
Title Towards fast algorithms for the preference consistency problem
based on hierarchical models

Authors George, Anne-Marie;Wilson, Nic;O'Sullivan, Barry

Publication date 2016-07

Original Citation George, A.-M., Wilson, N. and O'Sullivan, B. (2016) 'Towards Fast
Algorithms for the Preference Consistency Problem Based on
Hierarchical Models', IJCAI'16: Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, New York,
USA, 9-15 July, pp. 1081-1087. isbn: 978-1-57735-770-4

Type of publication Conference item

Link to publisher's
version

https://www.ijcai.org/Proceedings/2016

Rights © 2016 International Joint Conferences on Artificial Intelligence

Download date 2024-08-28 04:16:11

Item downloaded
from

https://hdl.handle.net/10468/10798

https://hdl.handle.net/10468/10798

Towards Fast Algorithms for the Preference Consistency Problem Based on
Hierarchical Models

Anne-Marie George, Nic Wilson, Barry O’Sullivan
Insight Centre for Data Analytics, School of Computer Science and IT

University College Cork, Ireland
{annemarie.george, nic.wilson, barry.osullivan}@insight-centre.org

Abstract
In this paper, we construct and compare algorith-
mic approaches to solve the Preference Consistency
Problem for preference statements based on hierar-
chical models. Instances of this problem contain
a set of preference statements that are direct com-
parisons (strict and non-strict) between some alter-
natives, and a set of evaluation functions by which
all alternatives can be rated. An instance is con-
sistent based on hierarchical preference models, if
there exists an hierarchical model on the evaluation
functions that induces an order relation on the al-
ternatives by which all relations given by the pref-
erence statements are satisfied. Deciding if an in-
stance is consistent is known to be NP-complete for
hierarchical models.
We develop three approaches to solve this decision
problem. The first involves a Mixed Integer Linear
Programming (MILP) formulation, the other two
are recursive algorithms that are based on proper-
ties of the problem by which the search space can
be pruned. Our experiments on synthetic data show
that the recursive algorithms are faster than solving
the MILP formulation and that the ratio between
the running times increases extremely quickly.

1 Introduction
In many fields like recommender systems and multi-objective
optimization, one wants to reason over user preferences.
In these problems, it is often difficult or excessively time-
consuming to elicit all user preferences. The Preference De-
duction Problem (PDP) aims at eliciting only few prefer-
ences and inferring more preferences from the given ones;
this might then be used in a conversational recommender sys-
tem, for example, to help choose which items to show to the
user next [Bridge and Ricci, 2007; Trabelsi et al., 2011]. Typ-
ically, an assumption is made on the type of order relation that
the user (implicitly) uses to express the preference statements.
Such order relations can be, e.g., comparing alternatives by
the values of the evaluation functions lexicographically [Wil-
son, 2014], by Pareto order, weighted sums [Figueira et al.,
2005], based on hierarchical models [Wilson et al., 2015] or
by conditional preferences structures as CP-nets [Boutilier

et al., 2004] and partial lexicographic preference trees [Liu
and Truszczynski, 2015]. Here, the choice of the order rela-
tion can lead to stronger or weaker inferences and can make
solving PDP computationally more or less challenging. In a
recommender system or in a multi-objective decision making
scenario, the user should only be presented with a relatively
small number of solutions, hence, a strong order relation is re-
quired. Using PDP based on a lexicographic models has been
shown to be successful in reducing the number of solutions,
however, computationally can be more expensive. See [Mari-
nescu et al., 2013] and [George et al., 2015] for compar-
isons between order relations in a multi-objective optimiza-
tion framework. While PDP based on hierarchical models
yields an even lower number of solutions, it is coNP-complete
and computationally expensive. The approach taken by
the Preference Deduction Problem contrasts with learning
a single model that coincides with the user preferences as
in [Fürnkranz and Hüllermeier, 2010; Dombi et al., 2007;
Flach and Matsubara, 2007; Bräuning and Hüllermeier, 2012;
Booth et al., 2010].

