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Abstract 
 

The presence of bacteria in patient tumours of various types has been reported by 

numerous groups since 2014, but the findings of these and many similar studies 

remain contentious. Tumour samples provide many obstacles to carrying out robust 

and reliable microbial surveys, primarily the anticipated low biomass of these 

samples, which leaves them vulnerable to environmental contamination. While the 

debate over the presence or absence of bacterial communities in these tumours 

continues, it impedes any research into how such bacteria might be utilised in 

medicine. Larger sample numbers are required, from diverse tumour tissues within 

the human body, and these must be analysed in a reproducible and accurate manner 

to allow for the drawing of definitive conclusions in this debate. To accommodate 

this requirement, the primary methodological aspects of this thesis were: i) The 

assembly and validation of a contamination control pipeline using recent advances is 

bioinformatic contamination control detection. ii) The development and validation of 

a bacterial DNA extraction protocol for formalin fixed, paraffin embedded (FFPE) 

samples, with accompanying FFPE biological standards for use as controls. A key 

aim of this thesis was to increase the accuracy and reproducibility of research into 

clinical tissue biopsies by eliminating the role of contamination, and to expand the 

applicability of FFPE tissues which represent an invaluable resource of samples for 

analysis.  

 

In this thesis, ecological surveys of a variety of related environments were conducted 

with the common goal of characterising a detectable bacterial community and 

identify potential bacterial biomarkers unique to these host environments. Regardless 

of whether or not a consistently present and detectable tumour microbiome exists, 

tumours possess several phenotypes making them hospitable environments for 

bacteria to colonise. Where the unique physiology of tumours is seen as an obstacle 

for traditional cancer treatments, they represent an opportunity for bacterial-mediated 

solutions. Therefore, findings from sequencing-based research of host environments 

have potential to be translated into the use of administered bacteria as delivery 

vehicles to locally produce biomolecules.  
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There are two considerations in this context, requiring two very different 

applications of bioinformatics. i) The first is to identify which bacteria colonize the 

desired niche in body; this can be a ‘foreign’ body such as a tumour (Chapter 3 and 

4), or parasite (Chapter 5), or a distal niche such as the gut. ii) The second, often 

under-considered parameter, relates to what these bacteria produce. Synthetic 

biology presents enormous scope for sophisticated medical therapy mediated by 

novel synthetic proteins. However, the task of getting a bacterial cell to successfully 

express and secrete a stable protein that it does not produce naturally is far from 

trivial, and is becoming a key aspect of the synthetic biology field. To facilitate this 

synthetic protein aspect, a novel strategy for the performance prediction of designed 

protein constructs was developed. This tool was able to predict the overall 

performance of a protein construct in vitro using only in silico derived data.  

 

Thesis aim: 

This thesis aimed to develop novel strategies for the analysis of bacterial 

communities within tumours by i) increasing the sample sizes available to future 

projects by enabling the use of FFPE samples and ii) improving the accuracy of 

analysis by designing bioinformatics analysis pipelines appropriate for these 

samples. This enabled further research concerned with finding differentially present 

taxa between the tumour and surrounding environment, which have the potential for 

use as therapeutic vectors. As the key aim is to establish the presence of potential 

bacterial therapeutic vectors rather than to establish the role these bacteria play in 

tumorigenesis, this approach is easily translatable to other foreign bodies, and could 

therefore be validated in a parasitic nematode model.   
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GLOSSARY: 

 

16S ribosomal RNA gene: Transcribed form of the small subunit gene located in 

the 30S subunit of a prokaryotic ribosome. Contains 9 variable regions that can be 

targeted for amplification and used for profiling of microbial communities.  

ASV: Amplicon Sequence Variant. Refers to individual DNA sequences recovered 

from high throughput marker gene sequencing following the removal of spurious 

sequences.  

BER: Base Excision Repair 

DADA2: Divisive amplicon denoising algorithm 

FFPE: Formalin-Fixed, Paraffin-Embedded 

LASSO: Least absolute shrinkage and selection operator 

MICROBIOME: The genetic material of all microorganisms that live on or in an 

ecological niche, such as the human body. 

MICROBIOTA: The ecological community of commensal, symbiotic and 

pathogenic microorganisms found in and on all multicellular organisms.  

NGS: Next Generation Sequencing 

NMR: Nuclear magnetic resonance 

OTU: Operational Toxonomic Unit. Cluster of sequences with similarity above a 

specified threshold, eg. 97%.  

PCR: Polymerase Chain Reaction 

qPCR: Quantitative Polymerase Chain Reaction 

QIIME: Quantitative insights into microbial ecology 

READS: DNA segments obtained from a sequencing experiment.  

SNP: Single Nucleotide Polymorphism.  

VARIANT CALLING: Process of identifying variants between closely related sets 

of sequence data, typically taking the form of SNPs. 

WGS: Whole Genome Sequencing 
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Chapter I 
 

Literature Review 

 

SECTION 1: SEQUENCING AND THE MICROBIOME 

A portion of this section has been submitted as “Bioinformatics Platforms for 

Metagenomics”, currently under review with the Elsevier editorial team as part of 

the book “Comprehensive Foodomics” 

Julia Eckenberger* 1,2 , Sidney Walker* 1,2,3 , Marcus J Claesson 1,2 

*Authors contributed equally 
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The Microbiome 

Introduction to the Microbiome 

The term Microbiome refers to the cumulative genetic material found within a 

microbiota. The Microbiota is a term used to define a community of micro-

organisms living within an ecological niche. These niches range from well 

researched environments such as the human gastro-intestinal tract (1) or vaginal 

tract(2) to some of the most extreme locations where life has been found. These 

include the Door to Hell gas crater in the Karakum Desert of Turkmenistan, Deep-

sea brine lakes in the Gulf of Mexico, and the Permafrost of Siberia(3).  

The Human Microbiome 

Current estimates place the size of the human microbiota at between 10 and 100 

trillion microbial cells, spanning the kingdoms Bacteria, Archaea, Fungi and 

Viruses(4). The study of these microbial communities within the human host owes 

its origins to Antonie van Leewenhoek. As early as the 1680’s this Dutch scientist 

was comparing his faecal bacteria with his oral bacteria, although calling them 

“animalcules” at the time(5).  

Research into the human microbiome has focused predominantly on the niches 

outlined in below; 

• Oral Microbiome(6) 

• Skin Microbiome(7) 

• Gastro-Intestinal tract microbiome(1) 

• Urogenital tract microbiome(8) 

• Nasopharyngeal tract microbiome(9) 

The number of human body sites found, or suspected to harbour endogenous 

microbial communities is constantly increasing and now potentially includes sites 

such as the brain, breast tissue(10), the lungs(10) and a variety of tumour sites(11). 

Sites such as these typically harbour considerably lower levels of micro-organisms 

than the more thoroughly researched tract-based microbiomes, as such there is a risk 

of environmental contamination mistakenly being recognised as biological 

signal(12).    
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Human Microbiome in Cancer 

The human microbiome is known or suspected to play a role in a diverse spectrum of 

host indications. Due to the incredible potential for therapeutic use or intervention, a 

plethora of studies can be found investigating possible links between specific micro-

organisms, or fluctuations in the overall microbial community at a given niche and 

cancer. This relates in particular to the gut microbiome (13). To date, the only 

definitively proven causative link between a bacteria and cancers is that of H. pylori 

and gastric adenocarcinoma as proven by Barry Marshall in 1983 (14) and mucosa 

associated lymphoid tissue lymphoma. This has led to H. pylori being the only 

bacteria identified as a class 1 carcinogen by the World Health Organisation (13). 

Research is ongoing into the role played by other bacteria in cancers, and there are 

several interesting prospects that encourage further research. Fusobacterium has 

been consistently found enriched in patients with colorectal cancer(15) suggesting 

the strong possibility of a causative link. This is supported by a potential mechanism 

as Fusobacterium nucleatum in particular has been shown to recruit tumour-

infiltrating immune cells, contributing to the generation of a pro-inflammatory 

environment conducive to the progression of colorectal neoplasia (16).  Recently 

published work highlights how infection with Salmonella enterica serovar Typhi 

through a cascade of events can leave individuals with a considerably elevated risk 

of developing gallbladder cancer. This involves both the secretion of a typhoid toxin 

with carcinogenic potential, in conjunction with biofilm production promoting a 

persistent infection(17).  

In addition to the numerous studies hypothesising causal relationships between 

bacteria known to commonly colonise human hosts and cancer, certain protective 

interactions may also exist. The most interesting of these is that despite being 

classified as a class 1 carcinogen, H. pylori infection is associated with a reduced 

risk of Barrett’s Aesophagus, but considerable follow up work is required before any 

medically significant conclusions can be drawn from this inverse association(18).   

 

Intratumoural  bacteria? 

There have been several conflicting studies in relation to the presence of a 

consistently detectable tumour microbiome since the concept was first postulated 

(19). Since then, the number of studies claiming to have identified bacterial 
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communities in new tumour sites (11,20,21) has been matched evenly number of 

studies urging caution when seeking to characterise novel environments of low 

biomass, due to their susceptibility to contamination (22,23). More high-quality 

research, accounting for the numerous sources of error when analysing samples of 

this type is required before this question can be definitively answered.  

 

Sequencing 

Three generations of sequencing strategies 

Moore’s Law states that the number of transistors on a microchip doubles every two 

years, along with a halving in the overall cost (24).  As sequencing technology 

improves in accuracy and price in accordance with this law, it is an extremely 

dynamic field that is difficult to precisely define. To assist in this, different 

sequencing strategies are grouped together in different generations of the technology, 

a current snapshot of the state of the art is as follows.   

Sanger sequencing, developed in 1977, is referred to as the first generation of 

sequencing. While still widely used for some projects due to its relatively long read 

length, on average 650 base pairs, and high accuracy, it is not an appropriate tool for 

metagenomics studies due to its low throughput and relatively high cost (25).  

Next generation sequencing methods are massively parallel and can often produce 

millions of reads during a typical run, where genomes present are sequenced 

repeatedly in small random fragments. The two predominant NGS methods are Ion 

Torrent and Illumina but differences between them in terms of cost, underlying 

chemistry, output and accuracy mean they are not always suited to the same tasks. 

The Illumina sequencing platforms provide the most popular sequencing solutions 

owing to their low cost, high accuracy, and high output (26). They function by 

synthesising the complementary strand of DNA present in a sample followed by 

fluorescence based detection of DNA bases. The Illumina MiSeq platform offers low 

sample output of up to 15Gb but relatively long reads at an affordable price. The 

paired end functionality offers overlapping reads of up to 300bp each, making this 

the technology of choice for amplification based sequencing experiments such as 

16S rRNA gene sequencing. Other Illumina platforms such as the HiSeq, NextSeq 

and NovaSeq offer much higher output, with the NovaSeq generating up to 6000Gb, 
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but with shorter read lengths of up to 150bp (27).  Ion Torrent sequencing platforms 

also sequence by synthesis of the complementary strand, but detection of the base 

composition relies on pH meters measuring the release of hydrogen ions when the 

DNA is polymerised. The sequencing run is shorter, taking only hours compared to 

days for Illumina technology, and the read length yielded is up to 400bp, however 

only single end reads are available and the low total output of up to 15Gb makes this 

technology impractical for anything other than amplicon sequencing, this method 

also has a higher error rate when long repeat regions are present in the sample (28). 

In the context of WGS, the short reads generated by second generation technologies 

often yield incomplete genome assemblies. In more complex cases such as genomes 

with long repeat regions, paralogs or bacteriophages, longer reads are often required 

to close the genomes (29). Third generation sequencing platforms targeting 

individual DNA molecules, have been developed to meet this demand. The two 

platforms currently available are the Oxford Nanopore sequencing methods, and the 

Pacific Biosciences PacBio platform. Nanopore sequencers identify DNA bases 

based on the changes in electrical conductivity due to a DNA strand passing through 

a biological pore. There are a variety of Nanopore solutions available based on the 

number of flow cells they contain, ranging from the portable minION, designed for 

use in the field to the scaled up promethION with on board data processing. These 

Nanopore methods produce reads of up to 100kb in length (30). The PacBio platform 

uses single molecule real-time sequencing technology (SMRT). Similarly to the 

Illumina short read technologies the sequencing is synthesis based and uses 

fluorescent dyes, but in this instance single stranded DNA molecules are sequenced 

individually by being deposited in wells with immobilised DNA polymerase (31). 

The PacBio Sequel2 is the current state of the art technology in this respect and can 

sequence reads up to 60kb in length. As these third generation strategies begin to 

reliably upscale their output, their use in metagenomics studies will become more 

widespread (28). A summary of the sequencing options available is found in Table 1 

below. 
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Table 1.1: Summary of major sequencing solutions and their associated 

performances 

Generation Method Output Type Max Read 

Length 

Throughput Error 

Rate 

Runtime 

1st Sanger(2

5,27) 

SE 650-900bp 62.4kb 0.000

1% 

1-3 hours 

2nd Illumina(

25,27) 

SE and PE 75-300bp 13.2-6000 0.26-

0.8 

Up to 6 

days 

2nd  Ion 

Torrent(

25,27) 

SE 150-400b 10Gb 1.785 7.3 hours 

3rd  Nanopor

e(25,27) 

SE Up to 

100kb 

0.1-1Gb 12-

38% 

Real time 

data 

analysis 

3rd  PacBio(2

5,27) 

SE Up to 

60kb 

1Gb 11-

15% 

2 hours 

 

Sequencing an ecological niche 

Strategies for characterising a microbial environment are split into two distinct 

categories, amplification based sequencing and whole genome shotgun sequencing. 

These two approaches differ considerably in terms of cost, information content and 

sample requirements. Unfortunately there is no one size fits all solution, and the 

decision on which strategy to pursue should be performed on a study by study basis.  

Amplification based methods 

Amplicon sequencing refers to the sequencing of PCR products, obtained by a 

targeted amplification of a variable region of interest. In human genomics this is 

often carried out to test for somatic mutations in specific exons, in metagenomics 

marker genes are targeted to characterise complex environments that may not be 

fully described with a whole genome sequencing approach. Common marker genes 

include the 16S rRNA gene sequence, hypervariable regions of which can be used to 



 

13 
 

discriminate bacteria and some archaea(32), and the internal transcribed spacer (ITS) 

region for fungi(33).  

The 16S rRNA gene sequence is sequence within the 30S small subunit of the 

ribosome, a small subunit has an integral function in mRNA translation(34). The 16S 

rRNA gene sequence is almost ubiquitous in bacteria, and present in many archaea, 

it consists of highly conserved regions that can be targeted by primers, interspersed 

with hypervariable regions making it an ideal genetic marker(35) for bacterial 

characterisation. The sequence is ~1500bp in length, and contains nine hypervariable 

regions varying in length and conservation(36). As most microbial surveys are 

carried out using Illumina technology, which have a maximum read length of 

2x300bp, a subset of these hypervariable regions are usually selected for 

amplification and eventual sequencing. No one hypervariable region reliably 

outperforms all others although considerable research has gone into comparing and 

contrasting the effectiveness with which different regions can resolve complex 

bacterial communities (36,37).  The level of variability in each of these 9 regions is 

shown in the figure below, adapted from research by Bodilis, J et al(38). The higher 

this variability, the better the discriminatory power between bacterial taxa.  

 

Figure 1.1: Variability over the length of the 16s rRNA gene sequence. Window 

size = 50 bases. (Adapted from (38).) 

 

The two most commonly used regions at present are V1-V2 and V3-V4 regions(37), 

although an eventual shift to sequencing the entire gene sequence with 3rd generation 

technology seems inevitable as studies have shown a 100-fold increase in resolution 
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when combining primers to cover a region spanning 80% of the 16S rRNA gene 

sequence(39).  

WGS Sequencing 

Whole genome shotgun metagenomics entails non targeted sequencing of all genetic 

material in a microbiome, resulting in the key difference that while marker gene 

studies can tell us what organisms are present, the presence of entire genomes 

yielded by WGS gives detailed information about metabolic potential, evolutionary 

relationships, and the structure and organisation of microbial genomes. Since the 

seminal work by Craig Venter in 2004(40) sequencing microbial populations present 

in the Sargasso Sea, this sequencing strategy has contributed to breakthroughs in a 

range of research areas. These range from bacterial associations in Inflammatory 

Bowel Disease(41) to tracking the outbreak of human and foodborne pathogens(42). 

WGS sequencing vs 16S sequencing for characterising a bacterial community 

Before deciding on which approach to take, there are advantages and disadvantages 

to both approaches that must be considered, which are outlined in the table below. 

Table 1.2: Comparison of 16S rRNA gene sequencing and Whole Genome 

Shotgun sequencing, for exploration of bacterial communities. 

 16S rRNA WGS 

Cost • Minimum 10x cheaper per 

sample than WGS 

metagenomics sequencing 

• Analysis more accessible as 

less computational power 

needed 

 

• Prohibitively expensive for 

smaller labs 

• Requires considerable 

processing power for most 

analysis platforms 

Information 

Content 

• Provides data specific to 

amplicon used, ie. 

Bacteria/archaea with 16S 

rRNA 

• Genus level resolution with 

some species level resolution 

possible 

• Taxonomy only, with some 

• Provides data on all micro-

organisms present in a 

sample 

• Species and strain level 

resolution possible 

• Detailed taxonomic and 

functional information 

available as full genomes 
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inferred metagenomics 

information using tools such as 

PICRUST2 

generated with sufficient 

sequencing coverage 

Suitability • Amplification step can 

introduce bias in samples of 

low biomass due to presence of 

contaminant DNA or large 

quantities of host DNA in 

biopsies. 

• Databases more comprehensive 

when characterising novel 

environments, as they are 

easier to populate  

• Less susceptible to bias as 

no amplification is 

required.  

• No amplification means 

that in biopsies where host 

DNA can make up ~99% 

of all DNA, WGS is 

unsuitable without 

microbial enrichment.  

 

These methods are not mutually exclusive, and often an effective trade-off is to carry 

out a broad analysis with an amplicon sequencing method, before proceeding to 

WGS metagenomics with a subset of interest. Figure 1.2 below outlines the two 

potential pathways for characterising a bacterial community using next generation 

sequencing. 
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Figure 1.2: The divergence and convergence of WGS vs Amplicon sequencing 

strategies 

 

Analysis of Bacterial Sequence Data 

Quality Filtering of sequence Data 

As mentioned, the quality of sequencing data returned can be variable, so quality 

filtering of this data is always a crucial first step in any analysis. This is particularly 

important when working with 2nd generation sequence data. Although the error rate 

in 3rd generation technologies is higher, it remains stable across the length of the 

sequence, whereas 2nd generation sequencing technologies, Illumina in particular, 

have a quality profile that depreciates with sequence length, particularly in the 

reverse read of a pair(43). This makes quality filtering prior to downstream analysis 

a critical step in any analysis pipeline.  

The typical output of a sequencing experiment is paired or unpaired reads, in the 

fastq format (Illumina and Ion Torrent). This format contains sequence information 

and a corresponding per base quality score called a Phred score. This ranges from 1-

40 and is translated as -10 x log10(P), with P being the probability of a base being 

called erroneously. For example a Phred score of 10 means there is a 1:10 chance of 
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the base being called incorrectly, whereas the maximum score of 40 means a 

1:10,000 probability of error.   

The fastq file format, contains sequence data with machine readable error 

annotations for each sequenced base and serves as input for most programmes which 

are utilized to trim away lower quality reads, either based on manual visual analysis 

and trimming to a certain length, setting a minimum quality cut off, or both. Freely 

accessible technologies for quality filtering sequence data include Trimmomatic(44) 

and Fastx toolkit(45). 

 

Figure 1.3: The FastQ format 

 

16S Sequence Analysis 

The operational taxonomic unit, as coined in 1965(46) is generally accepted to refer 

to closely related groups of organisms, that are clustered into one “OTU” based on a 

threshold of identity, typically 97%. 16S sequence data can be collapsed into these 

units either by clustering sequences against a 16S reference database, in what is 

called “closed reference” OTU picking, or clustered based on pairwise similarity, 

which is called de novo OTU picking. While opinion is divided on which method 

returns the more biologically relevant taxonomic unit, the increased computational 

demands of “closed reference” picking means that “open reference” is the only 

option available to those without access to a computing cluster(47). A shortcoming 

that applies to OTUs regardless of which picking method is used is that a certain 

amount of diversity is obscured during the clustering process. The original purpose 

of clustering was to shield against spurious false speciation events that are a function 

of sequencing errors, but as this accuracy continues to increase there is an argument 



 

18 
 

that OTUs can be considered obsolete and a new method able to explore the full 

diversity of bacteria in an environment is more suitable.  

New methods have been developed resolving sequence data into Amplicon Sequence 

Variants (ASVs). Each ASV directly relates to a bacterial or archaeal sequence 

found in the original sample, prior to amplification. These methods function on the 

assumption that biological sequences are more likely to be repeated than sequences 

containing erroneous bases. These require the constructon of an error model, built on 

the reads present in the sequencing run that correct errors by a process termed 

“denoising” (48).  

The two premier facilities for generation of Amplicon Sequence Variants are The 

Divisive Amplicon Denoising Algorithm (DADA) 2 and DeBLUR. DADA2DADA2 

first constructs an error model trained on a user defined subset of the dataset, before 

collapsing the reads found into ASVs. The key advantage of training the error model 

on the entire dataset is that it allows for the merging of different sequencing runs 

prior to analysis by accounting for any run bias(49). Deblur also employs a 

“denoising” approach facilitated by an error model. In this instance the model is 

constructed on a per sample basis, which significantly reduces computational 

memory requirements, but means the algorithm is unable to compensate for batch 

effects when merging samples(50).  

Regardless of which unit is used to represent the genetic material present in a 

sample, the process of taxonomic classification remains constant. Several databases 

of 16S rRNA gene sequences exist, the most popular of which are SILVA(51), the 

Ribosomal Database Project (RDP) (52), and Greengenes(53). Of these, SILVA is 

the most regularly updated. Aligning sequence data to these databases would cause 

considerable computational bottlenecks, and to alleviate this a variety of tools exist 

to merge sequence data with the information provided by these databases as 

efficiently as possible.  
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Table 1.3: Databases available for analysis of meta-barcoding sequencing data. 

Database Name Size Latest revision Target Organism 

SILVA(54) 695,171 Non-

Redundant, 

2,090,668 Total 

Dec 2017 85% Bacteria, some 

Archaea and Eukaryota 

RDP 3,356,809 Total Sep 2016 Comprehensive 

Bacteria and Fungi, 

with some Archaea 

Greengenes(53) 92,684 Non-

Redundant, 

1,012,863 Total 

May 2013 Bacteria and some 

Archaea 

UNITE(55) 98,183 Non-

Redundant, 

1,750,261 Total 

Sep 2019 Eukaryota 

The classify.seqs tool within Mothur is a versatile taxonomic classifier. It allows the 

user to dictate which database is used, and also whether to employ a k-mer or k-

nearest neighbour approach. The k-mer approach examines each query sequence as a 

collection of 8 base k-mers and assigns taxonomy based on their cumulative 

probabilistic classification. The k-nearest neighbour approach first finds the 10 most 

similar sequences to the query sequence in the selected database, and then uses thee 

to generate a consensus classification(56).  

As mentioned, classification of 16S rRNA gene sequence reads beyond genus level 

is unreliable and some cases impossible. For example, E.coli have seven different 

copies of this sequence(57). SPINGO is a stand-alone tool dedicated to this 

challenge. It uses a customised modification of the RDP database containing 95210 

sequences which represent 12394 species. This is queried using k-mer fragments of 

the ASVs/OTUs generated prior to this(58).  
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More detailed analysis of different steps and considerations involved in 16S rRNA 

gene sequence analysis more pertinent to the scope of this thesis is provided in 

section 4 of this Literature Review, entitled “Characterising intratumoural bacteria.” 

WGS Sequence Analysis 

The expansion in applicability of whole genome shotgun sequencing has been 

mirrored only by the rapid advances in the number of bioinformatics platforms 

available for analysis of the ensuing data. Be it for aligning reads to reference 

genomes, assembling reads into contiguous segments of overlapping DNA (contigs), 

or functionally annotating a metagenome, there is a myriad of potential tools, none 

of which outperform all others in every circumstance. A comprehensive review of 

the relevant literature is recommended before undertaking any analysis of shotgun 

sequence data.  

Whole genome sequencing (WGS) strategies fall under two umbrella terms, based on 

whether the target DNA is well characterised, or if novel DNA is expected. Simply 

put, if the sample is expected to contain previously characterised bacteria, taxonomic 

and functional annotation can be performed by referring to available databases. If 

these are not available, sequencing reads must be manually assembled into contigs 

using a variety of methods. There are advantages and disadvantages to both 

approaches that must be considered before proceeding beyond this point.  

The depth of read coverage of genomes present can dictate which method to use, as 

20x coverage is generally recommended as a minimum for genome assembly(28). 

This limits the effectiveness of assembly-based methods in analysing complex 

microbial communities given the current sequencing technologies available.    

Genome assembly, and the associated downstream tasks are computationally 

intensive which can often limit the size of the study, whereas most reference based 

methods emphasise efficiency allowing for large scale metagenomics analyses(59). 

As is indicated by the name, reference-based methods require a database which 

contains at a minimum closely related microbes to those found in the samples, 

whereas assembly-based strategies are able to resolve genomes of novel 

organisms(60).  While some degree of manual supervision is required for reference-

based assembly, the tools involved require minimal intervention when compared to 

the degree of curation required for accurate contig assembly and taxonomic 
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binning(28). The theory of metagenomics assembly is the same in principle as 

genomic assembly, and the same underlying principles are observed.  

 

Assembly of metagenomics samples 

Most metagenomics assemblers use a modification of the De Bruijn Graph 

approach, however as sequencing errors dramatically increase the size of the graph, 

and therefore the processing power required, overlap-layout-consensus methods 

have returned to the fore when assembling data from single molecule technologies 

such as PACBIO and Nanopore (61). 

Metagenome assembly is still undoubtedly an imperfect science, and no one 

assembler can be relied upon to outperform all others in every situation. As such, a 

variety of assemblers have been designed to supplement the existing established 

assemblers which have added metagenome specific extensions. These include the 

Iterative De Bruijn Graph De Novo Assembler (IDBA) and the Saint Petersburg 

genome assembler, (SPAdes). IDBA-UD(62) is built as an extension on to IDBA, 

and was specifically designed to take into account the Uneven read Depth of typical 

metagenomics sequence data. A drawback in terms of implementing this tool is that 

it was originally designed for read lengths up to 100bp, and a k-mer size of 120bp. 

Modification of this to suit a longer fragment length requires the modification of 

some accessory scripts when compiling the tool, which may be beyond the casual 

user. MetaSPAdes(28,63) first constructs a De Bruijn graph of all reads available, 

using SPAdes. This is followed by a variety of graph simplification strategies to 

transform this into an assembly graph. This step constructs the paths corresponding 

with fragments within the genomes sequenced. Variations between highly similar 

contigs, potentially due to strain level variation are not considered by MetaSPAdes. 

The tool instead aims to assemble reliable consensus sequences giving the most 

accurate representation of species present, without accounting for strain level 

variation. Unlike the two previously mentioned tools, BBAP(64) is an overlap-

consensus based genome assembler, making it more suited to sequence data with 

high error rates, such as those from SMRT technologies or highly polymorphic 

DNA.  
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Considering no tool consistently outperforms all others, multiple assembly methods 

should be attempted and compared before proceeding in the analysis. 

Assembly free taxonomic profiling 

Many tools combine both assembly and classification/function analysis, particularly 

in the case of reference-based methods. Profiling of microbial species present, and 

their abundance, in an environmental sample can also be carried out without prior 

genome assembly. Assembly-free profiling is similar in principle to the tools used 

for single genome alignments to a reference, but adapted for metagenomics use. This 

approach has a number of advantages, it is less computationally demanding and can 

provide information on low abundance organisms that would not be sequenced to 

sufficient depths for assembly(28). Also, reference based approaches generally 

require less manual intervention than assembly-based methods. The principal 

limitation is that even with improvements to the algorithms used, if the biological 

material present in the sample has not at the minimum had a close ancestor 

sequenced, they are impossible to identify (28). Despite this, the complex 

community structure of common sample sites such as the human gut, make assembly 

free profiling the more suitable method.  

At a fundamental level, assembly free profiling means comparing sequence data 

yielded from a sequencing experiments to existing databases of micro-organism 

genomes in a way that is accurate and computationally efficient. In practise, this is 

carried out in four different ways. Sequences can be classified by sequence similarity 

to a reference genome, similarities in composition such as codon usage, hybrid 

methods that combine elements of the first two approaches, or finally, marker-based 

methods. These classify sequences based on presence of specific marker sequences 

such as the 16S rRNA gene fragment in bacteria, or the internal transcribed spacer 

(ITS) region in fungi (65). These tools all rely on models derived from reference 

sequences of existing sequenced genomes. 

Simple “brute force” mapping of reads to sequenced genomes in a database leads to 

spurious false positives in terms of taxonomic classification. A selection of more 

reliable approaches are outlined below;  Kraken (66)  which uses as default the 

REFseq database hosted by NCBI extracts k-mers of default length 31 from 

sequence data and finds the lowest common ancestor in which this is present in the 
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database. It is therefore still a similarity-based method, but considerably faster than 

BLAST based methods. Relative synonymous codon usage (RCSU), based on the 

established fact that codons are differentially favoured in different organisms, is a 

computationally efficient way to discriminate between microbes, particularly at 

higher levels of taxonomic resolution (67).  

MetaPhilan (68), and the recently released extension MetaPhilan2 (69) use clade 

specific marker genes to characterise microbial communities. As of the most recent 

release, this classification programme contains over oneone million clade specific 

markers, which equates to approximately 145 markers per bacterial species for over 

7,000 commonly identified species. Additional functionality for classification of 

viral and eukaryotic components of metagenomics samples has also been added. 

When classifying microbial reads a balance must be found between accuracy and 

speed. Similarity based classification methods based on BLAST are often the 

slowest methods, but modifications of similarity-based classification using short 

regions, considerably improves on this speed without sacrificing accuracy.  

 

Functional Profiling 

As with taxonomic classification, functional annotation is at its most fundamental, 

the process of identifying coding regions within sequenced genomes, and aligning 

these to a translated protein database. There are several databases containing 

functional information relating to genes and genomes. The Kyoto Encyclopaedia of 

Genes and Genomes (KEGG) (70) is an online database of genomes and genes with 

the primary aim of assigning functional meaning to both. The information is stored 

in a hierarchy of different levels as Kegg Orthology (KO) containing molecular level 

functional annotations, with each annotated KO being homologous to a gene or 

protein. Higher level functional information for a gene or protein is kept in BRITE 

hierarchies and KEGG pathway maps (70). The Clusters of Orthologous Groups 

(COGs) of proteins database is curated by clustering together orthologues from 

different genomes, with the hypothesis that orthologous genes can be expected to 

have a conserved function. Functional prediction of proteins is performed by 

querying which cluster the protein falls into, using the COGNITOR program (71). 

UniProt(72) is a vast database containing both manually annotated, curated database 
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of protein sequences and functional information in UniProtKB/Swiss-Prot, and a 

much larger database of automatically annotated records in UniProtKB/TrEMBL. 

This database is provided by the UniProt Consortium, which is comprised of the 

subsidiaries Swiss Institute of Bioinformatics, the Protein Information Resource, and 

the European Bioinformatics Institute (73).   

Without refinement, analysis of this kind leads to considerable computational 

bottlenecks, particularly in a large scale metagenomics dataset. It is impossible to 

manually cross-reference all available data with databases of this type, intermediary 

programmes such as HuManN2 (74) and MEGAN (75) are therefore required to 

bridge the gap.  MEGAN, currently in its 6th iteration has an advantage over many 

other metagenomics platforms in that it is compatible with all Windows, Mac and 

Linux operating systems. MEGAN first uses the DIAMOND alignment tool to align 

all reads to a database, typically the NCBI-nr database. MEGAN then takes this 

alignment file as a reference for binning the reads, functionally and taxonomically. 

The lowest common ancestor (LCA) algorithm assigns each sequenced read to the 

lowest taxonomic rank of common ancestor of all organisms the read in question 

aligns to. This is repeated for all reads in the dataset. Functional annotation is carried 

out by searching for the best alignment between a sequenced read, and a functionally 

annotated DNA sequence from one of the following databases;; SEED (76), KEGG 

(77), InterPro2Go (78) or eggnog (75). 

HuManN2 (74) performs species level functional annotation of metagenomes and 

metatranscriptomes. Unlike taxonomic profiling, functional profiling quantifies the 

metabolic potential of a microbial community. HuManN2 uses a “tiered search” 

strategy to rapidly profile the functional composition of a metagenome.  Initially, 

MetaPhIAn2 is used to identify previously characterised microbes in the sample, and 

constructs a database per sample, merging existing data with pan genomes of 

identified species. Following this, reads in a given sample are mapped against the 

samples pan genome database at the nucleotide level. The reads that do not align are 

then translated and used to query a protein database which as by default either 

UniRef90 or UniRef50. The alignments created by this tiered search strategy, once 

weighted by sequence length and quality of alignment, are used to generate per-

organism and total community, gene family abundance (74). 



 

25 
 

As with any other aspect of metagenomics research, a thorough understanding of the 

tools available and their strengths and weaknesses is recommended.   

 

Variant Calling 

Reference based sequence assembly also allows for variant calling analysis. This is 

the process of identifying variants between closely related sets of sequence data, 

which typically take the form of single-nucleotide polymorphisms (SNPs). Variant 

calling analysis based on WGS data has superseded more traditional methods such as 

PFGE or MLST, as the level of sensitivity to small, localised changes is much higher 

(79). 

A typical workflow for variant calling involves aligning WGS sequence data to a 

reference genome, creating BAM files. This is done using a genome aligner such as 

Bowtie(80), or Burrows-Wheeler aligner (81). Following this, differences between 

the aligned reads and the reference genomes are identified and written to a variant 

call file (VCF),,using tools within the SAMtools package (82). Lastly, this VCF file 

must be filtered to ensure results are significant, and not resulting from artefacts of 

the sequencing process also performedperformed within the SAMtools 

package. Lastly, this VCF file must be filtered to ensure results are significant, and 

not resulting from artefacts of the sequencing process. This can also be done within 

the SAMtools package.  

Variant calling allows for the differentiation of micro-organisms at the strain level 

(83), which can be of crucial significance in metagenomics. For example, the fact 

that some members of the E.coli genus are harmless commensals and others are 

major pathogens such as the Shiga toxin-producing E.coli O157:H7(84) makes 

analysis of this nature to differentiate between them invaluable. Variant calling can 

be scaled upwards to process entire metagenomic datasets, and tools such as 

StrainPhilan(85) work off the same principle, but are tuned for the complexities of 

large mixed samples.  

 

This facility of variant calling to detect minor differences or mutations between 

closely related sequences is also used to detect DNA damage. This is a challenging 

task as although most organisms expose their DNA to potential sources of DNA 

damage regularly, only a small proportion of the sites in a given genome are 
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damaged. As such it can be difficult to differentiate these from the general noise of 

sequencing miscalls(86). When reliably performed, variant calling can be a valuable 

tool for assessing DNA damage due to formalin fixation in WGS sequencing 

samples, and thus can be used to compare different strategies of DNA repair.  

 

Statistical analysis of microbiome data 

Metagenomics data is usually summarized as a table of read counts per OTU /ASV 

or gene/genome per sample. Those tables tend to be very sparse, where counts of 

zeroes may mean the true absence of an OTU/ASV or gene/genome or that its 

presence is below the detection limit. This detection limit can vary between samples 

due to differences between sequencing runs and an unequal representation of 

samples in pooled sequencing libraries. One way of bioinformatically dealing with 

this problem is to discard instances which are observed in less than a certain percent 

of samples, proportion of reads or given number of independent samples (87). 

Once a metagenomics dataset has been characterised taxonomically and functionally, 

statistical comparisons between groups, experimental conditions or time series 

experiments among others can be carried out using regular parametric and non-

parametric methods within traditional multivariate statistical approaches. Beyond 

this, several traditional ecological methods can also be applied to microbial ecology, 

and packages such as vegan(88) and phyloseq (89) exist within the R environment to 

facilitate their use. These can be complemented by multidimensional scaling tools 

which are extremely important for the visual representation of high dimensional data 

and are facilitated by the ape (90) package within the R environment.  

These measurements are typically broken down into alpha and beta diversity.  Alpha 

diversity describes the diversity within a sample of environment. At its most simple, 

this means the number unique species observed at a given site and is therefore scaled 

from 0 to infinity. Beta diversity allows for the comparison of diversity between 

samples, again at its most simple this strategy counts the number of species unique to 

one environment being compared, and adds this to the number of unique species in a 

second environment, giving an eventual score of beta diversity, or dissimilarity 

between the two samples or environments (91). 

In practice, there are a variety of strategies for measuring both alpha and beta 

diversity, each of which lend or subtract weight from certain aspects of the 
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comparison, such as phylogeny. Some of the more common measures for alpha 

diversity used in microbial ecology are as follows. The Shannon diversity index 

takes into account both the evenness and the abundance of species in an environment 

(92). If a sample is dominated by a small number of species, it is not considered 

diverse, and both the number of species obvserved and an evenness in their 

abundance is required for an increase in diversity using this metric. Simpson’s 

diversity index uses a similar principle. Chao1 species richness belongs to a class of 

methods called nonparametric estimators, which are adapted from mark-release-

recapture ratio approaches in macro-ecology(93). This means that the number of 

observed species is added to the ratio of species only seen once versus species seen 

twice. This index is noted for its accuracy with sparse datasets, such as microbiome 

data. 

