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A COMPARISON OF THREE METHODS FOR ESTIMATING VERTICAL GROUND 
REACTION FORCES IN RUNNING 

Dimitrios-Sokratis Komaris1, Eduardo Perez-Valero1, Luke Jordan2, John 
Barton1, Liam Hennessy2, Brendan O’Flynn1 and Salvatore Tedesco1 

Tyndall National Institute, University College Cork, Cork, Ireland1 
Setanta College Ltd, Thurles, Ireland2 

 
The purpose of this study was to compare different approaches for the estimation of 
biomechanical loads in running. A neural network, a biomechanical model, and a two-mass 
model were tested on the same data set. The predictions of the neural network were highly 
accurate for all considered running speeds (average RMSE, 0.11 BW). The biomechanical 
model returned statistically similar results (p=0.113, 0.14 BW), but with increasing RMS 
errors at high running speeds. Finally, the two-mass model estimates were independent of 
running speed, but were the least accurate (RMSE, 0.18 BW). 

KEYWORDS: Artificial neural networks, biomechanics, motion analysis, kinematics.

INTRODUCTION: Vertical ground reaction forces are usually linked to overuse running injuries 
(Hreljac, 2004) and their accurate measurement in running is typically carried out with the use 
of costly instrumented treadmills in laboratory grounds. In an attempt to indirectly measure 
VGRFs on open field, different methodological approaches that rely on wearable inertial 
measurement units were suggested (as reviewed by Ancillao et al., 2018). Such attempts 
typically employ artificial neural networks (ANN), biomechanical models, or mass-spring-
damper systems (Komaris et al., 2019a), with progressively accurate results. Yet, comparisons 
between the reported outcomes of different methods is unfeasible, since the efficiency of an 
algorithm is directly associated to the used dataset. The purpose of this work was to compare 
different techniques for the estimation of VGRFs on the same body of data. Three methods 
were tested: an ANN, a biomechanical model, and a two-mass model.  
 

METHODS: All three analyses in this study were carried out on the same public dataset 
(Fukuchi et al., 2017) of 28 subjects (age: 34.8 ± 6.6 years; height: 176 ± 6.7 cm; mass: 69.6 
±7.6 kg; gender: 27 males) running at 2.5, 3.5 and 4.5 m/s, for 30s at each condition. Running 
was captured with a twelve-camera system and an instrumented dual-belt treadmill, with 
sampling frequencies of 150 and 300 Hz, respectively. Raw recordings, along with further 
information on recruitment, laboratory configuration and testing are detailed by the authors of 
the dataset. Details on the three methodological approaches are reported below. 

ANN: a supervised, feed-forward ANN with backpropagation was built in Python (in line with 
Komaris et al., 2019b). The developed network consisted of a hundred-neuron input layer, a 
hidden layer of ten neurons utilising hyperbolic tangent as an activation function, and an output 
layer with a hundred linear neurons. Regulation was undertaken using dropout, while root 
mean square error (RMSE) was used as a loss function. Only the acceleration of the shanks, 
as computed by the markers’ position, was used as an input. Marker and force signals were 
filtered with a low-pass, second order, zero-phase shift Butterworth filter with a cut-off 
frequency of 25 Hz. Acceleration and GRF signals were both normalised to participants’ body 
weight, and scaled to 100 points extending from heel-strike to toe-off. The dataset was then 
divided into training (subjects 1 to 16), validation (subjects 17 to 22) and test sets (subjects 23 
to 28), and the network was trained and evaluated in the prediction of VGRFs. The combination 
of hypermeters (training epochs, batch size, and dropout rate) that optimised predictions were 
also identified by a grid search on the training set. 

Biomechanical Model: A straightforward biomechanical approach (in keeping with Komaris et 
al., 2019a) was implemented, with GRFs being estimated as the summation of two products 
of masses and accelerations: 𝑉𝐺𝑅𝐹 =  𝑚𝑡ℎ𝑖𝑔ℎ ∙ (𝑎𝑉,𝑡ℎ𝑖𝑔ℎ + 𝑔) + (𝑏𝑚 − 𝑚𝑡ℎ𝑖𝑔ℎ) ∙ (𝑎𝑉,𝑝𝑒𝑙𝑣𝑖𝑠 + 𝑔). 

