biosensors. Even 

though the optimum pH range for free glucose oxidase enzyme (A. niger) has been reported to 

be 3.5 - 6.5 [32], the immobilized glucose oxidase may perform well in varying pH values 

depending on the immobilization process and/or the nature of the immobilization matrix [31]. 

As shown in Fig. 3.4B, the immobilized glucose oxidase enzyme exhibited a good catalytic 

activity in a range from pH 5.4 to pH 7.4 which may attributed to the positive contribution of 

the nanohybrid material as a matrix. Therefore, the pH 7.4 was chosen as optimum condition. 

 

Electrochemical Impedance Spectroscopy (EIS) 

Fig. 3.4C illustrates the Nyquist plots of the electrodes at different modification steps, namely 

the bare gold electrode, the cysteamine modified electrode, the CQD/AuNP nanohybrid 

attached electrode and the GOx immobilized electrode in the presence of 2.5mM Fe(CN)6
3-/4- as 

a redox probe. The bare gold electrode (■) showed an obvious a straight line at lower 

frequencies, corresponding to a diffusion-controlled electrochemical redox process of species 

from the solution to the electrode interface. It also showed a semicircular plot at higher 

frequencies which represents the so-called kinetically controlled region and which is consistent 

with the magnitude of the charge transfer resistance value, Rct =177Ω which represents the 

opposition to the electron transfer reaction arising from the electrode. Self-assembly of 

cysteamine (●) on the electrode surface gave rise to electrostatic interactions between the 

positive amino groups of the cysteamine and negatively charged redox probe, resulting a 

decrease of the charge transfer resistance, Rct (52.8Ω). After treatment of cysteamine modified 

surface with CQD/AuNP moieties (▲), the diameter of the semicircular region increased slightly 

in comparison to that observed for the cysteamine modified surface (Rct, 80Ω). This result 

clearly demonstrates the conductivity of the nano-hybrid material developed here and the 

positive contribution to the electrochemical performance of the interface that arises via the use 
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of nano-sized materials. Immobilization of the GOx dramatically increased the charge transfer 

resistance as expected (Rct, 1021Ω, ▼), which implies that the immobilization process was 

successful [31].  

 

Figure 3.4. (A) GOx concentration and (B) pH optimization and (C)  Nyquist plots of the impedance spectra of bare 
gold electrode (■, black), cysteamine modified surface (●, red), CQD/AuNP hybrid material attached to the gold 
electrode (▲, blue) and GOx immobilized electrode (▼, pink) in the presence of 2.5 mM Fe(CN)63-/4- as a redox 
probe in 0.01 M PBS (pH 7.4) solution containing 0.1 M KCl, over the frequency range from 105 to 0.01 Hz, a bias 
potential of +0.24 V vs Ag/AgCl and an amplitude of 0.01 V. 

 

3.4.3 Direct electrochemistry of the CQD/AuNP-GOx modified gold surfaces 

The DET between the immobilized GOx and CQD/AuNP modified gold electrode was studied by 

cyclic voltammetry. The biosensor created showed a pair of redox peaks at a formal potential of 

-0.32V (Fig. 3.5A, black). In the presence of glucose in nitrogen saturated solution an increase in 

the anodic peak current and a decrease in the cathodic peak current was observed. These 

results confirm that the CQD/AuNP-GOx biosensor developed here demonstrates DET-based 

biocatalytic activity towards glucose. The bioelectrocatalytic activity of GOx towards oxygen 
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was an important factor to consider in terms of the observed biocatalytic activity of GOx 

immobilized on the electrode surface. The presence of oxygen may affect the DET reaction of 

GOx and hence also glucose sensing at negative potentials since oxygen can oxidize the GOx 

(FADH2). For the CQD/AuNP-GOx biosensor developed here, oxygen showed a very strong 

catalytic activity toward the reduction of cofactor FAD of GOx.  Fig. 3.5A (blue line) shows the 

CV of the biosensor in oxygen saturated PBS. In comparison to the CV recorded in nitrogen 

saturated PBS, the CV in oxygen saturated PBS exhibited a dramatic increase of the cathodic 

peak current and a decrease of the anodic peak since O2 may compete with the electrode for 

FADH2. At the interface of the developed biosensor O2 molecules easily and rapidly may reach 

to the cofactor of GOx and accelerate the oxidation reaction of FADH2 by O2 [33]. Furthermore, 

the CVs of the CQD/AuNP-GOx biosensor were recorded with increasing concentrations of 

glucose in oxygen saturated PBS. As shown in Fig. 3.5A (pink and green dash lines), an increase 

of the glucose concentration resulted in a significant decrease of the FAD reduction peak 

current. The decrease of the reduction peak current could also be attributed to the 

consumption of O2 from the natural enzymatic glucose oxidation [34]. These results clearly 

demonstrate the bioelectrocatalytic activity of the immobilized enzyme active site.  
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Figure 3.5. (A) Cyclic voltammograms of the CQD/AuNP-GOx biosensor in nitrogen-saturated PBS solution (black), in 
the presence of 0.5 mM glucose (red), in oxygen saturated PBS solution (blue), in the presence of 0.05 mM (pink) 
and 0.5 mM (green) glucose. Inset: enlarged graph of nitrogen-saturated PBS and in the presence of glucose. (B) 
Cyclic voltammograms of CQD/AuNP-GOx modified gold electrode in N2-saturated PBS at different scan rates 
ranging from 0.2 to 0.5V s-1. Inset 1: plots of anodic and cathodic peak currents vs. scan rate, and inset 2: plots of 
peak potentials vs. logarithmic scan rate. 

 

The effect of scan rate (ʋ) on the DET of the immobilized GOx at the CQD/AuNP modified gold 

surface was also investigated. The CVs are illustrated in Fig. 3.5B. The linear increase of cathodic 

(Ipc) peak currents with increased scan rate from 0.2 to 0.5V s-1 in nitrogen saturated PBS, 

confirmed the surface-controlled electrochemical process (Fig. 3.5B-inset-1). The linear 

regression equations for the redox process were written as Ipc=-0.007ʋ-0.01; R2=0.989.  This 
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behavior can be defined by Laviron theory for the calculation of the heterogeneous electron 

transfer rate constant (ks) and transfer coefficient (α), for the cases that ΔEp are smaller than 

200/n mV [35]. Fig. 3.5B-inset-2 shows the linear plots of Epc versus log ʋ at higher scan rates. 

According to Laviron theory, α was calculated to be 0.40 and 0.6 from the slopes of those linear 

plots of Epc using the equations -2.303RT/αnF. Using the equation ks=αnFʋ/RT, the calculated 

value for ks was 4.66 s-1 which is indicative of a fast electron transfer. The ks value obtained for 

the CQD/AuNP-GOx biosensor developed here is significantly higher than those reported 

previously for the biosensors prepared by the use of carbon based nanomaterials or gold 

nanoparticles such as AuNPs-activated graphite (1.90 s-1) [36], graphene (2.83 s-1)[37], boron-

doped carbon nanotubes (1.56 s-1)[38] and AuNPs-carbon nanotubes (2.2 s-1) [39]. 

 

3.4.4 Chronoamperometric detection of glucose 

 

Figure 3.6. (A) The chronoamperometric response of the CQD/AuNP-GOx biosensor in response to the serial 
addition of glucose in O2-saturated PBS at a working potential of -0.6 V (the equilibration time for addition of each 
glucose step was ~ 30 s.), inset; the corresponding calibration curve, (B) The Lineweaver-Burk plot of the 
CQD/AuNP-GOx biosensor, (C) Chronoamperometric response of the CQD/AuNP-GOx biosensor for the addition of 1 
mM glucose, 0.1mM acetaminophen, 0.1 mM uric acid and 1 mM glucose in O2 saturated PBS at an applied 
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potential of -0.6 V, (the equilibration time for each addition step was ~ 30 s.) and (D) reusability of CQD/AuNP-GOx 
biosensor. 

 

The detection of glucose was performed by chronoamperometry at an applied potential of -

0.6V in O2-saturated PBS.  Fig. 3.6A shows the effects of successive additions of glucose into the 

electrochemical cell with a time interval of 10s. As shown in Fig. 3.6B, the calibration curve 

corresponding to the chronoamperometric response exhibits two a linear response to glucose 

ranging from 0.05mM to 2.85mM (R=0.987) with a detection limit of 17µM (S/N=3). The 

detection limit was calculated using the formula, 3sb/S, where sb was the standard deviation of 

the blank and S was the sensitivity of the biosensor [40]. In comparison to the other published 

glucose biosensors (Table 1), the obtained detection limit is relatively high. This drawback of 

the biosensor may overcome by scaling down approach of the overall biosensor. Furthermore, 

the equations of the linear responses of linear range was y=4.488·10-6 x + 3.917·10-7. The 

sensitivity of the CQD/AuNP-GOx modified gold electrode was calculated to be 47.24μA mM-1 

cm-2, which is higher than the value of previously reported electrochemical biosensors, see 

Table 1. The microfabricated gold electrode surface area is 0.095 cm2, which is a larger surface 

area than very common commercial 3mm diameter disk gold electrodes’ surface area. In this 

conditions, biosensor exhibited a high sensitivity towards glucose. This result shows that the 

CQD/AuNP nanohybrid material provides a matrix which improves/protects the catalytic 

activity of the immobilized enzyme.  

The apparent Michalis-Menten constant (  
   ), which is an indicator of enzyme-substrate 

reaction kinetics, could be used to investigate the reaction kinetics of GOx on the CQD/AuNP 

nanohybrid modified electrodes. Fig. 3.6C shows the corresponding Lineweaver-Burk plots (1/I 

vs. 1/C) of the glucose biosensor developed here which has an equation of y=154978.8x + 

27356.5 (R=0.999). The    
    value was estimated to be 5.66mM using the Lineweaver-Burk 

equation. This relatively low value of   
     is indicative of the high affinity between the enzyme 

and substrate. A comparison of the analytical performance of the biosensor developed here 

with several other enzymatic electrochemical biosensors is shown in Table 1.  
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Table 3.1. Comparison of the analytical performance of several carbon and/or AuNPs based enzymatic glucose 
biosensors 

Glucose biosensor Sensitivity                   
Detection 
Limit 

Linear range                          Km            ks  
Reproducib
ility % RSD 

Ref. 

CQDs-AuNPs/GOx-Au 
electrode 

47.24 μA 
mM

-1
 cm

-2
 

17 µM 0.05 - 2.85  5.66 4.66 
s

-1
 

5.2 %  (n=5) This 
work 

PPF/GOx/CNT/PPF-Au 
electrode 

42 μA mM
−1

 
cm

−2
 

6 μM 0.025 mM - 
2.2 mM 

11 mM - 3 %  (n=4) [41] 

AuNP-SAMs-PNT/HRP-
GOx -Au electrode 

0.3 mA M
−1

 73.1 µM  0.5 mM - 2.4 
mM 

11 mM - 5.74 % 
(n=3) 

[42] 

GOx/CNx-
MWNTs/GCE 

13.0 μA mM
−1

 cm
−2

 
0.01 mM  0.02 - 1.02 2.2 mM 4.6 

s
-1

 
3.9 % (n=5) [43] 

GRA–PANI/CS–GOD 22.1 
μA mM

−1
 cm

−2
 

2.769 µM 0.010-1.48 
mM 

1.69 m
M 

-  % 4.40 
(n=4) 

[44] 

Cellulose–MWCNT–
GOx 

6.57 
μA mM

−1
 cm

−2
 

- 0.05-1.0 mM 1.10 
mM 

- acceptable [45] 

GOD-ZnO/CRG  89.84 μA m
M

−1
 cm

−2
 

- 0.2- 1.6 mM - 0.92 
s

-1
 

- [46] 

Nafion/GOD/C–ZnO 35.3 
μA mM

−1
 cm

−2
 

1 µM 0.01-1.6 mM 1.54 
mM 

4.7 
s

-1
 

2.3 % (n=5) [47] 

GOx/chitosan/TiO2 
nanorod/graphite 
microfiber 

18.6 mA M
-1

 
cm

-2
 

2.2 µM  - 6.62 
mM 

- 3.3 % 
(n=10) 

[48] 

GOx/Pt-graphite  105 μA mM
-1

 
cm

-2
 

0.010 mM 33 μM–
0.9 mM 

1.2 mM - 9 % (n= 3) [49] 

GR-
MWNTs/AuNPs/GOx 
 
 