Despite the concept of beta or between sample diversity being quite simple, there is 

no gold standard methodolgy for its measurement. The most common metric used in 

microbial ecology is the Bray-Curtis dissimilarity(94).  Always a number between 

zero and one, this measure of dissimilarity between two samples is measured by 

subtracting two times the sum of lesser counts of species shared between both sites, 

divided by the total number of counts of species in both sites, from one. Therefore, a 

score of one indicates that the samples are identical and zero that they have no 

species in common.  The Jaccard index is similar to Bray-Curtis, with the exception 

that it does not account for the quantities of species observed, instead working off a 

binary view of presence or absence(95). The number of shared species between two 

samples, are divided by the cumulative number of species found in both samples, 

this number is then subtracted from one to give a measure of dissimilarity. 

While the previous examples are common ecological techniques that have stood the 

test of time and have now been adapted for use in microbiology, Unifrac is a more 

modern method, designed specifically with microbial communities in mind. A 

common complaint of metrics such as the previously described Bray-Curtis 

dissimilarity when analysing microbial data is that they treat sequences with 99% 

and 20% sequence similarity as equally different, resulting in a loss of information 

potentially useful for descrimination. UniFrac or the unique fraction(96), measures 

the phylogenetic distance between species in two different samples. There are two 
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different implementations of this measure based on whether (weighted) or not 

(unweighted) the abundances of these species are taken into account. 

Specific tools tailored to metagenomics data also exist, which have been modified to 

be more sensitive to the specific nature of the data. For instance, the problem of 

calculating differential abundance across experimental conditions, be it of taxa or 

gene expression, is one that has been significantly improved on with the 

development of bespoke bioinformatics tools.The DeSeq algorithm was developed 

for RNAseq data, with the aim of finding genes that are differentially expressed 

across treatment groups, samples or time points based on the negative binomial 

distribution. In the second iteration (DeSeq2) this has been extended to other types of 

HTS data(97). MetagenomeSeq was specifically designed for marker gene surveys 

such as 16S rRNA gene sequencing but can equally be used for count tables 

generated by whole genome shotgun sequencing experiments. It addresses the effects 

of both normalization and under-sampling of microbial communities and also 

incorporates the testing of feature correlations (98). The Anova-Like differential 

expression tool for high through put sequencing data (ALDEX2) uses underlying 

assumptions of compositionality (99).  

 

Reproducibility and Benchmarking 

There are a multitude of bioinformatics platforms available for metagenomics 

analysis, and not only the tools of choice but also how a specific pipeline is used can 

have an effect on the conclusions drawn by the resulting data. As every step of a 

metagenomics study can bias the result and change our perception of the underlying 

microbial community, it is vital to keep all variables consistent throughout a study 

and include them in the method section. Apart from the DNA extraction method and 

choice of sequencing technologies, and in case of amplicon sequencing studies 

which 16S rRNA region was targeted with which exact primers, this also must 

include a description of how DNA contamination was controlled for, how the 

sequencing error rate was assessed and importantly an in depth description of the in 

silico  analysis. It is not sufficient to only report the used tools but also the versions 

and specific parameters (if divergent from the defaults) have to be indicated. To 

allow reproducibility and comparison of studies it is recommend to not only make 
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the generated data of study available but also the implemented code used to analyse 

the data (100,101) 

When developing a suite of tools or pipeline for analysis, the benchmarking of 

different potential platforms is an effective way to ensure the pipeline developed 

suits the experimental needs. Tools such as MetaSim (102) provide the raw materials 

for such a benchmarking project. This allows the user to define and simulate a 

sequencing dataset of known microbial composition, and consequently to assess the 

accuracy and speed of potential metagenomics platforms(102). In terms of 

reproducibility, an important initial step in promoting this is to deposit the results of 

any sequencing experiment into one of the online sequence data repositories 

available. Two of these are the Sequence Read Archive (SRA) (103) and 

Metagenomic Rapid Annotations using Subsystems Technology (MG-RAST) (104).   

The sequence read archive, or SRA, is one of the most important platforms involved 

in metagenomics research. It is the primary repository of high throughput sequencing 

data hosted by the National Institute of Health in the United States, and part of the 

International Nucleotide Sequence Database Collaboration. A wide range of 

sequencing data is accepted, such as Roche454, Illumina and Pacific Biosystems 

data. All data submitted to this portal is publically available, and serves the purpose 

of aiding new discoveries by increasing access to data, and promoting the 

reproducibility of the field of metagenomics, which is at present one of the key 

weaknesses of the field(103). MG-RAST is another repository for sequence data. It 

currently stores over 150,000 datasets with over 23,000 of them in the public 

domain. As the name suggests, it also provides some limited functionality in 

metagenomics analysis. Raw reads can be uploaded in fastq format, which are then 

taxonomically and functionally annotated with minimal user input. Further analysis 

and visualisation is then possible through an interactive web server (105).  
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Abstract 

 

Tumours environments are amenable to bacterial growth and several recent studies 

on cancer patient samples have introduced the concept of an endogenous tumour 

microbiome. For a variety of reasons, this putative tumour microbiome is 

particularly challenging to investigate, and a failure to account for the various 

potential pitfalls will result in erroneous results and thus false claims. Before this 

potentially significant habitat can be accurately characterised, a clear understanding 

of all potential confounding factors is required, and a best-practice approach should 

be developed and adopted. 

This review summarises all of the potential issues confounding accurate bacterial 

DNA sequence analysis of the putative tumour microbiome, and offers solutions 

based on related research with the hope of assisting in the progression of research in 

this field. 
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The tumour microbiome: Current status and future challenges 

The existence of a tumour bacterial microbiome is still a contentious concept, but an 

increasing number of articles are being published exploring this novel habitat, and 

simultaneously exploring the possible effects these bacteria could have. To inform 

the direction such research will take in the future, it is important to take stock of the 

research carried out to this point to learn from past mistakes, and similar analyses in 

relevant fields. Research to date has focused on two key questions; what is there, and 

what does it do? This has involved comparing the microbiota of malignant and non-

malignant breast tissue (including non-cancer patient) in the original studies 

(19,106,107). Subsequent studies examined potential causative links between 

bacteria and their host tumours, or assessing their metabolic activity, for example 

their effect on chemotherapeutics (108,109). These concepts have important 

potential in cancer care, in terms of treatment regime, diagnosis or prevention, but 

rely on the field developing a thorough understanding of the microbial-related 

tumour microenvironment.  

The key hurdles in accurately characterising these environments are outlined as 

follows.  

• Tumour samples are regions of known low microbial biomass, a feature 

which complicates any metagenomic analysis. This review will include suggested 

methodologies for bioinformatic analysis of tumours, and also of low biomass 

samples in general. Linked to the issue of low biomass, tumour samples present an 

extremely high ratio of host to bacterial DNA, which can lead to bias in amplicon 

based sequencing strategies such as 16S rRNA sequencing, and can make whole 

genome sequencing impossible without a microbial enrichment strategy (110). 

• A further problem relates to the quality and quantity of patient tumour-related 

samples. Sourcing high numbers of aseptically-collected samples to enable statistical 

power is challenging, due to potential impact on standard of care, the workload of 

healthcare professionals, and competing requirements of the hospital diagnostic and 

other research teams for a limited amount of sample. A resource with potential for 

higher sample throughput for tumour metagenomics analysis is formalin-fixed 

paraffin-embedded (FFPE) tissues, the international gold standard for tissue sample 

storage. A proof of concept study recently showed that FFPE tissues provided a 

reliable source of germline and malignant human DNA (111). It is hoped that FFPE 
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tissues can provide reliable bacterial DNA also, once the proper precautions are 

taken, not least distinguishing contamination inherent to this biobanking process. As 

with the low biomass characteristic, FFPE tissues would also present challenges to 

any bioinformatics analysis.  

When performing library preparation and bacterial DNA sequence analysis to 

investigate the tumour microenvironment, the issues raised in (i) and (ii) manifest in 

a number of ways. Introduced environmental contamination is likely to be inherent 

given the sampling process, which, given the low biomass nature of this tissue, has 

the potential to obscure tumour-originating bacteria. Similarly, there are other issues 

associated with low biomass such as PCR bias caused by the high ratio of host to 

bacterial DNA. If FFPE samples are used, errors in the sequence data will occur due 

to DNA damage during the formalin fixation process (112,113). 

In summary, as more research is carried out into the tumour microbiota, it is 

important to address the many potential pitfalls involved to ensure that these 

environments are reliably characterised, the scale of the problem is shown in Figure 

1. The credibility of this field and other low biomass fields has been affected by 

recent publications highlighting methodological mistakes in previous research 

characterising the microbiome of tumours and other low biomass environments (23). 

Therefore, a robust strategy needs to be established to ensure that future results are 

as reliable as possible.  
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Figure 2.1: The scale of the problem. Low biomass environments are considerably 

more susceptible to biological signal alteration arising from contaminant DNA than 

high biomass samples, along with the increased likelihood of PCR bias. 
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Research on the Tumour Microbiome to date 

The recent work characterising the microbiomes of solid tumours is outlined in Table 

2.1 below. Due to the challenges posed in characterising the tumour microbiome, it 

is likely that some or all of the studies referenced have been negatively impacted in 

some way, reducing their accuracy. This caveat must be kept in mind when assessing 

the results, and reinforces the need for the introduction of a best practise 

methodology to make future research more reliable. 
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Table 2.1: Tumour sites with suspected bacterial communities 

Tumour site Description Bacterial 

Community 

Reference 

Breast Tumour tissue has 

microbial signature 

similar to 

surrounding tissue 

 

 

Tumour adjacent 

tissue significantly 

different to non-

cancer patient 

breast tissue. 

Enterobacteriacae 

spp. 

(Proteobacteria), 

Gammaproteobact

eria spp. 

(Proteobacteria), 

Acinetobacter spp. 

(Proteobacteria), 

Bacillus spp. 

(Firmicutes), 

Staphylococcus 

spp. (Firmicutes), 

and Lactococcus 

spp. (Firmicutes). 

 

Bacteria found in 

healthy breast 

tissue: 

Micrococcus spp. 

(Actinobacteria) 

and Prevotella spp. 

(Bacteroidetes), 

and to lesser 

extend 

Lactococcus spp. 

and 

Gammaproteobact

eria also found in 

cancer-related 

tissue.  

[1-4] 

[8-10] 

Pancreatic Ductal 

Adenocarcinomas 

(PDAC) 

The cancerous 

pancreas has a 

more abundant 

microbiota than 

healthy control. 

Enterobacteriaceae

, 

Pseudomonadaceae 

and to a lesser 

extent 

Streptococcaceae, 

Staphylococcaceae 

and  

Micrococcaceae 

 [5,11] 

Prostatic Cancer Microbiome 

analysis carried out 

by 

Actinobacteria, 

Firmicutes and 

Proteobacteria, 

 [12] 



 

37 
 

  

Pyrosequencing. 

 

Lactobacillales and 

Streptococcaceae 

significantly 

elevated in healthy 

samples, 

Staphylococcaceae 

in tumour and 

peritumour. 

Others Ovarian and lung 

cancer tumour 

microenvironments 

have also been 

characterised. 

  [13-15] 
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Is there an aetiological relationship between tumours and bacteria? 

Considerable research has been conducted to demonstrate links between microbiota 

and a variety of proximal and distal cancers. Some associations were found to be 

directly causative, such as H. pylori and Gastric Adenocarcinoma (114) In other 

circumstances, reports suggesting certain bacteria being elevated in specific 

instances of cancer along with a variety of potential mechanisms for 

causing/progressing the cancer make a strong case, even if the final confirmation has 

yet to be found. An example of this is the constantly developing picture of the role 

Fusobacterium plays in colorectal cancer (115). Mycoplasma infection has also been 

shown to transform normal lung cells, affecting cell proliferation and differentiation 

(116). In many tumours, it may be that bacteria are simply opportunistic inhabitants 

(21,117). Tumours are uniquely amenable to bacterial colonisation, and unlike 

healthy tissues, conceivably provide a refuge for circulating bacteria, including non-

invasive species (Figure 2.2). A collection of phenotypes unique to tumours which 

have been proposed to explain the phenomenon of selective tumour colonisation by 

bacteria are as follows: i) Angiogenesis associated with tumour growth is an 

imperfect process, resulting in disorganised or “leaky” vasculature. This could allow 

circulating bacteria to embed themselves in the tissue. ii) Tumours are immune 

privileged regions of the body. This characteristic means that bacteria which may be 

cleared by the host immune system at other body sites are able to proliferate within 

tumours. iii) Many solid tumour regions are hypoxic, this lower level of oxygen 

compared with healthy surrounding tissue provides an environment that suits the 

proliferation of facultative and anaerobic bacteria. iv) Necrotic regions within the 

tumour are nutrient rich, promoting bacterial proliferation.  

What is the significance of endogenous bacteria residing within tumours? Beyond 

ongoing research into any causal relationships between bacteria and tumours, there 

are several other benefits to fully understanding these habitats. Understanding what 

bacteria colonise tumours could help with the development of more personalised or 

targeted treatment regimens for many tumours, maximising effect on the tumour and 

minimising the impact on the patient. A number of potential influences (both 

positive and negative) of resident intratumoural bacteria on tumour growth and 

responses to treatments have already been proposed by us and others, and include 
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effects on therapeutics, potential cross-talk between cancer cells and bacteria, and 

the potential for intratumoural bacteria to mediate therapy. For example, we were the 

first to report that a variety of unmodified bacteria found in tumours, with natural 

levels of endogenous enzymes can either positively or negatively affect the efficacy 

of various chemotherapeutics, such as gemcitabine, as evidenced by in vitro and in 

vivo cancer models (108). In parallel, given their unique capacity for selective 

growth in tumour tissue, therapeutics may be locally produced within the tumour by 

administered engineered bacteria (118,119). However, considerable challenges stand 

in the way of an approach such as this becoming a reality.  

 

Figure 2.2: Tumours are uniquely hospitable environments for bacteria. i) Leaky 

vasculature allows circulating bacteria to embed in tumour tissue; ii) Tumours are 

immune privileged regions; iii) Solid tumours possess low oxygen regions suitable 

for the proliferation of facultative and anaerobic bacteria; iv) High-turnover regions 

of tumours can be nutrient rich, promoting bacterial growth. 
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Biological Considerations 

Formalin-fixed paraffin-embedded tissue (FFPE) represents a resource that, if 

correctly harnessed, could exponentially increase the sample sizes and sites available 

for tumour microbiota studies. Crucially, these do not have to be obtained at the time 

of surgery, like fresh frozen tissue, although both fresh frozen and FFPE tissues 

involve difficulties. 

Patient sample logistics  

The realities of patient sample acquisition must be taken into account by researchers 

in this field.  

• Sampling-related contamination e.g. from the patient, the operating theatre, 

or the pathology lab (tissue handling and processing) must be considered in 

the design of research workflows (see later).  

• Broad-spectrum antibiotic administration can be routine in many hospitals 

immediately prior to tumour resection operations. While interfering with the 

clinical standard of care is difficult, antibiotic administration should be 

considered and reported in such studies.  

• An under-considered parameter is that tissue is heterogenous within a 

tumour, and bacterial profiles are likely to differ (quantity and quality) 

intratumourally, with some tumour tissue providing different growth 

conditions to other regions. Hence, typical pathologist-preferred tumour 

regions required for diagnosis (e.g. ‘margins’) may not be representative of 

the holistic tumour microbiome. 

Low biomass   

Tumours represent low bacterial biomass samples. This poses a variety of challenges 

to the data generation process. This is a situation where the bacterial DNA that is the 

target of the study, is outnumbered by orders of magnitude by host DNA. Due to the 

targeted PCR amplification of bacterial DNA in 16S rRNA gene sequence analysis, 

this heavy ratio of host to bacterial DNA is commonly considered unimportant. This 

is not the case, with many studies demonstrating a reduction in PCR amplification 

efficiency in circumstances of high human nucleic acid and low bacterial 16S rRNA 

gene fragment copies, ultimately leading to sampling bias (120). Therefore, an 
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effective host DNA depletion strategy is an important component of a 16s rRNA 

gene sequencing library preparation.  

Commercial kits for microbial enrichment by host DNA depletion were recently 

compared by Marotz et al (112). These included MolYsis, QIAamp and lyPMA kits. 

All were found to significantly improve the microbial yield. lyPMA was the most 

effective, having a mean of 8-10% of reads aligning to the human genome, and 

MolYsis the least, with an average of 60% of reads aligning to the human genome. It 

is inevitable that the microbial DNA would also be affected. For example, the 

MolYsis approach is suspected to degrade bacteria with weak cell walls, or cell walls 

that have been previously weakened by exposure to certain antibiotics, so a balance 

between host depletion, and bacterial degradation must be found. 

 

Contamination  

A recurring issue with low biomass samples is contamination, which poses a 

significant challenge in sequence analysis and interpretation. Often, the true 

microbiota can be masked by confounding bacterial DNA found in library 

preparation and DNA extraction kits. This feature is then often exacerbated by 

subsequent intensive amplification via PCR. Typical sources of contamination 

include environmental (surgery- and pathology-related), contaminants during the 

library preparation, and, as has been recently described, contamination from within 

the extraction kit itself (23). Since Salter et al published on this, there has been a 

general increase in awareness that reagent, laboratory and human contamination can 

have a serious impact on microbiome analysis (12). As water and soil associated 

bacteria are well documented contaminants associated with DNA extraction kits and 

PCR reagents, some contaminants are easily identified if they make it through the 

sample preparation, sequencing and bioinformatics contamination removal process. 

Genera such as Bradyrhizobium, which function in nitrogen fixation, are unlikely to 

be legitimate constituents of any human microbiome. The problem becomes more 

complex when sequences from Escherichia spp. and Bacillus spp. are found. Both 

have been shown to be artefacts of the library preparation process, but both are also 

common human pathogens (12). In 16S rRNA gene sequence analysis, taxonomic 

resolution to the species level is not always available, and never available in the 
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instance of Escherichia spp., which compounds the problem. 

 

Summary of contaminants affecting 16s rRNA gene sequence analysis  

The table below is a summary of recent articles addressing and discussing the 

problem of contamination in sequence analysis. It contains genera mentioned across 

all recent studies which include analysis of extraction and PCR kits, and also the 

ultra-pure water that is used in many kits and as a negative control.  

Table 2.2: Previously identified bacterial contaminants as per publications: 

(121),(12), (23), (122) . 

Phylum Genus 

Actinobacteria Actinomyces, Aeromicrobium, Agrococcus, Arthrobacter, 

Atopobium, Beutenbergia, Bifidobacterium, Blastococcus, 

Brevibacterium, Candidatus, Planktoluna, 

Cellulosimicrobium, Clavibacter, Collinsella, 

Corynebacterium, Curtobacterium, Dietzia, Eggerthella, 

Geodermatophilus, Gordonia, Janibacter, Kocuria, 

Microbacterium, Micrococcus, Microlunatus, Patulibacter, 

Pilimelia, Propionibacterium, Pseudoclavibacter, 

Rhodococcus, Rothia, Slackia, Tsukamurella 

Bacteroidetes Alistipes, Bacteroides, Bergeyella, Capnocytophaga, 

Chryseobacterium, Cloacibacterium, Cytophaga, 

Dyadobacter, Flavisolibacter, Flavobacterium, Gelidibacter, 

Hydrotalea, Niastella, Olivibacter, Parabacteroides, 

Pedobacter, Porphyromonas, Prevotella, Wautersiella, 

Xylanibacter 

Deinococcus-

Thermus 

Deinococcus, Meiothermus 
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Firmicutes Abiotrophia, Anaerococcus, Anaerotruncus, Bacillus, 

Blautia, Brevibacillus, Brochothrix, Catenibacterium, 

Christensenella, Clostridium, Dialister, Dorea, 

Enterococcus, Erysipelatoclostridium, Eubacterium, 

Facklamia, Faecalibacterium, Fastidiosipila, Flavonifractor, 

Gemella, Geobacillus, Granulicatella, Halocella, 

Intestinibacter, Johnsonella, Lachnoanaerobaculum, 

Lachnoclostridium, Lachnospira, Lactobacillus, Listeria, 

Megasphaera, Moryella, Oscillospira, Paenibacillus, 

Papillibacter, Parvimonas, Peptococcus, Peptoniphilus, 

Pseudobutyvibrio, Pseudoflavonifractor, Quinella, 

Roseburia, Ruminococcus, Ruminosclostridium, 

Selenomonas, Solobacterium, Staphylococcus, Streptococcus, 

Trichococcus, Tumebacillus, Turicibacter, 

Tyzzerella,Veillonella 

Fusobacteria Fusobacterium, Leptotrichiaceae 

Proteobacteria Achromobacter, Acidovorax, Acinetobacter, Afipia, 

Alcanivorax, Alicycliphilus, Aquabacterium, Aquabacterium, 

Asticcacaulis, Aurantimonas, Azoarcus, Azospira, 

Beijernickia, Bosea, Bradyrhizobium, Brevundimonas, 

Burkholderia, Cardiobacterium, Caulobacter, Comamonas, 

Coprococcus, Craurococcus, Cupriavidus, Curvibacter, 

Delftia, Devosia, Diaphorobacter, Duganella, 

Enhydrobacter, Enterobacter, Eschericia, Geodermatophilus, 

Haemophilus, Herbaspirillum, Hoeflea, Janthinobacterium, 

Kingella, Klebsiella, Leptothrix, Limnobacter, Massilia, 

Matsuebacter, Mesorhizobium, Methylobacterium, 

Methylophilus, Methyloversatilis, Neisseria, Nevskia, 

Novosphingobium, Ochrobactrum, Oxalobacter, Paracoccus, 

Parasutterella, Pelomonas, Phyllobacterium, Polaromonas, 

Pseudomonas, Pseudorhodoferax, Pseudoxanthomonas, 

Psychrobacter, Ralstonia, Rhizobium, Rhodanobacter, 
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Roseateles, Roseomonas, Rubellimicrobium, Ruegeria, 

Schlegelella, Serratia, Sphingobacterium, Sphingobium, 

Sphingomonas, Sphingopyxis, Stenotrophomonas, 

Sulfuritalea, Terrimonas, Thiohalocapsa, Undibacterium, 

Variovorax, Xanthomonas 

Tenericutes Mycoplasma 

 

FFPE tissue as a source of sample tissue  

With more developed screening methods and constantly improving medical care, 

particularly in the developed world, the size of tumours at the time of excision is 

rapidly reducing. The average size of a breast tumour has shrunk to less than 1 cm in 

diameter in the United States. As mentioned previously, this means fewer fresh 

‘surplus to diagnostic’ samples are available to research (123). Formalin fixation 

followed by paraffin embedding is the gold standard for preserving tissue samples 

after histological examination. FFPE blocks are stable at room temperature, and 

preserve the morphology and cellular details of tissue samples, along with the DNA. 

A unique problem when handling FFPE tissues is the degradation and mutation to 

which the DNA is subjected during the fixing and embedding process. FFPE blocks 

are undoubtedly a valuable resource due to the sheer quantity of samples available. 

However, there are several challenges involved in their effective use. Formalin 

fixation has been shown to cause cross-linking of histone-like proteins to DNA, 

DNA to formaldehyde adducts, and inter-strand DNA crosslinks (124). Generally, 

sequencing errors are caused by PCR mistakes, or miscalls during sequencing, but in 

a small set of circumstances, sequencing errors are caused predominantly by 

mutagenic DNA damage. These include ancient DNA from archaeological sites, 

circulating tumour DNA, and FFPE samples (125). The value of FFPE tissues as a 

sample type has begun to supersede the difficulty in their processing and analysis 

from a bacterial sequencing perspective. A recent study by Stewart et al successfully 

used formalin fixed, paraffin embedded tissue to characterise the intestinal 

microbiota of pre-term infants with necrotising enterocolitis, despite some of their 

samples being almost 10 years old (126). 
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Although the strategies for minimising and/or retroactively repairing this DNA 

damage mainly falls under the remit of the laboratory personnel carrying out the 

extraction and subsequent library preparation, there are some bioinformatics 

strategies that can be applied to lessen the impact of damaged DNA on the sequence 

data. Chen et al proposed a method of scoring the extent of the errors in sequencing 

caused by DNA damage, called the Global Imbalance Value (GIV) [41]. This 

method is based on the directional adapters used in Illumina sequencing. The 

principle behind this is that because the majority of DNA damage only affects one 

base in a pair, DNA damage caused by oxidation, for example, could cause G-T 

transversion errors when the forward read of sequence data is mapped to a reference 

genome, but the reverse read would show the reverse complement of this, so C-A 

errors. This causes a “global imbalance” (125). A slight modification of this method 

would allow for the user to screen the reads generated by 16S sequencing of bacterial 

DNA within the tumour and in a process similar to the quality filtering already 

employed, only retain reads that had a GIV score below a certain threshold. 

 

Bacterial DNA extraction from FFPE samples  

Despite these problems with using FFPE tissues for metagenomic analysis, there is a 

considerable history of bacterial identification in FFPE tissue in clinical settings, if 

not research settings.(127). The QIAamp DNA FFPE Tissue kit is a purpose-built kit 

for the extraction of total genomic DNA from FFPE blocks produced by Qiagen. 

This kit compensates somewhat for damage caused by formalin fixation by including 

an incubation at elevated temperature following a proteinase K digestion. However, 

the kit does not take into account the oxidative damage that can be caused, or the 

extreme ratio of host to bacterial DNA, both of which can affect marker gene 

sequence analysis such as 16S rRNA gene sequencing (128).  

If reliable characterisation of the bacterial communities within tumours is to extend 

to FFPE samples, then a protocol for bacterial DNA extraction, repair and 

purification from these tissues is required to improve downstream analysis.  A 

workflow of biological considerations for a sequencing experiment is shown here in 

Figure 2.3. 
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Figure 2.3: Workflow of biological considerations prior to bioinformatic sequence analysis 
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Bioinformatic Aspects 

Detection of microbial communities   

The two sequencing strategies employed in metagenomics analysis are WGS and 

amplicon sequencing. WGSWGS provides a high-resolution overview of all (or the 

most abundant, dependent on sequencing depth) DNA present in a sample. Bacterial 

genomes present will be characterised base by base, providing insights into bacterial 

taxonomy, function and rates of mutation, among other aspects. Host DNA present 

in the sample is also sequenced. Amplicon sequencing is a targeted approach 

allowing the targeting of specific regions within genomes, generally amplified by 

PCR. It is a two-stage process where primers are used to capture the target region, 

which is followed by high-throughput sequencing. Amplicon sequencing in bacterial 

microbiota studies typically targets the 16S rRNA gene subunit. This is the 

component of the 30S small subunit adjacent to the Shine-Delgarno sequence, a 

region noted for its slow rate of evolution, containing nine “hypervariable regions” 

which can be used to differentiate between bacteria with varying degrees of 

effectiveness (129). 

Whole genome sequencing has several advantages over 16S rRNA gene sequencing, 

such as increased species and strain level resolution, enhanced ability to detect rare 

species, and the ability to detect organisms in other kingdoms of life, such as viruses 

and fungi (130). At present 16S rRNA gene sequencing may be more technically 

suitable to metagenomics analysis of low biomass environments, in addition to being 

significantly more cost-effective. In a typical sequencing run of a non-tract biopsy in 

humans, 97% of the reads generated can be expected to align to a human reference 

genome (131). This makes it extremely expensive to get sufficient sequencing depth 

of the bacterial DNA present in a sample (131). As mentioned earlier, 16S rRNA 

gene sequencing is still affected by the low ratio of bacterial DNA, but to a lesser 

extent than whole genome sequencing methods. This can be improved upon by 

incorporating the previously mentioned host depletion strategies. 

Removal of Chimeric reads  

Chimeras arise as aborted extension products from earlier PCR cycles and can end 

up being taken up as a primer in a subsequent cycle. Undetected chimeric DNA 

sequences can be misinterpreted as novel species, particularly in 16S rRNA gene 

sequence analysis. Therefore, the number of PCR cycles can influence chimera 
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formation (132). Given the low bacterial concentrations expected in tumour samples, 

the generation of chimeric reads is logically a significant cause for concern, and a 

robust protocol should be employed for their removal. Chimeras can be 

computationally identified and removed using one of a variety of programmes that 

fall into two groups. De novo methods usually work by identifying sequences which 

contain half of one abundant read and half of another, as evidenced by a difference in 

abundance between the start and the end of a sequence. Alternatively, reference-

based methods compare reads identified to a curated database known to be chimera 

free, and attempts to find sequences that may have arisen from multiple samples 

(133). In this situation, where there is an elevated proportion of chimeras present, 

combining both methods would give the best chance of effective clearance of 

chimeras. Some of the most cited examples of chimera removal programmes across 

both categories include Chimera Slayer which is a referenced based method, 

Is.Bimera.Denovo which is the de novo chimera removal programme within the 

DADA2 pipeline, and UCHIME within the QIIME environment which has both 

reference based and de novo capabilities (133). 

Removal of contamination  

Two bioinformatics utilities have been developed recently, to retroactively solve this 

problem. SourceTracker, and Decontam (134,135). These methods have different 

functionality but can be used in conjunction to remove contaminant taxa. The 

SourceTracker algorithm utilises a Bayesian approach to provide an estimate of the 

proportion of contaminants that arise from possible source environments. Decontam 

looks for unusual relationships between DNA concentration in the original sample, 

and proportional abundance of sequence variants, and can add another layer by 

comparing samples with negative controls.  

Analysing the outputs The traditional method of analysing 16S rRNA gene 

sequencing data by clustering reads together based on a pre-defined threshold of 

similarity is no longer necessary due to recent advances. New methods of error 

modelling allow for sequence variants to be distinguished by a single base, 

generating amplicon sequence variants (ASV) which are comparable to OTU’s, but 

where OTUs are clustered by percentage sequence identity, ASV’s correspond to an 

exact amplicon sequence variant in the sample (48). A major consideration when 

choosing a 16S rRNA gene sequence analysis pipeline is the degree of damage to the 
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DNA. As mentioned earlier, it is possible to measure this based on global imbalance 

value (125). DNA damage could cause ASV generating methods may be unsuitable 

as mutations, caused by formalin fixing for example could be incorrectly classified 

as different strains of bacteria. In these circumstances, the clustering-based OTUs 

may prove the more reliable method. Several of these are contained within the 

QIIME environment, such as Usearch (136). Samples can be analysed with both 

clustering and ASV methods, and a comparison of the number of observed species 

identified could inform the user on the level of damage. When combined with 

experimental knowledge for example laboratory based culturing from tumours, a 

large amount of closely related species reported by ASV generating methods but not 

clustering methods could indicate unrepaired DNA damage.  

  

Best Practice 

As there is currently no established best practice for sequence analysis of bacteria 

residing in tumour tissue, fresh or formalin fixed, the primary objective of this article 

is the proposal of such. The section below, along with Figure 2.3, summarises a 

methodology that falls in line with what is currently accepted for 16S rRNA gene 

sequence analysis, incorporating sample-specific modifications as outlined earlier.  

Pre Analysis  

During the extraction process, microbial enrichment and DNA repair, if the sample 

originates from FFPE tissue, should be carried out if possible. Since, in low biomass 

samples, the biological signal can be significantly altered by the presence of 

contaminants, extreme ‘aseptic’ care must be taken when preparing the samples for 

sequencing. A variety of controls to account for introduction of contamination 

should be used. Given the documented effects that a lack of controlling for 

contamination has had on previous tumour microbiota studies, this is of paramount 

importance. Eisenhofer et al recently published a comprehensive description of a 

robust strategy to control for contamination in low biomass studies (22). This 

suggests using a variety of negative controls to assess the degree of contamination 

introduced during the processes of sampling, DNA extraction and amplification. 

Positive controls are also recommended, such as mock communities of known 

microbial composition and amplification controls. This should be adhered to when 
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sequencing from FFPE tissues, with some additional steps as outlined below in 

Figure 2.4.  

 

 

Figure 2.4: Overview of suggested sample preparation with appropriate control for 

contamination and bias. 

Bioinformatic analysis Figure 2.5 summarises the key points outlined 

previously in this article in relation to the required modifications to a bioinformatic 

pipeline required to ensure high quality reproducible analysis. 
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Figure 2.5: Suggested bioinformatics workflow for bacterial sequence analysis from tumour tissue. 
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Possible Improvements 

Typically, hypervariable regions within the 16S rRNA gene fragment are targeted by 

primers, the most commonly targeted is the V3-V4 region as it is thought to provide the 

best resolution. While this method is effective to genus level in most cases, species level 

classification is often unsuccessful. An obvious solution would be to simply increase the 

length of the reads, as sequencing technologies such as Oxford Nanopore sequencing are 

capable of producing reads that are hundreds of kb in length, it should be 

straightforward to simply sequence the entire 16S rRNA gene fragment (137). 

Specifically in the case of sequencing samples from formalin fixed samples however, 

this is currently not possible, as the DNA will often be fragmented, preventing long read 

sequencing. A potential solution to this is to combine multiple, independently sequenced 

short regions within the 16S rRNA gene fragment. One way this has been implemented 

is in the Short Multiple Regions Framework (SMURF) method, by Fuks et al (39). This 

entails independent amplification and sequencing of multiple regions along the gene 

fragment, these are then computationally combined to provide a significantly more 

accurate assessment of the microbial community. When tested on a Human Microbiome 

Project “Mock” community, it was found that the increase in resolution was a function 

of the number of regions analysed. Using two different regions resulted in a two-fold 

increase in resolution, while using 6 resulted in a ~100 fold increase in resolution (39). 

A further improvement was not directly related to the bioinformatic analysis but to 

sample preparation. As was mentioned earlier, while there are extraction kits for DNA 

in FFPE tissues, these do not take into account damage that may have occurred to the 

DNA during the fixation process, or the high ratio of host to bacterial DNA. To make 

metagenomic analysis of tumour samples from FFPE tissues a reliable and crucially 

reproducible option, there is a genuine need for the establishment of a validated protocol 

to extract bacterial DNA from FFPE tissues, repair the damage, and deplete the host 

DNA.  

Concluding remarks 

In conclusion, taking advantage of the presence of bacteria in tumours has the potential 

to contribute to cancer treatments in the future. As the field is still in its infancy, it is 
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important for data to be as truly representative as possible. It is the objective of this 

article to provide a guideline for more effective bioinformatic analysis of the tumour 

microbiota in future.  
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SECTION 3: UTILISING BACTERIA FOR THERAPEUTIC INTERVENTION 

 

Regardless of whether or not a consistently present and detectable tumour microbiome 

exists, tumours are undeniably hospitable environments for bacteria to colonise. Where 

the unique physiology of tumours is seen as an obstacle for traditional cancer treatments, 

they represent an opportunity for bacterial-mediated solutions. 

The use of bacterial cellular machinery to secrete proteins is far from novel. In the 

biotechnology industry, bacteria have been exploited for their ability to produce 

recombinant proteins such as human growth hormone and insulin (118). Industry and 

academia have also been exploring the potential for in vivo production of therapeutic 

proteins from bacteria. In this scenario, bacteria would either naturally, or through 

inducement, locate to the body site where they are required, for example a tumour, and 

once there would colonise the niche and produce therapeutic agents (118).  

This are two considerations in this context, requiring two very different applications of 

bioinformatics. i) The first is to identify which bacteria colonize the desired niche in 

body; this can be a ‘foreign’ body such as a tumour, or parasite, or a distal niche such as 

the gut. ii) The second, often under-considered parameter, relates to what these bacteria 

produce. Synthetic biology presents enormous scope for sophisticated medical therapy 

mediated by novel synthetic proteins. However, the task of getting a bacterial cell to 

successfully express and secrete a stable protein that it does not produce naturally is far 

from trivial, and is becoming a key aspect of the synthetic biology field.  
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Microbiome research as an R&D tool 

An appropriate workflow to develop such targeted therapeutic strategies involves 

combining the knowledge gained from microbiome analysis with the machinery 

available within bacteria. From a viewpoint of bacterial-mediated therapy, this is 

achieved by: 

• Using microbiome research as an R&D tool to conduct an ecological 

survey of the target niche, the aim being to find candidate taxa which 

selectively colonise the niche in question (138). 

• Modulation of an existing microbiome to create a niche for the bacterial 

vehicle to colonise.  

• Artificially inoculate the same niche(139). 

The desired end-result of an ecological survey of this kind is to be able to state with a 

degree of confidence that if a given bacterium is introduced into the host, it has a high 

probability of locating to the target niche. Following this, the niche-targeted bacterium, 

can be engineered to produce a therapeutic agent directly within this niche. Bacteria can 

produce toxins to directly kill tumour cells, release cytokines to attract immune cells to 

the niche, or produce synthetic proteins to interact with receptors on/in tumour cells 

(140). This workflow of researching what bacteria are present in a niche of interest and 

developing biological therapeutics for them to deliver is described in Figure 3.1.  
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Figure 3.1: The convergence of microbiome research and in silico protein design for 

R&D. (A) Shows the process of identifying bacteria that selectively colonise a foreign 

body of interest through bioinformatic analysis. (B) Shows a workflow for making use of 

the information learned in (A). A protein is designed for a specific purpose in silico, 

after which a bacterial candidate derived from A is genetically engineered to produce 

this protein, thus exploiting them as delivery vehicles for protein therapeutics. 

 

Examples of successful bacterial production of functional molecules in situ, but 

potentially distal to the site of action, include the production of cytokines, monoclonal 

antibodies and other molecules by Lactococcus lactis in the gastro-intestinal tract (141). 

A summary of recent developments in bacterial-mediated cancer therapies can be seen 

in the table below, adapted from Mansour Sedighi et al (142). 
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Table 3.1: Summary of studies of bacterially mediated cancer therapy. (Adapted from 

(142)) 

Treatment Strategy Bacteria used and treatment 

approach 

Outcome 

Bacteria as 

immunotherapeutic 

agents 

Streptococcus pyogenes; intentional 

infection of cancer patient with 

erysipelas.  

