
godash 2.0 - The Next Evolution of HAS Evaluation
John O’Sullivan†, Darijo Raca∗ and Jason J. Quinlan†

∗Faculty of Electrical Engineering, University of Sarajevo, Sarajevo, BiH. Email: draca@etf.unsa.ba
†Computer Science & Information Technology, University College Cork, Ireland. Email: j.quinlan@cs.ucc.ie

Abstract—In this short demo paper, we introduce godash 2.0
godash is a headless HTTP adaptive streaming (HAS) video
streaming platform written in the Google programming language
GO. godash has been extensively rewritten for this release so as
to provide ease of use, and a host of new features. godash includes
options for eight different state of the art adaptive algorithms, five
HAS profiles, four video codecs, the ability to stream audio and
video segments, two transport protocols, real-time output from
five Quality of Experience (QoE) models, as well as a collaborative
framework for the evaluation of cooperative HAS streaming. go-
dash also comes complete with its own testbed framework known
as godashbed. godashbed uses a virtual environment to serve video
content locally (which allows setting security certificates) through
the Mininet virtual emulation tool. godashbed has options for
large scale evaluation of HAS streaming using 4G/5G bandwidth
traces, various modes of background traffic, and a choice of
web server, namely: Web Server Gateway Interface (WSGI) and
Asynchronous Server Gateway Interface (ASGI). In this manner,
godash provides a framework for rapid deployment and testing
of new HAS algorithms, QoE models and transport protocols.

I. INTRODUCTION

On-demand video streaming is growing faster than content
or network providers could imagine. With the global release of
Disney+ in 2020, and with over 50 million Disney+ subscribers
within weeks, the demand for high quality video content seems
unabated. Couple this demand across all service providers
and there are over 700 million unique subscriptions typically
streaming content using a HAS model for adaptive delivery.
This level of demand mandates considerable research into
efficient and scalable delivery of HAS content. To this end,
we developed godash [1], [2]. godash is a headless (non
decoding) HAS platform for the development, evaluation and
implementation of novel adaptive models and techniques for
large-scale delivery of HAS content.

II. GODASH DESIGN AND CONFIGURATION

Due to page limitation, in this section we introduce the
options and configuration setup available in godash, that we
will present in the demo session. A detailed overview of
godash is presented in [1]. Installation scripts for godash,
godashbed and associated dependencies for Ubuntu 20.04 are
freely available to download1.

godash utilises a command-line terminal interface to build
and deploy the player using the Google programming language
GO (golang). The easiest option available to run the player as
shown in listing 1, is to use the pre-defined configuration file
(example shown in listing 2).

1http://bit.ly/2WZRTZ8

1 # ./godash −−config ./config/configure.json

Listing 1: Command to run a single godash client using a
configuration file

{
” a d a p t ” : ” c o n v e n t i o n a l ” ,
” codec ” : ” h264 ” ,
” debug ” : ” on ” ,
” i n i t B u f f e r ” : 2 ,
” maxBuffer ” : 60 ,
” maxHeight ” : 1080 ,
” s t r e a m D u r a t i o n ” : 20 ,
” s t o r e D a s h ” : ” on ” ,
” o u t p u t F o l d e r ” : ”123456” ,
” l o g F i l e ” : ” l o g f i l e 2 ” ,
” g e t H e a d e r s ” : ” o f f ” ,
” t e r m i n a l P r i n t ” : ” on ” ,
” p r i n t H e a d e r ” :

”{\” Algo r i t hm \” :\” on\” ,\” Seg Dur \” :\” on\” ,
\” Codec \” :\” on\” ,\” Width \” :\” on\” ,
\” H e i gh t \” :\” on\” ,\” FPS\” :\” on\” ,
\” P lay Pos \” :\” on\” ,\”RTT\” :\” on\” ,
\” Seg Repl \” :\” o f f \” ,\” P r o t o c o l \” :\” on\” ,
\”P . 1 2 0 3\” :\” on\” ,\” Clae \” :\” on\” ,
\”Duanmu\” :\” on\” ,\” Yin \” :\” on\” ,
\”Yu\” :\” on\”}” ,

” e x p R a t i o ” : 0 . 2 ,
” q u i c ” : ” o f f ” ,
” u s e T e s t b e d ” : ” on ” ,
” u r l ” :

” [h t t p : / / godashbed . o rg / 4 K d a t a s e t / 4 sec / x264 / bbb /
DASH Files / f u l l / bbb enc x264 dash v ideo . mpd] ” ,

”QoE” : ” on ” ,
” s e r v e r a d d r ” : ” on ”

}

Listing 2: Sample godash configuration file

Options are also available to call godash using each indi-
vidually parameter available in the configuration file (sample
shown in listing 3).