(1)0.695 μA 
mM

−1
 cm

−2
 

(2)0.238 μA
mM

−1
 cm

−2
 

(1)4.1 μM 
(2)0.95 mM 

(1)10 μM –
 2 mM 
(2)2 mM –
 5.2 mM 

- 3.36
 s

−1
 

2.37 % 
(n=7) 

[50] 

GCE/RGO–GOx 
 

1.85 μA 
mM

−1
 cm

−2
 

- 0.1–27 mM - 4.8 
s

−1
 

4.9 % (n=4) [51] 

GCE/bMWCNTs-
HBPEI/AuNPs-
B(OH)2/GOx 

28.6 mA M
−1

 cm
−2

 
0.8 µM 2.5×10

−4
M-

5.0×10
−3

M 
8.1×10

−

3
 M 

- 4.5 % 
(n=10) 

[52] 

ERGO–
MWCNT/GOx/Nf 

7.95 μA mM
−1

 cm
−2

 
4.7 μM 0.01–

6.5 mM 
- 3.02

 s
−1

 
2.5 % (n=7) [53] 

RGO/HAp/GOx 16.9 µA mM
-

1
 cm

-2
 

0.03 mM 0.1–11.5 
mM 

- 3.50 
s

-1
 

- [54] 

GOD–graphene–
chitosan/GCE  

37.93 µA 
mM

-1
 cm

-2
 

0.02 mM 0.08 mM - 
12 mM 

4.4 mM 2.83
 s

−1
 

 5.3 % (n=6) [55] 

Nafion–GOx–
SWCNHs/GCE 

1.06 μA/mM 6 µM 0 - 6.0 mM 8.5 mM 3.0 
s

−1
 

- [56] 

GOx/(AuNPs/MWCNT)
5-Au electrode  

19.27 µA 
mM

-1
 cm

-2
 

2.3 µM 0.02 µM – 
10 mM 

6.7 mM - less than 
4.2% (n=6) 

[57] 

 

3.4.5 Interference effect, reproducibility and reusability of the CQD/AuNP-GOx biosensor 

The selectivity of the CQD/AuNP-GOx biosensor was studied to investigate the effect of possible 

interferences such as acetaminophen and uric acid on the response of the biosensor toward 

glucose. 0.1mM glucose solution was chosen in order to evaluate the selectivity. 
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Chronoamperometry was performed in an O2-saturated PBS solution at an applied voltage -

0.6V and 1mM glucose, 0.1mM ascorbic acid 0.1mM acetaminophen, 0.1mM uric acid and 

1mM glucose were added to the electrochemical cell every 10 seconds, respectively (Fig. 3.6C). 

The interference effect was calculated using the equation; [Iglucose-Iinterference]/Iglucose in order to 

evaluate the change of the 1mM glucose response in the presence of the ascorbic acid, 

acetaminophen and uric acid. The response of the glucose changed % 7.09 (±1.28), (n=3) in the 

presence of the interfering species. Thus, it may be seen that that the CQD/AuNP-GOx 

biosensor developed here exhibits levels of selectivity which are comparable to or better than 

those reported previously for some other electrode systems [58, 59].   

The reproducibility of the CQD/AuNP-GOx biosensor was studied by chronoamperometry. The 

chronoamperometric trace was recorded in PBS (pH 7.4) at -0.6V in the presence of 0.05mM 

glucose addition under stirred conditions. Within a series of 5 experiments, a relative standard 

deviation (RSD) of 5.2% was achieved, demonstrating an acceptable level of reproducibility [43, 

60] - certainly in comparison with other glucose sensors. The reusability of the developed 

biosensor was also studied. Three individual CQDs/AuNPs-GOx biosensors were prepared and 

their response to glucose was recorded by performing thirteen successive experiments, Fig. 

3.6D. The RSD values of each group of electrodes were calculated to be 7.385%, 5.669% and 

4.427%, respectively. These results suggest that the developed biosensor has an excellent 

operational stability, may attributed to the good biocompatibility and the mechanical strength 

of the developed biosensor to maintain the activity of the immobilized enzyme onto the 

CQDs/AuNPs surface. 

 

3.4.6 Real sample analysis 

Table 3.2. Determination of glucose in sterile human serum samples (n=4) 

Sample 
Spiked serum 
(mM) 

CQD/AuNP-GOx biosensor (mM) Recovery (%)  

1 0.1 0.107 (±0.011) 106.9 

2 0.5 0.514 (±0.030) 102.7 

3 2 1.970 (±0.041) 98.5 
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The biosensor developed here was tested by detecting glucose concentration in sterile human 

serum to demonstrate the feasibility of the CQD/AuNP-GOx biosensor in real sample analysis. 

Sterile human serum samples were diluted to be 1:10 ratio in PBS and spiked with several 

concentrations of glucose. A rapid and stable response for each group of spiked serum was 

obtained at -0.6 V. By substituting the resulting current value into the calibration curve, the 

concentration of the sample was calculated. A comparison of the spiked values with the data 

obtained from the CQD/AuNP-GOx biosensor is shown in Table 3.2. The recovery values are in 

the range of 98.5 – 106.9% and based on the one sample two paired t-test with %95 confidence 

interval there was no statistical differences between spiked values and biosensor results (t1 = 

1.23, t2 = 0.89 and t3 = -1.44, p>0.05). These results show that the developed biosensor can 

successfully determine the glucose concentration in human serum.  

 

3.5 Conclusions 

The work presented here demonstrates the development of an electrochemical biosensor with 

a CQD/AuNP-GOx nano-hybrid interface for sensitive glucose detection through the reductive 

determination of oxygen consumption in the absence of any mediator. The gold electrodes with 

0.095 cm2 active surface area were fabricated by a typical microfabrication flow which includes 

lithography, deposition and etching. These gold electrodes were characterized and used to 

construct the biosensor. The resulting CQD/AuNP-GOx biosensor shows high electrocatalytic 

activity toward glucose. The high sensitivity of 47.24 μA mM-1 cm-2 and good reproducibility 

(5.4% RSD, n=5) and selectivity observed at such a nano-hybrid based biosensor suggests that 

this is likely to be an extremely promising matrix for application to the immobilization of other 

biorecognition elements. Moreover, the biosensor developed exhibits satisfactory relative error 

results when employed to determine the glucose concentrations in human serum samples, 

despite the presence of possible interference agents. We suggest that sensors based on the use 

of our CQD/AuNP nano-hybrid material as an immobilization matrix may find extensive 

commercial and personal use in the future, for a variety of important applications. 
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3.8 Supporting Information 

 

Microfabrication and characterization of gold electrodes 

Gold working electrodes were fabricated using microfabrication technology. Silicon was chosen 

as substrate. Briefly, a silicon oxide layer was growth on the silicon wafer. Prior to metal 

deposition substrates were treated with an Ar plasma which improved the metal adhesion to 

the substrate. After this titanium and gold were deposited using e-beam evaporation and the 

metal layers were patterned using a lift off procedure. A passivation layer of silicon nitride 

(S3N4) of 500 nm thickness was deposited by plasma-enhanced chemical vapour deposition. 

This was followed by a passivation lithography process and passivation etching. The Si3N4 

passivation layer was etched in an inductively coupled plasma etch system (ICP) and the 

remaining resist was removed. Finally, the substrate was covered a plasma layer to protect the 

wafer surface during dicing. Fig. 3.S1A and B depict the microfabrication process and show a 

schematic representation of the wafer after fabrication.  

 

Prior to the experiments, gold electrodes were pre-treated carefully to remove the protection 

layer. Firstly, electrodes were immersed in boiling acetone, then they were sonicated in 

isopropyl alcohol, washed with distilled water and dried with N2 flow. Dry electrodes were 

placed in a plasma cleaner for 10 minutes to remove the organic residues and increase the 

hydrophilicity of the surface. Electrochemical characterization of the bare gold surface was 

studied by running a CV in 0.5 M H2SO4 solution between -0.1 V and +1.5 V electrode potential 

with a scan rate of 0.1 V s-1.  As can be seen in Fig. 3.S1.C, a sharp peak corresponding to gold 



127 
 

oxide reduction was observed at about +0.9 V and a broad peak corresponding to gold 

oxidation was observed in the range of +1.1 to +1.35 V, for the microfabricated gold electrode 

[1, 2]. After this cyclic voltammetry (CV) experiments were performed between potentials of -

0.2 V and +0.6 V on both the micro array electrodes and the planar electrodes in a 2.5 mM 

Fe(CN6)3-/4- solution containing 0.1 M KCl with a scan rate of  0.01 V s-1.  The microfabricated 

gold electrode with a surface area of 0.095 cm2 showed a typical peak-shaped voltammogram 

(Fig. 3.S1. D) arising due to the diffusion characteristics of the electrodes[3]. 

 

 

Figure 3.S1. A cross-sectional schematic of the microfabrication process (A), a picture of microfabricated gold 
working electrodes (B), cyclic voltammogram for the clean gold electrodes in 0.5 M H2SO4 solution (C) and 
voltammetric response of gold electrode in a 2.5 mM Fe(CN6)3-/4- solution containing 0.1 M KCl, scan rate: 0.01 V 
s-1 (D). 
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CHAPTER 4 
Enzymatic glucose detection at planar and micro scale 
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4. A highly sensitive glucose biosensor based on a micro disk array electrode 

design modified with carbon quantum dots and gold nanoparticles 

 

This work has been published in the journal of ELSEVIER Electrochimica Acta, 2019, 298, 97-105 

 

4.1 Abstract 

A miniaturized biosensor for glucose was prepared by immobilizing glucose oxidase (GOx) onto 

a carbon quantum dots (CQDs)-gold nanoparticles (AuNPs) nanohybrid material which was in 

turn attached to gold micro disk array electrodes. The gold micro disk array electrodes (GDAE) 

were microfabricated on Si substrate using electronics-standard lithography, deposition and 

etching techniques. Each microelectrode consisted of 85 gold disk electrodes with 20 µm 

diameter and 200 µm inter-electrode distance and were located hexagonally. The electrodes 

were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and cyclic 

voltammetry (CV). CV of the bare electrodes showed a symmetrical sigmoidal voltammogram 

arising from their radial diffusion profile. The electrodes developed were used to fabricate a 

miniaturised glucose biosensor. The resulting biosensor exhibited a high sensitivity of 626.06 μA 

mM-1 cm-2 towards glucose detection with excellent reproducibility and reusability. The 

superior performance of the biosensor is discussed in relation to the use of the micron-sized 

low density disk array electrodes.  

Key words: Glucose microbiosensor, micro disk array electrodes, carbon quantum dots, gold 

nanoparticles, microfabrication 
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Graphical abstract, note that the sizes of the components shown are not drawn to scale. 

 

4.2 Introduction:  

There is currently  increasing interest in the miniaturisation of  electrodes from the planar scale 

to the micron or even the nano scale for the development of next-generation biosensors since 

the consequent reduction in electrode surface area is expected to result in  enhanced 

sensitivities, increased signal-to-noise ratios and decreased detection limits [1, 2]. In addition 

such miniaturised electrodes are found to reach steady-state currents very rapidly due to their 

radial diffusion properties [3, 4]. In this regard, micro disk array electrodes are currently the 

most commonly studied microelectrode geometry since they are easily able to attain true 

steady-state current levels. The other advantage of such devices are the decreased volume of 

the sample and batch production of the electrodes which both may decrease the cost per 

device at industrial scale [5]. The use of microfabrication methods in the silicon technologies 

including lithography, deposition and etching to fabricate array electrodes offer excellent 

precision and high resolution for nano-scale features. Furthermore, the biocompatibility of 

silicon and the flexibility of the arrangement of the arrays with various shape, size and 

dimensions make them promising components for various bio-application such as biosensors 

[6, 7], implantable sensors [8], microfluidics [5], drug delivery [9] and neural probes [10].  

Arguably the most crucial aspect of the development of a biosensor is the immobilisation of the 

biorecognition element onto a suitable matrix. Modification of the surface with metal 
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nanoparticles, carbon based nanomaterials or biocompatible polymers are among the most 

common ways to create selectively advantageous surfaces for biomolecules [11-14]. Thus, in 

this present work we have modified gold electrode surfaces with a hybrid nano-material that 

consists of two different types of nanoparticles, namely gold nanoparticles (AuNPs) and carbon 

quantum dots (CQDs). Both materials have a large number of advantages regarding to their 

chemical and physical characteristics. As a new class of nanocrystalline carbon materials, CQDs, 

have been gaining great attention in multiple research fields, particularly in biological 

applications due to their small size, surface functional groups, cheapness and non-toxicity [15, 

16]. The other component, AuNPs, have been used extensively in bio-imaging controlled drug 

release systems and biosensors [17, 18]. They are able to rapidly transfer electrons between 

the transducer and a wide range of biorecognition element such as enzymes, which greatly 

improves the signal to noise ratios resulting from electrochemical biosensors [11].  