 

Rapid tumour progression 

 Attenuated Salmonella Typhimurium; 

vaccination of B16F10 tumour-bearing 

mice by derivatives of Salmonella 

Typhimurium (SL1344 InvA or 

SL3261AT InvA 

  

Anti-Tumour effect 

 Listeria monocytogenes; vaccination 

via recombinant Listeria 

monocytogenes (Lm-NP); breast, 

melanoma and cervical cancer. 

Regression in growth of all 

types of tumours 

 Clostridium spp; concurrent gas 

gangrene in patients with tumours 

Tumour Regression 

Bacteria as vehicles 

to produce 

tumouricidal agents 

Clostridium novyi; IV injection of C 

novyi NT spores and a single IV dose 

of liposomal doxorubicin (Doxil) 

administered into mice bearing 

colorectal cancer 

Elimination of tumours 

 C. novyi NT and C. sporogenes, 

conjunction of pMTL-555-VHH 

Rise of delivery of 

therapeutic agents 
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construct of a VHH-AG2 expressing 

vector (an anti HIF-1a) into these 

bacteria 

 Bifidobacterium longum 105-A and 

108-A, IV injection of the pBLES100 

(constructed by cloning a B. longum 

plasmid and a gene encoding 

spectinomycin adenyltransferase AAD 

from Enterococcus faecalis into the E. 

coli vector pBR322) to B16-F10 

melanoma tumour-bearing mice 

Increase in specific gene 

delivery vectors in the 

tumour 

 

 

 

Bacterially 

produced 

toxins/enzymes 

Salmonella enterica Serovar 

Typhimurium, orally administered 

construction of Salmonella-based 

surviving vaccine into BALB/c, colon, 

DBT and GL261 glioblastoma-bearing 

mice 

Vaccine as an adjuvant 

against different types of 

cancer 

 Streptococci and Serratia marcescens, 

injection of bacterial concoction 

derived from heat-killed streptococcal 

and Serratia marcescens (Coley’s 

Toxin) into body, sarcomas 

A severe erysipelas 

infection led to the cure of 

cancer 

 Clostridium perfringens, intratumoural 

injections of either 2, 10 ug of 

Clostridium perfringes entereotoxin 

(CPE) in xenografts of T47D breast 

cancer cells in mice.  

Rapid and dose dependent 

cytolysis 

 Pseudomonas aeruginosa, IV injection 

of the chimeric fusion protein 

Significant antitumour 
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interleukin-4-Pseudomonas exotoxin 

(IL4-PE) into GMB induced in nude 

mice and intratumour administration 

of IL4 PE in malignant astrocytoma in 

a phase I clinical trial 

activity 

 

A more precise approach of this kind has the potential, at a minimum, to limit side 

effects of traditional treatments that occur due to systemic administration, and to 

increase efficacy of treatments (140). Although considerable progress must be made 

before bacteria can be used clinically for cancer treatment and detection, it is hoped that 

the mainstream incorporation of microbiome research into research and development 

pipelines may accelerate this process.  

 

In silico platforms for protein analysis and design 

Many of the factors that attribute to the successful production/behaviour of a protein fall 

beyond the remit of computational biology, but some can be controlled for by 

bioinformatic analysis and prediction.  

Foremost among these is the protein folding problem. The proteins used are rarely in 

their native state, and can at the very least expect to have additional functional ‘parts’, 

such as secretion sequences, detection tags etc., while at the other end of the spectrum, 

novel proteins are being developed with increasing regularity and confidence facilitated 

by in silico design tools. Predicting the expected 3D structure can inform the user as to 

something as simple as its predicted stability in nature, or whether a functional peptide 

‘part’ is buried within the structure, rendering it non-functional. There are laboratory 

methods for characterising the 3D structure of a protein, such as Nuclear Magnetic 

Resonance spectroscopy, X-ray crystallography and Cryo-Electron Microscopy. In 

addition to the cost and expertise these methods require, they also need physical protein 

sample, which prevents their use as a design/screening tool prior to their build.  



 

60 
 

The prediction of the three dimensional structure of a test sequence in isolation would be 

of minimal experimental value without accompanying functional information. 

Fortunately, these two features are inherently related, as a protein’s structure is the 

determining factor in its function. Once a model has been generated, predictions of 

features such as binding sites, interactions with other proteins, and transport machinery 

can be made, with the caveat that they are only as reliable as the underlying structural 

prediction.   

 

Secondary to this initial question, other features that can be predicted or modified using 

in silico tools which can benefit research include: 

• Sequence based parameters 

• De novo Protein Design 

Predicting protein 3D structure 

The field of in silico protein structure prediction has expanded dramatically since 1994 

when the first Community Wide Experiment on the Critical Assessment of Techniques 

for Protein Structure Prediction (CASP) was held, but remains one of the more 

challenging approaches in the field of computational biology. Levinthal’s paradox tells 

us that due to the large number of degrees of freedom in an as yet unfolded polypeptide 

chain, the number of possible conformation of this protein is enormous. The given 

example is that a polypeptide with 100 residues, and therefore 99 peptide bonds and 198 

different phi and psi bond angles, would have 3e198 different conformations. The 

paradox is that although small proteins fold almost instantly, on a microsecond 

timescale, if a protein were to arrive at its correct fold structure by sequential sampling, 

this process would take longer than the age of the universe to complete (15). 

Computational methods provide a tentative solution to this problem, but major concerns 

over the reliability and accuracy of these methods remains, particularly when analysing 

larger proteins.  

Nevertheless, several research groups have dedicated themselves to this problem and 

similar ones. The leading in silico protein prediction software currently available for 

academic use includes I-TASSER by the Zhang lab (143), the Rosetta Suite (144) and 
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SWISS-MODEL (145). An indication of the growth in awareness of the value and 

importance of this field is that Google entered the 2018 edition of CASP with A7D, a de 

novo structure prediction method with deeplearning based scoring (146). Protein 

structure prediction protocols can be broadly separated based on methodology, into 

homology modelling methods, and ab initio methods, although many leading tools 

combine the two approaches. Homology modelling, or comparative modelling, relies on 

sequence similarity between the test sequence and the sequences of already 

characterised proteins. This can be carried out either through global alignments of entire 

primary protein sequences or local alignments of smaller fragments in a process referred 

to as “threading.” The fact that three dimensional structure is more conserved than 

amino acid composition amongst proteins makes this modelling method very effective 

for proteins that share medium to high levels of sequence similarity with those in the 

PDB database. If a test sequence has less than 20% identity with those in the PDB, this 

method becomes unreliable (147,148). 

Predicting a protein’s structure from its amino acid sequence alone, with no reference 

template structures, is still an unsolved problem despite any advancement over the 

previous ~50 years. This process is called ab initio folding. A simplification of this 

process is a search of possible conformations that the test sequence could take, which is 

supervised by an energy scoring function, usually related in some way to Gibbs free 

energy. A review by Lee et al states that there are three factors required for a successful 

Ab Initio prediction protocol (149): (i) An accurate energy function, where native 

protein structure correlates with thermodynamic stability, (ii) a computationally efficient 

method for conducting the conformational search and identifying low energy states, (iii) 

a protocol for identifying near-native models from a large number of conformers (149). 

To reiterate, both methods have strengths and weaknesses. Homology modelling 

requires sequence identity with already characterised proteins, and ab initio modelling 

is, at the time of writing, ineffective for larger constructs, although this is likely to 

change in the future as computational power increases. These limitations mean that the 

most successful modelling protocols must incorporate aspects from both ab initio and 

homology modelling into their process.  
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I-TASSER is primarily a homology based modelling tool, but does incorporate limited 

ab initio functionality, primarily to fill in gaps left by its threading tools in aligning 

sequences to reference databases. It works by initially searching for structural templates 

of fragments of the input sequence with a technique called threading or fold recognition. 

These are then assembled into full length models using replica exchange Monte Carlo 

simulations - this is the homology modelling method. Any unaligned regions of the test 

sequence are built by ab initio modelling. Further clustering and refinement steps result 

in five candidate models by default, each with a corresponding confidence (C-score) 

score (143). This tool is available as a web server, but can also be downloaded as a 

stand-alone tool.  

Similarly to I-Tasser, the Rosetta Commons also maintains a web server for protein 

structural prediction called Robetta (150). Contrasting with I-TASSER, standalone tools 

within the Rosetta Suite provide many more functional options to the user when 

approaching the problem of protein structural prediction. AbInitoRelax provides a 

general framework for ab initio modelling of proteins, with different version available 

for membrane and metalloproteins. There are also facilities for homology modelling. 

RosettaCM allows the user to select templates themselves, either from the PDB database 

or previously ab initio modelled proteins. As with all standalone tools within the Rosetta 

suite, manual intervention is possible to tweak functionality to suit a particular target 

protein (151).  

A comparison of workflows between I-TASSER, ostensibly a homology based 

algorithm, and and Rosetta, which is ab initio based, is shown below. 
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Figure 3.2: Comparison of workflows between homology and ab initio protein 

prediction algorithms. Adapted from (152). 

 

A7D focusses exclusively on the challenging task of ab initio modelling, without the aid 

of any homologous template structures. This method of modelling is likely to increase in 

importance with the advent of de novo protein design exploring hitherto un-sampled 

protein fold space. The predictions are made by an automatic free modelling structure 

prediction system guided by a scoring system based on two different neural networks, 

both of which are deep convolutional neural networks. Convolutional neural networks 

are used predominantly for the processing of images. A deep residual convolutional 

neural network, trained on a non-redundant subset of the PDB database, builds a 

distribution of expected distances between the C-beta atoms of adjacent amino acids in 

proteins, and a second network trained to output a score as a function of multiple 

sequence alignments, and predictions from the first network (146). 

A selection of the tools available for research involving the prediction of protein 3D 

structures is found below. 
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Table 3.2: Platforms for in silico protein modelling 

  

*In practise I-TASSER and 

Rosetta incorporate both 

Homology and ab initio 

methods. Prediction Tool 

Platform Method 

I-TASSER(143)* Web-based and 

Standalone 

Homology 

Modeller(153)  Standalone Homology 

SWISS-MODEL(154) Web-based Homology 

Phyre2(155) Web-based Homology 

Fragfold(156) Standalone Ab-Initio 

Rosetta(151)* Web-based and 

Standalone 

Ab-initio 

Predicting protein function 

Predicting the function of an in silico designed protein primarily relates to predicting its 

interactions with other proteins, ligands or other biomolecules and predicting the 

location of the active sites facilitating these interactions. As the majority of in silico 

designed proteins are either de novo or redesigned existing scaffolds, it is rarely 

necessary to investigate the overall function of a protein from first principles. When 

necessary, this can be done by aligning the amino acid sequence to annotated functional 

databases such as Swiss-Prot, or by comparing the three dimensional structure of the 

query protein to an annotated experimentally derived 3D protein structure database such 

as the PDB.  
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Predicting Protein active sites 

Identification of protein active sites facilitating binding to targets is a crucial step in 

protein annotation or design. At present there is no one gold standard method predicting 

these sites, thus a common approach among the more successful strategies is to combine 

complementary prediction algorithms. As per the Continuous Automated Model 

EvaluatiOn community wide survey (CAMEO (157)), the top performing strategy for 

active site prediction is COACH (158), within the I-TASSER suite. COACH combines 

outputs from five different active site prediction algorithms including TM-SITE which 

employs reference based substructure comparison, S-SITE based on sequence 

alignments, and COFACTOR which threads sequence fragments through the BioLIP 

(158) protein functional database providing insights such as Gene Ontology and Enzyme 

Commission annotation in addition to binding site prediction.  

An alternative strategy for binding site identification, if using a novel protein that makes 

database reliant methods ineffective, is to use global protein-protein docking tools which 

will be described later in this text. These can suggest likely interaction sites between a 

protein and its target based on protein conformation and an in-built energy function.  

Predicting Protein-Protein interactions 

Protein-Protein interactions, commonly referred to as ‘docking’, are the physical 

interactions that occur between two or more proteins. This physical contact should be 

specific, in that it involves active sites directed at each other, and care must be taken to 

eliminate chance interactions. This is one of the biggest challenges to the exploration of 

these inter-protein dynamics. While it is relatively easy to show in silico that two 

proteins have some affinity towards each other in certain conformations, it is much more 

difficult to show conclusively that two or more proteins do not interact (28).  

Many tools, both standalone and web-based, exist for this purpose, but range from 

extremely basic tools that only give an overview, to more in-depth tools that have the 

ability to completely characterise the relationship between two proteins, but require 

considerable manual intervention. Broadly speaking, web-based servers can provide an 

overview of potential interactions between proteins. Web-based servers such as ClusPro 

yield a selection of potential interaction points between two structures, with associated 
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confidence scores (159).  Other web based servers include HADDOCK (160) and 

SWARMDOCK (161). At the minimum level of user involvement, all three of these 

servers can take as input two pdb files and predict the interactions that occur between 

them. They do offer limited levels of advanced usage - for example, ClusPro allows for 

the removal of unstructured protein regions, and consideration of small angle X-ray 

scattering data among others. HADDOCK allows the user to provide interaction 

restraints which can guide the search, but if these are not provided, the accuracy of the 

algorithm regresses (159).  

These web-based docking algorithms are convenient as they can give an outline of 

potential interactions with no requirements for expertise or computing power. If user 

expertise and computing power are available, standalone tools such as Autodock and 

Rosetta are considerably more powerful. Autodock is a suite of molecular modelling 

tools, initially designed to predict interactions between proteins and small molecules. 

Adaptations of these algorithms have led to their use in full protein-protein interaction 

prediction. Although still supported, Autodock has largely been superseded by 

Autodock vina, which delivers improvements both in accuracy and speed (162). 

Autodock vina still retains the focus of Autodock, which is the docking of proteins to 

small molecules, and although it can be used to predict interactions between two full 

proteins, it is a very slow process. The advances in speed that the heuristically modified 

QuickVina2 brings over Autodock Vina (163) allow for the prediction of interactions 

between full size proteins, provided that some information is known regarding binding 

sites.  

 

A recurring feature in any review of tools for in silico protein analysis, Rosetta has an 

extensive range of bespoke tools for the analysis of protein interactions. The general 

protein-protein interaction prediction framework within the suite is RosettaDock (164), 

which also exists as a web-server. In addition, numerous tools for the prediction of more 

specific interactions exist: 

• RosettaLigand (165) is the premier tool within the suite for prediction of 

interactions between proteins and small molecules.  
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• RosettaMP (166) is a tool specifically for the design of membrane-spanning 

proteins, and predicting their interactions. 

• The RosettaScripts scripting language allows for the generation of job-specific 

docking pipelines and scoring functions (167).  

 

Sequence-dependent information 

When confidence in the model is high, the predicted protein structure is extremely 

useful when attempting to predict function. As mentioned earlier, it is not always 

possible to predict the protein structure with any such confidence when the protein is 

greater than 150AA in length. There are other in silico parameters available to help 

assess a test sequence. The ProtParam tool hosted by ExPASy/Swiss institute of 

Bioinformatics is extremely useful for providing sequence-dependent data, as opposed 

to model/structure prediction-dependent data such as that provided by I-Tasser or 

Rosetta. Examples of the information available include the “Instability Index” of a 

protein as defined by Guruprasad et al (168). This provides an estimate of the expected 

stability of a protein in vitro, based on correlations identified between specific 

dipeptides and either stability or instability. The formula takes as input an amino acid 

sequence, and gives a score between 0-100, with an instability index below 40 

indicating a stable protein. The grand average hydropathicity (GRAVY) of a protein 

calculated on the Kyte-Doolittle scale is also offered on this web server, as well as 

several other descriptive features such as the Aliphatic Index and extinction coefficients 

(169). Given the huge amount of variables implicating the production of a protein and 

its subsequent structure and function, as many as possible should be controlled for. 

Towards in silico Protein Design 

The three dimensional structure of a protein determines its function in most cases, and 

this is a function of the primary amino acid sequence of a protein. When we consider 

that there are 20100 possible variations of a 100 Amino Acid long protein sequence, the 

scale of possibility in protein design becomes apparent. The figure below, adapted from 

work by Huang et al, demonstrates the considerable gap between protein conformations 

that exist in nature, and the total conformational space that is possible (170). Given the 
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extent of conformational and therefore functional potential still unexplored, a priority 

should be to design novel proteins to combat currently unsolved problems in medicine 

and human health.  

 

 

Figure 3.3: The scale of possibility within protein conformational space. The small dots 

represent the fold space explored by native, naturally occurring proteins, the larger 

spots represent the conformational possibilities arising from directed evolution, and the 

blue background represents the entire conformational space. 

 

Despite the immense potential of rational de novo protein design, more than 95% of 

protein engineering is still carried out by inserting random mutations and selecting those 

which confer an advantage (171). The rational design of proteins falls into two 

categories, the redesign of existing proteins in a process analogous to directed evolution, 

and the de novo design of completely novel proteins. Protein redesign uses naturally 

occurring proteins as scaffolds, and then engineers them to introduce desired changes, 

such as increased stability or new functional properties (172). This will produce novel 

proteins, but their origins will be firmly based in the naturally occurring protein fold 

space. The majority of protein engineering to date has been of this nature. This method 

is convenient as it provides a protein backbone starting block, particularly if the desired 

effect represents a minor alteration in the protein’s function. This becomes complicated 

when large numbers of amino acids are altered, since it becomes inevitable that the 

structure will also be altered. Native proteins are only marginally stable in many cases, 

so even small sequence changes can lead to dramatic changes such as aggregation or 
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unfolding (170). Major advances in medical science directly resulting from this degree 

of protein design include the humanisation of antibodies from other animal species, 

which entails modifying the wild type antibody to resemble human antibodies while 

retaining the original function. Two examples are Alemtuzumab (173) and 

Mepozulimab (174) for the treatment of multiple sclerosis and eosinophilic asthma 

respectively.  

True de novo protein design explores the entirety of protein sequence space, guided only 

by the physical interactions that control protein folding. The scale of possible protein 

conformations, once naturally occurring proteins are left behind is enormous. De novo 

protein design is based on the hypothesis that a protein will always fold into the shape 

associated with the lowest free energy state allowable by the amino acid sequence. 

Therefore, if an accurate method for measuring the energy of protein chains is available, 

in addition to a method to sample different structures and sequences it should be 

possible to identify sequences that fold into novel structures (170). Once the desired 

shape has been reached, the stability of the novel protein can be improved by making 

minor adjustments, maximising the difference in free energy between the desired 

conformation and alternatives. 

There are few if any intuitive protocols for de novo protein design available, and 

generally speaking, expertise in computational biology and protein structural sciences is 

a minimum requirement before proceeding. Some programmes exist which make use of 

existing knowledge to create a framework within which non-expert design of de novo 

proteins is possible.  

Intelligent System for Analysis, Model Building And Rational Design (ISAMBARD) is 

a suite of tools developed by Wood et al with the aim of facilitating the rational design 

of de novo proteins and structures, and subsequently assessing their viability. In the 

words of the authors, it provides “a starting point for going into the dark matter of 

protein fold space (172).” Geometrically regular protein structures such as α-helical 

coiled coils have been parameterised mathematically starting with Crick in 1953, and 

built on by several other groups in the following years. This allows for the parametric 
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design of repeat structures which can be used as scaffolds for further design in 

combination with other available tools and software.  

The Rosetta Suite has vast capabilities for the experienced user in terms of de novo 

protein design. This includes accounting for both L and D amino acids (175), reliably 

designing both structure and function (176), and the design of protein switches where a 

de novo protein can change shape in response to external stimuli (177). For the non-

expert user, some protocols exist for fragment-based design. This involves combining 

sections of several protein regions of known structure to form a new backbone. As this 

method uses already characterised proteins as building blocks, it is limited in the 

conformational space it can sample (172). This fragment-based design can be performed 

using tools such as RosettaRemodel (178).  

Conclusion 

The most apparent advantages of incorporating in silico analysis of protein structures 

into any synthetic biology pipeline are speed and cost. Thousands of potential constructs 

can be screened using combinations of the tools mentioned in this text, condensing 

possibilities down to a selection deemed most likely to be successful for the more 

expensive and time consuming laboratory work. In addition to this, the results of any 

laboratory work can be fed back into the in silico pipeline, thus improving any future 

simulations. The potential for expanding this in silico screening into the design of 

bespoke protein conformations tailored to a specific task has also been demonstrated and 

stands to revolutionise this and many other fields in the coming years.  
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“Assessing bioinformatic amplicon sequencing contamination control strategies via 

mock bacterial communities” 

-This manuscript is awaiting the publication of relevant Chapter IV data prior to 

submission. 
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83 
 

 

ABSTRACT 

Background Alterations in the microbiological signal caused by the presence of 

contaminant DNA are a major issue in microbiome studies. Considerable effort has gone 

into developing strategies and tools to identify and bioinformatically stop environmental 

bacterial contamination from distorting biological signal.  

Aim A consistently effective contamination control strategy incorporating biological 

and bioinformatic methods, and the ability to validate this method, particularly when 

sampling from new environments for the first time would be of considerable benefit to 

future microbiome research.  

Methods This study compares options for the removal of contaminant DNA and 

proposes an optimal approach. The effect of these on the results of a sequencing study 

were validated through the use of a mock community. The effectiveness of 

contamination control at the extreme end of the spectrum is demonstrated, using 

samples featuring low levels of bacterial biomass, which are then formalin fixed and 

embedded in paraffin. This required the samples to be subjected to a number of different 

reagents during the DNA extraction and purification process, as is necessary for 

bacterial sequence analysis of FFPE samples, providing many potential sources of 

contamination.   

Results Even in samples that consisted mainly of contaminant DNA, it was possible to 

reliably isolate the true sample DNA with a retroactive bioinformatics method based on 

the use of negative controls, to an extent where the effect on any downstream 

microbiome analysis would be negligible, as verified by the mock community.  

Conclusions  All labs carrying out sequencing experiments, but particularly those 

dealing with low biomass or otherwise challenging samples, should carry out a similar 

analysis validating their own biological and bioinformatic contamination control 

methods to gauge the degree to which environmental contaminants may affect future 

sequence based analysis. 
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INTRODUCTION 

Increasingly affordable culture-independent microbial surveys have sparked a surge in 

research furthering the understanding of the relationships between bacteria, but also 

viruses and fungi, and their hosts. This can be done primarily through the sequencing of 

amplified marker genes such as the 16S rRNA gene region in bacteria and ITS region in 

fungi or by non-specific sequencing of all DNA in a community using whole genome 

sequencing (1,2). Despite the advances that these new methods have yielded, there has 

been a realization within the field of sequence-based microbiome analysis of the threat 

posed by environmental contaminant DNA to the accuracy and reproducibility of 

research in this area. This has progressed to the extent that the validity of many 

microbiome surveys of low biomass environments have been rightly questioned(2,3). In 

response several groups have published both wet- and dry-lab methodologies for 

mitigating the impact of this contaminant DNA. These range from suggested protocols 

for negative controls(4), to bespoke bioinformatics tools for the retrospective 

identification and removal of contaminant sequences.  

Two advances in bacterial contamination removal are SourceTracker(5) and 

Decontam(6). SourceTracker predicts both the proportion of contamination and its 

origins, using a Bayesian approach combined with Gibbs sampling. The results of a 

sequencing experiment are divided into “sink” samples, and negative controls denoted 

as “source” samples. The algorithm divides “sink” samples into individual reads, each of 

which can be assigned to one of the “source” environments, or an unknown source if it 

is not predicted to have originated from a negative control sample. In summary, 

SourceTracker provides a clear picture of the extent to which negative controls have 

affected samples, but does not identify the taxa in question. The Decontam algorithm is 

more direct in its approach, and removes contaminant sequences based on two 

assumptions; (i)that sequences of contaminant origin are likely to inversely correlate 

with sample DNA concentration, and (ii) that contaminant DNA will have a higher 

prevalence in negative control samples(6).  

DNA contamination typically arises from DNA extraction kits, PCR reagents and the 

general lab environment (7). While all types of samples can be affected, low biomass 
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samples are particularly susceptible. These can be contaminated to a degree where the 

true microbial composition of the sample is completely altered(2). In addition to 

contamination from extraction kits and enzymes used in PCR reactions, certain samples 

require the use of additional buffers and reagents in order to extract bacterial DNA 

suitable for sequencing experiments. Two examples that are becoming much more 

prevalent in microbiome analysis are: 

• Samples with an overwhelming ratio of host DNA to bacterial DNA, such as non-tract 

biopsies. These need to be treated with bacterial enrichment solutions, many of which 

are not sterile(8).  

• Formalin Fixed, Paraffin Embedded samples. The formalin fixing process damages and 

crosslinks the DNA, and several steps must be taken to account for this(9,10).  

 

In both these cases enzymatic action is required, for purposes such as the depletion of 

host DNA, repair of DNA damaged by the formalin fixing process, or to lyse more 

resilient bacteria. Enzymatic action means that the reagents used cannot be autoclaved 

and therefore are not sterile.  

Several groups have recommended a more all-encompassing negative control strategy, 

incorporating many possible sources of contamination as well as positive controls or 

standards(11). It may seem logical to sequence every possible source of contamination if 

the circumstances allow, to be as thorough as possible. In practice this can lead to 

additional problems if not combined with correct retroactive bioinformatics-based 

contamination removal. This is because cross contamination between samples may 

occur, when DNA originating from the sample environment is transferred between 

samples. There are several causes for this but excluding human error during pipetting 

these are often very difficult if not impossible to control for in situ. Bacteria can become 

aerosolized when samples are being loaded into wells in PCR plates, or when the cover 

is removed from the PCR plate following the PCR reaction(12). There is a phenomenon 

known as “Tag switching” where sample barcodes migrate between wells(13). Barcodes 

can also be mistaken between samples as a result of sequencing miscalls due to poor 

sequence quality(14), a phenomenon which is thought to occur in between 0.6 and 6% 
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of all reads in a sequencing run(15). Cross contamination has a negligible impact on  

samples unless they are of extraordinarily low biomass, but negative controls with low 

quantities of input DNA are particularly susceptible to artefacts of this nature as they 

may have very few microbes and so can appear to be dominated by an microbial 

sequence that is in reality just highly abundant in samples. This is of particular concern 

when carrying out the conservative contamination removal by subtraction method such 

as the one possible to implement in the QIIME pipeline(16). Other commonly used 

solutions include filtering out low abundance taxa below an arbitrary threshold(17), this 

method would run the risk of also removing rare genuine taxa from the dataset. More 

importantly, if a source of contamination was abundant enough to have a significant 

impact on downstream analysis, it would not be removed by this method(6). 

Of the recent 16S rRNA gene sequencing surveys present in the literature, the most 

challenging sample type that stands out is formalin-fixed paraffin embedded (FFPE) 

tissue(18). Here we test if samples having both low biomass and numerous plausible 

sources of contamination, could be reliably and reproducibly explored. We were able to 

isolate the endogenous biological signal, using a variety of negative controls as 

suggested by Eisenhofer et al (12), combined with bioinformatic contamination 

elimination, and crucially were able to validate the effectiveness of our approach by 

using mock bacterial communities in FFPE. We show that when a robust negative 

control strategy is combined with an effective bioinformatic contamination removal 

strategy, the effect of contamination on the overall biological signal can be almost 

entirely eliminated. This opens the door for microbiome investigations into a wide range 

of samples types, not limited to FFPE, many of which are currently treated with some 

degree of scepticism due to their susceptibility to contamination.  
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MATERIALS AND METHODS 

All laboratory work was carried out by other members of the Tangney lab. This study 

simulated a challenging sample condition by creating a bespoke mock sample of mouse 

tumor cells and 4 different bacterial taxa. These were then formalin-fixed and paraffin 

embedded in the same way as genuine patient samples. Following this they are treated 

with a number of reagents and solutions to decrosslink the DNA, enrich and repair 

bacterial DNA and ultimately prepare a 16S sequencing library (8,19,20). 

 

Mock Community Design 

Four known bacterial species were used in this mock community. They were E. coli – 

K12 MG1655, Salmonella Typhimurium 7207, Staphylococcus aureus newman, and 

Streptococcus agalactiae COH1. To replicate a clinical FFPE sample, which is typically 

a biopsy, as closely as possible, Mus musculus mammary gland cancer cells (4T1) were 

also added. These cells were pelleted and suspended in formalin, before being added to a 

sterile mould with an equal volume of sterile agar. This was then dehydrated and 

paraffin embedded as per the protocol outlined in Chapter IV.  
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FFPE sample preparation 

The formalin fixed biological standards were then treated in the same way as FFPE 

samples and processed according to an in-house protocol (for further details, see 

Chapter IV) 

 

V3-V4  16S rRNA sequencing  

Genomic DNA was amplified using 16S rRNA gene amplicon polymerase chain 

reaction (PCR) primers targeting the hypervariable V3–V4 region of the 16S rRNA 

gene: V3–V4 forward, 5′-TCGTCGGCAGCGTCAGATGTGT 

ATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and V3–V4 reverse, 5′-

GTCTCGTGGGCTCGGAGATGTGTA 

TAAGAGACAGGACTACHVGGGTATCTAATCC-3' (Illumina 16S Metagenomic 

Sequencing Protocol, Illumina, CA, USA). A 35-µl PCR was performed for each sample 

per the following recipe: 3.5 µl of template DNA, 17.5 µl of KAPA HiFi HotStart 

ReadyMix (Roche), 0.7 µl of both primers (initial concentration, 10 pmol/µl), 0.1 µg/µl 

bovine serum albumin fraction V (Sigma), and 8 µl of 10 mM TrisCl (Qiagen). Thermal 

cycling was completed in an Eppendorf Mastercycler per the directions in the 

‘Amplicon PCR’ section of the ‘16S Metagenomic Sequencing Library Preparation’ 

protocol (Illumina). Amplification was confirmed by running 5 µl of PCR product on a 

1.5% agarose gel at 70 volts for 80 min, followed by imaging on a Gel Doc EZ System 

(Bio-Rad). The product was ~450 base pairs (bp) in size. PCR-positive products were 

cleaned per the ‘PCR CleanUp’ section of the Illumina protocol, with the exception that 

drying times were reduced to half the prescribed duration to account for the additional 

drying that occurs in a laminar airflow hood. Sequencing libraries were then prepared 

using the Nextera XT Index Kit (Illumina) and cleaned per the Illumina protocol. 

Libraries were quantified using a Qubit fluorometer (Invitrogen) using the ‘High 

Sensitivity’ assay. Sample processing was subsequently completed at Genewiz inc. 

Samples were normalised, pooled and underwent a paired-end 300 bp run on the 

Illumina MiSeq platform. 
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Bioinformatics analysis  

The quality of the paired-end sequence data was initially visualised using FastQC 

v0.11.6, and then filtered and trimmed using Trimmomatic v0.36 to ensure a minimum 

average quality of 25. The remaining high-quality reads were then imported into the R 

environment v3.4.4 for analysis with the DADA2 package v1.8.0. After further quality 

filtering, error correction and chimera removal, the raw reads generated by the 

sequencing process were refined into a table of Amplicon Sequence Variants (ASVs), 

which can be considered analogous to OTU’s, and their distribution among the samples. 

The ASVs were classified using the classify.seqs function in Mothur and the RDP 

database.  

Reference Data Generation  

The sequences present in samples were blasted against a database of the 16S rRNA gene 

regions of the known input bacteria. Only reads with 97% sequence similarity were 

retained, this was to allow for sequencing miscalls, and DNA damage due to the 

formalin fixing process. The database was formatted using the makeblastdb facility and 

the search was carried out using blastn, both programmes are contained in the BLAST+ 

toolkit. This reference table will be referred to as the “Reference table”. BLAST was 

used with the exact reference sequences as opposed to relying on the classification from 

Mothur, as most species classification algorithms have a degree of trade-off between 

accuracy and speed(21).  

 

Statistical analysis  

All statistical analysis was carried out in the R environment v3.6.0. The Vegan package 

v2.5.2, Phyloseq package v1.2.4 and the Ape package v5.1 were used to calculate beta 

diversity. All statistical comparisons between grouped samples were carried out using 

Wilcoxon signed-rank tests.  Visualisation was performed using the Ggplot2 package 

v3.2.1.  
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Bioinformatic  retrospective contamination removal 

Three different approaches to contamination removal were compared in this study based 

on options often used in relevant sequencing studies. 

• Contamination removal by subtraction: 

Negative controls and samples were divided into two separate count tables, and any 

sequence present in the negative controls is removed from the dataset.  

• Decontam algorithm(6) 

Use of Decontam with default settings, using negative control samples as a guide.   

• Combined guided approach 

Combination of two published bioinformatic contamination control tools, Decontam and 

SourceTracker(22). This is the recommended method and is described in greater detail 

in Figure 1.  

 

These methods were validated biological standard mock community instead of patient 

samples, allowing for a quantifiable measure of their effectiveness by comparing them 

to the Reference table as shown in Figures 2-6. 
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 Figure 1: Proposed workflow for contamination removal and subsequent validation. This involves preparing the positive controls 

in a manner consistent with the patient samples, extracting DNA, and sequencing.   Resulting data is assessed for contamination, 

using negative controls and bioinformatic techniques. The entire process is then validated by comparison with a reference table 

containing only the known bacterial species used when preparing the standard community. 



 

92 
 

RESULTS 

Figure 2 shows a comparison between all bacterial sequences in the dataset, and the 

Reference table. It is clear that contaminant bacterial DNA has had a major influence on 

the true biological signal as there is considerable difference between the two groups in 

terms of sample composition. Many obvious contaminant families such as 

Xanthomonadaceae (members of which are typically environmental organisms(23)) are 

present in the “Test” group only. The three families found in the Reference table are all 

significantly decreased in the “Test” group in this instance (p = < 0.001). Finally, figure 

2B models the effect this contamination would have on any downstream analysis by 

examining the distance between the paired samples on a PcOA plot. 
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Figure 2: Comparison of (A) Reference table (obtained by BLASTing known input sequences against ASV table generated by 

DADA2) vs (BB) full count table with no contamination based modifications. The impact contamination has on sample beta 

diversity is shown in (CC), distance matrix was calculated using Bray-Curtis dissimilarity. 
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The following figures highlight the effectiveness of different negative control strategies.  

Figure 3 shows the results of a contamination removal by the commonly used 

subtraction approach, where any sequence found in the negative controls is removed 

from the count table, which is then compared to the Reference table. While the sample 

composition tables look more similar than in Figure 2, there are statistically significantly 

lower levels of Enterobacteriaceae (p= 7.2e-6) and higher levels of Staphylococcaceae 

(p = 0.013). Despite the apparent visual similarity seen in terms of sample composition, 

the euclidean distance between paired samples indicates that contamination in 

combination with the heavy-handed contamination removal strategy would impair the 

accuracy of any further analysis using this data.   
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Figure 3: Comparison of (A) Reference Table vs (C) count table with contamination removed by subtraction.  All ASV’s found in 

negative controls are removed from entire dataset.. The impact contamination has on sample beta diversity is shown in (B), with the 

distance matrix calculated using Bray-Curtis dissimilarity.
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Figure 4 shows the results of a generic implementation of the Decontam algorithm, 

using the negative control samples as a reference. In this instance the algorithm has no 

tangible effect, as we can see from the marked differences in sample composition at the 

family level with statistically significant reductions in the levels of Enterobacteriaceae 

(p = 7.2e-6), Staphylococcaceae (p = 7.6e-6), and Streptococcaceae (p = 7.6e-6). In 

addition and the euclidean distance between paired samples on the PcOA plot shows 

that any downstream analysis would be inaccurate.  
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Figure 4: Comparison of (A) REFERENCE table vs (BB) count table with contamination removed by blind use of Decontam 

algorithm. The impact contamination has on sample beta diversity is shown in (CC), with distance matrix calculated by Bray Curtis 

dissimilarity. 
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Results of proposed contamination removal workflow 

Figure 5 shows the output of the SourceTracker algorithm, which is used to assess the 

proportion of bacteria originating in the surrounding environment (i.e. negative controls) 

present in the samples when applied to the test data. The grey shaded region in the pie 

charts is the proportion bacteria not attributable to environmental contamination by 

source tracker. Thus contamination was ubiquitous among the samples analysed, with 

the highest contributions coming from “extraction negative” and “Negative control 

solution 3”. This information was used to inform the next step in our contamination 

removal strategy.  

 

 

Figure 5: Sourcetracker output, mapping the sequences detected in samples to 

sources of contamination. Grey shaded region indicates suspected genuine bacterial 

sequences of sample origin, other shaded regions correspond to different negative 

controls. The negative controls impacting on samples that should be used for 

contamination removal are identified in bold with stars.    

 

Figure 6 compares the REFERENCE table with the count table resulting from this 

contamination removal strategy, involving both SourceTracker and Decontam, as 

outlined in Figure 1. The sample composition plot in this case is very similar to the 

reference table, with the only difference being low levels of the common contaminant 

family Pseudomondaceae.  
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Comparisons of sample composition at the family level of taxonomy found no 

difference in the levels of any of the taxa originating in the samples.  Here, unlike in the 

case of the contamination removal by subtraction, we see that there is no significant 

difference in beta diversity between paired samples, suggesting that contamination is 

unlikely to markedly affect any downstream microbiome analysis.  
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Figure 6: Comparison of (A) REFERENCE table vs (C) count table with contamination removed by Decontam, and guided by 

SourceTracker. The impact contamination has on sample beta diversity is shown in (B), with the distance matrix calculared using 

Bray-Curtis dissimilarity.
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The effectiveness of this strategy was validated by re-analysis with the 

SourceTracker algorithm (Figure 7). This time the algorithm shows that the level of 

contamination in the samples has decreased significantly. Most samples show only 

trace amounts of contamination, with only one sample still having a level of 

contamination comparable to pre-contamination removal levels. A second 

verification step is shown in the same figure. As contamination control inevitably 

involves the removal of reads, care should be taken to ensure that sufficient sampling 

depth remains to accurately characterise each sample, as evidenced by a plateauing 

of the rarefaction curve for a sample.  
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Figure 7: (A) SourceTracker algorithm run on new count table following 

contamination removal. Grey shaded region represents the true biological signal. 

