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Abstract—Human motion tracking systems are widely used in 

various application spaces, such as motion capture, rehabilitation, 

or sports. There exists a number of such systems in the State-Of-

The-Art (SOA) that vary in price, complexity, accuracy and the 

target applications. With the continued advances in system 

integration and miniaturization, wearable motion trackers gain in 

popularity in the research community. The opto-inertial trackers 

with multimodal sensor fusion algorithms are some of the common 

approaches found in SOA. However, these trackers tend to be 

expensive and have high computational requirements. In this 

work, we present a prototype version of our opto-inertial, motion 

tracking system that offers a low-cost alternative. The 3D position 

and orientation are determined by fusing optical and inertial 

sensor data together with knowledge about two external reference 

points using a purpose-designed data fusion algorithm. An 

experimental validation was carried out on one of the use cases that 

this system is intended for, i.e. barbell squat in strength training. 

The results showed that the total RMSE in position and orientation 

was 32.8 mm and 0.89 degree, respectively. It operated in real-time 

at 20 frames per second. 

Keywords—Internet of Things, Opto-inertial, Motion, Tracking, 

Embedded, Low-Cost, Sensor Fusion 

I. INTRODUCTION 

Multimodal sensor fusion is a common approach in the design 

of many motion tracking systems. It is based on using more than 

one sensor modality to measure different aspects of a 

phenomenon and capture more information about it than what 

would be available otherwise from a single sensor. Multimodal 

sensor fusion algorithms often leverage the complementary 

nature of the different sensor modalities to compensate for their  

individual shortcomings. This approach is particularly suitable 

for low-cost and highly miniaturised wearable human motion 

tracking systems that are expected to perform their function 

with limited resources at their disposal (energy, processing 

power, etc.). Such wearable systems can be considered an 

alternative to the more complex and expensive systems that are 

commonly used in application spaces such as: motion capture, 

biomechanical motion analysis or rehabilitation. Some of the 

most commonly used systems in the industry include the Vicon, 

OptiTrack or the generally less expensive, but also less robust, 

Kinect system [1-3]. These systems are classified as “outside-

in” systems, i.e. the cameras are outside the tracked object and 

look in to keep track of points of interest such as Infrared (IR) 

markers.  

In recent years, “inside-out” trackers where processing of 

position is calculated on the wearable embedded system, have 

attracted interest of the research community. With the 

miniaturization and increasing processing power of electronic 

systems, it is increasingly more feasible to use cameras 

embedded in the wearable devices themselves as the inside-out 

trackers, i.e. the camera is mobile and tracks its position based 

on points of reference in the environment in its Field of View 

(FoV). This methodology is widely used in mobile robotics to 

help the robots navigate in buildings using a broad category of 

algorithms referred to as Simultaneous Localisation And 

Mapping (SLAM) [4]. However, such inside-out trackers 

continue to have high processing requirements and require 

hardware that is found in modern smartphone devices [5]. The 

addition of vision sensors in wearable motion tracking has many 

advantages, the most important of which is the ability to 

determine the absolute position based on some fixed reference 

points. However, it is a challenging task as cameras impose high 

processing requirements for real-time operation. The image 

processing algorithms involved in finding the points of 

reference require significant computational power. Moreover, 

the 3-Dimensional (3-D) pose, i.e. its position and orientation, 

estimation algorithms are generally mathematically complex. In 

most cases, the use of some form of SLAM is involved and 

specifically the task of solving the Perspective-n-Point problem 

(PnP) [6]. However, the miniaturised, low-cost and battery-

operated wearable devices do not meet such requirements. One 

of the leading inside-out opto-inertial motion tracker in the SOA 

is the IS-1500 system developed by Thales Intersense [7]. It is 

a highly accurate system with typical error within 2 mm. 

However, it requires high processing power, with externally 

connected consumer-grade laptop computer and at least four 

known points of reference. Thus, it is not a suitable solution for 



many applications that require low-cost trackers. Therefore, 

alternative low-cost approaches are developed to overcome 

these limitations. To this end, the processing requirements of 

these opto-inertial systems are reduced. Firstly, the number of 

reference points being tracked is reduced, e.g. IR LEDs. In 

general, the fewer points the camera is to track, the less 

computationally intensive the point tracking task is. Secondly, 

the pose estimation algorithms are simplified. For instance, the 

solution to the PnP problem requires at least three points of 

reference and complicated mathematical operations [6, 8]. 

