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     Abstract 

 

Nanoporous gold (NPG) electrodes were fabricated in film and wire array formats by 

selectively dealloying Ag from Au0.18Ag0.82. The ammonia borane (AB) oxidation 

reaction was studied by cyclic voltammetry at the NPG electrodes. The onset potential for 

the oxidation at NPG in a wire array format shifted to more negative potentials than that 

observed at a Au disc and higher currents were realised. An onset potential of -1.30 V vs. 

SCE was recorded which is 0.28 V lower than that at a Au disc. The oxidation current for 

20 mM AB in 1 M NaOH increased from 2.65 mA cm
-2

 at a Au disc to 13.1 mA cm
-2 

at a 

NPG wire array. NPG is a viable candidate as an anode catalyst for a direct ammonia 

borane fuel cell.  

 

 

Introduction  

Ammonia borane (AB) is a chemically stable, non-toxic, environmentally benign solid 

with a high hydrogen content (19.5 wt. %) which can be easily transported. It is a stable 

solid at room temperature and soluble in relatively polar solvents such as water and 

methanol. It can be safely handled at room temperature. It has been shown that hydrogen 

can be released from AB via catalytic hydrolysis
1-10

 or thermal decomposition.
11-14 

The 

rate of hydrolysis of AB (Eq. 1) is appreciable in the presence of a suitable catalyst 

 

NH3BH3 +  2 H2O    =   BO2
-
 + NH4

+ 
+  3H2

  
             1  

 

While Pt-based catalysts exhibit the highest activity for AB hydrolysis
8
 it was shown that 

lower cost catalysts such as Ni, Co, Cu and Fe
9
 have good catalytic activities for the 



reaction. Au-Co core-shell nanoparticles were shown to have excellent catalytic activity 

coupled to long term stability for AB hydrolytic dehydrogentation.
10

 AB can thermally 

decompose in the temperature range 340-410 K to liberate 2.2 mol H2 per mole of AB 

which is equivalent to a hydrogen storage density of 14.3 wt. %.
11

 The high energy 

density coupled with the moderate decomposition temperature makes AB an attractive 

hydrogen source for fuel cells. However it has been acknowledged that low temperature 

fuel cells such as those that power electronic devices would benefit from replacing 

hydrogen with liquid fuels in terms of safety and design simplicity. Liquid fuels such as 

methanol and ethanol have been used as a substitute to hydrogen for such fuel cells 

although their oxidations are sluggish. Direct oxidation of AB is a viable alternative that 

merits attention given its high capacity (5.2 Ah g
-1

) coupled to its high energy density 

(8.4 Wh g
-1

) which compares favourably with that of methanol (6.20 Wh g
-1

) and ethanol 

(8.0 Wh g
-1

).  

 

The direct electro-oxidation of AB (Eqn. 2) has been investigated at a Au microdisc
15

 and 

Au disc electrodes in alkaline media.
16,17

 High catalytic activity was demonstrated for AB 

oxidation at magnetically recyclable Fe-Pt core-shell nanoparticles with amorphous Fe 

cores.
18 

It has recently been proposed that if the direct electrochemical oxidation of AB 

occurs in a fuel cell a more negative potential and greater power can be obtained than 

indirectly releasing hydrogen as the fuel source.
16,17-21

 The standard-state potential of 

reaction (2) has been calculated as −1.216 V vs. SHE, which is 0.388 V more negative 

than the hydrogen electrode in an alkaline medium. A novel direct AB fuel cell (DABFC) 

can be proposed by combining the anodic oxidation of AB given by Eq. 2 and cathodic 

reduction of oxygen given by Eq. 3 to give an equilibrium voltage, of 1.616 V, Eq. 4,  

 



NH3BH3 + 6OH
-
     =   BO2

-
 + 4NH4

+
+ 4H2O + 6e

-  
  E0 =  -1.216 V vs. SHE 2  

 

1.5O2 + 3H2O + 6e
-
  =  6OH

-
        E0 =   0.40 V vs. SHE 3  

 

NH3BH3 + 1.5O2     =   BO2
-
 + NH4

+
 + H2O     E0 =  1.616 V   4  

 

The equilibrium voltage is almost as high that for a direct borohydride fuel cell (DBFC) 

(1.64 V). AB is stable in aqueous solution at pH ≥ 6.5 unlike borohydride which 

undergoes self-hydrolysis in alkaline solutions of pH< 9.
22

 Kreevoy and Jacobson
23

 

reported that the hydrolysis of NaBH4 depends on pH and temperature; 

 

log10t1/2=pH−(0.034T−1.92) 

