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Abstract 

Multimodal sensor fusion is a common approach in the design of many motion tracking systems. 

It is based on using more than one sensor modality to measure different aspects of a phenomenon 

and capture more information about it than what would be available otherwise from a single 

sensor. Multimodal sensor fusion algorithms often leverage the complementary nature of the 

different modalities to compensate for shortcomings of the individual sensor modalities. This 

approach is particularly suitable for low-cost and highly miniaturised wearable human motion 

tracking systems that are expected to perform their function with limited resources at their 

disposal (energy, processing power, etc.). Opto-inertial motion trackers are some of the most 

commonly used approaches in this context. These trackers fuse the sensor data from vision and 

Inertial Motion Unit (IMU) sensors to determine the 3-Dimensional (3-D) pose of the given body 

part, i.e. its position and orientation. The continuous advances in the State-Of-the-Art (SOA) in 

camera miniaturisation and efficient point detection algorithms along with the more robust IMUs 

and increasing processing power in a shrinking form factor, make it increasingly feasible to 

develop a low-cost, low-power, and highly miniaturised wearable smart sensor human motion 

tracking system. It incorporates these two sensor modalities. In this thesis, a multimodal human 

motion tracking system is presented that builds on these developments. The proposed system 

consists of a wearable smart sensor system, referred to as Wearable Platform (WP), which 

incorporates the two sensor modalities, i.e. monocular camera (optical) and IMU (motion). The 

WP operates in conjunction with two optical points of reference embedded in the ambient 

environment to enable positional tracking in that environment. In addition, a novel multimodal 

sensor fusion algorithm is proposed which uses the complementary nature of the vision and IMU 

sensors in conjunction with the two points of reference in the ambient environment, to determine 

the 3-D pose of the WP in a novel and computationally efficient way. 

To this end, the WP uses a low-resolution camera to track two points of reference; specifically 

two Infrared (IR) LEDs embedded in the wall. The geometry that is formed between the WP and 

the IR LEDs, when complemented by the angular rotation measured by the IMU, simplifies the 

mathematical formulations involved in the computing the 3-D pose, making them compatible 

with the resource-constrained microprocessors used in such wearable systems. Furthermore, the 

WP is coupled with the two IR LEDs via a radio link to control their intensity in real-time. This 

enables the novel subpixel point detection algorithm to maintain its highest accuracy, thus 
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increasing the overall precision of the pose detection algorithm. The resulting 3-D pose can be 

used as an input to a higher-level system for further use. 

One of the potential uses for the proposed system is in sports applications. For instance, it could 

be particularly useful for tracking the correctness of executing certain exercises in Strength 

Training (ST) routines, such as the barbell squat. Thus, it can be used to assist professional ST 

coaches in remotely tracking the progress of their clients, and most importantly ensure a 

minimum risk of injury through real-time feedback. Despite its numerous benefits, the modern 

lifestyle has a negative impact on our health due to an increasingly sedentary lifestyle that it 

involves. The human body has evolved to be physically active. Thus, these lifestyle changes need 

to be offset by the addition of regular physical activity to everyday life, of which ST is an 

important element. 

This work describes the following novel contributions: 

• A new multimodal sensor fusion algorithm for 3-D pose detection with reduced 

mathematical complexity for resource-constrained platforms 

• A novel system architecture for efficient 3-D pose detection for human motion tracking 

applications 

• A new subpixel point detection algorithm for efficient and precise point detection at 

reduced camera resolution 

• A new reference point estimation algorithm for finding locations of reference points used 

in validating subpixel point detection algorithms 

• A novel proof-of-concept demonstrator prototype that implements the proposed system 

architecture and multimodal sensor fusion algorithm
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1 Introduction 

1.1 Research Motivation and Rationale 

Multimodal sensor fusion is a concept borrowed from nature. Most living organisms use it to 

survive; including humans. The key property of multimodal sensor fusion systems is data 

complementarity wherein various sensory modalities are used to sense different aspects of the 

same phenomenon in order to learn more about it than what would be possible with a single 

modality [1]. An example of a multimodal sensor fusion system in nature includes the human’s 

audio-visual system. Humans use these two complementary sensor modalities to better 

understand the environment around them. For example, when one attends a lecture at a university, 

most information is conveyed through the speaker’s voice, but one’s vision is used to complement 

it by providing clues on speaker’s body language, lecture notes, etc. Multimodal sensor fusion is 

used in science and engineering in the same way. In this field, sensors of various modalities are 

used to gather more information about the given phenomenon than what would be possible 

otherwise using a single data source. It can be used in various application spaces, one of which 

is human motion tracking, the focus of this work. 

With continued developments in increasing the computing power and shrinking the size of 

electronic devices, it becomes increasingly feasible to use technology for human motion tracking 

leveraging affordable, low-power, and highly miniaturised wearable devices. These wearable 

devices can be based on smart sensor systems that incorporate a number of sensor modalities 

along with processing and telecommunications capabilities. These can be programmed with 

intelligent algorithms based on multimodal sensor fusion to efficiently perform the human 

motion tracking function, i.e. by using various sensor types to complement the weaknesses of 

individual sensors through data combination. Such tracking systems can be used to track human 

motion and give feedback in real time to the user or their coach (in, say, a sports application). 

This thesis describes the development and validation of such a motion tracking system. The 

review of the current State-Of-The-Art (SOA) showed that the knowledge in low-power motion 

tracking systems advances at a significant pace; with the evidence of multiple streams of research 

being reported in the literature, as described in Chapter 2. Moreover, the SOA review helped to 

identify a gap in knowledge, which, in turn, was used to formulate the hypothesis of this work, 

described in Section 2.3. The work described in this thesis was aimed at proving this hypothesis. 
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To this end, the proposed system incorporates a wearable device that houses a monocular camera 

sensor and an Inertial Motion Unit (IMU) sensor. It runs the novel multimodal sensor fusion 

algorithm, developed and described in this thesis, which determines the position and orientation 

of the wearable device in space using the information from the IMU and camera that keeps track 

of two points of reference in the ambient environment to enable position tracking. Due to its 

small size, the wearable device can be attached to various body parts to track their motion over 

time. The proposed system may be used in many application spaces that require the ability to 

perform motion tracking.  

One such application is in sports and fitness monitoring. Such a system may be used to track the 

motion of individuals engaged in performing certain physical exercise routines. Thus, it can be 

used safety and performance monitoring in real-time. Safety and performance tracking in 

Strength Training (ST) is an example of a specific application wherein the proposed system may 

be particularly beneficial. It was used as a demonstrator for the novel motion tracking 

technologies developed as the ST is recommended as an addition to regular physical activity [2]. 

Such technology can be used to track the motion of the human body and ensure that the given 

exercise is executed correctly, thus minimising the risk of injury through the supervision of a 

“virtual coach” [3]. The technology described in this thesis is focused on enabling accurate 

positioning of the human body while exercising as part of the Strength Training (ST) regime.  

 Current State-of-the-Art - Summary 

Human motion tracking is a popular topic in the research community. The interest in monitoring 

human motion dates back as far as human history does. Its modern use began in the 20th century 

[4]. It was sparked by the developments in photography and later the invention and widespread 

use of electronic systems, such as semiconductors and computers in general. These 

breakthroughs enabled researchers to use sensors and computers to capture and track the motion 

of the human body over time. Initially, such systems were highly limited in functionality, which 

often bulky, and could be used only in highly controlled laboratory conditions for specific 

purposes, such as head positioning system for Head Mounted Devices (HMD) proposed by 

Sutherland et al. [5] . The continuing advances in the SOA in system miniaturisation and 

increasing computing power were some of the enabling factors for new application spaces 

involving human motion tracking technology [6]. An example of one of the first real-world 

applications of human motion tracking technology includes the movie making industry, where 
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the motion of human actors was captured and used to control animated characters. These motion 

trackers are usually based on using multiple cameras with markers attached to the human body. 

Such systems are usually versatile and offer high accuracy [7]. However, they are expensive and 

require a relatively complicated setup and significant computational power even for offline data 

processing. There exist low-cost alternatives, but their performance does not match that of the 

expensive high-end systems in terms of accuracy [8, 9]. In recent years, wearable wireless smart 

sensor systems have been increasingly used for human motion tracking applications, both in 

unimodal and multimodal sensor configurations [10, 11]. Whereas unimodal approaches rely on 

a single sensor modality, the multimodal systems use more than one sensor modality, e.g. opto-

inertial trackers use IMUs and Vision sensor modalities. The IMU based systems tend to be the 

most widely used unimodal approaches to motion tracking (despite arguably being multimodal 

devices, because they typically consist of an accelerometer, gyroscope and magnetometer, i.e. 

various sensor modalities). They have numerous advantages, such as: low cost, small-form-

factor, energy efficiency or accurate orientation tracking. However, despite their advantages, 

IMUs suffer from problems that prevent them from reliably tracking the absolute position over 

extended periods of time, such as drifts or susceptibility to disturbances in magnetic field. An 

IMU can track the position accurately only for short periods of time; before its position estimate 

drifts unacceptably far away from the true value. In order to counteract this limitation, the IMUs 

are often used with other sensors in multimodal setups. An increasingly popular multimodal 

sensor configuration found in the literature includes opto-inertial trackers, i.e. systems that 

integrate IMUs with vision sensors. These two sensor modalities complement the weaknesses of 

each of the individual sensor modalities. Whereas vision sensors tend to perform poorly in the 

presence of occlusions and uncontrolled lighting conditions, the IMUs are robust under such 

conditions. On the other hand, the IMU cannot be used to reliably and robustly measure absolute 

positions while the vision sensors can. Likewise, orientation measurement using a vision sensor 

is often difficult to do and has high processing power requirements while this is easily achieved 

using the IMUs. Moreover, a monocular low-cost vision sensor is not particularly well suited to 

performing 3-D pose detection, i.e. determining camera’s position and orientation in the 

environment. While it can be achieved using such a single low-cost camera, it is generally a 

difficult and often impractical task in the context of low-cost and small form-factor, wearable, 

systems. Therefore, a combination of these two sensor modalities is beneficial, because such 

opto-inertial trackers can be used to determine the complete 3-Dimensional (3-D) pose of the 
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object being tracked, i.e. the position and orientation in three dimensions, using low cost 

components [11-13].  

 Gap in the State-of-the-Art - Summary 

With the continuing advances of the SOA in the miniaturisation and integration of electronic 

devices, along with embedded algorithms, it becomes increasingly feasible to perform human 

motion tracking using low-power and small-form-factor wireless wearable systems. The 

miniaturisation of vision sensors, and increase in computing power, as well as decreasing power 

consumption of electronic components, are some of the key enabling factors. For instance, the 

lens-less vision sensors significantly reduce the size of the regular camera by effectively 

removing the lens, usually the largest component in a vision sensor [14, 15]. Although these 

sensors cannot capture images with the same level of detail as the traditional cameras with lenses, 

a sufficient amount of information can be extracted to perform point tracking to enable accurate 

positioning [16]. 

Li et al. and Maereg et al. [12, 13] showed that the 3-D pose of an object can be determined by 

combining a monocular camera with an IMU in a computationally simplified way, as compared 

to the  Simultaneous Localisation and Mapping (SLAM) and Perspective-n-Point (PnP) methods 

that are normally used in monocular pose estimation and tracking systems [17, 18]. Both methods 

show that the combination of an IMU with a camera that tracks two points of reference can be 

used to efficiently compute the 3-D pose. However, both systems are “outside-in” systems, i.e. 

the cameras are not embedded in the moving device, which adversely affects their cost and thus 

the scalability of such a system. On the other hand, the IS-1500 is the most accurate “inside-out” 

opto-inertial tracker in SOA; with a typical accuracy in positional tracking of 2 mm [11]. 

Although this system achieves the best performance in a small form factor with both modalities 

embedded in the wearable device, it has higher computational requirements. It also requires at 

least four points of reference in the environment. 

The developments in camera miniaturisation and opto-inertial motion tracking systems show the 

potential for lowering the cost and size of wearable inside-out, opto-inertial, human motion 

tracking systems, such as the IS-1500. The affordability of such systems can be increased by 

simplifying the overall system complexity and decreasing its computational requirements. To this 

end, a low-cost camera can be used to track two known points of reference in the ambient 

environment, similarly to the methods proposed by Li et al. and Maereg et al [12, 13]. However, 
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the monocular camera can be incorporated in the wearable device along with the IMU in a similar 

way to that of the IS-1500. Therefore, the wearable tracker can be used to track two known points 

of reference in the environment. The information obtained by the camera can be complemented 

by the data from the IMU to determine the 3-D pose of the wearable device. The information 

from the two complementing sensor modalities can be fused together so as to significantly 

simplify the mathematical calculations involved in the pose detection algorithm.  

These advances are some of the contributing factors to allow addressing a gap in the SOA that 

exists in this research area. The scientific literature does not show the evidence of an extensive 

research work aimed at exploring this area. The literature suggests that the research community 

tends to be focused on exploring different methodologies. Thus, this gap exposes an 

underexplored research area and suggests the potential directions for further research activities. 

1.2 Contribution and Organisation of this Thesis 

The aim of the work presented in this thesis is to develop, validate, and demonstrate a proof-of-

concept prototype of a wearable human motion tracking system for various application spaces, 

including sports applications focused on strength and conditioning training. The key objectives 

of the proposed system were to be able to determine the 3-D pose using a highly miniaturised, 

resource-constrained, wearable device in the context of low cost, limited processing power and 

energy consumption and to provide real-time feedback on body motion to the user. 

The proposed system consists of two main aspects, the data acquisition system itself and the 

embedded algorithms required to determine positioning based on sensor data fusion. Firstly, the 

proposed novel data acquisition system architecture ensures that the system can perform motion 

tracking in the context of low cost and low-power wearable systems. To this end, the novel 

wearable motion tracking device incorporates two sensor modalities that complement each 

other’s weaknesses, i.e. a monocular low-cost vision sensor and an IMU. The camera, embedded 

in the wearable device, is used to track two known points of reference in the ambient 

environment, i.e. Infrared (IR) Light Emitting Diodes (LED).  

Secondly, this work describes a novel sensor fusion algorithm that uses two sensor modalities to 

directly compute the 3-D pose, i.e. position and orientation, of the wearable device in space. The 

complementary nature of the vision and inertial sensor modalities along with the proposed system 

architecture are leveraged to minimise the computational complexity of the 3-D pose estimation 
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calculations. The reduced computational complexity of the algorithms involved is the main 

enabling factor for human motion tracking applications using affordable, highly miniaturised, 

wearable wireless smart sensor systems. 

The proposed algorithms reduce the computational requirements in several ways. From a 

mathematical point of view, the image processing algorithms involved in extracting information 

form the camera images are amongst the greatest challenges in the context of low power 

miniaturised wearable devices. These requirements have traditionally made the consideration of 

using wearable computer vision in this context generally prohibitive. However, our proposed 

approach tackles these problems since the complexity of the image processing algorithms 

depends on what information is to be extracted from the image frames, the proposed system 

architecture significantly simplifies this task; thus, reducing processing requirements. It reduces 

this task to extracting only two known points from the images, i.e. from an IR LED. Moreover, 

the camera uses a matching optical IR filter, which further simplifies this process, by suppressing 

the noise levels. This alone, however, does not completely solve the problem. Point detection 

algorithms in image processing must process all pixels in every image many times per second, 

despite the simplicity of the image processing tasks involved in finding the points. For this reason, 

we propose a novel computationally efficient subpixel point detection algorithm that allows for 

lowering the camera’s resolution while maintaining the precision of the point detection algorithm, 

without imposing significant overheads. 

The coordinates of the two points of reference found in the images are the inputs to the proposed 

novel sensor fusion algorithm. The two points in the ambient environment along with the 

camera’s principal point and image plane form a set of geometries that our algorithm depends 

on. The properties of the geometries, such as the similar triangles, are exploited in the 

mathematical calculations. The missing pieces of information are obtained from the IMU sensor. 

The IMU provides the rotation angles that fill the critically important gaps in the mathematical 

model of the 3-D pose calculation. 

 Chapter 2 (State-of-the-art) 

This chapter describes the main findings of the review of the relevant scientific literature in 

positioning and motion tracking. The review is concluded with describing the identified gap in 

the current SOA and the hypothesis that this thesis addresses. 
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Under Review: M. P. Wilk, M. Walsh, and B. O'Flynn, “Human motion tracking technology for 

healthier and longer living”, Frontiers, 2020. 

 Chapter 3 (Wearable Vision; Point Detection and Tracking) 

In this chapter, the novel subpixel point detection algorithm used for detecting the locations of 

point centres in images at subpixel level is described. A detailed description of the system 

modelling and experimental validation is presented. It shows that this algorithm has lower 

execution time and is more accurate than the relevant alternative methodologies in the literature, 

for the proposed system architecture. Therefore, its use enables the reduction of the camera 

resolution without significantly increasing the computational requirements of the wearable 

device. A novel methodology for reference point estimation for validating and benchmarking the 

subpixel point algorithms is also described in this chapter. 

Under review: M. P. Wilk, M. Walsh, and B. O’Flynn, "Extended Efficient Sub-Pixel Point 

Detection Algorithm for Point Tracking with Low-Power Wearable Camera Systems," IEEE 

Transactions on Image Processing, 2020. 

M. P. Wilk and B. O'Flynn, "Reference Point Estimation Technique for Direct Validation of 

Subpixel Point Detection Algorithms for Internet of Things," in 2019 30th Irish Signals and 

Systems Conference (ISSC), 17-18 June 2019, pp. 1-5, DOI:10.1109/ISSC.2019.8904921 

 Chapter 4 (Multimodal Sensor Fusion; Monocular 3D Pose Estimation) 

This chapter describes the proposed system architecture and the proposed multimodal sensor 

fusion algorithm for 3-D pose detection. The detailed mathematical modelling of the algorithm 

is included. It shows how the mathematical formulations leverage the proposed system 

architecture and the complementary nature of the two sensor modalities to simplify the 

calculations. Also, a detailed description of the validation of experimental accuracy validation in 

laboratory conditions is described. 

Under review: M. P. Wilk, M. Walsh, and B. O’Flynn, "Multimodal Sensor Fusion for Low-

Power Miniaturised Wearable Human Motion Tracking Systems in Sports Applications," IEEE 

Sensors, 2020. 

 Chapter 5 (Embedded Prototype Multimodal Tracking System) 
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Chapter 5 gives a description of the development of a proof-of-concept prototype demonstrator 

system. The system was used to demonstrate the operation of the proposed system architecture 

and algorithms. An initial experimental evaluation of the prototype was completed. The results 

showed that the embedded version of the system performed as expected and were consistent with 

the results of simulations and experimental validation of the pre-prototype, non-wearable, version 

described in section 4.4 in Chapter 4. 

Accepted: M. P. Wilk, M. Walsh, and B. O'Flynn, “Embedded Multimodal Opto-Inertial Motion 

Tracking System”, 31th Irish Signals and Systems Conference (ISSC), 2020 

 Chapter 6 (Thesis Summary and Conclusions) 

A summary of the thesis is described in this chapter. The main findings of this work, as well as 

their importance, are included in the form of a brief summary of each chapter. The key 

contributions of this work are also listed as short bullet points. Finally, suggestions for potential 

directions of future works are provided which include further development and miniaturisation 

of the prototype system as well as performance testing with human subjects and exploring 

potential commercialisation routes for this work. 

1.3 Novel Contributions 

This work presents the following novel contributions: 

• Multimodal sensor fusion algorithm for 3-D pose detection with reduced mathematical 

complexity 

• System architecture for efficient 3-D pose detection for human motion tracking 

applications 

• Subpixel point detection algorithm for efficient and precise point detection at reduced 

camera resolution 

• Reference point estimation algorithm for finding locations of reference points used in 

validating subpixel point detection algorithms 

• A proof-of-concept demonstrator prototype that implements the proposed system 

architecture and multimodal sensor fusion algorithm 
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1.4 Publications 

Journal Articles; Peer-reviewed, under-review, and in preparation: 

• L. Abraham, A. Urru, N. Normani, M. Wilk, M. Walsh, and B. O’Flynn, "Hand tracking and 

gesture recognition using lensless smart sensors," MDPI Sensors, vol. 18, no. 9, p. 2834, 

2018. (Role: experimental validation of 3D ranging algorithm, offline data analysis, 

manuscript revision)  

• M. P. Wilk, M. Walsh, and B. O’Flynn, "Multimodal Sensor Fusion for Low-Power 

Miniaturised Wearable Human Motion Tracking Systems in Sports Applications," IEEE 

Sensors, 2019, (under review) 

• M. P. Wilk, M. Walsh, and B. O’Flynn, "Extended Efficient Sub-Pixel Point Detection 

Algorithm for Point Tracking with Low-Power Wearable Camera Systems," IEEE 

Transactions on Image Processing, 2019, (under review) 

• M. P. Wilk, M. Walsh, and B. O'Flynn, “Human motion tracking technology for healthier 

and longer living”, Frontiers, 2019, (under review) 

Conference papers; Peer-reviewed: 

• M. P. Wilk, M. Walsh, and B. O'Flynn, “Embedded Multimodal Opto-Inertial Motion 

Tracking System for Sports Applications”, 31st Irish Signals and Systems Conference 

(ISSC), 2020, (accepted) 

• M. P. Wilk and B. O'Flynn, "Reference Point Estimation Technique for Direct Validation of 

Subpixel Point Detection Algorithms for Internet of Things," in 2019 30th Irish Signals and 

Systems Conference (ISSC), 17-18 June 2019, pp. 1-5, doi:10.1109/ISSC.2019.8904921 

• M. P. Wilk and B. O'Flynn, "Miniaturized Low-Power Wearable System for Human Motion 

Tacking Incorporating Monocular Camera and Inertial Sensor Data Fusion for Health 

Applications," presented at the Smart Systems Integration Conference 2019, Barcelona, 

Spain, 2019. 

• M. P. Wilk, J. Torres-Sanchez, S. Tedesco, and B. O. Flynn, "Wearable Human Computer 

Interface for Control Within Immersive VAMR Gaming Environments Using Data Glove and 

Hand Gestures," in 2018 IEEE Games, Entertainment, Media Conference (GEM), 15-17 

Aug. 2018, pp. 1-9, doi: 10.1109/GEM.2018.8516521 
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• Lizy Abraham, Andrea Urru, M. P. Wilk, Michael Walsh, Brendan O’Flynn, ‘3D Ranging 

and Tracking using an Improved Lensless Smart Sensor’, 14th International Conference on 

Information Processing, IEEE (accepted), Dec. 2018, Bangalore, India. (Role: 

experimental work, manuscript revision) 

• M. P. Wilk, A. Urru, S. Tedesco, and B. O. Flynn, "Sub-pixel point detection algorithm for 

point tracking with low-power wearable camera systems: A simplified linear interpolation," 

in 2017 28th Irish Signals and Systems Conference (ISSC), 20-21 June 2017, pp. 1-6, doi: 

10.1109/ISSC.2017.7983629. 

• L. Abraham, A. Urru, M. P. Wilk, S. Tedesco, M. Walsh, and B. O. Flynn, "Point tracking 

with lensless smart sensors," in 2017 IEEE SENSORS, Oct. 29, 2017-Nov. 1 2017, pp. 1-3, 

doi: 10.1109/ICSENS.2017.8234060. (Role: offline sensor data analysis, manuscript 

edit/revision) 

• L. Abraham, A. Urru, M. P. Wilk, S. Tedesco, and B. O'Flynn, "3D ranging and tracking 

using lensless smart sensors," in SSI 2017: International Conference and Exhibition on 

Integration Issues of Miniaturized Systems, 2017: Verlag Wissenschaftliche Scripten. (Role: 

experimental work and data collection, manuscript revision) 
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2 State-of-the-art 

M. P. Wilk, M. Walsh, and B. O'Flynn, “Human motion tracking technology for healthier and 

longer living”, Frontiers, 2020, (under review) 

2.1 Technology for Human Motion Tracking and 3D Pose Detection 

Human motion tracking systems play an important role in many application spaces, including 

motion capture, sports, fitness, rehabilitation to name a few. It is a term that describes the process 

of detecting and tracking the motion of human body over time. 3-D pose detection is one of the 

main tasks in this process. It involves determining the position and orientation of an object in 3-

D space; also referred to as the 6-Degree-Of-Freedom (6-DOF) pose [19].  

The interest in human motion goes back far in human history. In fact, it dates back as far as the 

earliest recorded history [20]. The first records can be dated back to ancient Egypt and 

Mesopotamia. Scientific community tends to associate the beginning of written history with the 

ancient Greeks and the records of their work. Aristotle’s (384-322 BC) writings left the first 

evidence of humans interest in motion tracking. In his book ‘De Motu Animalium’ (‘On the 

Movement of Animals’), he described animals as mechanical systems [21]. His works were 

succeeded by numerous prominent figures, including Leonardo da Vinci (1452-1519) and Galileo 

Galilei (1564-1643), who made some of the first attempts at mathematical modelling of human 

motion. Borelli (1608-1679), who is often considered the father of biomechanics, wrote a book 

on ‘De Motu Animalium’ that was published in 1680. This book shows the evidence of an 

understanding of the forces needed for an equilibrium in various joints of the human body. It was 

published well before Newton (1745-1810) published his laws on motion [22]. Figure 1 shows 

some of Borelli’s diagrams, which show the relationship between force, mass and acceleration. 
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Figure 1: 'De Motu Animalium', Borelli 1680 (reproduced from [23]) 

The scientific advances in motion tracking continued at an increasing rate until the 19th century, 

mainly due to the lack of appropriate tools to comprehensively track and analyse human motion. 

The advent of photography was one of the first major developments that helped advance the 

research in human motion tracking. In the late 19th century, Edward Muybridge used multiple 

cameras to capture human motion in sequences of images, which was published in 1907 [4]. This 

was one of the first examples of having the ability to capture and analyse human motion over 

time, as shown in Figure 2. 
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Figure 2: The Human Figure In Motion, Muybridge, 1907 (Reproduced from [4]) 

At that point, the use of technology became increasingly more feasible for human motion 

tracking. Some of the first examples of the use of human motion tracking in a practical application 

can be found in Disney’s film Snow White and the Seven Dwarfs from 1937 [24]. The motion of 

a human body was tracked and used to help make the animated characters’ motion more human-

like; using a method known as rotoscoping, which is a technique of drawing shapes on a film, 

frame by frame, to create the effect of motion when played at a higher frame rate. 

The current revolution in motion capture and tracking began in the 1970’s. By this time, computer 

processing capabilities and sensor technology had matured sufficiently to be used effectively in 

human motion tracking applications. This was the turning point for such technology to be widely, 

and increasingly, used in the field of motion tracking. In 1982, researchers at Simon Fraser 

University began to analyze human motion using computers and electro-goniometer sensors 

attached to the human body. In this approach, joint flexion was tracked and used as an input into 

a motion animation system that rendered the scenes on an Apple II computer [25], as shown in 

Figure 3. 
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Figure 3: Electrogoniometers (a) used as input to motion animation system rendered on the Apple II computer 

(b) (adapted from [25]) 

Some of the other historically notable developments in monitoring human motion include the 

introduction of the first image-based systems developed in the 1980s. In 1983, a stereoscopic 

vision system developed in conjunction with multiple LEDs were used at Massachusetts Institute 

of Technology to track human body motion to control stick figures [26]. The technological 

developments in this field have continued to advance to this day. 