In this paper, we concentrate on another problem that helps
solving PDP: the Preference Consistency Problem (PCP).
This is the problem of deciding whether given user prefer-
ences are consistent, i.e., not contradicting each other. In
terms of hierarchical preference models, PCP determines
whether there exists a hierarchical model of evaluation func-
tions such that the induced order relation on the alternatives
satisfies all preference statements given by the user. For hi-
erarchical preference models, PCP is NP-complete and PCP
and PDP are mutually expressible [Wilson et al., 2015], i.e.,
PCP can be solved directly by solving PDP and vice versa.
The main issue in this paper is to find fast algorithms to solve
PCP (and thus PDP) for hierarchical models by exploiting the
problem’s structure and to compare their running times on a
set of synthetic data.

The next section gives an introduction to hierarchical pref-
erence models, their induced order relation on alternatives,
and the Preference Consistency Problem. Section 3 gives
a Mixed Integer Linear Programming formulation for PCP
that will function as a baseline for our runtime comparisons.
Section 4 discusses the exploitation of properties of PCP in-
stances yielding two recursive algorithms. In Section 5, the
conducted experiments and their outcome are described. The
last section concludes.

A longer version of this paper including proofs and exam-
ples is available online [George et al., 2016].

2 The Consistency Problem Based on
Hierarchical Models

For a set of preference statements, consistency is defined to be
the property that the statements do not contradict each other.
To formally define this term, we first describe the concept of
hierarchical models.

2.1 Hierarchical Models
Hierarchical models will from here on be called HCLP mod-
els, where HCLP stands for “Hierarchical Constraint Linear
Program” and points out the resemblance of the hierarchical
order of the evaluation functions in HCLP models to the order
of soft constraints in an HCLP [Wilson and Borning, 1993].
In the following, we define HCLP structures, HCLP models,
and their implied order relation that is a kind of lexicographic
order.

Definition 2.1 (HCLP structures). An HCLP structure is a
triple 〈A,⊕, C〉. Here, A is a finite set of alternatives and
C is a set of evaluation functions from the alternatives A to
the non-negative rational numbers Q≥0. ⊕ is an associative,
commutative, and strictly monotonic operation on Q≥0, i.e.,
x⊕ y < z ⊕ y if and only if x < z.

In an HCLP structure, the evaluations C as well as their
combinations by ⊕ provide ratings of the alternatives due to
unfavorable aspects, e.g., costs, for which we assume that 0
is the best value. The notion of HCLP structures was first
introduced in [Wilson et al., 2015] with ⊕ as an associative,
commutative and monotonic operation. In this paper, we con-
sider ⊕ to be a strictly monotonic operation as this yields in-
teresting properties allowing us to formulate fast algorithms
for checking consistency. Furthermore, we assume the oper-
ation to be computable in logarithmic time. These assump-
tions still allow interesting operators like addition and multi-
plication which seem natural for combining aspects like costs
and distances, but strict monotonicity excludes a minimum or
maximum operator which could be desired sometimes.

For a subset C ⊆ C of evaluations, we define the weak
order (transitive and complete binary order) 4⊕C on the set of
alternatives in the following way: for α, β ∈ A, α 4⊕C β if
and only if

⊕
c∈C c(α) ≤

⊕
c∈C c(β). The corresponding

strict order ≺⊕C is given by α ≺⊕C β if and only if α 4⊕C β

and α 6<⊕C β, i.e.,
⊕

c∈C c(α) <
⊕

c∈C c(β). Then, the
equivalence relation ≡⊕C is given by α ≡⊕C β if and only if
α 4⊕C β and α <⊕C β, i.e.,

⊕
c∈C c(α) =

⊕
c∈C c(β). For

C = ∅, α ≡⊕C β for all α, β ∈ A.

Definition 2.2 (HCLP models). An HCLP model H for
an HCLP structure 〈A,⊕, C〉 is an ordered partition of a
subset σ(H) ⊆ C of evaluations. We write H as se-
quence (C1, . . . , Ck), where the (possibly empty) sets ∅ ⊆
C1, . . . , Ck ⊆ C are disjoint and

⋃
i=1,...,k Ck = σ(H). We

say Ci is the i-th level set in H . We denote the empty HCLP
model with σ(H) = ∅ by H = ().