 

where t1/2 is the half-life for the self-hydrolysis of the NaBH4 solution (min) and T the 

storage temperature (K). The half life at pH 12 at 298 K is 4.3 days. Hence, it is more 

effective for the aqueous NaBH4 solution to exist in an alkaline state with pH > 12 in 

order to prevent its self-hydrolysis. This is an advantage of a DABFC over a DBFC. The 

BO2
- 
byproduct can be converted into BH4

-
 upon reaction with MgH which

 
can then be 

converted into AB through reaction with diethyl ether.
16

 AB spontaneously yields 

BH3(OH)
−
 in alkaline solution. Careful selection of the anode catalyst in a DABFC 

coupled to a high OH
-
:BH3(OH)

−
 ratio is crucial in minimising unwanted competing 

heterogeneous hydrolysis of BH3(OH)
−
 given by Eq. 5 which results in non-faradaic 

hydrogen evolution thereby decreasing fuel utilisation and lowering cell performance.  

 

BH3(OH)
−
 + H2O = BO2

-
 +3 H2   

       
5    

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TH1-520M1VW-3&_mathId=mml1&_user=77869&_cdi=5269&_pii=S0378775311001169&_rdoc=1&_issn=03787753&_acct=C000006258&_version=1&_userid=77869&md5=1789501bfab1f844fc207476f1d91f2d


 

Au is an effective catalyst for oxidation of BH3(OH)
−
 and shows low catalytic activity 

with respect to its hydrolysis over a certain concentration range. The electrooxidation of 

AB at Au is believed to involve a CE type reaction; the chemical dissociation of BH3
 

from AB which reacts with OH
-
 to form BH3(OH)

−
 (Eq. 6) followed by electrochemical 

oxidation to B(OH)4
−
. The complete oxidation of BH3(OH)

−
 to B(OH)4

−
 follows a 

stepwise mechanism in which intermediates can either be hydrolysed to H2 or 

electrochemically oxidised (Eq. 7) such that n can range from 3 to 6, depending on how 

many electrons are lost to H2 formation.
24

 

 

NH3BH3 + OH
-
      =    NH3+ BH3(OH)

−
             6  

 

BH3(OH)
−
 + nOH

−
  =   B(OH)4

−
 + (3-0.5n) H2 + (n − 3) H2O + ne

−
     7  

 

In strongly alkaline solutions an n value of 6 is favoured for the electrooxidation of 

BH3(OH)
−
.
15,24

 AB was shown to oxidize at a Au microdisc in 1 M NaOH with maximum 

coulombic efficiency of 6 when the ratio of OH
-
:AB is sufficiently high to minimize 

competing hydrolysis at a 10 μm microdisc in 1 M NaOH.
15

 The oxidation commenced at 

a potential of -1.06 V vs. Ag/AgCl (-1.10 V vs. SCE) to produce two 3-electron steady-

state mass transport controlled at -0.65 V and -0.15 V vs. Ag/AgCl. Finkelstein et al.
25

 

and Zhang et al.
17

 showed that Au promotes the partial heterogeneous hydrolysis of 

BH3(OH)
−
 especially at low potential. Establishing a technology for a DABFC hinges on 

understanding the reaction mechanism and kinetics and the associated catalytic species at 

the anode. 

 



We have identified nanoporous Au (NPG) as a potential anode catalyst for a DABFC. 

NPG can be formed by dealloying which involves selective metal dissolution. This has an 

ancient history, Incan civilisations dealloyed Cu from the surface of Cu-Au alloys to 

create an illusion of a pure Au artefact known as depletion gilding. Forty
26

 showed that 

depletion gilding of a less-noble metal from Au alloys results in an open, continuous 

nanoporous Au structure. When the Ag component in an AgxAuy alloy is dissolved in 

acid the remaining Au atoms gather together in clusters to create a rough surface that 

causes Au to evolve into a porous material. The sponge-like 3D structure is a system of 

interconnecting pores/tunnels in a skeleton of filaments of the metal. The filaments can 

range from 5-50 nm in size with surface areas as high as 20 m
2
g

-1
 having a porosity of 

70 % or higher.  It was highlighted that NPG brings together two seemingly conflicting 

properties - high porosity and high strength.
27

 NPG was shown to be as strong as bulk Au, 

despite being a highly porous material and that its ligaments approach the theoretical 

yield strength of Au. Structurally NPG resembles naturally occurring zeolites
28

 (filament 

size 1-2 nm and surface areas 100 m
2 

g
-1

). This useful but relatively unstudied form of Au 

most likely contains an intrinsically high step density.  