In our previous work, we reported the CQDs/AuNPs nanohybrid material as an immobilisation 

matrix for a large surface area microfabricated gold electrode in order to develop a glucose 

oxidase biosensor [6]. The planar biosensor developed, with a 0.095 cm2 surface area, exhibited 

very good analytical performance which may attributed to the positive contribution of the 

CQDs/AuNPs nanohybrid system. Such nanomaterials increase the surface area of the electrode 

and provide suitable immobilisation matrix to maintain the activity of the enzyme [6, 19]. Thus, 

the present study therefore explores the development of an electrochemical biosensor which 

combines the use of the CQDs/AuNPs nanohybrid materials and miniaturized electrode 

technologies in order to take advantage of both systems for the improved analytical 

performance of the desired biosensor. Gold micro disk array electrodes, with 20 µm diameter 

and 85 disk electrodes, were microfabricated using electronics industry-standard lithography, 

deposition and etching technologies. Fabricated electrodes were characterised 

electrochemically to investigate the efficacy of the microfabrication route and the morphology 

of gold arrays was studied with SEM and AFM. Then, CQDs/AuNPs-GOx micro disk array 

electrodes were prepared by applying several immobilisation methods as described in the 

experimental section. The micro disk array based glucose biosensor was studied by 

chronoamperometry to investigate its analytical performance. The resulting CQDs/AuNPs-GOx 
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modified gold micro disk array electrodes showed a 13-fold increase in sensitivity in comparison 

to the counterpart planar biosensor which was reported in our previous study [6].  

 

4.3 Materials and Methods 

 

4.3.1 Materials 

Glucose oxidase (EC 1.1.3.4, from Aspergillus niger), glucose, potassium chloride (KCl), sodium 

chloride (NaCl), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N-hydroxysuccinimide 

(NHS), sulfuric acid, potassium ferrocyanide (K4[Fe(CN)6]), potassium ferricyanide (K3[Fe(CN)6]), 

cysteamine, acetaminophen, uric acid, phosphate buffer saline tablets (PBS, 0.01 M, pH 7.4) 

were obtained from Sigma-Aldrich. D-Glucose, UV-method commercial kit was obtained by 

Fannin. All aqueous solutions were prepared with doubly distilled water. Glucose stock 

solutions were prepared one day before use to allow mutarotation, kept in the fridge at + 4˚C 

overnight. Nanomaterials preparation methods and the gold micro disk array electrode 

fabrication process are included in the supplementary data. 

 

4.3.2 Instrumentation and Methods 

Micro disk array electrode characterization was studied with electrochemistry, scanning 

electron microscopy (SEM) and atomic force microscopy (AFM). Electrochemical studies were 

carried out using an AUTOLAB electrochemical workstation (METROHM, UK) in a standard 

three-electrode cell including a gold micro disk array working electrode, a platinum (Pt) wire 

counter electrode and an Ag/AgCl (1 M) reference electrode. Electrochemical impedance 

spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry were applied to 

investigate the electroanalytical performance of the fabricated disk array electrodes and the 

biosensor developed. The Nyquist plots were obtained in a solution of 5 mM Fe(CN)6
3-/4- as a 

redox probe in the frequency range from 0.01 to 105 Hz at an amplitude of 0.01 V at open 

circuit potential. The used equivalent electrical circuit was [R(RQ)([RW]Q)]. The analytical 

performance of the biosensor was studied by chronoamperometry, in O2 saturated 0.01 M PBS 

(pH 7.4) at an applied potential of -0.6 V. The calibration curve was studied to obtain the 
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current (I)-concentration (mM) graph of the biosensor. The sensitivity of the biosensor was 

obtained by dividing the slope of the calibration curve to surface area of the array. The 

detection limit was determined using the formula, 3sb/S, where sb was the standard deviation 

of the blank and S was the sensitivity of the biosensor.  

 

 

Scheme 4.1 Schematic diagram of the biosensor preparation process; (1) the bare individual disk array electrode, 
(2) magnified surface of array, (3) amine functionalised gold surface after cysteamine modification, (4) 
CQDs/AuNPs attached surface, (5) GOx enzyme immobilized overall CQDs/AuNPs-GOx biosensor. Note that the size 
of the electrodes, nanomaterials and biomolecule shown are not drawn to scale. 

 

4.3.3 Preparation of CQDs/AuNPs-GOx biosensor  

Scheme 1 depicts the steps involved in biosensor preparation. Disk array electrodes were 

modified with slight changes as we described previously [6]. Firstly, gold disk array working 

electrodes were cleaned using organic solvents and a plasma cleaner. The clean electrodes 

were then immersed into a cysteamine solution to obtain the amine functionalized surface and 

incubated overnight in the fridge, at +4°C. 5 µL of CQDs-AuNPs nano-hybrids solution was then 

drop-casted onto the amine-functionalized gold electrode surfaces and allowed to incubate in 

the fridge, at +4°C for 48 hours. Finally, 0.04 U GOx and 5 µL of gluteraldehyde (%1) were drop-

casted to the electrode surface, respectively and the electrodes prepared kept in the fridge, at 

+4°C until dry. The electrodes were washed with PBS and kept in the fridge, at +4°C until used.  
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4.4 Results and discussion 

 

4.4.1 Characterisation of fabricated micro disk array electrodes 

 

Figure 4.1. (A) Microfabrication process flow of the gold microelectrodes (inset: whole wafer picture of electrodes 
after fabrication process), (B) SEM image of the bare gold micro disk array electrode hexagonal structure with 200 
µm inter-electrode distance and (C) an individual bare gold disk electrode with 10 µm radius, (i) AFM image of gold 
electrode surface and (ii) recess depth of the edge of the disk array.  

 

SEM and AFM are very powerful tools for the study of the morphology and surface topography 

of microfabricated electrodes. Here, we applied both techniques to demonstrate the shape and 

dimensions of the array electrodes, the recess depth and the success of the modification 

process. An SEM image of the bare gold micro disk array electrode taken at low magnification 

and 45 º tilt, Fig. 4.1B, clearly reveals a series of well-situated disk electrodes arranged in a 

hexagonal pattern. The hexagonally arranged micro disk electrodes have an inter-electrode 
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distance of 200 µm. Fig. 4.1C shows the SEM image of an individual disk with a diameter 20 µm. 

This image demonstrates a well-defined shape of the disk electrode with a 45º tilt and a very 

clean surface of the gold electrode without any obvious residue from the microfabrication 

process materials such as photoresist or passivation. Fig. 4.1-(i) shows the resulting AFM image 

of an interior gold surface of the array electrode, which exhibits a nonporous morphology with 

a granular structure typical of evaporated gold. Fig. 4.1 (ii) shows an AFM image of the edge 

study of the individual disk electrode. As can be seen, the recess depth of the fabricated array is 

around 200 nm which was the expected result of the carefully applied microfabrication process. 

As noted earlier, the fabrication of the electrodes was performed using standard Si/SiO2/metal 

microfabrication technology. In this technology, the patterning process for the disk arrays 

requires the etching of a passivation layer deposited on top of the metal layer as described in 

the supplementary data. As a result it was important to consider the possibility that a small 

fraction of the substrate remained passivated since this may decrease the analytical 

performance of the fabricated electrodes. Thus, it was very important to apply electrochemistry 

in order to investigate the success of the fabrication process [20]. Cyclic voltammetry in 

sulphuric acid is generally used for the characterisation of various different metal electrodes, 

especially platinum and gold, where the voltammograms reveal the formation of surface oxides 

during the positive sweep and their subsequent reduction [21].  The CVs recorded in this acid 

environment can also be used as a surface cleaning or activation method since electrodes 

fabricated in this study cannot be cleaned mechanically. Cyclic voltammetry in sulphuric acid 

was studied as a preliminary test in order to investigate if the microelectrode arrays were 

active. Typical voltammograms of gold planar (red) and micro (black) electrode in 0.5 M H2SO4 

are shown in Fig. 4.2A. A broad peak between 1.1 – 1.4 V vs. Ag/AgCl was observed during the 

forward sweep, which can be attributed to the formation of monolayer oxides of gold (Au2O3), 

and during the backward sweep, a sharp reduction peak at 0.95 V vs. Ag/AgCl is due to the 

subsequent removal of oxides [22, 23]. The reduction of the current of the micro disk array 

electrode in comparison to the large surface area gold disk electrode is due to the decreased 

surface area of the electrode. 
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Figure 4.2. (A) Cyclic voltammograms recorded for gold disk planar, 1 mm diameter (red) and gold micro disk array 
(black) electrodes in 0.5 M H2SO4 at a scan rate of 0.01 V s-1, (B) cyclic voltammogram of three gold micro disk 
array electrodes and schematic representation of radial diffusion profile (inset: CV of planar gold electrode), and (C) 
cyclic voltammograms of gold micro disk array electrode at different scan rates ranging from 0.01 to 0.5 V s-1, in a 
solution of 5 mM Fe(CN)63-/4- as a redox probe containing 0.1 M KCl, 0.01 M PBS (pH 7.4). 

 

One of the most important advantages of the use of microelectrodes is the radial diffusion 

profile which improves their performance due to enhanced mass transport to and from the 

microelectrode [24]. This behaviour can be investigated by cyclic voltammetry in the presence 

of an electroactive species since the diffusion zones associated with these electrodes influence 

the electrochemistry observed. A symmetrical sigmoidal cyclic voltammogram is expected from 

the microelectrodes in the absence of any shielding effect which may arise from the adjacent 

microelectrodes in the array. Moreover, the diffusion behaviour at the electrodes produces 

varying voltammetric responses ranging from sigmoidal to a ‘peak shape’ depending on the 

diameter and space between the electrodes in the array [25, 26]. As it can be seen in Fig. 4.2B-

inset, the planar gold electrode shows a peak shaped cyclic voltammogram which arises from 

the planar diffusion profile concomitant with the relatively large surface area. In this work, the 

fabricated micro disk array electrodes consisted of an array of 20 µm diameter disk electrodes 

with a 200 µm spacing distance. Fig. 4.2B shows a schematic illustration of the diffusion profile 

of the microelectrode. In this case, the microelectrodes show a sigmoidal response using cyclic 
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voltammetry due to there being sufficient distance between the adjacent electrodes in the 

array. Thus, the diffusion layers do not interact and the voltammogram obtained represents the 

steady-state characteristics of an individual disk multiplied by the number of the electrodes in 

the array [27]. The CVs of the three-bare gold micro disk array electrodes in 5 mM Fe(CN) 6
3-/4- 

solution at a slow scan rate of 0.01 V s-1 are shown in Fig. 4.2B. These data demonstrates the 

symmetrical and sigmoidal shape response of the fabricated gold microelectrodes. As can 

clearly be seen, the oxidation and reduction peak current densities are almost equal and 

reversible. The effect of  increased scan rate on the electrochemical response of the micro disk 

electrodes was also studied and Fig. 4.2C shows the CVs of the disk electrode with increasing 

scan rate in a range of 0.01 to 0.5 V s-1, in the presence of 5 mM Fe(CN) 6
3-/4- as a redox probe. 

Even though a slight increase of the current density is observed with increased scan rate, the 

most significant result is the consistent appearance of the sigmoidal feature of the CVs at high 

scan rates which suggests that the every single disk remains isolated within the range of scan 

rates and that mass transport is dominated by radial diffusion. These results confirm the 

satisfactory electrochemical performance of the fabricated micro disk array electrodes 

developed in this work. 