(B) Rarefaction curve plotting observed species against number of reads 

examined.  
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In summary, Table 2 below shows the mean Euclidean distance between matched 

samples following the different contamination removal strategies outlined up to this 

point to mathematically assess their effect on any further analysis.  The manually 

supervised contamination removal approach incorporating both SourceTracker and 

Decontam significantly improves on all the other methods examined (p = < 0.001).  

Table 1: Table showing the mean Euclidean distance between paired samples for 

each ASV table vs the reference table, on PcOA plot. Guided method is statistically 

significantly closer to reference method than any of the other groups. (p = < 0.001 

in all cases)  

 

 

 

 

 

 

 

 

  

Strategy Mean 

Distance 

REFERENCE table vs No Contamination Control 0.070 

REFERENCE table vs Contamination removal by 

Subtraction 

0.062 

REFERENCE table vs Generic implementation of 

Decontam 

0.070 

REFERENCE table vs Manually supervised 

contamination removal 

0.009 
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DISCUSSION 

The choice of approach to contamination removal was shown to have a marked 

effect on the composition of the samples analysed, and thus on any downstream 

analysis. As expected from samples of this nature, there was considerable 

contamination present. The initial comparison between the REFERENCE table and 

the untreated count table show that the sample composition was completely altered 

by environmental contaminants. That this would also affect any downstream 

diversity analysis was confirmed as the paired samples diverge significantly on a 

PcOA plot calculated with Bray-Curtis dissimilarity (Figure 2). It must be concluded 

that carrying out a microbiome survey samples of this kind, and potentially many 

low biomass or FFPE samples, without accounting for this contamination would 

have been untenable.   

The problem of contamination control is not as simple as removing any sequence 

variant that appears in the negative controls. This approach is shown in Figure 3. 

Although the sample composition plots looked similar, the paired samples showed a 

high degree of between sample variation. The reason for the difference in beta 

diversity between the REFERENCE table and the untreated count table in this 

instance was that several high abundance sequences were erroneously removed from 

the dataset as they appeared in low quantities in some of the negative controls. This 

does not necessarily mean that they are contaminants, but rather could be artefacts of 

the sample preparation or sequencing process, as a result of cross contamination 

within a run as previously reported (14). So while a blanket removal of these 

potential contaminant sequences does show an improvement over making no 

intervention, it is not a perfect solution.  

The previous example showed a contamination control method that was too 

conservative, with many falsely identified contaminants. The approach highlighted 

in Figure 4 was the opposite in that many true contaminants were allowed to remain 

in the ASV table. This strategy is included as a warning that simple “black-box” use 

of many bioinformatic tools, and Decontam in particular can lead to erroneous 

results negatively impacting further research. The inclusion of negative controls 

blindly without assessing their impact on the samples, or whether the number of 

reads present would leave them susceptible to being dominated by a cross-



 

105 
 

contaminant has a significant impact on the accuracy of the Decontam algorithm. 

Equally important is setting the threshold to a level that matches the degree of 

contamination presentpresent in samples, to ensure that the contamination removal 

process is not too lax or too strict. SourceTracker can assist in this. If 

decontamination tools are run blindly, it is shown here that they have little if any 

beneficial effect on the accuracy of results, manual supervision of this process is 

necessary.  

SourceTracker should be used to assess the relationship between samples and 

negative controls before attempting to remove contaminant sequences. This allows 

for contamination control to only be based on those negative controls that have a 

clear and significant effect on the samples. This lowers the possibility of false 

positives as seen in Figure 3, or false negatives as seen in Figure 4. While this 

manual approach does still show some contamination, indicating a higher false 

negative rate than the contamination removal by subtraction method, it has a 

considerably lower false positive rate in terms of contaminant identification. The 

effectiveness of this strategy is shown by the fact that there is minimal difference 

between paired samples on PcoA plot or sample composition plot. The method 

issignificantly more accurate than others tested (p < 0.001), and appears to negate the 

impact of contamination on downstream analysis.  

We have shown that when properly combined, a robust negative control strategy 

along with manually supervised bioinformatic retrospective removal of known 

contaminants can limit contamination to an extent where the effect on any 

downstream microbial analysis is inconsequential. There is always room for 

improvement, and in a similar fashion to many recent publications that have 

published tables of bacterial taxa known to be environmental contaminants in 

sequencing experiments, labs should strive to develop in house databases of 

contaminant reads identified in commonly used reagents. These could be used as an 

initial screen of any count tables generated, working in a similar manner to the many 

reference-based chimera removal tools that exist today (24).  

One final consideration when undertaking contamination removal is the fact that 

reads must be discarded during this process. This must be taken into consideration 

when designing the sequencing experiment. A typical Miseq sequencing run can be 
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expected to produce 13.2-15 million paired end reads, which are roughly evenly 

distributed among samples (25). The sequencing library should be generated with 

this in mind to ensure sufficient sampling depth remains after the contamination 

removal process, which can be simplified using the sequencing coverage calculator 

found on the Illumina website(26). This can be assessed after the fact using 

rarefaction curves, which the number of reads checked vs the number of new species 

identified and the curve is expected to plateau if sufficient sampling depth has been 

achieved (27). 
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CONCLUSION 

When combined with positive and negative controls, it is shown that even samples 

with heavy contamination can be restored to a state where they can give accurate and 

reproducible information. The recommendation is that all future sequencing studies 

involving samples vulnerable to contamination be accompanied by both a wide 

variety of negative controls, and a number of positive controls that closely resemble 

the samples being analysed.   
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Chapter III 
 

Bacteria in breast tumours 

This manuscript is currently being prepared for submission in combination with 

another research project.  

 

  



 

111 
 

ABSTRACT 

Background Although the existence of a bacterial community in both breast 

tumour tissue and healthy adjacent tissue has been reported by numerous groups 

since 2014, it remains a contentious issue. Tumour samples provide many obstacles 

to carrying out robust and reliable microbial surveys, primarily due to the anticipated 

low bacterial biomass of these samples. This feature of breast tumour samples has 

stifled research in this field as previous studies analysing low biomass data such as 

breast tissue have been cited for taking insufficient precautions in limiting the effect 

environmental contamination has on the results. While the debate continues over the 

presence or absence of bacteria in niches of low biomass, no further research can be 

conducted on how bacteria could be utilised for therapeutic purposes if they are 

indeed present.  

Aim This study set out to definitively assess the presence of endogenous bacterial 

communities in breast tumours and the associated healthy adjacent tissue.  

Methods The study incorporated a robust negative control strategy, makes use 

of the recent developments in bioinformatic contamination removal, and examines 

choice of primer site for amplification or presence of extracellular DNA playing a 

role in the outcome.   

Results  The presence of a detectable tumour microbiome was evident in the 

majority of tumour samples, and was similar in community structure to that of the 

skin and normal adjacent tissue with some statistically significant differences, 

amounting to a distinct microbial signature unlikely to be due to sample or kit 

contamination.  

Conclusions This study indicates the presence of bacterial communities in both 

malignant and non-malignant breast tissue in the majority of cases, and that the two 

can be differentiated based on their bacterial composition.  
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INTRODUCTION 

According to the World Health Organisation, breast cancer affects 2.1 million 

women worldwide annually, which resulted in 627,000 deaths in 2018, constituting 

15% of all cancer deaths among women that year. While incidence rates increase 

3.1% globally, they still vary considerably between high income countries such as 

the United States (92 per 100,000) and lower income regions such as eastern Asia 

(27 per 100,000) (1). This is reflective not only of the increased likelihood of risk 

factors such as hormonal contraception, lack of breastfeeding, obesity and alcohol 

use, but also of the lower rate of detection in poorer regions so these rates may be 

closer together than currently thought (1). Potential avenues towards the 

development of improved treatment and detection strategies come from a myriad of 

sources, and one that should not be discounted, despite early setbacks, is the 

possibility of utilising endogenous bacterial communities within breast tumours for 

therapeutic or diagnostic purposes. There are four key physiological features shared 

by solid tumours which theoretically should promote bacterial colonisation: (i) 

Leaky vasculature which could allow circulating bacteria to embed in tumour tissue, 

(ii) the immune privileged nature of tumours, (iii) solid tumours possess low oxygen 

regions suitable for the proliferation of facultative and anaerobic bacteria, and (iv) 

high turnover regions of tumours are nutrient rich, promoting bacterial growth (2).  

Research has been conducted assessing the viability of using bacterial colonisation 

of tumour environments as a diagnostic or therapeutic tool (3).  Further research 

would benefit from high quality reproducible work to definitively confirm the 

natural presence of bacteria in tumour tissues. Unfortunately, features inherent of 

tumours and adjacent tissue have hampered progress. Firstly, the quantities of 

bacteria present are often so low that it becomes difficult to differentiate between 

any bacteria genuinely originating in the sample, and those arising from 

environmental contamination during the extraction, or library preparation process. 

This issue has plagued numerous recent studies of low bacterial biomass 

environments, including work done by our own group. Related to this, human 

biopsies, particularly those from “non-tract” locations can be expected to have 

overwhelming ratios of host to bacterial DNA. In these circumstances, 16S rRNA 

gene-specific primers have been shown to amplify human reads in addition to 

bacterial reads, which further clouds the analysis of these environments (4). Since 
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the idea of bacteria living within healthy and malignant breast tissue was first 

theorised (5), tumours at a variety of other body sites have been examined in the 

hope of discovering a bacterial microenvironment. Many of these have been 

beleaguered by the problems outlined above, but recent studies (6,7) have shown that 

at least some tumour sites do appear to contain a detectable bacterial 

microenvironment and that the tools, both laboratory and bioinformatic, exist to 

reliably analyse these microenvironments.  

Such samples have only become accessible to researchers due to the increased 

emphasis in recent years on reproducibility and quality control in microbiome 

research, primarily centred on contamination control. The fact that the majority of 

reagents and extraction kits used in sequencing library preparation are not sterile and 

can therefore alter the microbial profile of a sample was first brought to light by 

Salter et al in 2014 (8) and confirmed repeatedly by several high impact publications 

such as De Goffau et al (9). In response to this, guidelines have been published for 

effective negative control strategies to quantify the effect of these kit contaminants 

(10), and bioinformatics tools developed to retrospectively mitigate the effect they 

have on eventual analysis (11,12).  

Here, we account for potential sources of error that have been highlighted in 

previous research of a similar nature. This begins with a robust contamination 

control strategy outlined here in considerable detail. Following this, the effect of the 

16S rRNA gene region targeted, and the potential presence of extracellular DNA in 

samples is also investigated. There has been considerable debate over which 

hypervariable region to target, and two of the most common regions (V1-V2 and V3-

V4) were compared to assess what effect, if any, choice of hypervariable region had 

on sequencing results.  The phylogenetic variability within the V4 region shows the 

strongest correlation with the phylogenetic variability of the 16S rRNA gene 

fragment overall, and the combined length of the V3-V4 region of 439 bases yields a 

large region for discrimination between taxa while still allowing for trimming due to 

poor sequencing quality. Conversely, the V1-V2 region is only 298 bases in length in 

E. coli, but this allows for a near total overlap of forward and reverse reads, which 

ensures for considerable noise reduction from sequencing errors (13). The V1-V2 

region of the 16S rRNA gene has been adopted by many groups studying low 



 

114 
 

biomass samples as this shorter length has been shown to allow more efficient 

amplification of low abundance template sequences (14). 

Determining the presence of bacteria in tumours as distinct from environmental 

contamination is approached here by combining a robust negative control strategy 

with effective bioinformatic removal of contaminant reads. Two recent bioinformatic 

tools, Sourcetracker(11,12) and Decontom(11) were used to facilitate this. 

Sourcetracker uses Bayesian statistics to predict the proportions of bacteria in 

samples that may have originated from designated source environments, which in 

this case were negative controls. When used in this way, it works well as an initial 

screening tool to assess the degree of contamination present. Decontam removes 

contaminant reads, either by eliminating reads that have an inverse correlation with 

input DNA, or based on their abundance negative controls. In both cases Decontam 

requires that a threshold is set, and this can be dictated by the results of 

SourceTracker.  

One of the limitations of DNA sequence analysis is that it gives no indication of 

whether the DNA present in a sample is contained within living bacteria, dead intact 

bacteria, or extracellular DNA originating from biofilms or dead bacteria. A pre-

treatment step with DNAse, an enzyme that non-specifically cleaves DNA is often 

incorporated into metagenomics workflows to remove this extracellular DNA prior 

to amplification, ensuring that only intact bacteria contribute to the microbial 

profiling of an environment (15).  

With these confounding factors controlled for, the ultimate aim of this study is to 

provide a highly reproducible and reliable survey of the bacterial communities 

present in breast tumours and their adjacent tissues.   
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METHODS 

Sample Collection to reduce contamination 

‘Fresh’ specimens were provided directly from the operating theatre, as opposed to 

sectioning in histology laboratory, in order to minimise exposure to environmental 

contaminants. All samples were provided by a single surgical team under a single 

consultant ensuring consistency. Tumour tissue was biopsied using a 14 French 

ACHIEVETM programmable automatic biopsy system. Additionally, a skin swab 

(SS), a normal adjacent (NA) sample were taken from each patient to complement 

the tumour sample (TS), to ensure that any variability found in the diversity or 

composition of different sample types was down to the niches themselves and not 

confounded by person to person variation in the microbiome.  

 

Sequencing Library Preparation 

DNA extraction and library preparation work was performed by other members of 

the Tangney lab. 

Genomic DNA was amplified using 16S rRNA gene amplicon polymerase chain 

reaction (PCR) primers targeting the hypervariable V3–V4 region of the 16S rRNA 

gene: V3–V4 forward, 5′-TCGTCGGCAGCGTCAGATGTGT 

ATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and V3–V4 reverse, 5′-

GTCTCGTGGGCTCGGAGATGTGTA 

TAAGAGACAGGACTACHVGGGTATCTAATCC-3' (Illumina 16S Metagenomic 

Sequencing Protocol, Illumina, CA, USA).  

A 35-µl PCR was performed for each sample per the following recipe: 3.5 µl of 

template DNA, 17.5 µl of KAPA HiFi HotStart ReadyMix (Roche), 0.7 µl of both 

primers (initial concentration, 10 pmol/µl), 0.1 µg/µl bovine serum albumin fraction 

V (Sigma), and 8 µl of 10 mM TrisCl (Qiagen). Thermal cycling was completed in 

an Eppendorf Mastercycler per the directions in the ‘Amplicon PCR’ section of the 

‘16S Metagenomic Sequencing Library Preparation’ protocol (Illumina). 

Amplification was confirmed by running 5 µl of PCR product on a 1.5% agarose gel 

at 70 volts for 80 min, followed by imaging on a Gel Doc EZ System (Bio-Rad). The 

product was ~450 base pairs (bp) in size. PCR-positive products were cleaned per 
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the ‘PCR CleanUp’ section of the Illumina protocol, with the exception that drying 

times were reduced to half the prescribed duration to account for the additional 

drying that occurs in a laminar airflow hood. Sequencing libraries were then 

prepared using the Nextera XT Index Kit (Illumina) and cleaned per the Illumina 

protocol. Libraries were quantified using a Qubit fluorometer (Invitrogen) using the 

‘High Sensitivity’ assay. Sample processing was subsequently completed at Genewiz 

inc. Samples were normalised, pooled and underwent a paired-end 300 bp run on the 

Illumina MiSeq platform. 

 

Bioinformatic analysis 

The quality of the paired-end sequence data was visualised using FastQC v0.11.6, 

and then filtered and trimmed using Trimmomatic v0.36 to ensure a minimum 

average quality of 25. The remaining high-quality reads were then imported into 

the R environment v3.4.4 for analysis with the DADA2 package v1.8.0. After further 

quality filtering, error correction and chimera removal, the raw reads generated by 

the sequencing process were refined into a table of Amplicon Sequence Variants 

(ASVs) and their distribution among the samples. It is recommended that ASVs 

(formerly called ‘Ribosomal Sequence Variants’) are used in place of ‘operational 

taxonomic units’ (OTU). OTUs are clustered at a pre-determined threshold of 

similarity, typically 97%, which distances them from the ecological reality present in 

a sample. As the name suggests, an ASV represents an existing biological sequence 

variant found in the sample.  

Alpha diversity calculated as Chao1 species richness, and Bray-Curtis distances, for 

analysis of beta diversity, were calculated using the PhyloSeq package v1.24, and the 

Vegan package v2.52. Beta diversity calculations produce distance matrices with as 

many columns and rows as there are samples; thus, beta diversity is often 

represented using some form of dimensionality reduction, in this case, using 

principal co-ordinates analysis (PCoA) with the Ape package v5.1. Hierarchical 

clustering, an unsupervised method that can reveal key taxa that distinguish their 

respective environments, was performed with the heatplot function in the made4 

package v1.54. Differential abundance analysis was carried out using Deseq2 v1.2.0, 

which identifies differentially abundant features between two groups within the data. 
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Tests of means were performed using the Mann-Whitney U test unless otherwise 

stated, and correlations were calculated using Spearman’s rank correlation 

coefficient. Where applicable, false positive rates were controlled below 5% using 

the FDR procedure. Random forest classification trees were built using the 

RandomForest(v4.6.15) and pROC(v1.15.3) packages in R. Developed in 2001(16), 

this tool is particularly suitable for classification based on sequence data as it is 

computationally efficient, gives an estimate of the importance of each predictive 

variable (in this case ASV’s), and limits model overfitting by making decisions on 

splitting of samples at a particular node on a randomly sampled subset of the dataset, 

rather than all available sequences. As thousands of trees are created with each 

implementation of the algorithm there is no risk of loss of information(16). 

Despite not identifying the contaminant taxa themselves, the source tracker utility is 

invaluable in estimating the proportion of a sample (“Sink”) that may have 

originated in a negative control (“Source”) Decontam can remove taxa, based on 

presence or absence in negative controls, or inverse correlations with input DNA but 

requires a threshold to be set, which can be dictated by SourceTracker. The 

effectiveness of this can then be confirmed by SourceTracker.  
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RESULTS 

Table 1: Samples analysed. Multiple samples per patient in some cases to account 

for possible sources of error.  

*Indicates >500 reads remaining after removal of environmental contamination and 

non-microbial reads. 

 Tumour Normal Skin 

Swab 

Total 

Sequenced samples (including 

replicates) 

37 40 31 108 

Surviving Contamination  

Removal* 

29 40 30 99 

DNase – replicates (No DNAse 

treatment of samples) 

2 10 3 15 

V1-V2 Primer Pair replicates 8 0 0 8 

Final analysis 19 30 27 76 

 

1. Contamination control 

The full breakdown of comparisons performed to control for sources of error, and as 

part of the final analysis can be seen in Table 1. Figure 1A shows the composition at 

family level of the samples, prior to any contamination removal. The samples are 

grouped by sample type (Ductal tissue, Normal Adjacent tissue, Skin Swab, Tumour 

tissue) and within this by DNAse status. Some sample were treated without DNAse 

to investigate the effect of DNAse treatment on the levels of environmental 

contamination. In addition, the family level taxonomic composition of each sample 

and the number of reads associated with each sample can be seen above the plot (i). 

Figure 1B shows a sample composition pie chart at a per sample level, showing the 

estimated proportion of reads within each sample originating in one of the negative 

controls. Grey shaded regions indicate the proportion of non-contaminant reads. 
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Some samples show contamination in excess of 50 %, but the majority show little to 

no effect by environmental sources, which is encouraging for downstream analysis.  

 

Figure 1: Sample overview prior to contamination removal. (A) (i) Family level 

composition of patient samples, ordered by sample type and DNASE status 

consecutively. (ii) indicates the number of reads present in each sample. (B) 

SourceTracker output using the negative controls as “Source” samples, and the 

patient samples and “Sink” samples. Data shows light to moderate contamination 
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among samples, with only 3 samples showing in excess of 50% contamination, as per 

SourceTracker.  

 

The effectiveness of the contamination strategy can be seen by comparing the results 

shown in Figure 1 with those in Figure 2 below, which show the same samples in the 

same order, but following removal of reads identified as environmental contaminants 

by a combination of SourceTracker and Decontam. As the initial iteration of 

SourceTracker only implicated the kit control samples in introducing contamination 

to the samples, the PCR controls were dropped prior to contamination removal. The 

low number of reads in these samples also made them high risk samples for false 

positive identification of contaminants due to cross contamination between patient 

samples and negative controls, either during the library preparation or sequencing 

stage. As can be seen in Figure 2, the contamination removal strategy was effective, 

and all samples are now almost entirely free of detectable contamination.  
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Figure 2: Sample overview following contamination removal. (A) (i) Family level 

composition of patient samples, ordered by sample type and DNASE status 

consecutively. (ii) indicates the number of reads present in each sample;;   (B) 

SourceTracker output using the negative controls as “Source” samples, and the 

patient samples and “Sink” samples. Consensus plot shows clearance of reads 

originating in negative controls as per SourceTracker.  

 

Contamination removal saw a reduction in the average reads per sample from 9084 

to 6934, but the overall structure of the bacterial community remains unchanged. 

Although some trace amounts of contamination do remain in a few samples, it is safe 

to say that contamination does not remain in the levels necessary to alter any 
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biological signal present in the samples, and should not significantly impact any 

downstream analysis.   

Due to the susceptibility of these samples to contamination, and the fact that trace 

amounts of contamination are still present as per SourceTracker, post retrospective 

contamination removal, the decision was made to employ the conservative strategy 

of removing any ASV appearing in the negative controls from the dataset.  

 

2. Target region of choice 

As mentioned earlier, several groups have suggested a shift to the V1-V2 

hypervariable region of the 16S rRNA gene fragment, from the more widely used 

V3-V4 region. The effects of which target region is used are shown in Figure 3.  
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Figure 3: Pairwise comparison of samples using V1-V2 and V3-V4 primer pairs. 

(A) (i) Reads per sample following the contamination removal outlined previously. 

(ii) Sample composition at the family level of paired samples. (B) Average Chao1 

species richness between samples amplified using V1-V2 primers (red) and V3-V4 

primers (blue). (C) Comparison reads per sample pre and post removal of 

contaminant and human aligning reads. In both (B) and (C) statistical testing is 

performed using Wilcoxon signed-rank test. 
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Samples amplified using primers targeting the V1-V2 hypervariable region showed a 

consistently increased number of reads per sample after the removal of contaminant 

and non -bacterial reads (as per Mothur classifier) (Figure 3A) and also a decreased 

reduction in overall reads when comparing samples before and after this removal of 

reads. More than 90 % of the reads that did not classify as bacterial representative 

sequences were confirmed as human reads by BLAST. This tells us that the V1-V2 

region is undoubtedly more suited to samples presenting with low biomass and an 

extremely high ratio of human reads. In the context of this study, the disparity in 

reads per sample did not have a negative impact on the diversity of the 

environments.  
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3. Effect of DNase treatment 

  

Figure 4: Pairwise comparison of samples using with and without DNase 

treatment. (A) (i) Reads per sample following the contamination removal outlined 

previously. (ii) Sample composition at the family level of paired samples. (B) Bray-

Curtis dissimilarity between Dnase + and – samples, showing no significant 

difference between groups as per PERMANOVA (p = 0.98). (C) Alpha diversity 

boxplots calculated using Chao1 species richness. Significance detected using 

wilxocon signed-rank test. The three panels of this figure show conclusively that no 

intra-sample variation due to DNAse treatment is detected.  
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No significant difference was seen between samples with or without DNase 

treatment in terms of alpha diversity, calculated using Chao1 species richness. Beta 

diversity, calculated using Bray-Curtis dissimilarity and visualised on a PcOA plot 

showed no observable separation based on DNAse status, which was confirmed 

statistically using Permanova analysis. This is mirrored by the sample composition 

plot, where paired samples closely resemble each other. 
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4. Diversity Overview 

 

Figure 5: Diversity based comparison of the three patient environments. (A) Bray-

Curtis dissimilarity comparing Tumour, Normal Adjacent and Skin swab samples 

types. Ellipses represent 80 % confidence interval for sample type. (B) Alpha 

diversity boxplots visualising differences in Chao1 species richness between 

samples. Significant decrease in diversity as per Kruskal-Wallis test (p = 0.021). (C) 

Elimination of potential confounding factors. Same ordination, due to Bray-Curtis 

dissimilarity as (A) with points overlaid with colouring by reads per sample, with 

paired samples joined by line. Neither of these causes any significant clustering. (D) 

Same ordination, due to Bray-Curtis dissimilarity as (A) with points coloured by 

extraction kit used, shows that kit bias had minimal influence in this ecological 

survey.  
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The three environments assessed were broadly similar, with the significance implied 

by Permanova testing likely to relate to the tighter clustering of tumour samples 

compared to normal adjacent tissue and skin swab samples. The fact that the tighter 

clustering of tumoural samples occurs within the broader confidence regions for the 

other two sample types suggests that the dissimilarity is caused by an absence of 

ASVs more than the presence of tumour unique ASVs. This is reinforced by alpha 

diversity analysis using Chao1 species richness, which shows tumour samples 

having a significantly lower alpha diversity. As always, but particularly in the case 

of low biomass samples, confounding factors affecting the accuracy of results must 

be ruled out. Figure 7C shows the same ordination plot but with samples from the 

same patient connected by dashed lines, and rules out a clustering of samples by 

patient origin. Figure 7D again shows the same ordination plot, but overlaid with the 

extraction kit used, showing that kit bias played a minimal role in the outcome of 

this survey.  
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Figure 6: Clustering analysis of samples with corresponding sample composition. 

Hierarchical clustering carried out using Ward’s method, and 1-Pearson correlation 

distance used to calculate distance between rows and columns. The sample 

composition plot shows the proportions of different bacterial families within a given 

sample. 
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Unsupervised hierarchical clustering was performed to detect discrete differences 

between samples that were not obvious using principal co-ordinates analysis. This is 

visualised in a heatmap where each column represents a sample and each row a 

unique ASV. In this instance, it shows that the majority of tumour samples appear in 

the right most cluster, while the skin swab and normal adjacent samples are more 

randomly dispersed throughout the heatmap. The basis for this clustering is evident 

when the composition plot is examined, with sixsix families having significantly 

different mean proportions between tumour and normal samples, and fivefive 

between tumour and skin swabs. There were no significantly different families when 

comparing normal and skin swab samples.  

Following on from this, Deseq2 was used to detect differentially enriched taxa at the 

ASV level, between the different environments.   
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Figure 7: Deseq2 based investigation of differentially enriched taxa between sample types. (A) Normal adjacent vs Tumour. (B) Skin swab vs 

Tumour.  Both (A) and (B) show log fold change of taxa between the two environments, and phylogenetic relationship between them as per 

UPGMA phylogenetic tree. UPGMA branch labels are highest scoring blast hit for fasta sequence of ASV.
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Overall, 14 ASVs were found to be differentially abundant between tumour and 

normal adjacent samples, and 16 between tumour and skin swab samples, while there 

were no significantly different ASVs between Skin Swab and Normal Samples. 

Their evolutionary relatedness was explored phylogenetically, with each node 

labelled with its highest scoring BLAST hit in an attempt to gain more information 

about these closely related ASV’s. The differences are predominantly in 

Staphylococcus spp. with S. hominis, S. caprae and S. saprophyticus all significantly 

elevated in skin swab and normal adjacent samples vs tumour samples. Tumour 

samples showed significant enrichment of S. aureus, Methylobacterium spp., C. 

pillbarense and K. palustris.  

 

Figure 8: Random Forest-based classification of sample type. (A) accuracy of 

classification represented as area under the curve of receiver operating 

characteristic curve. True positive rate is plotted on the X axis and false positives 

are plotted on the Y axis. (B) Mean decrease in accuracy of prediction when ASV is 

removed from feature table, scaled from 0-1, (top,t 5 results). 
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Having detected significantly differentially abundant taxa at both the family and 

ASV level, the next step was to see if the ASV distribution between samples could 

be used to classify as either tumour, normal adjacent or skin swab. The 

RandomForest package in R was implemented for this purpose, using only the ASVs 

that appear in at least 5 % of samples. The algorithm was able to effectively 

differentiate between tumour and both normal and skin swab samples at a rate 

significantly higher than the random chance of correct classification, (AUC 0.801 

and AUC 0.805 respectively) as seen in Figure 8. This was not the case when 

attempting to classify skin swab and normal adjacent samples, where the AUC was 

0.553. As the receiver operating characteristic curve plots the true positive rate 

against the false positive rate, the worst possible score for a model is in fact 0.5 not 

0, this means that the chances of the model correctly predicting whether a sample is 

normal adjacent or skin swab in origin is only marginally better than a blind guess. 
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Tumour histology analysis 

The effect of any histological differences between tumours on their bacterial content 

was also examined (Table 2).  

 

 

Figure 9: PcOA comparison of tumour samples, via alpha and beta diversity. (A) 

Bray-Curtis dissimilarity between sample variations within the tumour samples. (B) 

Alpha diversity boxplot showing Chao1 species richness in tumour samples is 

significantly decreased in patients administered antibiotics.  
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Table 2: Statistical analysis of the effect of histological features on alpha (Chao1) 

and beta (Bray Curtis) diversity. Table shows associated p-values of tests 

performed. 

 

 
Chao1 Bray Curtis 

Surgery 0.43 0.714 

Tumour Grade 0.46 0.803 

Probiotic 0.92 0.578 

Antibiotic 0.019 0.507 

Necrosis 0.68 0.683 

Metastases 0.77 0.091 

Skin Involvement 1 0.707 

Age 0.805 0.988 

Tumour Size 0.59 0.902 

Test Performed Wilcoxon Rank sum test 

Spearman Correlation 

 

 

When viewed in isolation in Figure 9, the tumour samples are not clustered as 

closely as when visualised in conjunction with normal adjacent tissue and although a 

considerable amount of metadata was available to attempt to explain this 

distribution, the only significant association detected was between patient antibiotic 

administration and alpha diversity.  
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DISCUSSION 

Considerable recent research urging caution when undertaking sequence-based 

analysis of low biomass ecological niches particularly with regards to environmental 

contamination dictated the starting point of this study. An important aspect of any 

analysis into the bacterial composition of tumour tissue is to show that 

environmental or kit contamination is not the driving determinant of any bacterial 

community identified. Any microbiological survey is susceptible to contamination, 

but low biomass samples are disproportionately affected. In this instance, through 

the use of a robust negative control strategy and cutting edge bioinformatic tools for 

retrospective removal of contaminant sequencing reads, it can be stated that any 

potential contamination of samples used in this study has been contained, to the 

extent possible with bioinformatic software.  

The community structure in samples amplified with V1-V2 primers was grossly 

similar to those amplified with V3-V4 primers upon visual inspection of sample 

composition plots, and there were no significant difference in terms of Chao1 species 

richness. This is reassuring, in that the choice of primers did not have any adverse 

effect on the downstream results. Of considerable interest to any groups carrying out 

low biomass research in the future, is the huge discrepancy in the number of reads 

yielded once human and bacterial contamination had been filtered out. As can be 

seen in Figure 3, samples amplified with primers targeting the V1-V2 region have a 

consistently and significantly higher number of reads. This is not the case at the end 

of the DADA2 pipeline, but once the unclassified reads are filtered out, most of 

which are shorter in length and align to the human genome, there is a significant 

reduction in the number of reads in the V3-V4 samples that is not seen in the V1-V2. 

This stems from an underreported problem in low biomass microbiome research, in 

that when the ratio of host DNA is overwhelming, human mitochondrial DNA can 

be amplified by primers targeting the 16S region. While human contamination is a 

very common problem in amplification-free WGS sequencing strategies (17), it is 

rarely reported as an issue in amplicon based sequencing strategies. In this instance, 

this has been particularly acute as the two most abundant ASVs in the entire dataset, 

when blasted, give as their top scoring hits the GenBank sequence MN516694.1 

which is defined as “Homo sapiens isolate S90_f1_ath haplogroup W1b1 

mitochondrion.” Both ASVs are absent from V1-V2 samples. An important lesson to 
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be learned from this is that while we were fortunate that our samples were of low 

complexity, relative to faecal samples for example, the impact of primer choice on 

eventual read depth must be considered if undertaking a survey of a “tract” biopsy 

such as the respiratory tract or digestive tract, which may require a greater 

sequencing depth to fully characterise (18). 

The comparison of paired samples with and without DNAse treatment can be 

expected to reveal the extent to which extracellular DNA is distorting the detected 

bacterial community structure of an environment through sequencing. In this 

instance, as can be seen from Figure 6, DNase treatment had no effect on the 

composition of the samples. This can be seen visually in the sample composition 

plot, but also statistically in that there is no significant difference between the two 

groups in either alpha diversity or beta diversity. This informs that any bacterial 

DNA found in the samples originates either from live or dead but still intact bacteria.  

The key aim of this study was to definitively confirm or deny the presence of 

bacteria within breast tumours, and surrounding tissue, and if present, hypothesise 

where these communities could have originated. Our initial alpha and beta diversity 

analysis, as shown in Figure 7, indicates that tumour samples have a significantly 

lower alpha diversity than their paired normal adjacent or skin swab samples, and 

while they samples do not cluster separately on a PcOA plot, the clustering is 

considerably more concentrated for tumour samples than the other two. When this 

information is combined with the hierarchical clustering and sample composition 

plots in Figure 8, we can see that the samples are all broadly similar in overall 

structure, with the skin-associated Staphylococcaceae (19) and Corynebacteriaceae 

(20), the dominant families present overall, providing a suggestion as to the origin of 

the bacteria found in these normal adjacent and breast tumour biopsies. This is 

unsurprising, as microbiome samples from closely proximal body sitescommonly 

share taxonomic traits (21). Despite this broad similarity, the clustering of samples 

does indicate that differences do exist particularly between the tumour samples and 

the non-tumour samples. This is of considerable interest due to the diagnostic and 

therapeutic potential that bacteria selectively colonising tumours over the 

surrounding tissue would have. Analysis of the mean proportion of a sample that a 

particular family occupied showed significant differences between the tumour and 

both non-tumour samples. The family level differences found were further explored 
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using Deseq2-based analysis of differentially enriched taxa at the ASV level. This 

further highlighted that differences exist between tumoural and non-tumoural 

samples.  

At both family and ASV level, the skin swab and normal adjacent samples have no 

significantly enriched taxa, and both show increases in the classically skin-associated 

taxa of Staphyloccus(aceae) and Corynebacterium(aceae) which dominate the 

dataset, when compared with tumour samples. The tumour samples present with a 

more varied range of enriched taxa. Interestingly, the Fusobacteriaceae family, 

which has previously been implicated in a variety of human cancers, most notably 

colorectal cancer (22), was found to be elevated in tumour samples when compared 

with both non-tumour sample types. While at the ASV level it should be noted that 

while S. capitis, S. hominis and S. caprae are all elevated in skin swab and normal 

adjacent samples, and are either aerobic in the case of S. capitis or shown to 

considerable more suited to aerobic conditions than not, as is the case for S. hominis 

and S. caprae, it is the truly facultative S. aureus that is elevated in the tumour 

samples. Given that members of the Fusobacteriaceae family are all either 

facultative or anaerobic, this lends credence to the theory that the hypoxic regions 

known to be characteristic of tumours but absent in normal adjacent tissue or skin 

swabs, could have a determining impact on bacterial community composition 

(23,24). One caveat of the conclusions drawn, particularly from the different species 

of Staphylococcus, is that while they can be discriminated using regions of the 16S 

rRNA gene fragment (25), the differences are at most a few base changes over an 

entire variable region, meaning sequencing errors could lead to false speciation 

events. In this instance, the sequencing data were quality-filtered to ensure a 

minimum per base quality of 30 according to the Phred scoring system, which 

equates to 1 error in every 1000 bases meaning we can be confident of the accuracy 

of the results. That being said, a more comprehensive analysis of the complex 

staphylococcal community present in these samples using a different marker gene 

such as the tuf region could yield additional valuable information (26,27). 

Finally, the Random Forest ensemble learning method was employed in an attempt 

to reveal unique microbial profiles between the sample groups undetected by 

standard multivariate techniques. A distinct microbial signature was detected for 

tumour samples, as opposed to either skin swab or normal adjacent samples. This 
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was evidenced by the area under the receiver operator curve being significantly 

higher when differentiating tumoural from non-tumoural samples (0.801 and 0.805) 

than when attempting to distinguish skin swab. 

The origin of the bacteria in these tumours is of considerable interest. For this 

reason, it is important to investigate all possible relationships between groups, 

exploring whether bacterial profiles hold true within patients, within sample types, or 

within the culture status of the samples. Unfortunately, the only significant 

interaction detected was between antibiotic administration and alpha diversity, which 

is unsurprising. We suspect that due to the well-documented heterogeneity of 

tumours (28), there is no guarantee that the section of the tumour sent for sequencing 

matched any of the histological indications provided at the time of tumour removal 

and clinical assessment. 

This study indicates the presence of endogenous bacterial communities in both 

malignant and non-malignant breast tissue in the majority of cases, and that the two 

can be differentiated based on their bacterial composition. Future work focusing on 

bacterial biomarker discovery would benefit from strain level analysis of these 

communities provided by whole genome sequencing methods. 
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ABSTRACT 

Background The role of the microbiome in health status is an expanding research 

area and in recent times, body sites classically considered sterile have been found to 

harbour an endogenous microbiome. One of the key rate limiting factors in 

progression of such research is difficulty in accessing sufficient tissue samples for 

statistically significant analysis to be carried out or to perform retrospective analyses. 

FFPE tissue represents the biggest repository of human tissue samples and could 

represent a vital resource for expanding microbiome research. Currently, there are 

several key features which limit bacteria related data generation from this material: i) 

DNA damage inherent to formalin fixation; ii) a high ratio of host to bacterial DNA, 

impairing sequence and PCR-based analyses; iii) inefficient DNA extraction 

methods, leading to poor sensitivity and data bias; and iv) vulnerability to 

contamination.  