At present, human motion tracking is carried out using a variety of technologies, each with their 

advantages and disadvantages, as shown in Table 1. A more detailed description of motion 

trackers that use these sensor modalities is provided in the subsequent sections. 

TABLE 1: MOTION TRACKERS CLASSIFIED BY SENSOR MODALITY: MAIN ADVANTAGES AND 

DISADVANTAGES 

Sensor Modality Strengths Weaknesses 

Mechanical High accuracy Limited flexibility 

Acoustic Ease Susceptible to interferences 

Radio Frequency No need for line-of-sight High cost 

Magnetic High accuracy Short distance 

IMU No need for line-of-sight Poor positional tracking 

Vision Positional tracking Sensitive to lighting conditions and occlusions 

 

The choice of technology and performance specifications depend on the application requirements 

of the end use scenario in question. Therefore, the complexity of the motion tracking system may 

(a) (b) 
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vary; from relatively simplistic, with inaccurate measurements, to sophisticated, highly accurate 

systems. An example of a relatively simple motion tracking system may be a knee flexion and 

extension angle measurement system incorporating an electro-goniometer; commonly used in 

physiotherapy [27]. On the opposite side of the complexity continuum are the advanced, 

infrastructure-heavy, and high-performance systems. These systems are used for motion capture 

in demanding applications, such as character animation in the movie industry. These systems can 

precisely track every major part of the human body in real time, such as Vicon or Optitrack 

systems, which involve multiple cameras and advanced data processing [7, 28-30]. However, 

high performance of such systems comes at a price. Such systems are complicated to set up, 

require a significant amount of expert human resources, and are costly. 

Human motion tracking technology consists of two main aspects, i.e. the Hardware (HW) and 

Software (SW). The HW consists of various modularized building blocks of equipment, as shown 

on the example of the smart sensor in Figure 4. All of the elements are important including the 

external support infrastructure, such as the networking, telecommunications and data processing 

aspects. The SW plays an equally important role, as it acts as the brain that controls the operation 

of the HW. The sensor technology is one of the key elements in the motion tracking systems, as 

it largely determines the capabilities of the system. Thus, the SOA in motion tracking systems 

can be categorised by the sensor type, or more specifically the sensor modality of the tracker. The 

major sensor modalities include: mechanical, acoustic, Radio Frequency (RF), magnetic, inertial, 

and visual. Also, motion trackers can be divided into two broad classes; unimodal and 

multimodal. Whereas, unimodal trackers use a single sensor modality, the multimodal 

approaches combine more than one sensor modality in a single tracking system to complement 

the weaknesses of individual modalities. 
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Figure 4: Generalised Block Diagram of a Smart Sensor 

 Unimodal Approach 

A Unimodal system consists of a single sensor modality as the input for the motion tracking 

calculations. The motion tracking function is performed using a single type of information. 

Unimodal trackers may use one or more sensors with the same modality. For example, a 

stereoscopic vision system may be considered unimodal if both cameras sense the same 

wavelengths of light [31]. The advantages of unimodal trackers are in that they tend to be 

complex and therefore tend to be less expensive. Their main disadvantage is in that they cannot 

be effectively used in applications where a single sensor modality does not provide a sufficient 

amount of information to support the required analysis to the required levels of accuracy. 

2.1.1.1 Mechanical Trackers 

Mechanical motion tracking systems usually take the form of mechanical linkages attached to 

the human body parts that need to be tracked, as shown in Figure 3 (a). Those linkages are 

coupled with sensors, such as potentiometers. A classic example of a mechanical tracker is the 

head motion tracking system of Ivan Sutherland’s pioneering Virtual Reality (VR) headset [5], 

as shown in Figure 5 (a). Flexible strain-gauge- or fibre-optic-based sensors can help replace the 

rigid linkages in such mechanical trackers [32]. Mechanical trackers have many advantages. The 

main advantage is that they can be very accurate and are not susceptible to errors. On the other 
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hand, they can be bulky and impractical for many applications, such as those involving whole-

body tracking. Also, in order to ensure high accuracy, they need to be mounted correctly to ensure 

the soft tissue does not cause errors, which is a common problem among most motion tracking 

technologies. 

 

Figure 5: Mechanical (a) and Acoustic (b) Motion Trackers used in Ivan Sutherland’s VR system (adapted 

from [5]) 

2.1.1.2 Acoustic Trackers 

Acoustic trackers usually utilise multiple active ultrasound sensors, which consist of an ultrasonic 

transmitter and receiver pair. The transmitter generates a short pulse of signal that is detected by 

the receiver. Depending on the specific design choices, the time-of-flight (TOF) and/or the signal 

strength of the received signal are used to determine the distance between the transmitter and the 

receiver. A single transmitter-receiver pair can determine the 1-Dimensional (1-D) position, i.e.  

the distance along a straight line, while multiple sensors can be used to calculate the 3-D position, 

and possibly the orientation of the object being tracked. The VR headset system of Ivan 

Sutherland, for example, used three ultrasonic transmitters mounted on the head and four 

receivers installed around the head [5], as shown in Figure 5 (b). Acoustic trackers are effective 

at position tracking, and easier to use than the mechanical trackers. However, they also suffer 

from certain problems. Their main drawbacks are in the requirement of maintaining the Line-Of-

(a) (b) 
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Sight (LOS). They also suffer from limited efficiency, which is associated with the size of the 

transducers. Their range is also limited due to the ultrasonic frequencies [33]. 

2.1.1.3 Radio Frequency Trackers 

Radio Frequency trackers are widely used in localisation and positioning applications. In some 

respects, they work in a similar way to acoustic trackers, with the exception that radio frequency 

signals are used as the localisation technique rather than sound waves. In principle, RF trackers 

determine the position based on the TOF of the signal between the transmitter and the receiver. 

As in thecase of acoustic trackers, an RF tracking system comprises of the tracked devices and 

multiple points of reference, often referred to as anchor points. One of the main advantages of 

using RF signals is in that they can travel through various media, such as walls or smoke. It 

reduces the impact of LOS between the transmitter and receiver, as compared to the acoustic 

trackers.  

There exist various RF-based tracking technologies in the SOA. One of the most relevant ones 

in the context of human motion tracking is Ultra-Wideband (UWB) technology, which can 

achieve accuracy typically below 10 cm [34]. However, the cost of RF motion tracking is also 

generally high. There also exist radar-based systems in the SOA that use such frequency bands 

that penetrate certain media but reflect off the human body. The transmitting antenna generates a 

signal that reflects off the human body and returns to the receiver’s antenna. Adib et al. proposed 

a tracker based on this concept [35]. It was able to locate and track the location of the centre of 

human body including certain gestures with and without LOS; through a wall. However, it had 

the limitation of low resolution, which is typical of radar-based systems. Also, although while 

certainly a promising technology, it raises ethical and security concerns, such as privacy. Some 

of these trackers have the ability to penetrate clothing, thus infringing on people’s privacy [36].  

2.1.1.4 Magnetic Trackers 

Magnetic motion tracker technology is based on using electromagnetic transmitters and passive, 

coil-based, receivers to measure the strength of a received signal. The strength of the received 

electromagnetic signal is related to the distance between the transmitter and receiver. In most 

applications, multiple transmitters are deployed to achieve a 3-D tracking of the sensor. Magnetic 

trackers come in a number of variants, such as time multiplexing, frequency multiplexing 

techniques, or transmitter coil design [37, 38]. Magnetic trackers have several advantages, such 

as the insensitivity to occlusions, including the human body, and high accuracy [39]. However, 
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they suffer from certain drawbacks. The main limitation is the relatively limited range; due to the 

rapid decrease of the electromagnetic signal’s strength with distance. Hence, the existing 

solutions in the SOA tend to operate over relatively short distances [40, 41].  Moreover, the 

presence of metallic, ferromagnetic, objects can cause distortions to the signal. 

2.1.1.5 Inertial Sensor Technology 

Inertial sensor technology is one of the most popular approaches used in human motion tracking 

applications using wearable smart sensor systems. It is based on Micro-Electro-Mechanical 

Systems (MEMS) that can package what previously were large and complex scientific 

instruments in small Integrated Circuit (IC) chips [42]. Whereas the ICs primarily focus on the 

electrical properties of materials to make electronic systems, the MEMS combine both the 

electrical and mechanical properties of materials. MEMS are used to make various sensors and 

actuators, such as pressure sensors, inertial sensors, pumps or motors to name but a few [43].  

MEMS accelerometers and gyroscopes are some of the most widely used sensor modalities in 

the context of human motion tracking. In the past, each sensor modality was made in a separate 

IC unit, thus forcing system designers to make larger wearable smart sensor systems. In recent 

years, the SOA has moved towards systems that incorporate multiple MEMS inertial and other 

sensor modalities in a single, highly miniaturised IC package, referred to as the an IMU [44]. A 

typical IMU tends to incorporate an accelerometer, gyroscope and magnetometer, such as the 

MPU9250 made by TDK InvenSense in a 3x3x1 mm package [45], shown in Figure 6 (a). These 

three modalities are combined to complement the shortcomings of the individual sensor 

modalities, such as drift, bias offset, and susceptibility to magnetic disturbances or general 

measurement errors. The data fusion algorithms use this multimodal data and accurately compute 

the IMU’s orientation in 3-D space, such as that proposed by Madgwick et al. [46] or Mahony 

[47].  
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Figure 6: TDK Invensense MPU9250 IMU(a) and the Orientation Axes for Accelerometer and Gyroscope 

(adapted from [45, 48]) 

IMU sensors offer many advantages over the alternative sensor technologies. Firstly, they are 

miniaturised and highly energy efficient which makes them suitable for low power wearable 

applications. Secondly, they measure motion relative to gravity and Earth’s magnetic field. Thus, 

they do not require any external infrastructure. Finally, they have high sensing frequency, i.e. 

sensor readings are updated hundreds of times per second. 

The main disadvantage of IMUs in the context of human motion tracking is their inability to 

precisely track position over extended periods of time. The relative position can be determined 

only over short periods of time, by double-integrating the accelerometer readings. The position 

inevitably drifts over time unless an absolute point of reference is provided. As well as that, IMUs 

are vulnerable to magnetic field disturbances despite the advanced sensor fusion algorithms. 

 

 

2.1.1.6 Vision Sensor Technology 

Vision is an important sensor modality in computer systems. It performs a function that is similar 

to that of human eye. Human eye captures light from the surrounding environment, which 

contains information about it, which the brain can interpret. Likewise, computer systems use 

vision sensors to capture information about the environment, which is extracted and processed 

(a)                                 (b) 
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by the processor. This ability makes this sensor modality suitable for human motion tracking 

applications.  

Although there are various types of vision sensors, the most widely used image sensors are based 

on the Complementary Metal-Oxide Semiconductor (CMOS) technology. The low cost of 

manufacturing and their flexibility are some of the key contributing factors to the wide use of 

this technology in this context. CMOS sensors can form pixel arrays of varying resolutions, pixel 

sizes, or bit depths. These can also be fitted with custom lenses and optical filters to meet the 

specifications of the given application. Furthermore, their range of sensitivity to wavelengths, 

typically between 400 nm and 1000 nm, encompasses that of the human eye, which makes them 

ideal for sensing applications that replicate the functions of the human vision system. A typical 

CMOS pixel array is shown in Figure 7 (a).  

 

Figure 7: Active-Pixel CMOS Image Sensor MT9V034: (a) without lens, (b) with lens (adapted from [49]) 

In spite of its numerous advantages, i.e. the ability to operate like a human eye, vision sensors 

have certain limitations. On the one hand, vision systems have high computational requirements. 

For example, the image sensor MT9V034, shown in Figure 7 (a), has a 752 x 480 pixel array, 

which means that the processing unit must process 360960 pixels in each frames. Moreover, most 

human motion tracking applications require tens of frames per second to be captured and 

processed. Whereas this is not a complicated task in offline or PC-based applications, it is a 

significant challenge in the context of low-power, highly miniaturised, wearable smart sensor-

based motion tracking applications. Secondly, the physical size, i.e. form factor has historically 

been a limiting factor for such applications. For instance, the lens is usually the largest component 

in camera modules, as shown in Figure 7 (b). Vision as a sensor modality has also other 

(a)                                      (b) 
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weaknesses. One of the greatest disadvantages of vision sensors is their vulnerability to 

occlusions, which can adversely affect their ability to track objects in their Field-of-View (FoV). 

In order for the system to reliably perform the tracking, the given point of interest, i.e. feature in 

the images to be tracked, must remain in the camera’s FoV. Secondly, cameras suffer from the 

correspondence problem, which is related to occlusions. As a result, the image processing 

algorithms can lose track of which point of interest is which in the presence of intermittently 

occurring occlusions. Finally, the lightning conditions have a major impact on the performance 

of vision systems. The less controlled the ambient lightning conditions, the more difficult it is for 

the system to reliably perform its intended function; and thus the more complicated the system 

is required to be, with regard to both HW and SW. Nevertheless, vision sensors offer many 

advantages that outweigh the disadvantages. The main advantage, as compared to other sensor 

modalities, is that they can be used to detect and track the absolute locations of multiple points 

of interest with high accuracy in their FoV. 

Given the various strengths and weaknesses of the vision sensor modality, it has been historically 

used for human motion tracking carried out using expensive and infrastructure-heavy systems. 

Some of the most common approaches involve using multiple cameras to track multiple markers 

attached to the human body [7, 28]. Multiple cameras help overcome the problem of occlusions 

and determine the 3-D position of the given marker. The markers are normally classed as active, 

e.g.IR LEDs, or passive, e.g. retroreflective materials. In recent years, the introduction of RGB-

D cameras, such as the Microsoft Kinect, enabled marker-less motion capture at a reduced cost 

and complexity [8, 9, 50]. 

2.1.1.7 Wearable Visual Tracking 

The continuous advances in the SOA in vision sensor technology make it more feasible to 

consider using vision in the context of wearable miniature smart sensor systems for human 

motion tracking. Apart from the increasing computing power accompanied by simultaneous 

miniaturisation of processing units, the vision sensors themselves shrink in size. Recent works in 

the literature show that the lens, usually the largest component in the camera, Figure 7 (b), can 

by reduced in size to such an extent that the camera may be considered to be effectively lens-less 

[15, 51]. Although, these emerging technologies  may not allow for a high quality image 

acquisition as compared to a regular high-resolution cameras, it is certainly sufficient to extract 

the necessary features, such as active markers, to perform point tracking [16]. Abraham et. al. 
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showed that the 3-D pose of a human hand can be tracked using two lens-less sensors in 

stereoscopic configuration, by tracking multiple active markers attached to it [52].  

The 3-D pose of an object can also be found using a single camera in a monocular configuration. 

It is less demanding in terms of the hardware, as only one camera is needed. However, it comes 

at the expense of increased computational requirements. The monocular camera system can track 

multiple points of interest attached to the given object and determine its relative 3-D pose; by 

solving the PnP problem. The term Perspective-n-Point (PnP) was first used by Fishler et al. to 

describe the process of determining the pose of the calibrated camera from 𝑛 correspondences 

between 3-D reference points, present in camera’s FoV, and their 2-Dimensional (2-D) 

projections on the pixel array plane of the camera [53]. It is widely used in various computer 

vision applications. The PnP is equally applicable to fixed camera with a moving object and a 

moving camera with a fixed object, as shown in Figure 8 (a) and (b), respectively. The scenario 

shown in Figure 8 (b) is relevant to the wearable vision methodologies, which is also referred to 

as inside-out tracking. Likewise, the scenario shown in Figure 8 (a) is also referred to as outside-

in tracking. 

 

Figure 8:Perspective-n-Point Problem: (a) Fixed Camera (outside-in tracking), (b) Moving Camera (inside-out tracking) 

There exist a number of algorithms in the literature that solve the PnP problem [18, 54, 55]. These 

methods solve it either iteratively or non-iteratively; using a varying number of reference points. 

The iterative methods tend to require fewer points of reference but are more computationally 

complex, while the non-iterative methods require more points. However, regardless of the 

approach, at least three points of reference are required to find the 3-D pose. Figure 9 shows how 

it works on the example of the Oculus Rift headset. The Oculus sensor is a fixed camera with an 

Fixed Camera and Moving Object       Moving Camera and fixed Object 

(a)                                      (b) 
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IR filter attached to it, Figure 9 (a), while the headset contains multiple IR LEDs, as shown in 

Figure 9 (b). 

 

Figure 9: Oculus Rift: (a) Camera, (b) Headset (adapted from [56]) 

The use of a PnP algorithm to estimate the pose of a moving camera was shown by Oliver Kreylos 

using the Nintendo’s Wii Remote controller back in 2008 [57]. It was later reproduced using the 

OpenCV open-source library. The system used four IR LED-based points of reference and the 

camera in the controller to track the 3-D pose [58]. This solution used the iterative PnP method 

based on the Levenberg-Marquardt (LM) algorithm [59, 60], as shown in Figure 10. 

 

Figure 10: Pose Estimation of Moving Nintendo Wii Remote by solving the PnP problem (adapted from [58]) 

(a)                                    (b) 
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The LM algorithm estimates the pose by minimising the reprojection error, i.e. the difference 

between the predicted and measured positions of the reference points on the pixel array, given 

the calculated camera’s extrinsic parameter matrix. Reprojection error is a metric commonly used 

in camera calibration procedures to quantify its quality [61], as shown in Figure 11. 

 

Figure 11: Reprojection Errors During Camera Calibration in MATLAB 

The PnP problem is usually applied to known environments, i.e. those with a known pattern of 

points of interests. On the other hand, a class of algorithms exists in the literature, which is used 

for tracking in unknown environments, i.e. where the points of interest are unknown. It is 

generally referred to as the Simultaneous Localisation and Mapping (SLAM) method [17]. 

SLAM methods aim at mapping the unknown environment and tracking the position of the 

moving camera in 3-D space relative to those points. The Google Tango tablet is an example of 

a mobile device capable of performing the SLAM in real time [62]. 

The two approaches, i.e. PnP and SLAM, are able to robustly determine the 6-DOF pose of the 

moving camera. However, they have high computational requirements, which limit their 

suitability for human motion tracking using highly miniaturised, low-power, wearable smart 

sensor systems. These requirements are still too high for the applications space this work targets 

which requires mobile, resource-constrained processing capability. 

 Multimodal Approach 
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Although the motion tracking systems based on a single sensor modality, described in Section 

2.1.1, can be used to perform motion tracking, they do not provide a sufficient amount of 

information to carry out a reliable and robust performance 6-DOF pose estimation. Their 

shortcomings cannot be readily overcome in a unimodal approach. This is particularly true in the 

context of the highly constrained, low power, miniaturised wearable smart sensor systems upon 

which this work is focused. Therefore, a multimodal sensor data fusion is considered in this thesis 

as an alternative approach. 

Multi-sensor data fusion is a broad and multidisciplinary research area. It focuses on combining 

information from multiple sources to obtain a more complete picture of a given situation [63].  

When data from a single source provides either insufficient or inadequate information to solve a 

given problem, multi-sensor data fusion methodologies are often considered. This was originally 

developed for military applications, primarily for target tracking applications.  Subsequently, it 

was adopted in non-military applications spaces [64]. This broad engineering discipline was 

formally standardised into a multi-level framework, called the JDL model [65]. This model 

divides the fusion process into four increasing levels of abstraction, from low-level signal 

processing routines to abstract result interpretation. This framework serves the research 

community as a set of guidelines that may be followed where appropriate. 

An extension to the multi-sensor data fusion approach is the multimodal approach. Multimodal 

data fusion discriminates between the individual modalities of the data sources. The key property 

of multimodal data fusion systems is the complementarity of the data sources [1]. Multimodal 

sensor fusion systems use multiple sensors that sense a number of modalities that complement 

the shortcomings of the individual sensor modalities. It should be noted that multi-sensor fusion 

is not necessarily the same as the “multimodal sensor” fusion. For instance, in stereoscopic 

machine vision systems usually two cameras are used to add the ability of sensing in 3-D, to 

replicate human vision. However, a stereoscopic vision, while it is indeed a multi-sensor data 

fusion system, is not multimodal. An example of a multimodal sensor data fusion is shown in 

Figure 12, which shows multiple sensors, with varying modalities, being used for human activity 

recognition. 
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Figure 12: Example of Multi-Sensor Multimodal Data Fusion System for Human Activity Recognition 

(reproduced from [66]) 

2.1.2.1 Outside-In and Inside-Out Tracking Systems 

Motion tracking systems can be broadly classed as being either outside-in or inside-out trackers. 

The class of the tracker depends on how the tracking function is performed. In the case of outside-

in trackers, the object of interest being tracked is observed from the outside by a stationary 

tracking device fixed in the environment at a known position [67]. Cameras are commonly used 

in such tracking systems, where the cameras are mounted in the environment and capture images 

of the tracked objects, e.g. the human body. The motion capture systems made by Vicon Motion 

Systems Ltd are an example of outside-in motion trackers [29]. The inside-out trackers are the 

opposite of outside-in tracker systems in that they observe the environment from the perspective 

of the moving object itself and track its motion relative to it. In most cases, a camera is attached 

to the moving object and tracks points of reference in the environment to determine the object’s 

3-D pose. The Oculus Quest VR headset is an example of an inside-out tracker [68]. 

2.1.2.2 Multimodal Sensor Fusion in Human Motion Tracking 

Multimodal sensor fusion is a common approach in human motion tracking applications. The 

complementary nature of the different sensor modalities helps solve problems that are difficult 

to solve otherwise. An example of such a multimodal system is one that combines vision and 

IMU sensor modalities to complement the weaknesses of the individual modalities. In fact, it is 

one of the most common approaches to human motion tracking found in the literature such as the 
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system proposed by Foxlin et al. [69]. The main weakness of IMU, i.e. the difficulty in reliably 

tracking the absolute position over extended periods of time, which is the one of the strengths of 

vision systems. Likewise, it is relatively difficult to determine the orientation using cameras 

without using complex algorithms or a purpose-designed external setup. Moreover, cameras 

require certain conditions, such as the line-of-sight to track the points of interest. Occlusions or 

uncontrolled lighting conditions, even transient ones, can cause loss of tracking. The IMU based 

systems can complement these weaknesses. Therefore, the human motion tracking systems based 

on opto-inertial sensor fusion have the potential for achieving a better overall performance in the 

considered application space, as compared to other approaches. 

The fusion of vision and IMU sensors for human motion tracking is an active research area. 

Atrsaei et al. used wearable IMU sensors with a stationary Kinect sensor to track the arm motion 

using unscented Kalman filter, as shown in Figure 13. The system achieved a reduction in 

orientation error of 50 %, as compared to cases that used the individual sensor modalities 

separately [70]. Rodrigues et al. proposed a marker-less, multimodal, system for motion capture 

with multiple Kinect sensors and wearable IMUs [71]. It is an outside-in tracking system, i.e. the 

vision system is located outside of the object being tracked. The system was used for tracking 

certain individual body parts, as shown in Figure 14. It offered a less expensive and simpler to 

set up alternative to the more expensive and generally complex, marker-based, multi-camera, 

motion capture systems, such as the Vicon or Optitrack systems[29, 30]. 
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Figure 13: IMU and Vision Sensor Fusion for Arm Motion Tracking (adapted from [70]) 

 

Figure 14: Multimodal Motion Capture System with Wearable IMU and Multiple Kinect Sensors (adapted from 

[71]) 
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Likewise, an inside-out system that performed an the opto-inertial sensor fusion was proposed 

by Feng et al [72]. This system performed SLAM for motion tracking. The problems caused by 

jitter and low frame rate of the camera were reduced by the orientation data from the IMU. The 

advantage of this approach is in that SLAM does not require any pre-installed points of reference 

in the environment. Instead, this system automatically finds a large number of points of reference 

and keeps track of them from frame to frame. However, this is achieved at the expense of high 

computational requirements. For instance, this system required a high-end smartphone to process 

the input images at 30 frames per second. Therefore, the cost and size of such solutions remains 

prohibitive in terms of the affordable, low power, and highly miniaturised wearable smart sensor 

systems for human motion tracking. 

Solving this challenge is an active and exciting topic in the research community. The literature 

shows evidence of the SOA moving towards more energy efficient increasingly miniaturised  

solutions. It shows advances in both development of algorithms and the associated system 

architecture that supports human motion tracking. A series of research projects involving Eric 

Foxlin et al. shows a range of evolving inside-out opto-inertial trackers that improve in 

performance without significantly increasing the computational complexity [69, 73-75]. The IS-

1500 is the most recent product their research work has developed [11]. The IS-1500 achieved a 

typical accuracy of 2 mm (accuracy metric was not specified by the manufacturer) in position 

using four external points of reference (termed passive fiducial markers). However, in spite of 

the high performance, lower size, and overall system complexity, the system continues to have 

high computational requirements. A less complex outside-in tracker was proposed by Li et al. 

that combined a monocular camera and a moving object that contained two passive (fiducial 

marker) points of reference and an IMU [12]. This system’s Root Mean Squared Error (RMSE) 

was below 5 cm at a distance of 113 cm. A similar low-cost system was proposed by Maereg et 

al. that also used an external camera that tracked a moving object, a human hand, which contained 

two IR LEDs and an IMU sensor [13]. This system is shown in Figure 15. The position 

calculation was carried out by a simplified mathematical formulation, based on proportionality 

between the camera and the two points of reference, complemented by orientation data from the 

IMU. The RMSE in position estimation was less than 0.66 cm. However, the size of the work 

envelope was not large (where, work envelope is defined as a volume of space within which the 

system can operate within its specifications), with maximum distance along the z-axis being 30 

cm. 
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Figure 15: Outside-In Hand Tracking System (adapted from [13] ) 

In recent months, a SOA inside-out motion tracking system for VR/AR applications has been 

introduced to the market. It is a commercial system called Antilatency [76]. It is an opto-inertial 

tracker that incorporates the IMU and vision sensor modalities in the wearable unit, as shown in 

Figure 16 (a) and (b). The wearable unit performs sensor fusion using the IMU and camera, which 

tracks active IR LED markers embedded in the floor, shown in Figure 16 (c). As to the technical 

information on this system, not many details were found in the scientific literature at the time of 

writing this document. The company Ant Inc., which sells this product, has not revealed much 

information about it; beyond generic details. According to the company’s website, the system has 

a high update rate of 2000 updates per second, accuracy in position tracking at submilimeter level 

robustness against occlusions [76].  
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Figure 16: Antilatency Inside-Out Tracker: (a) Wearable Opto-Inertial Motion Tracker, (b) Motion Tracker 

Attached to VR Headset, (c) Floor Mat with Active IR LED Markers 

(a)                                    (b) 

(c) 

IR LED 

Markers 
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2.2 Gap in the State-of-the-Art in Wearable Human Motion Tracking Systems 

The advances in the SOA in various aspects of motion tracking technology are some of the 

enabling factors for low-cost, low-power and highly miniaturised wearable human motion 

tracking systems. While the unimodal methodologies are insufficient for achieving a reliable, 

accurate, and robust motion tracking performance, as outlined in Section 2.1.1, recent advances 

in the SOA in motion tracking using multimodal sensor fusion are make it feasible, as outlined 

in Section 2.1.2. 