 

4.4.2 Fabrication process of the biosensor  

Electrochemical impedance spectroscopy (EIS) and Cyclic Voltammetry (CV) 

Electrochemical impedance spectroscopy (EIS) was employed in order to provide further 

understanding as to the changes of the surface properties during the biosensor development 

process [28]. Figure 4.3A shows the Nyquist plots corresponding to each step in the 

modification process including the bare gold electrode, the cysteamine modified gold surface, 

this surface with CQDs-AuNPs attached and finally, the GOx immobilised surface. These plots 

were obtained by applying EIS in a solution of 5 mM Fe(CN)6
3-/4- as a redox probe. The 

impedance data were studied by fitting the equivalent electrical circuit, [R(RQ)([RW]Q)] shown 

in Fig. 4.3B, where R1, R2 and R3 represent electrolyte resistance (Rs), array surface film 

resistance (Rf) and charge transfer resistance (Rct), respectively while W represents  the 

Warburg impedance. The values of these parameters are listed in Table S1. In this analysis, the 
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circuit includes CPE (Constant phase element) due to the presence of the microfabrication-

induced surface heterogeneities [29].  All Nyquist plots have a similar structure consisting of a 

high-frequency semicircle, a medium-frequency semicircle and a following short low-frequency 

line. Rs values of the circuits which are mainly related with the electrolyte, did not vary much 

for the microelectrode modification steps. The Rct of the bare GDAE was calculated to be 71.4 

kΩ (Fig. 4.3A, ■), which is larger than that of the cysteamine modified surface (Rct; 1.3 kΩ) 

indicating the electrostatic interaction between the amine functional groups of cysteamine and 

the redox probe (Fig. 4. 3A, ●). Attachment of the nanohybrid material onto the electrode 

surface then increased the Rct and Rf (111 kΩ and 36.1 kΩ) values since the accumulation of the 

nanomaterials may affect the transfer of redox species (Fig. 4.3A, ♦). In the last step, 

immobilisation of the enzyme onto surface resulted in a dramatic increase of Rct and Rf (239 kΩ 

and 282 kΩ, Fig. 4.3A, ▼). This is due to the successful immobilisation of GOx on the electrode 

and the corresponding increase in the thickness of the modifying layer.  

 

 

Figure 4.3. (A) Nyquist plots of the impedance spectra of bare gold micro disk array electrode (■), after cysteamine 
modification (●), CQD/AuNP hybrid material attached surface (♦) and GOx immobilized (▼) biosensor, (B) 
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equivalent electrical circuit model of [R(RQ)([RW]Q)],  (C) cyclic voltammograms of bare gold micro disk array 
electrode and CQD/AuNPs-GOx bioelectrode  and (D) SEM images of the CQDs/AuNPs-GOx modified single disk of 
the array. (The solution for EIS and CV is 5 mM Fe(CN)63-/4- as a redox probe in 0.01 M PBS (pH 7.4) solution 
containing 0.1 M KCl.) 

 

Cyclic voltammetry was applied to probe the changes of the bare gold disk array electrode after 

CQDs/AuNPs-GOx layer formation at a scan rate of 0.01 V/s. As can be seen from Fig. 4.3C, in 

comparison to the bare gold surface, the overall surface modification decreased the current 

density at the electrode due to the accumulation of molecules/nanoparticles on the surface in a 

manner so as to block the electronic transfer to the electrode. Moreover, Fig. 4.3 D represents 

the SEM images of CQDs-AuNPs/GOx modified surface. The successful immobilisation of the 

bio-matrix onto the gold disk array surface can be clearly seen in the images of top and 70° tilt. 

The SEM images of the CQDs-AuNPs/GOx surface shown in here are in good agreement with 

the above interpretation of the EIS and CV data. 

 

4.4.3 Chronoamperometric detection of glucose  

The chronoamperometric detection of glucose was studied based on oxygen-consumption 

induced by the enzyme-catalyzed reaction of GOx as shown in the equations (1) and (2) [30] 

GOx(FAD) + glucose → GOx(FADH2) + gluconolactone                                            (1) 

GOx(FADH2) + O2 → GOx(FAD) + H2O2                                                                    (2) 

 Chronoamperometric techniques was applied at an applied potential of -0.6 V in 0.01 M PBS 

(pH 7.4) O2 saturated solution.  Fig. 4.4A displays the chronoamperometric responses of the 

biosensor towards the serial additions of 0.16 mM glucose at 10 second intervals. As it can be 

seen from Fig. 4.4A(i), after each addition of the glucose, the biosensor reaches the steady state 

current rapidly and exhibits a well-defined response. As shown in Fig. 4.4B, the response time 

for the CQDs/AuNPs-GOx microbiosensor is about 0.5 sec which is defined as the time that 

current reaches 95% of the steady-state value. Fig. 4.4A(ii) and B show the corresponding 

calibration curve and the linear range of the biosensor, respectively. The linear response of the 

microbiosensor to glucose concentration is in the range from 0.16 mM – 4.32 mM with the 

linear regression equation of  y = 1.67·10-7 x + 5.29·10-8 (R2 = 0.99). The sensitivity of the 

microbiosensor which was calculated from the slope of the plot, was determined to be 626.06 
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μA mM-1 cm-2. The obtained excellent sensitivity of the array biosensor is some 13-times higher 

than that of a CQDs/AuNPs-GOx micro planar gold electrode based biosensor. This result may 

be attributed to the superior advantages of the micron-sized electrode array discussed earlier. 

The detection limit was calculated to be 13.6 µM which is comparable to that of other 

previously described array-based glucose biosensors [31-33]. Furthermore, we obtained a 

decrease of the limit of detection in comparison to planar counterpart of the biosensor (17 µM) 

[6]. Fig. 4.4D shows the Lineweaver-Burk plot from the micro disk array biosensor with a linear 

regression equation of y = 3.03·106 x + 1.035·106 (R2 = 0.98). The apparent Michaelis-Menten 

constant (  
   ), was calculated to be 2.93 mM. This quite low concentration value of the 

constant is indicative of the high affinity between the immobilised glucose oxidase and glucose.  

The constant value determined here is considerably smaller than previously reported values, 

e.g. 27 mM for free glucose oxidase [34] and 6.5 mM for a gold nanowire array–GLA–BSA–

GOx glucose biosensor [35]. This reduction in   
    is illustrated in more detail in a comparison 

between this work and other work presented in the literature, shown in Table S2. 

 

 

Figure 4.4. (A) Chronoamperometric response of the CQDs/AuNPs-GOx micro disk array biosensor to the serial 
addition of 20 µL of 40 mM glucose in O2-saturated 0.01 M PBS (pH 7.4) at a working potential of -0.6 V (inset i; 
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detailed presentation of serial addition steps and inset ii; corresponding calibration curve of the biosensor), (B) the 
response time for the biosensor to reach the steady-state current, (C) corresponding linear range of the biosensor 
and (D) The Lineweaver-Burk plot of the micro disk array biosensor. 

 

The analytical performance of the developed biosensor may be attributed to the use of a 

combination of the micro array electrodes and the chosen nanomaterials. It has been reported 

that electrodes that are based on the use of nano materials provide several beneficial 

characteristics including their large surface area, high surface activity, high catalytic efficiency 

and strong adsorption capacity [7, 19]. Moreover, it is very well known that micro array 

electrodes offer a number of advantages over planar electrodes due to their radial diffusion 

profile and improved mass transport [1, 24]. Table S2 clearly reveals the advantages associated 

with miniaturization of the devices and the use of the nanomaterials selected here, as may 

clearly be seen from the measured analytical parameters. Specifically the approach leads to 

improvements in sensitivity and reductions in both detection limits and Michaelis-Menten 

constant values. 

 

3.2.3 Studies of selectivity, reproducibility, reusability, stability and real samples  

To evaluate the possible analytical application of the microbiosensor developed, the effects of 

common interfering species have been examined. Fig. 4.5A displays the responses of the 

microbiosensor towards 2 mM glucose and 0.16 mM of the most common interfering species 

namely, ascorbic acid (AA), uric acid (UA) and acetaminophen (AC). In the presence of ascorbic 

acid, uric acid and acetaminophen, the response of the biosensor towards 2 mM glucose 

changed % 8.21, % 7.9 and % 7.54, respectively. These results demonstrate that the 

microbiosensor developed is highly selective for glucose detection even in the presence of 

electroactive substances known to endogenously coexist.  

Five individual CQDs/AuNPs-GOx micro disk array biosensors were prepared and their 

responses to glucose in O2 saturated PBS were measured by chronoamperometry under the 

same conditions in order to investigate the biosensor reproducibility, Fig. 4.5B. The relative 

standard deviation (RSD) towards detection of a 0.16 mM glucose was determined to be 4.20% 

which demonstrates quite a reasonable good level of reproducibility.  Moreover, the reusability 
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of the biosensor was studied by performing seven successive experiments each with three 

individual electrodes. The RSD values of the fabricated biosensors were calculated to be 4.85%, 

4.31% and 6.64%, suggesting good operational stability of the CQDs/AuNPs-GOx micro disk 

array biosensor, Fig. 4.5C. After storing the biosensor at +4C for one month, its current density 

decreased by approximately 5.53%. This impressive long term stability (shelf-life) can be 

attributed to the biocompatibility of the CQDs/AuNPs nanohybrid matrix which can provide a 

‘friendly’ microenvironment for the ‘active’ component- the GOx enzyme. 

 

 

Figure 4.5. (A) Response of the CQDs/AuNPs-GOx-GDAE microbiosensor to glucose,  ascorbic acid (AA) , uric acid 
(UA) and acetaminophen (AC) , (B) reproducibility (n=5) and (C) reusability of the CQDs/AuNPs-GOx-GDAE 
microbiosensor in O2 saturated 0.01 M PBS (pH 7.4) at an applied potential of -0.6V. 

 

By way of a practical application, the CQDs/AuNPs-GOx biosensor developed here was 

deployed to measure the glucose content of two different commercial sweet wines. The 
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concentration of glucose in those wines was firstly determined by using a commercial glucose 

kit based on the (spectrophotometric) enzymatic reaction. For this purpose, wine samples were 

diluted as a ratio of 1:100 and their pH was adjusted to approximately pH 8 by adding 1M NaOH 

solution and incubated for 15 minutes at room temperature. After sample preparation, each 

sample was measured 3 times by the spectrophotometric method to determine the 

concentration.  To study the target wines using the biosensor developed here, wine samples 

were simply diluted with deionised water to keep the concentration in the linear range of the 

calibration curve. Briefly each wine sample was prepared to be 40 mM and added into 

electrochemical cell 20 µL for each measurement. No further preparation process was required. 

The concentration of glucose was calculated based on the calibration curve. The comparison of 

the results obtained from both the spectrophotometric enzymatic method and CQDs/AuNPs-

GOx electrochemical biosensor are shown in Table 4.1. The results displayed in Table 1 reveal 

that the biosensor developed can be easily applied for glucose detection in alcoholic beverages 

without any special sample pre-treatment. Moreover, the biosensor developed is highly 

suitable for further miniaturisation and packaging for on-site and in-line applications. 

 

Table 4.1.  Real samples analysis 

  Glucose concentration (g/L) 

  
Spectrophotometric 

commercial method 

CQDs/AuNPs-GOx 

micro-biosensor 

Relative standard deviation (%) 

  
spectrophotometric 

micro-

biosensor 

Moscato 

wine 1 20.10 ( ± 0.18 ) 22.47 ( ± 3.80 ) 0.9 17 

Moscato 

wine 2 20.984 ( ± 0.31 ) 26.14 ( ± 2.51 ) 1.5 9.6 

 

4. Conclusions 

In this present study we describe the fabrication of a highly promising biosensor most suitable 

for further miniaturisation and packaging. A general microfabrication process based on lift-off 

technology was applied for device fabrication and two specific masks were designed and 

fabricated for the etching process used to define the array. Fabricated gold micro electrodes 
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were characterised electrochemically to investigate the success of the microfabrication. The 

micro-scale array device showed a very specific symmetric sigmoidal cyclic voltammogram 

which is characteristic of a radial diffusion profile. Furthermore, bare electrodes were studied 

by SEM and AFM. These results demonstrate that the device fabrication process employed here 

was successful in terms of making electrochemically-viable electrodes.  

The subsequent modification of the electrodes with CQDs/AuNPs nanohybrid and GOx to create 

the biosensor was then successfully demonstrated. The CQDs/AuNPs-GOx-GDAE 

microbiosensor developed showed a sensitivity of 626.06 μA mM-1 cm-2 with a linear range from 

0.16 mM to 4.32 mM. Developed biosensor reached to a stable steady-state currents within ~ 

0.5 sec. Furthermore, the apparent Michalis-Menten constant (  
   ), which is an indicator of 

enzyme-substrate reaction kinetics, was calculated to be 2.93 mM.   