1 # ./godash −url ”[<mpd url>]” −adapt conventional \
2 −codec h265 −debug on −initBuffer 2 \
3 −maxBuffer 20 −maxHeight 1080 \
4 −streamDuration 10 −storeDASH on −debug on \
5 −terminalPrint on −outputFolder 123456 \
6 −logFile log file 2

Listing 3: Command to run a single godash client using
individual parameters (only some parameters shown)

Based on the configuration file, godash provides options for:
• -adapt : adaptation algorithms such as - Hybrid: Ar-

biter+ [3] and Elastic [4], Buffer Based: Logistic [5] and
BBA [6], and Rate Based: Conventional [7], Progressive,
Average, Geometric and Exponential.2

2The last four are averaging methods for measured throughput and not full
fledged implementation, but serves as good baseline in experiments

• -codec : video codec: h264, h265, VP9 and AV1
• -debug : video stream debug option for printing informa-

tion
• -initBuffer : defining the initial number of segments to

download before stream starts (start up phase)
• -maxBuffer : defining the maximum stream buffer in

seconds
• -maxHeight : defining a maximum height resolution to

stream
• -streamDuration : duration in seconds of content to down-

load
• -storeDash : ability to store the downloaded audio/video

segments
• -outputFolder : defining a folder location to store the

streamed DASH files
• -logFile : optional name to give the output log file
• -getHeaders : MPD url header information extracting for

all segments
• -terminalPrint : printing log output to file/terminal

columns based on selected print headers
• -printHeader : print the optional output logs
• -expRatio : used by some of the algorithms
• -quic : video streaming using the TCP/QUIC transport

protocol (“quic” : “off”, means use TCP)
• -useTestbed : using godashbed
• -url : url to the HAS MPD file to use. The AVC and HEVC

multi-profile UHD dataset [8] is used in this instance
• -QoE : five well-known QoE metrics from the literature.

Our choice of models are: the standardised ITU-T Rec.
P.1203 QoE model [9] (where we implement mode 0),
Claey [10], Dunamu [11], Yin [12], and Yu [13]

• -serveraddr : collaborative framework for sharing DASH
content between multiple clients using consul [14] and
gRPC [15]

While not specifically shown in the configuration file, godash
also provides options for streaming audio and video HAS
segmented content, and supports five HAS profiles: full, main,
live, full byte range and main byte range.

While godash is typically utilised using a single client,
we also provide an additional option for testing of godash
using a small-scale number of clients, using the ‘evaluate’
folder. Listing 4 offers a sample call to the ‘./test goDASH.py‘
script in the ‘evaluate’ folder. As can be seen, the script also
provides the option of deploying godash clients using the
collaborative framework. We define collaborative as a means of
sharing HAS content locally between clients using consul [14]
(automate network configurations and service discover frame-
work) and gRPC [15] (pen-source high-performance remote
procedure call frame-work), thus reducing demand on the
backhaul network(s).

1 # python3 ./test goDASH.py −−numClients=10 \
2 −−terminalPrint=”off” −−debug=”off” \
3 −−collaborative=”off”

Listing 4: Template to multiple godash clients

III. GODASHBED DESIGN AND CONFIGURATION

As stated, godash also comes complete with its own testbed
framework, known as godashbed [16]. godashbed uses a virtual
environment to serve video content locally (which allows set-
ting security certificates) through the Mininet virtual emulation
tool and provides a greater range of environments in which to
evaluate large scale HAS delivery.

godashbed provides options for:
• –bw-net, -b - Bandwidth of bottleneck link
• –delay - Delay in milliseconds of bottleneck link
• –numruns - Number of times experiment will be repeated

(default 1). This number is based on number of files in
the ’traces’ folder. We include one trace from two existing
cellular trace datasets (4G [17] and 5G [18]) in godashbed,
for ease of use.