The main disadvantage of using IMUs in the context of human motion tracking is their inability 

to precisely track the absolute position over extended periods of time due to drifts associated 

several factors, such as the accumulation of error when double-integrating the acceleration 

measurements. Even the most advanced position tracking systems that are based on IMUs 

eventually lose track of the position due measurement errors. The weakness of IMU in terms of 

position tracking is one of the main strengths of vision-based position trackers. Cameras are 

commonly used in tracking applications due to their ability to capture points of reference in the 

environment, which can be used for detecting and tracking the absolute position of the given 

object of interest. However, vision-based systems are dependent of the lighting conditions and a 

direct LOS. The accuracy of motion trackers based on vision sensors decreases in unfavourable 

lighting conditions and presence of occlusions, which do not affect the IMUs. This is one of the 

main reasons why these two sensor modalities are commonly used together in motion tracking 

applications. 

The IS-1500 tracker is certainly one of the leadings systems in this research area with its high 

accuracy in positional tracking. However, despite the performance, its overall system 

implementation requirements are high [11]. Some of the requirements include: a high-resolution 

camera, at least four specific points of reference in the ambient environments and a high 

processing power to perform the tracking as interactive framerates. Although, the tracker itself 

has a small form factor, it needs to be connected external computing unit, as shown in Figure 17. 
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Figure 17: IS-1500 Opto-Inertial Tracker with a USB-C Connector to a Computing Unit (adapted from [11]) 

On the other hand, the two outside-in tracking systems proposed by Li et al. and Maereg et al. 

show the potential of a full 6-DOF pose estimation with  significantly less complex system 

architectures and algorithms, despite lower accuracy [12, 13]. Both methods rely on two points 

of reference as opposed to at least four in the IS-1500 specification requirements. Both systems 

use the IMU data to complement the shortcoming of the monocular vision sensors, such as 

cameras. However, both systems are outside-in trackers, which can be a limiting factor in terms 

of scalability due to the requirements of an increasing number of generally expensive and 

complex external cameras and computing capabilities to facilitate larger tracking space. 

Although various aspects of multimodal, opto-inertial, sensor fusion have been thoroughly 

researched and extensively reported in literature, there are certain areas that continue to be 

unexplored. There exists a gap in the SOA with regard to incorporating these two sensor 

modalities in a single resource-constrained wearable unit so as to be able to decrease the cost and 

complexity of the human motion tracking system, while maintaining a sufficient level of tracking 

accuracy. The reduction of the number of points of reference has a direct impact on the 

computational complexity of the wearable opto-inertial motion tracking systems. To date, there 

is no evidence in the existing literature on inside-out, opto-inertial, motion tracking systems that 

compute the 3-D pose using two points of reference, which is a significant gap in the current 

SOA, as the number of reference points has a direct impact on the complexity and cost of such 

motion tracking systems. The use of an IMU in complementing a vision system that tracks two 

external points of reference using multimodal sensor fusion with an inside-inside-out with a 

wearable device in the context of low-cost has not been reported in existing literature, thus 

creating the gap in research that needs to be explored. A summary and comparison of the main 

Fiducial Marker To Computing Unit 
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properties of the three motion tracking systems, including the number of required points of 

reference, is listed in  

Table 2. 

TABLE 2: COMPARISON OF MAIN PROPERTIES OF STATE-OF-THE-ART OPTO-INERTIAL MOTION 

TRACKERS 

Method 𝐏𝐨𝐬𝐢𝐭𝐢𝐨𝐧 

Error 

[mm] 

Markers 

Required 

Tracking 

𝐓𝐲𝐩𝐞 

Work 

Envelope Size 

(along z-axis) 

[m] 

Overall 

System 

Complexity 

IS-1500 (Pose 

Recovery 

Algorithm with 

Fiducial Markers) 

[11] 

2 

(Typical) 

 

(metric not 
specified) 

At least 4 

(Passive Fiducial) 

Inside-Out Variable High 

Maereg, et al. 

[13] 

0.21 (Static) 

 (RMSE) 

2 

(Active) 

Outside-in 0.045 Low 

Li, et al. [12] 48.3 to 275.4 
(Static) 

(RMSE) 

2 

(Passive) 

Outside-In 1.13 to 4.13 Low 

 

2.3 Hypothesis of this Work 

Given the gap in research that was identified and described in previous section, the hypothesis in 

this thesis is as follows: We consider a low-cost, low-resolution, monocular camera system that 

is combined with an IMU in a single miniaturised wearable smart sensor unit, and it was coupled 

with two stationary points of reference, using active markers such as IR LED. Then the 3-D pose, 

i.e. the 3-D position and orientation, of the wearable unit could be efficiently determined. This 

approach has not been reported in existing literature. Moreover, the orientation data from the 

IMU could be used to directly complement the missing pieces of information from the vision 

sensor, thus reducing the overall system complexity; by avoiding the need for computationally 

expensive algorithms for computing the 3-D pose, such as the PnP solutions. As a result, the 

complexity of the sensor fusion algorithm for the 3-D pose estimation can be reduced and, thus, 

lead to lower requirements in terms of processing power and energy consumption. These 

requirements can be further decreased by reducing the computational load associated with the 

image processing tasks when detecting points of reference in images acquired by the camera. To 

that end, resolution of the camera can be reduced while introducing subpixel point detection 

techniques to finding the coordinates of the two points in the input images. The subpixel point 

detection can prevent the loss of precision of point detection caused by lowering camera’s 
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resolution. This results in a less complex and less expensive inside-out motion tracking system, 

as compared to the IS-1500 tracker. 
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3  Wearable Vision; Point Detection and Tracking 

M. P. Wilk, M. Walsh, and B. O’Flynn, "Extended Efficient Sub-Pixel Point Detection Algorithm 

for Point Tracking with Low-Power Wearable Camera Systems," IEEE Transactions on Image 

Processing, 2019, (under review) 

M. P. Wilk and B. O'Flynn, "Reference Point Estimation Technique for Direct Validation of 

Subpixel Point Detection Algorithms for Internet of Things," in 2019 30th Irish Signals and 

Systems Conference (ISSC), 17-18 June 2019, pp. 1-5, doi: 10.1109/ISSC.2019.8904921. 

3.1 Introduction 

Visual point detection is an important research topic in the field of digital image processing. The 

ability to precisely determine the coordinates of a given point of interest in an image is 

fundamental in many image processing applications. Many high-level algorithms, such as those 

used in object detection, pattern recognition, spatial mapping, etc., rely on the performance of 

the underlying lower-level algorithms, such as image segmentation and feature detection. Point 

detection plays an important role in such tasks [77]. With the continuous advances in miniaturised 

sensor technologies, new application spaces emerge. The miniaturisation of vision sensor 

technology is particularly encouraging. The emerging lens-less, or planar meta-lensed, vision 

sensors show that the dependency on traditional lenses, typically the largest components of vision 

sensor systems, can be eliminated. Thus, their physical size can be reduced [14, 15, 78, 79]. The 

advances in the state-of-the-art in the traditional, lensed, camera systems’ miniaturisation are also 

encouraging [80]. Therefore, the addition of vision sensor technology to low-power wearable 

devices used for motion tracking becomes increasingly feasible. Optical sensors can improve the 

positional tracking of wearable devices. 

Although such highly miniaturised lens-less cameras do not necessarily achieve the same 

performance as their traditional counterparts for image acquisition, these can still be suitable for 

certain applications, such as those that involve point detection and tracking. Such cameras can 

be particularly suitable for miniaturised wearable motion tracking applications, where: low-

power, small form factor, and long battery life are important considerations. the development of 

wearable vision systems can be challenging in this context. Digital image processing techniques 

are generally computationally intensive. Whereas it is not a limiting factor in traditional image 

processing applications where virtually unlimited resources  are available (i.e. PC based 
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systems), it can be, however, problematic if the image processing is carried out on miniaturized, 

low-power, resource-constrained wearable devices [81]. The computational complexity of an 

algorithm executed on a wearable device depends on several factors. Firstly, the image frames 

need to be processed at interactive rates; at least 25 frames per second. A sufficiently high frame 

rate is required to be able to faithfully reproduce the motion of the human body. Furthermore, 

each image frame often needs to be processed by the image processing algorithms in multiple 

stages; before proceeding to the analysis of the next input frame. Furthermore, the resolution of 

the imaging sensor has a major impact on image processing speed. Although higher resolutions 

can help capture more information from the environment, it occurs at the expense of either 

increasing the processing power requirements or decreasing the frame rate. On the other hand, 

low-resolution image frames can help to increase the frame rate, but the accuracy and precision 

of the output may be compromised. 

These challenges are difficult to tackle if the system design work is limited to the wearable device 

only. However, a more holistic approach that considers the ambient environment as part of the 

system, can be beneficial. The wearable device can be coupled with the ambient environment to 

get a level of control over the optical sensing. For example, consider active markers as points of 

interest that the camera needs to track. The wearable device can control the intensity of these 

points of interest to ensure that they remain well above the noise floor on the pixel array, thus 

leading to the reduction of the computational complexity of the image processing algorithms 

[82]. The decreased computational complexity can be achieved by eliminating the unnecessary 

sources of noise. The noise floor in the image frames can be also lowered and made uniform.  It 

can be accomplished in the following way. In a typical point tracking application, the point 

detection algorithm is focused on finding the coordinates of ‘blobs’ that represent the points in 

the image. The ‘blobs’ can be extracted from an image by making several assumptions. For 

example, the points to be tracked can be specific point light sources, e.g. Infrared IR LED, and 

the vision sensor can be fitted with a matching optical IR filter. As a result, only the point sources 

representing the expected points are captured by the imaging sensor. Also, the peaks of the 

detected points can be well above the noise floor, thus easily detectable. The intensity of the IR 

LEDs can be controlled to ensure that no pixels in the imaging sensor are saturated, which makes 

it more difficult to find the centre of the ‘blob’ and achieving more accurate position 

measurement. Moreover, the Field-of-View (FoV) of the imaging sensor can be reduced to pixels 

that lie within such a radius that the geometric distortions can be neglected [83]. Under these 
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conditions, the sources of light can appear as Point Spread Functions (PSF) with Gaussian 

characteristics [84], over an area approximately between 3x3 and 6x6 pixels. Such coupling 

between the wearable camera and the ambient environment can significantly increase the 

efficiency of point detection algorithms at pixel level. Indeed, the pixel-level point finding 

algorithms can be limited to finding the local maxima in the image. Also, the resolution of the 

sensor can be decreased to reduce the number of pixels to be processed in each frame, thus further 

increasing the speed of pixel-level point detection algorithms. 

However, in most point tracking applications, a lower resolution image decreases the accuracy 

of point detection. This is a limitation which can be overcome by finding the coordinates of the 

points at sub-pixel level. The true coordinates of the points are located around the detected peaks 

at the pixel level. The coordinates of the points can be refined to sub-pixel level by inspecting 

the neighbourhood of the peak pixel intensity, thus overcoming the limitations of the pixel 

resolution of the imaging sensor. The pixel intensities adjacent to the peak contain the necessary 

information to estimate the location of the true intensity peak at sub-pixel level. Figure 18 depicts 

a typical point source of light with properties of a Gaussian distribution on a pixel array; sampled 

at pixel- and sub-pixel levels. The super-resolution methods for sub-pixel point detection are well 

documented in the literature [84-89]. Some of the main application spaces for such methods 

include microscopic imaging and astronomy, or media encoding techniques, e.g. motion 

compensation in MPEG-4, for instance. Historically, the ratio of the time taken by a computer 

program to detect a point at pixel level was much higher than the time taken to detect the point 

at sub-pixel level. Therefore, more attention has traditionally been paid to the accuracy of the 

sub-pixel detection algorithms than the time requirements of the computation as this was seen to 

be negligible due to high processing power of the computing platforms. This is not always the 

case in the context of ultra-low-power wearable platforms. The performance of such resource-

constrained systems is much more dependent on the system’s and algorithms’ complexity. This 

is particularly the case for systems that rely on the intelligent coupling of the vision sensor with 

the ambient environment, such as that described previously. In this case, the point detection at 

pixel level can be simplified to such a degree that the timing of a given sub-pixel detection 

algorithm may become as important as its accuracy. This work considers these two criteria as 

equally important since the described algorithm is mainly intended for resource-constrained 

wearable systems. 
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Figure 18: Gaussian Intensity Peak at Pixel and Sub-Pixel Level 

3.2 Subpixel Point Detection Algorithm 

 State-of-the-Art in Subpixel Point Detection Techniques 

Linear interpolation is a common approach for estimating the values of a function between its 

known discrete values. It assumes a linear relationship between the values of the function at 

points that surround the interpolated value. It is one of the simpler and often most efficient ways 

to perform the interpolation, such as that based on the 1st order Newton’s Divided Difference 

method [90].  However, its direct application to sub-pixel peak detection is not possible. Whereas 

a typical interpolation problem involves finding the intensity value at a specific and known 

location, sub-pixel peak detection is aimed at finding the coordinates of the true intensity peak, 

where neither the coordinates nor the intensity of the true peak is known. The point detection 

algorithms can rely only on the pixel intensities adjacent to the true peak, as shown in Figure 19 

(a). It shows a typical 1-D scenario with the Gaussian PSF sampled at the pixel resolution of the 

camera with the location of the peak refined to the sub-pixel level. The coordinates of the 

intensity peak at sub-pixel level are defined by x and y, as defined in (1).  

 

𝑥 = 𝑋 + 𝛿𝑥;  𝑦 = 𝑌 + 𝛿𝑦 (1) 

 

The X and Y are the pixel-level x-y coordinates, and 𝛿𝑥 and 𝛿𝑦 represent the displacements, also 

referred to as the sub-pixel offset, of the true peak from the detected pixel-level peak at the 

coordinates X-Y. The pixel-level coordinates are refined to sub-pixel level by finding the values 
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of 𝛿𝑥 and 𝛿𝑦. The system can be considered as a symmetrical one, i.e. the pixel intensity profile 

of the point has the same properties on the image plane along both dimensions. Therefore, an 

analysis along a single axis is sufficient to determine performance of the system along both axes. 

 

Figure 19:  (a) Point Source Peak’s Intensity Profile and Terms of SLI’s Model; (b) Approximation of SLI’s 

Terms to Similar Triangles 

One of relevant reference algorithms covered in the literature is the Linear Interpolation (LI) 

algorithm, as described in [85]. Due to the assumption of linearity, it is computationally efficient 

when compared to other comparable algorithms. It defines 𝛿𝑥 as half the ratio of the difference 

between the preceding and the following pixel intensities, in Figure 19 (a), to the difference 

between the peak pixel intensity and the lower peak of the two surrounding pixels (the peak 

located at X-1 in Figure 19 (a)). Its accuracy is lower when compared to slower methods, such 

as the Gaussian Approximation (GA), [85]. The GA assumes a Gaussian spread of the intensities 

around the observed peak. It defines the sub-pixel offset 𝛿𝑥 in a similar way to that of the LI, but 

it differs in that it is based on a ratio of natural logarithms of the pixel intensities around the 

observed peak intensity. 

There exist many other algorithms for super-resolution point detection in the literature. However, 

most of them are not suitable in the considered application space due to their high computational 

complexity. For this reason, the following sections focus only on the LI and GA. The LI was 

mathematically the closest to the proposed SLI while the GA had the highest accuracy of the 

three algorithms [85]. 

 Simplified Linear Interpolation Method 

 
δ 1-δ 

b 

a 

Approximation to Similar Triangles 

(a)                                       (b) 
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Once the coordinates of the point source have been located, the sub-pixel point detection 

methods, such as the proposed SLI algorithms developed as part of this research, can be applied. 

It is computationally efficient and can find the sub-pixel offset 𝛿𝑥 faster than other comparable 

methods, as shown in Table 3. This section discusses the SLI algorithm in detail. The assumptions 

made in this method are similar to those of the linear interpolation, i.e. the linear relationships. 

However, it uses this relationship differently from the methods described in the Section 3.2.1. 

The underlying principles of the SLI algorithm can be explained using the trigonometric 

properties of similar triangles, as shown in Figure 19 (b). The pixel-level intensities of the peak 

and the two surrounding pixels, from Figure 19 (a), are approximated to the sides, a, and b, of 

the two similar triangles.  Also, the sub-pixel offset from the observed pixel-level peak, δ, forms 

the horizontal side of the smaller triangle. The uncertainty area, i.e. the distance between X and 

X±0.5 is equal to one, because this is the maximum absolute value that the sub-pixel offset 𝛿 may 

have around the given observed peak without having an error at pixel-level. Indeed, 𝛿 lies within 

±0.5, as depicted in Figure 19 (a) and (b). 

The SLI relates the pixel intensities at and around the observed peak to the sub-pixel offset 𝛿𝑥 as 

a ratio of the difference between the pixel intensities of the two pixels surrounding the observed 

peak to the pixel intensity of the observed peak, as in (2): 

 

𝛿𝑥 =
𝑎

𝑏
=

𝑓(𝑋 + 1) − 𝑓(𝑋 − 1)

𝑓(𝑋)
;    𝛿𝑥 ∈< −0.5,0.5 > (2) 

 

The maximum value of the computed 𝛿𝑥 is capped to 𝛿𝑥 = ±0.5 pixel. Moreover, due to the way 

the numerator of SLI is constructed, the sign of the resultant sub-pixel offset 𝛿𝑥 is determined 

automatically.  

The SLI can also be derived from the LI method, when one assumes that the system operates at 

the optimum operating conditions for the SLI. This relationship was found when further 

analysing the results of the simulations. It is briefly explained in the following section. This 

relationship was not obvious, until the results of the simulations of the system at the optimum 

conditions were analysed in detail. One of two cases of the LI is defined in (3). Although the 

similarity to the SLI, (2), can be observed, its numerator is more complex. However, under the 

optimal conditions of the system, the intensity profile of the point source’s peak acquired certain 



 

 

43 |   Data Fusion for Human Motion Tracking with Multimodal Sensing  Chapter 3  

 

characteristics. Figure 20 shows the pixel intensity profile under optimal conditions in detail 

where the optimal conditions are defined as such that the standard deviation 𝜎 of the Gaussian 

distribution is approximately equal to 1.2. The simulated sub-pixel offset was 𝛿𝜇 = 0.5. It shows 

that the ratio of the pixel intensities 𝑓(𝑋 − 1) to 𝑓(𝑋) is approximately a half and is constant. 

Thus, it can be shown that the denominators of the LI and SLI are approximately equal, as shown 

in (4). Therefore, both methods are approximately equal, as indicated in (5) and (6), under these 

conditions. Thus, the SLI could be considered a simplification of the LI, under these specific 

conditions. 

𝐿𝐼 =
𝑓(𝑋+1)−𝑓(𝑋−1)

2(𝑓(𝑋)−𝑓(𝑋−1))
 ; 𝑖𝑓 (𝑓(𝑋 + 1) > 𝑓(𝑋 − 1)) (3)  

 

∵ 2(𝑓(𝑋) − 𝑓(𝑋 − 1)) ≅ 𝑓(𝑋) ≅ 0.3048 (4) 

 

∴
𝑓(𝑋 + 1) − 𝑓(𝑋 − 1)

2(𝑓(𝑋) − 𝑓(𝑋 − 1))
≅

𝑓(𝑋 + 1) − 𝑓(𝑋 − 1)

𝑓(𝑋)
(5) 

 

∴ 𝐿𝐼 ≅ 𝑆𝐿𝐼 (6) 

 

Figure 20: Simulated Pixel Intensity Profile under Optimum Conditions for the SLI 
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Given the mathematical relationship in (5), it can be observed how the SLI has a lower 

computational complexity than the LI, hence higher execution speed. Furthermore, the 

simulations also showed that the SLI was expected to achieve a comparable or better accuracy. 

The experimental validation of these expectations is the main objective of the subsequent sections 

of this work. 

3.3 Performance Simulation 

This section briefly summarizes the simulations that were carried out to evaluate the expected 

performance of the SLI [91]. The SLI was compared to the LI and GA with two main criteria; 

RMSE and the Relative Mean Execution Time. The simulations were based on the Monte Carlo 

approach, and the assumption of a Gaussian distribution of the pixel intensities around the peak. 

These results were used to analyse and predict the behaviour of the SLI under the experimental 

test conditions. 

The intensity peak of the point source in the image was simulated by generating a 1D Gaussian 

distribution, along x-axis, with two input parameters 𝑓(𝑥|𝜇, 𝜎) , where 𝜇  is the mean of the 

distribution 𝜇 and 𝜎 is the standard deviation. The value of 𝜇 was associated with the known sub-

pixel level reference offset 𝛿𝜇 through the following relationship,: 

 

𝜇 = 𝑋 + 𝛿𝜇 (7) 

 

The two input parameters of the Gaussian distribution were bounded to 𝛿𝜇 ∈< 0,0.5 >, 𝜎 ∈<

0.5,3 >. The values of the generated Gaussian distribution  𝑓(𝑥|𝜇, 𝜎) were used to sample the 

simulated pixel intensities, at integer values of 𝑥, and used in computing the sub-pixel offset 𝛿𝑥 

using: SLI, LI and GA methods. The computed offsets were used to compute the error, as shown 

in (8): 

 

𝑒𝑟𝑟𝑜𝑟 = 𝛿𝜇 − 𝛿𝑥 (8) 

 

Several test scenarios were constructed by manipulating this input parameter pair < 𝜇, 𝜎 >. In 

each simulation run, an 𝑁 = 106  samples of input parameter pairs are generated for each 
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simulation scenario. The comparison criteria for the simulations are defined in equations (9) and 

(10). 

 

𝑅𝑀𝑆𝐸 = √∑(𝜹µ−𝜹𝒙)
2

𝑁
            (9) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑒𝑎𝑛 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
∑ 𝑡𝑖

𝑁
𝑖=1

𝑁
             (10) 

 

In the simulations, the SLI was evaluated under several scenarios. In the context of the extended 

work, Scenario 1 was the most relevant one. In this scenario both input parameters to the 

Gaussian distribution function < 𝜇, 𝜎 >  were random, while remaining within the specified 

bounds. The results are shown in Table 3. The SLI achieved the highest RMSE, and lowest 

execution time. 

 

TABLE 3: SIMULATED RESULTS: SCENARIO 1; RANDOM <Μ, Σ> 

SLI LI GA 

RMSE 

[𝒑𝒊𝒙𝒆𝒍] 
Time 

[𝝁𝒔] 
RMSE 

[𝒑𝒊𝒙𝒆𝒍] 
Time 

[µ𝒔] 
RMSE 

[𝒑𝒊𝒙𝒆𝒍] 
Time 

[µ𝒔] 

0.1462 0.717 0.0483 1.21 0.0010 1.69 

 

The results of the simulations suggested that there could exist such conditions under which the 

SLI could perform better. Since the standard deviation in the Gaussian model is related to the 

pixel intensity profile of the point source in the image plane, which in turn has an impact on the 

accuracy of the SLI algorithm, an appropriate scenario was constructed. Its objective was to 

determine the SLI’s behaviour as a function of the standard deviation 𝜎 at constant values of the 

reference offset 𝛿𝜇. In this scenario, the 𝑒𝑟𝑟𝑜𝑟, as defined in (8), was computed for each value 

of the reference offset 𝛿𝜇 ∈ {0.1,0.2,0.3,0.5}, while sweeping the value of standard deviation 

over the range 𝜎 ∈< 0, 3 >. This scenario resulted in an interesting finding. It showed that the 

SLI had an exceptionally low error when 𝜎 ≅ 1.2. Its error was close to zero around this value 

of 𝜎, regardless of the value of the reference offset 𝛿𝜇. The results are shown in Figure 21. It 
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shows that the error for different values of 𝛿𝜇  intersects at 𝜎 ≅ 1.2 . Thus, this point can be 

considered the optimum operating point for the SLI. 

 

Figure 21: Simulated Error of SLI as a function of σ for different values of δµ; error was capped at -0.75 

 

This finding was further supported by repeating the above simulation and computing the output 

of the SLI, i.e. 𝛿𝑥 for all values of 𝛿𝜇, while maintaining the standard deviation constant at 𝜎 =

1.2. A plot of 𝛿𝑥 versus 𝛿𝜇is shown in Figure 22. This plot shows that the 𝑒𝑟𝑟𝑜𝑟 in SLI is very 

low for all values of 𝛿𝜇 . Moreover, the computed RMSE in this case was 𝑅𝑀𝑆𝐸 = 0.0026 . 

These results prove that it is indeed the optimum operating point for the SLI. The next section 

describes the experimental work that was aimed at recreating these conditions for the SLI in the 

real world and validating the simulated results. The practical implication of this finding is that it 

is possible to achieve higher accuracy in point detection applications with a low-resolution 

cameras with the SLI algorithm by ensuring that the pixel intensity profile of the point on the 

image has the property of a Gaussian distribution with 𝜎 ≈ 1.2. These properties can be achieved 
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through a careful system setup, i.e. an appropriate consideration of elements such as the camera, 

LEDs and the distances between camera and the LEDs, to name but a few. In practical terms, 

these findings show that the SLI along with the appropriate system setup can be an enabling 

factor for many low-power point tracking applications where factors such as physical size, 

computational power, execution speed, wearable form-factor, are an important consideration. The 

next section describes the validation process of these findings. 

 

Figure 22: Simulated Output of SLI vs Reference Offset, at constant σ=1.2 

3.4 Experimental Validation – Data Acquisition Setup 

The experimental setup was designed to create such conditions in the system that the properties 

of the points of light detected on the image array were as close to the optimal conditions for the 

SLI method as possible. It was critical to ensure such conditions were created, because the SLI 

is known to underperform under unfavorable conditions [16]. 