 

Given that NPG has an interconnected, bicontinuous ligament network containing regions 

of both negative and positive curvature, a high step density is topologically required. This 

characteristic makes NPG attractive for catalysis studies; it is even more attractive 

because it can be formed into thin, high-conductivity foils that are easily adapted to 

electrocatalytic measurements. The bicontinuous open porous structure allows unlimited 

transport of molecules through the material. In terms of catalytic applications, NPG offers 

at least two advantages over other catalysts or supported Au nanoparticles. Firstly, NPG 

remains active at low temperature (room temperature or lower), unlike Pt or Pd 



catalysts.
29,30

  Secondly, NPG exhibits good thermal stability and resistance to oxidation
31

 

and thus can overcome the aggregation or sintering limitations which Au nanoparticles 

encounter at elevated temperatures or in an oxidative environment.
32

 Zeis et al.
33

 

demonstrated that NPG is an effective catalyst for reduction of hydrogen peroxide to 

water.  Their results are consistent with their overall hypothesis that the central difference 

between NPG and bulk Au is due to the increased density of step edges in NPG over bulk 

Au. It was shown that NPG shows much higher electrocatalytic activity towards 

methanol than polycrystalline Au
34

. Wittstock et al.
35

 demonstrated selectivity levels in 

excess of 97 % for gas-phase oxidative coupling of methanol to methyl formate at 

temperatures below 80 
o
C with high turnover frequencies. High electrocatalytic activity 

in the oxidation of glucose at NPG was shown by Li et al.
36

 We have recently 

investigated borohydride oxidation reaction at NPG electrodes. The onset potential for 

borohydride oxidation at NPG in a wire array format shifted to more negative potentials 

than that observed at a Au disc and higher currents were realized.
37

 An onset potential of 

-1.07 V vs. SCE was recorded for 20 mM borohydride in 1 M NaOH which is 0.207 V 

lower than that at a Au disc and the corresponding oxidation current increased to 73.6 

mA cm
-2

 from 3.2 mA cm
-2

. An n value of 7.49 was determined for the oxidation peak at 

high potential (-0.49 V) while a value of 4.26 was determined at low potential for the 

oxidation plateau centered at -0.05 V. NPG presents an attractive alternative to Au 

nanoparticle-based catalysts for use in direct borohydride fuel cells. It is important to note 

that the pace of discovery of reactions for which NPG is a good catalyst is growing 

rapidly thereby prompting the investigation of many different systems in which NPG may 

be the superior catalyst. In this paper we report on the exploitation of NPG with superior 

electrocatalytic activity and high specific surface area to develop an anode catalyst for a 

DABFC. 



 

Experimental 

 

Ammonia borane (minimum purity 97 %), sodium carbonate (minimum purity 99 %) and 

sodium hydroxide (minimum purity 99 %) were purchased from Sigma Aldrich and used 

as received. KAg(CN)2
 
(minimum purity 99 %) and KAu(CN)2 (minimum purity 99 %) 

were purchased from Johnson Matthey and used as received. Deionized water of 

resistivity 18 MΩ cm was used to prepare all solutions. Anodisc alumina circular 

membranes (Anodisc
®
 25) 2.5cm in diameter, 60 μm thick, 200 nm pore size and 10

9
 

pore openings per cm
2
 of membrane were supplied by Whatman

TM
.
 
These show 

compatibility with a wide range of solvents and acids and can be dissolved in sodium 

hydroxide and ammonium hydroxide solutions. The maximum temperature at which they 

are stable is 400 °C. E-beam evaporation was used to deposit a conducting backing layer 

of Au (350 nm in thickness) on the rear side of the alumina membranes prior to the 

templated-electrodeposition of Au and AuxAg1-x wire arrays. The working electrode was 

a 5 mm Au disc (Princeton Applied Research) supplied by Advanced Measurement 

Technology, U.K. This was polished with 0.5 µm alumina powder obtained from Struers 

on a Buehler polishing cloth for 2 minutes and rinsed in deionized water. A commercial 

gold bath (Puramet 402) was purchased from AMU DODUCO. A 1 mm diameter Au 

wire 50 mm in length was used as counter electrode. Cyclic voltammograms (CV) were 

recorded with respect to a standard calomel electrode (SCE). The potential of the working 

electrode was controlled using a CH Instruments potentiostat model 660C with picoamp 

booster. All solutions were purged with nitrogen for 20 minutes prior to experiments in 

order to remove oxygen, and the experiments were performed at 20 °C. Current densities 

for the electrodes are based on the geometric surface areas of the electrodes. The 



geometric surface area of the 5 mm diameter Au disc is 0.196 cm
2
. The geometric surface 

area of the NPG and Au wire array electrodes supported on the Au-backed 2.5 cm 

diameter Anodisc is 3.928 cm
2
. TEM images were recorded using JEOL 2000FX at an 

accelerating voltage of 200 kV. SEM images were recorded using Nova Nanosem 630 at 

an accelerating voltage of 15 kV. 