Aims We sought to develop a method for processing of FFPE samples to yield 

improved quantity and range of bacterial DNA present in samples than currently 

available methods, of the quality required for 16S sequencing and whole genome 

sequencing.  

Methods  A laboratory process was developed where samples undergo host 

DNA depletion, bacterial lysis, formalin crosslink digestion, DNA purification and 

DNA repair. The method was developed and validated using bespoke FFPE mock 

community models, FFPE murine samples, and clinical human tissue samples. DNA 

quantity and quality in terms of fragment length and sequence fidelity was assessed 

by qPCR and whole genome shotgun sequencing. The method was validates as a tool 

for microbiome research using 16S rRNA gene sequencing with the results 

compared against paired samples extracted with the current gold standard QIAGEN 

QIAamp FFPE tissue kit.  

Results  i) First, a mock community study model was developed and validated 

bioinformatically. This ‘Protoblock’ permitted a precise representation of biological 

material ‘before and after’ FFPE treatment, enabling the study to relate the outputs of 

laboratory analyses to reality. ii) This was used to characterise the nature and 

severity of FFPE-induced damage in bacterial DNA, followed by development of 

aneffective strategy for repairing it, based on the Base Excision Repair system. 
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Analyses of outputs from qPCR, high resolution melt analysis, Sanger Sequencing 

Shotgun Sequencing analysis were used to determine the most effective DNA repair 

strategy. iii) Bioinformatic validation of the combined method shows a significant 

improvement over the current gold standard QIAGEN QIAmp FFPE tissue kit, using 

both mock communities and FFPE murine faecal samples.  

Conclusion This novel method may precipitate the reliable use of standard clinical 

FFPE tissue samples for modern bacterial sequencing studies.  

  



 

145 
 

INTRODUCTION 

As DNA sequencing sensitivity and accuracy increases, sites previously considered 

sterile have also presented detectable microbial profiles. These discoveries have led 

to a greater demand for patient samples to undertake sequencing and other 

qualitative experiments such as qPCR for particular bacterial species. In an attempt 

to satisfy this increased demand, the use of formalin fixed paraffin embedded tissue 

for research involving bacterial DNA has been explored, with several recent studies 

published using FFPE samples as a starting point [1-6]. FFPE blocks are considered 

the gold standard for post-operative tissue storage in hospital settings and their 

reliable use for DNA analyses could open up a trove of potential samples for 

research. However, at present, no specific method exists for bacterial DNA in FFPE 

samples. There are a plethora confounding features present when carrying out 

sequence-based analysis of bacterial communities [7], and when coupled with the 

criticisms levelled at recent sequencing experiments targeting similarly challenging 

sample types (8) it is unlikely that large scale metagenomics studies using FFPE 

samples will remain tenable without the development of dedicated methodologies 

and biological standards. The key characteristics of FFPE samples that impair 

effective microbial analysis are: 

• Formalin-derived crosslinks and damages to DNA present in the sample(9) 

• A high ratio of host to bacterial DNA(10) 

• All FFPE DNA extraction methods to date are optimised for human cells  

• The extent of processing necessary leaves samples vulnerable to contamination  

• No standards exist to validate the effects of the above on downstream analysis.  

Many studies have characterised FFPE-induced damage in human DNA, yet the 

effects on bacterial DNA remain uncharacterised. The impact on data generation 

from FFPE-induced DNA damage is expected to be much more significant in 

bacterial studies when compared to human studies. Where human studies benefit 

from high DNA quantities in samples and a well-known reference genome, in 

metagenomics research, the DNA template is often minimum and concealed in a 

high human DNA background, and the sequences studied are not limited to one 

genome. FFPE-induced damage to bacterial DNA, and the effect on downstream 
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analysis, needs to be accurately characterised. This will inform on requirements for a 

method to repair DNA damage, improving the fidelity of future analyses.  

To repair the damaged DNA, reconstitution of the intrinsic Base Excision Repair 

(BER) pathway in vitro shows considerable potential. This involves the excision of a 

damaged base by a DNA glycosylase enzyme, backbone incision facilitated by AP 

lyase, Ends processing by Polynucleotide Kinase, Gap filling by DNA Polymerase 

and nick ligation by DNA ligase. 

In low bacterial biomass biopsy samples, such as most non tract human biopsies, 

host DNA constitutes in excess of 99 % of total DNA. This severely limits 

metagenomic studies, as the vast majority of sequencing reads available are invested 

by this background human DNA. This is of critical concern, particularly for whole 

genome shotgun (WGS) methods (11). It has been also shown to affect the outputs of 

16S rRNA amplicon sequencing, since in reactions of low bacterial to human DNA 

ratios, human DNA can be annealed and amplified during 16S PCR (12). 

Furthermore, a reduction in bacterial diversity and particularly rare bacterial taxa can 

occur during dilutions made to avoid overloading DNA in PCR reactions [13]. For 

these regions, any reduction in the ratio of background mammalian to target bacterial 

DNA would improve readout. DNAse treatment can reduce the quantity of intact 

background DNA, if it’s activity can be targeted to mammalian cells, e.g. by 

restricting access of the DNAse enzyme to only mammalian cells. Mammalian 

specific-membrane permeabilisation may achieve this. 

Bacterial lysis is a critical step in sample processing for metagenomic analysis. It can 

be major source of bias in community composition, as lysis methods that favour 

particular taxa will cause overrepresentation in the final analysis [12, 14-18]. Many 

methods for unbiased bacterial lysis of non-fixed samples have been proposed and 

applied, including bead-beating, enzymatic lysis, detergents and denaturing agents 

[15, 16, 19]. Recently, several studies have agreed that bead-beating is the lysis 

method that yields higher uniformity of bacterial lysis and have shown that 

combining bead-beating with other methods shows further improvements in 

uniformity [19, 20].  

FFPE samples are characterised by DNA damage that includes high levels of 

fragmentation and DNA damage reducing the recovery of PCR/sequencing readable 
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DNA [21, 22]. As previously mentioned, FFPE samples typically have low bacterial 

biomass concealed by large quantities of DNA from the larger human genome. 

Bead-beating decreases DNA yields by causing DNA fragmentation leading to the 

formation of chimeras during PCR [23-25], which would be particularly detrimental 

for FFPE samples. For this sample type, lysis must be performed under conditions 

that do not negatively affect the integrity of DNA, such as enzymatic lysis. 

Accordingly, the Association of Biomolecular Resource Facilities Metagenomics 

Research Group developed a mix of six lytic enzymes (achromopeptidase, chitinase, 

lyticase, lysostaphin, lysozyme, and mutanolysin) that target the cell wall of bacteria, 

yeast, and fungi, and is able to lyse recalcitrant endospores [26]. The incorporation 

of this enzyme, known as Metapolyzyme (Sigma-Aldrich), in sample preparation has 

been shown to increase the recovery of spheroplasts or protoplasts, and improve the 

overall DNA recovery across taxa in multiple sample types [25, 26]. Recently, a 

metagenomic study was performed on ancient DNA specimens (with similar levels 

of DNA damage as FFPE), validating the efficacy of Metapolyzyme over traditional 

bead beating methods in this sample type (27).  

The issue of biological standards was largely overlooked in the early years of 

microbiome research. As 15 years have passed since the seminal work by Craig 

Venter in 2004 [28], several publications have taken stock of progress so far, and 

highlighted areas for improvement. A recurring theme within these publications has 

been the lack of standards available [29-32]. Given the numerous potential sources 

of error associated with FFPE samples outlined previously, more than perhaps any 

other sample type, FFPE tissue urgently requires the development of standards to 

ensure the validity of results and to promote reproducibility. 

With this in mind, it was deemed appropriate to initiate this study with development 

of such an FFPE study model, to  

• inform on the extent and nature of DNA damage due to FFPE, guiding the 

development of a DNA repair strategy  

• inform on any possible bias arising from ineffective bacterial lysis for example  

• inform on the incorporation of environmental contaminant bacteria into the DNA 

sequencing library due to the extensive processing of samples required. 
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Study Aims 

Portions of this project fall beyond the remit of bioinformatics research. This chapter 

focuses on different approaches incorporating bacterial sequence analysis during the 

design and validation stages of both the Protoblock FFPE biological standard and the 

DNA repair strategy. Following this, an assessment of the final protocol as a tool for 

metagenomics/metataxanomic analysis was carried out. This was performed using 

the Protoblock biological standard and formalin fixed mouse faeces as a higher 

biomass sample. In these cases the newly designed protocol was compared with the 

current gold standard, the Qiagen QIAmp FFPE kit. Lastly, low biomass samples of 

malignant formalin fixed patient breast tissue were processed using the novel 

method, and compared with paired fresh frozen samples 
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METHODS 

A full description of the novel protocol developed can be found in appendix 1 of this thesis. 

A summary is displayed in Figure 1. All lab work was performed by other members of the 

Tangney lab.  

Tissue Dissociation 
Without off-target activity on bacteria 

 

Host Depletion 
Specifically permeabilising mammalian cells 

 

Bacterial Lysis 
Cross-taxa 

 

Sample Digestion & Decrosslinking 
Complete digestion of proteinic content and crosslinks 

 

DNA purification 
Silica column based 

 

DNA repair 
Base Excision Repair Pathway 

 

 

Figure 1: Full Protocol for bacterial DNA isolation from FFPE samples – 

describing steps for process and in blue the requirements for the step 
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Bioinformatic  methods  for  data analysis 

qPCR data analysis   

Statistical analysis was performed in the base R environment (v3.6.1). Visualisations 

were carried out using the ggplot2 package (v3.2.1). 

WGS sequence analysis  

All metrics relating to sequence data were calculated in the Linux environment, and 

using the QUAST tool (v5.0.2) and statistical analysis performed in the base R 

environment (v3.6.1). Visualisations were carried out using the ggplot2 package.  

Method for variant calling 

Filtering HiSeq sequence data was quality filtered. Only very high quality 

bases were considered, to minimise the risk of sequencing errors causing false 

positive variants. Short fragments were also removed to reduce the likelihood of 

spurious alignments of regions from contaminant bacterial genomes. Trimmomatic 

(v0.38) was used to remove all reads shorter than 60bp in length, and to trim reads 

when the average per base quality in a sliding window of size 4 dropped below 30.  

Alignment Of the three possible Burrows-Wheeler alignment tools, the BWA-

mem aligner was used as the average read length was 150 bp, and BWA-mem 

(v0.7.17) is recommended when reads are over 70 bp in length. Default settings were 

used with the exception of allowing alignments with a minimum score of 0, rather 

than the default 30. Given the stringent parameters used for read length and quality 

filtering, relaxing the minimum alignment score gave the best possible chance of 

variant detection.  All samples were aligned to the original reference genomes. 

Variant Calling Variant calling was done with BCF tools, using the BCF call 

function. The variants were then filtered using the norm and filter functions within 

BCF tools. Filtering was done to remove variants when the read depth was below 10, 

the quality was below 40, or when the variant identified was not supported by both 

the forward and reverse read of a read pair.  The number of variants identified was 

then normalised between samples based on the read coverage in the initial alignment 

BAM file.  
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Validation Using the Picard tool within the GATK suite, all samples were down-

sampled to ensure SNP: Coverage ratio remained constant when coverage was 

reduced to lowest level present in samples. 

 

 

16S sequence analysis 

The quality of the paired-end sequence data was initially visualised using FastQC 

v0.11.6, and then filtered and trimmed using Trimmomatic v0.36 to ensure a 

minimum average quality of 25. The remaining high-quality reads were then 

imported into the R environment v3.4.4 for analysis with the DADA2 package 

v1.8.0. After further quality filtering, error correction and chimera removal, the raw 

reads generated by the sequencing process were refined into a table of Amplicon 

Sequence Variants (ASVs) and their distribution among the samples. It is 

recommended that ASVs (formerly called ‘Ribosomal Sequence Variants’) be used 

in place of ‘operational taxonomic units’ (OTU), in part because ASVs give better 

resolution than OTUs, which are clustered based on similarity.  

The following statistical analyses were carried out in R: Shannon alpha diversity and 

Chao1 species richness metrics, and Bray-Curtis distances, for analysis of beta 

diversity, were calculated using the PhyloSeq package v1.24, and the Vegan package 

v2.52. Beta diversity calculations produce distance matrices with as many columns 

and rows as there are samples; thus, beta diversity is often represented using some 

form of dimensionality reduction, in this case, using principal co-ordinates analysis 

(PCoA) with the Ape package v5.1. Hierarchical clustering, an unsupervised method 

that can reveal key taxa that distinguish their respective environments, was 

performed with the heatplot function in the made4 package v1.54. Differential 

abundance analysis was carried out using Deseq2 v1.2.0, which identifies 

differentially abundant features between two groups within the data. Tests of means 

were performed using the Mann-Whitney U test unless otherwise stated, and 

correlations were calculated using Spearman’s rank correlation coefficient. Where 

applicable, false positive rates were controlled below 5% using the FDR procedure..  
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Despite not identifying the contaminant taxa themselves, the source tracker utility is 

invaluable in estimating the proportion of a sample (“Sink”) that may have 

originated in a negative control (“Source”) Decontam can remove taxa, based on 

presence or absence in negative controls, or inverse correlations with input DNA. 

This tool requires a threshold to be set, which can be dictated by SourceTracker. The 

effectiveness of this can then be confirmed by SourceTracker.  
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RESULTS 

Table 1: Bacterial load of protoblocks used for 16S and WGS sequencing 

 

 

Validation of the biological standard 

DNA was obtained from Protoblocks containing a mix of the five bacterial strains 

specified in Table 1, and was purified with the QIAGEN QIAamp FFPE tissue kit as 

described the methods provided in Appendix 1. qPCR recovery was determined by 

quantifying long DNA fragments (450 bp) specific for each bacterial strain and 

normalised to a loaded concentration of 105 cells. Bacterial quantities in qPCR 

reactions are as specified in Table 1. The outputs of these reactions show a clear bias 

of sample prep toward Gram-negative bacteria, with an average recovery 2.5 log-

fold higher (p<0.001) than Gram-positive bacteria. Recovery determined by qPCR 

was 0.17% for Staphylococcus, 1% for Lactobacillus, 1.5% for Bifidobacterium, 

3.3% for E. coli and 15% for Bacteroides (Figure 2B (iii)). This was further 

confirmed with 16S rRNA gene sequencing (Figure 2B (iv)). As seen in Figure 2B, 

the composition plot shows a clear bias towards Gram-negative bacteria. For 

example, while equal quantities of Bacteroides (29%) and Staphylococcus (27%) 

cells were present in the Protoblocks, DNA analyses (16S rRNA gene sequencing 

and qPCR) reported Bacteroides  represent more than 50% of the sequences 

recovered, while the more difficult to lyse Gram-positive Staphylococcus is almost 
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lost from the plot. Therefore, even in FFPE samples, a mechanism for the lysis of 

Gram-positive bacteria must be considered for metagenomics studies. Furthermore, 

the use of standards such as the Protoblock is essential when working with FFPE 

samples, and even more so when using protocols that are not designed for this 

sample type and study purpose. 

The Protoblock is susceptible to contamination in a similar way to clinical FFPE 

samples. The priority of the fixing process is to preserve the tissue for later 

histological analysis, not to prepare a sample suitable for high throughput bacterial 

sequencing. In this instance, contamination was detected as shown by the number of 

reads in the negative controls (Figure 4B (v)). It is unlikely to have had a significant 

effect on the overall biological signal. Given that the bacterial reads detected and 

their taxonomic classifications differ completely from those of the protoblocks 

analysed. However, it remains a threat for low biomass samples. 

 

  

Figure 2: Evaluation of impacts on downstream analysis. Measuring bias 

introduced by the DNA extraction process. Sample composition Bar plot of: i) Cells 

added to protoblock, ii) Confirmed bacterial counts per block, iii) Strain specific 

qPCR, iv) Pooled sample composition as per 16S rRNA gene sequence analysis, v) 

Composition of an empty protoblock (sterile agar only) processed in parallel with 

loaded protoblocks. 

 

The presence of DNA sequence artefacts as a result of FFPE was assessed in a 

simplified Protoblock model populated with E. coli K-12. DNA was extracted and its 
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concentration determined by qPCR and normalised to 106 genome copies. HRM was 

performed in three contiguous DNA fragments (length  100 bp) that make up a 

region of the InsH1 gene (See figure 3B (ii)). To determine the presence of any 

sequence aberrations in Protoblock FFPE DNA, their melting temperature (Tm) was 

compared with that of Non-fixed (NF) DNA and the differences measured. Figure 

3B (i) shows the final Tm for each fragment investigated. Tm shifts with variable 

levels of significance were observed in all fragments. This is indicative of a change 

in the underlying DNA sequence, as would be expected in a clinical FFPE sample. 

To confirm these results, DNA from both samples was analysed by whole genome 

sequencing. Findings from the DNA melting temperature analysis correlated with the 

results of WGS, with statistically significant variations between the FFPE genome 

and the reference genome evident (see Figure 3C). 



 

156 
 

 

Figure 3: Assessment of DNA damage in Protoblocks. A) Evaluation of DNA 

integrity with Bioanalyser high-sensitivity tape station. DNA concentration (boxes) 

is plotted on the y-axis and fragment length (dotted line) on the z-axis. Results were 

extracted from 2 peak-regions in the electropherograms (72-744 bp and >1,292). 

Here, the short fragment region FFPE samples had an average fragment length of 

207 bp and an average concentration of 0.06 ng/µl, while its non-fixed counterpart 

had an average length of 462 bp and a concentration of 1.86 ng/µl. In the larger 

region fragment, FFPE samples had an average concentration of 0.099 ng/µl and an 

average fragment length of 13,119 bp, whereas NF sample had a concentration of 

10.57 ng/µl and an average length of 31100 bp. B) Evaluation of DNA sequence 

aberrations by high-resolution-melt analysis. i) Box plots of normalised DNA 

quantities from protoblocks populated with E. coli (blue) and NF E. coli (red). Clear 

shifts in the melting temperatures in 2 of the 3 sequences were observed, with 

temperature shifts that were on average 0.1-0.5oC apart from NF counterparts. ii) 

Schematic of sequences used for HRM analysis: 3 DNA fragments with an average 

length of 100 bp were analysed, for each test and each sample type, n = 6. C) 

Confirmation of sequence alteration by WGS. DNA from the same protoblocks as B 

was analysed by whole genome sequencing and subsequent variant calling against 

the reference genome E. coli K12 MG1655. Here, the rate of their occurrence is 

plotted against the y-axis. Variant calling, and level of coverage is measured using 

SAMTOOLS/BCFTOOLS. 
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Validation of DNA repair strategy by WGS 

The reconstitution of a BER system, targeting different types of DNA damage found 

on FFPE samples was addressed by mixing the pathways for the glycosylases treated 

in the system. Since FPG-BER (Figure 4a) yielded the best results for single 

glycosylase-BER reactions, this enzyme was combined with ENDO VIII and UDG 

and their efficiency in reducing sequence artefacts tested by HRM. As shown in 

Figure 4b, all combinations resulted in sequences with ΔTm lower than those of 

untreated FFPE DNA. The FPG + UDG mix showed the best performance at 

reducing the ΔTm (31 %), followed by FPG + Endo VIII (18 %). However, in terms 

of improving the PCR readability of a 500 bp fragment, FPG + Endo VIII (47% 

increase, p < 0.01) outperformed FPG + UDG (30% increase, p < 0.01), as measured 

by Taq qPCR. To confirm these results, normalised DNA concentration from 6 

replicates for each BER mix and 6 unrepaired samples were pooled into one (n = 6) 

and sent for analysis by WGS (Figure 4c). At this level of resolution, it is evident 

that the repair mix with FPG + Endo VIII offered the highest improvements in 

sequence quality in terms of providing (i) a coverage 4X higher than unrepaired, (i) 

4X more total reads and quality filter (QF)-passed reads, and (iii) a 50% reduction in 

the number of variants detected per sequence coverage. This repair mix was thus 

selected as the best repair mix for bacterial FFPE DNA. 
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Figure 4: Reconstitution of BER pathway repairing FFPE DNA damage. a) 

Single glycosylase BER. The BER pathway was reconstituted first as single 

pathways triggered by either UDG, FPG or Endo VIII. The efficiency of each system 

in correcting DNA damage was tested by HRM (n = 7 for each line). The more 

similar a DNA sequence is to the NF reference, the lower the difference in melting 

temperature (ΔTm closer to 0). FPG showed the highest efficiency in correcting 

FFFPE DNA damage as evidenced by the lowest ΔTm of 0.054. b) Multiple 

glycosylase BER. Mixes containing FPG show improved sequence quality as 

evidenced by reduced ΔTm vs untreated. c) WGS. To further confirm these results, 

six replicates treated with each mix were pooled (n = 6) and analysed by WGS. 

Data validated that all mixes improved the sequence (i) coverage, (ii) number of 

reads and QP reads and reduced the amount of SNPs (iii). The best performance in 

all cases was observed in the BER mix with FPG and Endo VIII.  

 

The sum of the above treatment strategies (decrosslinking and DNA repair) was 

tested by WGS in DNA sourced from Protoblocks containing the same 5 bacterial 

strains as previously described, fixed for 48 h and stored for 2 months. The dewaxed 

and lysed contents of the blocks were decrosslinked at 80 oC with a chaotrophe salt 

based buffer (Appendix 1). The purified DNA was repaired with the BER mix based 

on the FPG + Endo VIII repair pathway. Experimental replicates were pooled and 
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sent for WGS analysis. Results for this analysis are shown in Figure 5. The results 

obtained from exposing bacterial FFPE DNA to the proposed new protocol are 

compared with those from DNA from paired-samples treated with the reference 

Qiagen protocol (decrosslinking at 90 oC, without DNA repair), and paired NF DNA. 

These results indicate that bacterial FFPE DNA treated with the proposed method 

shows an improvement in integrity, readability, and sequence quality, as evidenced 

by: (i) Integrity [Average fragment length (a, b)]: Plotted in Figure 5a, are the 

average fragment lengths measured by bioanalyser. Fragment length of DNA treated 

with the new protocol (444 bp) is 3.3X longer than that treated with the reference 

protocol (136 bp). Importantly, this raises the average fragment length to that of 

fragments typically desired for 16S sequencing (460 bp). The same effect was 

observed in the length of fragments read by WGS, where fragment lengths were 2-3 

bp longer on average (Figure 5b). (ii) Readability: With the new protocol, the 

number of Total Reads and (QF)-pass reads per layer of coverage were increased by 

24 % and 34 % respectively, and the ratio of QF-passed to Total reads increased by 

8.4 %. (iii) Sequence quality: This was measured in terms of number of sequence 

artefacts detected. The number of chimeric reads per coverage detected in samples 

treated with the new protocol was reduced by 57 % (p = 0.37) (Figure 5e). Similarly, 

the number of SNPs detected was reduced by 58% (p = 0.41) (Figure 5f). All of 

these findings are supported by results from quantitative PCR and Tm analysis. 

Although these improvements are not supported by statistical significance, given the 

considerable effect size, we are confident that this lack of significance is due to 

sample size alone. Altogether, the sum of strategies proposed here were thoroughly 

investigated by PCR/sequencing. These results consistently indicate an improvement 

in the sequence integrity, readability and quality of readable bacterial FFPE DNA.   
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Figure 5: Combined protocol – bacterial DNA. Outputs of Bioanalyser and whole 

genome sequencing for bacterial FFPE DNA exposed to the combined treatment 

(blue, labelled as New Protocol, n = 6). This was compared with that obtained 

from six pooled paired-samples decrosslinked with the reference protocol and 

unrepaired (grey, Labelled reference protocol, n = 6) and that from DNA obtained 

from NF samples with the same bacterial and DNA content (orange, Labelled NF, 

n = 3). Improvement in DNA readability, sequence quality and integrity was 

measured by: Integrity (fragment length): (a) bioanalyser (b) WGS. Readability: (c) 

Quantity of reads and filter pass reads per coverage. (d) % Breath of genome 

coverage. Sequence quality: (e) Number of chimeric reads per layer of coverage. (f)  

Number of SNPs per layer of coverage.  
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Validation of the protocol by 16S sequencing 

The level of processing required when creating a sequencing library from FFPE 

samples, coupled with the anticipated low biomass of the samples, makes them 

highly susceptible to contamination. Figure 6 shows a representative sample from 

each sample group, and each library preparation method. The “In House methods” 

are consistently more susceptible to contamination than the gold standard Qiagen 

method, and a controllable level of contamination is present in all sample types with 

the exception of FFPE breast samples, which are overwhelmingly contaminated. The 

output of the SourceTracker algorithm also indicates which negative controls were 

implicated in the contamination, and Figure 6A, shows the composition of these 

samples at the family level.  

 

 

Figure 6: Summary of environmental contamination. (B) Shows the output of the 

SourceTracker algorithm, with one representative pie chart per sample type 

indicating the degree of contamination present. (A) Shows the sample composition of 

the three negative controls implicated by the SourceTracker algorithm. Data 

indicate that although contamination is present in most samples only FFPE breast 

samples are overwhelmingly affected by environmental contaminants. In addition, 

only three of the eight negative controls are implicated.  
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The use of Protoblocks with known bacterial composition allowed for accurate 

quantification of the number of sequencing reads lost due to contamination between 

the three different treatment groups. As seen in Figure 7, in both the Qiagen protocol 

(Q) and the In house with host depletion (HDP) protocols, the proportion of reads 

removed as part of the contamination control workflow was less than 5%. With the 

in house without host depletion (HDN) protocol almost a quarter of all reads 

obtained from these samples had to be removed.  

 

Figure 7: Proportion of reads lost due to environmental contamination introduced 

during processing. The data indicates that while only a marginal percentage of 

reads are consumed by environmental contaminant DNA in the Qiagen and HDP 

samples, just under 30% of reads on average are lost in HDN samples.  

 

Samples labelled as HDP went through the DNA protocol (bacterial lysis, sample 

digestion, DNA purification and repair) plus a host depletion step, and HDN 

samples, did not include a host depletion step. The precise quantities of bacteria 

added to the FFPE mock communities can be seen in Table 1. This information 

allowed a robust analysis of methodological bias in terms of under or over-

representation of different bacteria. As shown in Figure 8, the Q protocol, which is 

not optimised for bacterial DNA, showed statistically significant under or 

overrepresentations in all five genera present in the Protoblock, particularly in the 

case of Bacteroides and Lactobacillus which were over and underrepresented by 
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more than 20% respectively. In the HDN method, no significant bias was observed 

with lactobacillus, the deviation in Bacteroides was marginally significant, while all 

other genera were significantly under or overrepresented. The HDP method was the 

least susceptible to bias, with only the proportion of E. coli presenting as 

significantly different from what was theoretically present in the Protoblock.  
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Figure 8: Assessment of bias in terms of bacterial community composition between 

methods. (A) Shows the percentage deviation of bacterial composition per genera, 

per extraction method, from the original quantities input into the protoblock. (B) 

Shows sample composition of all samples merged by extraction kit, with the right 

most column representing the ideal proportions as dictated by the input quantities. 

Visually HDP has the least degree of bias over the five bacterial genera. This is 

confirmed statistically in (A). 
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Faecal samples  

The comparisons facilitated by the protoblocks were complemented by mouse faecal 

samples, which were formalin fixed and paraffin embedded as described in methods 

(murine models) and their protocol included bacterial lysis, sample digestion, DNA 

purification and DNA repair, with host depletion + tissue dissociation (DT-P) or 

without any of these two treatments (DT-N). The community structure in these 

samples was considerably more complex than in the Protoblock. 

Beta diversity analysis using Bray-Curtis dissimilarity shows no significant 

difference between the IHN and Qiagen methods. This can be seen visually as the 

samples cluster together, and is confirmed by PERMANOVA analysis, (p = 0.231). 

Both Qiagen and DT-N are significantly dissimilar to DT-P as per PERMANOVA, 

(p = <0.001) (Figure 8).  

The driving factors behind the distinct clustering were assessed by searching for 

correlations between the dominant bacterial families seen in the samples, and either 

of the two principal coordinate axes. The correlations were carried out using 

Spearman’s method, and multiple testing was controlled for using the FDR method. 

This was expanded upon in Figure 9, with a direct comparison of sample 

composition between FFPE vs Flash-frozen samples in the three treatment groups.  
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Figure 9: Principal coordinate analysis of matched murine samples. Points 

coloured by extraction method, and shaped by host depletion status. PcOA plot 

supported by correlations of major bacterial families present in dataset with PC1 

and PC2 values used to generate plot. Only significantly correlating families show, 

with significance tested for using Spearman’s method. False discovery rate 

controlled for using FDR method. Data indicates that host depletion strategy has an 

effect on Gram negative bacteria.  

 

Figure 10A compares Q and DT-P paired samples. In this instance, the Gram 

positive Coriobacteriaceae and Lactobacilliceae were significantly elevated in terms 

of mean proportion in the DT-P samples, while the Gram negative 

Porphyromonadaceae, Rickenellaceae, Prevotellaceae and Bacteroidacaeae were 

elevated in samples treated with Q. Figure 10B compares the paired samples 

prepared using the Q and DT-N methods respectively. In this instance, the there was 

no significant difference in the Gram positive families, while the two previously 

indicated Gram negative families Coriobacteriaceae and Lactobacilliceae were 

elevated in the DT-N group. Also elevated were the Pseudomonadaceae and 

Promicromonosporaceae families, which are likely to be residual environmental 

contaminants missed by the retrospective bioinformatic contamination removal. 

Figure 10C compares the in house method with and without host depletion + tissue 
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dissociation, where the difference was in the Gram negative families, which were 

elevated in the DT-N samples. 

 

Figure 10: Mouse faecal sample composition comparison between methods. Mean 

abundance of major families between groups tested using Wilcox signed rank test, 

with false discovery rate controlled for using the FDR method. The arrow indicates 
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the direction if increase in cases of significant difference. (A) Compares Qiagen with 

HDP. (B) Compares Qiagen with HDN. (C) Compares HDN with HDP.  

 

The final assessment of the method was the analysis of FFPE malignant breast tissue 

samples. The accuracy was verified by comparing the FFPE samples with their 

matched freshly frozen samples. As was suggested by the representative pie chart of 

the FFPE breast samples in Figure 6B, the quantity of environmental contamination 

was overwhelming, this was unsurprising given the low level of microbial biomass 

present in the samples. Even after contamination removal, leaving all other sample 

types with little to no contamination, the FFPE breast samples in Figure 11B are 

dominated by the Pseudomonadaceae and Xanthomonadaceae families seen in the 

negative control samples and bear little resemblance to their fresh frozen 

counterparts in Figure 11C. However, when Figure 11B is recreated in 9D, with all 

Pseudomonadaceae and Xanthomonadaceae associated sequences manually 

removed, there is resemblance between the two groups that begins to justify what the 

Venn diagram in Figure 11A indicates in terms of shared bacterial families. In total 

24.6% of the total bacterial abundance in Figure 11D is accounted for by bacterial 

families also found in the fresh samples shown in Figure 11B.    
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Figure 11: Sample composition comparison between matched patient samples. (A) 

Venn diagram visualising the observed families in (B) FFPE breast tissue and (C) 

Matched fresh frozen breast samples processed using Molzym Ultra-Deep 

Microbiome kit. (D) FFPE samples with the two obvious contaminant families, 

Xanthomonadaceae and Pseudomonadaceae manually removed. 
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DISCUSSION 

Given the potentials that FFPE material could bring to the field of metagenomics, a 

method that allows access to this material is essential. Currently, there are no 

methods available to process this sample type for metagenomics. This research 

presents novel strategies to treat these samples in order to guarantee a truthful 

representation of the bacterial communities inhabiting tissues.    

Protoblock  

It is well-established that DNA from FFPE samples is damaged [33]. The extent of 

this  damage can increase with the length  of exposure to formalin, sample storage 

time and the pH of the formalin used for fixation (34,35). DNA damage found in 

FFPE samples spans from cross-links, fragmentation, loss of bases and point 

mutations [22, 33, 36, 37]. With this in mind, an adequate control for this sample 

type must undergo the same extent of damage for it to be representative of the 

samples being treated (38). 

All Protoblock DNA sequences analysed by HRM exhibited a profile indicative of 

the presence of sequence artefacts, with aberrant profiles typical of heteroduplexes 

with deviations in Tm of up to 0.1oC from that of non-fixed template. This correlates 

with previous studies where FFPE DNA displayed aberrant melting profiles which is 

indicative of low-level, non-identical changes randomly distributed in the template 

[39]. Given the random distribution of these artefacts, their presence in undetectable 

by Sanger sequencing as they are masked by the abundant correct sequences. 

However, the reduced number and lengths of fragments that can be sequenced are 

indicative of alterations that lead to sequencing failure [40]. The presence of “true 

mutations” (identical nucleotide changes at an exact position in >2 independent 

sequences) was investigated here by WGS. As seen in figure 3C, the majority of 

variants detected corresponded to C>T and G>A transitions. This again, is in line 

with findings in human tissue FFPE samples and in accordance with HRM profiles 

with low-level, heteroduplex sequence changes [39, 40]. 

The impact of bacterial lysis strategies in sample prep has been documented, but not 

fully characterised as a source of introduced bias. The use of standards has been 

suggested as a tool to account for this and other storage or sample prep bias [41, 42]. 

Use of the Protoblock effectively detects this bias and therefore is useful as a 
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standard for bacterial prep of FFPE samples in order to ensure the accuracy of a 

metagenomic project, especially in determining abundance. Findings shown in 

Figure 4B demonstrate that the QIAGEN QIAamp FFPE tissue kit (currently the 

gold standard for FFPE DNA isolation, developed for mammalian FFPE DNA) is 

biased towards Gram-negative bacteria. This is not surprising, since the method does 

not include a bacterial lysis step. Given  the lack of a standardised method to process 

FFPE samples for metagenomic studies, the use of standards such as the Protoblock 

is essential to guarantee the accuracy, precision, and limit of detection of the sample 

processing workflow.  

Contamination is a considerable threat to the accuracy of low biomass samples such 

as biopsies, even prior to any formalin fixing or eventual pre-processing of these 

fixed samples for high throughput sequencing. Steps such as deparaffination and 

DNA repair require the use of enzymatic solutions that are difficult to keep sterile, 

and contamination from these sources could easily obscure the true results in cases 

of low microbial load. Use of the Protoblock can inform users as to the level of 

contamination introduced by any processing of FFPE samples required in advance of 

a sequencing experiment. 

DNA Repair  

While the HRM melting curve analysis provided a valuable guide, confirmation was 

provided by qPCR and sequencing data.  This shows significant improvements in the 

integrity, readability and sequence quality after treatment with the reconstituted BER 

reactions, thus confirming its efficacy. In this sample-type, it is evident that targeting 

DNA damage derived from oxidation with FPG and Endo VIII, within the enzyme 

mixes tested here, yields the most significant improvements. After exhaustive 

comparisons of different approaches to the problem, the strategy found to be most 

effective involves decrosslinking using a chaotrophic agent such as Guanidine 

hydrochloride, and a slightly reduced temperature of 80 oC. This is followed by 

removal of damaged bases by using a combination of Formamidopyrimidine DNA 

glycosylase and Endonuclease VIII, and repair through the short-patch BER repair 

pathway (triggered by both of this glycosylases) by combining T4-PNK, DNA 

polymerase and DNA ligase.  

DNA extraction protocol 
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Most, if not all host depletion strategies report some off target effects on bacteria 

[43]. To fully explore the effects that this would have on downstream sequence 

analysis, paired protoblock samples treated with (HDP) and without (HDN) host 

depletion were analysed by 16S sequencing and compared to the gold standard 

Qiagen QIAamp FFPE tissue kit (Q). The results from this analysis indicate, that 

while there might be a loss of Gram negative bacteria, this does not significantly 

affect the outputs of 16S sequencing. 

In this analysis the Q method, which is not optimised for bacterial lysis, showed 

statistically significant deviation from the input proportions across all five bacterial 

species present in the Protoblock. The HDN method showed improvement on the Q 

method, with the HDP method being the best performing approach in this instance. 

This improvement in performance is related to incorporation of a host depletion step, 

since it is the only variable tested here. It can be hypothesised that this may be due to 

(1) a reduction of contaminants (as shown in Figure 7) that improves the ratio of 

bacteria present in the samples being sequenced and (2) the reduction of mammalian 

DNA positively affects the PCR reaction, by improving the access to target 

sequences. 

This was further explored in murine FFPE faecal samples were exposed or not to a 

combined treatment with tissue dissociation and host depletion. Based on the 

evidence from the Protoblock-based comparison of the three methods, the 

expectation would be for the DT-P (in house with host depletion and tissue 

dissociation) and DT-N (in house without host depletion and tissue dissociation) to 

cluster together on a PcOA. However, in this instance, it was the DT-N and Q 

methods that clustered, showing no statistically significant difference in terms of 

their Bray-Curtis dissimilarity. Both are significantly different to the samples 

processed using the DT-P method. Subsequent spearman correlation of the dominant 

bacterial families identified across the samples with the PC1 and PC2 axis reveals 

that this separation on the PcOA plot is driven by Gram status. Gram positive 

bacteria correlate significantly with the direction of the DT-P samples, and Gram 

negative samples correlate significantly with the two other groups (Figure 9). These 

findings are corroborated by results in Figure 10. Altogether, these results confirm a 

significant loss of G- bacteria after the combined treatment with tissue dissociation 

and host depletion strategies, indicating that Proteinase K debilitates the OM of G- 
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bacteria, exposing the phospholipid bilayer, which can be then accessed by Saponin, 

leading to G- bacteria loss. However, this is a necessary step in processing tissues, 

and thus a further optimisation of this step is necessary. This could be addressed by 

incorporating a short decrosslinking step that will allow tissue dissociation enzymes 

to be more effective, leading to a reduction on incubation times or enzyme units used 

in the reaction. This could lead to less off-target effects in G- bacteria.  