The system was divided into two major components; the Ambient Environment (AE) and the 

Wearable Platform (WP), as shown in Figure 23. These elements could be considered as two 
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nodes in a local network that are coupled together in more than one way. Firstly, the WP was 

fitted with an IR Long Pass Filter, i.e. passing long IR wavelengths, with high transmittance in 

the IR wavelength spectrum. The matching IR LED was selected for the AE node. Therefore, the 

noise floor was lowered and uniform over the imaging device’s pixel array. Secondly, the IR LED 

was carefully selected. Not only did the IR LED have to match the IR Filter, but also its detected 

point of light on the pixel had to have the required characteristics which was the dynamic 

intensity range which matched the pixel array’s sensitivity. Finally, the two nodes were coupled 

via a direct wireless telecommunications link. It provided the ability to control the intensity of 

the IR LED from the WP in real-time. Thus, the intensity of the IR LED could be maintained at 

the optimal level; regardless of the relative positions of the two nodes. The intensity of the IR 

LED was controlled to offset the effects of motion of the WP; especially those related to the 

variation in the distance between the WP and IR LED. To this end, the MCU on the WP could 

send appropriate commands to the Ambient Environment node, which would decode them and 

use the Pulse-Width Modulation (PWM) to finely adjust the intensity of the IR LED. 

 

Figure 23: Ambient Environment and Wearable Platform Coupling – Overview 

In terms of power consumption, the wearable devices have generally the largest constraints since 

they must be generally small, light, and, thus have limited computational and power resources. 

On the other hand, the IR LEDs can be mounted in the ambient environment, e.g. in walls or the 

ceiling. Therefore, the IR LEDs are less constrained in terms of power consumption; albeit they 

do not generally require as much power. 

 Wearable Platform for 3-D Point Estimation 
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The experimental WP was designed and implemented with both the practical application and the 

experimental requirements in mind. From a practical point of view, the key challenge was to 

select the most suitable imaging device, or in simpler terms the camera. The most suitable camera 

for this work was identified and selected. It was the OV8865 made by OmniVision, Inc [92]. It 

is a state-of-the-art image sensor for low-power, high-performance, mobile applications. Apart 

from the suitable physical properties, such as energy efficiency, it offers high performance in 

low-light conditions. A high resolution of this camera, i.e. 3264x2448 was needed for the 

experimental validation procedure. 

The computing platform for this work was the Microsoft Surface Pro 4 tablet computer [93], 

which housed the OV8865 camera module. This selection was motivated by the practical aspects 

of the experimental work. It is a fully featured Windows 10 machine with high processing power 

in a light-weight form factor. It enabled a convenient mounting on a camera tripod. Figure 24 

shows the WP with the major elements identified. Furthermore, this tablet computer could 

support popular scientific or engineering software packages, such as MATLAB. Therefore, it was 

a suitable choice to implement the functionalities of the WP whilst enabling the tasks related to 

the experimental work. The Long Pass IR Filter from Edmund Optics, Inc. was selected as the 

IR Filter [94]. The transmittance of over 90 % in the wavelength range from 800 nm and 1100 

nm was a good match for the low power IR LED; described in the next section. 

The radio link between the two nodes was implemented using the HM-11 BLE module System 

on Chip CC2541 from Texas Instruments, Inc. [95]. The commands for the IR LED intensity 

values were encoded in simple packets and transmitted over a wireless Serial connection directly 

from MATLAB code to the BLE module.  
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Figure 24: Wearable Platform 

 Ambient Environment for Validation Trials 

The Ambient Environment node consisted of three major parts: an RF module, the MCU, and the 

IR LED, as shown in Figure 23. The most suitable IR LED for this work was the  High Speed 

Infrared Emitting Diode VSMB11940X01 from Vishay, Inc. [96]. The radiant power peak of this 

part was centered at 940 nm. The small physical size along with the relatively high radiant power 

and a wide angle of half-intensity, ±75 ° ensured a good match with the OV8865 camera module. 

This IR LED is shown in Figure 25 (a). 

The IR LED was directly controlled by an STM-32F401RE based MCU development board  and 

the ARM Mbed development environment [97]. The development board used the same radio 

module as the WP, i.e. the HM-11 module. The control unit is shown in detail in Figure 25 (b). 

The intensity control of the IR LED was carried out using a standard 8-bit PWM technique, which 

provided sufficiently high granularity. 

Due to the low power rating of the IR LED, i.e. the forward current, there was no need to design 

any additional amplifier circuitry at the PWM outputs of the MCU. The STM32F401RE MCU 

was able to source up to 25 mA per output port [97], which was sufficient to drive the IR LED. 

Hence, only current limiting resistors were, as shown in Figure 25 (b). 

The Ambient Environment node was designed to include additional functionalities for future 

work. It was designed to support up to four IR LEDs. 

HM-11 

IR Filter 
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Figure 25: Ambient Environment: (a) IR LED (b) IR LED Control Unit 

 Complete Experimental Setup 

The complete experimental setup is shown in Figure 26. It is the equivalent of the general 

diagram shown in Figure 23. Careful consideration was given to the ambient lighting conditions 

in the laboratory. Although the IR Filter was used to suppress the undesired ambient light, it could 

not suppress all sources of light. In particular, the high intensity lamps embedded in the ceiling 

had the potential to negatively impact the system if they were directly pointed at the camera and 

were within its FoV. For this reason, these lights were switched off during the experimental work. 

It resulted in two lamps out of the total of four in the laboratory being off. Although effectively 

50 % of the lamps were off, the laboratory remained well illuminated, sufficient for the 

experiment to take place, as is visible in Figure 26. 

(a)                              (b) 

HM-11 

MCU 

To IR LED 
IR LED 
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Figure 26: Experimental Platform Implementation 

 Work Envelope for Experimental Test Positions 

Ambient 

Environment 

Wearable 

Platform 

IR LED 
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Work envelope is defined as an area within which the WP can operate and the camera can track 

the IR LED. The physical work envelope for the experimental work was designed with several 

factors in mind, as shown in Figure 27. The objective of the work envelope was twofold. Firstly, 

it had to be large enough for practical applications. Secondly, it had to be such that the optimum 

conditions for the SLI were maintained in all positions. This was achieved by fully leveraging 

the capabilities of the camera in the WP and the IR LED. The FoV of the camera approximately 

overlapped with the radiant intensity characteristics of the IR LED, i.e. the wide angle of half-

intensity. Also, the maximum distance between the two nodes was such that the point of light 

from the IR LED could be detected by the camera; under the optimum conditions for the SLI.  

 

Figure 27: Work Envelope 
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A series of preliminary tests were carried out to establish the exact limits within which the system 

could operate in such conditions. The results of these tests were used to establish the optimum 

work envelope, as shown in Figure 27. This was designed in a grid system that best matched the 

extreme positions to take measurements at all keep positions. The solid right-angle triangle 

formed the Main Work Envelope, within which the optimum conditions for the SLI could be 

maintained. The global frame of reference was a right-handed system with the origin at the IR 

LED. Because the system was symmetrical about the z-axis, i.e. the Main Envelope could be 

rotated around the z-axis and the system would maintain its characteristics, this work envelope 

was sufficient to experimentally validate the SLI method. The position of the WP was defined in 

three dimensions (3D) as 𝑃 = [𝑥, 𝑦, 𝑧] = [𝑥, 0, 𝑧 ]. The coordinates 𝑥, 𝑦  and 𝑧  describe the 

position of the WP in the World reference frame, which right-handed and its origin coincides with 

the centre of the IR LED. The y-coordinate was irrelevant in this work, because the WP was 

always positioned at the same height as the IR LED. Therefore, the y-coordinate was set to zero. 

The optimum range of distances along the z-axis was 𝑧 ∈< 0.5, 1.5 > metres. The lateral range 

of distances along the x-axis at the maximum value of 𝑧 was 𝑥 ∈< 0, 0.75 >, for the Main Work 

Envelope. An Extended Work Envelope was added by increasing the lateral range to 𝑥 ∈< 0,

1 > 𝑚𝑒𝑡𝑟𝑒. Thus, the angle between camera’s optical axis (or in in other words the z-axis) and 

the line segment between the IR LED and the camera is increased from 26.57 degrees to 33.69 

degrees. It needs to be noted that the camera’s optical axis was aligned with the z-axis as closely 

as possible, while its horizontal axis was aligned with the global x-axis during the experimental 

data acquisition procedure. 

 Data Acquisition Procedure 

The data acquisition procedure in this work was more complex than simulations. Whereas the 

simulations allowed for the use of artificially created data sets, this experimental work involved 

the acquisition of data from real input camera frames. The nature of this process had its practical 

implications, such as the acquisition of large numbers of high-resolution images under controlled 

conditions. 

3.4.5.1 Raw Image Frames Acquisition:  

The raw input images were acquired with the resolution of 3264x2448 pixels; using the Tablet’s 

built-in Camera application. This application allowed for the full use of the camera module’s 

resolution, as opposed to MATLAB®, which supported only selected resolutions. For each 
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position of the WP in the Work Envelope, 𝑁 input frames were acquired. Due to the practical 

implications, in particular the fact that each raw input frame had an average size of 2.5 MB in 

memory, the number of frames acquired at each position had to be limited. Larger runs of 

continuous image acquisition caused an instability of the Windows 10 operating system. On the 

other hand, multiple runs of image acquisitions were not considered, because they could 

potentially invalidate the results. In order to maximise the chance of achieving constant 

conditions in the experiments, the most reliable way to validate the SLI was to use a single data 

set that was acquired in one go, as opposed to multiple acquisitions separated by considerable 

time intervals. To this end, the resultant number of raw input frames was 𝑁 > 1000, for each 

position. Once the raw frames were acquired, they were cropped by removing top and bottom 33 

% of the images; to avoid having to store and process redundant regions of the images. Since the 

y-coordinate of the WP’s position 𝑃 was always equal to zero, this operation had no impact on 

the processing of the point of interest. The point of interest was always located near the vertical 

centre of the image. 

3.4.5.2 Low Resolution Input Frame Creation  

The second stage of the data acquisition was to use the raw input frames to create the input image 

for the SLI algorithm. Since the target camera resolution for such application spaces should be 

as low as possible, while preserving the necessary information about the scene, the resolution 

was selected to match the standard 320x240 values. The cropped high-resolution input images 

were resized by down-sampling using the bicubic interpolation algorithm [98, 99]. The input and 

output of this stage is shown in Figure 28 which is an example of how numerous pixel values 

from the original high-resolution input image were used to compute the low-resolution output 

image. It is worth noting that the input images were not resized to exactly 320x240 pixels. The 

cropping process, where in the top and bottom 33% of the raw images were removed, distorted 

the aspect ratio of the original resolution. Hence, the input was resized to 320 pixels horizontally, 

while maintaining the aspect ratio of the cropped input image, as shown in Figure 28 (b).  
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Figure 28: Image Resizing Process - Point Peak in Zoom In: (a) Original Input, (b) Input Resized to Resolution 

320x240 using Bicubic Interpolation 

(a)           

(b)          

320x240 
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3.4.5.3 Reference Point Estimation 

The peak detection at pixel level was a straightforward task; in the low-resolution images. Under 

the correct conditions, i.e. using an IR Filter and as single source of light in camera’s FoV, the 

point detection procedure involved finding the maximum pixel value in the image which was the 

peak of the point of light originating from the IR LED. The pixel intensities at and around these 

coordinates on the image array were used in the validation work of the SLI algorithm. 

The reference point refers to the coordinates of the true peak of the light point that is used to 

determine the accuracy of the subpixel point detection methods. The reference point was 

determined using a custom method, which allowed for a direct validation of the SLI algorithm 

and benchmarking it against the two relevant methods found in the SOA, i.e. the LA and GA. 

This method is described in detail in the following paragraphs. 

The direct validation of a subpixel point detection algorithm can be achieved using a single 

imaging device. A high-resolution camera can be used in this task. For example, a high-resolution 

camera can be used to acquire 𝑁 input frames, which then can be down sampled by a certain 

factor and used as inputs to the subpixel point detection algorithms. The coordinates of the peaks 

in the original high-resolution image can be used as the reference points in the validation process 

(after appropriate scaling) if the ratio between the high-resolution and low-resolution images is 

high enough, e.g. a factor of ten or more. While this is an effective approach, its reliability or 

repeatability cannot be trusted. Some empirical testing can show that the pixel intensities at the 

peak’s location can vary greatly from frame to frame. Thus, the location of the peak may shift 

from frame to frame. It is unacceptable, because the location of the reference point should not 

vary during the experiment if both camera and the point source of light are stationary. This issue 

is particularly apparent in low-light conditions with IR LED and cameras fitted with a matching 

IR filter. Our experimental setup consisted of an IR LED and an 8 Megapixel camera with a 

matching IR filter, both of which were stationary in controlled laboratory conditions. The 

fluctuations in pixel intensity were observable with naked eye when zooming in onto the point. 

This problem shows the need for a more reliable way of determining the point of reference. 

The problem of fluctuations in pixel intensities in the successive frames could be tackled with 

statistical methods, e.g. by computing mean peak location over all 𝑁 input frames. One way of 

finding the peak’s location can involve using the Circular Hough Transform (CHT), which can 

find the centres of a circle in images [100]. The circle centres should be coincident with the 

location of the points’ centres, assuming a symmetric Gaussian distribution of the pixel intensities 
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around the peak. The mean of the circle centres from the entire set of 𝑁 input images can be 

computed and used as the reference point. However, it may prove to be insufficiently accurate. 

Although the intensity peak does generally have the form of a circle, it is not always an ideal 

circle. The shape of the pixel distribution can vary due to noise and angle at which the light rays 

intersect the pixel array. Also, the pixel intensity profile in low-light conditions does not 

necessarily have pure Gaussian properties, as shown in  Figure 28 (a). That is, the circle centre 

does not always coincide with the intensity peak. An alternative approach can involve calculating 

the mean of peak intensity locations over all 𝑁 input frames. Again, it may not be a reliable 

measure as the standard deviation of this metric would be high, given the fact that the high-

intensity pixels can be spread over a relatively large area. 

The proposed algorithm was designed as a multi-step iterative process to determine the reference 

point. The location of the peak was estimated based on a combination of mean CHT and mean 

peak pixel intensity over all 𝑁  input frames. The estimate of the true peak’s location �̃�  was 

updated in each iteration of the loop. The algorithm was run over 𝑛  iterations until the �̃�  no 

longer changed, i.e. the best achievable solution for this method was determined. The algorithm 

is shown in Error! Reference source not found.. All variables used in this algorithm are two-e

lement row vectors with the elements corresponding to the x- and y-axis, as shown below in (11): 

 

�̃� = [𝑥 𝑦]              (11) 

 

The first step of the reference point estimation algorithm involved the acquisition of a relatively 

large set of 𝑁  input frames from the high-resolution camera in an experimental setup. It is 

assumed that the experimental setup is placed in a controlled laboratory environment. It is critical 

to ensure that there are no external light intensity fluctuations originating from uncontrolled 

ambient light which can be a source of noise. Secondly, there must not be any mechanical 

vibration present in the environment during the data acquisition process. Any mechanical 

distortion that could cause motion of either the camera or the source of light should be avoided, 

e.g. a slamming door, air drafts caused by motion or air conditioning systems, or even loud talking 

near the camera. 
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The second step involved finding an initial estimate of the peak’s location �̃�. It served as the 

initial input to the algorithm’s loop to be refined over 𝑛 iterations. It was determined by finding 

the location of the peak intensity. 

In the third step, the Region of Interest (ROI) was set. The centre of the ROI was set to the current 

value of �̃�𝑛. The size of the ROI could be set manually. It depended on the resolution of the 

camera and the size of the point on the pixel array. The size of the ROI had one primary 

requirement. Its area had to be greater than the area of the peak on the pixel array. The specific 

settings depended on camera’s resolution and the size of the point on the pixel array. In this work, 

the size of the ROI was set to 50 pixels along x-axis and 35 pixels along the y-axis, as shown in 

Figure 28 (a). 

The next three steps were aimed at finding the best location estimate for the given iteration of the 

loop, 𝑛. Steps four and five were focused on finding the mean peak locations using two different 

methods. Firstly, the mean circle centre  𝐶̅ was computed from all 𝑁 input frames in the ROI. 

The result should be coincident with the peak’s location since its 2D pixel intensity distribution 

forms an approximate circle around it. The CHT algorithm proposed by Atherton et al. was used 

in this step [100]. Subsequently, the mean pixel intensity �̅�𝑖𝑛𝑡𝑒𝑛𝑠 was computed within the ROI. 

Finally, the peak estimate, for the given loop iteration 𝑛, �̅� is the mean of 𝐶̅ and �̅�𝑖𝑛𝑡𝑒𝑛𝑠. It is also 

the mid-point between these two values. Optionally, a weighted mean could be considered if 

either of the two parameters was considered more important, or accurate, in the calculations. 

The final stage of the algorithm was aimed at determining whether the mean estimate �̅� was less 

than half a pixel away from the current estimate �̃�𝑛. If so, the algorithm’s work was complete. It 

could proceed to the next steps, i.e.: setting the peak’s final position estimate �̃�, appropriately 

downscaling it, and down sampling all 𝑁 frames in the input set. Otherwise, the process must: 

go back to Step 3, adjust the  𝑅𝑂𝐼𝑐𝑒𝑛𝑡𝑟𝑒  with new, more accurate position estimate  �̃�𝑛 , and 

execute the next loop, 𝑛 + 1. The execution continued until the condition in Step 7 was false and 

the best estimate of the centre was identified. 
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TABLE 4: REFERENCE POINT ESTIMATOR ALGORITHM 

Algorithm 1: Reference Point Estimator 

1. Acquire 𝑁 high-resolution input frames 

2. Get initial peak estimate  �̃�𝑛; 𝑛 = 0 

3. Set 𝑅𝑂𝐼𝑐𝑒𝑛𝑡𝑟𝑒 = �̃�𝑛 

4. 𝐹𝑜𝑟 all 𝑁 frames, find 𝐶̅ 

5. 𝐹𝑜𝑟 all 𝑁 frames, find �̅�𝑖𝑛𝑡𝑒𝑛𝑠 

6. Find mean estimate �̅� = 𝑀𝑒𝑎𝑛(𝐶̅, �̅�𝑖𝑛𝑡𝑒𝑛𝑠) 

7. 𝐼𝑓 𝐴𝑏𝑠(�̃�n − �̅�) > 0.5 𝑝𝑖𝑥𝑒𝑙 

a. 𝑛 = 𝑛 + 1 

b. �̃�𝑛 = �̅� 

c. 𝐺𝑂𝑇𝑂 Step 3 

8. �̃�𝑛 = �̅� 

9. Down-scale  �̃� 

10. Down-sample all 𝑁 input frames 

 

This method was validated in experimental conditions with the same setup as that used in 

validating the SLI algorithm; described in this chapter. A more detailed description of this 

algorithm and its validation can be found in our published work on this topic [101]. 

3.5 Results and Discussion 

The SLI was experimentally evaluated using the exact same methodology as that used in the 

development of the simulated modelling. Once the reference point for a given test position was 

determined, and the pixel intensities of the peak and its surroundings were extracted, the 

validation procedure from the simulation could be readily applied. The experimental work was 

divided into two scenarios: 

• Scenario 1: Intensity of the IR LED was constant for all test positions. 

• Scenario 2: Intensity of the IR LED was dynamically controlled to maintain optimum 

conditions for the SLI algorithm 

Apart from the above differences, the overall procedure was the same for both scenarios. The 

SLI was validated using datasets acquired at each test position in the Work Envelope. 
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The results were compiled in tables compatible with those in the simulations to allow for a side-

by-side comparison. The rows were extended to contain the results obtained from data acquired 

at different test positions. The results were grouped and tabulated to show the performance along 

the main axes in the Work Envelope. This way, the changes in performance of the system could 

be clearly observed, as the WP was moved to different test positions. 

 Scenario 1– No LED Intensity Control 

The results of this scenario, for the test positions: along z-axis, x-axis, and at the remaining 

diagonal positions, are shown in: Table 5, Table 6, and Table 7, respectively. 

The first observation, that one can make, in terms of the execution time, is that results unveil a 

pattern similar to that of the simulations, as regards to the execution time. The SLI required the 

least amount of time to find the peak at sub-pixel level, which was expected. Its average execution 

time was 2.4 µ𝑠 . The LI was slower, as it required an average of 3.07 µ𝑠  to complete this 

operation, which was also expected. However, the execution time of the GA method was 

unexpected. It turned out to be slightly faster than the LI, with the average time of 3.01 µ𝑠. 

The overall results in terms of the accuracy did not conform to literature expectations. The SLI 

was expected to underperform, compared to the remaining two methods. Given these conditions, 

the SLI performed better than other two methods. The Root Mean Square Error (RMSE) values 

of the remaining two methods were high. This scenario was designed specifically to reveal and 

explore the shortcomings of the SLI method; to try to identify the best possible conditions for it. 

As a by-product, it was found that both the LI and GA also underperformed under these 

conditions. There results revealed that the LI and GA were not as robust. However, the 

investigation as to why this was the case was secondary and beyond the scope of this work. 

The RMSE values for the SLI, shown in Table 5, reveal an interesting, though expected, behavior. 

The RMSE of the SLI decreased considerably with the distance between the WP and the IR LED. 

The impact of the constant intensity of the IR LED, as the distance varied, was clearly visible, 

since these results were obtained at test positions 𝑃 = [0,0, 𝑧]  where 𝑧 ∈< 0.5,1.5 > . These 

results were in line with expectations, as the peak pixel intensity detected on the imaging sensor 

was expected to vary with the distance 𝑧, which was the only variable parameter in this case. The 

imaging sensor was initially saturated at the lowest value of 𝑧, hence the very high values of the 

RMSE. Subsequently, the RMSE values decreased, as the value of 𝑧 increased, thus decreasing 

the perceived peak intensity on the imaging sensor’s array. These findings demonstrated that, the 
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intensity of the IR LED had a significant impact on SLI’s performance, in this system. 

Furthermore, these results suggest that the intensity of the IR LED could be used to further 

optimize the conditions for the SLI. 

The results obtained from test positions along x-axis and those at the diagonal positions are 

shown in  Table 6 and Table 7, respectively. These results further support the findings described 

in the previous paragraph. Apart from that, they also demonstrate the extent of the impact of the 

angular displacement on the SLI. The angular displacement, i.e. the angle between the optical 

axis of the camera and the line segment between the camera’s principal point and the IR LED, 

has a significant impact on the performance of the system. These results show that SLI had lower 

accuracy at lateral test positions which was particularly evident at the extreme test positions; in 

the Extended Work Envelope. 

TABLE 5: RESULTS: SCENARIO 1; TEST POSITIONS ALONG Z-AXIS 

 

 

SLI LI GA 

RMSE  
[𝒑𝒊𝒙𝒆𝒍] 

Time  [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time  [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time  [µ𝒔] 

0,0,0.50 0.5000 2.4383 0.4795 3.6264 0.4879 3.0681 

0,0,0.75 0.4830 2.5074 0.3357 3.1586 0.3326 3.0036 

0,0,1.00 0.3039 2.6114 0.3925 3.6640 0.3868 3.0885 

0,0,1.25 0.2750 2.4075 0.3640 2.9063 0.3587 2.8925 

0,0,1.50 0.2744 2.2868 0.4080 2.8603 0.3946 3.1092 

 

TABLE 6: RESULTS: SCENARIO 1; TEST POSITIONS ALONG X-AXIS 

 

 

SLI LI GA 

RMSE[𝒑𝒊𝒙𝒆𝒍] Time[µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time [µ𝒔] 

0.00,0,1.5 0.2744 2.2868 0.4080 2.8603 0.3946 3.1092 

0.25,0,1.5 0.2028 2.3393 0.3195 2.7439 0.3049 2.7724 

0.50,0,1.5 0.3327 2.2432 0.3677 2.8863 0.3640 2.8321 

0.75,0,1.5 0.2481 2.4142 0.3600 3.2558 0.3710 2.9696 

1.00,0,1.5 0.3706 2.5887 0.3957 2.8967 0.4226 2.9662 
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TABLE 7: RESULTS: SCENARIO 1; DIAGONAL TEST POSITIONS 

 

 

SLI LI GA 

RMSE[𝒑𝒊𝒙𝒆𝒍] Time  [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time [µ𝒔] RMS[𝒑𝒊𝒙𝒆𝒍] Time [µ𝒔] 

0.25,0,0.5 0.1472 2.3239 0.2126 2.8268 0.2350 2.8105 

0.5,0,1.00 0.2554 2.4517 0.2610 3.2611 0.2716 2.8442 

0.5,0,0.75 0.3711 2.3203 0.2886 3.0136 0.2659 3.6208 

 

 Scenario 2 - LED Control for Optimum Conditions 

The objective of this scenario was to evaluate the performance of the SLI under the optimum 

conditions. The optimum con ditions for the SLI are such that the ratio of pixel intensities at the 

detected point’s peak is as fallows 
𝑓(𝑥)

𝑓(𝑥−1)
≅

1

2
, as shown in Figure 20 in section 3.2.2. To this end, 

the intensity of the IR LED was controlled at each test position in the Work Envelope. The results 

from Scenario 1 were analyzed to determine the conditions, under which the SLI performed best. 

The raw input images acquired at the test positions where the SLI had the lowest RMSE, were 

analyzed in detail. The pixel intensity profiles the peaks in these input images revealed that the 

maximum intensity values of the peak 𝐼(𝑥, 𝑦) tended to have similar values. Furthermore, the 

intensity value distribution at and around the peak tended to have Gaussian properties; that were 

close to those identified as optimum for the SLI. An additional analysis was carried out to 

determine what peak pixel intensity values 𝐼(𝑥, 𝑦)  yielded pixel intensity profiles with the 

optimum Gaussian distributions. The most suitable peak pixel intensity value in the input image 

was 𝐼(𝑥, 𝑦) ≅ 70  (in the 8-bit range). However, for practical reasons, a range of values was 

selected, 𝐼(𝑥, 𝑦) ∈< 63,76 >. Therefore, the data acquisition procedure was preceded by one 

additional step. For each test position, the intensity of the IR LED was set with such a PWM 

value that the measured peak pixel intensity in the resultant input images were within the 

identified range of values. Once that PWM was determined, the experimental procedure 

continued. 

As in Scenario 1, which is described in the previous section, the results from all test positions 

were grouped in three tables: along the z-axis, x-axis, and at the diagonal positions, as shown in: 

Table 8, Table 9, Table 10, respectively. 
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The overall execution times of the three methods were comparable to that in the Scenario 1. There 

were subtle differences. The average execution time of the GA increased to 3.25 µ𝑠, whereas 

that of the LI decreased to 2.98 µ𝑠 . The SLI had the shortest average execution time with 

2.18 µ𝑠. 

The optimization of the intensity of the IR LED had a significant impact on the accuracy of the 

three methods. The RMSE values significantly decreased across both all methods and test 

positions. The results of the LI and GA were much closer to the expected values. Though, the 

RMSE values for the GA show that it is not as robust in this scenario either. These results were 

probably affected by noise in the system, wherein the assumed ideal Gaussian distribution in the 

pixel profiles was more difficult to achieve. 