 

Results and Discussion 

 

Fabrication of NPG electrodes 

 

NPG on a planar Au film 

 

It was shown by Searson and Ji
38

 that Au0.18Ag0.82 alloy can be deposited from a solution 

of 100 mM KAg(CN)2 and 20 mM KAu(CN)2 in 250 mM Na2CO3, pH 13, at a constant 

potential of -1.2 V. XPS was used to confirm the alloy composition. Herein a film of 

Au0.18Ag0.82 was deposited on a 200 nm Au film on a pyrex wafer for 5000 s according to 

the method of Searson and Ji.
38

 It was demonstrated that the morphology and porous 

structure of NPG depends on the composition of the AuxAg1-x alloy for the range 0.18  x 

 0.32
38

. The alloy composition Au0.18Ag0.82 gives the shortest ligament size of 20-30 nm 

and the highest surface area NPG (6.9 m
2
 g

-1
) when dealloyed in nitric acid. The CV 

response recorded for the alloy in 1 M NaOH from -0.9 to 0.6 V vs SCE at 10 mV s
-1

 (not 

shown here) indicated the presence of Au and Ag from the metal oxide reduction peaks 

seen at -0.10 V and 0.40 V, respectively. Upon immersing Au0.18Ag0.82 in 30 % nitric acid 

for 2 hours a high surface area form of Au referred to as NPG is obtained. The NPG film 

was delaminated from the underlying Au film and sandwiched in a holey Cu folding 



TEM grid in order to obtain the TEM image shown in Fig. 1a. The pore and ligament size 

are 20 nm and 30 nm, respectively.       

 

NPG in a wire array 

 

The fabrication of NPG in a 3D wire array format was achieved by dealloying 

Au0.18Ag0.82 nanowires that were deposited in Anodisc alumina membranes with 200 nm 

pore size using the conditions given for the fabrication of NPG on a planar Au film. The 

alumina was dissolved by soaking it in 0.5 M NaOH for 2 hours to release the NPG wires. 

The SEM image shown in Fig. 1b was recorded for the resulting NPG wires which were 

2 μm in length.  

 

It was attempted to add structural rigidity to the NPG wires by depositing (i) a coating of 

NPG on a Au wire array and (ii) NPG wires onto the ends of a Au wire array, as outlined 

below. This invariably leads to an increase in the amount of Au used in the electrode 

fabrication, however. 

 

NPG-coated Au wire array 

 

A Au wire array was deposited in Anodisc alumina membranes with a 350 nm Au 

conducting backing layer from a commercial Puramet 402 bath. The Au wires were 

deposited to a length of 1 μm and 200 nm in diameter. The alumina was dissolved by 

soaking it in 0.5 M NaOH for 2 hours to release the Au wires. The Au wire array was 

then coated with NPG. This was achieved by dealloying depositing Au0.18Ag0.82 on the on 

the Au wires nanowires which was subsequently dealloyed using the conditions given 



above for the fabrication of NPG on a planar Au film. The SEM image shown in Fig. 1c 

was recorded for the resulting NPG-coated Au wires. The NPG coating was 285 nm in 

thickness. 

 

NPG-Au segmented wire array 

 

A Au wire array was deposited in Anodisc alumina membranes with a 350 nm Au 

conducting backing layer from a commercial Puramet bath. The Au wires were deposited 

to a length of 1 μm and 200 nm in diameter. The fabrication of NPG onto the Au wires 

was achieved by dealloying AgxAuy wires that were then deposited on the Au wires in the 

Anodisc alumina membranes using the conditions given for the fabrication of NPG on a 

planar Au film. The alumina was dissolved by soaking it in 0.5 M NaOH for 2 hours to 

release the segmented NPG-Au wires. The SEM image shown in Fig. 1d was recorded for 

the resulting wire array. The length of the NPG wire segment was 1.5 μm. 

 

The electrochemistry of NPG in 1 M NaOH 

 

Typical behaviour for Au in 1 M NaOH is seen in the CV recorded for NPG deposited on 

a Au disc shown in Fig. 2. The CV shows that negligible current flows over the potential 

range −1.0 to +0.05 V. The onset for monolayer oxide formation is shown to occur above 

+0.05 V with the corresponding oxide reduction peak on the reverse sweep. 