Finally, we note that the methods deployed to fabricate the biosensor described in this paper 

are particularly suitable for further development towards a completely on-chip system, with 

possible further miniaturization, which would reduce the unit costs associated with biosensor 

production making it particularly attractive for various applications yet still highly reliable and 

reproducible.  
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4.7 Supporting information 

 

Nanomaterials preparation and gold micro disk array fabrication 

CQDs were synthesised from ethanol in an alkaline environment at a constant potential using 

the method reported by Deng et al. [1], with slight changes, and combined together with gold 

nanoparticles as described in our previous study to obtain a CQDs decorated AuNPs nano-

hybrid material [2]. Briefly, 15 mL ethanol was mixed with saturated NaOH and stirred for 30 
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minutes at an applied potential of 4V. The product was kept in the dark overnight. The resulting 

yellow coloured solution was evaporated at 80°C. The pellet was dissolved in the double 

distilled water and pH was adjusted to pH 7.0. For further purification, solution was filtered and 

stored at +4 °C.  AuNPs were prepared by following the procedure reported by Turkevich et al. 

[3]. Tetrachloroauric acid, % 0.02 was boiled in a round bottom reaction flask under stirring 

conditions, and then %1 trisodium citrate was added into flask rapidly. The colour of the 

solution changed from yellow to magenta, and the solution was cooled to room temperature 

under stirring conditions. The resulting gold nanoparticles were kept at +4°C. To form the 

CQDs/AuNPs nanohybrid system, AuNPs were modified by adding 0.01 mM cysteamine which 

forms amine terminated self-assembly monolayers on the surface. The mixture were incubated 

for 24 hours at room temperature by shaking. Carboxyl groups of CQDs were treated by 40 µL 

of NHS/EDC solution (1:4). Finally the activated-CQDs were added to the amine functional 

AuNPs and shaken overnight. The characterisation of the nanomaterials were studied in detail 

in our previous work, please see reference [2]. Moreover, in here we studied the Raman 

spectrum of the nanomaterials (Fig. 4.S1).  The spectrum of CQDs does not show any Raman 

signal due to their strong fluorescence properties (Fig. 4.S1- B) while the spectrum of AuNPs 

(Fig. 4.S1- A) exhibits a band at ca. 1600 cm-1 (G band) [4]. When combined to form the hybrid 

material the spectrum (Fig. 4.S1- C) showed a decrease in the peak counts originating from the 

AuNPs most likely because addition of the CQDs obscures or dampens part of the Raman signal. 

 

The gold micro disk array working electrodes (GDAE) were fabricated using a classical 

microfabrication process flow which is shown in Fig. 4.1A. Briefly, silicon was chosen as the 

substrate and a silicon oxide layer was growth on the silicon substrate. The substrates were 

treated with an argon plasma to improve the metal adhesion to the substrate. The wafer was 

then spin-coated at 3000 rpm for 50 seconds with a layer of photoresist. This was followed by 

the titanium and gold deposition using e-beam evaporation and patterning using a lift off 

procedure, respectively. Silicon nitride (S3N4) with 200 nm thickness was deposited as the 

passivation layer by plasma-enhanced chemical vapor deposition. Then, the mask which was 

designed for disk arrays was applied by a passivation lithography process and passivation 
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etching. For this purpose an inductively coupled plasma etch system (ICP) was used to etch the 

Si3N4 passivation layer and the remaining resist was removed. Last step involved covering the 

substrate with a resist layer to protect the electrodes during the dicing process. Fig. 4.1A-inset 

shows a photograph of the whole wafer after fabrication. The resulting individual electrodes 

consisted of 85 disk arrays with 20 µm diameter, 200 µm inter-electrode distance and 200 nm 

recess depth. The overall surface area of the array is 2.67 x 10-4 cm2. 

 

Figure 4.S1. Raman Spectrum of AuNPs (A), CQDs (B) and AuNPs-CQDs nanohybrid material (C) 

 

Table 4.S1. Typical values of interfacial parameters of CQDs/AuNPs-GOx micro disk array biosensor surface 
modifications steps obtained by fitting the [R(RQ)([RW]Q)] circuit to the experimental data 

 

R1 R2 R3 CPE1 CPE2 

Surface layers Ω kΩ kΩ nMho nMho 

bare GDME 120 4.39 71.4 192 2310 

Cysteamine 51.4 54.6 1.30 4200 23.8 

CQDs/AuNPs 120 36.1 111 561 873 

CQDs/AuNPs-GOx 126 282 239 258 75.3 
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Table S2. Comparison of the analytical performance of the array based glucose oxidase biosensors 

Glucose 
biosensor 

Sensitivity 
Detectio
n Limit  

Linear 
range 

Km  Reproducibility Reusability 
Long term 
stability 

Ref. 

CQDs/AuNPs-
GOx-GDAE 

626.06 μA 
mM-1 cm-2  

13.6 µM  0.16– 
4.32 mM  

2.93 
mM 

RSD 4.2% (n=5) RSD 4.85%, 
4.31% and 
6.64% (3 
biosensors, 7 
successive 
measurement
s) 

Dry storage at 
4ᴼC, one month 

This 
work 

AuNWA–BSA–
GLA–GOx 
 
 

298.2  μA 
mM−1 cm−2 

0.1 µM 0.005-6 
mM 

6.5 
mM 

- - four weeks [5] 

GOx-modified 
porous 
gold 
nanowire-
array 
electrode 
 

15.6 μA mM−1 
cm−2 

4.6x10-5 
M 

0.05-2 
mM 

0.046 
mM 

- - - [6] 

GOx-PEGDE-
microelectrod
e  

147 μA mM−1 
cm−2 

~ 1 nM 0-400 µM 1.4 
mM 

At the optimal 
PEGDE 
concentration, 
enzyme 
immobilization 
was 
reproducible 
(app. 12% in the 
sensitivity ratio) 

4-5 hours 
repeatedly 
for vivo and 
in vitro 

during dry 
storage at 4ᴼC 
over 3 mos. 

[7] 

MEA100-Gox 
 
 
 

1.73 μA mM−1 1.7  μM 0.1-1 mM  - - - [8] 

PPy-GOx-Gel–
Pt 

281nA/mM/c
m2 

0.033 
mM 

1-15 mM 33 mM - - A temporal 
increase in 
sensitivity with 
storage over a 
17 days period. 

[9] 

Abbreviations; AuNWA: gold nanowires array, BSA: bovine serum albumin, GLA: glutaraldehyde, PEGDE: poly(ethylene glycol) diglycidyl 
ether, MAE: silver microelectrode arrays, Ppy: polypyrrole 
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CHAPTER 5 
Dual-enzyme based glucose detection 
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5. A dual-enzyme, micro-band array biosensor based on the electrodeposition 

of carbon nanotubes embedded in chitosan and nanostructured Au-foams on 

microfabricated gold band electrodes 

 

This work has been published in the journal of RSC Analyst, 2020 (DOI: 10.1039/C9AN01664C) 

 

5.1 Abstract 

 

We report the development of a dual-enzyme electrochemical biosensor based on 

microfabricated gold band array electrodes which were first modified by gold foam (Au-foam) 

in order to dramatically increase the active surface area. The resulting nanostructured Au-foam 

deposits then served as a highly porous 3D matrix for the electrodeposition of a nanocomposite 

film consisting of multi walled carbon nanotubes embedded in a chitosan matrix (CS:MWCNT) 

designed to provide a conducting, biocompatible and chemically versatile surface suitable for 

the attachment of a wide range of chemically or biologically active agents. Finally, a dual 

enzyme mixture of glucose oxidase (GOx) and horseradish peroxidise (HRP) was immobilised 

onto the CS:MWCNT nanocomposite film surface.  

It is shown that the resulting sensing platform developed demonstrates excellent analytical 

performance in terms of glucose detection with a sensitivity of 261.8 µA mM-1 cm-2 and a 

reproducibility standard deviation (RSD) of 3.30% as determined over 7 measurements. 

Furthermore, long term stability studies showed that the electrodes exhibited an effectively 

unchanged response to glucose detection after some 45 days.  

The example of glucose detection presented here illustrates the fact that the particular 

combination of nanostructured materials employed represents a very flexible platform for the 

attachment of enzymes or indeed any other bioactive agent and as such may form the basis of 

the fabrication of a wide range of biosensors. Finally, since the platform used is based on 

lithographically-deposited gold electrodes on silicon, we note that it is also very suitable for 

further miniaturisation, mass production and packaging- all of which would serve to reduce 

production costs. 
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Keywords: Enzymatic sensor, biosensor, microelectrode, electrodeposition, microfabrication, 

chitosan, carbon nanotubes, gold foam 

 

 

 

 

Graphical abstract, note that the sizes of the components shown are not drawn to scale. 

 

5.2 Introduction: 

Electrochemical biosensors recognize the corresponding analyte through a catalytic or binding 

event occurring at the surface of the electrode and as a result of the high-sensitivities that have 

been achieved they have been extensively studied in various clinical, environmental, industrial 

and agricultural applications [1-3].  The close relationship between analytical performance and 

the characteristics of the electrode has stimulated considerable efforts devoted to the design 

and fabrication of miniaturised electrodes. Silicon-based microfabricated electrodes, in 

particular those based on lithography, etching and deposition show considerable promise for 

the relatively low-cost batch fabrication of a range of highly-reproducible microelectrodes or 

arrays of microelectrodes whose precise dimensions and shapes may be directly controlled via 
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the choice of a suitable mask [4, 5]. Microelectrodes are commonly used for electrochemical 

analysis [6, 7] and biosensing [4] due to several well-established advantages of such electrodes 

including  small size, fast response time, high signal-to-noise ratio and the rapid generation of a 

steady state response [6, 8, 9].  

 

In our previous work we demonstrated how the combination of microfabricated electrodes 

with nanostructured overlayers can be used most effectively for the sensitive, rapid and reliable 

detection of glucose via both enzymatic and non-enzymatic electrochemical processes [4, 5, 

10]. In those studies the advantages of increased active surface area achieved via either metal 

nanoparticle (Au) attachment or metal (Cu) foam electrodeposition was clearly demonstrated. 

Especially, the use of the metal foams for the creation of a high active surface area sensor is a 

particularly attractive approach since such foams may be readily formed in-situ via an 

electrodeposition process that utilises the so-called dynamic hydrogen bubble template 

method [10-13].  

In this present work we continue with this approach, utilising gold foam (Au-foam) 

electrodeposition onto micro band array electrodes in acidic solution at high negative 

overpotentials to form a very elegant, highly porous foam nanocrystal deposits along each 

single band of the array electrode. We then subsequently modify the Au-Foam surface using 

the electrodeposition of an organic functional layer (OFL) consisting of a chitosan (CS) / carbon 

nanotube (CNT) composite material. CS was chosen as the major component of the OFL since it 

possesses excellent characteristics in terms of biocompatibility, nontoxicity, good water 

permeability low-cost, non-antigenic, abundant functional groups and biodegradability [14-17]. 

From the point of view of functionalisation, the amine (-NH2) groups present in CS make it a 

superb candidate for surface modification and the immobilisation of a wide variety of 

biomolecules. In addition, it is known that combining CS with CNTs not only increases the 

mechanical stability and robustness of the layer but also greatly enhances its conductivity/rate 

of electron transfer and electrocatalytic properties [18-21]. After the anodic electrodeposition 

of the Au-foam and the subsequent cathodic electrodeposition of CS in the presence of the 

CNTs resulting in the formation of the CNT-embedded composite OFL, the enzymes glucose 
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oxidase and horseradish peroxidase were immobilised onto the functionalised surface by drop 

casting so as to create a dual-enzyme sensing platform. We show here that the resulting dual-

enzyme microbiosensor exhibited a sensitivity of 261.8 µA mM-1 cm-2 towards glucose detection 

while also being reproducible (RSD, 3.30%) and relatively unaffected by the common 

interferences found in human blood serum. These data serve to illustrate the enormous 

potential that this microfabricated electrode/porous metal/OFL approach possesses in terms of 

the reliable, reproducible and cheap fabrication of a wide range of sensors. 

 

5.3 Materials and methods 

 

5.3.1 Chemicals and Instrumentation 

Glucose oxidase (EC 1.1.3.4, from Aspergillus niger; GOx), Horseradish peroxidase (EC 1.11.1.7; 

HRP), gold (III) chloride trihydrate (HAuCl4·3H20), multi-walled carbon nanotube (-COOH), 

chitosan, glucose, ascorbic acid, uric acid, acetaminophen, acetone, potassium ferrocyanide 

(K4[Fe(CN)6]), potassium ferricyanide(K3[Fe(CN)6]), phosphate buffer saline tablets (PBS, 0.01 M, 

pH7.4), potassium chloride (KCl), sulfuric acid (H2SO4), sulfuric acid, 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC), and N-hydroxysuccinimide (NHS) were obtained 

from Sigma-Aldrich. Acetic acid was obtained from Riedel-de Haen. All solutions were prepared 

with deionized water (18.3 MΩ, ELGAPurelab Ultra).  