TABLE 8: RESULTS: SCENARIO 2; TEST POSITIONS ALONG Z-AXIS 

 

 

SLI LI GA 

RMSE[𝒑𝒊𝒙𝒆𝒍] Time  [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time  [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time  [µ𝒔] 

0,0,0.50 0.0703 2.1197 0.1025 2.8236 0.1219 3.5245 

0,0,0.75 0.1138 2.5858 0.1577 2.7908 0.1627 3.7434 

0,0,1.00 0.1353 2.1651 0.0390 3.0422 0.0415 2.9283 

0,0,1.25 0.1145 2.6931 0.0448 3.1981 0.0410 4.0859 

0,0,1.50 0.1903 1.8682 0.1975 2.8421 0.1981 3.2630 

 

TABLE 9: RESULTS: SCENARIO 2; TEST POSITIONS ALONG X-AXIS 

 

 

SLI LI GA 

RMSE[𝒑𝒊𝒙𝒆𝒍] Time  [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time [µ𝒔] 

0.00,0,1.5 0.1903 1.8682 0.1975 2.8421 0.1981 3.2630 

0.25,0,1.5 0.0653 2.3132 0.1140 3.0252 0.1034 3.5351 

0.50,0,1.5 0.1546 1.9154 0.1504 3.0281 0.1497 3.0463 

0.75,0,1.5 0.1510 1.9141 0.1525 2.8461 0.1551 2.9978 

1.00,0,1.5 0.3623 1.9616 0.3164 3.0223 0.2886 2.9526 
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TABLE 10: RESULTS: SCENARIO 2; DIAGONAL TEST POSITIONS 

 
 

SLI LI GA 

RMSE[𝒑𝒊𝒙𝒆𝒍] Time  [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time [µ𝒔] RMSE[𝒑𝒊𝒙𝒆𝒍] Time [µ𝒔] 

0.25,0,0.5 0.0589 1.9660 0.0761 3.0034 0.0487 3.0739 

0.5,0,1.00 0.0632 2.5184 0.7840 2.9866 0.0949 2.8508 

0.5,0,0.75 0.2092 2.4515 0.2092 3.3436 0.1783 2.9680 

 

Perhaps, the most interesting observation was made with respect to the accuracy of the SLI 

method. The RMSE values of the SLI were significantly lower, as compared to the corresponding 

results obtained in Scenario 1. The RMSE values in the Main Work Envelope were within 

0.2 𝑝𝑖𝑥𝑒𝑙. Moreover, the SLI achieved the highest average accuracy in the Main Work Envelope, 

as compared to the other two methods. The  average RMSE was 0.11 𝑝𝑖𝑥𝑒𝑙, whereas the average 

RMSE of the LI and GA was 0.23 𝑝𝑖𝑥𝑒𝑙 and 0.12 𝑝𝑖𝑥𝑒𝑙, respectively. If the results from the 

Extended Work Envelope are included, the SLI and GA had the same average RMSE of 

0.14 𝑝𝑖𝑥𝑒𝑙, while that of the LI was equal to 0.2 𝑝𝑖𝑥𝑒𝑙. 

It is worth noting that all three methods achieved lower accuracy, i.e. higher RMSE, at test 

positions in the Extended Work Envelope. The results from the Extended Work Envelope were 

expected to be worse in all three methods due to the high angular displacement and its 

implications on the system. The IR LED becomes increasingly smeared on the pixel array as the 

WP moves laterally, which distorts the symmetry of the pixel profile, or pixel intensity 

distribution, of the captured point of interest. 

 SLI – Performance Analysis 

A closer look at the performance of the SLI, in both scenarios, can illustrate the impact of the 

dynamic intensity control of the IR LED. Figure 29 shows a graphical comparison of the RMSE 

of the proposed method along with that of the LI and GA along the z-axis. The navy-blue bars 

(leftmost bar at each test position) represent the RMSE in Scenario 1. It clearly demonstrates the 

relationship between the RMSE and the distance 𝑧 , at 𝑃𝑊𝑀 = 100 % . Initially the imaging 

sensor was saturated, thus the maximum error 𝑅𝑀𝑆𝐸 = 0.5 𝑝𝑖𝑥𝑒𝑙. As the distance 𝑧 increased, 

the RMSE decreased. On the other hand, the results from Scenario 2 show the difference that the 

optimization of the IR LED’s intensity made. The RMSE was significantly reduced, and, more 
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importantly, maintained at a steady level across the range of values of 𝑧. The RMSE increased at 

𝑧 = 1.5 𝑚 to just under 0.2 𝑝𝑖𝑥𝑒𝑙, because, at that distance, it was increasingly more difficult to 

maintain the peak pixel intensity in the centre of the optimum intensity interval 𝐼(𝑥, 𝑦) ∈<

63,76 > . The analysis of the RMSE along the x-axis, at 𝑧 = 1.5 𝑚 , further supports this 

observation, as shown in Figure 30. Although the RMSE was maintained below 0.2 𝑝𝑖𝑥𝑒𝑙 within 

the Main Work Envelope, the gap between results from the two scenarios is clearly narrower and 

decreasing as the values of 𝑥 increased. Finally, the two values almost converged at the edge of 

the Extended Work Envelope, at 𝑥 = 1 𝑚. The reason for this convergence is twofold. On the 

one hand, the radius, i.e. 𝑟 = √𝑥2 + 𝑧2 , was so large, that the PWM control had reached its 

maximum limit, and was no longer able to maintain the 𝐼(𝑥, 𝑦)  values within the optimum 

intensity interval. On the other hand, the distortions related to the angular displacement became 

considerable. At this angle, the pixel peak became smeared and asymmetrical on the imaging 

sensor; along camera’s x-axis. These two factors in aggregate led to higher RMSE of SLI in 

Scenario 2.  

Furthermore Figure 29 and Figure 30 offer the graphical means for comparing the SLI to LI and 

GA, with respect to the RMSE metric. The first observation is that the dynamic control of the IR 

LED’s intensity had a positive impact on the accuracy of all three methods, as all of them 

achieved lower RMSE, as compared to their corresponding results in Scenario 1. Moreover, it 

can be observed that the SLI had the lowest RMSE in Scenario 2 at most test positions. 
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Figure 29: RMSE of SLI, LI and GA along z-axis, at x = 0 m 

 

Figure 30: RMSE of SLI, LI and GA along x-axis at z = 1.5 m 
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A deeper analysis of the pixel intensity profiles of the input images in Scenario 2 can explain the 

results more comprehensively. The pixel intensities at the peak’s location 𝑓(𝑋), and the adjacent 

pixels, used as the input to the SLI, can be used to determine the overall characteristics of the 

peak. Given the assumed symmetric Gaussian distribution of the intensity profile of the peak, a 

curve fitting technique can be used to fit a Gaussian model, to inspect its properties. The standard 

deviation term 𝜎  in this model could be compared to the optimum value identified in the 

simulations, i.e. 𝜎 ≅ 1.2. To test that, MATLAB’s built-in curve fitting tool was used to fit an 𝑛-

th order Gaussian model to the intensity profiles, as defined in (12): 

 

𝑓(𝑥) = ∑ 𝑎𝑖𝑒
[−(

𝑥−𝜇𝑖
𝑐𝑖

)
2

]

𝑛

𝑖=1

(12) 

 

Given the direct one-to-one correspondence to the standard Gaussian probability distribution 

model [102], the 𝑐𝑖 term in (12) is related to the standard deviation, as defined in (13). 

 

𝜎𝑖 =
𝑐𝑖

√2
(13) 

 

In order to obtain the most comprehensive results, the pixel profiles from the test positions along 

the 𝑧 -axis, i.e. 𝑃 = [0,0, 𝑧];  𝑧 ∈< 0.5,1.5 > , were used in the analysis. Firstly, at each test 

position 𝑃, the mean pixel intensities were computed, for each pixel coordinate at the peak; using 

all input images. Then, these mean values were normalized, to ensure that the result remained 

within the < 0,1 > interval. Finally, the Gaussian model was fitted to the pixel intensities, for 

each test position 𝑃. The most reliable results were obtained with the 1-order model, i.e. 𝑛 = 1 

in (11). Although higher-order fitting runs resulted in more precise results, not all peaks were 

modeled as the single-peak Gaussian distribution. Hence, the results from the 1-order model were 

used in the analysis. The results are depicted in Figure 31. At first glance, the resulting fits suggest 

that all peaks from the selected test positions were very similar. Although the range of values of 

𝑧 in the Work Envelope was considerable, the dynamic control of the intensity of the IR LED 
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proved to be effective at maintaining the optimum conditions for the SLI. The values of the 

standard deviation 𝜎 of each model fit were the key parameters in this analysis. The range of the 

standard deviation of the fits, as computed using (11), was 𝜎 ∈< 0.58,0.93 > . The mean 

standard deviation of all fits was 𝜎 = 0.713 . The comparison of these results with the 

simulations can show whether the assumptions made at formulating the proposed method were 

correct and achievable in a practical experimental setup. The simulated values of RMSE for the 

experimentally measured interval of 𝜎, and the mean 𝜎, can be compared with the corresponding 

experimental results. According to the simulations, the SLI was expected to have 𝑅𝑀𝑆𝐸 ≅ 0 at 

the standard deviation 𝜎 ≅ 1.2. Moreover, the RMSE was expected to remain low around this 

value of 𝜎. In the case of the measured interval of 𝜎, the maximum error was expected to be 

𝑅𝑀𝑆𝐸 ≤ 0.40 𝑝𝑖𝑥𝑒𝑙, for 𝜎 = 0.58, (Figure 21). The experimentally measured maximum error 

in the Main Envelope was 𝑅𝑀𝑆𝐸 = 0.1903 𝑝𝑖𝑥𝑒𝑙. Furthermore, the error at the 𝜎 was expected 

to be RMSE ≤ 0.20 𝑝𝑖𝑥𝑒𝑙 . The corresponding experimentally measured average error in the 

Main Envelope was 𝑅𝑀𝑆𝐸 = 0.11 𝑝𝑖𝑥𝑒𝑙. These results prove that the experimental results were 

in line with the predicted performance of the system. 

 

Figure 31: Pixel Intensity Profile Analysis 
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It needs to be noted that this experimental setup did not produce the exact ideal Gaussian pixel 

intensity profiles; with the optimum 𝜎 ≅ 1.2 . Although, the mean 𝜎  was very close to the 

optimum value, the best theoretically predicted performance of SLI was not achieved. The 

collective impact of all the contributing factors resulted in difficulties in tuning the system to the 

exact ideal operating point, i.e. the 𝜎 ≅ 1.2 across the entire work envelope. That is not to say it 

is impossible or impractical. Given these results, it should be possible to further optimize the 

system to set its operating point closer to the optimum one. The various parameters in the system 

can be optimized to shift the 𝜎 closer to the optimum value. For example, an IR LED with slightly 

larger active area, or the reflective element, could help achieve that. Apart from shifting the 𝜎, 

the spread of the 𝜎 values could be also narrowed by a more precise PWM control, for example. 

Nevertheless, the obtained experimental results were as expected. The assumptions which were 

made when developing the proposed algorithm, were proven correct. These assumptions were 

that the system could be set up such that the peak of the point of interest was distributed across 

an area of 3x3 to 5x5 pixels and the ratio between the ratio of the pixel location with peak 

intensity to the preceeding pixel location, i.e. 
𝑓(𝑥)

𝑓(𝑥−1)
≅

1

2
 , could be achieved and maintained 

approximately constant. Moreover, these conditions should be readily reproducible in a practical 

application. From a certain point of view, these results are very promising. They prove that the 

predicted high accuracy, and low execution time, are indeed achievable in a practical application. 

If the accuracy of the SLI was further increased, it should be possible to decrease the resolution 

of the camera. It should be possible to at least half the resolution, from 320𝑥240 pixels, down 

to 160𝑥120, while maintaining the accuracy of the point detection. It can have very significant 

implications on the practical requirements of the WP. The resolution of the imaging sensor is the 

single parameter of the WP that drives the requirements for the other components in the system. 

The resolution is directly linked to the amount of the required computations per frame, as well as 

the frame rate itself. The type of the processor is largely dependent of the computational 

requirements of the camera and the algorithms that are executed on the images. The battery life, 

and even the physical size, heavily depend on the computational requirements of the system. In 

summary, if this single parameter could be decreased by a factor of two, for example, the WP 

could be physically smaller, lighter, and have a longer battery life. Thus, the proposed system 

would be even more viable in practical resource-constrained applications. 

3.6 Conclusions 
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The design, implementation, and results of the experimental validation of the SLI algorithm, as 

well as the formulation and modelling, have been presented in this chapter. This method and its 

performance in the presented practical experimental setup represent a significant improvement 

over the current SOA. The SLI outperformed the other two methods, with respect to both 

accuracy and the execution time; in the Main Work Envelope. The SLI’s average RMSE was 

0.11 𝑝𝑖𝑥𝑒𝑙, versus 0.23 𝑝𝑖𝑥𝑒𝑙 and 0.12 𝑝𝑖𝑥𝑒𝑙 for LI and GA, respectively. Even if the Extended 

Work Envelope was considered, the SLI still matched the most accurate method in the SOA, the 

GA with 𝑅𝑀𝑆𝐸 = 0.14 𝑝𝑖𝑥𝑒𝑙. The SLI had the shortest execution time, when compared to the 

other two methods. The average execution time of the less accurate LI was 37 % higher, and that 

of the matching GA was almost 50 % higher, than that of the SLI. These results prove that, not 

only is the SLI as accurate as the best comparable method in the SOA while being much faster, 

but also that the ideal operating conditions for the SLI are achievable in the context of point 

detection and tracking with low-power wearable camera systems. The results also show that there 

is room for improvement, that can further increase SLI’s accuracy, at little to no additional 

expense. Thus, the SLI can be considered as a practical choice for application spaces where, apart 

from accuracy, other factors such as cost, physical size, or battery life are important. 
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4 Multimodal Sensor Fusion; Monocular 3D Pose Estimation 

M. P. Wilk, M. Walsh, and B. O’Flynn, "Multimodal Sensor Fusion for Low-Power Miniaturised 

Wearable Human Motion Tracking Systems in Sports Applications," IEEE Sensors, 2020, (under 

review) 

4.1 Introduction 

As described in previous chapters, and in particular in section 2.1.2, multimodal sensor data 

fusion is a common approach to solving problems in applications wherein a single sensor 

modality fails to provide enough information to solve the given problem. In such cases, sensors 

with different modalities are often used together to overcome this difficulty. The complementary 

nature of certain sensor modalities can be helpful for tackling problems that would be difficult to 

solve otherwise. One of the most common examples include the IMU sensor, which is often 

considered as a single device whose three sensor modalities are fused together to produce a 

reliable orientation measurement using an algorithm, such as that based on the Gradient Descent 

[46]. Another example of such a complementary pair of sensor modalities is the combination of 

vision sensors and IMU sensors. Vision sensor technology can provide information that the IMU 

cannot capture and vice versa. For example, the camera can determine the absolute position of a 

given point. This is difficult to achieve that when using IMU due to its inherent limitations, such 

as the drift or the disturbances in magnetic field [103]. Likewise, the IMU can capture motion 

parameters independently of the lighting conditions or occlusions, which are some of the main 

weaknesses of the vision sensors. Therefore, multimodal data fusion techniques are often 

considered in motion tracking applications, especially those relying on highly miniaturized, low-

power, wearable devices. The fusion of vision and IMU sensor modalities is one of the most 

common approaches in this context thanks to their complementary nature. The combination of 

these two sensor modalities, in conjunction with sensor fusion algorithms, can result in a reliable 

6-DOF pose detection. One of the most notable advances in the SOA is the inclusion of a camera 

in the wearable device itself. An example of both sensor modalities embedded in the wearable 

motion tracking devices for 6-DOF pose detection was proposed by Foxlin et al. [73, 75, 104], 

including their latest product IS-1500 [11]. These are inside-out tracking systems that use a 

monocular camera (single camera) to track multiple fiducial markers embedded in the ambient 



 

 

74 |   Data Fusion for Human Motion Tracking with Multimodal Sensing  Chapter 4 

 

environment and an IMU to correct for the motion and occlusions [105]. Other examples include 

outside-in tracking systems where a monocular camera was embedded in the ambient 

environment to track two points of reference attached to a mobile/moving device; that also 

incorporated an IMU [12, 13]. 

These works show the evidence for an emerging trend in 3-D pose detection methods that 

increasingly incorporate monocular vision and IMU sensors in a single wearable unit. The 

wearable unit is effectively a wearable smart sensor that is driven by the multimodal sensor 

fusion algorithms. The advances in the SOA in camera miniaturization [14, 78], are  

accompanied by algorithms that can detect the precise location of points of interest at subpixel 

level, thus allowing for a lower resolution of the camera [91, 106], further increase the 

feasibility of incorporating vision sensor technology in low-power and small-form-factor 

wearable smart sensors. Likewise, the SOA in IMU technology has reached such as point that 

open-source data fusion algorithms can provide accurate and precise orientation measurements 

[46]. These advances in the vision and IMUs create a need for novel multimodal sensor fusion 

algorithms to utilize these emerging possibilities to perform human motion tracking using less 

expensive, smaller, and less complex tracking systems.  

Therefore, the key advances that this work proposes include the wearable opto-inertial, inside-

out motion tracking system that relies on two external, known, points of reference embedded 

in the ambient environment, i.e. IR LEDs. Moreover, a novel multimodal sensor fusion 

algorithm for 3-D pose detection is proposed that utilises this system architecture, i.e. the 

inside-out opto-inertial tracker with two known points of reference in the form of IR LEDs. 

4.2 System Description 

This section describes the proposed system architecture and the multimodal sensor fusion 

algorithm that leverages its properties. First, the overall system is described in detail. It includes 

the hardware specifications. Subsequently, the proposed novel algorithm development for motion 

tracking and its use in the exercise tracking system is described. 

 System Architecture 

Human motion tracking using wearable smart sensors requires a thoughtful consideration of 

many factors, especially in the context of applications that require low-power and small-form-

factor. The proposed WP incorporates a monocular vision sensor, which can have negative 
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implications on the performance. Despite its advantages, vision sensors require a considerable 

amount of computational power to process multiple Frames Per Second (FPS), each with many 

pixels; often counted in millions, i.e. Mega Pixels (MP). The WP needs to be able to process the 

image frames at a relatively high frame rate; in tens of FPS. Furthermore, the type of information 

that needs to be extracted from the image frames has a significant impact on the complexity of 

the image processing algorithms used in this task. For example, a high noise floor in the images, 

accompanied by the complexity of the points of interest to be found, can dramatically increase 

the computational requirements of the system. Hence, a human motion tracking system in this 

context needs to consider all factors; including the software/firmware, hardware as well as the 

ambient environment beyond the WP. 

The system proposed in this work can be broken down into two main elements, the WP and the 

Ambient Environment, as shown in Figure 32. These two elements are connected via an RF 

telecommunications link. The RF link enables an interaction between these two elements to 

help ensure that the system operates in its optimum conditions.  

The WP incorporates a monocular vision system and an IMU to perform the inside-out 

tracking. It also has an MCU for data processing, power management block and an RF module. 

The Ambient Environment consists of and RF module with an MCU and the points of 

reference. This system was designed with active markers as the points of interest to be tracked. 

The Infrared IR LEDs are tracked by the camera in the WP, which has a matching IR filter 

attached to it. 
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Figure 32: Generalised System Architecture 

The Ambient Environment (AE) incorporates two IR LEDs and a control unit to drive them and 

maintain the optimum conditions for the WP. The control of the IR LEDs is carried out in a 

similar manner to that described in Chapter 3. The optimum conditions of the system are such 

that the intensities of the two IR LEDs are set so as to ensure that their pixel intensity profiles, 

measured by the camera, are in the optimum range in all 3-D poses of the WP; i.e. neither too 

high (no saturated pixels) nor too low (point peaks are not buried in the noise floor). It is 

important because changes in position and/or orientation of the WP cause changes in intensities 

and dimensions of the IR LEDs as captured on the camera’s pixel array, which in turn can have 

a negative effect on the performance of the point detection and tracking tasks. Therefore, these 

changes need to be offset by controlling the intensity of the IR LEDs. In practical terms, the 

Typical 

Dimensions 

0.5 to 1.5 m 

Typical 

Dimensions 

0.25 to 1 m 
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intensity is maintained in the range of values between 33 % and 66 % of the maximum intensity. 

The MCU in the AE maintains the IR LED intensity with Pulse Width Modulation (PWM), given 

the control signals it receives from the WP via the RF link. The intensity range of the LEDs is 

mapped to the 8-bit pixel intensity range of the camera in the WP. For example, the pixel intensity 

of 85 on the pixel array, on the camera in WP, corresponds to approximately 33 % of the LED’s 

intensity range. Likewise, 170 corresponds to approximately 66 % of the LED’s intensity. These 

parameters were determined through empirical testing. This testing was motivated by the 

requirements associated the SLI algorithm. Therefore, the points on the pixel plane, as captured 

by the camera, had to be spread over between 3x3 and 6x6 pixels, as described in Chapter 3. This 

work included a careful component selection, i.e. the camera and the IR LEDs. The consideration 

of working distance ranges between the WP and IR LEDs was also important. 

The work envelope, i.e. the space in which the WP can operate, of the system was designed with 

simplicity and scalability in mind and is driven by the potential end-use-case requirements. It 

defines the volume of 3-D space within which the proposed system can perform its intended 

motion tracking function. Since the proposed 3-D pose detection algorithm relies on two points 

of reference in the ambient environment, details of which will be described in the following 

section, the two IR LEDs must be within the FoV of the WP’s camera. Also, given the fact that 

most of ST exercises, one of the potential target use cases, are largely stationary, the work 

envelope doesn’t need to be large. Though, it needs to be scalable to facilitate other potential 

future use cases. As a result, the work envelope for the system was designed with an arbitrarily 

set distance between the IR LEDs, called the baseline 𝐵 = 500 𝑚𝑚. This value of 𝐵 allows for 

meeting two objectives. Firstly, the WP can perform translation within the work envelope with a 

wide range of rotations, while retaining both reference points in the FoV of the camera. Secondly, 

the calculations in the proposed algorithm yield more accurate results if the distance between the 

LEDs, as captured by the camera, is relatively large, i.e. such that the two points captured in the 

images are far from one another, since the proposed algorithm relies on the geometries formed 

in the system, which is described in detail in the following section.  

The size of the work envelope can be scaled, up or down, by adding additional IR LEDs separated 

by the baseline distance 𝐵. The multiple IR LEDs can be switched ON and OFF using the RF 

link; as the WP moves through the 3-D space. The size of the work envelope can also be changed 

by varying the value of the baseline 𝐵 . However, the scope of this work is to describe the 

fundamental principles of this system. Thus, the use of two IR LEDs with a fixed distance 𝐵 is 
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sufficient. The work envelope is shown in Figure 33. It is effectively a 3-D space whose 

boundaries are defined by the continuous thick line segments shown in the figure. Its dimensions 

have a twofold impact on the system. Firstly, the intensity of the LEDs can be controlled 

dynamically to maintain the optimum level for the camera in the WP. Secondly, both reference 

points remain within the FoV of the camera; with the exception for certain orientations in the 

boundary regions. These parameters match the requirements of one of our potential target 

application space especially that of certain ST exercises, such as the barbell squat. The WP, or 

potentially more than one WP, can be attached to the back of the athlete to track its motion during 

executing the squat. The information extracted from the motion trajectories captured by the WP 

can help determine whether the exercise if carried out correctly. 

It needs to be noted that the naming conventions from robotics engineering were adopted in this 

work. The right-handed coordinate system was used. The origin of the global, or World, 

coordinate frame 𝐿𝑊 is coincident with the location of the reference point 𝑃0
𝑊 (read as point zero 

in World reference frame), as shown in Figure 33. The two IR LEDs were located 1000 𝑚𝑚 

above the ground, thus placing the origin of frame 𝐿𝑊 at that height. 

 

 

Figure 33: Wearable Platform (Represented by the camera) inside the Work Envelope (Thick Continuous Line) 

with Reference Points P0 and P1 (IR LEDs) in Camera’s FoV in World Coordinate Frame 
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 3-D Pose Detection Algorithm 

The proposed sensor fusion algorithm performs the 3-D pose detection function directly using 

the data from the calibrated vision and IMU sensors, as shown in Figure 34. The proposed 

system architecture, shown previously in Figure 32, simplifies this process. At the pre-

processing stage in Figure 34, the coordinates of the two points are efficiently extracted from 

the image frames. Firstly, we use IR light spectrum to suppress the ambient light and reduce 

the problem of point detection to a local-maxima detection routine. Secondly, we use our 

proposed novel algorithm for subpixel point detection described in Chapter 3, to reduce the 

resolution of the camera without compromising the accuracy [91]. In terms of the IMU, we use 

a SOA algorithm for accurate orientation estimation of the WP, after a minor calibration routine 

which is aimed at aligning WP’s reference frame with World reference frame in terms of 

orientations. The details of this calibration are described later in this section. Back in 2011, 

Madgwick et al. demonstrated an efficient and accurate IMU sensor fusion algorithm for 

orientation calculation [46]. Our algorithm fuses the data from these two calibrated sensor 

modalities and calculates the 3-D pose that can be passed to the subsequent stages, e.g. a data 

aggregator in a local body area network, an HMD or some other type of the Human Computer 

Interface (HCI). 

 

Figure 34: General Block Diagram of the Proposed Data Fusion System (Raw Input Frame Contains Two 

Points of Reference) 
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The key to the 3-D pose estimation is the use of the vision sensor. The pose of the camera can 

be determined by solving the PnP problem. The solution of the PnP problem involves 

estimating the pose of the calibrated camera given a set of known 3-D points in the world and 

their 2-D projections on the camera’s image plane. There exist several algorithms that can solve 

it. The SOA methods require that the number of known points is 𝑛 ≥ 3 [18, 55]. Our proposed 

method takes a different approach. In our case, the number of points of reference is 𝑛 = 2. We 

can determine the 3-D pose from only two reference points, because we complement the 

missing pieces of information with the calibrated IMU data. We complement the geometries 

formed by the two reference points and the camera with the rotation angles extracted from the 

IMU. 

The Data Fusion block is where the 3-D pose is computed. It takes in three inputs: the 

coordinates of the two reference points extracted from the image frame, expressed in Image 

frame, 𝑝𝐼 = [𝑝0
𝐼  𝑝1

𝐼 ]𝑇, the orientation of the WP from the IMU, expressed in the World frame 

of reference, 𝜃𝑊 = [𝜃𝑥
𝑊 𝜃𝑦

𝑊 𝜃𝑧
𝑊]

𝑇
, and the camera intrinsic calibration parameters.  