 

Electrooxidation of AB at Au disc  

 



The oxidation response for AB at a clean Au disc is shown in Fig. 3. The upper scan 

potential limit was restricted to 0.10 V in the forward sweep to avoid the formation of Au 

oxide as BH3(OH)
−
 does not show oxidation activity on that material. The oxidation of 

AB commences at -1.02 V which is 0.08 V more positive than that at a Au microdisc.
15

 In 

the forward sweep an oxidation peak a1 was recorded at -0.84 V followed by a broad 

oxidation wave a2 from –0.49 to –0.10 V. The location of the anodic features a1 and a2 

agree with those reported in our microdisc studies of AB and DMAB oxidation at Au
15,21

 

and with those reported by Finkelstein et al.
25

 They identified two regions of mass 

transport limited current for BH3(OH)
−
 from -0.72 to -0.46 V and from -0.29 to 0.28 V vs. 

Ag/AgCl (or -0.77 V to -0.51 V and -0.34 to 0.24 V vs. SCE) in their rotating disk 

electrode (RDE) analysis of DMAB oxidation in 1 M NaOH
25

.
 
Both waves were 

attributed to CE-type reactions from rotation rate normalised current profiles. The 

electrochemical step in the CE peak at lower potential was assigned to oxidation of both 

H2 and BH3(OH)
−
 demonstrating that Au actually has activity for H2 oxidation despite 

claims to the contrary by Krishnan et al.
39

 Recent studies have shown that the faradaic 

efficiency of Au for BH3(OH)
−
 oxidation is lower than was assumed previously as it can 

catalyse BH3(OH)
−
 hydrolysis to produce H2.

40
 This was demonstrated in their online 

electrochemical mass spectrometry study of the oxidation of borohydride and its 

BH3(OH)
−
 intermediate at Au. The peak a1 at -0.84 V was also reported

17
 for the 

oxidation of 20 mM AB in 2 M NaOH at 100 mV s
-1 

at a Au disc. They assigned this to 

electrooxidation of H2 generated from the hydrolysis of AB which they confirmed by its 

disappearance upon the addition of thiourea which inhibits the recombination of surface 

hydrogen radicals. The second broad oxidation wave a2 seen at -0.30 V in Fig. 3 can be 

attributed to the direct oxidation of AB
15,16,19

 according to Eq. 7. The current decreases as 



the potential is swept into the Au monolayer oxide region. Sadik et al.
41 

showed that 

BH3(OH)
−
 has intermediates that can only be oxidised at very high potentials . 

 

Electrooxidation of AB at NPG electrodes  

 

An open circuit potential (OCP) of -1.27 V was recorded for the NPG wire array which 

cannot entirely be linked to hydrogen oxidation as E
o
(H2/H

+
) = -0.818 V vs. SHE (i.e. -

1.060 V SCE). This provides evidence for the direct electrooxidation of BH3(OH)
−
. The 

linear scan voltammetric responses (LSV) for 20 mM AB in 1 M NaOH at a Au disc and 

at a Au wire array are shown in Fig. 4a and Fig. 4b, respectively and the comparable 

responses at the fabricated NPG electrodes are shown in Figs. 4c-e. The current densities 

for the electrodes are based on their geometric surface areas. At the NPG wire array the 

onset potential for the oxidation of AB has shifted to -1.30 V, 0.28 V more negative than 

that at the Au disc. The peak a1
*
 located at -0.95 V may be assigned partially to the 

electrooxidation of BH3(OH)
−
 and partially to the oxidation of hydrogen generated from 

its heterogeneous hydrolysis. This is located at a potential 0.11 V more negative than 

peak a1 for a Au disc shown in Fig. 4a. The broad anodic wave from -0.49 to -0.10 V 

associated with direct electrooxidation of BH3(OH)
−
 observed at the Au disc has been 

shifted to lower potential at the NPG wire array and resolved into peaks a2
*
 at -0.50 V 

and a3
*
 at -0.15 V. The oxidation current recorded for peak a2

*
 of 13.1 mA cm

-2  
is 10.5 

mA cm
-2

 higher than that recorded for peak a2 located at -0.30 V at a Au disc electrode, 

this represents more than a fivefold increase in current density.  