Scanning electron microscopy (SEM) (Zeiss Supra 40 SEM at accelerating voltages in the range 

of 5-10 kV) was used to study of the surface morphology of bare and modified band array 

electrodes. Energy dispersive X-ray analysis (EDX) was performed using a Quanta 650 Field 

Emission Gun (FEG) attached with an EDX unit, with an accelerating voltage of 20 kV. The 

chemical composition of the surfaces was studied by using X-ray photoemission spectroscopy 

(XPS, Kratos AXIS ULTRA) with Al Kα at 1486.58 eV. The analysis area was approximately 1 mm2 

and the depth of analysis was approximately 10 nm. All the XPS data were calibrated by the 

carbon 1s peak at 284.8 eV.  
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5.3.2 Au-foam/CS-MWCNT/GOx-HRP micro band array biosensor preparation 

Gold band array electrodes on silicon were fabricated by a microfabrication process which 

includes lithography, deposition and etching as we reported earlier [4, 5, 10]. Firstly the thermal 

growth of an oxide layer on the silicon substrate was achieved after a series of cleaning steps of 

the substrate and treated with argon plasma. This was followed by the spin-coating process of a 

photoresist layer. Then metal deposition of titanium and gold was applied by using e-beam 

evaporation and wafer was patterned by using a lift off procedure. Silicon nitride with 200 nm 

thickness was deposited by plasma-enhanced chemical vapour deposition and the mask 

designed for band array was applied by passivation lithography and etching to obtain 

electroactive surface areas of the band electrodes on the array and connection pad. Finally, 

wafer was covered by a resist layer to protect electrodes during the dicing process. The 

microfabricated band array electrode has a 200 nm recess depth which is the thickness of the 

Si3N4 passivation layer on the silicon wafer. A typical system consisted of three individual gold 

band electrodes of length  2000 µm  and width 40 µm. Prior to the use of the electrodes, they 

were cleaned with organic solvents and a plasma cleaner to remove the resist as we have 

described in detail previously [4, 5, 10]. All electrochemical measurements were performed on 

an Autolab workstation (Metrohm, UK) at room temperature. The electrochemical setup 

consisted of a micro band array electrode as a working electrode, a spiral PT wire electrode as a 

counter electrode and an Ag/AgCl (1 M KCl) electrode as reference electrode. Electrodeposition 

of Au-foam was carried out by applying a chronoamperometric method in a solution of 1.2 mM 

HAuCl4·3H20/H2SO4 (2.4 M) at a potential of -7 V for 60 seconds. The Au-foam electrodes 

prepared were covered with a layer of CS-MWCNT nanocomposite by applying another 

chronoamperometric deposition process in which a potential of -3 V was applied for 25 seconds 

in 2 mL electrolyte consisting MWCNT and CS. To prepare the stock solution of the CS-MWCNT, 

0.1 g CS was solved in 20 mL of 0.1 M acetic acid solution and mixed overnight. Then 5.2 mg 

MWCNT was added into CS solution and kept in ultrasonicator until to obtain a homogeneous 

distribution of MWCNTs. 200 µL of the deposition solution of CS-MWCNT was added into 1800 

µL double distilled water and used immediately for CS-MWCNT layer deposition. Following 

completion of this process the electrodes were washed with double distilled water and dried at 
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room temperature. Scheme 1 illustrates the 2-step electrodeposition process used to fabricate 

the Au-foam/CS-MWCNT band array electrode. After the matrix preparation by the 

electrochemical approaches, the GOx-HRP enzyme mixture was immobilised onto the surface. 

For this purpose, an immobilisation solution was prepared which contained 0.16U GOx and 8U 

HRP, mixed with 2 µL of NHS/EDC (molar ratio of 1:4). The immobilization mixture was drop-

cast onto the surface and the electrodes were kept in the fridge at +4 °C for overnight. Finally, 

the electrodes were washed gently to remove the unbounded enzyme molecules and stored in 

the fridge when not in use. Cyclic voltammetry was applied to investigate the changes of the 

surface characteristics after each electrodeposition and modification step in a solution of 5 mM 

Fe(CN)6
3-/4- as a redox probe containing 0.1 M KCl, 0.01 M PBS (pH 7.4). 

 

 

Scheme 5.1. Illustration of the 2-step electrochemical deposition process used to fabricate the Au-foam/CS-MWCNT 
electrode 

 

5.4 Results and Discussions 

 

5.4.1 Micro band array electrode characterisation  

Micro band array electrodes consisting of three gold band individual electrodes with 40 µm 

width, 2000 µm length were designed and fabricated by standard lithography. Fig.5.1A, B and 

inset show the SEM images of the bare band array electrodes after the fabrication process at 

both low and high magnification. As can be seen in Fig. 5.1A, the SEM micrograph shows the 

three well-arranged individual band electrodes of length 2000 µm on the insulation layer with 
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an 800 µm inter-electrode-distance between them. Fig. 5.1B shows a higher magnification 

image of the end of one of the electrodes which clearly displays the well-defined shape of the 

band electrode of width 40 µm. An SEM image of the edge of the corner of a single band 

electrode is then displayed in Fig. 5.1B-inset where the higher magnification clearly shows the 

ability of the microfabrication process to produce highly smooth gold surfaces [4]. Fig. 5.1C is a 

schematic representation of the whole electrode showing the three band array electrodes, the 

connection track and the connection pad. The elemental composition of the gold surface and 

the passivated surface were studied using EDX. The SEM-EDX spectral analysis results are 

shown in Fig. 5.S1 (supporting information). The elements of Au (83.9 %), Si (15.3 %) and Ti (0.7 

%) were detected on the electrode active surface area (Fig. 5.S1A, supporting information), 

where the silicon was the substrate material and the titanium was used as an adhesion layer. 

On the passivation area, Si (63.4 %), O (20.3 %, presumably from the atmosphere) and N (16.2 

%) were detected, indicating the silicon nitride (Si3N4) passivation layer Fig. 5.S1B. (Supporting 

information). These results indicate the success of the microfabrication steps including 

deposition, lithography and etching. Cyclic voltammetry (CV) was used to study the 

characteristics of the bare micro band array electrodes. Fig. 5.1D shows cyclic voltammograms 

recorded from the three individual band array electrodes in a solution of 5 mM Fe(CN)6
3-/4- as a 

redox probe in 0.01 M PBS (pH 7.4), containing 0.1 M KCl. As shown in the Fig. 5.1D, the micro 

band array electrodes all exhibit highly reproducible voltammograms. However, the designed 

electrode tended towards a slightly peak-shaped voltammogram presumably due to the 

partially overlapping or close diffusion hemispheres of each band on the array.  The 

voltammetry is intermediate between the diffusionally independent profile (category 2) and 

linear diffusion (category 4) [22]. The effect of scan rate on the voltammetric response was also 

investigated, Fig. 5.S2. At high scan rate a peak-shaped voltammogram was observed due to the 

increased contribution from linear diffusion profile, Fig. 5.S2 (inset).  
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Figure 5.1. SEM images of the bare micro band array electrode; (A) all three bands (low magnification), (B) the edge 
of the single band electrode (INSET: single band electrode corner-high magnification); (C) schematic illustration of 
microfabricated band array electrode; (D) overlay cyclic voltammograms of individual three band array electrodes 
at a scan rate of 5 mV s-1 in a solution of 5 mM Fe(CN)63-/4- as a redox probe in 0.01 M PBS (pH 7.4), containing 
0.1 M KCl and the associated diffusion zones 

 

5.4.2 Au-foam and CS-MWCNT electrodeposition, characterisation and the construction of 

the biosensor 

SEM was used to explore the morphological characteristics of the electrodeposits of Au foam 

and the CS-MWCNT composite. Fig. 5.2A presents an image of the Au foam band array 

electrode. As can be seen, the highly homogenous distribution of Au foam was achieved as a 

result of the controlled electrodeposition process. Fig. 5.2B shows an SEM image of a small 

portion of a single band electrode at higher magnification. From these images it is clear that the 

Au foam deposits are three-dimensional and highly porous (Fig. 5.2C). Fig. 5.2D demonstrates 

the nanostructured nature of the gold foam wall.  
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Figure 5.2. SEM images of (A), the Au-foam deposited band array electrode, (B), an Au-foam single band electrode, 
(C), showing the pore structure of the deposits, (D), showing nanocrystals of the Au-foam wall at higher 
magnification, (E), the Au-foam band array after CS-MWCNT electrodeposition, (F),  the Au-foam/CS-MWCNT 
pores, and (G and H) SEM images of the CS-MWCNT nanocomposite film electrodeposited nanocrystals with higher 
magnification 

 

After the electrodeposition of the gold foam, the wall of the foam was covered by a thin film of 

the chitosan gel by applying -3 V for 25 seconds in the presence of MWCNTs. This process 

results in the formation of an insoluble chitosan layer on the surface due to the pH changes that 

occur near to the electrode surface. Furthermore, while the chitosan monomers are 

accumulating at the electrode surface, the MWCNTs may become trapped in the thin film of 
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chitosan gel as it forms.  Fig. 5.2E shows the whole array electrode after CS-MWCNT 

electrodeposition. The changes in contrast that are seen following CS-MWCNT 

electrodeposition are due to the addition of this organic functional layer (OFL) with a darker 

appearance being associated to a thicker OFL. As it can be seen in Fig. 5.2F, OFL encapsulates 

the walls of the gold foam. This is more apparent from the higher magnification images 

presented in Fig. 5.2G and H. Following the drop casting of the enzymes onto the electrode, the 

effect of the electrodeposition time and hence thickness of the OFL on the current responses of 

the completed biosensor was studied, Fig. 5.S3A (Supporting Information). From this figure it 

may be seen that the optimum current value was obtained for an electrode prepared using 25 

seconds deposition time to deposit the OFL.  Lower deposition times (20 seconds) showed a 

decreased current level which we suggest may be due to insufficient amounts of the polymer 

deposits which in turn results in an insufficient number of the functional groups used to attach 

the enzyme molecules onto surface, leading to a reduction in the amount of immobilised 

enzymes. However, the figure also reveals that higher deposition times for the OFL also 

resulted in a decrease in the current response of the sensor. We suggest that this may be due 

to the presence of a thicker, polymeric OFL which may act as an insulation layer due to the poor 

conductivity of the polymer. In addition, over deposition of the OFL may lead the formation of a 

more compact film which may hinder electron transfer and solution diffusion [23, 24]. Thus it is 

apparent that the thickness of the particular OFL used in this study is a factor which requires 

some optimisation.  

 

The electrodeposited materials were studied further using XPS and EDX. Fig. 5.3 displays the 

spectra obtained for each analysis. The XPS survey spectrum confirms the presence of Au, O 

and C (mostly from atmosphere). Fig. 5.3B shows the high resolution Au 4f XPS spectra of the 

Au-foam. The Au 4 f7/2 and Au 4f5/2 peaks were centred at 85.0 and 88.7 eV binding energy, 

respectively, which indicate the presence of metallic gold. The spectrum also shows a peak at 

~84.0 eV (4 f7/2). This peak is also believed to arise from the bulk gold where the observed shift 

in energy may be attributed  to possible  size-related changes in the electronic structure of the 

material resulting from its nanostructured nature, to the possible presence of  oxides or to the 
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influence of the underlying support materials (Au/ TiO2/ SiO2/ Si) and treatment conditions [25, 

26]. However, the Au 4f doublet peaks are sufficiently narrow, with a FWHM of 0.68 eV, to be a 

good indicator of metallic Au [refs].  The ‘peaks’ at 88.2 and 89.4 eV binding energies which are 

suggested by the line fitting analysis as shown are possibly related to the presence of Au(III) and  

similarly the peak at 85.8 eV binding energy may be  related to a species that is labelled as Auδ+ 

, which is essentially non-metallic gold but not in the +3 oxidation state. It is suggested that 

these weaker features most likely result from the presence of some oxide material. 

 

EDX also reveals the presence of the gold, as expected, Fig. 5.3C. In addition, EDX reveals that 

following electrodeposition of the OFL the elemental composition of the material changes, also 

as expected, figure 3D. From Fig. 5.3D it can be seen that following deposition of the OFL the 

surface is composed of Au (52.8%), C (36.8%) and O (10.4%). 