A grid-search was carried out to reduce the overall prediction RMS error by optimising the 
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calculation of the thigh masses (mthigh), and the vertical accelerations of the thighs (𝑎𝑉,𝑡ℎ𝑖𝑔ℎ) 

and pelvis (𝑎𝑉,𝑝𝑒𝑙𝑣𝑖𝑠). For this, the dataset was divided into grid-search (subjects 1 to 22) and 

test sets (subjects 23 to 28). First, force waveforms were filtered as previously described, while 
marker data were up-sampled to reach the sampling rate of the instrumented treadmill. Next, 
during the grid search, spatial data were filtered with the same filter that was employed for the 
forces but with a broad range of cut-off frequencies (𝑓𝑐): 2−15 Hz for the pelvis and 10−50 Hz 
for the thigh markers, with 1 Hz intervals. Following their filtering, vertical marker positions 
were double differentiated, resulting in an approximation of the segments’ vertical acceleration. 
Along with the accelerations of the thighs and pelvis, the mthigh that reduced 𝑉𝐺𝑅𝐹 prediction 

errors was also explored, with values extending from 5−30% of the participant’s total body 
mass (𝑏𝑚), with 1% increments. Therefore, a total of 14,924 combinations per trail were 
examined at this stage. Finally, two-way ANOVAs and Tukey HSD tests were implemented to 
determine the effect of running speed and foot-strike pattern (forefoot or rearfoot) on the 𝑓𝑐 
and thigh masses that reduced the RMSE between measured and predicted GRFs. Optimum 
parameters for each speed and landing condition were then used to estimate loads in the test 
set (subjects 23 to 28). 

Two-Mass Model: The two-mass model (Clark et al., 2017) assumes that the vertical GRF 
waveform is formed by two overlapping cosine bell curves that are the products of the collision 
of the lower-limb mass (𝑚1) and the remaining body (𝑚2 = 𝑏𝑚 − 𝑚1) with the ground. 

Accordingly, 𝑚1 and 𝑚2 collisions are responsible for the impact and active peaks of the 
waveform, respectively. The model assumes constant-speed level running, and that the net 
vertical centre of mass displacement from step to step is equal to zero. Predictions are 
generated using body masses (𝑚1 = 0.08𝑏𝑚, as optimised by the original authors) and stride-
specific measures: contact time (𝑡𝑐), aerial time (𝑡𝑎), and the lower-limb vertical acceleration 
during impact (determined from Δv1/Δt1, Table II). For the computation of these measures, the 
position of the heel markers was used. Each bell curve is based on the raised-cosine function 
dependent on the aforementioned model parameters. In consonance with the preceding 
approaches, the predictions were calculated only for the recordings of subjects 23 to 28. 

Finally, a one-way ANOVA and post-hoc tests were conducted to determine statistically 
significant differences in the GRF predictions made from all three computational models. 
 

RESULTS: Recorded VGRFs and their estimates from the three considered approaches were 
averaged and graphed for each separate running speed of the test set (Figure 1). 
 

Table I: RMSE from the prediction of vGRFs as calculated by three computational models.  

Computational models RMSE (BW)  R2  
2.5 m/s 3.5 m/s 4.5 m/s All speeds  All speeds 

1: ANN 0.09±0.02 0.10±0.03 0.13±0.04 0.11±0.04  0.99±0.01 
2: Biomechanical model 0.09±0.01 0.13±0.01 0.19±0.01 0.14±0.04  0.99±0.01 
3: Two-mass model 0.18±0.05 0.17±0.04 0.18±0.04 0.18±0.04  0.98±0.03  

 

ANN: Both RMSE (Table I) and graphical representation (Figure 1, upper row) indicate that 
the predictions made from the ANN were highly accurate with an average error of 0.11 BW. 

Biomechanical Model: A grid search in the trials of 22 subjects was undertaken during the 
second methodological approach to optimise the filter’s 𝑓𝑐 and the thigh mass allocation as 

expressed in 𝑏𝑚 percentage. During the process, values that resulted in minimum prediction 
errors were logged and subjected to two-way ANOVAs and pairwise post-hoc comparisons to 
determine if the considered parameters are affected by running speed and foot-strike pattern. 
The effect of running speed to pelvis 𝑓𝑐 was statistically significant (p=0.05), and so was the 
foot-strike pattern to the 𝑓𝑐 of the thigh markers (p=0.035). There were no other statistically 

significant main effects or interactions. Average values for the 𝑓𝑐 of the pelvis (5, 6 and 7 Hz 
for the 2.5, 3.5 and 4.5 m/s, respectively) and thigh markers (17 and 25 Hz for the forefoot and 
rearfoot strikers, respectively) along with the thigh mass (0.143 of 𝑏𝑚 for all conditions) were 
then used to predict VGRFs in the latter part of the dataset (subjects 23 to 28) with satisfactory 
graphical (Figure 1, middle row) and numerical results (0.14 BW, Table I). 
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Two-Mass Model: Contrary to the former two approaches, the accuracy of the predictions by 
the two-mass model does not decline as speed increases (Table I). Model parameters are 
inherently dependant to running speed (Table II). Although the model overestimated the peak 
of the force, it accurately captured the unloading phase of the curve (Figure 1, bottom row).  
 