 

At the NPG-coated Au wire array the onset potential for the oxidation of AB has shifted 

to -1.21 V which is 0.19 V more negative than that at the Au disc. The anodic peaks 



located at -0.90, -0.49 and -0.08 V may be tentatively assigned in the same manner as 

peaks a1
*
, a2

*
, a3

*
, respectively, observed at the NPG wire array shown in Fig. 4e. The 

anodic peak at -0.49 V has an oxidation current of 10.5 mA cm
-2 

which is 9 mA cm
-2

 

greater than that for peak a2 at the Au disc electrode. At the NPG-Au segmented wire 

array the onset potential for the oxidation of AB has shifted to -1.28 V, also more 

negative than that at a Au disc by 0.26 V. The anodic peaks located at -0.90, -0.49 and -

0.08 V may be tentatively assigned in the same manner as peaks a1
*
, a2

*
, a3

*
, respectively, 

observed at the NPG wire array.The three anodic peaks observed at -0.85, -0.47 and -0.09 

V are also assigned in a similar manner as peaks a1
*
, a2

*
, a3

*
, respectively observed at the 

NPG wire array. The oxidation current recorded for the anodic peak at -0.47 V of 12.7 

mA cm
-2 

is 10 mA cm
-2

 higher than that recorded for peak a2 at a Au disc electrode. 

Contrastingly, it was shown that the onset potential for AB oxidation at a non-porous 

high surface area Au wire array with 2.5 μm wire length and 200 nm diameter Au was -

1.13 V and the oxidation current at -0.64 V was 5.2 mA cm
-2

. This demonstrates that the 

enhanced AB oxidation response recorded at NPG is not attributable to simply an 

increase in surface area.   

 

RDE linear scan voltammograms recorded at NPG-coated Au disc in 20 mM AB in 1 M 

NaOH deposited on a Au disc are shown in Fig. 5 for a range of rotation rates. Two 

regions of mass-transport-limited current were observed for a low potential wave from -

0.90 to -0.85 V and for a high potential wave from -0.10 to 0.22 V. These waves were 

observed at more negative potentials than the similar waves that were recorded at a Au 

disc for DMAB (which is a source of BH3(OH)
−
) at -0.72 to -0.46 V and -0.29 to 0.28 V 

vs. Ag/AgCl  by Finkelstein et al.
25

 Levich plot analysis (using Eq. 8) shown in Figs. 6 



and 7 for the high- and low potential waves, respectively, revealed a diffusion-controlled 

reaction 

Ilim = 0.62nFCD 
2/3 -1/6

 
1/2                                                                

[8] 

where  is the kinematic viscosity and D is the diffusion coefficient. 
 
 

 

The influence of scan rate on the oxidation response for AB was studied at the NPG-

coated Au disc.  The peak current for the low potential wave increases linearly with the 

square root of scan rate as shown in Fig. 8, suggesting that it can be attributed to the 

oxidation of a species in solution. The positive shift of the peak potential for this wave 

with scan rate is indicative of a sluggish reaction. The peak current for the high potential 

wave increases linearly with scan rate as shown in Fig. 9, this behavior is typical of the 

oxidation of an adsorbed species. A positive shift of the peak potential was also observed 

for the high potential wave with increasing scan rate. The increase in peak potential with 

scan rate is indicative of a CE mechanism which was earlier proposed by Finkelstein et 

al.
25 

from a rotation-rate normalized study of BH3(OH)
−
) oxidation at Au.  

 

Chronoamperometry was used to further test the catalytic activity of NPG and to 

complement the voltammetry studies on static and rotating electrodes. The potential was 

stepped from -1.30 V s at a NPG-coated Au disc in 20 mM AB in 1 M NaOH to -0.10 V 

and the current was recorded. From the resulting current transient the number of electrons 

involved in the oxidation (n) was determined from the Cottrell equation (Eq. 9) as 5.97 

 

 



 

where A is electrode are and D is diffusion coefficient which was estimated as 8.45×10
-6 

cm
2
 s

−1
 from a study of AB oxidation at a Au microdisc

15
. The value for n is in close 

agreement with the value of 6 which was found for the AB oxidation wave at -0.15 V vs. 

Ag/AgCl at a Au microdisc
15

 and represents high coulombic efficiency for the reaction at 

NPG. 

 

 

The characteristics of NPG for AB oxidation for the series of electrode formats that were 

studied are summarised in Table 1. The onset potential for AB oxidation is lowest at the 

NPG wire array and the oxidation current is highest. Our results highlight that NPG 

shows higher catalytic activity for AB oxidation than is observed at bulk planar Au which 

was shown to be catalytically active for both AB oxidation and hydrogen evolution and 

oxidation1 at low potential; AB oxidation is more favoured at low potentials than 

hydrogen evolution at NPG. Different sites co-exist on Au, some catalyse AB oxidation 

while others catalyse hydrogen evolution indicating the structural sensitivity of the 

reactions. It is possible that the density of sites at which AB undergoes oxidation is 

increased at NPG over that at bulk Au. It is also possible that the NPG active layer 

structure promotes an increase in the residence time of reaction intermediates at the 

surface leaving more time for complete oxidation to borate. Such behaviour was recently 

reported by Molina Concha et al. for Pt and Pt/C electrodes
6,42

 and for the multi-step 

oxygen reduction reaction at Pt nanostructure arrays at planar glassy carbon electrodes
43

. 