Recent works in the literature show that the number of points of 

reference can be reduced to two by integrating an Inertial 

Motion Unit (IMU) in the tracking system and fusing the two 

sensor modalities (optical and inertial); using the 

complementary nature of these two sensor modalities. Two 

examples of such systems were proposed by two groups of 

researchers, i.e. Li et al. and Maereg et al. [9, 10]. These two 

systems are outside-in opto-inertial motion trackers that both 

use external cameras with an IMU installed in the mobile 

platform. The 3-D pose is determined by fusing data from the 

two sensor modalities.  

The works of Li et al. and Maereg et al. were the inspiration 

of the work described in this paper. Whereas their works 

described outside-in systems, this paper describes the 

embedded prototype of an inside-out, monocular, opto-inertial 

tracker that also requires only two points of reference. In this 

paper, an embedded prototype system is presented and 

experimentally validated. The described prototype uses low-

cost hardware and all computations are carried out on the 

microcontroller unit (MCU) on the wearable device. This is 

made possible due to the novel data fusion algorithms designed 

to operate on low-cost, resource-constrained, embedded 

systems. The system described consists of a wearable smart 

sensor system, referred to as Wearable Platform (WP), which 

incorporates the two sensor modalities, i.e. monocular camera 

(optical) and IMU (motion). The WP operates in conjunction 

with two optical points of reference embedded in the ambient 

environment to enable positional tracking in that environment. 

In addition, a novel multimodal sensor fusion algorithm is 

utilized which uses the complementary nature of the vision and 

IMU sensors in conjunction with the two points of reference in 

the ambient environment. It determines the 3-D pose of the WP 

in a computationally efficient way. This prototype system is 

based on our previous work [11, 12]. 

II. METHODOLOGY 

A proof-of-concept prototype of the inside-out motion tracking 

system was developed. It is a low-cost embedded system that 

incorporates vision and IMU technologies in an MCU-based 

wearable device. The WP runs the proposed novel algorithms for 

3-D motion tracking with two external reference points placed 

in the ambient environment. The objective was to test how 

feasible it was to successfully implement the proposed system in 

the context of low-cost and resource-constrained conditions. The 

general architecture of the system, along with its typical 

workspace, is shown in Fig. 1.  

 

The prototype implements the proposed system architecture 

and the novel multimodal sensor fusion algorithm for 3-D pose 

detection as described in our previous works [11, 12]. The WP 

incorporates the camera and IMU sensor modalities, along with 

an MCU and telecommunications capability for controlling the 

intensity of the two IR LEDs. The typical size of the workspace, 

or work envelope, is also shown. The size of the work envelope 

can be varied by changing the distance between the two IR 

LEDs, their number and positioning; followed by updating the 

configuration of the embedded sensor fusion algorithm on WP’s 

MCU. 

A small form-factor development platform that incorporated 

a camera module was selected for this task. The OpenMV Cam 

H7 development board was used in this task which is suitable 

for wearable applications [13]. This is an MCU-based platform 

designed for rapid prototyping of projects that incorporate 

machine vision. It uses an Arm Cortex-M7 STM32H743VI 

MCU, which is powerful enough to perform real-time image 

processing tasks while being embeddable in small, low-cost, 

and energy efficient wearable devices, such as the WP [14]. The 

WP system includes two sensor modalities, i.e. vision and IMU. 

To this end, the prototype incorporated the MT9V034 global 

shutter camera module which comprises of the image sensor 

and a fixed-focus lens [15]. The camera module includes a 

custom developed optical IR filter which was attached to the 

camera’s lens, to allow the camera to detect the IR light 

spectrum only; which is at the same wavelength as that emitted 

by the IR LEDs [16]. The IMU used for the implementation was 

the MPU9250 [17]. Additionally, a WiFi shield was added to 

enable wireless communications [18]. The miniaturised 

prototype is shown in Fig. 2 (a) and (b); with the associated 

building blocks of the proposed technology highlighted. The 

WP works with the two known external points of reference, i.e. 

the IR LEDs, as shown in Fig. 3. 