• –voipclients - Number of voip clients (default 0). VOIP
background traffic is provided through the Distributed
Internet Traffic Generator (D-ITG) [19]

• –videoclients - Number of video clients (default 0)
• –tm - Transport mode (TCP - HTTP/HTTPS or QUIC -

HTTPS)
• –duration - Duration of experiment in seconds
• –bwKPI - Name of the column indicating throughput

(default=”DL bitrate”)
• –debug - Print output of godash to a log file
• –terminalPrint - output godash logs to the commandline
• –server - Choice of Web server hosting HAS content -

Caddy 2 [20] - Web Server Gateway Interface (WSGI -
TCP/QUIC), and Hypercorn/Quart [21] - Asynchronous
Server Gateway Interface (ASGI - TCP/QUIC)

• –collaborative - Run the evaluation in collaborative mode,
and share content between the clients (based only on client
requests) - currently TCP only

Through these settings, godashbed accommodates large-
scale evaluation of numerous HAS environments. Thus offering
a dynamic, adaptive and scalable framework for HAS evalua-
tion.

IV. EXPERIMENTAL RESULTS

In this section, we present sample evaluation results for a
single client streaming in a three client collaborative video
only streaming session. Table III, presents the notion used in
the godash output logs. The output logs generated by godash
can be broken into three distinct outputs, namely Default (an
example of which is shown in Table I), Optional and QoE
(both shown in Table II) (These logs were generated by the
configuration settings shown in Listing 2)

As can be seen, the ouput logs are sufficiently detailed to of-
fer numerous features upon which evaluate can be determined.
These include QoE values and their variance, transmission
protocols, and delivery time. If we focus on ‘Del Time’ from
Table I, we can see that segment 5 was requested locally, as
the delivery time is very low (and Del Rate very high) in
comparison to other similarly sized segments. We can also see
that the RTT, from Table II, for this segment is also low in
comparison to previous segment requests.

TABLE I: Sample Default trace output from godash - conventional algorithm and 4-second segment duration

Seg # Arr time Del Time Stall Dur Rep Level Del Rate Act Rate Byte Size Buff Level

1 490 256 0 237 1534 98 49093 4000
2 3313 611 0 1085 14616 2232 1116360 8000
3 6121 1362 0 3832 16025 5456 2728417 9192
4 9426 1681 0 4282 9502 3993 1996631 9887
5 11514 464 0 4282 34173 3964 1982069 11800

TABLE II: Sample Optional — QoE output from godash - conventional algorithm and 4-second segment duration

Seg # Algorithm Seg Dur Codec Width Height FPS Play Pos RTT Protocol P.1203 Claey Duanmu Yin Yu

1 conventional 4000 h264 320 180 60 0 74.922 HTTP/1.1 1.871 0.000 46.465 -11762.149 0.238
2 conventional 4000 h264 640 360 60 4000 188.692 HTTP/1.1 2.543 0.163 40.823 -23524.298 0.661
3 conventional 4000 h264 1920 1080 60 8000 193.372 HTTP/1.1 3.288 0.097 48.888 1560.751 1.719
4 conventional 4000 h264 1920 1080 60 12000 322.236 HTTP/1.1 3.558 0.169 53.060 5393.492 2.359
5 conventional 4000 h264 1920 1080 60 16000 96.492 HTTP/1.1 3.701 0.235 55.752 9675.827 2.744

TABLE III: Notation used in the godash Trace Output logs

Type Description
Default Output:
Seg # Streamed segment number
Arr Time Arrival time in milliseconds (ms)
Del Time Time taken to receive the segment (ms)
Stall Dur Stall duration (ms)
Rep Level Representation Quality (kbps)
Del Rate Delivery rate (kbps) Byte Size ∗ 8 bits

Del Time

Act Rate Actual rate (kbps) Byte Size ∗ 8 bits
Seg Dur in seconds

Byte Size Byte size of this segment
Buffer Level Buffer level (ms)
Optional Output: determined by ‘printHeader’ config option
Algorithm Adaptive Algorithm
Seg Dur Segment duration (ms)
Codec Video encoder
Width Representation width in pixels
Height Representation height in pixels
FPS Frame rate of the streamed video
Play Pos Current Playback position (ms)
RTT Packet level (ms)
Protocol HTTP protocol
QeM Output: determined by ‘QoE’ config option
P.1203 P.1203 standard - scale [0, 5]

Clae Clae model - scale [0, 5]

Duanmu Duanmu model - scale [0, 100]

Yin Yin model - scale dependent on HAS bitrates
Yu Yu model - scale [0, 5]

V. CONCLUSION

In this short demo paper we presented an overview, config-
uration steps and results for godash - a headless HAS video
streaming platform and godashbed - a testbed framework for
large-scale HAS evaluation. This demo illustrates the ease of
use of the godash platform and its various components, while
also offering a framework for rapid deployment and testing of
new HAS algorithms, QoE models and transport protocols.