A consensus has not been reached as to what particular property or properties of NPG 

lead(s) to its catalytic properties despite a growing body of literature evidence. A single 

definitive mechanism does not exist which can explain all aspects of catalysis for 



nanoporous or nanostructured Au. The only overarching hypothesis is that the catalytic 

activity results from some special site, the density of which is highly sensitive to material 

properties, and the effect of which is amplified in materials of very high specific surface 

areas where the special sites have a particular electronic configuration
44

.  

 

An intrinsically higher step density and hence greater percentage of low coordination 

number active site atoms are believed to be present at NPG relative to bulk Au.  Such 

sites may assist in the adsorption of reactants via steric or electronic interactions. Indirect 

evidence exists for the presence of low coordinated surface atoms at NPG which show 

unusually high catalytic activity. Zhang et al.
34

 showed that by galvanically displacing 

Au by Pt from the surface of NPG the thermal stability of NPG is greatly increased; the 

most likely sites for galvanic displacement are low coordination step edges. It was 

suggested that the high curvature ligaments present in NPG may expose various facet 

orientations
33

 and it is possible that a particular facet may be responsible for a particular 

reaction. 

 

The presence of residual silver was detected in NPG by EDX to concentration levels of 

less than 1 % and 4 % 
33,35

 and by XPS to concentration levels of 2.0 at. % and 4.4 at. % 

Ag.
30,31

 Wittstock et al.
35

 showed that residual Ag in NPG participates in the activation of 

molecular oxygen in the oxidation of methanol. They showed that the oxidation power of 

NPG may be tuned by adjusting the Ag concentration. It was suggested that residual Ag 

buried in NPG may contribute to its high catalytic activity for CO oxidation.
30,31 

It is 

possible that residual Ag present in NPG may assist in promoting the direct oxidation of 

AB and shifting the OCP to more negative values than at bulk Au. Support for this 

hypothesis is provided in a study of the direct oxidation of AB at Ag/C by Zhuang et al.
20

 



The oxidation of 0.1 M AB in 2 M KOH was shown to commence at -1.10 V vs. Hg/HgO 

(or -1.20 V vs. SCE) which is more negative than that of hydrogen evolution (-0.93 V vs. 

Hg/HgO) indicating that the anodic current is not entirely attributable to the oxidation of 

hydrogen produced from AB hydrolysis at this potential at Ag. Chatenet et al.
48

 also 

showed that Ag appears to be a better catalyst for BH3(OH)
−
 oxidation than Au with an 

onset for oxidation 0.15 V lower at Ag than at Au. More detailed investigation into the 

catalytic activity of NPG in terms of the role of low-coordinated surface Au atoms and 

the presence of residual Ag is needed to further elucidate the underlying reaction 

mechanism for AB oxidation at NPG. 

 

Conclusions 

 

The application of NPG as a fuel cell electrode heralds exciting new avenues for catalyst 

design. NPG presents an attractive alternative to Au nanoparticle-based catalysts for fuel  

cells as it eliminates the need for a carbon support thereby removing the associated 

stability issues. To the best of our knowledge there have been no reports in the literature 

of the investigation of the oxidation of AB at Au nanoparticles which can be compared 

with NPG. However the following comparisons serve to highlight the superior activity of 

NPG over other nanostructured Au-based electrodes for borohydride oxidation at similar 

concentrations. Ponce-de-Leon et al.
46 

reported an oxidation current for 20 mM 

borohydride in 3 M NaOH at Au nanoparticles supported on titanate nanotubes of 10 mA 

cm
-2

 while the onset potential for oxidation was -0.9 V vs. SCE. Wei et al.
47

 investigated 

the oxidation of 100 mM borohydride in 1 M NaOH at carbon-supported Au hollow 

nanospheres and reported an oxidation current of 57 mA cm
-2

 and an onset potential of -

0.80 V vs Ag/AgCl (-0.845 V vs. SCE) for the oxidation.  An onset potential for 



oxidation of 10 mM borohydride in 1 M NaOH at carbon-supported Au nanoparticles of -

0.57 V vs NHE (-0.812 V vs. SCE) was reported
48

.
 