Fig. 1:  Wearable Platform with the two IR LEDs and the typical workspace 



 

 

The WP ran embedded code written in MicroPython which 

is an implementation of the Python 3 programming language 

that contains a small subset of standard Python libraries 

optimised for resource-constrained MCUs [19]. The 

multimodal sensor fusion algorithm that runs on the embedded 

WP is described in detail in the following work [12].  This 

algorithm computes the 3D pose (position and orientation) of 

the WP as follows. In each frame, the images of the two IR 

LEDs are captured by the camera and their coordinates on the 

pixel array are determined using image processing techniques, 

e.g. point detection. The sensor fusion algorithm uses the 

geometries formed by the camera and the two points of 

reference, along with the front-plane pinhole camera model, i.e. 

pinhole model with image plane in front of the optical centre to 

compute the 3D pose. A triangle is formed with vertices 

coincident with the two IR LEDs and the optical centre of the 

camera. The knowledge of the camera’s properties, such as 

focal length and pixel size, along with the distance between the 

two IR LEDs enables the use of trigonometry to solve for the 

lengths of the segments of this triangle, i.e. using similar 

triangles. The orientation angles of the WP, determined by its 

IMU, provide the missing pieces of information to compute the 

complete 3D Pose. Hence, the described algorithm calculates 

the 3D pose by fusing the input data from visual and inertial 

sensor modalities. The algorithm was implemented in 

MicroPython as a custom class that could be imported into the 

main program’s file. Fig. 4 shows a screenshot of the OpenMV 

Integrated Development Environment (IDE) software during 

one of the tests of the proposed system. The top-right-hand side 

of the IDE’s window shows the input image frame with the two 

reference points, i.e. IR LEDs, and their pixel coordinates. The 

result of the latest 3-D pose computation is also superimposed 

at the bottom of this input image frame. The 3-D pose was 

computed based on the input vectors defining the IMU rotation 

angles and positions of the two points of reference on the image 

plane Thzyx and P01, respectively. The Thzyx are the Euler 

rotation angles about z-y-x axes that describe orientation of the 

WP in World reference frame. The origin of the World 

reference frame is coincident with IR LED that corresponds to 

point P0, as shown in Fig. 3. The P01 is a vector that contains 

the coordinates of the two IR LEDs on the Image plane, i.e. 

points’ positions in pixel coordinate units. These two vectors 

are computed at the pre-processing stage that involved the point 

detection routines in images and the orientation angle 

estimation step using the IMU data and an open-source sensor 

fusion algorithm proposed by Madgwick et al. [20]. For each 

image frame, the pose was computed by making a call to the 

member function compute3dPosition of the pose3D object 

which was an instance of the custom MicroPython class that 

contained the implemented sensor fusion algorithm. The use of 

this function is shown in the highlighted line of code in Fig. 4. 

This line of code corresponds to the Data Fusion block shown 

in Fig. 5, which describes the general architecture of the 

embedded algorithm on the WP. The Data Fusion block 

contains the multimodal sensor fusion algorithm while the other 

blocks describe the tasks that are carried out in order to 

condition the input data; prior to passing it to the main Data 

Fusion block. The input parameters P01 and Thzyx, shown in 

Fig. 4, correspond to 𝑝𝐼  and 𝜃𝑊  in the block diagram, 

respectively; except for the order of elements in 𝑇ℎ𝑧𝑦𝑥 which 

was reversed. 

 

 

Fig. 2: Embedded prototype system: (a) Front view with camera, IMU and IR 
Filter; (b) Rear view with WiFi shield for communications feature 

(a) (b) 

Fig. 3: Two external reference points; IR LEDs; with a 50 cm distance between 

them; Origin of World Reference Frame is coincident with P0 

𝒚ෝ𝑾 

𝒛ො𝑾 𝒙ෝ𝑾 

Fig. 4: Embedded prototype Embedded Execution of the Proposed Multimodal 

Sensor Fusion Algorithm in OpenMV IDE in Real-Time 

Fig. 5: General Block Diagram of the Proposed Multimodal Sensor Fusion 

Algorithm, along with the Input Pre-Processing Stages 



A. Performance Evaluation 

The prototype was experimentally evaluated to determine the 

performance of the embedded version and its feasibility in the 

context of resource-constrained, MCU-based, wearable 

applications. The purpose of this experiment was to determine 

the performance of the embedded prototype system in terms of 

accuracy and execution time. A specific use case scenario was 

considered in this study. The repetitive linear motion along a 

vertical path was examined. It was designed to meet the 

requirements of one of the considered target application spaces. 

The specific motion pattern to be simulated was the barbell 

squat in the context of strength training, hence the repeated 

linear motion pattern. 