 

Figure 5.3. (A), an XPS survey spectrum of the Au-foam, (B), a high resolution XPS spectrum of the Au 4f region, (C), 
an EDX spectrum recorded from  the Au-foam and (D), an EDX spectrum  recorded from the  Au-foam/CS-MWCNT. 
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The ratio of enzyme loading onto Au-foam/CS-MWCNT surface was also studied, Fig. 5.S3B 

(supporting information). A series of different molar ratio of GOx: HRP (0.01, 0.015, 0.02 and 

0.025) was immobilised onto the Au-foam/CS-MWCNT OFL band array electrode surface. As 

may be seen from this figure a molar ratio of 0.02 GOx to HRP exhibited the maximum 

biosensor response. At lower ratios a gradual decrease in current is observed due to the 

decreasing concentration of the GOx enzyme on the surface. However, a decrease in current is 

also observed at higher ratios. Although these are preliminary data we may suggest that it is 

not unreasonable to expect there to be an optimum ratio for the operation of the dual enzyme 

mechanism based on orientation and conformation factors for the immobilised species and the 

ease with which the glucose may approach the active sites on the enzymes [23]. As a result of 

this study a molar ratio, GOx: HRP of 0.02 was adopted in the development of the biosensor.  

Fig. 5.4A shows typical cyclic voltammograms recorded from the bare gold band array 

electrodes and gold foam deposited array electrodes in 0.5 M H2SO4. Both surfaces showed a 

similar electrochemical response, but the current values recorded are very different, with the 

current observed from the foam electrode being much larger. The foam structured metals are 

very well-known to be highly porous, possessing very large surface areas. Thus, it is to be 

expected that in comparison with the bare gold band electrodes the Au foam electrodes would 

show a much higher response, as shown. Fig. 5.4B represents the voltammograms recorded 

after the various surface modifications. Clearly, the very large active surface area of the Au-

foam deposits resulted in a significant increase in the peak current in comparison to that 

observed for the bare band array electrode. However, Fig. 5.4B also reveals that following the 

electrodeposition of the Au foam the shape of the voltammogram changes, adopting the typical 

shape associated with a voltammogram which arises from a mixture of both planar and radial 

diffusion. This is most likely due to the increased width of the each band of the array after 

deposition of foam structures, which may cause overlapping diffusion zones to arise between 

the adjacent Au-foam band electrodes. It might be expected that if we cover a conductive 

surface like the Au/Au foam with a non-conductive polymer that a decrease in the peak current 

of the electrode should result. However, we find that the presence of the MWCNTs appears to 

improve the conductivity of the OFL resulting in higher current. Moreover, the immobilisation 
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of the enzymes on the surface results in a decrease of the peak current due to the blocking 

action of the enzymes towards the test redox couple, as can be seen in Fig. 5.4B. 

 

 

Figure 5.4 (A), CVs recorded from the bare and Au-foam deposited band array electrodes in in 0.5 M H2SO4, (B), 
CVs recorded from the bare, Au-foam, Au-foam/CS, Au-foam/CS-MWCNT and Au-foam/CS-MWCNT/GOx-HRP 
modified band array electrodes in  5 mM Fe(CN)63-/4- as a redox probe containing 0.1 M KCl, 0.01 M PBS (pH 7.4), 
(C), CVs recorded from the complete biosensor at the scan rates of 0.01, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7 V s-1 in 0.01 M PBS (pH 7.4) 

 

The effect of the scan rate on the voltammetric response was also studied in 0.01 M PBS (pH 

7.4).  High scan rates lead a decrease in the size of diffusion layer which causes the appearance 

of increased current levels. As shown in Fig. 5.4C, both anodic and cathodic peak currents 

increase linearly with increased scan rates from 0.01 to 0.7 V s-1, suggesting a surface-

controlled process [27, 28].  



167 
 

 

Figure 5.5 (A), CVs recorded from Au-foam/CS-MWCNT/GOx and Au-foam/CS-MWCNT/GOx-HRP  modified band 
array electrodes in the absence of presence of 0.1 mM glucose in 0.01 M PBS (pH 7.4) at a scan rate of 0.05 V s-1 
(inset; individual graphs of (i)Au-foam/CS-MWCNT/GOx-HRP and (ii) Au-foam/CS-MWCNT/GOx  (B), CVs recorded 
from the Au-foam/CS-MWCNT/GOx-HRP microbiosensor with increasing concentrations of glucose in 0.01 M PBS 
(pH 7.4) (inset: corresponding linear range), (C), the chronoamperometric response of the biosensor towards 
glucose with increasing concentration of glucose at a applied potential of -0.45 V (inset: the magnified graph of 
60th second of amperograms of the base and first seven additions), and (D), the corresponding calibration curve 
obtained from the amperograms recorded from the biosensor. 

 

GOx-HRP dual enzyme system is that cascade scheme where HRP is catalytically linked to GOx, 

may provide several advantages including signal amplification of the biosensor response and 

decreased peroxide-induced degradation of immobilised GOx as a result of removal of H2O2 

[29]. Such systems were developed for glucose detection commonly in the presence of an 

oxidized mediator for the regeneration of the oxidase [30-32]. Here, we developed a dual-

enzyme system without redox mediators. Fig. 5.5 exhibits the CVs obtained from dual enzyme 
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electrode (i: Au-foam/CS-MWCNT/GOx-HRP) and single enzyme electrode (ii: Au-foam/CS-

MWCNT/GOx) in the absence and presence of glucose in PBS. A weak reduction peak was 

observed at Au-foam/CS-MWCNT/GOx biosensor in the absence of glucose and a decrease of 

the reduction peak current after glucose addition due to the consumption of the dissolved 

oxygen by the following enzyme catalyzed reactions (1) and (2) [5, 33, 34] ; 

 

GOx (FAD) + glucose  
                   
       GOx (FADH2) + Gluconic acid                                    (1) 

GOx (FADH2) + O2  
                   
       GOx (FAD) + H2O2                                                          (2) 

 

However, Au-foam/CS-MWCNT/GOx-HRP biosensor showed greater response towards glucose 

at -0.45 V without any redox mediator in comparison to single enzyme sensor (Fig. 5.5i). This 

reflects the great cascade scheme of the developed biosensor which based on the current 

decrease of the dissolved oxygen. The mechanism can be explained as below. HRP contains the 

heme as prosthetic group, which is also the active site of the protein (with resting state of the 

heme-iron: Fe (III)). HRP reacts with H2O2 to form compound I which is a two-equivalent 

oxidized form containing oxyferryl heme (Fe4+ = O) and H2O (Eq. 3) [33]. In turn, compound I is 

further reduced (Eq. 4) or it also may produce HRP (Fe3+), O2 and H2O if it reacts with the H2O2 

as proton and electron donor (Eq. 5) [35-37]. 

 

HRP (Fe3+) + H2O2  
                   
       Compound I [HRP (Fe4+ = O)] + H2O                               (3) 

Compound I [HRP (Fe4+ = O)] + 2e- + 2H+  
                   
       HRP (Fe3+) + H2O                        (4) 

Compound I [HRP (Fe4+ = O)] + H2O2  
                   
       HRP (Fe3+) + O2 + H2O                      (5) 

 

Furthermore the biosensor was studied by applying cyclic voltammetry in a series of standard 

glucose solutions in 0.01 M PBS (pH 7.4). Fig. 5.5B shows the corresponding CVs recorded after 

each addition of glucose into electrochemical cell. With increasing concentration of glucose, a 

decrease of the reduction current and an increase of the oxidation current is observed due to 

the consecutive catalytic reactions induced by both enzymes with firstly the  glucose and 

secondly the  hydrogen peroxide. The inset graphs (Fig. 5.5B) demonstrate the linear 
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relationship between the glucose concentration and the reduction current density with a 

correlation coefficient (R2) of 0.99. This result reveals that the dual-enzyme biosensor 

developed has some considerable potential for the detection of glucose via these enzymatic 

processes. 

 

5.4.3 Chronoamperometric detection of glucose by Au-foam/CS-MWCNT/GOx-HRP micro 

band array biosensor 

Fig.5C displays the chronoamperograms obtained by using the Au-foam/CS-MWCNT/GOx-HRP 

micro band array biosensor at an applied potential of -0.45 V. The inset graph (Fig. 5.5C) shows 

the 70th second of amperograms belong to the base line and first 7 subsequent additions of 

glucose. Fig. 5.5D demonstrates the corresponding calibration curve of the biosensor, obtained 

by subtraction of the current values at 70th second from the base line current value at the same 

second. As it can be seen in the Fig. 5.5C and the inset, each amperogram reaches steady-state 

current level very quickly, which is one of the most important advantages of the miniaturised 

systems that form the basis of our work [4, 10]. The biosensor developed exhibited a linear 

range from 0.05 mM to 1.1 mM with the linear regression equation of  J (µA cm-2) = 261.8 [Glu] 

(mM) + 1.988 (R2= 0.996). The sensitivity of the biosensor was calculated to be 261.8 µA mM-1 

cm-2. This high value of sensitivity may be attributed to the advantages of the electrode/ OFL 

matrix developed for enzyme immobilisation, being a combination of the gold foam-chitosan–

multi walled carbon nanotubes, the use of a dual-enzyme system and the use of micron-scale, 

band array electrodes. The limit of detection (LOD) was calculated to be 0.025 mM by using the 

formula, 3sb/S (sb, standard deviation of the blank; S, sensitivity). A performance comparison of 

the biosensor developed with the other dual-enzyme biosensors described in the literature is 

given in Table 5.1.  
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Table 5.1. The analytical performance comparison list of dual-enzyme biosensors available in literature 

 Sensitivity Linear range Detection 

limit 

Reproducibility Reusability, 

repeatability, or 

operational 

stability 

Long term 

stability  

Ref

. 

Polymerized-multiporous 

SnO2 nanofibers/HRP/GOx 

- 5 - 100 µM 1.8 µM - 3.5% (RSD), n=10 94%, after 60 

days 

[38] 

Au/SWNT/GOD-HRP/PPy 7.01 ± 0.18 

μA mM−1 

cm−2 

0.030 - 2.43 

mM 

0.03 ± 

0.009 mM 

5.4% (RSD), n=8 A decrease of 

35% within 

10hours, good 

operational 

stability 

82% and 67% 

of after 1 and 

2 weeks 

[39] 

Au/MPS/TH/(SCGNPs/TH)6

/GOx/HRP 

3.8 μA 

mM−1 cm−2 

up to at least 

3.0 mM 

3.5 x 10-5 

M 

- - 80%, 3 weeks [40] 

GC/[TMOS−HRP−graphite]

−[TMOS−GOD] 

2.95 mA M-

1 cm-2 

Up to 0.70 mM - - - 74%, one 

week 

[41] 

(GOD/PPy) membrane on 

the surface of (FCA)-

mediated  (HRP)-modified 

CCE 

1.11 µA 

mM−1 

8.0×10−5 - 

1.3×10−3 M 

1.0 × 10−5 

M 

- - 68%, 3 weeks [42] 

GC/CNT/GOx + HRP/PTBO 113 mA M−1 

cm−2 

0.1-1.2mM 0.03 mM 4.3% (RSD), n=8 - 75%, 25 days [43] 

fMWCNT–TB–GOx–HRP–

Nf 

8.3 μA 

mM−1 cm−2 

1.5 × 10−8 - 1.8 

× 10−3 M 

3 × 10−9 M 2.5%(RSD), n=10 1.9% (RSD), n=8 95%, 4 

months 

[44] 

GOD–HRP–Cys–

SG/GNP/ITO 

131.7 nA 

mmol-1 L-1 

0.02-3.2 mmol 

L-1 

0.01 

mmol L-1 

6.7%(RSD), n=5 3.1%(RSD), n=9 80%, 2 

months 

[29] 

GOx–CS–HRP/AgNCs–CS - 10 µM - 1.5 

mM 

0.6977 

µM 

1.27%(RSD), n=6 2.14%(RSD), n=4 93%, 9days; 

70%, 2 weeks 

[45] 

Nf–GOD–HRP/Au–

Fe3O4@SiO2/ITO 

(1) 92.14, 

(2) 15.00 

µA mM-1 

cm-2 

(1) 0.05 - 

1.0mM,  (2) 1.0 

- 8.0mM 

0.01 mM 5.2% (RSD), n=6 3.7% (RSD), n=5 97.2%, 25 

days; 94.8%, 

30 days; 50% 

60 days 

[46] 

HRP–GOD/Con A/CS 1.18 µA 

mM-1 

0.001 – 0.22 

mM 

6.7 x 10-7 

M 

3.8%(RSD), n=6 2.9% (RSD), n=7 89%, 5 weeks [47] 