Table II: Input parameters for the two-mass model 
Speed tc (s) ta (s) Δt1 (s) ΔV1 (m/s) 

2.5 m/s 0.305±0.006 0.081±0.006 0.037±0.008 0.467±0.062 
3.5 m/s 0.258±0.005 0.104±0.005 0.035±0.005 0.668±0.082 
4.5 m/s 0.225±0.004 0.108±0.006 0.036±0.004 0.878±0.089 
All speeds 0.263±0.005 0.098±0.006 0.036±0.006 0.671±0.078 

 

 
Figure 1: Average predicted (orange line) and measured (blue line) VGRFs at different speeds 

(2.5, 3.5 and 4.5 m/s), as calculated by an ANN, a biomechanical, and a two-mass model. 
 

Even though the goodness-of-fit agreement between measurements and predictions 
approached unity for all methods (Table I), results by both the biomechanical and two-mass 
models are inferior to those obtained via ANN. A one-way ANOVA determined that the 
difference in the RMS prediction errors from the examined methodological approaches was 
statistically significant (p=0.001). Pairwise post-hoc comparisons further verified that both the 
ANN (p=0.001) and biomechanical model (p=0.015) were accompanied by lower errors as 
against the two-mass model. Even though the biomechanical approach failed to accurately 
predict the loading phase of the GRF waveform, the difference in the RMSE between this 
method and the ANN was non-significant (p=0.113). 
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DISCUSSION: To date, several authors researched methods to approximate running loads 
(as reviewd by Ancillao et al., 2018); yet, no direct comparisons among dissimilar 
methodological approaches were possible, since the quality of the results is conditioned by the 
employed dataset. Thus, the present manuscript details the first work to directly compare 
diverse methods for VGRF predictions in running based on body accelerometry. 
The estimations of the ANN in this study were of excellent accuracy (average speed: 0.11 BW) 
and in proportion with the results previously reported by the authors (0.13 BW, Komaris et al., 
2019b). As regards the biomechanical model, the authors previously applied the algorithm on 
a different data split of the same dataset (Komaris et al., 2019a), and reported comparable 
optimum values for all considered parameters: 6-7 Hz for the pelvis 𝑓𝑐; 20-24 Hz for the thigh 
𝑓𝑐; 14% of BM for the thigh mass. Furthermore, GRF estimation errors in this study (0.14 BW) 
were also in agreement to the previously reported statistics (0.14 BW, Komaris et al., 2019a). 
Likewise, the RMSEs of the two-mass model in this work (2.5 to 4.5 m/s: 0.18 BW) were in 
accordance to the values reported by the original authors of the model (3 to 6 m/s: 0.17 BW, 
Clark et al., 2017). As regards to the model parameters (Table II), the ΔV1 values were 
approximately half in value compared to the ones reported by Clark et al. (2017). In the authors’ 
opinion, this discrepancy may be due to the ankle (as originally proposed by Clark et al.) being 
substituted by heel markers; this, was due to the absence of malleoli markers on the used 
motion capture dataset. Finally, the limited capacity of the two-mass model to effectively predict 
the impact peak of the waveform (Figure 1) may be addressed by optimising the mass of the 
lower limb (𝑚1). 
Both the ANN and biomechanical model accurately predicted VGRFs at lower speeds (2.5 m/s: 
0.09 BW); yet, ANN estimation errors at higher running speeds grew at a lower rate (4.5 m/s: 
0.13 compared to 0.19 BW). GRF predictions from the two-mass model were not related to 
running speed but were followed by higher errors (Table I). Statistical tests and graphical 
illustration dictate that ANNs provide significantly more accurate predictions; however, given 
their “black-box” behaviour, if insights on the structure are required, biomechanical models 
may return fair waveforms with RMSEs comparable to those of an ANN (p=0.113). 
 

CONCLUSION: This is the first study that reports on the estimation accuracy of different 
algorithms in the prediction of VGRFs in running. Three methodological approaches were put 
to a test on the same dataset: an ANN, a biomechanical model, and a two-mass model. The 
ANN model returned the most precise illustration of the double-peaked curve, with an excellent 
depiction of the loading and unloading phases. Irrespective of the less appealing waveform 
estimation, the biomechanical model returned predictions with RMSEs statistically comparable 
to those of the ANN. Statistical tests also established that the results of the two-mass model 
are second to those obtained from both the ANN and biomechanical model. 
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