The orientation of the WP in World frame of reference, i.e. the vector 𝜃𝑊, can be obtained by 

transforming the IMU’s output orientation to World frame of reference. If the IMU is calibrated 

correctly, Madgwick’s algorithm returns the orientation in Earth’s frame of reference 𝐿𝐸; as 

defined by Earth’s magnetic and gravitational fields [46]. Therefore, the homogenous 

transformation matrix from Earth, 𝐿𝐸 , to World, 𝐿𝑊, frame of reference, 𝑇𝑊
𝐸 , can be defined as 

one containing a the rotation matrix with the translation elements set to zero. In practice, the y-

axes in frames 𝐿𝑊 and 𝐿𝐸 are parallel to each other, i.e. �̂�𝑊 ∥ �̂�𝐸, and can be assumed to be 

pointing in the same direction, i.e. their dot product is  �̂�𝑊. �̂�𝐸 = 1. Therefore, the transform 

𝑇𝑊
𝐸  is reduced to describing a fixed rotation about the  �̂�𝑊- axis. This transformation is then 

used for transforming the orientation of the WP from 𝐿𝐶  to 𝐿𝑊 , as follows. The vector of 

rotation angles of the WP measured by the IMU, 𝜃𝐸 = [𝜃𝑥
𝐸  𝜃𝑦

𝐸  𝜃𝑧
𝐸]

𝑇
, can be also represented 

as a homogenous transformation matrix from Camera, 𝐿𝐶, to Earth, 𝐿𝐸, frame of reference 𝑇𝐸
𝐶; 

with the X-Y-Z order of rotations in the rotation elements and the translation elements set to 

zero [107]. Therefore, the transformation from  𝐿𝐶 to 𝐿𝑊, i.e. 𝑇𝑊
𝐶 , is defined as shown in (14). 

Subsequently, the rotation angles of the orientation vector 𝜃𝑊  can be extracted from this 

equation: 

 

𝑇𝑊
𝐶 = 𝑇𝑊

𝐸 𝑇𝐸
𝐶                                                                     (14) 
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The intrinsic camera parameters for the specific vision sensor can be calculated via a camera 

calibration process, which is a commonly used in image processing tasks for determine the key 

properties of a camera, such as lens distortion parameters, optical centre, focal length, to name 

but a few  [61]. The intrinsic parameters, along with the knowledge of the specific image sensor 

from its datasheet, such as the focal length 𝑓, pixel dimension and size and location of the 

optical centre, are used to transform 𝑝𝐼 to the Camera reference frame 𝐿𝐶 expressed in metric 

units; resulting in 𝑝𝐶 . The output is the 3-D pose of the WP defined as the position and 

orientation in the World frame of reference as follows 𝑃𝑊𝑃
𝑊 = [𝑃 𝜃]𝑇 =

[𝑃𝑥
𝑊 𝑃𝑦

𝑊 𝑃𝑧
𝑊 𝜃𝑥

𝑊 𝜃𝑦
𝑊 𝜃𝑧

𝑊]
𝑇

. The subscripts in the variables define the axis. For example, the 

𝜃𝑥
𝑊 is the rotation angle about the  �̂�-axis in the World frame of reference. Note, the hat symbol 

implies the axis component unit vector, e.g. �̂�𝑊  means the  �̂�-axis in World reference frame. 

The proposed data fusion algorithm computes the 3-D pose in three discrete steps, as shown in 

Figure 35.  

• Step 1 corrects the input points 𝑝𝐼 using the rotation angle of the WP about the  �̂�-axis 

in World frame 𝜃𝑧
𝑊. The subsequent two steps break down the problem into two smaller 

tasks.  

• In Step 2, the position 𝑃𝑥
𝑊 is computed on the  �̂�𝑊 �̂�𝑊-plane with 𝜃𝑦

𝑊.  

• In Step 3, the position elements 𝑃𝑧
𝑊 and 𝑃𝑦

𝑊 are computed on the �̂�𝑊 �̂�𝑊 −plane and 

with 𝜃𝑥
𝑊, to finally yield the result, i.e. the 3-D pose of the WP in the World frame of 

reference 𝑃𝑊𝑃
𝑊 . 

 

Figure 35: Block Diagram of the Proposed Data Fusion Algorithm 

The three steps of the proposed algorithm, shown in Figure 35, are described in detail in the 

subsections below. 
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4.2.2.1 Step 1- Input Points Correction 

The geometric model that is used in calculating the pose of the WP achieves the best results when 

the  �̂�-axis or the  �̂�-axis of the 𝐿𝐶, i.e. that of the WP, and 𝐿𝑊 reference frames are parallel, or 

close to it. It is so because the calculations in Steps 2 and 3 of the proposed algorithm are carried 

out on the planes �̂�𝑊�̂�𝑊  and �̂�𝑊 �̂�𝑊 , respectively. In other words, the calculations are more 

accurate if the rotation matrix from 𝐿𝐶 to 𝐿𝑊 reference frame 𝑅𝑊
𝐶  is as close as possible to that 

defined in equation (15). This condition means that all corresponding axes are parallel; with  �̂�-

axes and  �̂�-axes of these two reference frames pointing in opposite directions. It simplifies the 

geometry formed by the IR LEDs and the camera. Effectively, the line segment between points 

𝑝0
𝐼  and 𝑝1

𝐼  extracted from the image frames needs to be parallel with the  �̂�-axis of the frame 𝐿𝐶. 

However, it is not a realistic scenario. It effectively makes the WP’s orientation constant, such 

that it directly faces the IR LEDs, with only the translation being allowed to vary. It is obviously 

an unacceptable condition in the context of the considered application space. Therefore, our 

algorithm uses a corrective step to meet this condition, or at least approximately match it. 

 

𝑅𝑊
𝐶 = [

1 0 0
0 −1 0
0 0 −1

]                                                               (15) 

 

The corrective step is applied to point 𝑝𝐶. Whereas it would be a straightforward process in 3-D, 

it is more complicated in the case of the two points 𝑝𝐶. In the case of 3-D points the data from 

the calibrated IMU could be used to rotate the points. However, the translation vector of the WP 

𝑃 is unknown at this step. In fact, the objective of this work is to determine 𝑃. 

The proposed solution to this problem takes advantage of the fact that many ST exercises are 

largely stationary, i.e. in one location, with a predefined body posture and range of motion. For 

example, a barbell squat would involve relatively little rotation and some translation if the WP 

was attached to the back of the exerciser. From a technical point of view, this means that the WP 

would face the reference points in the ambient environment. It needs to be noted that the initial 

rotation matrix 𝑅𝑊
𝐶  is the same as that defined in equation (15). Also, the rotation angles would 

be relatively small. Hence, our corrective step involves a two-dimensional rotation of the image 
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points 𝑝𝐶by rotation angle 𝜃𝑧
𝐶, as defined in (16). This angle is not negative, because we are 

correcting the orientation of the WP. The operation or rotating points 𝑝𝐶  by 𝜃𝑧 
𝐶 , which is 

effectively 𝜃𝑧
𝑊, is an approximate equivalent of rotating the WP in the opposite direction. 

 

𝑅𝑜𝑡(�̂�𝐶 , 𝜃𝑧
𝐶) = [

𝑐𝑜𝑠 𝜃𝑧
𝐶 −𝑠𝑖𝑛 𝜃𝑧

𝐶

𝑠𝑖𝑛 𝜃𝑧
𝐶 𝑐𝑜𝑠 𝜃𝑧

𝐶 ]                                      (16) 

 

Subsequently, the two transformed points 𝑝𝐶 are passed to Step 2 in the algorithm. 

4.2.2.2 Step 2 – Calculation of 𝑷𝒙
𝑾 

In this step, the position 𝑃𝑥
𝑊 of the WP is computed using the �̂�𝑊 �̂�𝑊-plane, as shown in Figure 

32. The  �̂�-axis is ignored in this step, because the algorithm performs the calculation only on the 

�̂�𝑊 �̂�𝑊-plane.  The elements of the general system architecture, shown in Figure 32, directly 

correspond to the geometric model shown in Figure 36. The IR LEDs correspond to the points 

𝑃0
𝑊 and 𝑃1

𝑊 while the camera is expressed as the large rectangle. To simplify the model, the IR 

filter and lens were assumed to be ideal elements that don’t affect the system. 

This model enables the calculation of the 3-D pose due to its specifically designed architecture. 

Firstly, the baseline 𝐵 is known. Secondly, the camera’s intrinsic parameters can be determined 

by camera calibration. The camera calibration routine can determine the key parameter of the 

camera that is critical in the calculations, i.e. the focal length 𝑓. Furthermore, the knowledge of 

these parameters, complemented with the rotation angles from the IMU, enabled us to use 

geometry and trigonometry to compute the pose. 

The knowledge about the orientation of the WP makes it possible to use geometry to solve the 

problem of determining the 3-D position. The properties of similar triangles and trigonometry 

are particularly useful. The camera can be modelled with a simplified projection model, i.e. one 

in which the image plane is in front of the principal point, which is coincident with the origin of 

the Camera frame 𝐿𝐶 ; as opposed to being behind it. The image points 𝑝0
𝐼   and 𝑝1

𝐼   are the 

projections of their corresponding World points 𝑃0
𝑊 and 𝑃1

𝑊 on the camera’s image plane. The 

two rays of light, 𝑅𝐿 and 𝑅𝑅, that originate from the two World points and pass through their 

corresponding Image points intersect at the 𝐿𝐶. The rotation angles from the IMU help us form 

two similar triangles. The first triangle has the following vertices 𝑃0
𝑊, 𝑃1

𝑊, and  𝐿𝐶. The second 
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triangle has the following vertices 𝑝0
𝐼 , 𝑝1

𝐼 , and 𝐿𝐶. The image points 𝑝0
𝐼 , 𝑝1

𝐼  are transformed to the 

Camera frame to enable real-world-unit calculations, i.e. 𝑝0
𝐶, 𝑝1

𝐶. The proportions are achieved 

by making 𝐵 and 𝐵′ parallel. 

 

Figure 36: Geometric model of the system, x-z plane in World Coordinate Frame 

The first task in this step is to compute the angles: between the left light ray 𝑅𝐿 and the line 

segment of length equal to the focal length 𝑓, angle between 𝑅𝑅 and 𝑓, angle between the 𝑅𝐿 and 

𝑓, angle between 𝑅𝐿 and the axis  �̂�𝑊, angle between 𝑅𝐿 and the axis  �̂�𝑊, angle between the 
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rays 𝑅𝐿 and 𝑅𝑅, and the angle between 𝐵′ and 𝑅𝑅
′ ; defined in: (17), (18), (19), (20), (21) and (22), 

respectively. 

 

𝛼𝑅𝐿𝑓 = 𝑡𝑎𝑛−1 (
𝑝0

𝐶

𝑓
)                                                        (17) 

 

𝛼𝑅𝑅𝑓 = 𝑡𝑎𝑛−1 (
𝑝1

𝐶

𝑓
)                                                        (18) 

 

𝛼𝑅𝐿�̂�𝑊 =  
𝜋

2
+ 𝛼𝑅𝐿𝑓 − 𝜃𝑦

𝑊                                               (19) 

 

𝛼𝑅𝐿�̂�𝑊 =
𝜋

2
− 𝛼𝑅𝐿𝑥𝑊                                                           (20) 

 

𝛼𝑅𝐿𝑅𝑅
= (𝛼𝑅𝑅𝑓 − 𝛼𝑅𝐿𝑓)                                                  (21) 

 

𝛼𝐵′𝑅𝑅
′ = 𝜋 −  𝛼𝑅𝐿�̂�𝑊 − 𝛼𝑅𝐿𝑅𝑅

                                        (22) 

 

The length of the line segment 𝑅𝐿
′  is calculated with (23), which then allows us to determine the 

value of 𝐵′ using (24), using the sine rule and transposing (25). 

 

𝑅𝐿
′ = √𝑓2 + 𝑝0

𝐶2
                                                       (23) 

 

𝐵′

sin(𝛼𝑅𝐿𝑅𝑅
)

=
𝑅𝐿

′

sin (𝛼𝐵′𝑅𝑅
′ )

                                                      (24) 
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∴ 𝐵′ =
𝑅𝐿

′ sin(𝛼𝑅𝐿𝑅𝑅
)

sin (𝛼𝐵′𝑅𝑅
′ )

                                                  (25) 

 

The properties of Similar Triangles can be used to find the length of 𝑅𝐿 with (26) followed by 

(27). 

 

𝑅𝐿

𝑅𝐿
′ =

𝐵

𝐵′
                                                                   (26) 

 

∴ 𝑅𝐿 = 𝑅𝐿
′ (

𝐵

𝐵′
)                                                           (27) 

 

In the final stage, trigonometry is used to find the vlalues of the remaining two variables. The 

sine function is used to find 𝑥𝑊 with (28) and (29), which is in effect equal to one of the elements 

of the 3-D Pose 𝑃𝑥
𝑊. 

 

𝑥𝑊

𝑅𝐿
= 𝑠𝑖𝑛(𝛼𝑅𝐿�̂�𝑊)                                                    (28) 

 

∴ 𝑥𝑊 =  𝑅𝐿𝑠𝑖𝑛(𝛼𝑅𝐿�̂�𝑊)                                            (29) 

 

Finally, the value of 𝑟�̂�𝑊
 is computed using the cosine function with (30) and (31). The radius 

𝑟�̂�𝑊
 is required in the computations in Step 3. 

 

𝑟�̂�𝑊

𝑅𝐿
= 𝑐𝑜𝑠(𝛼𝑅𝐿�̂�𝑊)                                                    (30) 

 

∴ 𝑟�̂�𝑊 =  𝑅𝐿𝑐𝑜𝑠(𝛼𝑅𝐿�̂�𝑊)                                            (31) 
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4.2.2.3 Step 3 - Calculation of 𝑷𝒛
𝑾 and 𝑷𝒚

𝑾 

The remaining two unknown variables are computed in this step, i.e. the 𝑦𝑊 and 𝑧𝑊. The 𝑦𝑊 

and 𝑧𝑊  correspond to the 𝑃𝑦
𝑊  and 𝑃𝑧

𝑊  elements of the 𝑃𝑊𝑃
𝑊   vector, respectively. The 

computations are carried out on the �̂�𝑊 �̂�𝑊 −plane. The corrective rotation, that was applied in 

Step 1, allows us assume that the axes of the frames 𝐿𝐶 and 𝐿𝑊 are approximately aligned with 

the rotation transformation 𝑅𝑊
𝐶  close to that defined in equation (15), i.e. the x-y planes defined 

by axes in Camera and  World frames are parallel, i.e. �̂�𝑐- �̂�𝑐||�̂�𝑊- �̂�𝑊. As in the previous step, 

the system setup allows us to use trigonometry to determine the missing pieces of information. 

The geometric model of the system is shown in Figure 37. It is effectively the side-view of the 

system. The calculations use three inputs. Given the corrections described in Step 1, the line 

segment formed by the image point vector 𝑝𝐼  is effectively parallel to �̂�𝑊 , correct to 

approximately within 1 𝑑𝑒𝑔. The mid-point between these two points 𝑝01
𝐼  is used; specifically, 

the vertical coordinate on the image plane. As in the previous step, the 𝑝01
𝐼  is transformed to 𝑝01

𝐶  

for calculations in real-world-units. Also, the  �̂�𝑊-axis is ignored in this step. 

 

Figure 37: Geometric model of the system, y-z plane in World Coordinate Frame 
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The angle 𝛼𝑝01
𝐶 𝑓 is found using the right-angled triangle with vertices at: the intersection of �̂�𝐶 

with image plane, the mid-point 𝑝01
𝐶 , and the origin 𝐿𝐶. Thus, the inverse tangent of of the ration 

of the 𝑝01
𝐶  to the focal length 𝑓  is equal to this angle, as defined in (32). The angle between 

the  �̂�𝑊-axis light-ray 𝑅𝐿, whose length is 𝑟ẑW, is found by correcting 𝛼𝑝01
𝐶 𝑓 by 𝜃𝑥

𝑊, as shown in 

(33). Finally the remaining unknowns 𝑧𝑊 and 𝑦𝑊 are found using cosine and the negative sine 

functions of 𝛼𝑟
�̂�𝑊�̂�𝑊, scaled by 𝑟�̂�𝑊, defined in (34) and (35), respectively. 

 

𝛼𝑝01
𝐶 𝑓 = 𝑡𝑎𝑛−1 (

𝑝01
𝐶

𝑓
)                                                 (32) 

 

𝛼𝑟
�̂�𝑊�̂�𝑊 = 𝜃𝑥

𝑊 − 𝛼𝑝01
𝐶 𝑓                                                    (33) 

 

𝑧𝑤 = 𝑟�̂�𝑊𝑐𝑜 𝑠 (𝛼𝑟�̂�𝑤�̂�𝑊)                                          (34) 

 

𝑦𝑤 = − 𝑟�̂�𝑊𝑠𝑖 𝑛 (𝛼𝑟�̂�𝑤�̂�𝑊)                                     (35) 

 

 At this point the 3-D Pose is computed. The elements of the pose vector are as follows: 𝑃𝑊𝑃
𝑊 =

[𝑃 𝜃]𝑇 = [𝑃𝑥
𝑊 𝑃𝑦

𝑊 𝑃𝑧
𝑊 𝜃𝑥

𝑊 𝜃𝑦
𝑊 𝜃𝑧

𝑊]
𝑇

= [𝑥𝑊 𝑦𝑊 𝑧𝑊 𝜃𝑥
𝐶  −𝜃𝑦

𝐶  − 𝜃𝑧
𝐶]

𝑇
. The orientation angles 𝜃, 

measured by the IMU, determine the orientation of the WP. The orientation of the WP in Word 

and Camera frame are the same, with the exception for the signs of some of its elements; since 

WP faces the IR LEDs, and the rotation matrix 𝑅𝑊
𝐶   is assumed to be relatively close to that 

defined in (15). 

4.3 System Modelling and Simulations 

Prior to the implementation stage, the proposed system, along with the proposed sensor fusion 

algorithm, was modelled and evaluated in simulated conditions. The objective of this task was 

twofold. Firstly, the system’s performance was to be simulated in a number of scenarios. 
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Secondly, the impact of various noise levels originating from uncertainties in point detection 

and orientation estimation processes was to be determined. The proposed system was modelled 

and evaluated in MATLAB®.  

One of the key elements in modelling the system is the camera to be used in the data capture. 

To be able to simulate it in a realistic way, the camera had to be carefully modelled. The 

locations of the two input points of reference 𝑝0
𝐼  and 𝑝1

𝐼 , captured by the camera, as visualised 

in Figure 34, had to closely correspond to their respective locations in the World frame, as 

shown in Figure 33. This correspondence was critical in achieving the ability to compare the 

results calculated by the proposed system to the real-world position and orientation of the WP. 

The pinhole camera model is commonly used to map 3-D World points to 2-D Image points 

[108]. In this work, we used a MATLAB® implementation of this model developed by Zachary 

Taylor [109]. It was used for projecting 3-D points onto a 2-D image plane using camera 

calibration parameters, the 3-D coordinates of the two reference points 𝑃𝑊 and the extrinsic 

matrix. The camera calibration parameters were obtained from the same camera module that 

was used in the experimental work (described in Section 4.4). Likewise, the focal length 𝑓, 

which was required by the proposed algorithm, was obtained from the intrinsic matrix. The 

extrinsic matrix is a transform that describes pose of the WP in the World frame of reference. 

Thus, the input position and orientation of the WP in the World frame of reference was encoded 

in this transform matrix and passed to the function that projected the two 3-D reference points 

and output the 2-D image points. The two Image points were subsequently used as one of the 

two inputs to the proposed data fusion algorithm. The second input was the orientation vector 

𝜃𝑤, which was also used in constructing the extrinsic matrix. 

 Simulated Scenarios 

The proposed system was evaluated in several scenarios. In each case, 𝑁 > 5000 appropriate 

inputs were generated and passed to the data fusion algorithm. The following scenarios were 

used in this process. 

4.3.1.1 Scenario 1 - Linear motion – along �̂��̂��̂� − 𝒂𝒙𝒆𝒔 

In this scenario, the WP moved on a straight line across the Work Envelope along all three 

axes, i.e. �̂� − �̂� − �̂� in the World frame of reference. The translation along the axes was as 

follows: 𝑥𝑊 ∈< 150, 350 >  mm, 𝑦𝑊 ∈< −250, 250 >  mm, 𝑧𝑊 ∈< 1000, 1500 >  mm. 

The orientation vector was set to 𝜃𝑊 = [0, 0, 0]𝑇 deg, and it did not vary. 
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4.3.1.2 Scenario 2 – Uniform Random 

In this scenario, the proposed system was evaluated under the most challenging conditions 

because both position and orientation of the WP varied at random using random number 

generator with uniform probability distribution. All elements of the pose vector of the WP were 

varied simultaneously. The range of possible positions and orientations were set such that the 

system was evaluated under all possible poses, including the extreme ones near the edges of 

the Work Envelope. The position and orientation ranges were set as follows: 𝑥𝑊 ∈< 0, 250 >

𝑚𝑚 , 𝑦𝑊 ∈< 0, 250 > 𝑚𝑚 , 𝑍𝑊 ∈< 1000, 1500 >  mm, 𝜃𝑥
𝑊 ∈< 0, −10 > 𝑑𝑒𝑔 , 𝜃𝑦

𝑊 ∈<

0, −10 > 𝑑𝑒𝑔, 𝜃𝑧
𝑊 ∈< 0, 10 > 𝑑𝑒𝑔. Although the range of positions covers only 25 % of the 

Work envelope for 𝑧𝑤 ∈< 500, 1500 > 𝑚𝑚, it is safe to expect similar performance across 

the remaining volume in this range of 𝑧𝑊 as it is a symmetrical system. It needs to be noted, 

that a check was performed for each pose in this scenario to ensure that both points of reference 

were present in camera’s FoV, which was the prerequisite for the proposed data fusion 

algorithm to work. This condition was possible for such poses that 𝑧𝑊 ∈< 500, 1000 > mm 

and the magnitude of the other elements of the pose vector of the WP were close to their 

maximum values in their respective ranges. 

4.3.1.3 Scenario 3 – Linear motion – along �̂� − 𝒂𝒙𝒊𝒔  

In this scenario, the WP moved on a straight line across the Work Envelope along all the �̂� −

axis in World frame of reference. The translation was as follows: 𝑥𝑊 = 250 mm, 𝑦𝑊 ∈<

−500, 300 > mm, 𝑧𝑊 =  1400 mm. The orientation vector was set to 𝜃𝑊 = [0, 0, 0]𝑇 deg, 

and it did not vary.  

This scenario was of most interest to this work. It was designed to simulate the pattern of 

motion involved in the barbell squat carried out when using the correct technique. It was 

assumed the WP was attached to the back of the person executing the exercise, e.g. under the 

bar, between upper and lower back. In this case, there would not be much rotation expected 

about any axis [110]. The motion would be largely vertical with full range of motion, i.e. 

parallel squat, with little lateral hip shift or trunk lean [111-113]. 

 Error Analysis - Point and IMU Noise 

The proposed data fusion algorithm is susceptible to noise that is expected to be present in the 

input position and orientation vectors, 𝑝𝐼 and 𝜃𝑊, respectively. The individual sources of error 
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as well as their magnitude have a negative impact on the system. This subsection describes the 

process of quantifying the noise and its impact. 

The point noise, i.e. error in the coordinates of the image points in the 𝑝𝐼 vector, may originate 

from several sources. One of the most common causes for point noise are the imperfections in 

the camera’s optical capture system, which were not sufficiently rectified by the camera 

calibration process. For example, the lens distortions may significantly alter the coordinates of 

points on the image plane; especially at larger distances between those points and the optical 

centre on the image plane [114]. The accuracy of point detection algorithms may also be affected 

if the angle between the optical axis of the camera and the line segment between its optical centre 

and the point of interest increases. Under these conditions, the shape of IR LED may resemble 

an ellipsoid on the pixel array, instead of a circle. The level of point noise may be measured in 

pixels. Its magnitude generally depends on the pixel resolution of the camera and where on the 

image plane the points were captured. The angle of the camera, relative to the given point, during 

image capture plays a role, too. Several empirical tests were carried out to determine the 

maximum level of point noise using the same camera module as that used in the calibration and 

experimental work (described in Section 4.4). The tests showed that the point noise was generally 

bounded to 10 pixels. As a result, point noise was modelled as a Gaussian noise distribution 

𝒩𝑃(𝜇𝑃, 𝜎𝑃)  with mean 𝜇𝑃  set to the noise-free input vector 𝑝𝐼  for the given scenario and 

maximum standard deviation 𝜎𝑃 , thus resulting in 𝑝𝐼  containing the added point noise. The 

maximum standard deviation was set to 𝜎𝑃 = 10 𝑝𝑖𝑥𝑒𝑙𝑠. 

The IMU noise considered in this work was defined as the error in orientation angles of the 

WP, i.e. the vector 𝜃𝑊 . This noise may have numerous sources, ranging from poor IMU 

calibration to suboptimal configuration or the sensor fusion algorithm. Nevertheless, the error 

in orientation estimation, computed by sensor fusion algorithms, is generally bounded to 

1 𝑑𝑒𝑔, [46]. Similarly to the point noise, the IMU noise was modelled with a Gaussian noise 

distribution 𝒩𝐼𝑀𝑈(𝜇𝐼𝑀𝑈, 𝜎𝐼𝑀𝑈) with the mean 𝜇𝐼𝑀𝑈 being set to the noise-free input vector 𝜃𝑊 

for the given scenario and the standard deviation 𝜎𝐼𝑀𝑈 , thus resulting in 𝜃𝑊 containing the 

added IMU noise. The maximum standard deviation was set to 𝜎𝐼𝑀𝑈 = 1 𝑑𝑒𝑔. 

The performance of the proposed system was evaluated by subjecting it to both noise types in 

each of the simulated scenarios. The level of noise was increased incrementally. In each 

scenario, the system was subjected to five different levels of noise, which was defined as a 

vector 𝒩𝑖 = [𝜎𝑃𝑖;  𝜎𝐼𝑀𝑈𝑖] , where 𝜎𝑃𝑖 = [0 2.5, 5, 7.5, 10; ]𝑝𝑖𝑥𝑒𝑙𝑠  and 𝜎𝐼𝑀𝑈𝑖 =
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[ 0 0.25, 0.5, 0.75, 1; ] 𝑑𝑒𝑔. At each level of noise 𝒩𝑖, three different combinations of this noise 

were applied to the system: 𝒩𝐼𝑀𝑈 only, 𝒩𝑃 only, both 𝒩𝐼𝑀𝑈 and 𝒩𝑃. Thus, the individual and 

combined impact of noise could be examined. Note, the case with no added noise was examined 

at 𝑖 = 0, i.e. 𝒩0 = [0;  0; ]. 