B. Experimental Setup 

The miniaturised wearable prototype system was evaluated in a 

mobile case scenario that was focused on a repetitive vertical 

motion pattern. The conditions in this evaluation procedure 

were such that the camera of the WP was able to capture the two 

points of references during the experimental runs. The 

embedded prototype of WP used the MT9V034 camera module 

[15]. The size of the work envelope was adjusted to ensure that 

two points of reference were always in the FoV of the 

MT9V034 camera module. As a result, an appropriate 

positioning of the embedded WP with respect to the IR LEDs 

was determined. Specifically, the WP was positioned at 𝑧𝑊 =
1.5 𝑚 and the range of motion along the vertical axis in World 

frame of reference was 𝑦𝑊 ∈< −0.55, 015 > 𝑚 , while the 

horizontal position was kept constant at 𝑥𝑊 = 0.25 𝑚 . The 

IMU was calibrated and the orientation angle measurements 

based on its output were used as an input in computing the 3-D 

pose in real-time. Likewise, the camera on the WP was set to a 

resolution of 640-by-480 pixels, and calibrated using Zhang’s 

camera calibration procedure [12]. Subsequently, the elements 

of the intrinsic parameter matrix were used to set the constants 

in the proposed algorithm by hardcoding them in the 

MicroPython implementation of this algorithm. These 

calibration parameters are also shown in the block diagram in 

Fig. 5. The number of 3-D pose measurements in the experiment 

was 𝑁 > 4700, while the framerate was more than 20 Frames 

Per Second (FPS). The 3-D pose was computed in real-time 

while the WP moved on the rail track in a repetitive manner; 

over eight up-down cycles. The period of each cycle T was 34 

seconds. The WP performed all the functions described in the 

block diagram in Fig. 5 in real-time during the data acquisition 

procedure, i.e. while the slider was in motion. The WP and its 

mounting on the vertical slider are shown in Fig. 6. The camera 

in the WP tracked two IR LEDs that were mounted on the 

laboratory’s wall, as shown in Figure 3. Additionally, the 

execution time was recorded to evaluate the processing 

requirements of the main elements of the embedded software. 

The three aspects of the embedded software were related to the 

following: machine vision, IMU data fusion, 3-D pose 

estimation algorithm. To that end, the IMU, vision and 3-D pose 

estimation tasks were assessed separately. 

 

The experiments were repeated five times to ensure the 

results were consistent and statistically significant. The results 

of one such run were reported in Section III. 

III. RESULTS AND DISCUSSION 

The validation trials have shown that the accuracy of the 

embedded prototype was consistent and in line with the 

expectations based on the results of the previous work. The key 

metric under scrutiny was the RMSE in position and orientation 

calculations, i.e. the 3-D pose. In these tests, the RMSE in the 

position and orientation calculations of the WP was computed 

and is shown in Table 1 and Table 2, respectively. The results 

show that the overall RMSE in position and orientation was 

3.28 cm and 0.8921 degree, respectively. The RMSE in 

orientation was determined in this experiment using the 

algorithm proposed by Madgwick et al. [20]. The results show 

that the RMSE in orientation was generally within the expected 

range as outlined by Madgwick et al., except for 𝜃𝑥
𝑊; which was 

1.4322 degrees. The relatively high total RMSE in position 

calculation had several contributing factors. Firstly, the WP was 

positioned at 𝑧𝑊 = 1.5 𝑚, which was at the furthest point along 

the  �̂�𝑊  axis in the work envelope for this specific system 

configuration. Secondly, the 3-D pose was computed in real-

time which resulted in the necessity to facilitate the maximum 

achievable framerate to capture the motion of the WP. To this 

end, the input images were not corrected for camera lens 

distortions. It reduced the computational requirements 

associated with processing the input frames, but it introduced 

additional error in the coordinates of the reference points. 

Moreover, the relatively high RMSE in the rotation angle 

about 𝑥ො𝑊-axis 𝜃𝑥
𝑊 , shown in Table 2, adversely affected the 

accuracy in position calculation along the 𝑦ො𝑊-axis in World 

frame 𝑃𝑦
𝑊 . As a result, the RMSE in 𝑃𝑦

𝑊  was high which 

significantly increased the total RMSE in position computation; 

reaching 5.45 cm. The remaining two position elements of the 

3-D pose vector 𝑃𝑊 were low. The execution time of the three 

Fig. 6: Experimental Setup: Small-Form-Factor WP was Attached to the 

Vertical Rail Track Slider; Facing the IR LEDs and the World Frame 

WP 
Motion 

Path 

Stepper 

Motor 

𝒚ෝ𝑾 

𝒛ො𝑾 

𝒙ෝ𝑾 



key aspects of the embedded software was determined. The 

breakdown of the results is shown in Table 3. The point 

detection in machine vision was the most time-consuming task. 