By a process of elimination, the best net performing method in this instance appears 

to be the DT-N method. The DT-P method shows significantly increased Gram 

positive bacterial family abundance such as Lactobacillaceae and Coriobacteriaceae 

when compared with the Qiagen method; conversely the Qiagen method shows 

significantly more Gram negative bacteria such as Prevotellaceae and 

Bacteroidaceae. The DT-N method shows significantly more Gram negative 

bacterial families vs DT-P (Figure 10C), and significantly more Gram positive 

families such as Coriobacteriaceae vs Q, with no families significantly reduced in 

abundance vs either group. confirmingThis ed that the tissue dissociation strategy 

needs to be optimised. 

Despite major efforts on maintaining an aseptic technique, there are still numerous 

potential sources of contamination, ranging from the wax used to embed samples, 

through all the DNA purification solutions and enzymes, which are unsuitable for 

sterilisation or could not be gamma irradiated at our facilities. Thus, it is 

unsurprising that there was a considerable amount of contamination present in the 

samples. The biomass in the Protoblock and murine faecal samples is sufficient to 

ensure that the majority of the reads are of sample origin according to the 

SourceTracker algorithm, but the FFPE breast samples appeared to consist almost 

entirely of bacterial reads attributed to one or more of the negative controls. The 

SourceTracker output in Figure 6B indicates that all contamination is attributable to 

three negative control samples, namely the Wax control, taken from the edges of the 

blocks of patient samples, the “In House method” negative control, and the non-

bacterial control, which is an empty Protoblock FFPE processed at our facilities.  

The first two negative controls were dominated by the genera Stenotrophomonas, 

Pseudomonas and Clostridium, all of which count among the most abundant genera 

in the dataset. The presence of both high and low abundance environmental 

contaminants presents a problem for most bioinformatic contamination removal 
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methods, and highlights the value of using both positive and negative controls to 

assist in contamination removal [44]. In this instance, we are provided with a much 

clearer picture of the contamination induced during the process by the use of the 

Protoblock in conjunction with negative controls. This allows us to conclude that in 

the case of the Protoblocks and the mouse faecal samples, any contamination 

introduced by the method can be controlled to below any level where it would affect 

downstream analysis. Figure 6 also provided us with evidence of a phenomenon that 

is gaining more attention in microbiome research, cross contamination, which 

originates within the pool of samples(45). This phenomenon is known to affect lower 

biomass samples, and can be clearly seen in the non bacterial control where five of 

the common bacterial families across the dataset also appear in the negative controls. 

This is particularly dangerous when undertaking established, but conservative 

contamination removal by subtraction approaches.  

Non gastro-intestinal tract biopsies are notoriously low in microbial biomass (46), a 

fact that is further compounded in analysis of FFPE biopsies by the fact that the 

formalin fixation process accounts for a log fold reduction in the quantity of 

recoverable DNA (47). These challenges clearly manifest in the comparison of 

paired fresh and FFPE breast samples. Once the major contaminant ASV’s and those 

suspected of aligning to the human genome are removed, the FFPE breast samples 

are still dominated by known contaminant families, seen in the negative controls in 

Figure 6. Encouragingly, there are some common families to both the FFPE breast 

samples shown in Figure 11B and the fresh frozen breast sample shown in Figure 

11C. As mentioned in the results, manual removal of the Pseudomonadaceae and 

Xanthomonadaceae families reveals a sample composition plot where 24.6% of the 

total bacterial abundance in FFPE breast tissue is accounted for by the bacterial 

families also present in the fresh frozen breast samples (Figure 11A).  

The reason for Figure 11D is that it is a crude retrospective imitation of a potential 

improvement to make this method a viable option for low biomass FFPE studies. 

With the main contaminants inherent to the In House FFPE protocol now identified, 

these can be biologically removed from the sample by blocking their amplification 

from the 16S PCR pool. Numerous methods have been developed to achieve an 

asymmetric PCR reaction that will favour the amplification of certain target regions 

and avoid the amplification of other, which have been used extensively for SNP 
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detection or to reduce off-target capture during sequencing library enrichment. This 

is achieved by: (1) Blocking extension with DNA probe/oligo that has high affinity 

towards a specific DNA sequence (on either DNA strand) that includes a 3’ end (i.e. 

phosphate, inverted dNTP). (2) Inhibiting primer annealing with a homologous 

peptide nucleic acid (PMA) or locked nucleic acids (LNAs), which have increased 

thermal or base stacking stability, respectively and will inhibit PCR [48-50].     

 

Conclusion  

Strategies for the unbiased treatment of FFPE samples for metagenomic analysis are 

presented in this work validated by a variety of approaches on mock bacterial 

communities, murine models and human breast tissue samples. The results shown 

here confirm that most of these strategies would have a positive effect in the 

treatment for metagenomics. However, key areas that need to be addressed are the 

optimisation of a tissue dissociation strategy that does not lead to G- bacterial loss 

and the biological decontamination of samples previous to the analysis.   
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ABSTRACT  

Background The relationship between bacterial communities and their host is 

being extensively investigated for the potential to improve the host’s health. Little is 

known about the interplay between the microbiota of parasites and the health of the 

infected host.  

Aim Using nematode co-infection of lambs as a proof-of-concept model, the aim 

of this study was to characterise the microbiomes of nematodes and that of their host, 

enabling identification of candidate nematode-specific microbiota member(s) that 

could be exploited as drug development tools or for targeted therapy. 

Methods Deep sequencing techniques were used to elucidate the microbiomes 

of different life stages of two parasitic nematodes of ruminants, Haemonchus 

contortus and Teladorsagia circumcincta, as well as that of the co-infected ovine 

hosts, pre- and post-infection.  

Conclusions Bioinformatic analyses demonstrated significant differences between 

the composition of the nematode and ovine microbiomes. The two nematode species 

also differed significantly. Data indicated a shift in the constitution of the larval 

nematode microbiome after exposure to the ovine microbiome, and in the ovine 

intestinal microbial community over time as a result of helminth co-infection. 

Several bacterial species were identified in nematodes that were absent from their 

surrounding abomasal environment, the most significant of which included 

Escherichia coli/Shigella. The ability to purposefully infect nematode species with 

engineered E. coli was demonstrated in vitro, validating the concept of using this 

bacterium as a nematode-specific drug development tool and/or drug delivery 

vehicle.  

To our knowledge, this is the first description of the concept of exploiting a 

parasite’s microbiome for drug development and treatment purposes. 
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INTRODUCTION 

Nematode infection is of major concern to human health in middle and low-income 

countries, particularly in cases of foodborne disease (1). Additionally, animals 

infected by pathogenic nematodes are a serious health, welfare and economic burden 

for countries reliant on agriculture (2). Effective interventions are therefore 

necessary to promote human health, protect livestock, and ensure production 

efficiency. Current standard practices for eradicating helminthic disease focus on the 

routine and frequent administration of anthelmintics, small-molecule drugs, to 

infected hosts. However, as with many chemicals, the development of resistance 

means that these drugs’ effectiveness is reducing (3), and alternative treatments are 

of paramount importance (4). Large numbers of new chemical drug classes are 

unlikely to be synthesised and licensed to combat growing drug resistance in 

nematodes in the near future, given the large time commitment required for drug 

research and development (5). Admittedly, a small number of compounds are at the 

early stage of investigation for controlling human whipworm infections (6,7). Yet, 

contingency strategies and tools to help expedite drug development are still 

desirable.  

In parasitic disease, attempts have been made to characterise the interplay between 

helminths and the bacterial populations inhabiting the mammalian gut, elucidating 

the ways in which the activity of the parasite affects the constituency of the gut 

microbiota and vice versa (8-10). These studies have suggested that the co-evolution 

of these two communities has established a relationship wherein the survival of 

either population is impacted by the other. Susceptibility and resistance to helminth 

infection in humans have been linked with certain bacterial taxa, suggesting that 

there may exist an ideal host microbial profile that guards against such disease (11). 

In fact, it has recently been discovered that parasites themselves have a microbiome. 

The nematode microbiome has become an increasingly popular area of study and has 

seen considerable advancement over the past two years due to 16S rRNA gene 

sequencing accessibility: the microbiomes of Caenorhabditis elegans (12), the 

ruminant parasite Haemonchus contortus (13), the murine parasite Trichuris muris 

(9), soil and beetle-associated nematodes (14), the marine nematode Litoditis marina 

(15) and various other marine nematodes (16) have all been sequenced.   
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High-throughput technologies are ideally placed to examine the interplay between 

the microbial communities within nematodes and the microbial communities of the 

animals they infect. However, while big data have been utilised to expand our 

understanding of the nematode microbiome, less consideration has been given to 

how this information might be applied to the therapeutic benefit of parasite-infected 

organisms. Defining the microbial communities of nematodes and their host opens 

opportunities for exploiting differences for drug development and/or treatment 

purposes. Identifying bacterial communities that uniquely colonise the nematode 

presents an opportunity to investigate their use as oral agents that specifically target 

the parasite, leaving the host unaffected.  

Exploitation of the host microbiota as a means of treating disease in the host is well 

studied across multiple species – from the use of faecal microbiota transplantation 

for inducing remission in ulcerative colitis in humans (17) to the treatment of 

laminitis in horses (18); however, exploitation of the parasite microbiome as an aid 

to drug development and treatment has not yet been described. We hypothesised 

that: i) nematode co-infection of the host would significantly alter the host 

microbiome over time; ii) the host microbiome would significantly alter the 

microbiome of the nematodes; and iii) despite interactions between host and parasite 

microbiota, key differences between the two would be apparent that would welcome 

their further investigation as aids to drug development and treatment.  

In this study, the microbiomes of the ovine abomasum and intestines were 

characterised following co-infection of lambs with the pathogenic nematodes H. 

contortus and Teladorsagia circumcincta. The abomasum is one of four 

compartments of the ruminant stomach, in which H. contortus and T. circumcincta 

live (19), and of the four compartments bears the closest resemblance to the anatomy 

and functionality of the simple stomach of non-ruminants (20). The microbiomes of 

both nematodes were also characterised at both the infective larval (L3) and adult 

stages of their development, marking this as the first report of the T. circumcincta 

microbiome and the first comparative study where different nematode genera are 

derived from the same host. The ovine model chosen is appropriate for a proof-of-

concept study, and the blood-feeding parasite H. contortus is a good model system 

for blood-feeding nematodes. This study also offers insights into the effects of 

parasites on the host, and vice versa. The effects on the host are quantified by 
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monitoring changes in the ovine microbiome over the 28 days of parasitic co-

infection. Effects on the parasite are examined by comparing the microbiomes of 

pre- and post-infection nematode larvae.  
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MATERIALS AND METHODS 

All laboratory work was performed by other members of the Tangney lab.  

Ovine and parasite samples were collected at various timepoints over a 28-day 

infection (Supplementary Figure 1).   

 

Parasite material – adult nematodes 

Four lambs were artificially co-infected with 15,000 infective larvae (L3; 5000 H. 

contortus and 10,000 T. circumcincta). 28 days post-infection (i.e. at the point of 

culling), adult worms were collected from the abomasa of each lamb (21). The 

nematodes were sexed, staged, and species-identified using criteria described in the 

Ministry of Agriculture, Fisheries and Food document (22)[273][272][272][272] 

[22]. Separate pools of 100 adult male and 100 adult female worms were species-

identified, washed twice in sterile phosphate-buffered saline (PBS) to remove 

surface-adherent bacteria, snap frozen in liquid nitrogen, and transferred to -80 °C 

storage prior to deoxyribonucleic acid (DNA) extraction. Both worm species were 

processed separately. 

 

Parasite material – pre-infection and post-infection larvae 

To provide an indication of the microbial diversity present within the L3 population 

that were used to generate the adult material, sub-samples of ~10,000 infective 

larvae used in the artificial challenge doses were snap frozen in liquid nitrogen on 

the day of challenge and stored -80°C storage prior to DNA extraction. Faecal 

material containing eggs (both H. contortus and T. circumcincta) from the patent 

parasite infections were collected from the infected donor lambs at post mortem 

(d28) and incubated at 22°C for 14 days. Infective larvae derived from the d28 

faeces were extracted, enumerated and identified to species level, snap frozen in 

liquid nitrogen and stored at -80°C in pools of ~ 10,000 larvae. 

Figure 1 shows the nematode lifecycle, and its association with the ruminant 

digestive system.  
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Figure 1: The nematode life cycle and its association with the ruminant digestive 

system. 

 

Ovine faecal and abomasal sample collection 

Individual faecal samples were collected per rectum at days 0, 1, 2, 5, 7, 9, 14, 19, 

21, and 28 post infection from all donor animals. Faecal samples were transferred to 

-80°C storage prior to DNA extraction. Sub-samples of abomasal contents were 

collected at post-mortem from each lamb donor.  

 

Confirmation of bacterial presence within nematodes 

To validate the presence of bacteria within ovine nematodes, wax sections from H. 

contortus adult worms were Gram-stained following standard procedures (23). 

 

Genomic DNA extraction 

The adult worms were transferred to 2 ml Lysing Matrix B tubes (MP Biomedicals) 

and were re-suspended in 500 μl sterile phosphate buffered saline (PBS). The larvae 
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were homongenised using a Precellys24 homogeniser (Bertin Technologies) at 6000 

rpm for 30 sec for three cycles. The DNA extraction was conducted using the 

DNeasy Blood and Tissue Kit (Qiagen). To homogenate tubes, 500 μl ATL buffer 

supplemented with 12 mAU proteinase K (Promega) was added, followed by 

incubation at 56 °C for 2 h. To pellet the 0.1 mm glass beads, the Lysing Matrix B 

tubes were centrifuged at 15,000 x g for 5 min. The supernatant was transferred to a 

clean 2 ml microcentrifuge tube and this step was repeated to ensure no glass beads 

were transferred to the DNeasy Mini spin columns. The DNeasy Blood and Tissue 

Kit guidelines for Animal Tissues (Spin-Column Protocol) were followed, eluting 

the DNA in 100 μl of Buffer AE before DNA quantification using a NanoDrop 

ND1000 UV-Vis spectrophotometer (NanoDrop Technologies) and the tubes were 

stored at -80 °C.  

   

Controls 

Negative control tubes were included to account for environmental contaminants 

present throughout the processing of the samples. These consisted of 1 ml PBS that 

was exposed to the equipment used during the post-mortem, lab environment, 

DNeasy Blood and Tissue Kits (Qiagen), and Lysing Matrix B tubes (MP 

Biomedicals) as well as a DNA extraction conducted on the diluent Ultrapure water.  

 

V3-V4 16S rRNA gene sequencing: PCR amplification  

Genomic DNA was amplified using 16S rRNA gene amplicon polymerase chain 

reaction (PCR) primers targeting the hypervariable V3-V4 region of the 16S rRNA 

gene: V3-V4 forward, 

5’TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWG

CAG3’; and V3-V4 reverse, 

5’GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTAT

CTAATCC3’ (Illumina 16S Metagenomic Sequencing Protocol, Illumina, CA, 

USA). A 35-µl PCR was performed for each sample per the following recipe: 3.5 µl 

template DNA, 17.5 µl KAPA HiFi HotStart ReadyMix (Roche), 0.7 µl of both 

primers (initial concentration, 10 pmol/µl), 0.1 µg/µl bovine serum albumin fraction 

V (Sigma), and 8 µl 10 mM Tris-Cl (Qiagen). Thermal cycling was completed in an 
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Eppendorf Mastercycler per the directions in the ‘Amplicon PCR’ section of the 

‘16S Metagenomic Sequencing Library Preparation’ protocol (Illumina). 

Amplification was confirmed by running 5 µl of PCR product on a 1.5% agarose gel 

at 70 volts for 80 min, followed by imaging on a Gel Doc EZ System (Bio-Rad). The 

product was approximately 450 base pairs (bp) in size.  

PCR-positive products were cleaned per the ‘PCR Clean-Up’ section of the Illumina 

protocol, with the exception that drying times were reduced to half the prescribed 

duration to account for the additional drying that occurs in a laminar airflow hood. 

Sequencing libraries were then prepared using the Nextera XT Index Kit (Illumina) 

and cleaned per the Illumina protocol. Libraries were quantified using a Qubit 

fluorometer (Invitrogen) using the ‘High Sensitivity’ assay. Sample processing was 

subsequently completed at Macrogen Inc., Seoul, South Korea. Samples were 

normalised, pooled, and underwent a paired-end 450 bp run on the Illumina MiSeq 

platform.  

 

Bioinformatics analyses 

The quality of the paired-end sequence data was initially visualised using FastQC 

v0.11.6, and then filtered and trimmed using Trimmomatic v0.36 to ensure a 

minimum average quality of 25. The remaining high-quality reads were then 

imported into the R environment v3.4.4 for analysis with the DADA2 package 

v1.8.0. After further quality filtering, error correction and chimera removal, the raw 

reads generated by the sequencing process were refined into a table of Amplicon 

Sequence Variants (ASVs) and their distribution among the samples. It is 

recommended that ASVs (formerly called ‘Ribosomal Sequence Variants’) are used 

in place of ‘operational taxonomic units’ (OTU), in part because ASVs give better 

resolution than OTUs, which are clustered based on similarity (24). ASVs were then 

exported back into Linux and a second stage of chimera removal was carried out 

using USEARCH v9 in conjunction with the ChimeraSlayer Gold database v6. The 

remaining ASVs were screened for contamination using the Decontam package in R 

v1.0.0. The ASVs were classified at genus level using the classify.seqs function in 

Mothur. Additional species-level classification was performed using SPINGO. 
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The following statistical analyses were carried out in R: Shannon alpha diversity and 

Chao1 species richness metrics, and Bray-Curtis distances, for analysis of beta 

diversity, were calculated using the PhyloSeq package v1.24, and the Vegan package 

v2.52. Beta diversity calculations produce distance matrices with as many columns 

and rows as there are samples; thus, beta diversity is often represented using some 

form of dimensionality reduction, in this case, using principal co-ordinates analysis 

(PCoA) with the Ape package v5.1. Hierarchical clustering, an unsupervised method 

that can reveal key taxa that distinguish their respective environments, was 

performed with the heat plot function in the made4 package v1.54. Differential 

abundance analysis was carried out using Deseq2 v1.2.0, which identifies 

differentially abundant features between two groups within the data (25). Tests of 

means were performed using the Mann-Whitney U test unless otherwise stated, and 

correlations were calculated using Spearman’s rank correlation coefficient. Where 

applicable, false positive rates were controlled below 5% using the Bonferroni 

procedure. 

The SourceTracker algorithm was implemented to ensure that any differences 

between pre- and post-infection nematode larvae were not due to the adherence of 

gut bacteria to the surface of the latter group, following their exposure to the ovine 

intestinal tract. The 15 larval nematode samples were treated as ‘sink’ samples and 

compared with five ‘source’ samples to investigate the level of contamination 

present, if any. SourceTracker v1.0 was implemented in the R environment.   

Phylogenetic analyses were carried out by downloading genomic data for well-

characterised laboratory and pathogenic bacterial strains from the SILVA database 

and creating multiple sequence alignments with our own relevant ASVs using the 

MUSCLE alignment tool, hosted by the European Bioinformatics Institute (EBI). 

The resulting alignment was then exported to PhyML, where a phylogenetic tree was 

constructed using the maximum likelihood method. Lastly, this tree was exported to 

the iTOL web server for visualisation.  
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E. coli larval feeding 

Eggs of H. contortus MHco3(ISE) were purified and isolated from faecal samples 

derived from mono-specifically infected donor lambs using a saturated NaCl 

flotation method. The eggs were washed and re-suspended in water before being 

added to NGM agar plates supplemented with E. coli OP50-1:GFP (pFPV25.1) and 

incubated at 22°C for 48 h to allow hatching of first-stage larvae and subsequent 

development to second-stage larvae. 
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RESULTS 

Bacterial presence within nematodes  

Figure 2A and 2B show cross sectional images of H. contortus gut with Gram-

positive bacteria visible throughout.   

 

Figure 2: Stained sections through gut of an adult H. contortus.   

Staining shows the presence of Gram-positive bacteria in cross-sections of the 

intestinal lumen of an adult H. contortus. Gram-positive organisms stain blue-

black;, Gram-negative organisms and nuclei stain red (images kindly generated and 

supplied by Jeanie Finlayson, Moredun Research Institute). 

 

 

 

 

 

 

Sample collection and processing 
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Several samples that proceeded to PCR were not sequenced (Supplementary Figure 

2) because either the amplicon PCR failed to amplify the target gene, or the 

concentration of the sample fell below the 5 ng/µl threshold for sequencing 

following the second PCR clean-up, indicating either an imperfect DNA extraction 

or a low abundance of bacteria in these samples. No amplification was evident in the 

diluent Ultrapure water, nor in the PBS exposed to the post-mortem laboratory 

equipment, laboratory environment, Lysing Matrix B tubes, and run through the 

DNA extraction kits; however, control samples proceeded to sequencing regardless, 

as it is now recognised that sequencing of control samples should be standard 

practice in microbiome work, especially with low-biomass samples, in which low-

level contamination may have a large impact on sample readout (26).   

 

Cohort characteristics 

Microbiome analysis was carried out on a total of 5,608,303 error-corrected, non-

chimeric ASV reads over the entire dataset, with an average read depth of 89,021 

reads per sample. This was broken down into a total of 14,351 unique ASVs 

identified across the four environments studied (Supplementary Figure 3). Of the 

four environments sequenced, the larval nematode microbiome was the most distinct, 

with 84.9% of the total ASVs detected belonging uniquely to the larvae, followed by 

the faecal microbiome with 73.4% unique ASVs. The mature nematode and 

abomasal microbiomes were considerably less distinct, with 38.2% and 30% unique 

ASVs, respectively. Six negative control samples were also sequenced: Ultrapure 

diluent water, lab environment PBS, post-mortem suite PBS and PBS run through 

two DNA extraction kits and lysing matrix tubes. Considerably fewer error-

corrected, non-chimeric ASV reads were generated, with an average of 649. Deeper 

analysis of these samples showed that there was no crossover between ASVs present 

in the negative controls and experimental samples (Supplementary Figure 4).  It was 

therefore concluded that the biological signal from the experimental samples was not 

influenced by contamination.  

 

General population structure of the ovine and nematode microbiomes  
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The microbiomes of the four environments studied were initially classified at 

phylum level across all individual samples (Figure 3). Their average, grouped 

composition was as follows: The abomasum contained 49.5% Firmicutes, 36% 

Bacteroidetes, 2.9% Fibrobacteres, 1.2% Proteobacteria, 1.1% Actinobacteria, 1% 

Planctomycetes, 1% Candidatus Saccharibacteria, with the remaining fraction 

comprising either unclassified or negligible proportions. The lamb faecal 

microbiome contained 67% Firmicutes, 11% Bacteroidetes, 8.5% Candidatus 

Saccharibacteria, 3.4% Spirochetes, 2.9% Actinobacteria, 1.2% Verrucamicrobia, 

with the remaining fraction comprising either unclassified or negligible proportions. 

The larval nematode microbiome contained 67% Proteobacteria, 18% Bacteroidetes, 

8% Actinobacteria, 1.6% Planctomycetes, and 1.5% Firmicutes, with the remaining 

fraction comprising either unclassified or negligible proportions. Finally, the 

microbiome of the adult nematodes contained 68% Firmicutes, 16% Bacteroidetes, 

2.5% Actinobacteria, 2.5% Planctomycetes, 2.2% Candidatus Saccharibacteria, 1.6% 

Proteobacteria, and 1.1% Verrucomicrobia, with the remaining fraction comprising 

either unclassified or negligible proportions. The four environments are 

distinguishable even at phylum level. Nematode larvae have a microbiome 

dominated by Proteobacteria, a phylum that is not evident in the other environments. 

The microbiome of the mature nematode more closely resembles the two host sites 

sampled, suggesting that the host’s environment may influence the microbial 

populations within the parasite. Despite the resemblance of the adult nematode to the 

faeces and abomasum of the lambs at this taxonomic level, there are still several 

phyla that are significantly different in terms of their proportions between these 

environments (Figure 3). 
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Figure 3: Composition at phylum level of the ovine microbiome (abomasal lumen 

contents and faeces) and nematode microbiome (larval and adult nematodes). 

Each ‘Nematode Larvae’ sample contains ~10,000 pooled larvae, 5 of which are 

pre-infection larvae and 10 of which are post-infection larvae; each ‘Adult 

Nematode’ sample contains 100 pooled adult nematodes (five H. contortus (4 males, 

1 mixed sex) and seven T. circumcincta (5 females, 1 male, 1 mixed sex) samples); 

each ‘Abomasum’ sample is derived from the abomasal washings of one of four 

lambs; and each ‘Faeces’ sample is derived from one of four lambs across 10 

timepoints. Phyla constituting less than 1% of the total phylum distribution were 

labelled ‘Other’. ‘Nematode Larvae’ were omitted from statistical testing due to 

their obvious distinctiveness from the other sample groups. The other three samples 

were compared for proportions of the different phyla identified - initially with a 

Kruskal-Wallis test, and then a Mann-Whitney U test, making individual 

comparisons if warranted. Critical values for significance were adjusted using the 

Bonferroni method.   
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Diversity of the ovine and nematode microbiomes 

Alpha diversity, measured using Chao1 species richness showed significant 

differences between all groups compared, excepting adult nematode and faecal 

samples, which were similar in terms of species richness (Figure 4). Larvae were the 

least diverse group, while the abomasum showed the highest diversity. Beta diversity 

using Bray-Curtis dissimilarity shows three clusters of samples: lamb faecal samples, 

nematode larvae, and one cluster comprising adult nematodes and lamb abomasa. 

Hierarchical clustering of the samples based on their composition at ASV level was 

also performed (Supplementary Figure 5). This was carried out using the Bray-Curtis 

distance matrix and the Ward-Linkage method.  The Ward-Linkage method revealed 

the same patterns within the data as those observed in the dimensional reduction of 

the Bray-Curtis dissimilarity matrix, corroborating these findings. Despite apparent 

similarities at phylum level between the adult nematode and ovine faeces, when 

individual ASVs are compared, the adult nematode bears the closest resemblance to 

the ovine abomasum indicating that individual ASVs do not overlap as much as 

phylum-level annotations between the adult nematode and faeces.  
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Figure 4: Bray-Curtis dissimilarity of the ovine microbiome (abomasal lumen 

contents and faeces) and nematode microbiome (larval and adult nematodes), 

correlated with phyla, and Chao1 species richness. (A) Bray-Curtis dissimilarity of 

microbiomes studied. For the ‘Abomasum’ samples, each point on the plot is a 

sample derived from the abomasal washings from one of four lambs, collected 28 

days post-infection. For the ‘Faeces’ samples, each point on the plot is a sample 

derived from a stool sample collected from one of four lambs from one of ten 

timepoints over a 28-day infection period. For the ‘Nematode Larvae’ samples, each 

point on the plot is a sample derived from a pooled mixture of ~10,000 larvae, and 

for the ‘Adult Nematode’ samples, each point on the plot is a sample derived from a 

pooled mixture of 100 nematodes (five H. contortus (four males, one mixed sex) and 

seven T. circumcincta (five females, one male, one mixed sex) samples). Ellipses 

show 80% confidence intervals for their respective groups. Of the 13 different phyla 

identified, 10 correlate significantly with one or both of the components of the PCoA 

based on Spearman’s rank correlation coefficient.  By superimposing this over the 

PCoA plot, the relationship between these phyla and their environments is 

visualised. (B) Horizontal alpha diversity boxplots of microbiomes studied are 

representative of Chao1 species richness. Significance was determined per the 

Mann-Whitney U test.  
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Analysis of inter-sex and inter-species differences in the adult nematode 

microbiome 

The nematode microbiomes were probed for variation resulting from differences in 

sex and species. Alpha and beta diversity between male, female, and mixed-sex 

pools of adult nematodes were examined (Supplementary Figure 6). No significant 

difference was found in terms of alpha diversity based on Chao1 species richness, 

using the Mann-Whitney U test (p = 0.546). When beta diversity was visualised 

using a PcOA plot samples clustered based on the sheep of origin and not based on 

gender.  

The microbiomes of H. contortus and T. circumcincta adult worms were compared at 

family level (Figure 5). Due to the novel nature of the microbiomes of both H. 

contortus and T. circumcincta, 37.6% of ASVs present in H. contortus samples and 

34.1% of ASVs present in T. circumcincta samples were not classified to family 

level. The microbiome of H. contortus comprised the following families: 36.2% 

Ruminococcaceae, 27.4% Lachnospiraceae, 11.4% Prevotellaceae, 5.7% 

Acidaminococcaceae, 4.2% Planctomycetaceae, 1.8 % Acetobacteraceae, 1.4% 

Spirochetaceae, 1.2% Veillonellaceae, with the remaining fraction comprising 

negligible proportions. The microbiome of T. circumcincta comprised the following 

families: 37% Lachnospiraceae, 26% Ruminococcaceae, 6.5% Prevotellaceae, 3.5% 

Planctomycetaceae, 3.3% Acidaminococcaceae, 3% Coriobacteriaceae, 2% 

Bifidobacteriaceae, with the remaining fraction comprising negligible proportions. 

Veillonellaceae and Acetobacteraceae were present in significantly higher numbers 

in H. contortus (p = 0.01 and p = 0.005, respectively), while Coriobacteriaceae was 

significantly more abundant in T. circumcincta (p = 0.005). Significance was 

determined per the Mann-Whitney U test.  
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Figure 5: Adult nematode Microbiome composition at family level of H. contortus 

and T. circumcincta. The extent to which various bacterial families contribute to the 

overall make-up of the microbiomes of H. contortus and T. circumcincta. Each 

column is derived from a pooled mixture of 100 nematodes (five H. contortus (four 

males, one mixed sex) and seven T. circumcincta (five females, one male, one mixed 

sex) samples). Nematodes were taken from the ovine abomasum at post-mortem, 28 

days post-infection. Families constituting less than 1% of the total family 

distribution for a sample were labelled ‘Other’. 
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Alpha diversity in H. contortus was lower than in T. circumcincta (Supplementary 

Figure 7). However, the significance of this comparison between the two nematode 

microbiomes must be considered in the context of sample size (H. contortus n = 5 

and T. circumcincta n = 7). Differential abundance analysis using Deseq2 revealed 

18 ASVs significantly elevated in one nematode: 5 in H. contortus, and 13 in T. 

circumcincta (Supplementary Figure 8). Unlike the Mann-Whitney U test, this 

method is applied to individual ASVs. Ruminococcaceae/Ruminococcus and 

Clostridiales dominate the differentially elevated ASVs in T. circumcincta and are 

absent from the differentially elevated ASVs in H. contortus.  

  

Effect of nematode infection on the faecal microbiome of the host over time 

Changes in alpha and beta diversity of the faecal microbiome of infected lambs were 

examined over several time points between day 0 and day 28 of infection (Figure 6). 

Post-infection, there is a decrease in species richness within the faecal microbiome, 

and an increase in dissimilarity over time, compared with the faecal microbiome pre-

infection. There is a significant negative Spearman correlation between alpha 

diversity and time (p = 0.03). Increasing dissimilarity over time is indicated by a 

strong positive correlation between principal component axis 1 and time. This same 

principal component, which explains the most variation in the PCoA, also has a 

statistically significant negative correlation with alpha diversity. This means that the 

more dissimilar the infected microbiome becomes compared with the pre-infected 

microbiome, the lower its alpha diversity becomes. Despite the positive correlation 

between beta diversity and time, when the mean beta diversity of samples at time 

points 0 and 28 were compared, there was no statistically significant difference (p = 

0.89), although visually it appears to decrease slightly (Supplementary Figure 9).  
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Figure 6: Changes in alpha and beta diversity of the ovine faecal microbiome over 

time, post-infection. Faecal samples were obtained from two-to-four lambs at 10 

timepoints over 28 days. All correlation tests used Spearman’s rank correlation 

coefficient. (A) Changes in alpha diversity of the ovine faecal microbiome over time. 

There is a statistically significant decrease in Chao1 species richness from day 0 to 

day 28 of infection. (B) Changes in beta diversity of the ovine faecal microbiome 

over time. There is a trend in the movement of the lamb faecal microbiome along the 

x-axis in a positive direction over time, thus becoming more dissimilar to the 

uninfected lamb microbiome.  
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These diversity metrics inform on changes in the overall relatedness of samples but 

give no information about the individual microbes implicated in the faecal 

microbiome dysbiosis.  All ASVs detected were correlated against time using 

Spearman’s rank correlation coefficient. There were 39 significant ASVs based on 

this test, of which 11 showed a positive linear relationship with time and 28 a 

negative one, post-infection (Supplementary Figure 10). The two most prevalent 

ASVs associated with time were classified as Bifidobacterium spp. and Sharpea 

spp., both of which show a negative relationship with time. When blasted against the 

nr database, these two sequences had 100% identity with Bifidobacterium 

merycicum, and Sharpea azabuensis. Seven statistically significant ASVs were 

classified as Ruminococcaceae. Other ASVs, such as the six identified as Candidatus 

Saccharibacteria, have an ambiguous relationship with time, post-infection, as four 

of these ASVs show positive correlations, and two negative.  

Dialister spp. and Clostridium spp. have both been implicated in compromising the 

human host’s ability to clear nematode infection [11]. Conversely, many other 

bacterial genera and families are suspected to ‘immunise’ the host against nematode 

infection (e.g. Subdoligranulum spp., Acinetobacter spp., Paracoccus spp., 

Gemminger spp., Peptococcaceae, Moraxellaceae, Corynebacteriaceae and 

Hyphomicrobiaceae). Of these bacteria, we observed only Hyphomicrobiaceae in our 

data, which was significantly elevated in pre-infection larvae over post-infection 

larvae (p < 0.05). Moreover, it is known that helminth infection in mice results in 

increased abundance of  the Lactobacillaceae family, leading to the hypothesis that 

the anti-inflammatory activity of these bacteria may create permissive conditions for 

nematode survival in the gut (27). We found similar results with this family in our 

ovine model, in which a positive correlation with time was observed post-infection 

(rho = 0.43, p = 0.01). 

 

Effect of the ovine microbiome on the nematode microbiome 

In addition to defining the effect of nematode infection on the host, the effect of the 

host microbiome on the microbial composition of the nematode was also 

investigated by comparing the microbiomes of larval nematodes pre-infection and 

post-infection. The SourceTracker algorithm failed to detect contamination in the 
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larvae that may have arisen from the ovine intestinal tract. (Supplementary Figure 

11).  

There is a significant increase in alpha diversity in the pre-infection larvae compared 

with post-infection larvae as measured by Chao1 species richness (Figure 7C). The 

two groups of larvae were also clearly differentiated based on their dissimilarity in 

the PCoA plot (Figure 7A), with the clustering by group confirmed statistically by 

PERMANOVA analysis. 

The families Planctomycetaceae and Hyphomicrobiaceae are significantly elevated 

in the pre-infection larvae, while Rhodocyclaceae and Methylobacteriaceae are 

elevated in post-infection larvae (Figure 7B). ASVs that were differentially abundant 

between the two groups were identified using DESeq2.  2037 unique ASVs were 

identified across all larval nematode samples, of which 97 were elevated in the pre-

infection larvae, and 190 in the post-infection larvae. In all cases this was 

statistically significant after correcting for multiple testing. A volcano plot depicting 

this distribution, and a table of all ASVs identified (Supplementary Figure 12 and 

13).  
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Figure 7: (A) Bray-Curtis dissimilarity between pre-infection and post-infection 

nematode larvae. (B) Microbiome composition at family level of pre-infection and 

post-infection nematode larvae. (C) Boxplot of Chao1 species richness of pre-

infection and post-infection nematode larvae. (A) Bray-Curtis dissimilarity between 

pre-infection and post-infection larvae. Each point on the plot is derived from a 

pooled mixture of ~10,000 larvae (5 pre-infection larvae and 10 post-infection 

larvae). Ellipses show 80% confidence intervals for their respective groups. The two 

groups separate based on the dissimilarity of their microbial composition. Statistical 

testing was performed by permutational multivariate analysis of variance. (B) 

Compositional boxplot of the 19 most-prevalent bacterial families. Each column is 

derived from a pooled mixture of ~10,000 larvae. Significance testing was performed 

by the Wilcoxon signed-rank test, with critical values adjusted for multiple 

comparisons using the Bonferroni method.  (C) Boxplot comparing alpha diversity 

between the two groups as measured by Chao1 species richness. The pre-infection 

boxplot is derived from five pooled samples of ~10,000 larvae each. The post-

infection boxplot is derived from 10 pooled samples of ~10,000 larvae each. 

Statistical testing was performed by the Wilcoxon signed-rank test. 
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Comparison of the nematode and ovine microbiomes 

We investigated the capacity for ovine-adapted bacterial taxa to persist in the 

nematode microbiome. Firstly, nematode larvae were compared with ovine faecal 

samples, and adult nematodes were compared with ovine abomasal washings on the 

basis that these samples originated from a common environment – i.e. the ovine gut 

and abomasum, respectively.  Relatively little convergence was evident between the 

nematode larvae and ovine faecal samples, with only 227 shared ASVs of a possible 

9422 unique ASVs identified across both groups (Supplementary Figure 13 and 14) 

Conversely, when comparing adult nematodes with ovine abomasal washings, 2494 

shared ASVs of a possible 6936 unique ASVs were identified across both groups. 

Samples clustered definitively based on the host animal of origin.  