 Error Analysis Process 

The main performance metric was the RMSE, as defined in (36). The algorithm’s output is 

defined as 𝑑𝑖  and the corresponding reference values as 𝑑�̂� over all 𝑁 measurements in this 

equation. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑑�̂� − 𝑑𝑖)

2
𝑁

𝑖=1

                                             (36) 

The RMSE was computed for each parameter as follows: simulated scenario, noise level and 

noise source combination. The RMSE was determined for each position element of vector 𝑃𝑊𝑃
𝑊 , 

as well as the combined error over all three axes. The results for scenarios1, 2 and 3 are shown 

in Figure 38, Figure 39 and Figure 40, respectively. It can be seen that the RMSE increased in 

all three scenarios with the increase in noise level 𝒩𝑖. The IMU noise 𝒩𝐼𝑀𝑈, in most cases, has 

a greater impact on the RMSE then the point noise 𝒩𝑃. Due to the random distribution of both 

noise sources, 𝒩𝐼𝑀𝑈 and 𝒩𝑃, the RMSE was lower than the sum of the individual RMSE values 

when both noise sources were applied to the system, i.e. both 𝒩𝐼𝑀𝑈 and 𝒩𝑃; as compared to 

the conditions with noise sources applied separately, i.e. either 𝒩𝐼𝑀𝑈 or 𝒩𝑃. 
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Figure 38: RMSE in Scenario 1 - Linear Motion along   𝒙𝑾 �̂�𝑾 �̂�𝑾- axes for different levels of noise   𝓝𝒊 

 

Figure 39: RMSE in Scenario 2 – Uniform Random for different levels of noise  𝓝𝒊 
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The system achieved the lowest RMSE in scenario 1. Although, the position of WP varied 

across all three axes, the range of motion was relatively small, thus avoiding the unfavourable 

conditions. On the other hand, scenario 2 was the most challenging since both position and 

orientation of the WP varied at random. It was designed to determine the performance in the 

most adverse conditions under which it the proposed system could still perform without failing. 

The system would fail if the any one of the two reference points was outside of camera’s FoV, 

or the intensity of the IR LEDs was too low for the camera to capture. As a result, the RMSE 

was the highest in this case. Nevertheless, the RMSE was not significantly higher in this 

scenario, i.e. scenario 2 which used uniformly randomly generated inputs, as compared to 

scenario 1. 

 

Figure 40: RMSE in Scenario 3 - Linear Motion along   �̂�𝑾 - axis for different levels of noise   𝓝𝒊 

The total RMSE can be broken down into individual components, i.e. the errors in the three 

position elements 𝑃𝑥
𝑊,  𝑃𝑦

𝑊 ,  𝑃𝑧
𝑊 of the pose vector 𝑃𝑊𝑃

𝑊 . The analysis can show that the RMSE 

was not equally distributed across these three position elements, and it depended on the noise 

level 𝒩𝑖. The RMSE on all axes for different levels of noise 𝒩𝑖 is shown in Table 11. The 

RMSE in 𝑃𝑧
𝑊 was the largest component of the total RMSE. Its value was the closest to the 

overall RMSE whereas RMSE in 𝑃𝑥
𝑊 and 𝑃𝑦

𝑊 was significantly lower. The RMSE in 𝑃𝑦
𝑊 was 
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much higher than that in 𝑃𝑥
𝑊 at low values of 𝒩𝑖.The difference in RMSE between 𝑃𝑥

𝑊  and 

𝑃𝑦
𝑊 decreased with increasing values of noise 𝒩𝑖.  The RMSE in 𝑃𝑦

𝑊 was approximately 50 % 

lower than that in 𝑃𝑧
𝑊 at low noise level 𝒩𝑖 and approached as the noise increased.  

The visual representation of position computation in scenario 3 is shown in Figure 41. This 

simulation was executed with noise level 𝒩1 = [σP1;  σIMU1; ] = [2.5;  0.25; ] [pixel; deg] to 

show the impact of added noise. This figure shows visually why the RMSE was lower for 𝑃𝑥
𝑊 

and 𝑃𝑦
𝑊  as compared to 𝑃𝑧

𝑊 , as shown in Table 11. Whereas  𝑃𝑧
𝑊  deviated away from its 

reference position as the WP approached the minimum and maximum values of 𝑦𝑊, 𝑃𝑥
𝑊and 

𝑃𝑦
𝑊 tended to remain close to their corresponding reference values. Thus, the RMSE in 𝑃𝑥

𝑊and 

𝑃𝑦
𝑊  was relatively low and uniform as compared to RMSE in 𝑃𝑧

𝑊 , which was higher and 

increased near the minimum and maximum values of 𝑦𝑊. For instance, RMSE in 𝑃𝑥
𝑊and 𝑃𝑦

𝑊 

was lower than RMSE in 𝑃𝑧
𝑊 by a factor of approximately two for 𝒩2, as shown in Table 11. 

The expected and acceptable performance of the system is based on the nature of the motion 

it is to track. An example of a particular ST exercise that this work uses as one of the 

demonstrator scenarios is the barbell squat. This exercise involved compound movements and 

often significant weights, which increases the risk and seriousness of a potential injury. For 

example, the lumbar spine can be at a high risk of injury if the forward trunk lean is too high 

while executing the squat [113, 115]. The risk of knee and hip injury significantly increase if 

the squats are too deep and/or the lateral hip shift occurs [110-112, 116]. In terms of accuracy, 

the proposed tracking system should be sufficiently accurate to reliably track the motion in this 

exercise for example. The specific quantitative requirements or recommendations, as to the 

permitted error level, are not found in the existing literature. This is because the exercise 

assessments are generally carried out by the coaches in a subjective manner on an individual 

basis following general guidelines. However, an approximate requirement for error in position 

tracking in the barbell squat can be estimated, based on the ranges of motion involved in this 

exercise. Some of the key parameters used in ensuring that the squat is executed correctly can 

be used as the basis for establishing this requirement. For example, the vertical range of motion 

in a squat carried out by an average adult individual may vary between approximately 0.5 m 

and 1 m, which is used in measuring the squat’s depth. Likewise, the forward trunk lean can 

be measured by tracking the position and orientation of the line segment between two points 

on the back, i.e. a 3-D vector’s endpoint is on the upper back, below the barbell, and origin in 

the lower back, on the sacral section of the spine. While the magnitude of this vector would not 
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vary significantly, the values of its individual components would; especially those along the 

vertical and the forward-facing horizontal components, i.e. the 𝑦  and 𝑧 , respectively. The 

distance between these two points on the adult athlete’s back can be assumed to be 

approximately 0.5 m. The angle between this vector and the floor can vary between 45 degrees 

and 90 degrees [117]. Therefore, the values of this vector’s components 𝑦 and z would vary by 

up to approximately 35 cm. In the case of lateral hip shift, the range of motion would be smaller. 

It would normally reach up to a half the distance between the two feet, i.e. approximately 30 

cm for an adult. Therefore, the error in position tracking of the WP would be expected to remain 

at single-centimetre level for this application scenario. However, the accuracy in positional 

tracking is not the only consideration in this application space. The motion tracking system 

should also be affordable and easy to setup and use. Hence, the right balance between these 

two factors is desired. 
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Figure 41: Simulated Position of the WP in Linear Motion along   �̂�𝑾-axis with Added Noise  𝓝𝟏 =

[𝝈𝑷𝟏;  𝝈𝑰𝑴𝑼𝟏; ] = [𝟐. 𝟓; 𝟎. 𝟐𝟓; ] [𝒑𝒊𝒙𝒆𝒍;  𝒅𝒆𝒈; ];  𝑺cenario 3 
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TABLE 11: RMSE OF ELEMENTS OF POSE VECTOR PWP
W  FOR DIFFERENT VALUES OF NOISE 𝒩I; 

SCENARIO 2 

𝓝𝒊 – 𝒊 RMSE 𝑷𝒙
𝑾 [m] RMSE 𝑷𝒚

𝑾 [m] RMSE 𝑷𝒛
𝑾 [m] Total RMSE[m] 

0 0.0001 0.0126 0.0243 0.0158 

1 0.0065 0.0140 0.0250 0.0170 

2 0.0128 0.0177 0.0265 0.0198 

3 0.0195 0.0231 0.0288 0.0240 

4 0.0263 0.0287 0.0324 0.0293 

 

4.4 Experimental Validation 

After modelling and simulation, the proposed system was validated experimentally. The 

validation process was carried out in two cases, i.e. static and mobile. In the static case, the system 

was validated in a similar way to that in the simulated scenario 2, i.e. the uniform random 

scenario. The mobile case closely resembled scenario 3, i.e. the linear motion along the �̂�𝑊axis. 

 Static Case - Experimental Setup 

The experimental setup corresponded to the general system diagram, shown in Figure 32, and 

the work envelope, shown in Figure 33. The complete implementation of the experimental setup 

is described in in Figure 42 and Figure 43. The WP was implemented using the Microsoft® 

Surface Pro 4 tablet computer with MATLAB® development environment installed on it. This 

computing platform was selected due to its portability while being a fully-featured computer. 

Furthermore, it had the built-in OV8865 camera module, which is a low-power camera module, 

designed for mobile applications. It also featured an MCU unit with a Bluetooth Low Energy 

(BLE) for control of the IR LEDs. An IMU, the MPU9250 from TDK InvenSense, was also 

added to support future functionalities. Additionally, an IR Filter was attached to the camera [94], 

whose transmittance properties matched the IR LEDs [96], as shown in Figure 43 (b). The WP 

was housed in a dedicated, 3D printed, holder that was mounted on a high-quality camera tripod. 

The Manfrotto MN755XB aluminium camera tripod with levelling ball with Manfrotto 410 

Junior geared head were used in the experiments [118, 119]. The reference pose was measured 

using a digital protractor (accurate to 0.1 degree) and a laser distance meter (accurate to 1 mm) 

[120, 121], as shown in Figure 43 (a). 
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Figure 42: Experimental Setup – Static Case - Side-View 
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Figure 43: Experimental Setup – Static Case -  (a) Front-View, (b) Rear-View 

 Static Case - Experimental Data Acquisition 

The input dataset was acquired with the experimental setup described in  the previous section. 

Prior to the acquisition, at each test position the intensities of the IR LEDs were set such that 

their perceived intensities 𝐼 on the input image frame’s matrix were within the following interval 

𝐼(𝑥, 𝑦) ∈< 63,76 > , which was the optimum intensity for this experimental setup for our 

subpixel point detection algorithm [91]. Once this condition was met for the given test position, 

the raw input image was acquired. This process was repeated for each test position in the work 

envelope marked with square markers in Figure 33, except for those at 𝑥𝑊 > 250 mm. Due to 

the symmetry along the  �̂�𝑊 − 𝑎𝑥𝑖𝑠, at 𝑥𝑊 = 250 mm, it was sufficient to consider only the 

work envelope with 0 ≤ 𝑥𝑊 ≤ 250 mm and 0 ≤ 𝑦𝑊 ≤ 500 mm (0 ≤ 𝑦𝑊 ≤ 200 mm at 𝑧𝑊 =

500 mm). A set of ten test positions was selected within this work envelope, with an emphasis 

on ensuring that all key positions along the external border were included. For each test position, 

an input image was acquired for the all orientations, as listed in Table 12. 

 

(a)                      (b)     

IR LED 

𝑷𝟎
𝑾 𝑷𝟏

𝑾 

IR Filter 

IMU       

MCU+BLE       
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TABLE 12: ORIENTATIONS FOR EACH EXPERIMENTAL TEST POSITION 

Orientation Index 𝜽𝒙
𝑾 

[𝒅𝒆𝒈] 
𝜽𝒚

𝑾 

[𝒅𝒆𝒈] 
𝜽𝒛

𝑾 

[𝒅𝒆𝒈] 
0 0 0 0 

1 -15 0 0 

2 -30 0 0 

3 0 -15 0 

4 0 -30 0 

5 0 0 15 

6 0 0 30 

 

It should be noted that certain poses at some test positions had to be excluded from the validation. 

The cases where one or both points of reference were beyond the FoV of the camera invalidated 

the input frame. The camera could not capture both points of reference at certain test positions 

when combined orientation angle was high, e.g. 30 degrees. 

Subsequently, the raw input image frames, along with the corresponding orientation angles, were 

passed to the sensor fusion algorithm. 

 Static Case - Results 

The proposed system was evaluated in the experimental laboratory environment described in 

section 4.4.1. It was experimentally evaluated using the same metric as that was used in 

simulations, i.e. the RMSE. It measured the error in the position estimation along the three axes 

of the World frame of reference: �̂�𝑊 ,  �̂�𝑊 , and  �̂�𝑊 . The overall RMSE over all three axes 

combined was also determined; referred to as the Total RMSE, which was the most important 

metric. RMSE was computed over 𝑁 > 1000 measurements. The results are shown in Table 13. 

TABLE 13: STATIC CASE - EXPERIMENTAL RESULTS 

 𝑷𝒙
𝑾[𝒎] 𝑷𝒚

𝑾 [𝒎] 𝑷𝒛
𝑾[𝒎] Total [m] 

RMSE 0.0174 0.0367 0.0489 0.0367 

 

The RMSE measurement across the individual axes revealed which position elements of the pose 

were more susceptible to error due to noise and the way the pose was computed by the proposed 

novel algorithm. It largely confirmed the pattern of noise distribution on the three axes that was 

present in the simulations. While the position along the �̂�𝑊 - axis was most accurate, the 
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calculation of the position along the �̂�𝑊 -axis had the highest RMSE. These results, to some 

extent, correspond to the simulated scenario 2, i.e. the Uniform Random. Although this scenario 

did not simulate a static case, the positions and orientations of the WP were similar in both cases. 

 Mobile Case – Experimental Setup 

An experimental setup was designed to validate the performance of the proposed system in a 

mobile case, as shown in Figure 44. The setup was similar to that used in the static case shown 

in Figure 42. It differed in that the WP was mounted on a motorised mobile track slider system. 

This enabled the WP to move on a vertical trajectory, along the �̂�𝑊-axis in a controlled manner, 

thus closely resembling the simulated scenario 3, as described in section 4.3.1.3, which was the 

main aim of this experiment. Therefore, the position and orientation and range of motion of the 

WP were the same as those in the simulated scenario 3. The objective of this experiment was 

twofold. Firstly, the RMSE was to be determined across the range of �̂�𝑊 . Secondly, the 

repeatability of the performance of the proposed system was to be determined. To this end, the 

WP traversed the distance between �̂�𝑚𝑖𝑛
𝑊  and �̂�𝑚𝑎𝑥

𝑊  twenty times, i.e. it performed ten �̂�𝑚𝑖𝑛
𝑊 -to-

�̂�𝑚𝑎𝑥
𝑊 -�̂�𝑚𝑎𝑥

𝑊 -to-�̂�𝑚𝑖𝑛
𝑊  cycles. 

The track slider was based on the 80 cm version of the Neewer camera slider rail, which was 

customised as follows for this specific experiment [122]. The slider rail was fitted with a 6-mm-

wide T-belt that was connected to the Nema 17 stepper motor via matching  20-tooth pulley 

wheels [123]. The TB6600 stepper motor was used as the driver for the motor [124]. A Raspberry 

Pi® computer, Python™ programming environment and Secure Shell connection were used to 

control motion of the WP from a separate computer. Motion of the WP was controlled with an 

open-loop motor control system with a trapezoidal velocity profile. The acceleration and 

deceleration ramps of the velocity profile were set so as to ensure a smooth motion at the 

inflection points of the WP’s motion trajectory, i.e. minimum, �̂�𝑚𝑖𝑛
𝑊 , and maximum, �̂�𝑚𝑎𝑥

𝑊 , values 

of  �̂�𝑊. The maximum velocity was set such that the WP could acquire a sufficient amount of 

input frames to produce statistically significant results. The frame rate of the WP was 30 FPS. 

The time the WP required to traverse the distance between �̂�𝑚𝑖𝑛
𝑊  and �̂�𝑚𝑎𝑥

𝑊 , i.e. half a cycle was 

𝑇

2
= 17 seconds, where 𝑇 was the period of one cycle. Given ten up-down motion cycles, the WP 

acquired at least 5100 input frames, which was comparable to 𝑁 samples in simulations. The 

configuration of the IR LEDS during the data acquisition process was the same as that in the 

static case, described previously in section 4.4.1. 
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Figure 44: Experimental Setup – Mobile Case: WP mounted on Vertical Motorised Track Slider 

 Mobile Case – Results 
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The results of the experimental validation in mobile case are shown in Table 14. These results 

correspond to the results of simulations in scenario 3, shown Table 11. Likewise, a visual 

representation of the results of this experiment is shown in Figure 45, which corresponds to 

results of simulated scenario 3 shown in Figure 41.  

These results bear a strong resemblance to those of the corresponding simulations. The RMSE in 

𝑃𝑧
𝑊 was the highest of the three position elements of the WP. Also, it was higher than that in 𝑃𝑦

𝑊 

by a comparable ratio of approximately 50 %. Likewise, the RMSE in 𝑃𝑥
𝑊 had the lowest value 

of the three position elements of the pose vector 𝑃𝑊𝑃
𝑊 . Overall, the RMSE was lower than that in 

the corresponding simulated scenario 3. The discrepancy between these results was low and in 

the order of several millimetres, i.e. less than 5 mm. One of the reasons for such as low value of 

RMSE is the relatively low velocity of the WP whose period was 𝑇 = 34 𝑠. Also, the motor 

controller ensured a smooth change of the motion’s direction at the inflection points, i.e. when 

𝑦𝑊 = −0.5  or 𝑦𝑊 = 0.3 . It may have, to some extent, reduced the error in IMU readings. 

Moreover, this motion pattern involved no rotations, thus making the IMU readings less 

susceptible to error.  

 

TABLE 14: MOBILE CASE - EXPERIMENTAL RESULTS 

 𝑷𝒙
𝑾[𝒎] 𝑷𝒚

𝑾 [𝒎] 𝑷𝒛
𝑾[𝒎] Total [m] 

RMSE 0.0025 0.0115 0.0204 0.0136 
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Figure 45: Experimentally Determined Position of the WP in Linear Motion along   �̂�𝑾-axis 

An additional experiment was carried out to determine the repeatability of the proposed system 

and its algorithm. To this end, the motor controller program on the Raspberry Pi was programmed 

to drive the WP to perform ten full cycles of scenario 3; to simulate ten repetitions of the barbell 

squat, which generally resembles a mostly straight, vertical, path, depending on where the WP is 

positioned. Figure 46 shows the results of this experiment. These results show that the 

performance of the proposed system was consistent and repeatable in all ten cycles. It is also 

evident that the output of the IMU did not drift, thus avoiding an adverse impact on the sensor 

fusion algorithm’s accuracy. 
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Figure 46: Experimentally Determined Position of the WP in Linear Motion along   �̂�𝑾-axis Over Ten 

Repetitions with T = 34 s 

4.5 Discussion of Results and Comparison with SOA 

The performance of the proposed system was compared to similar systems that exist in the SOA, 

i.e. the opto-inertial trackers that relied on as few points of reference as possible. One of the key 

selection criteria for this comparison was the similarity in terms of system architecture, in 

particular the use of monocular vision and IMU sensor fusion for pose estimation. A direct one-

to-one comparison was not possible due to different performance validation metrics, target 

application spaces, system architectures, cost, and the algorithms used in these approaches. 

However, a general comparison can be made. Table 15 compares and contrasts some of the key 

properties of the proposed system to the three most comparable alternatives in the SOA, as 

reported in the respective referenced publications. 
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TABLE 15: COMPARISON OF THE PROPOSED SYSTEM TO ALTERNATIVE SOLUTIONS IN THE 

SOA 

 

 

Position Error 

[mm] 

Markers 

Required 

Tracking 

Type 

Work 

Envelope Size 

(along z-axis) 

[m] 

Overall 

System 

Complexity 

IS-1500 (PRA 

algorithm with 

Fiducial Markers) 

[11] 

2 

(Typical) 

At least 4 

(Passive 

Fiducial) 

Inside-

Out 

Variable High 

Maereg et al. [13] 0.21 (Static) 

 (RMSE) 

2 

(Active) 

Outside-

in 

0.045 Low 

Li et al. [12] 48.3 to 275.4 (Static) 

(RMSE) 

2 

(Passive) 

Outside-

In 

1.13 to 4.13 Low 

Proposed System 36.7 (Static), 13.6 (Mobile) 

(RMSE) 

2 

(Active) 

Inside-

Out 

0.5 to 1.5 Low 

 

The key metric to be evaluated was the overall error in position estimation of the wearable/mobile 

device in 3-D space, as well as the comparison of parameters that describe the key requirements 

of the individual systems. The IS-1500 tracking system was the most accurate inside-out tracker, 

whose position error was, by far, the lowest. However, this tracker required at least four fiducial 

markers and high external computing power capabilities to achieve such results, thus being the 

most expensive and complex system in this comparison. The opto-inertial motion tracking system 

proposed by Maereg et al. reported very low RMSE. However, it achieved such an accuracy 

within the smallest work envelope of only several centimetres and only in the static case, at a 

single position, while the accuracy in mobile case was not assessed quantitatively. Nevertheless, 

it was a low-cost outside-in tracker. On the other hand, the system proposed by Li et al., which 

was also an outside-in tracker, had a similar performance to the system proposed in this work. It 

was also validated in a somewhat similar way. The RMSE was determined at a number of static 

positions along a straight line parallel to the  �̂�𝑊 axis at distances between 1.13 and 4.13 metres. 

However, the proposed system achieved lower overall RMSE in position estimation in both static 

and mobile cases, as shown in Table 13 and Table 14, respectively. Both systems had a low 

complexity. However, the tracker proposed by Li et al. was an outside-in tracker, while our 

proposed system was and inside-out tracker. 

The proposed system advances the SOA in the following ways. It combines the advantages of 

the comparable alternatives in the SOA. Firstly, it is an inside-out opto-inertial tracking system. 

The advantage of an inside-out tracker over the outside-in trackers is in that the size of the work 
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envelope can be scaled at little to no expense. The costliest component, both in terms of price 

and complexity, is the camera. The proposed system, like the IS-1500, has one monocular camera 

embedded in the WP, regardless of the size of the work envelope. The algorithm does not change, 

as long as two points of reference are in camera’s FoV and their baseline 𝐵 is known. Whereas 

the outside-in systems would require additional cameras to scale the work envelope, the proposed 

system would need only additional IR LEDs, whose complexity and cost implications are 

significantly lower. Secondly, the proposed system developed and described in this thesis is less 

complex in terms of the architecture and algorithm, as compared to the IS-1500.  In this regard, 

the proposed novel tracking system is more comparable to the two outside-in alternatives that 

also rely on two tracking points of reference. In summary, the proposed system has the advantage 

of the inside-out systems while being less complex and, thus more suitable for low-cost and low-

power, miniaturized, battery powered wearable motion tracking devices for various application 

spaces, such as the barbell squat in ST. 

The main limitation of the proposed system is in that the highest accuracy is achieved when the 

WP is near the centre of the work envelope and rotates mainly about a single axis while the 

rotations about the remaining two axes are relatively small. Extreme poses in the WP increase 

the RMSE, specifically those with high rotation angles, which was shown in the static case of the 

experimental validation which is related to the trigonometric functions used in the sensor fusion 

algorithm used to compute the 3-D pose. Nevertheless, the proposed sensor fusion algorithm can 

handle multi-axis rotations with rotation angles up to approximately 10 𝑑𝑒𝑔 about each axis, 

which was shown in the simulated uniform random scenario 2. The proposed algorithm is 

susceptible to noise in IMU readings. The point noise also affects the performance but to a lesser 

degree. The impact of noise 𝒩 is particularly high in scenarios that involve significant multi-axis 

rotations, such as that in the simulated scenario 2, whose impact is shown in Figure 39. 

4.6 Conclusions and Summary 

In this work, a system architecture for low-power, miniaturized, wearable human motion tracking 

systems for sports applications was presented. The proposed system comprised of the WP which 

incorporated two sensor modalities, i.e. a monocular camera and an IMU sensor. The WP used 

two points of reference embedded in the ambient environment, i.e. IR LEDs. Furthermore, a 

novel multimodal sensor fusion algorithm for the proposed system architecture was presented. 

The WP is an inside-out-tracker. The sensor fusion algorithm runs on the WP, which leverages 
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the complementary nature of the monocular vision and IMU sensor modalities to directly 

compute the 3-D pose of the WP. The target application spaces for this system include sports 

applications. It can be particularly applicable to tracking certain exercises in ST routines, such as 

the barbell squat which follows a prescribed series of movements.  

This work proposes an alternative approach to human motion tracking using wearable devices. 

It proposes an inside-out opto-inertial motion tracker that performs 3-D pose detection using only 

two points of reference in the ambient environment. It is a less expensive, simpler, and more 

scalable approach, as compared to the alternatives present in the SOA, such as the IS-1500. On 

the other hand, the two outside-in trackers considered in this work are less scalable, while being 

similar conceptually. Also, their usability in the context of wearables is limited by the fact that 

their accuracy is also affected by the distance between the two points of reference, which must 

be small if these were to be attached to the human body. Moreover, the small distance between 

the reference points, in conjunction with considerable distance away from camera, increases the 

cost of the system, due the requirement of a higher camera resolution to maintain the precision 

of point detection. Thus, the proposed tracker advances the SOA by proposing a new alternative 

to the existing systems, albeit not as accurate as the leading IS-1500. However, it can be 

considered a viable alternative if other factors are taken into account, such as the cost or 

scalability which are important considerations in many application spaces such as the ST; 

considered in this work. Moreover, the proposed system achieved a sufficiently low error in 

position estimation to be good enough for tracking human motion in certain exercises, such as 

the barbell squats in ST routines. 

The proposed system was implemented and validated in the form of a prototype experimental 

setup in laboratory conditions. Its performance was experimentally validated in two scenarios, 

static and mobile. The static case was aimed at determining the performance in terms of accuracy 

across the entire work envelope. The mobile case focused on the motion pattern that is normally 

involved in a barbell squat. This scenario was of the primary interest, as this system is intended 

to be used in tracking such motion patterns when it has moved to the next development stage, i.e. 

a small-form-factor prototype stage implementation giving real-time information about body 

posture and position. 

The proposed system compared well to the other two outside-in tracking systems, as shown in 

Table 15. It needs to be noted, however, that the RMSE of these two systems cannot be directly 

compared due to different validation scenarios. Therefore, the experimental conditions need to 
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be also taken into account. Nevertheless, the proposed system performed better than that 

proposed by Li et al. Although the monocular version of their system was validated at a set of 

static positions along a straight horizontal line with no rotations, RMSE of the system proposed 

was lower in both experimental scenarios. On the other hand, the outside-in tracker proposed by 

Maereg et al. achieved lower RMSE. However, it achieved this result within a much smaller work 

envelope in static conditions with no rotations and is, thus, not directly comparable to the 

proposed tracker. The proposed system did not match the performance of the IS-1500 inside-out 

tracker, which had the lowest error of all comparable systems present in the SOA. The IS-1500 

had the highest accuracy of all methods considered in this work. However, little detail is known 

about the methods used in evaluating this system. 