Acknowledgement:The authors acknowledge the support
of Science Foundation Ireland (SFI) under Research Grant
13/IA/1892 and European Regional Development Fund under
SFI Grant 13/RC/2077.

REFERENCES

[1] D. Raca, M. Manifacier, and J. J. Quinlan, “goDASH - GO accelerated
HAS framework for rapid prototyping,” in Proceedings of the 12th
International Conference on Quality of Multimedia Experience, 2020.

[2] “godash - GO accelerated HAS framework for rapid prototyping,”
https://github.com/uccmisl/godash, accessed: 2020-05-25.

[3] A. H. Zahran et al., “ARBITER+: Adaptive Rate-Based InTElligent
HTTP StReaming Algorithm for Mobile Networks,” IEEE Transactions
on Mobile Computing.

[4] L. D. Cicco et al., “ELASTIC: A Client-Side Controller for Dynamic
Adaptive Streaming over HTTP (DASH),” in 2013 20th International
Packet Video Workshop.

[5] Y. Sani et al., “Modelling Video Rate Evolution in Adaptive Bitrate
Selection,” in 2015 IEEE International Symposium on Multimedia (ISM),
Dec 2015, pp. 89–94.

[6] T. Huang et al., “A Buffer-based Approach to Rate Adaptation: Evidence
from a Large Video Streaming Service,” in Proceedings of the 2014 ACM
Conference on SIGCOMM, ser. SIGCOMM ’14.

[7] Z. Li et al., “Probe and Adapt: Rate Adaptation for HTTP Video Stream-
ing At Scale,” IEEE Journal on Selected Areas in Communications,
vol. 32, no. 4, pp. 719–733, April 2014.

[8] J. J. Quinlan et al., “Multi-profile Ultra High Definition (UHD) AVC
and HEVC 4K DASH Datasets,” in 9th ACM MMSys Conference.

[9] W. Robitza et al., “HTTP Adaptive Streaming QoE Estimation with ITU-
T Rec. P. 1203: Open Databases and Software,” in 9th ACM Multimedia
Systems Conference, ser. MMSys ’18, 2018, pp. 466–471.

[10] S. Petrangeli et al., “QoE-Driven Rate Adaptation Heuristic for Fair
Adaptive Video Streaming,” ACM Trans. Multimedia Comput. Commun.

[11] Z. Duanmu et al., “A Quality-of-Experience Database for Adaptive Video
Streaming,” IEEE Transactions on Broadcasting, vol. 64, no. 2, pp. 474–
487, June 2018.

[12] X. Yin et al., “A Control-Theoretic Approach for Dynamic Adaptive
Video Streaming over HTTP,” in 2015 ACM Conference on Special
Interest Group on Data Communication, ser. SIGCOMM ’15, 2015.

[13] L. Yu et al., “QoE-Driven Dynamic Adaptive Video Streaming Strategy
With Future Information,” IEEE Transactions on Broadcasting, Sep.

[14] “Consul - Automate network configurations and service discover frame-
work,” https://consul.io, accessed: 2020-05-25.

[15] “GRPC - open-source high-performance remote procedure call frame-
work,” https://godoc.org/google.golang.org/grpc, accessed: 2020-05-25.

[16] “godashbed - Testbed framework for HAS streaming,”
https://github.com/uccmisl/godashbed, accessed: 2020-05-25.

[17] D. Raca et al., “Beyond Throughput: A 4G LTE Dataset with Channel
and Context Metrics,” in 9th ACM MMSys Conference.

[18] ——, “Beyond Throughput, The Next Generation: a 5G Dataset with
Channel and Context Metrics,” in 11th ACM Multimedia Systems Con-
ference, ser. MMSys ’20, 2020.

[19] A. Botta et al., “A tool for the generation of realistic network workload
for emerging networking scenarios,” Computer Networks, vol. 56, 2012.

[20] “Caddy2 is a powerful, extensible platform to serve sites, services, and
apps, written in Go,” https://caddyserver.com/v2, accessed: 2020-05-25.

[21] “Hypercorn - an Asynchronous Server Gateway Interface (ASGI) web
server ,” https://pgjones.gitlab.io/hypercorn/, accessed: 2020-05-25.