An onset potential of -1.07 V vs. SCE 

and an oxidation current of 73.6 mA cm
-2

 was recorded for 20 mM borohydride in 1 M 

NaOH. 
37

 

 

NPG can provide a solution to the poor long-term stability and sintering problems that 

plague supported Au nanoparticle catalysts which limit their use in industrial 

heterogeneous catalysis. Furthermore, the diffusion of an electroactive species to carbon 

supported-Au nanoparticles is limited by the low degree of porosity of the support. NPG 

permits more intimate contact with an electrical substrate to be established. Its porous 

structure promotes mass transport of the reactant to the active sites and release of gaseous 

by-products. NPG may be incorporated in thin foil format as a porous catalyst electrode 

as it is shapeable and has high mechanical, thermal and chemical stability coupled to high 

catalytic activity. It has a dual functionality in that it can act as a current collector and as 

a catalyst. From an economic viewpoint the viability of NPG as a catalyst can be raised 

by crushing it or coating the precursor AgAu alloy on a template backbone prior to 

dealloying.
35

 An advantage of incorporating NPG in place of, or in combination with, Pt 

in fuel cells would be the enhanced electrical conductivity that could be derived due to 

the lower electrical resistivity of Au. NPG may be integrated into nafion-based MEAs in 

conventional PEM fuel cells. An example of a PEM fuel cell using Pt modified-NPG was 

demonstrated by Zeis et al.
45

. They reported a method for integrating Pt-modified NPG 

electrodes into PEM fuel cells which involved stamping NPG onto pre-swelled, wet 

nafion in the construction of the MEA. NPG in the form of a membrane was floated on 

water baths and lifted on mica disks which serve as stamps.  

 



We have shown that the characteristics of AB oxidation at Au electrodes are strongly 

influenced by electrode morphology. The data summarized in Table 1 indicates that the 

oxidation current for AB increases from 2.5 mA cm
-2

 for a planar Au film to 13.1 mA 

cm
-2

 for a NPG wire array, while the onset of oxidation shifts from -1.02 V to -1.30 V vs. 

SCE. Attempts were made to enhance the stability of NPG wires by either reinforcing the 

NPG wires with a Au wire core or by anchoring NPG wires onto Au wires. NPG wires 

supported on a Au wire array showed comparable electrocatalytic activity to a NPG-only 

wire array while reinforcing NPG with a Au core led to a slight decay in electrocatalytic 

activity. Our findings will provide useful information in identifying a viable anode 

catalyst for the oxidation of AB as an environmentally friendly, high energy density 

alternative fuel.  
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Figures 



 

Figure 1.  (a) TEM image of NPG (b) SEM image of NPG wire array (c) SEM image of 

NPG wires grown on Au wire array and (d) SEM image showing top-down view of NPG-

coated Au wire array. 



 

Figure 2. Cyclic voltammogram for NPG on a Au disc electrode in 1 M NaOH recorded 

at 10 mV s
-1

. 



 

Figure 3. Cyclic voltammogram for NPG on a Au disc in 1 M NaOH containing 20 mM 

AB recorded at 10 mV s
-1

. 



 

Figure 4.  Linear scan voltammogram recorded at 10 mV s
-1 

for (a) Au disc (b) Au wire 

array (c) NPG-coated Au wire array (d) NPG-Au segmented wire array and (e) NPG wire 

array in 1 M NaOH containing 20 mM AB. 



 

Figure 5.  Linear scan voltammetric response for NPGcoated Au disc at rotation rates (a) 

200, (b) 400, (c) 1500, (d) 2500 and (e) 3500 rpm in 1 M NaOH containing 20 mM AB at 

5 mV s
-1

.
 



 

Figure 6. Levich plot for low potential wave for NPG-coated Au disc in 1 M NaOH 

containing 20 mM AB at 10 mV s
-1

.
 

 



Figure 7.  Levich plot for high potential wave for NPG-coated Au disc in 1 M NaOH 

containing 20 mM AB at 10 mV s
-1

.
 

 

Figure 8.  Peak current for low potential wave at NPG-coated Au disc in 1 M NaOH 

containing 20 mM AB as a function of the square root of scan rate. 



 

Figure 9.  Peak current for high potential wave at NPG-coated Au disc in 1 M NaOH 

containing 20 mM AB as a function of scan rate. 



 

Figure 10.  Plot of I vs. t
−1/2

 for 20 mM AB in 1 M NaOH at NPG-coated Au disc over a 

time scale of 60 s in response to a potential step from −1.30 to −0.10 V. 

 

 



 

Table 1 Variation of onset potential for AB oxidation and current density at a range of 

Au substrates 
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