The analysis of the processing speed was not described in this chapter for two reasons. Firstly, 

all work that was described in this chapter was carried out offline on high-powered PC-grade 

computers. The execution time of the proposed algorithm would not be representative of its 

potential in the context of low-power embedded systems. The real-time performance was 

evaluated using the embedded version of the prototype system, which is described in detail in the 

next chapter, i.e. Chapter 5. 
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5 Embedded Prototype Multimodal Tracking System 

M. P. Wilk, M. Walsh, and B. O'Flynn, “Low Cost Embedded Multimodal Opto-Inertial Human 

Motion Tracking System”, 31st Irish Signals and Systems Conference (ISSC), 2020, (accepted) 

5.1 Multimodal Tracking 

A demonstrator of the proposed system was developed as an embedded proof-of-concept 

prototype to test the main hypothesis of this work, as described in section 2.2. As outlined in the 

hypothesis, the demonstrator system is a low-cost embedded system that incorporates vision and 

IMU technologies in an MCU based wearable device, i.e. the WP, that runs the proposed novel 

algorithms for 3-D motion tracking with two external reference points placed in the ambient 

environment. The 3-D pose is computed by fusing two information from two sensor modalities 

that complement each other, i.e. camera and an IMU. The objective was to test if it was feasible 

to successfully implement the proposed system in the context of low-cost and resource-

constrained conditions, thus proving the hypothesis of this thesis true. One of the possible 

application spaces includes tracking motion in ST exercise routines. A specific example of an ST 

exercise includes a barbell squat which the proposed system can be for tracking. The barbell 

squat involved a repetitive motion pattern that is generally a slight curve in 3-D space along a 

vertical axis. The WP can be attached to the back of the athlete such that its camera faces the IR 

LEDs. The 3-D pose computed by the WP (or multiple units of WP attached to different parts of 

the back) can be used as an input to another system that could use aspects of machine learning to 

determine how closely the measured motion pattern matches an expected (correct) motion 

patterns. However, the scope of this research work was limited to the development and validation 

of the described motion tracking system. 

The prototype implements the proposed system architecture and the novel multimodal sensor 

fusion algorithm for 3-D pose detection including point detection. A small form-factor platform 

was selected for wearable applications. The OpenMV Cam H7 development board was used in 

this task [125]. This is an MCU-based platform designed for rapid prototyping of projects that 

incorporate machine vision. It uses an Arm Cortex-M7 STM32H743VI MCU, which is powerful 

enough to perform real-time image processing tasks while being embeddable in a small, low-

cost, and energy efficient wearable device, referred to as WP [126]. The WP system included two 
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sensor modalities, i.e. vision and IMU. To this end, the prototype incorporated the MT9V034 

global shutter camera module which comprises of the image sensor and a fixed-focus lens [49]. 

The camera module includes a custom developed optical IR filter which was attached to the 

camera’s lens, to allow the camera to detect the IR light spectrum only; which is at the same 

wavelength as that emitted by the IR LEDs emitted [94]. The IMU used for the implementation 

was the same as that used in the experimental validation described in Section 4, i.e. the MPU9250 

[48]. Additionally, a WiFi shield was added to enable wireless communications [127]. The 

miniaturised prototype is shown in Figure 47 with the associated building blocks of the proposed 

technology. The complete demonstrator of the location tracking system is shown in Figure 48. 

Although it is not a strictly wearable system in this form, it can be considered as one. The small 

form factor of the WP and its ability to operate wirelessly using a battery makes it a readily 

wearable device. This includes the WP as well as the two points of reference, i.e. the IR LEDs. 

The system uses these technologies and the novel algorithms developed as part of this work to 

locate and dynamically track the position and orientation of the WP, as described in Chapters 3, 

Error! Reference source not found., and 4. Although the WP was implemented using a general-p

urpose off-the-shelf prototyping platform, it is clear that it can be also implemented in a 

significantly smaller form factor, thus making it even more suitable for wearable applications. 
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Figure 47: Demonstrator Prototype System 
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Figure 48: Demonstrator System 

The WP can run embedded code written in MicroPython [128]. MicroPython is an 

implementation of the Python 3 programming language that contains a small subset of standard 

Python libraries optimised for resource-constrained MCUs. The proposed novel algorithm, 

described in detail in Section 4, was implemented in MicroPython as a custom class that could 

IR LED: P0 IR LED: P1 

WP 
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be imported into the main program’s file. Figure 49 shows a screenshot of the OpenMV IDE 

during one of the tests of the proposed system in the setup shown in Figure 48. The 3-D pose was 

computed based on the input vectors defining the IMU rotation angles and positions of the two 

points of reference on the image plane, 𝑇ℎ𝑧𝑦𝑥 and 𝑃01, respectively; as described in Section 

4.2.2. For each image frame, the pose was computed by making a call to the member function of 

the pose3D object of the custom class which contained the implemented algorithm, as shown in 

the highlighted line of code in Figure 49. This line of code corresponds to the Data Fusion Block 

shown in Figure 50. This block diagram was described in detail in Section 4.2.1. The Data Fusion 

block contains the proposed multimodal sensor fusion algorithm while the other blocks describe 

the tasks that are carried out in order to condition the input data prior to passing it to the main 

Data Fusion Block. The input parameters 𝑃01   and 𝑇ℎ𝑧𝑦𝑥  correspond to 𝑝𝐼  and 𝜃𝑊 , 

respectively; except for the order or elements in 𝑇ℎ𝑧𝑦𝑥  which were reversed. The order or 

elements in 𝑇ℎ𝑧𝑦𝑥 was reversed to maintain the consistency with conventions adopted in the 

embedded code, as compared to the theoretical derivations described in Section 4.2.2. 

 

Figure 49: Embedded Execution of the Proposed Multimodal Sensor Fusion Algorithm in OpenMV IDE in 

Real-Time 



 

 

116 |   Data Fusion for Human Motion Tracking with Multimodal Sensing  Chapter 5 

 

 

Figure 50: General Block Diagram of the Proposed Multimodal Sensor Fusion Algorithm, along with the Input 

Pre-Processing Stages 

5.2 Performance Evaluation 

An initial evaluation of the proposed system has been completed in terms of processing speed 

and accuracy. The objective of this process was to replicate the experimental work that was 

carried out on the larger, pre-prototype-stage, (non-wearable) version of the proposed system, 

and in particular the validation of the proposed multimodal sensor fusion algorithm, as described 

in Chapter 4, in a wearable miniaturised system. The performance in the mobile scenario was of 

particular interest, given the cosidered target applications space in sports and ST. the specific 

exercise to be simulated was the barbell squat in the context of ST. 

 Experimental Setup 

The resource-constrained miniaturised wearable embedded system was evaluated in a mobile 

case scenario, i.e the Scenario 3 in Section 4.4.4. However, the conditions in this evaluation 

procedure had several differences which were casued by the use of different camera modules in 

the two versions of the experimental WP. Whereas the first version, described in Chapter 4, had 

the module OV8865 [92], the embedded version of the WP had the camera module MT9V034 

[49]. Among many differences, the MT9V034 camera module had a smaller FoV which required 
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different positioning of the embedded WP with respect to the IR LEDs, as compared to the 

previous experiments with the non-wearable version of the WP, described in section 4.4.4. Firstly, 

the vertical slider was positioned farther away from the IR LEDs and the range of motion along 

the  �̂�𝑊 was slightly different. Specifically, the WP was positioned at 𝑧𝑊 = 1.5 𝑚 and the 𝑦𝑊 ∈

< −0.55, 015 >  m, while 𝑥𝑊 = 0.25  m, as compared to the settings of the previous 

experimental setup, i.e. 𝑥𝑊 = 0.25  m, 𝑦𝑊 ∈< −0.5, 0.3 >  m, 𝑧𝑊 =  1.4  m. The IMU was 

calibrated and the orientation angle measurements based on its output were used as an input in 

computing the 3-D pose in real-time. Likewise, the camera on the WP was set to resolution of 

640-by-480 pixels, and calibrated using camera calibration [61]. Subsequently, the elements of 

the intrinsic parameter matrix were used to set the constants in the proposed algorithm by 

hardcoding them in the MicroPython implementation of this algorithm which are also shown in 

Figure 50. However, the input images were no corrected for lens distortion. The number of 3-D 

pose measurements in the experiment was 𝑁 > 4000, while the framerate was more than 22 

FPS. The main differentiator in this process, as compared to the previous experiments described 

in section 4.4, was the fact that the WP computed the 3-D pose in real-time. The WP performed 

all the functions described in the block diagram in Figure 50 in real-time during the data 

acquisition procedure, while the slider was in motion. The WP that was mounted on the vertical 

slider in this experimental setup is shown in Figure 51 and described in detail in section 4.4.4. 

Additionally, the execution time was determined to evaluate the processing requirements of the 

data acquisition and fusion. To that end, the IMU, vision and 3-D pose tasks were separated. 
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Figure 51: Experimental Setup: Small-Form-Factor WP was Attached to the Vertical Slider  

 Results and Discussion 

Despite the resource-constrained nature of the platform, validation trials have shown that the 

performance, in terms of accuracy, of the embedded version of the system was generally 

consistent with that of the large-form-factor unit described in the previous chapter in Section 4.4. 

The acquired data points were processed following the steps from section 4.4.5. The key metric 

under scrutiny was the RMSE in position and orientation calculations, i.e. the 3-D Pose.  

Figure 52 shows the output of the proposed embedded data fusion algorithm as a function of 

time, i.e. the position elements of the pose vector 𝑃𝑊 over eight up-down cycles of the WP. It 

shows the accuracy in computing the 3-D position as well as the repeatability over time. 
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Figure 52: Experimentally Determined Position of the Small-Form-Factor Version of WP in Linear Motion 

along    �̂�𝑾 − 𝒂𝒙𝒊𝒔 

In these tests, the RMSE in the position and orientation calculations of the WP was computed 

and is shown in Table 16 and Table 17, respectively. Table 16 shows that the overall RMSE in 

position and orientation was 3.28 cm and 0.8921 degree, respectively.  

The RMSE in orientation was determined in this experiment the algorithm proposed by 

Madgwick et al. [46]. The RMSE was generally within the expected range, except for 𝜃𝑦
𝑊; which 

was 1.4322 degree. 

The total RMSE in position was greater than the corresponding results from the previous chapter 

shown in Table 14 which was measured at 1.36 cm. Considering the differences between the two 

experimental platforms this is to be expected. Firstly, the miniaturised wearable version of the 

WP used a different camera with a much smaller resolution, i.e. 640x480 pixels, as compared to 

3264x2448 used in the large-form-factor version of the WP. Secondly, the WP was positioned at 

𝑧𝑊 = 1.5 𝑚, which was 10 cm farther away from the origin of the World frame of reference. 

Thirdly, this version of the WP computed the 3-D pose in real-time using the resource-constrained 

embedded system. Therefore, it was necessary to facilitate the maximum framerate to capture the 

motion in this mobile scenario. To this end, the input images were not corrected for lens 
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distortion; to reduce the computational requirements associated with processing the input frames. 

This fact, along with the relatively high RMSE in the rotation angle about  �̂�𝑊-axis 𝜃𝑥
𝑊, shown 

in Table 17, contributed to high RMSE in 𝑃𝑦
𝑊. As a result, the RMSE in 𝑃𝑦

𝑊 was high which 

significantly increased the total RMSE in position computation. The remaining two position 

elements of the 3-D pose vector 𝑃𝑊 were low, with 𝑃𝑥
𝑊 being higher while 𝑃𝑧

𝑊 lower than their 

corresponding values in the previous chapter, shown in Table 14, 0.25 cm and 2.04 cm, 

respectively. In fact, the RMSE in 𝑃𝑧
𝑊 was not expected to be lower in this experiment, given the 

fact that WP was positioned 10 cm farther away from the origin of world reference frame. 

TABLE 16: EXPERIMENTAL VALIDATION: RMSE IN POSITION CALCULATION 

 𝑷𝒙
𝑾[𝒎] 𝑷𝒚

𝑾 [𝒎] 𝑷𝒛
𝑾[𝒎] Total [m] 

RMSE 0.0136 0.0545 0.0080 0.0328 

 

TABLE 17: EXPERIMENTAL VALIDATION: RMSE IN ORIENTATION CALCULATION 

 𝜽𝒙
𝑾[𝒅𝒆𝒈] 𝜽𝒚

𝑾 [𝒅𝒆𝒈] 𝜽𝒛
𝑾[𝒅𝒆𝒈] Total [deg] 

RMSE 1.4322 0.4444 0.3719 0.8921 

 

One of the additional findings of this work was that the framerate was limited mainly by the 

image processing tasks. The execution time breakdown is shown in Table 18. The point detection 

was the most time consuming task. It is understandable since the algorithm needs to look for the 

points in all pixels in the image. A further reduction of the camera resolution and/or addition of 

the temporal element to point tracking algorithm to look for the points only in the areas of the 

image where they are expected to be, based on previous frames, could significantly decrease the 

execution time of this task. 

TABLE 18: EXECUTION TIME BREAKDOWN 

Task Execution Time [ms] 

IMU: Orientation Computation 1.3 

Vision: Point Detection 30.3 

Sensor Fusion: 3-D Pose Detection 17.5 
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5.3 Conclusions Regarding the Wearable Miniaturised Data Capture System 

An embedded, wearable, miniaturised, low cost, proof-of-concept, version of the motion tracking 

system proposed was developed for experimental testing. It used the MCU based machine vision 

development board OpenMV H7 and the IMU MPU9250. Validation trials have been carried out 

to measure the accuracy of this wearable solution. The experiments simulated a mobile scenario 

in the considered sports application space using the example of a barbell squat in an ST routine.  

The use case in which the WP is attached to an athlete’s back while executing the barbell squat 

was simulated to track its motion in a repetitive and controlled manner. The accuracy of the 

embedded version of the WP was consistent with the expectations which were based on 

simulations and experimental work that is descri bed in Sections 4.3 and 4.4 in Chapter 4. The 

overall RMSE of the embedded system was 3.28 cm. Despite using different hardware 

components and configuration of the embedded WP, the proposed novel sensor fusion algorithm 

computed the 3-D pose with a comparable accuracy to that achieved in the corresponding 

experiment described in Section 4.4. It remained in single-centimetre range of RMSE which can 

be sufficient for low-cost tracking of certain ST exercises, such as the barbell squat as described. 

Some of the key metrics of a proper squat technique include the squat depth, trunk forward lean 

or lateral hip shift whose range of motion is significantly higher and are up to 1 m, 35 cm or 30 

cm, respectively; as described in detail in section 4.3.3. Moreover, the embedded WP performed 

the motion tracking function in real-time at over 20 fps. The system performed all tasks within 

50 ms for each output 3-D pose which incluided image processing,  IMU orientation, and the 

novel multimodal sensor fusion. The image processing involved in point tracking consumed the 

most amount of time. The proposed sensor fusion algorithm computed the 3-d pose within 17.5 

ms. The achieved frame rate is sufficient for most ST exercises since most of them are executed 

relatively slowly, as compared to more dynamic sports disciplines where the a significantly 

higher frame rate is required. In practical terms, one repetition of a barbell squat has a duration 

of approximately 2 seconds, while it is almost impossible to complete one repetition of this 

exercise correctly in less than 1 second. Given that the proposed system achieved a frame rate of 

over 20 fps, it can make approximately eighty 3-D pose updates for each repetition of this squat 

which is sufficient for assessing the exercise form. The results also show that the motion tracking 

can be carried out effectively with a the described system. The prototype system described in this 

chapter is based on inexpensive general-purpose microcontroller chip that achieved real-time 

motion tracking with sufficiently high accuracy. In summary, the validation process, described in 
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this chapter, shows that the proposed system fulfils the performance expectations based on 

previous modelling and experimental work with the non-wearable  prototype version,    described 

in Chapter 4. Furthermore, the experimental results have shown that it has the potential to become 

a viable low-cost human motion tracking system for sports applications, such as strength training. 
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6 Thesis Summary and Conclusions 

The objectives of work described in this thesis were twofold. Firstly, it was aimed at advancing 

the existing SOA by developing: 

• A novel wearable opto-inertial human motion tracking system based on a multimodal 

sensor fusion and two external points of reference based on IR LEDs 

• A novel multimodal sensor fusion algorithm for computationally efficient 3-D pose 

detection 

• A novel subpixel point detection algorithm for lowering the processing requirement, for 

a motion tracking system by reducing camera’s resolution while maintaining accuracy of 

point detection 

• A novel reference point estimation algorithm for finding the locations of reference points 

used in validating subpixel point detection algorithms 

• A novel proof-of-concept demonstrator prototype that implements the proposed system 

architecture and multimodal sensor fusion algorithm in a miniaturised wearable form 

factor 

The proposed system advances the SOA by increasing the feasibility of using such motion 

trackers in ST applications and other applications with similar requirements. It could act as an 

affordable alternative to existing systems which are more complex such as those used in motion 

capture labs. Existing systems that track 3-D pose tend to be complicated and generally 

expensive. In terms, of the comparable inside-out opto-inertial trackers, the leading alternative, 

i.e. the IS-1500 [11], is not widely available, while a single Antilatency tracker unit with a 3x3 

metres tracking area option costs $385 [76] at the time of writing this document. 

One of the potential uses of the new system includes human motion tracking in ST exercises with 

defined motion patterns, such as the squat, which may contribute to helping tackle one of growing 

societal challenges of ageing population [129]. ST is a proven and recommended addition to 

regular physical activities for all people to live a longer and more importantly healthier life. With 

this in mind, the British National Health Service recommends that ST is carried out at least twice 

a week, on top of other exercises [130]. However, ST can lead to injuries if executed incorrectly. 

Therefore, a professional sports coach is required to guide the individuals. However, the 
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accessibility and affordability of coaches might be limited with the growing proportion of 

population being older.  

The proposed system can help ease this problem because it can be implemented as a low-cost 

wearable motion tracking device that could be used by individuals involved in ST to track their 

motion in real time and help ensure a proper exercise technique for the given individual is 

maintained. 

Chapter 2 describes a review of motion tracking technologies that exist in the SOA. It began with 

reviewing various unimodal systems. Subsequently, multimodal systems were reviewed. Finally, 

a gap in the SOA was identified with respect to multimodal wearable human motion tracking 

systems, and a hypothesis for this work, described in this thesis, was formulated. Additionally, 

potential uses for this technology were explored. 

In Chapter 3, a novel subpixel point detection algorithm, SLI, was presented to reduce the 

processing requirements related to point detection tasks in image processing. It can be used to 

determine the coordinates of points of interest in input images at the subpixel level, thus 

overcoming the limitation of the camera’s resolution. It can compute the peaks of points in images 

faster and more accurately than the existing alternatives in the SOA under specific conditions, 

i.e. the points of interest were IR LEDs with specific intensity and wavelength. The significance 

of SLI in the context of this work was in that its use could significantly reduce the requirements 

related to the optical tracking component of the WP. The SLI enabled a reduction in the resolution 

of the camera in the WP by a factor of at least 2 without sacrificing the precision of the point 

detection algorithm. It also translated into cost reduction, because low resolution cameras are less 

expensive. Moreover, the lower resolution of images meant that image processing tasks can be 

executed much faster, which helps increase the frame/update rate of the system’s output; a critical 

parameter of any motion tracking system. 

Chapter 4 presents a novel algorithm for estimating the locations of reference points in images 

that are required to validate the accuracy of subpixel point detection algorithms under laboratory 

conditions. A quantitative validation of a subpixel point detection algorithm requires a reference 

point against which the results of the given algorithm are validated. A reference point is also 

necessary for comparing the accuracy of various subpixel point detection algorithms. In 

summary, this novel algorithm provides the means for performing these validation procedures. 

The chapter describes how the proposed algorithm was formulated and evaluated. 
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Chapter 5 is central in this work. It presents the novel multimodal sensor fusion algorithm that 

can be used to efficiently compute the 3-D pose of the WP in space. The proposed algorithm 

leveraged a system architecture that was based on a low-cost, miniaturised, wearable, opto-

inertial motion tracking unit, i.e. the WP that incorporated two sensor modalities, the monocular 

camera and the IMU. The camera in the WP was used to track two known external points of 

reference, i.e. two IR LEDs. The proposed sensor fusion algorithm used the unique geometry 

formed by the camera and the reference points and complemented the missing information with 

rotation angles obtained from IMU’s data. Thus, the 3-D pose of the WP in space was computed. 

Due to the specific system architecture, the mathematical formulations involved in pose detection 

were significantly simplified. The proposed system was evaluated in a series of simulated 

scenarios as well as laboratory conditions using a pre-prototype-stage platform that implemented 

its key functionalities. This chapter describes all aspects the proposed algorithm, system 

architecture, and its validation process. 

Chapter 6 is a short chapter that focuses on the final development of a miniaturised proof-of-

concept prototype system. The prototype system was based on works described in Chapter 5. It 

was intended to be used as a demonstrator of the complete proposed system in a wearable small 

form factor. It was also aimed at testing the hypothesis of this work and proving that such a 

solution can indeed close the identified gap in the SOA, thus significantly advancing it. 

Furthermore, it serves as the basis for future works that would focus on further development and 

validation of the proposed system. 

In conclusion, the hypothesis of this work was tested and proven correct. The hypothesis is as 

follows: We consider a low-cost, low-resolution, monocular camera system that is combined with 

an IMU in a single miniaturised wearable smart sensor unit, and it was coupled with two 

stationary points of reference, using active markers such as IR LED. Then the 3-D pose, i.e. the 

3-D position and orientation, of the wearable unit could be efficiently determined. This approach 

has not been reported in existing literature. Moreover, the orientation data from the IMU could 

be used to directly complement the missing pieces of information from the vision sensor, thus 

reducing the overall system complexity; by avoiding the need for computationally expensive 

algorithms for computing the 3-D pose, such as the PnP solutions. As a result, the complexity of 

the sensor fusion algorithm for the 3-D pose estimation can be reduced and, thus, lead to lower 

requirements in terms of processing power and energy consumption. These requirements can be 

further decreased by reducing the computational load associated with the image processing tasks 
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when detecting points of reference in images acquired by the camera. To that end, resolution of 

the camera can be reduced while introducing subpixel point detection techniques to finding the 

coordinates of the two points in the input images. The subpixel point detection can prevent the 

loss of precision of point detection caused by lowering camera’s resolution. This results in a less 

complex and less expensive inside-out motion tracking system, as compared to the IS-1500 

tracker. The 3-D motion can indeed be tracked efficiently by integrating a low-cost monocular 

camera and an IMU in a wearable opto-inertial tracker in the context of multimodal sensor fusion. 

The camera in the wearable tracker, the WP, can be used to track two external points of reference. 

The sensor fusion algorithm can use the geometry formed between the two points of reference 

and the camera and complement the missing pieces of information with IMU readings; to perform 

the 3-D motion tracking with a reduced computational complexity, thus leading to a lower cost 

of the system. Moreover, the proposed subpixel point detection algorithm contributes to further 

reduction of the cost of the system as the resolution of the camera can be reduced while 

maintaining the precision of point detection algorithm. This in turn has a direct impact on the 

processing requirements of the WP allowing a low-cost architecture to be used. Thus, the 

proposed system offers a viable alternative to the more expensive alternatives in the SOA. 

Although it did not achieve higher accuracy in terms of positional tracking than the leading 

systems in the SOA, it is accurate enough for many application spaces where affordability is an 

important consideration, such as the ST. 

6.1 Key Contributions and advancements in the State-Of-The Art 

The key contributions to the SOA are listed below, in the order of importance: 

• A new multimodal sensor fusion algorithm for 3-D pose detection using wearable opto-

inertial tracker and two external points of reference 

• A new system architecture for efficient 3-D pose detection for human motion tracking 

applications 

• A new subpixel point detection algorithm for efficient point detection at subpixel level to 

allow to for reduction of camera’s resolution, thus allowing a user to use lower resolution of 

the camera without sacrificing the precision of point detection 

• A new reference point estimation algorithm for finding positions of reference points used in 

future research activities  
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• A proof-of-concept novel demonstrator prototype that implements the proposed system 

architecture and multimodal sensor fusion algorithm 

6.2 Future Work 

The work described in this thesis offers opportunities to progress the field of research associated 

with low-cost multimodal sensing systems. This thesis was focused on developing the novel 

algorithms and proving the concept, as well as the accuracy and speed of the proposed system, 

which was achieved. However, there is room for improvement which is mainly an engineering 

task at this stage. Future work will involve further development and testing of the proposed 

system. Specifically, there are several key directions for these activities: 

• Demonstrator System: The proposed system should be optimised. This involves mainly 

engineering tasks. One of the main tasks includes the optimisation of the implementation 

of the sensor fusion algorithm to maximise the framerate. This will include the 

implementation of event-driven or multithreaded software architectures to let algorithm 

run smoothly. This is necessary, because the current implementation, described in Chapter 

6, assumes that the IMU and camera update rates are equal, which is generally not the 

case. Secondly, the image processing tasks need to be made computationally more 

efficient. To that end, the resolution of the camera needs to be reduced by a factor of 2 or 

possibly more. The loss of precision in locating the centres of points of interest can be 

prevented with the use of the proposed subpixel point detection algorithm. These 

improvements will at least double the framerate, from the current 20 FPS to more than 

40 FPS. Also, a computationally efficient lens correction should be applied in future 

iterations to increase the accuracy of point detection. Perhaps, the lens correction could 

be applied to the two detected points as opposed to correcting the entire input frames 

which could significantly reduce the computational load associated with it. Finally, a 

more precise IMU and/or the accompanying orientation estimation algorithm could be 

considered, as error in orientation has an impact on the accuracy of the novel sensor 

fusion algorithm. At that stage, the demonstrator system will be ready for further 

validation and field trials. 

• Performance Validation with Human Subjects: While the algorithms are proven and 

validated in lab testing, the proposed system and algorithms for position tracking 

described in this thesis need to be validated with human subjects in a “Gold Standard” 
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motion capture. Once its performance has been optimised, i.e. its framerate is high 

enough for performing human motion tracking in real-time, the system validation with 

human subjects can be carried out. Initially, an experimental protocol needs to be 

designed collecting data from individuals. The ST exercise, barbell squat, will be the first 

motion pattern to be used in validating the performance of the proposed system; with a 

motion pattern similar to that described in Chapter 5. Further experimentation is also 

recommended, especially such that can determine the performance in different use cases. 

• Miniaturisation and Embedded System Design: Once the validation process has been 

completed, a highly miniaturised prototype system needs to be developed to make the 

vision of this project become reality. This work again will include mainly the engineering 

tasks. An embedded system could be developed that will comprise the miniature version 

of the WP and the two external points of reference, i.e. IR LEDs, as well as the novel 

algorithms described in this thesis, which are at the heart if this system. 

• Further Testing and Potential Commercialisation: The miniature version of the 

proposed system needs to be further tested to prove its performance and potential 

commercial viability. The final activity of the future work is to explore the routes for 

potential commercialisation of this system. In this context, the IDFs (Invention 

Disclosure Forms) have been developed and submitted to the Technology Transfer Office 

in University College Cork, capturing the novel intellectual property developed and 

described in this thesis for potential exploitation through start-up or licensing activities. 
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