PANI|HRP–GOD|MWNTs 0.94 μA 

mM−1 

0.05-12 mM 0.02 mM 9.5%(RSD), n=8 - - [48] 

MWNT/TH/GOD/HRP/Nf - 10 nM – 10 mM 3 nM - 2.3% (RSD), n=9 >90%, 90 days  [49] 

Au-foam/Cs-

MWCNT/GOx-HRP micro 

band array biosensor 

261.8 µA 

mM-1 cm-2 

0.05 – 1.3 mM 25 µM 3.30% (RSD), n=7 4.41%, 3.93% 

and 4.99% (RSD), 

n=10 for each 

biosensor 

No significant 

change after 

45 days  

Thi

s 

stu

dy 

Abbreviations; Au: gold, SWNT: single-walled carbon nanotube, Ppy: electropolymerized pyrrole, MPS: 3-mercapto-
1-propanesulfonic acid sodium salt, SCGNPs: sulfonate-capped gold nanoparticles, TH: thionine, TMOS: 
Tetramethoxysilane , GC: glassy carbon electrode, FCA: Ferrocenecarboxylic acid, CCE: sol-gel derived composite 
carbon electrode, PTBO: poly(toluidine blue O), CNT: Carbon nanotube, fMWCNT: functionalized multiwalled carbon 
nanotubes, TB: Toluidine blue, Nf: Nafion, Cys: Cysteine, SG: silica sol-gel, GNP: gold nanoparticles, ITO: indium tin 
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oxide, AgNCs: Silver nanocubes, CS: Chitosan, Con A: Concanavalin A, PANI: polyaniline, MWCNTs: multiwalled 
carbon nanotubes 

 

5.4.4 Interference effect, Stability and Reproducibility 

To evaluate the selectivity of the biosensor towards glucose in the presence of the common 

interfering species, three individual biosensors were prepared and studied with glucose, 

ascorbic acid, acetaminophen and uric acid. Fig. 5.S4 (supporting information) shows 

chronoamperograms recorded after each addition of the interfering species. Briefly, the 

prepared biosensors were studied with blank PBS (0.01 M, pH 7.4), and then a 0.4 mM glucose 

solution was measured. This was followed by the serial additions of 0.1 mM ascorbic acid, 

acetaminophen and uric acid, respectively. 0.4 mM glucose was studied at the end in the 

presence of those interfering molecules. Fig. 5.6A shows a comparison of current densities 

obtained from the first (glu) and last (gluint) glucose measurements. The calculated changes of 

the biosensor responses are 11.45 %, 10.75 % and 9.89 %. The operational stability of the 

developed biosensor was studied by 10 subsequent chronoamperometric measurements of 

three individual biosensors. Fig. 5.6B displays the current densities obtained from each 

experiment, for each biosensor. The calculated standard deviations for each biosensor in regard 

to operational stability are 4.41 %, 3.93 % and 4.99 %. After storing the biosensor in 0.01 M PBS 

(pH 7.4) at 4°C for 45 days, there was no significant change of the response of the biosensor. 

Seven individual biosensors were prepared and their responses to glucose in 0.01 M PBS (pH 

7.4) were measured under the same conditions in order to evaluate the biosensor 

reproducibility, Fig. 5.6C. The relative standard deviation towards glucose detection was 

determined to be 3.30%.  

These noteworthy performance results obtained for the biosensor developed indicate the 

success of the biosensor as an analytical device. While the band array electrode provides a 

micro-scaled environment, the Au-foam deposit offers a highly porous 3D surface which was 

optimised to the borders of each band of the array. After the one step electrochemical 

deposition of chitosan-multiwalled carbon nanotube nanocomposite OFL, the overall matrix 

becomes a biocompatible microenvironment for biomolecule immobilisation which contributes 

to maintaining and improving the catalytic activity of the attached enzymes. Furthermore, the 
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developed matrix is highly suitable for high concentration biomolecule immobilisation due to its 

high surface.  

 

 

Figure 5.6 (A), Interference effects recorded for three individual biosensors , (B), the operational stability of the 
three individual biosensors, and (C), the reproducibility of the biosensor (n=7) 

 

5.4.5 A real-world application  

To demonstrate a possible real world application of our biosensor, sterile human serum 

samples were used. A sterile serum sample was diluted to 1:10 in 0.01 M PBS (pH 7.4) and 

spiked with two different concentrations of glucose to obtain 0.5 mM and 1 mM glucose 

concentrations in the electrochemical cell. The biosensor was used to determine the glucose 

level in both spiked samples, respectively. Firstly, prepared electrodes were studied with 

chronoamperometry in 0.01 M PBS (pH 7.4) to be used as a baseline. Then spiked serum 

samples were added into electrochemical cell using standard addition method, mixed very well 

and measured by applying chronoamperometry at – 0.45 V. The obtained value at 70th second 

from spiked serum was subtracted from the baseline value obtained at 70th second to 

determine the concentration from the calibration curve equation. The results obtained for both 

spiked samples are shown in Table 5.2. The obtained concentration of non-spiked sterile serum 

in the electrochemical cell (0.002 mM < LOD) is neglected due to the lower value than the limit 

of detection of the developed biosensor. 

 

 

 

 



173 
 

Table 5.2. Determination of glucose in sterile serum samples 

Sample Spiked serum glucose 

concentration (mM) 

Au-foam/CS-MWCNT/GOx-HRP micro band 

array biosensor measured glucose 

concentration 

Recovery (%) 

1 0.5 0.54 (±0.01) 108 

2 1 0.99 (±0.01) 99 

 

Conclusion 

This paper reports the development of a dual-enzyme micro band array biosensor for the 

detection of glucose. The in-house microfabricated electrode is a silicon-based highly 

reproducible micro band array electrode consisting of three bands on the array with 40 µm 

band-width and 2000 µm band-length. The band array electrode is then modified with 3D gold 

foam by controlled electrodeposition. The gold foam, being a highly porous material,   serves to 

dramatically increase the active surface area. An OFL in the form of an electrodeposited 

chitosan-multiwalled carbon nanotubes nanocomposite film is then added as the main 

immobilisation matrix for glucose oxidase and horseradish peroxidase.  

The resulting biosensor showed a sensitivity of 261.8 µA mM-1 cm-2 and reproducibility (RSD 

3.30%, n=7). Furthermore, it demonstrated a lifetime of up to 45 days (stored at +4 °C, in 0.01 

M PBS, pH 7.4). The operational stability of the biosensor demonstrates a very good level of 

reusability with low RSD values of 4.41%, 3.93% and 4.99%. The biosensor showed 

corresponding values towards the spiked serum samples with 108% and 99% recovery levels.  

The principle benefits of the sensing platform developed here arise from a combination of the 

micro-scaled matrix architecture used combined with the nanoscale deposits and the highly 

flexible, biocompatible, easily functionalised OFL material.   We suggest there that this platform 

may be highly suitable for the detection of other biomolecules and further miniaturisation 

and/or packaging.  
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5.7 Supporting Information 

 

 

Fig 5.S1. EDX spectrum analysis of (A) gold surface of the connection pad and (B) passivated outer layer. 

 

 

 

Fig 5.S2. CVs of bare band array electrode recorded at different scan rates; 5, 10, 25, 50, 75 and 100 mV s-1, (inset: 
CVs recorded at scan rates of 5 and 100 mV s-1) in a solution of 5 mM Fe(CN)63-/4- as a redox probe in 0.01 M PBS 
(pH 7.4), containing 0.1 M KCl 
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Figure 5.S3. (A) Effect of the CS-MWCNT electrodeposition time in 0.01 M PBS (pH 7.4) containing 1 mM glucose, 
and (B) Effect of the molar ratio of GOx and HRP in 0.01 M PBS (pH 7.4) containing 5 mM glucose 

 

 

Figure 5.S4. Chronoamperometric response of the biosensor towards glucose, ascorbic acid, acetaminophen and 
uric acid 
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CHAPTER 6 
Summary and future perspectives 

  



182 
 

6. Summary and future perspectives 

 

While comprehensive conclusions were given at the end of each chapter outlining the main results and 

impact of the particular studies in question, this section aims to draw the work presented in this thesis 

to a conclusion and to provide suggestions as to the future perspectives for work of the type described 

in this thesis, namely the ‘Design, Development and Characterization of Nanostructured Electrochemical 

Sensors’. 

 

In Chapter 1 a comprehensive review of the development of electrochemical biosensors was presented 

with a brief history of biosensors and commercialisation of glucometers. This Chapter explains the 

progress of electrochemical biosensors as first, second and third generation biosensors respectively by 

using game-changing literature examples from leading researchers who opened up new directions for 

the field. Moreover, it provides an insight of the use of miniaturisation for the construction of various 

types of electrochemical sensing platforms. This is particularly significant because of the increasing trend 

towards the use of semiconductor microfabrication methods to make reliable, reproducible and highly 

efficient sensors of all types, including those that operate via a bioelectrochemical mechanism.  The 

Chapter demonstrates that recent advancements in several research areas, such as biochemistry, 

bioengineering, microtechnologies, materials, microfluidics and packaging technologies, have all greatly 

contributed to the expansion of the field of electrochemical biosensors.  

 

As a part of these contributions, via Chapters 2-5, this thesis has demonstrated the use of 

microtechnologies and advanced nanostructures by using glucose as a model analyte. The systems 

developed have proven to be capable of detecting the target analyte with high sensitivities (for instance 

a sensitivity of 10,630 µA mM
-1

 cm
-2

)
24 and furthermore they have shown excellent stability, 

reproducibility and resistance to potential interfering species, – clearly demonstrating the high potential 

for their use in practical applications. It is hoped that the work presented in Chapter 2-5 will set the 

scene for the development of a wide range of new or improved sensors that can address particular 

medical issues but also issues in the environment and in food production. 

 

With this in mind it is possible to speculate as to the direction in which this work should now proceed: 
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Figure 6.1.Schematic image of the possible design of micro electrode array chip 

 

One of the first potential topics for future study is the further miniaturisation of the overall system. For 

example a “3-electrode-on-a-chip” device may be developed by applying microfabrication technologies, 

such as lithography, deposition and etching. A proposed design of such a chip is presented above, Figure 

6.1. 

 

Such a device would be highly suitable for surface modification processes, such as dip-coating, drop-

casting and electrodeposition, even in harsh conditions due to the specific distance between the 

working electrode and the others (counter and reference electrodes). Fig. 6.1 shows a schematic image 

of a disk array electrode-based chip design in the presence of working electrode and counter electrode. 

 

Such chips could be easily adapted to achieve the immobilisation of different types of enzymes, 

antibodies, DNA or aptamers in the presence of the nanostructures applied in this thesis for the 

development of electrochemical biosensors for application in the health, agriculture, food and many 

other industries. Furthermore, the design of the chip may be adjusted so as to facilitate the integration 

of the device with a microfluidic system such as may be required for the development of a highly 

advanced sensing platform.  
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Figure 6.2.Glutamate biosensor probe modified with gold nanoparticles and carbon quantum dots for neural 
applications 

 

One particular future perspective is the application of the micro array chips developed here in the field 

of the neuroscience either for neural recordings or neurotransmitter detection. Neurotechnology 

requires highly sensitive (bio)-sensor probes with high stability. Thus it will be crucial to develop such 

probes for detection of critical marker neurotransmitters of a variety of degenerative brain diseases. Fig. 

6.2 represents a possible example biosensor probe towards glutamate which is one of the most 

abundant free amino acid in the brain. Such a biosensor probe in the presence of specific nano 

structures may provide excellent performance towards glutamate and may also be used in neuroscience 

applications. 

 

Another approach is to use array chips for immunosensor development. Electrochemical biosensors 

constructed on such small chips could provide several advantages over conventional devices in terms of 

analytical performance; however, most importantly they would allow for the use of small volumes of 

biomolecules and small volumes of sample which could be a critical issue. . Fig. 6.3 represents a 

schematic image of a possible antibody, DNA and aptamers-based biosensor surfaces in the presence of 

gold nanoparticles and carbon quantum dots deposited onto micro band electrode array chips. 

Furthermore, miniaturisation of the 3-electrode system on a chip provides an easy-to-use platform with 

a dedicated custom made connector. The biosensor platforms described in this thesis are highly suitable 
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to be used as matrixes for the (bio)-molecule immobilisation such as antibodies or their fragments, 

affimers, DNA, aptamers, etc. 

 

Figure 3.Representative image of a band array based micro electrode array chip as antibody, DNA and aptamer 
based biosensor 
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