Next, we reviewed several recent studies that have profiled the ovine microbiome at 

various sites in the digestive tract according to the abundances of endogenous 

bacteria present (28,29). We then examined our own nematode microbiome data for 

the presence of bacteria found in sheep in relatively high abundances. Virtually all 

taxa present in relatively high abundances in the ovine gut, such as Ruminococcus 

spp. and Bacteroides spp., were absent from the larvae; however the 

Peptostreptococcaceae family was identified in all 32 faecal samples and 14/15 

larvae. Abomasum-adapted taxa such as Oscillospira spp., Succinivibrio spp. and 

Bacteroides spp. were not found in the adult nematodes, but Prevotella spp., one of 

the most abundant genera in the ovine abomasum, was found in every ovine 

abomasum and adult nematode sample, along with the abomasally-adapted 

Fibrobacter spp.,  which was also found in all abomasal samples, and 10/12 

nematode samples (data not shown). 

Also of interest were potential differences between the adult nematode and the ovine 

abomasum. The adult nematode and the abomasal lumen content microbiomes were 

compared using Deseq2. Twelve ASVs were significantly differentially abundant 

between the nematode microbiome and that of the ovine abomasum (Figure 8A). The 

most prevalent differentially abundant ASV was classified as E. coli/Shigella spp. 

(the taxonomic resolution necessary to distinguish these bacteria is impossible using 

16S rRNA gene sequencing analysis (30)). Following this, ASVs classified as E. 

coli/Shigella were screened for in the dataset, resulting in the discovery of four in 
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total. At least one ASVs appeared in every larval sample, and in seven of the 12 

adult nematode samples. ASV 75, the most abundant putative E. coli/Shigella ASV, 

was also present at low levels in some of the lamb faecal samples but all ASVs were 

absent from the ovine abomasum (Supplementary Figure 15A). Nematode 

colonisation by E. coli/Shigella did not appear to be specific for either species of 

nematode – the two ASVs 75 and 295 combined were found in 4/7 T. circumcincta 

samples and 3/5 H. contortus samples. 

Phylogenetic analyses were carried out, comparing the four E. coli/Shigella ASVs 

found in the dataset with other well-characterised and clinically relevant strains to 

provide evolutionary context (Supplementary Figure 15B). The bootstrapping values 

were provided over 1000 iterations. The more distantly related Klebsiella spp. and 

Salmonella spp. formed the outgroups, as expected; however, the evolutionary 

distance between E. coli/Shigella genera was limited, as can be seen by the low 

bootstrapping values at many of the branch points. ASV_295 appears most distantly 

related to the remaining species, and therefore it is reasonable to suggest that 

ASV_6240 and E. coli MG1655 form a distinct separate clade, although it is not 

possible to confirm that evolutionary distance exists between ASV_75, ASV_7656, 

E. coli 0157:H7 and Shigella spp.  
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Figure 8: (A) Differentially abundant ASVs between the adult nematode and the 

ovine abomasum, showing level of fold change between either environment. (B) 

Oral ingestion of engineered E. coli by larvae in vitro. (A) Metabarcoding data for 

the adult nematodes were derived from 12 pooled samples (five H. contortus (4 

males, 1 mixed sex) and seven T. circumcincta (5 females, 1 male, 1 mixed sex) 

samples) of 100 nematodes each. Metabarcoding data for the abomasum were 

derived from the abomasal washings of four lambs. Bacteria are labelled with the 

most accurate taxonomic classification available for that ASV. Differential 

abundance was determined with Deseq2. Additional classification to species level 

with SPINGO is provided. This classification was performed with no confidence cut-

offs; thus, it is revealing yet imperfect with respect to the identification of the 

bacteria. (B) Eggs of H. contortus MHco3(ISE) were hatched to first-stage larvae 

and developed to second-stage larvae on NGM agar supplemented with E. coli 

OP50-1:GFP (pFPV25.1). DIC image left, U.V. Image on right depicting ingestion 

of GFP labelled OP50 in pharynx and entire length of gut (Mag x250).   
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Oral ingestion of engineered E. coli by larvae in vitro 

In vitro oral ingestion of engineered E. coli was investigated to assess the potential 

for exogenous bacteria to reside within the guts of these nematodes, and to locally 

express heterologous genes. First stage nematode larvae were grown on a plate 

seeded with an E. coli strain, genetically modified to express green fluorescent 

protein (GFP). Fluorescence microscopy showed GFP fluorescence in the pharynx 

and the entire length of gut, specifically within GFP-expressing, E. coli-fed 

nematodes. Similar results are observed with T. circumcincta (data not shown). 
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DISCUSSION 

The quality and depth of our sequencing analysis permits a thorough understanding 

of spatial, kinetic and organism-specific patterns of the microbiomes of helminth-

infected hosts. This approach is potentially applicable to parasitic disease at large, 

including helminthic and ectoparasitic infections, on the condition that differences 

exist between the host and parasite microbiome. Due to the preferential colonisation 

of the abomasum by H. contortus and T. circumcincta, it was pertinent to compare 

these compartments for identification of bacteria that favour nematode cohabitation. 

and the same rationale was used in the comparison of nematode larvae and ovine 

faecal samples.  The identification of differentially abundant taxa represents valuable 

knowledge to exploit in future research.  

A past study of the H. contortus microbiome with primers targeting both the V3-V4 

and V5-V7 regions of the 16S rRNA gene resulted in higher OTU capture using the 

former primer set, although the latter set contrastingly was capable of detecting the 

phylum Gemmatimonadetes, albeit in relatively low abundance (13). The V3-V4 

region of the 16S rRNA gene was sequenced for all samples in this study, rather than 

the V5-V7 because, while targeting the V5-V7 region would be necessary for 

mapping comprehensively the microbiome of H. contortus by facilitating 

identification of its less abundant taxa, here our objective was to identify nematode-

specific bacteria that are present in relatively high abundance, because these bacteria 

would be more amenable to concentrating within a nematode, were they 

administered exogenously. However, there are ways in which less abundant taxa 

may have important applications for treatment of parasitic disease. For example, 

there is evidence that bacteria can influence their environment considerably even if 

their abundance is low (31). Furthermore, it is known that some bacteria, such as 

Wolbachia spp., are essential for the development of filarial nematodes, and that 

antibiotics targeting Wolbachia spp. have filaricidal activity (32). Thus, the use of 

antibiotics to target nematode-essential bacteria present either in low or high 

abundance is a valid treatment strategy. An alternative method could involve feeding 

the infected host a modified diet that would deprive the bacteria in question of 

essential nutrients.  
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The commonalities and differences we observed between the ovine and nematode 

microbiomes (Figures 3 and 4, and Supplementary Figure 5) are interesting because, 

in the former case, it presents the possibility that the microbiota of either organism 

may be influencing that of the other and, in the latter case, it means that the 

differences between parasite and host could be exploited to the benefit of the 

infected animal. The abomasum and adult nematode microbiomes are by far the most 

closely related environments (Figure 4 and Supplementary Figure 5). This could be 

considered unsurprising because these environments are in intimate contact with one 

another; yet, nematode larvae and host faeces, from which the larvae derive, separate 

into two distinct clusters despite their proximity. We reasoned that there may exist 

differences between host and parasite amenable to exploitation despite their gross 

similarity.  

H. contortus and T. circumcincta have contrasting lifestyles, the former being a 

blood feeder and the latter a mucosal grazer (33). Thus, characterising both species 

simultaneously in a co-infection model could illuminate the effects of alternate 

feeding habits on the nematode and ovine microbiome. Analysing different species 

in isolation across separate studies could complicate the identification of the source 

of any variation, as inter-study differences in soil composition, animal feed, age and 

immune status of host and living conditions, for example, could affect the ovine 

microbiota and therefore the microbiota of the nematode. To our knowledge, this is 

the first report of a parasite-host microbiome study in ruminant livestock that 

incorporates a co-infection model. It is also the first characterisation of the 

microbiome of T. circumcincta. 

Co-infection models are important because it is accepted that different parasites co-

habiting the same host can affect each other profoundly in ways that would not occur 

were they infecting the host as lone pathogens (34). This can result in one parasite 

creating a permissive environment for the other parasite or, conversely, one parasite 

negatively affecting the other parasite’s growth. In some cases, parasitic cohabiters 

can have more influence on their host than on each other (35). Additionally, multiple 

studies claim that co-infection of humans and livestock with nematodes is common 

(36,37), meaning that more microbiome studies of host and parasite should 

incorporate co-infection models. Admittedly, this study does not examine the 

parasite-host microbiome interrelationship in a single-infection model. Therefore, the 
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effects of H. contortus or T. circumcincta alone on the ovine microbiome may be 

different than what is observed here. In response to a critical lack of information 

regarding the effects of co-infection on cohabiting parasites, a recent study has 

successfully employed methodology to predict how two nematodes will influence 

each other in terms of survival, even when they are examined in different host 

species (34). Future research would benefit this field by attempting to predict how 

host co-infection influences the microbiome compared with single-strain infections.  

We discovered that the two species of nematode contain microbiomes that are in 

many ways comparable. This is not unexpected, given the finding that marine 

nematodes deriving even from different parts of the planet contain similar 

microbiomes (16). However, there are statistically significant differences that are 

worth noting, namely that the families Veillonellaceae and Acetobacteraceae are 

both elevated in H. contortus, and Coriobacteriaceae is elevated in T. circumcincta 

(p > 0.01) (Figure 5). The fact that different species of nematode living in the same 

host have quantifiable differences in their microbiomes suggests that the contrasting 

lifestyles between the two species may be directly responsible for significant 

changes in microbiome constitution. 

Microbiomes associated with improved host health are noted for having high levels 

of microbial diversity. As such, if parasitic nematode infections were to alter the 

host’s microbiome, they may have more a profound effect on the health of the host 

than what is currently appreciated. Infection with multiple parasitic species is a 

natural phenomenon and is underlined as a more crucial determinant of the effects of 

infection on host health than host-specific and environmental factors (38); thus, the 

effects of co-infection on the microbiome could be just as pronounced. We detected 

an obvious decrease in alpha diversity 21 days post-infection. H. contortus and T. 

circumcincta pre-patent periods are both approximately three weeks (39,40), 

suggesting that nematode infection has a lesser impact on the microbiome of the host 

in the initial stages of the nematode life cycle, and only begins to have a noticeable 

effect once the parasites mature and move into the abomasal lumen rather than 

residing within the tissue. However, the dose administered to the lambs in this study 

was sub-clinical, which also may explain why the decrease in alpha diversity was not 

observed until the latter part of the life cycle. It is possible that the effects on 
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microbiome diversity could become magnified and/or occur earlier if infections were 

more acute.  

Notably, previous work, albeit within goats, showed that H. contortus infection did 

not result in a shift in abomasal microbiome diversity; however, an effect was seen 

on the abundances of several bacterial species (41). Contrastingly, infection of lambs 

with H. contortus alone was found to increase microbiome diversity in the 

abomasum (42). Differences observed may be attributable to inter-species 

differences and/or inter-study differences. For example, although both studies 

administered the same dose of H. contortus, the latter study involved pre-treatment 

of its animals with the anthelmintics ivermectin and levamisole, which may have 

removed pre-existing infection that otherwise may have affected study outcome. A 

study of humans, many of whom were infected with multiple nematodes (most 

commonly Trichuris spp., followed by Ascaris spp., followed by hookworm), 

concluded that helminth infection resulted in an increase in diversity of the faecal 

microbiome (37). It could be the case that the effect of nematode infection on 

microbiome diversity within the host may be microbiome-specific (i.e. abomasal vs. 

faecal), and/or species-specific (i.e. ovine vs. caprine vs. human). It is perhaps 

relevant that Trichuris spp., Ascaris spp. and hookworm are each intestinal 

helminths, while H. contortus and T. circumcincta are abomasal helminths. It is 

reasonable to postulate that parasites will have varying impacts on body sites with 

which they are directly in contact, than if they were persisting remotely. 

Furthermore, changes that occur as a result of abomasal colonisation may have 

dramatically different effects on microbial viability and composition in other, 

downstream in vivo compartments (e.g. the intestines) that would not occur were the 

intestines colonised. For example, there is evidence that colonisation with H. 

contortus decreases the acidity of the ruminant stomach (42), potentially altering 

microbial growth patterns here and other areas of the gut. Further study is required to 

fully understand the extent to which parasite lifestyle and host-specific factors come 

to bear on microbiome diversity.  

In addition to a quantifiable decrease in diversity, the quality of the shift is also 

noteworthy. Bifidobacterium merycicum and Sharpea azabuensis, both of which 

become reduced over time, would be considered typical constituents of a healthy 

ruminant microbiome (43,44). Similarly, Ruminococcaceae can be considered a 
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dominant ruminant bacterial family (45) and again, all associated ASVs show a 

negative correlation with time. Unlike the dominant ruminant bacteria which are 

clearly affected by nematode infection of the host, some other changes in the host 

microbiome not directly related to parasitic infection are inevitable due to 

interactions between bacteria. Bacterial species compete for resources in various 

ecological niches within the host, produce antibiotics, and often rely on syntrophy 

for their survival (46). Thus, it is cautioned that the results of microbiome studies 

must be considered against a potential background of inter-bacteria interactions that 

may confound precise interpretation of changes observed.  

Taxa that have suggested involvement in either maintenance or clearance of human 

nematode infection, such as Dialister spp. and Lactovum spp. (11), were largely 

unfound in the ovine microbiome in the present study, with the exception of the 

Hyphomicrobiaceae family, which was elevated in pre-infection nematode larvae 

over post-infection larvae. Thus, while these bacteria may have an important role to 

play in human infection, it is improbable that they are fundamental to the 

establishment or curtailment of nematode colonisation of the ruminant host, and at 

the very least might only facilitate the establishment or removal of infection. An 

increase in the level of anti-inflammatory Lactobacillaceae in murine models of 

others studies (10), and in the present ovine study, is suggestive of a symbiotic 

relationship between bacteria and parasite, wherein Lactobacillaceae thrive in the 

presence of nematode infection, while nematode infection is sustained by the 

dampened immune response effected by this altered microbial signature.  

The degree of overlap observed in this study between host and parasite microbiomes 

occupying the same environment within the host provides insight into the origination 

of the nematode microbiome and is suggestive of the ability of ruminant-adapted 

taxa to invade a new niche within the host. The data present a strong case for the 

mature nematode either feeding on or being passively colonised by constituent 

bacteria of the ovine abomasum. While many taxa associated with the abomasum are 

absent from the adult nematode microbiome, there is a significant degree of overlap 

between the two groups at an ASV level, especially by the highly abundant, 

abomasally-adapted genera Prevotella spp. and Fibrobacter spp. All adult 

nematodes cluster definitively by host organism (Supplementary Figure 14), 
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suggesting that these common taxa were indeed acquired by the nematode upon 

reaching the abomasum.  

The identification of differentially abundant taxa presents future opportunities for 

use as research tools, or indeed therapeutic approaches. While invaluable in 

combatting helminthic disease, anthelmintic drugs have been the victims of their 

own success. Frequent and routine use of anthelmintic has led to the prevalence of 

anthelmintic resistance increasing globally, with multiple class anthelmintic 

resistance being commonplace in H. contortus and T. circumcincta globally (47). 

The development of anthelmintic resistance and consumer concerns over chemical 

residues in the milk and meat products of treated animals (48) are potentially 

limiting factors in the deployment of these drugs in the future.  

Our metabarcoding data suggest that the microbiomes of H. contortus and T. 

circumcincta are significantly different from their ovine environment most notably 

with respect to E. coli/Shigella spp. E. coli may be a much more natural coloniser of 

nematodes than of animals, and there are several pieces of clinical evidence that 

support this. Firstly, it is known in human subjects that E. coli is not among the most 

abundant species found in the gastrointestinal tract and that its numbers may in fact 

be quite low (49). Moreover, probiotic strains of E. coli, such as E. coli Nissle 1917, 

are frequently unsuccessful colonisers of the human gut even when administered in 

relatively high doses (50), and once colonised often do not persist for long in the gut 

once the dose is stopped (51). Thus, naturally low levels of E. coli in animals may be 

sufficient to ensure its selective compartmentalisation in nematodes. Alternatively, it 

is possible that E. coli is vertically transmitted in nematodes and that migration from 

the host either does not take place or has a lesser impact than vertical transmission.  

This study provides a rationale for the study and use of parasite-specific bacteria in 

drug development practices. The successful feeding of infective nematodes with a 

genetically modified bacterium could be exploited in several ways. An example is a 

bacterial assay formatted to assess the efficacy of anthelminthic drugs. Bacteria have 

recently been engineered to ‘sense’ molecules that cannot be quantified by non-

invasive methods (52,53). These bacteria can detect exposure to a drug, and record 

this exposure using a memory circuit. This could create a platform through which 

pharmacokinetic studies on anti-parasitic drugs could be easily and non-invasively 
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performed – both on market-approved compounds and drugs still undergoing clinical 

testing. Alternatively, bacteria could be used as vehicles for drug delivery, which has 

many advantages beyond conventional chemical medicines, not least of which is the 

targeted delivery of therapeutics (52).  

E. coli is an ideal candidate for bacteria-mediated drug delivery. It is readily 

engineered and highly flexible as a drug testing platform and various strains of this 

species have attracted interest for their probiotic properties (54). Its preclinical 

validation in various drug delivery modalities is also a reassuring aspect of this 

bacterium (53,55-59). Thus, the selective colonisation of the nematode microbiome 

by E. coli/Shigella is encouraging and invites further investigation of bacteria as 

orally administrable, target-specific agents.  

In summary, this study highlights the potential value in exploitation of nematode 

microbiota in progression of novel treatments for parasitic diseases affecting both 

animals and humans.  
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Supplementary Figures 

 

Supplementary Figure 1: Overview of study timeline. The points at which host and 

parasite samples were collected across a 28-day nematode co-infection in lambs.  
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Supplementary Figure 2: Flow diagram outlining the number of samples at each stage of the process, from genomic DNA extraction to the 

final sequencing of bacterial 16S rRNA gene amplicons. Numbers of samples are indicated for nematodes (pre-infection larvae and sheep-

derived larval and adult H. contortus and T. circumcincta) and lambs (abomasal and faecal samples). The total number of samples processed is 

shown in square brackets and the round brackets show (number of replicates, number of animals). In total, 215 genomic DNA extractions were 

processed, excluding negative controls. 
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Supplementary Figure 3: Distribution of ASVs among the ovine microbiome 

(abomasal lumen contents and faeces) and nematode microbiome (larval and adult 

nematodes). ASVs for ‘Nematode Larvae’ were derived from 15 pooled samples of 

~10,000 larvae each (5 pre-infection larvae and 10 post-infection larvae); ASVs for 

the ‘Adult Nematode’ were derived from 12 pooled samples of 100 nematodes each 

(five H. contortus (four males, 1 mixed sex) and seven T. circumcincta (5 females, 1 

male, 1 mixed sex) samples); ASVs for the ‘Abomasum’ were derived from the 

abomasal washings of four lambs; and ASVs for the ‘Faeces’ were derived from 33 

faecal samples taken from the four lambs across 10 timepoints. ASVs unique to any 

of the four environments are indicated by numbers in non-overlapping sections of 

the diagram. ASVs shared between two or more environments are indicated by 

numbers in overlapping sections. 
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Supplementary Figure 4: Bioinformatic analyses of negative control samples to probe for potential sample contamination. (A) Sample 

composition boxplot, at phylum-level, of the 6 negative control samples sequenced. Numbers of high-quality error-free reads obtained from each 

sample are shown above each column. (B) Heatplot of 75 unique ASVs identified in the negative control samples, illustrating their absence in the 

experimental samples. (C) Comparison of average Chao1 species richness between different grouped sample types.   
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Supplementary Figure 5: Hierarchical clustering of ASVs, filtered for 5% 

presence across the ovine microbiome (abomasal lumen contents and faeces) and 

nematode microbiome (larval and adult nematodes). Data for ‘Nematode Larvae’ 

were derived from 15 pooled samples of ~10,000 larvae each (5 pre-infection larvae 

and 10 post-infection larvae); data for the ‘Adult Nematode’ were derived from a 

pooled mixture of 100 nematodes (five H. contortus (4 males, 1 mixed sex) and seven 

T. circumcincta (5 females, 1 male, 1 mixed sex) samples); data for the ‘Abomasum’ 

were derived from the abomasal washings of four lambs; and data for the ‘Faeces’ 

were derived from 33 faecal samples taken from the four lambs across 10 timepoints. 

Hierarchical clustering was carried out using the Ward-linkage procedure. Each 

row represents one ASV, with the relevant phylum indicated by the coloured bar to 

the left of the plot.  
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Supplementary Figure 6: Comparison of the microbiomes of male and female 

nematodes. (A) Beta diversity, visualised using Bray-Curtis dissimilarity, is 

represented in two dimensions using a PCoA plot. Samples are coloured according 

to the host lamb of origin, and shaped according to gender. Data were derived from 

five pooled H. contortus (4 male, 1 mixed sex) samples of 100 nematodes each and 

seven pooled T. circumcincta (5 females, 1 male, 1 mixed sex) samples of 100 

nematodes each.  (B) Boxplot comparing average Chao1 Species richness between 

male and female adult nematodes.  
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Supplementary Figure 7: Comparison of alpha diversity between the adult 

nematodes H. contortus and T. circumcincta. Data were derived from five pooled 

H. contortus (4 male, 1 mixed sex) samples of 100 nematodes each and seven pooled 

T. circumcincta (5 females, 1 male, 1 mixed sex) samples of 100 nematodes each. 

Alpha diversity measured as Chao1 species richness. Statistical testing was 

performed by the Wilcoxon rank sum test. 
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Supplementary Figure 8: Differential abundance of ASVs between the adult 

nematodes H. contortus and T. circumcincta. ASVs for H. contortus were derived 

from five pooled samples of 100 nematodes each (4 male, 1 mixed sex) and ASVs for 

T. circumcincta were derived from seven pooled samples of 100 nematodes each (5 

females, 1 male, 1 mixed sex). Differential abundance was calculated based on log 

fold change, as calculated by the Deseq2 algorithm.  

 

 

Supplementary Figure 9: Comparison of beta diversity of the ovine intestinal 

microbiome, measured by Bray-Curtis dissimilarity vs time. 
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Supplementary Figure 10: Statistically significant ASVs in the ovine faecal 

microbiome when correlated against time. ASVs were derived from 33 faecal 

samples taken from four lambs across 10 timepoints. ASVs present in lamb faecal 

samples were correlated against time using the Spearman correlation method. 

Results were corrected for multiple testing using the Bonferroni method.  
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Supplementary Figure 11: Proportion of bacteria in the larval nematode 

microbiome potentially originating from host (ovine) contamination. Analyses 

were carried out using the SourceTracker algorithm. 
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Supplementary Figure 12: Differential abundance of ASVs between pre- and 

post-infection nematode larvae. Each point on the plot is derived from a pooled 

mixture of ~10,000 nematode larvae. Differential abundance was calculated using 

Deseq2; points are coloured according to phylum, and size is scaled to the base 

mean of ASVs.  
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Supplementary Figure 13: Hierarchical clustering of ASVs present both in ovine 

faeces and nematode larvae.  
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Supplementary Figure 14: Hierarchical clustering of ASVs present both in the 

ovine abomasum and the adult nematode. 
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Supplementary Figure 16: Differential abundance of E. coli/Shigella spp. 

between the adult nematode and ovine abomasal lumen microbiomes and 

phylogenetic analysis. (A) ASVs for the ‘Adult Nematode’ were derived from from 

12 pooled samples of 100 nematodes each (five H. contortus (4 male, 1 mixed sex) 

and seven T. circumcincta (5 females, 1 male, 1 mixed sex) samples); ASVs for the 

‘Abomasum’ were derived from the abomasal washings of four lambs. Each row is 

individually scaled from dark-blue to red, with dark-blue indicating that the ASV in 

question is absent, and red indicating the most abundant sample for that ASV. (B) 

Dendogram of ASVs compared with V3-V4 regions of significant strains of E. coli, 

Shigella, Klebsiella and Salmonella sequences to provide evolutionary context. 
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Chapter VI 
 

Discussion and future prospects 
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This research consists of novel approaches and protocols to broaden the scope of 

research material for microbiome research, and aid in reproducibility. This is 

followed by two approaches attempting to progress the translational aspects of this 

research. 

Given the potential impact of environmental contamination on sequencing projects 

such as those seeking to characterise tumour-related microbiota, a robust 

contamination control strategy with accompanying validation such as that shown in 

Chapter 2 is the minimum requirement before proceeding any further with research 

of this kind. This methodology proved to be effective when used on samples 

showing mild to moderate levels of contamination, but was unable to completely 

differentiate low abundance bacterial reads from low abundance contaminant reads 

in the presence of overwhelming levels of contamination as in the FFPE breast 

tumour samples of Chapter 4. It is clear that there is room for improvement for 

retrospective removal of environmental contamination using bioinformatic methods. 

Future work to achieve this could involve the use of an ensemble classification 

method such as RandomForest to accurately identify contaminant reads from within 

datasets with the assistance of biological standards and use them as a training set 

with which to query newly generated data for contamination.  

Unfortunately, the advancement of retrospective contamination removal does not 

address the larger issue of the inefficiency caused by environmental contamination, 

in terms of discarded sequencing reads. The cost of sequencing is constantly be 

sinking, but it remains an expensive proposition for many labs globally. Given the 

extent of contamination observed in some samples across this research thesis, the 

practical effect of this is a doubling of the cost of sequencing at a minimum. The 

results of either an ensemble based classification method, or a biological standard 

such as the protoblock described in Chapter 4 to identify contamination can be used 

to inform biologists of contaminant sequences which could then be targeted by 

amplification blocking oligonucleotides (1), effectively removing them from the 

PCR pool, as discussed earlier.  

Justified criticisms of previous strategies for characterising the microbial 

communities within tumours employed by a number of groups, have provided a 

reasonable doubt regarding the presence of endogenous bacteria within tumours. A 
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new survey of the potential breast tumour microbiome was required, taking into 

account the various concerns raised in recent times, particularly the presence of 

contamination. This re-affirmed the suggested presence of a bacterial community in 

both malignant and non-malignant breast samples, possibly due to migration of 

bacteria inhabiting the skin. This is evidenced by the similarity between skin swabs, 

healthy adjacent samples and tumour samples. Additionally, a distinct microbial 

signature within tumour samples was detected using a variety of statistical methods.  

In addition to the strain level analysis of bacterial communities required for 

biomarker discovery discussed earlier, which has the potential to progress the 

effectiveness of bacterially administered therapeutics, future work could focus on 

sequencing a matching host genomic and transcriptomic profile to complement the 

metataxonomic profile acquired here. This would allow the integration of 

information about possible biotransformation of therapeutics by bacteria (2), effect 

of bacterial community on host gene expression (3) and variation in reponse to 

treatment due to genetic profile (4) into one consolidated profile, progressing 

personalised cancer treatment.  

Chapter 4 describes a multifaceted approach to address two significant issues which 

are arresting the progress of microbiome research, particularly into non-GIT based 

ecological niches where stool cannot be used as a proxy; 

• Access to samples, particularly healthy controls is restricted by the 

invasive nature of the sampling process. This makes it difficult to 

obtain a sufficient sample size for statistical significance.  

• Lack of representative biological standards to validate experimental 

accuracy.  

 

This chapter describes the first method for the extraction of DNA from FFPE 

samples that is tailored to the unique characteristics of bacterial DNA, and while the 

method does require further optimisation, the initial results are promising. Many of 

these results are derived using a novel biological standard to complement FFPE 

samples. This “protoblock” was designed with the increasing requirements of 

validation and reproducibility within microbiome research in mind and offers 

significant extensibility over the current industry leading Zymo mock communities, 
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when applied to FFPE samples. Two examples of this are the inclusion of host DNA, 

and formalin fixing to mirror the conditions faced by DNA in the samples.  

Future work from a bioinformatic perspective must be to provide a definitive answer 

on the applicability of this method to low biomass samples such as tumour tissue 

samples. Given the log fold decrease in DNA quantity expected after formalin 

fixation, and the low levels of bacteria expected in tumour biopsies (particularly in 

relation to the levels of host DNA), it is entirely possible that no endogenous 

bacterial community remains in levels high enough to be differentiated from 

contamination. Recent studies successfully characterising bacteria in several other 

tumour sites from FFPE samples using the gold standard Qiagen kit dictate that this 

method should also be examined with the FFPE samples used here. The results of 

this could be compared with improvements made to our own method outlined 

previously.  

Despite appearing to be a thematic outlier, the aim in Chapter 5 of characterising and 

exploiting the bacterial community within a foreign body for drug development or 

treatment purposes is as relevant to human tumours as it is to parasitic nematode 

infection, and can be seen as a proof of concept. The result, a bacterial taxonon only 

found in nematodes and absent from the surrounding host, with deliberate 

colonisation validated ex vivo would represent the ideal result in any metagenomics 

survey of a human tumour. That being said, the work is significant in its own right as 

a potential counter measure to rising anthelminthic resistance.  

Without ignoring the effect nematode infection has on livestock globally, future 

work should focus on determining whether the results of this study are replicable in a 

human model. Nematode infections affect up to 50 % of the global population (5), of 

which 450 million are seriously ill as a result. Only 125,000 deaths each year are 

directly attributable to nematode infection, compared to 3 million caused by malaria 

which affects a similar demographic, but this a function of the reporting methods as 

nematode infection related morbidity is not directly fatal. A more accurate metric is 

disease affected life years (DALYs). 39 million DALYs are lost each year from 

nematode infection compared to 35.7 million from malaria (6). The practise of only 

reporting deaths directly attributable to nematode infection, and the fact that almost 

all cases are in the developing world, has led to nematode infections being termed 
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neglected diseases from an awareness, research and funding perspective. As in 

livestock, anthelminthic resistance is developing in human nematode infection (5) 

and new treatment strategies are essential.  

Work thus far has centred on the accurate characterisation of ecological niches, with 

the hope of identifying bacterial biomarkers. If a candidate is found, a possible 

therapeutic intervention is to engineer the candidate bacterium to produce a 

therapeutically useful biomolecule such as a protein at the site of required 

intervention. These proteins are rarely in their native form, rather an aggregation of 

several functional subunits, and as most proteins only have marginal stability, these 

modifications can destroy their function. There are numerous in silico options for the 

prediction of protein function, as has been discussed previously, and the crux of 

Appendix I was the development of a method for their integration to provide a 

unified score that could be associated with the expected performance of a candidate 

protein. This in turn would be expected to significantly streamline the design and 

testing stages of biomolecular design. At present the tool is limited by the relatively 

small number of predictive features used, and the relatively narrow scope of the 

experimental validation. Future work must try and broaden the applicability by 

validating the tool in different experimental conditions, which could be accelerated 

through the construction of a database for community-based reporting of 

experimental results following publication. 

On a more general note, the field of bioinformatics is facing a potential critical 

juncture. The length of the individual reads being sequenced by single cell methods 

such as Oxford Nanopore are constantly increasing, while the total reads yielded by 

the newest Illumina ultra-high-throughput methods are also increasing rapidly. The 

result is data generation exceeding the rate at which the processors needed to analyse 

them are advancing. This comes at a time when bioinformaticians are incorporating 

more computationally intensive machine learning algorithms into the analysis of 

sequencing data, and biological research in general begins to incorporate more 

bioinformatics in the scientific method. This machine learning driven research in 

particular favours scalability, and already breakthroughs have been facilitated by 

large technology corporations who have both the machine learning expertise and 

processing power in abundance. A prime example of this being the unprecedented 

improvement of Googles’ “alpha-fold” protein modelling algorithm when compared 
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to the best efforts of academic institutions and in a fraction of the time. The 

involvement of companies such as Amazon and Google has precipitated scientific 

breakthroughs that may have taken years otherwise, but steps must be taken to 

preserve not for profit university research in the future.  

Given that one of the aims of this research project is to advance the cause of 

precision medicine, this provides a fitting example. A recently published review in 

Nature states that although people of European descent account for only 16% percent 

of the global population, they represent almost 80% of the sequenced genetic 

information available. It is safe to assume the same holds true for metagenomic 

information (7). This is unsurprising, as it presumably roughly mirrors the funding 

for scientific research. Although this imbalance is beginning to be adjusted by 

projects such as the GenomeAsia 100K project (8), it is difficult to see how more 

private involvement in academic research through institutions such as Google will 

help to address this issue rather than exacerbate it.  
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ABSTRACT 

Background Protein engineering and synthetic biology stand to benefit immensely 

from recent advances in in silico tools for structural and functional analyses of 

proteins. In the context of designing novel proteins, current in silico tools inform the 

user on individual parameters of a query protein, with output scores/metrics unique 

to each parameter. In reality, proteins feature multiple ‘parts’/functions, and 

modification of a protein aimed at altering a given part, typically has collateral 

impact on other protein parts. A system for prediction of the combined effect of 

design parameters on the overall performance of the final protein does not exist.  

Aim Function2Form Bridge (F2F-Bridge), attempts to address this by combining 

the scores of different design parameters pertaining to the protein being analysed into 

a single easily interpreted output describing overall performance.  

Methods The strategy comprises 1. A mathematical strategy combining data 

from a myriad of in silico tools into an OP-score (a singularsingle score informing 

on a user-defined overall performance); 2. The F2F-Plot, a graphical means of 

informing the laboratory biologist holistically on designed construct suitability in the 

context of multiple parameters, highlighting scope for improvement.  

Conclusion F2F predictive output was compared with laboratory data from a 

range of synthetic proteins designed, built and tested for this study. 

Statistical/machine learning approaches for predicting overall performance, for use 

alongside the F2F plot, were also examined. Comparisons between laboratory 

performance and F2F predictions demonstrated close and reliable correlations. 

This user-friendly strategy represents a pivotal enabler in increasing accessibility of 

synthetic protein building and de novo protein design. 
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INTRODUCTION 

Proteins are large biomolecules, which perform various fundamental functions of 

life. The structure and function of these biomolecules is defined by a sequence of 

amino acids, which begin to fold into a 3D structure even during the protein’s 

synthesis by a ribosome [1]. Our understanding of this process, and consequent 

ability to modify and engineer proteins, has progressed dramatically in recent times. 

This has gone hand in hand with the development and improvement of 

computational tools designed to predict how proteins will behave. Tools exist 

allowing the user to predict:  

• the three dimensional structure of a protein [2] 

• its physical and chemical properties [3] 

• how it interacts with other proteins [4]  

• which active sites facilitate these interactions [5]  

• with more expert use, tools also exist to modify these proteins if any of these 

parameters do not match what is desired in the rapidly expanding field of de 

novo protein design [6].  

These tools offer a considerable advantage over the traditional structural exploratory 

techniques of NMR and CryoEM in terms of cost and ease of use, and the gap in 

terms of accuracy between the gold standard and in silico approaches is shrinking.  

The design of a protein involves defining the overall desired function, and 

associating this with a 3D structure. This is in turn coded into an amino acid 

sequence. In many cases, this overall function is achieved by fusing different sub-

functional protein components (parts) together. In addition to de novo protein design, 

a simple example is the conjugation of protein therapeutics with delivery factors, 

such as cell penetrating peptides to enhance their efficiency. Once the construct has 

been defined, the typical process of protein modification or design for therapeutic 

use entails designing thousands of variant structures in order to find the small 

minority of these proteins that will be (i) expressed by the bacterial cellular 

machinery and (ii) in the correct conformation to carry out the desired function. 

Following this, optimal candidates are selected and validated in a wet-lab setting 

against the pre-defined overall function.   
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Proteins, whether natural or designed, have broad applications across many fields of 

science, but medical research in particular has benefitted from our increase in 

understanding and the research and development of protein based therapeutics has 

been a clear beneficiary of this. The scope of protein-based biopharmaceuticals is 

broad, but it is dominated by humanised monoclonal antibodies, which made up 48 

% of the therapeutic proteins market in 2010. A fundamental problem with these 

antibodies has been their size - at 150 KDa on average, they are often too large to 

bind to the desired active sites, or efficiently penetrate into host tissue targets such as 

tumours. With the advances in in silico capacity, groups are now isolating only the 

active site from these antibodies and fusing them with much smaller and more stable 

backbones, or in other cases dispensing with naturally occurring antibodies entirely 

and simply reverse engineering de novo antibodies based on the requirements of the 

active site [7]. 

A key problem with these in silico mediated advances in protein analysis and design, 

is that they remain simulations of how the protein will fold, or bind to an active site 

for example. The overall performance prediction problem is how to weigh the 

positive and negative effects of modifications to a synthetic protein in such a way 

that the effectiveness of the construct in experimental conditions can be predicted. 

Advances in the in silico prediction of overall protein performance have to the 

potential to yield considerable savings both in time and money by reducing the 

amount of wet-lab testing and validation that must go in to the production of a novel 

protein for the first time. Given all the disparate data now available through in silico 

protein analysis, the potential for a big data approach to attempt to predict the 

function of these proteins warrants attention.  

 

In this work, a novel mathematical strategy (F2F-Bridge) aimed at predicting the 

overall performance of a synthetic protein is proposed. Several test sequences were 

designed for a defined overall function. The individual scores for all the different 

design parameters pertaining to each test sequence are condensed into a graphical 

output. The result is a visual and numerical evaluation of the test sequence. The 

graphical output (F2F-Plot) and the numerical evaluation (OP-score) together form a 

novel mathematical strategy (F2F-bridge) that scores, ranks and predicts the overall 
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performance of the given set of test sequences. This method combines user input 

with in silico data to give insights into the predicted overall performance of a test 

sequence. With view to eventually developing a robust tool for protein performance 

prediction, relationships between in silico and laboratory data for test proteins were 

also examined using two different strategies for feature selection and predictive 

model building: LASSO and regression-based decision trees implemented with the 

RandomForest algorithm. 
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MATERIALS AND METHODS 

Laboratory work was performed by other members of the Tangney lab. 