It is understandable since the algorithm needs to look for the 

points in all pixels in the given input image frame. A further 

reduction of the camera resolution and/or addition of the 

temporal element to the point tracking algorithm could mitigate 

this problem. The algorithm could be programmed to look for 

the points only in the areas of the image where they are expected 

to be, based on previous frames decrease the execution time of 

this task. 

Table 1: Experimental validation: RMSE in position calculation 

Position RMSE [m] 

𝑃𝑥
𝑊[𝑚] 0.0136 

𝑃𝑦
𝑊[𝑚] 0.0545 

𝑃𝑧
𝑊[𝑚] 0.0080 

Total [m] 0.0328 

Table 2: Experimental validation: RMSE in orientation calculation 

Orientation RMSE [m] 

𝜃𝑥
𝑊[𝑑𝑒𝑔] 1.4322 

𝜃𝑦
𝑊[𝑑𝑒𝑔] 0.4444 

𝜃𝑧
𝑊[𝑑𝑒𝑔] 0.3719 

Total [deg] 0.8921 

 

Table 3: Experimental validation: RMSE in orientation calculation 

Task Execution Time [ms] 

IMU: Orientation Computation 1.3 

Vision: Point Detection 30.3 

Sensor Fusion: 3-D Pose Detection 17.5 

 

Fig. 7 shows the output of the proposed embedded data fusion 

algorithm as a function of time, i.e. the position elements of the 

pose vector in World reference frame 𝑃𝑊 over eight up-down 

cycles of the WP. It shows the accuracy and repeatability of the 

algorithm in computing the 3-D position over time. 

IV. CONCLUSIONS AND FUTURE WORK 

This work describes an embedded proof-of-concept motion 

tracking system. This system was developed for experimental 

testing of its potential in real-world use cases. It used the MCU-

based machine vision development board OpenMV H7 and the 

MPU9250 IMU. Validation trials have been carried out to 

measure the accuracy of this wearable solution. The 

experiments simulated a mobile scenario in the considered 

sports application space using the example of a barbell squat in 

a strength training routine. The use case in which the WP is 

attached to an athlete’s back during executing the barbell squat 

was simulated to track the 3-D motion. Although the 

experiments were focused only on a single use case, the findings 

revealed its potential as a low-cost wearable alternative for 

other similar human various motion tracking application spaces 

that reach beyond sports such as those in the Industry 4.0.

Fig. 7: Experimentally Determined Position of the Small-Form-Factor Version of WP in Repetitive Linear Motion along yොW − axis  



The accuracy of the embedded version of the WP was 

consistent with the expectations which were based on our 

previous simulations and experimental work. Despite using 

different hardware components and configuration of the 

embedded WP, the embedded sensor fusion algorithm 

computed the 3-D pose with a comparable accuracy. Moreover, 

the embedded WP performed the motion tracking function in 

real-time, i.e. it ran the image processing/IMU orientation 

calculation, and the multimodal sensor fusion for the 3-D pose 

detection algorithms during the data acquisition process. The 

image processing involved in point tracking was the most 

resource intensive and time-consuming task in the embedded 

software. Despite that, it computed the 3D pose at a rate of over 

20 FPS. The total RMSE in position and orientation estimation 

was 3.28 cm and 0.89 degree, respectively. The RMSE in 

position calculation along the the 𝑦ො𝑊-axis in World frame 𝑃𝑦
𝑊 

was the highest and reached 5.45 cm. It was this high due the 

lens distortions that were significant near the inflection points 

along the 𝑦ො𝑊 -axis. Nevertheless, the proposed system 

demonstrates a potential to be a low-cost, inside-out, motion 

tracking alternative to the existing systems found in the SOA. 

The results show that it can provide a viable low-cost human 

motion tracking capability for sports applications, such as the 

barbell squats in the strength training; to name but a few. A 

further development work can decrease the RMSE by limiting 

the main sources of error, i.e. inaccuracies related to camera 

lens distortions and the IMU. Therefore, an improvement in 

these two aspects of the system can significantly reduce the 

error in 3-D pose estimation, thus further increasing the viability 

of this system in real-world use cases. Furthermore, future tests 

can be carried out using a battery powered WP. 
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