In silico design of test sequences: 

Luminescence proteins: Each construct was designed to have a luminescent 

domain, a binding domain, a solubility tag and a secretion signal. All parts are linked 

in all possible permutations using different rigid and flexible linker sequences[8] 

(Figure 1). Variable heavy and light chain AA sequences from different antibodies 

were used as the binding domains, from an antibody targeting either cell surface 

associated epithelial mucin 1 (MUC1; mammalian antigen) or Clumping factor A 

(ClfA) of Staphylococcus aureus (bacterial antigen). Test sequences were designed 

to bind to their respective target and present luminescence as a readout (bound 

protein luminescence). Fluorescence proteins (used for further validation) are 

described in Supplementary Text 3. 

 

 

Figure 1: 3D structure of the designed luminescence test sequences examined 

showing various sub-function parts for a defined overall function. 
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Data Generation 

The different in silico features analysed in relation to the overall performance of the 

test protein, and how they are generated is outlined in Table 1, with more detailed 

instructions found in Supplementary Text 1.  

Table 1: Common in silico tools, and the purpose they serve 

Design Parameter Metric and Scale 

range 

Metric description Effect on overall 

performance 

Generated: 

3D structure C-score 2 : -5 Confidence in the 

model and folds 

predicted 

Higher confidence 

reflects more reliable 

model 

I-Tasser 

[9]  

Docking ΔG kcal/mol Gibbs free energy 

released by reaction 

Protein-protein 

interactions at the 

active site predicted 

Autodock 

Vina*[10]  

Quality of model RC – score   Proportion of amino 

acids in different 

regions based on 

steric hindrance 

High agreement with 

stereochemistry and 

free energy reflects 

stability of structure 

Saves 

server[11]  

Active site solvent 

accessibility  

0-9 A measure of the 

exposure of A residue 

or group of residues 

Depending upon the 

function, the active 

site could be exposed 

to the solvent or 

‘hidden’ inside the 

core 

R  

(Using I-

TASSER 

output)/GET

AREA 

server[12] 

 

Surface 

Hydrophobicity 

-4.5 to +4.5 Each amino acid has a 

hydrophobicity score 

between -4.5 and +4.5 

as per Kyte Doolittle 

scale.  

Ensuring ideal surface 

hydrophobicity aids 

solubility 

R  

(Using I-

TASSER 

output) 

Size kDa Total weight of the 

protein 

Size forms an 

important factor if the 

protein is required to 

cross/penetrate 

membranes and 

biological barriers 

ProtParam 

Hosted by  

Expasy[13]  

 

Isoelectric point pH 0 to 14 Point at which 

molecule carries no 

The integrity of the 

structure of the 

ProtParam 

Hosted by  
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net charge protein in a setting is 

influenced by the 

isoelectric point 

Expasy[13]  

 

Potential active sites 0 to n Number of potential 

active sites 

Predicting the 

potential active sites 

on the designed 

protein informs on 

potential off-target 

effects 

Coach 

Server 

Instability 0 to 100 Half life of protein in 

vitro 

Gives an indication of 

the viability of the 

protein 

ProtParam 

Hosted by  

Expasy[13]  

 

Function2Form Bridge 

The data described in the data generation stage were taken as input into the 

Function2Form function, written in the R programming language by the author. The 

F2F function takes as input a data frame with all proteins to be screened as rows, and 

the different in silico observations as columns. The first row of the table contains a 

set of user desired input values. Some of these are based on the benchmarks provided 

by in silico programmes such as RC score and Instability, while in other cases the 

user can specify the ideal needs for the protein (e.g. hydrophobic and < 30 kDa). The 

features used in this study are detailed in Table 1, but the F2F-Bridge function is not 

limited to these and can be easily expanded or condensed depending on individual 

user requirements. 

The test sequences are then screened by the function and the output is a data frame of 

the test sequences and their respective scores, along with a radar plot for each test 

sequence, highlighting the differences between each sequence and the input 

parameters as can be seen in Figure 5. Areas where the candidate protein does not 

meet the preset requirements will appear outside the coloured region of the reference 

values. As well as this visual analysis of the suitability of the protein, a score 

indicating overall function is provided. The OP score is the grand average of 

absolute distance between each particular feature of the protein, and the user-

specified/program specified reference range. For cases of high throughput in silico 

screening, an additional function allows the user to extract the n top scoring test 

sequences from the overall selection.  
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F2F R function  

Generating the OP score 

(i) Where possible, convert different in silico observations to same scale 

𝑖 = (
(𝑂 −  𝑂𝑚𝑖𝑛)

(𝑂𝑚𝑎𝑥 −  𝑂𝑚𝑖𝑛)
) ∗  (𝑁𝑚𝑎𝑥 −  𝑁𝑚𝑖𝑛) + 𝑁𝑚𝑖𝑛 

Where O is the old range and N is the new range, which in the case of the F2F 

function is always 0-100.  

(ii) F2F function then iteratively scores each test sequence supplied in input table 

𝑂𝑃 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑥 =  
Σ|𝑥𝑖 − 𝑦𝑖|

𝑛
 

Where x is the test sequence to be scored, y is the set of reference values, i refers to 

the ith observation within the in silico data table supplied to the algorithm, and n is 

the total number of observations i.  

Generating the F2F plot 

Figure 3 shows the graphical output of the F2F function. Each sequence tested is 

assigned an OP score as discussed above, and a radar plot is generated. For every in 

silico observation provided in the input data, an axis is created on the radar plot. This 

enables the user to see which specific in silico feature or features are making the test 

sequence unfit for purpose. 

 

Statistical and Machine learning methods 

Two other methods of transforming the in silico data into a prediction of overall 

performance were assessed. The aim was to examine the data for relationships of any 

kind between the predictive features and the laboratory output with the view to either 

design a system of weights for the predictive features to improve the F2F plot, or to 

create a new predictive tool to be used in conjunction with the F2F Bridge.  
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i) LASSO Feature selection and subsequent generation of predictive models can 

be used in conjunction with the F2F-Bridge programme. LASSO regression puts a 

constraint on the sum of the absolute values of the model parameters, which must be 

less than a fixed upper limit. It does this by applying a regularisation process 

(shrinkage) where it penalizes regression coefficients and shrinks a selection to zero. 

Variables that still have a non-zero coefficient after the shrinking process are 

selected to be part of the final model [14] . 

ii) TREE BASED METHOD The second method was to use a regression tree as per 

the random Forest package in R to generate a variable importance plot, again using 

the in silico parameters as input, and laboratory detected luminescence as the 

indicator of overall performance. An outline of how random forest works in 

generating these regression trees is as follows. A predefined number of bootstrapping 

samples are drawn from the original data. For each of these samples, an “un-pruned” 

regression tree is grown. Traditionally, the best split at each node to differentiate all 

predictors would be used, but in this instance the best split is found amongst a 

random subset of the predictors. Following this, predictions are made by aggregating 

the predictions of the pre-defined number of trees and taking the average value[15]. 

The quality of the model was ensured by finding the optimal number of features to 

randomly sample at each split, and to ensure that enough iterations of the model are 

run to ensure that the out of bag error has stabilised. 

  

Laboratory validation 

The luminescence test synthetic proteins examined are outlined in Figure 3. Two 

biological facets were used to assess the effectiveness of the functional prediction 

strategies – i) binding; ii) secretion. Sub-function parts on the test sequences include: 

(i) Active site: Heavy and light chains of anti-MUC1 antibody (C595) and anti-ClfA 

antibody were fused with EAAAK (rigid) and GGGGS (flexible) linkers to obtain 

Monospecific bivalent diabodies and Monovalent ScFVs (monobodies), (ii) 

Secretion signal: Gaussia luciferase’s native secretion signal, (iii) Solubility 

enhancer: SUMO tag, (iv) Reporter: Truncated version of Gaussia luciferase was 

used as a luminescence reporter. (v) Detection tag: Flag peptide was used as a 

detection tag for downstream assays.  
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Presence or absence of certain sub-function parts or their design orientation has a 

significant effect on the overall performance of the protein and should be accounted 

carefully in the design phase. In our case, over 50 different amino acid sequences 

were designed against each target. Of these, eight variants per target were 

synthesised for testing in the laboratory. These test sequences vary in (a) (+/-) 

solubility enhancer, (b) (+/-) and positioning of Active site and (c) the type/format of 

Active site. All these test sequences were tested for their overall performance. 

Laboratory data was used to validate and improve the results from the F2F-Bridge. 

An outline of the laboratory workflow can be seen in Figure 2, and a more detailed 

description on synthesis and build of ‘test sequences’ can be found in Supplementary 

Text 3. 

 

Data generation from laboratory experiments with luminescence proteins 

Binding assays: 108 Staphylococcus aureus TCH959 (naturally bearing clfA) or 106 

MCF7 cells (naturally bearing MUC1) were blocked with 5% BSA for 2 h followed 

by incubation with supernatant containing each test construct. Cells were washed 3 

times and resuspended in PBS. Luminescence was measured using Promega 

GloMax® 96 luminometer. In our case, since bound luminescence is the overall 

function, the luminescence readings corresponding to each test sequence are 

recorded and used for validating and improving F2F Bridge. 
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Figure 2: Workflow of laboratory validation of test sequences. 

 

 

Statistical analysis  

All statistical testing, unless otherwise stated, was performed in the base R 

environment v3.4.3 [16]. The LASSO regression feature selection method was 

implemented using the Glmnet library v2.0-16 [17], and the Random Forest 

regression tree analysis was performed using the RandomForest library v4.6-14 [18]. 

The radar plot within the F2F-bridge function was implemented with the fmsb 

library, v0.6.3 [19]. Visualisation was carried out using the ggplot2 package,v3.1.1 

[20]. 
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RESULTS 

Overall Biological Performance - Bound luminescence 

16 test amino acids sequences were scored using F2F-plot. The result of F2F-plot 

analysis and associated scores for all test sequences can be seen in Figure 3 and 

Supplementary Figure 1, and a detailed workflow of the strategy can be found in 

Supplementary Text 2, additionally the raw data can be found in Supplementary 

Table 1. It can be seen from the output of the F2F-bridge that the ClfA Monobody 2 

test sequence (represented by the pink shaded region) has an instability index score 

that is far higher than the user required level (blue shaded region), but there is 

minimal difference between the different shaded regions across the other axes, which 

contributes to ClfA Monobody 2 having a low and therefore good score. The test 

sequence predicted to have the poorest overall performance, ClfA Diabody 2, has 

levels of solvent accessibility and docking affinity that are much lower than required, 

as well as an increased instability index. These factors combine to give this test 

sequence the highest and therefore worst score.   
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Figure 3: F2F-bridge output for ClfA test sequences. Areas where the candidate 

protein (pink) does not meet the preset requirements is highlighted by contrasting 

with the coloured region of the reference values (blue).  The plot is generated using 

a bespoke function written in R, and detailed instructions on its use can be found in 

supplementary materials, with a link to the github repository containing the code. 
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These sequences were used to generate the corresponding proteins as outlined in the 

Methods section. Biological performance of these proteins was assessed in the 

laboratory using binding assays with luminescence as the readout, corresponding to 

Overall Performance.  

Table 2 shows the results (laboratory – luminescence units; F2F – OP score) of all 

test sequences whose biological performance was predicted with F2F-Bridge. The 

accuracy of F2F prediction was assessed by comparing the F2F-prediction of overall 

biological performance with the laboratory luminescence data.  

Table 2: Agreement between experimental results and F2F plot - Luminescence. 

 

In both antiMuc1(A) and Anti-ClfA(B), the binding affinity of each protein is 

measured by luminescence output. Proteins are ranked by their OP score in both 

tables, and coloured from green (best performing protein), through yellow, to red 

(worst performing protein) for both luminescence and OP score (Lowest number = 

best OP score.) 

Overall, the correlation pattern showed the F2F-Bridge method providing a general 

guide for how the test sequence can be expected to perform. In a database of this 

limited size, there was no statistically significant correlation between the OP-score 

and the ‘bound protein luminescence’ evident. This was repeated with 

‘luminescence’ as the laboratory output, but again there was no relationship present 

(Data not shown). 
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Investigation of alternative methods to complement F2F plot 

1) LASSO Regression 

‘Bound luminescence’ as overall performance 

 The output of Lasso analysis of the test sequences for bound protein luminescence 

can be seen in Figure 4. In the case of test sequences against MUC1, the features 

deemed to have the most effect on bound protein luminescence were Docking 

Affinity, Hydrophobicity, Solvent accessibility and isoelectric point. However, when 

these predictive features were input into a linear model, no linear relationship was 

detected. The same was found when analysing the potential relationship between the 

test sequences against ClfA and their eventual bound protein luminescence. In this 

case, Hydrophobicity and Instability were the features selected, and again, no linear 

relationship was found.  

Despite the LASSO method detecting possible relationships between the predictive 

features and the test variable (bound protein luminescence), no predictive linear 

model could be constructed (Table 3). We speculate that there may be too many 

variables present from a laboratory perspective for us to accurately predict bound 

luminescence with a database of this size. 

Table 3: Results of multiple regression analysis of features selected by Lasso 

regression analysis against experimentally determined luminescence.  

Test sequences p-value Adjusted R Squared 

antiClfA 0.507 -0.06 

antiMUC1 0.867 -0.6 
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‘Secreted luminescence’ as overall performance 

 

To counter this, we also examined ‘luminescence’ only resulting from protein 

secretion as a measure of overall biological performance. As we are just measuring 

the degree of luminescence of the test sequences, and not their binding to a target, 

the two groups (antiMUC1 and antiClfA) can also be directly compared, doubling 

our sample size. Figure 4 uses the LASSO method to investigate the relationship 

between in silico observations and luminescence due to secretion of anti–Clfa test 

sequences. In silico observations implicated in dictating the level of secretion of a 

test sequence were identified by LASSO. These were then used to generate a linear 

model to examine the degree to which they explained the luminescence due to 

secretion of the test sequences. This gave a linear model that explained 84.6% of the 

variability in luminescence of all test sequences, with an associated p-value of 0.004. 

This led us to explore the utility of a LASSO dictated linear model as a predictive 

tool. The luminescence levels predicted by the model were correlated with the 

experimentally determined luminescence levels. This, and also correlation 

coefficients of individual test sequence groups against their luminescence, are shown 

in Figure 6, and numerically in Table 4. As would be expected, antiClfA test 

sequences which are the training set, show stronger correlation (Rho 0.93), but that 

of the antiMUC1 test sequences was also significant. 

2) Alternative methods for prediction of test sequence performance; Random 

Forest Regression Tree analysis 

The same methodology was used for a regression tree implemented within random 

Forest. The test sequences against ClfA were used as the training data set, and the 

test sequences against MUC1 test sequences were used as the test set. The regression 

model derived from the random forest algorithm was able to explain 41% of the 

variability in the luminescence of the training set data test sequences (Figure 6). The 

values predicted by random forest for luminescence for the individual proteins were 

then correlated with their experimentally derived levels of luminescence (Table 5). 

This method showed a significant correlation between the luminescence values 

predicted by the random forest algorithm, and the experimental values. Random 
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forest regression analysis was carried out with bound protein luminescence as the 

laboratory output, but no significant results were found (data not shown). 

Table 5: Results of various predictive models of secreted luminescence generated 

using RandomForest regression trees, when correlated with the lab-generated 

values.  

      antiClfA antiMuc1 Total 

p value 0.002 0.05 1e-5 

Rho 0.92 0.71 0.87 
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Figure 4: Output of F2F Post Hoc Analysis 

(A) shows the graphical output of LASSO features selection for both (i) antiMuc1 

and (ii) antiClfA test sequences for predicting bound protein luminescence. Each 

coloured line corresponds to a predictive feature used in the F2F-Bridge function. 

The lines plot the path of the variables coefficient against the L1-norm, of the whole 

coefficient vector as lambda varies. Both show that Lasso regression analysis was 

capable of identifying relationships between the examined predictive features, and 

experimentally determined luminescence. 

(B)(i) shows the same LASSO based feature selection for antiClfA test sequences, 

using secreted luminescence as output.  In this instance, Isoelectric point enters the 

model first, and Instability appears to have the most pronounced effect on the test 

variable. The relationship between these and the experimentally derived 

luminescence was tested with a multiple linear regression. Both features were found 
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to be significant in the model, which explained 84.61% of the variability in 

luminescence, with an associated p-value of 0.004. This allowed us to build a 

predictive model using antiClfA test sequences as the training set. (ii) Shows a 

correlation plot of luminescence values for test sequences predicted by a LASSO 

directed linear model, vs experimentally derived secreted luminescence values. The 

training set (antiClfA test sequences) is coloured blue, and the test set (antiMUC1) is 

coloured red. 

(C) summarises the Random Forest regression tree analysis. As with (B) the 

successful model was trained on the antiClfA data, and tested on the antiMUC1 

data. (i) shows mean node purity for each predictive feature. The lower this value, 

the more important it is to the model.  The model, trained on the antiClfA test 

sequences was able to explain 41% of the variability in experimentally determined 

secreted luminescence. The model was then used to predict secreted luminescence 

values of the training set (antiClfA) and the test set (antiMUC1), and these predicted 

values were correlated with experimentally derived luminescence values in figure 

(ii). The overall correlation coefficient was 0.87, with an associated p-value of 1e-

05, indicating the value of the predictive model generated. 

We postulate that with an increased amount of data available for training the models, 

this accuracy can only increase. A summary of all the tests performed and their 

outcomes is shown in Table 6. 
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Table 6: Summary of statistical tests performed. 

In silico Test 

Performed 

Biological 

Performance 

Tested 

Test 

Sequence 

Result 

“Blind” F2F Bridge Binding and 

Luminescence 

antiClfA and 

antiMUC1 

The F2F plot was able to 

provide a guide for the expected 

performance of the test sequence 

when the test sequences were 

ranked by OP score and by 

laboratory output, and the 

accompanying plot was able to 

inform on how to improve the 

test sequence. No statistically 

significant relationship between 

OP score and laboratory output 

could be found.  

LASSO feature 

selection and linear 

model building 

Binding antiClfA and 

antiMUC1 

LASSO regression analysis was 

able to detect discrete patterns in 

the data, showing 

Hydrophobicity and Isoelectric 

point both to have a positive 

relationship with bound 

luminescence in antiClfA. In the 

case of antiMUC1 Docking 

Affinity and Solvent 

accessibility were shown to have 

a positive effect, Isoelectric 

point and Hydrophobicity a 

negative one.  

Using LASSO 

regression analysis 

dictated linear model 

as a predictive tool 

Binding antiClfA and 

antiMUC1 

The models predicted in the 

above analysis were unable to 

exaplain any of the variability in 

the bound luminescence of 

antiMUC1 or ClfA test 

sequences.  

LASSO feature 

selection and linear 

model building 

Luminescence antiClfA LASSO regression analysis was 

able to detect discrete patterns in 

the data, a linear regression with 

solvent accessibility and 

instability was able to explain 

86.4% of the variability in 

luminescence in the antiClfA 

samples.  

Using LASSO 

regression analysis 

dictated linear model 

as a predictive tool 

Luminescence antiClfA and 

antiMUC1 

The model created in the above 

test was used to predict 

luminescence values for both 

antiClfA and antiMUC1. In both 

cases these predictions showed 

strong positive correlations with 

the experimental luminescence 
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values which were statistically 

significant. 

Random Forest 

regression tree model 

building 

Luminescence antiClfA A regression tree implemented 

with randomForest was able to 

explain ~41% of the variability 

in the luminescence of antiClfA 

test sequences. 

Using Random Forest 

regression tree as a 

predictive tool 

Luminescence antiClfA and 

antiMUC1 

The model created in the above 

test was used to predict 

luminescence values for 

antiClfA and antiMUC1 test 

sequences. In both cases, these 

predictions showed strong 

positive correlations with the 

experimental luminescence 

values that were statistically 

significant. 

 

 

Further Validation – Fluorescence Proteins 

The F2F plot was further validated on a second dataset of 8 test sequences and 

resulting laboratory data (fluorescence readings from proteins). In this instance there 

was no need for the secondary functionality of feature selection and model building 

based on a subset of the data, as the OP score predicted showed a statistically 

significant inverse correlation with overall performance of the test sequence. These 

results are presented in Figure 5 and Table 7, and the accompanying F2F plots, 

scores and raw data are shown in supplementary Figure 2 and Table 2. In this case, 

fluorescence was the overall function of the 8 test sequences to be predicted. Unlike 

the dataset discussed previously, in this case, the F2F-plot predicted scores showed a 

strong inverse correlation with the overall performance of the proteins, which is the 

desired result.  
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Table 7: Agreement between experimental results and F2F plot - Fluorescence. 

Proteins are ranked by their OP score, and coloured from green (best performing 

protein), through yellow, to red (worst performing protein) for both Fluorescence 

and OP score. (Lowest number = best OP score.) 

 

 

 

Figure 5: Correlation plot of OP-Score vs Overall Biological Performance.  

Overall biological performance was scored for fluorescence. Correlation test 

carried out using Spearman’s method.  
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DISCUSSION 

In this study, we have shown how F2F plot could help to visualize the overall 

performance of a test sequence, particularly if complemented by the statistical 

methods examined. For each sequence, the OP score predicts the expected efficacy, 

and the F2F plot provides a graphical overview of predicted strengths and 

weaknesses. Unlike the pre-existing in silico tools that inform the quality of 

individual design parameter, F2F bridge takes a top down approach on overall 

performance by predicting the collective influence of all the design parameters on 

given test sequence. Such a holistic outlook on the overall performance holds a key 

for informed protein design. F2F bridge could be used either for low throughput 

design (see Table 8), accounting for the ‘pitfalls and merits’, in the design 

corresponding to a particular test sequence, or for high throughput in silico screening 

by comparing and ranking a set of test sequences. 

Table 8: The two associated workflows of the F2F Bridge. 

 

 

 

 

 

 

 

 

 

Scale of use Outcome 

High Throughput A database of test sequences or extant proteins of known 

sequence can be queried with the F2F-bridge scoring each 

test sequence and identifying those most suitable. 

Low Throughput On a protein by protein basis the F2F-bridge provides a 

graphical overview of the relationship between the features 

of the test sequence and the optimal values specified by the 

user, informing the user on how to improve the test 

sequence.  
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By informing the end user (laboratory  biologist) with performance predictions, F2F 

plot and OP score together aim to ultimately bridge the gap between easily 

generated, seemingly abstract in silico values, and experimental results. 

When combined with downstream testing, we have shown that patterns exist in the 

easily generated in silico data that can be used to generate predictive models. 

F2F Bridge An unweighted and unsupervised combination of features deemed 

likely to have an effect on biological performance showed promising results. The 

F2F-Bridge is able to give an early indication of the expected performance of a test 

sequence. Given the ease of implementation, in comparison with laboratory 

experiments, any information provided about candidate test sequences prior to 

synthesis is extremely valuable. As well as the OP-score provided, the 

accompanying radar plot can also highlight any design aspects of the test sequence 

that diverge from what is required as per the user input parameters. We expect a 

considerable improvement in performance of both the F2F-Bridge and associated 

models, with an expanded dataset, in the meantime further work to refine or build on 

the method was carried out.   

 

Feature selection driven linear models with LASSO  

LASSO regression was used to search for patterns in the data that could help predict 

the level of luminescence due to a test sequence binding to its target. Features that 

have an effect on bound luminescence were identified. When viewing the plots of 

normalised Lambda1 vs coefficients, what is important is the point at which the 

predictive feature enters the model, and the effect it has on the dependent variable. In 

this case, it was impossible to incorporate them into a statistically significant linear 

model to predict any of the variability in bound protein luminescence. We speculate 

that, with a database of this small size, there were too many different processes 

involved from a laboratory perspective for the strategy to accurately predict the final 

outcome (steps in cell expression of a given test sequence, protein binding to target, 

luminescence production). For this reason, and the opportunity to increase the 

sample size, we also analysed the secreted luminescence data. This was much more 

successful in terms of improving on the F2F-Bridge.  
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LASSO regression-based feature selection was used again, to look for patterns 

between in silico observations of the antiClfA test sequences and their 

experimentally determined secreted luminescence [14] . This was more effective. We 

have shown that a linear model can be predicted using LASSO feature selection that 

can predict values for luminescence that correlate strongly with experimentally 

determined values. This functioned retrospectively to find patterns between in silico 

features of antiClfA test sequences and their eventual levels of secreted 

luminescence, it can also function prospectively. Once the linear relationship 

between a subset of the in silico features and luminescence has been established for 

antiClfA, this was used to successfully predict luminescence values in a test set of 

antiMUC1 proteins which correlated with the experimental values. The antiMUC1 

data originated from a different experiment, and a different class of proteins to the 

antiClfA test sequence training set, so the fact that the linear model still has 

predictive power is extremely encouraging.   

Random Forest regression trees  

The random forest regression tree model, given the same in silico features as the 

LASSO regression, was able to explain ~41.01% of the variability in secreted 

luminescence within the antiClfA test sequence dataset. The predicted secreted 

luminescence values generated by the regression tree model significantly correlated 

with the experimentally derived secreted luminescence values. On a group by group 

basis, it is extremely encouraging that, as with the LASSO based method previously, 

a random forest regression model trained on the antiClfA test sequences was then 

able to predict luminescence for the test set (antiMUC1 test sequences) that 

correlated significantly with the values derived experimentally [15]. Future work, 

with an expanded database would involve assessing whether these associations 

identified with the two above methods become stronger as the database size 

increases, and also, if this method of predicting overall biological performance holds 

true for other tasks, opening up the possibility of the design of an accurate prognostic 

tool for test sequence performance.  

Relevance to the laboratory scientist  

It is important to frame these results in the context of the difference in cost between 

in silico- and laboratory-based screening. In silico screening requires a fraction of 

the time, money or expertise of laboratory-based screening, so maximising the value 



 

264 
 

of this data can lead to considerable operational savings. Laboratory  

experimentation is often a prolonged process in biological research. In most cases, 

the data from laboratory assays has to be processed/filtered to observe the intended 

correlations between the experimental aims. 

We have shown that in silico predicted protein attributes can play a significant role 

in optimising the design and production of protein constructs. With a larger sample 

size, we expect the aforementioned methods to become more accurate, and therefore 

call for the establishment of a community wide database for sharing both in silico 

and experimental data so that this can be incorporated into a much larger training 

data set applicable to a variety of biological functions. Inspiration came, in part, from 

the SourceTracker algorithm used in metagenomic studies to track possible sources 

of contamination in HTS studies. This involved establishing a database of known 

contaminants, used by the algorithm to refine the search for contaminant bacteria[21] 

. We hope that the establishment of a database of potential test sequences used in 

other research laboratories, combined with their in silico parameters and in the case 

of those that are synthesised, their biological output, would similarly improve the 

accuracy of the predictions of the F2F-Bridge. To expedite the process of database 

formation we plan to launch a server in the coming months which will take as input 

an amino acid sequence, and perform all of the necessary calculations, and will also 

accept one or more measures of overall biological function, in the hope that fellow 

researchers will submit their published data. Both linear models (selected with lasso 

regression) and tree based methods (random forest regression trees) can further assist 

in the prediction of “overall biological performance”. With larger datasets, we hope 

to develop one or more of the following strategies:  

• A method of applying weights to the features in the F2F-Bridge based on the 

outputs of the two models previously mentioned 

• Develop a distinct predictive tool based purely on one or both of these 

methods 

• Design a protocol suited to large scale projects whereby an initial subset of 

the test sequences are generated and screen experimentally and in silico, by 

the F2F-Bridge itself, or with a combination of the three methods outlines in 

this paper. The resulting information could then be fed back into the design 

protocol to refine this process, increasing the success rate of constructs.  
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Conclusions  

The design-build-test-learn approach of synthetic biology stands to benefit 

immensely from this method. laboratory assays to test multiple test sequences 

demand a huge amount of resources, time and human effort. In such a situation, 

Function2Form becomes an indispensable strategy for a biologist to visualise and 

improve a given test sequence or to triage potential best performers by scoring and 

ranking the test sequences. Integrating F2F-Bridge into the ‘learn’ step aids user 

empowerment by providing a laboratory biologist with a holistic readout on the 

overall performance of the protein. With a community-based data reporting system 

and larger data sets, the accuracy of the F2F-Bridge could be tuned to Pareto 

optimality. 
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Supplementary Material 

Supplementary Text 1: 

Calculation of in silico parameters 

Many in silico features, including those of Molecular Weight, Theoretical pI, and Instability 

Index used in this study, are calculated using the ProtParam facility, hosted by expasy. This 

web-server takes as input only the amino acid sequence and does not require any further user 

engagement. As these are all calculated based on the amino acid sequence they can all 

alternatively be calculated with simple scripts in R or Python, as has been done with Grand 

Average of Hydropathicity (see R script in Github repository). The protein tertiary structure 

prediction was generated by the I-TASSER suite (v5.1), this tool also provides a file 

detailing the per residue solvent accessibility. This can be subset in R to find the 

accessibility of the active site. If I-TASSER is not used, online tools for solvent accessibility 

of particular residues exist, such as the GETAREA tool, hosted by the Sealy Center for 

Structural Biology. The Ramachandran plot is generated on the Saves Server, using the 

Verify3D utility. 

The protein-protein interaction or “Docking” was modelled using a heuristic implementation 

of the Autodock Vina algorithm, Qvina2, within the MGLTools/Autodock Tools (v1.5.6) 

interface. The number of potential active sites within a test sequence was calculated using 

COACH, which is another algorithm within the ITASSER suite. 
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Supplementary Figure 1: F2F-bridge output for MUC1 test sequences 
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Supplementary Figure 2: F2F-bridge output for fluorescence test sequences 
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Supplementary Text 2 

General description of F2F bridge workflow. 

 

1) Collection of data 

The protein scientist must identify the features considered important for the analysis, 

from the literature or from experience. The predictive features to be included in the 

analysis must be converted to the same scale. 

 

2) Preparation of data 

The data must be stored in a table in the following format: 

-Columns must be the predictive features selected for the experiment 

-Rows 4 to end must be the unique names of the test sequences to be analysed 

-Rows 1 and 2 must be the minimum and maximum values (Should be scaled 1:100 

unless impossible) 

-Row 3 should contain the user supplied values either taken from the literature or 

suited to the experimental conditions 

 

3) Running the programme and creating the data 

The F2F function takes as input a table prepared in the manner described in step 2 

and produces both a plot for each sequence and a data frame containing all sequences 

and their associated F2F-plot score. The script can be called from the linux command 

line, or executed within R. For high throughput analysis, the option of generating a 

plot can be disabled. The data frame of scores will be saved to the current working 

directory. 
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4) Database free mode 

As a database of protein test sequences, their OP-scores, and their overall biological 

performance is ideally required to apply a system of weights to the predictive 

features used in the plot, an alternative is provided until such a database can be 

established. A function for feature selection with LASSO is provided, and can be 

used to detect relationships between the input in silico data and the overall 

performance on a subset of the experimental data, and the resulting model can then 

be applied to the remaining data. The user is not restricted to the LASSO function 

provided, a variety of tools for feature selection and subsequent model building exist, 

such as RandomForest which was also implemented in the main manuscript.  

 

Comprehensive annotated code for F2F bridge can be found at 

https://github.com/Sidneyw91/F2F-Bridge 

  

https://github.com/Sidneyw91/F2F-Bridge
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Supplementary Text 3: 

 

Fluorescence proteins 

Eight synthetic proteins based on the mCerulean Fluorescent Protein, or parts 

thereof, were generated, corresponding to Supplementary Figure 3.  

 

Fluorescence 

construct number 

3D Model Construct Description Wetlab 

Fluorescence 

1 

 

Split mCerulean with 

modification 1 (docked) 
3.06E+08 

2 

 

Split mCerulean (docked) 
1.05E+09 

 

3 

 

Split mCerulean with 

chromophore and 

modification 1 

2.91E+07 

 

4 

 

Split mCerulean without 

chromophore and with 

modification 1 

2.52E+07 

 

5 

 

mCerulean 
1.52E+09 

 



 

273 
 

6 

 

Split mCerulean with 

chromophore 

 

3.73E+07 

 

7 

 

Split mCerulean without 

chromophore 
1.88E+07 

 

8 

 

Split mCerulean with 

modification 2 (docked) 
2.85E+08 

 

 

 

Protein-related Laboratory Methods  

DNA construct design and build:  DNA sequences were obtained by reverse 

translating the amino acid sequences using EMBOSS Backtranseq 

(https://www.ebi.ac.uk/Tools/st/emboss_backtranseq/). The DNA sequences were 

codon optimized using IDT codon optimisation tool 

(https://eu.idtdna.com/codonopt). Each DNA construct was designed with a FLAG-

tag and homology arms which were verified for upstream experiments using 

SnapGene’s Gibson Assembly simulator (SnapGene.com). 

 

Gene Block synthesis: Gene blocks for the test constructs were sourced from IDT 

(Integrated DNA Technologies, Inc) and amplified using corresponding PCR 

primers. The amplicons were verified using gel electrophoresis (1.5 % agarose) and 

ImageLab 5.2.1, (Bio Rad Inc) was used for band visualisation. 

 

Primer Design: Primers were designed using Benchling (Benchling.com) to 

determine appropriate regions for construct amplification, followed by the use of 

https://www.ebi.ac.uk/Tools/st/emboss_backtranseq/
https://eu.idtdna.com/codonopt
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Primer3Plus to test the primer suitability in terms of appropriate Tm as well as the 

presence of G-C clamps. NEBuilder assembly tool (www.nebuilder.neb.com) was 

used to design assembly primers for the purpose of facilitating construct insertion 

into the plasmid during Gibson Assembly. The finalised primers were obtained from 

IDT. 

 

Competent E. coli: E.coli cells were made competent following the protocol 

described in Cohen et al. 1972. All cells were stored at -80 ˚C and thawed at room 

temperature. OG176 (Oxford genetics, mammalian expression vector) was used for 

amplification and expression of the test sequences with luminescence as the overall 

function and RSFDuet-1 (Novagen, bacterial expression vector) was used for 

amplification and expression of the test sequences with fluorescence as the overall 

function. Both the expression plasmids included Kanamycin resistance gene (KnR). 

For plasmid amplification, the  plasmids were transformed into E. coli BL21 by 

mixing 100 ng plasmid DNA into 30 μL of competent cells. The cells were 

incubated on ice for 20 min and heat shocked by placing at 42˚C for 45 sec. The cells 

were then placed on ice for a further two min. The cells are then suspended into 500 

μL of LB, 100 μL transformed cells were cultured on LB agar supplemented with 50 

μg/mL kanamycin and incubated O/N at 37 ˚C. Select colonies were then grown in 

20 mL liquid LB with 30 ng/mL kanamycin O/N. 

 

Plasmid Extraction: After suspension in liquid LB supplemented with 30 ng/mL 

kanamycin O/N, transformed cells were pelleted by centrifugation at 4000 rpm (2500 

x g) for 10 min. Following the instructions of the Monarch Plasmid miniprep kit 

(New England Biolabs) plasmid DNA was extracted, eluted in 15 μL EB and DNA 

concentration was quantified with a Nanodrop. The eluted samples were stored at -

20 ˚C until further processing. 

 

Restriction Digestion:  The plasmids were digested by appropriate restriction 

enzymes (NcoI, AflII, NdeI, and AvrII) with the addition of CutSmart reaction buffer 

(New England Biolabs) and dH2O, for a total reaction volume 50 μL. The sample 
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was then incubated at 37 ˚C for 1 h, after which time the digestion was confirmed by 

gel electrophoresis on a 1.5 % agarose gel at 80 V for 90 min. Plasmid DNA was 

purified using a PCR purification kit (Qiagen) and eluted in 15 μL EB. 

 

Gibson Assembly: The assembly master mix was made up in accordance to the 

protocols and reagents described by DG Gibson et al 2009. The gene blocks were 

combined with the plasmid in a DNA concentration ratio of 3:1 in which 72 ng/μL 

plasmid DNA was incubated in a Gibson Assembly master mix with 225 ng/μL of 

construct DNA. The mixture was incubated for 1h at 50 ºC followed by transformed 

into E. coli BL21 cells. 

 

Colony PCR: Colony PCR was used to determine the success of the Gibson 

Assembly and evaluate the transformation of the construct into bacterial cells. In this 

case, select colonies were added to a PCR master mix containing; 25 μL Q5 

polymerase (NEB), 2.5 μL of forward and reverse primers and 20 μL milliQ. Sanger 

sequencing was then carried out by GATC’s light-run service and was verified by 

aligning with a reference sequence. 

Mammalian cell transfection (Luminescence proteins): CHO-K1 (ATCC® 

CCL-61™) cells were used for luminescence protein production. Turbofect 

transfection reagent (Cat No: R0532) was used for in vitro transfection. Transfection 

was carried out using manufacturer’s protocol and supernatant containing protein 

collected after 48 h. 

 

Binding assays: 108 Staphylococcus aureus TCH959 (naturally bearing clfA) or 106 

MCF7 cells (naturally bearing MUC1) were blocked with 5% BSA for 2 h followed 

by incubation with supernatant containing each test construct. Cells were washed 3 

times and resuspended in PBS. Luminescence was measured using Promega 

GloMax® 96 luminometer.  
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Fluorescence protein production and bacteria harvesting: Samples were grown 

overnight in liquid LB with 30 ug/mL kanamycin. 100 ml fresh LB was inoculated 

with 5 ml of overnight culture. Bacteria were induced with 1 mM Isopropyl ß-D-

thiogalactoside at 0.5-0.6. OD. Bacteria were harvested when they reached an OD 

0.8. Bacteria were washed and pelleted by centrifugation at 2,500 x g for 10 min. 

BugBuster lysing buffer supplemented with cOmplete protease inhibitor (Roche) and 

Lysonase reagent used for bacterial cell lysis according to the manufacturer’s 

protocols. Protein production was confirmed by running an SDS page. 

 

Fluorescence assays: Fluorescence was measured using an Omega Plate Reader 

(BMG LabTech) and IVIS Lumina II imaging system (Perkin Elmer). Samples were 

diluted in PBS and transferred to a 96 well plate to measure fluorescence. 
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