An HCLP model can be viewed as a hierarchy on the eval-
uation functions. For HCLP model H = (C1, . . . , Ck) the
level setC1 contains the most important evaluation functions;
the level set C2 contains the second most important evalua-
tion functions and so on. Evaluations C \ σ(H) that are not
included in the HCLP model are irrelevant for rating the alter-
natives. Accordingly, we compare two alternatives first on a
combination by⊕ of the most important evaluation functions;
only if these are equal do we compare them on the combi-
nation of the next most important evaluations. Hence, each
HCLP model H = (C1, . . . , Ck) implies a weak order 4⊕H
on the alternatives that is a lexicographic order on combina-
tions of evaluations. More specifically, for two alternatives
α, β ∈ A, α 4⊕H β if and only if

(I) for all i = 1, . . . , k, α ≡⊕Ci
β; or

(II) there exists some i ∈ {1, . . . , k} such that α ≺⊕Ci
β and

for all 1 ≤ j < i, α ≡⊕Cj
β.

Similarly to ≺⊕C and ≡⊕C , we define the strict weak order ≺⊕H
and the equivalence relation ≡⊕H . For α, β ∈ A, α ≺⊕H β if
and only if α 4⊕H β and α 6<⊕H β (i.e., condition (II) holds).
Analogue, α ≡⊕H β if and only if α 4⊕H β and α <⊕H β (i.e.,
condition (I) holds). Note, that by these definitions level sets
of HCLP models can be empty, but empty level sets do not
affect the relations 4⊕H , ≺⊕H and ≡⊕H or any statements based
on these relations.

In this paper, we consider special classes of HCLP mod-
els where the sizes of the level sets are bounded by some
constant. The class C(t) is defined to be the set of HCLP
models with level sets that contain at most t evaluations,
i.e., if H = (C1, . . . , Ck) is in C(t) then |Ci| ≤ t for all
i = 1, . . . , k. Note, that the model classes satisfy the rela-
tion C(s) ⊆ C(t) for s ≤ t. Class C(1) contains standard
lexicographic models.
Example. Consider the choice of alternatives Apple Pie
(AP), Chocolate Cake (CC) and Ice Cream (IC). The desserts
are rated by the evaluation functions: calories (c), sugar (s),
and fat (f). The values of C = {c, s, f} are percentages of
the recommended daily intake as shown in Table 1. Here, 0 is
the best possible value, meaning 0% sugar, calories or fat of
the recommended daily intake is contained in the dessert. Let
⊕ be the standard addition on Q.

AP CC IC

c 10 13 11
s 23 23 16
f 20 17 24
f ⊕ s 43 40 40

Table 1: Values of c, s, f, f ⊕ s evaluated on AP, CC, IC.

The HCLP model H = ({f, s}, {c}) consists of the pair of
most important evaluations f and s followed by the singleton
next most important evaluation c. Hence,H is in C(2) but not
in C(1). Also, H implies the relations:
IC ≺⊕H CC, since (f(IC) ⊕ s(IC), c(IC)) = (40, 11) <lex

(40, 13) = (f(CC) ⊕ s(CC), c(CC)). Similarly, IC ≺⊕H AP
and CC ≺⊕H AP.

2.2 Preference Consistency
In the following, we first describe the language of prefer-
ence statements considered in this paper and then define PCP.
For this, we define LA≤ to be the set of non-strict preference
statements α ≤ β (meaning α is preferred to β) on alter-
natives α, β ∈ A. Similarly, LA< is the set of strict pref-
erence statements α < β (meaning α is strictly preferred
to β) for α, β ∈ A. Let LA = LA≤ ∪ LA<. We write a
preference statement ϕ ∈ LA≤ as αϕ ≤ βϕ, and ϕ ∈ LA<
as αϕ < βϕ for αϕ, βϕ ∈ A. We denote the non-strict
version of preference statements Γ ⊆ LA by Γ(≤), i.e.,
Γ(≤) = {αϕ ≤ βϕ | ϕ ∈ Γ}.
Definition 2.3 (Satisfaction of Preference Statements). LetH
be an HCLP model for HCLP structure 〈A,⊕, C〉. We say H
satisfies a preference statement ϕ ∈ LA, denoted H �⊕ ϕ,
if αϕ 4⊕H βϕ for ϕ ∈ LA≤; or αϕ ≺⊕H βϕ for ϕ ∈ LA<.
Furthermore, H satisfies a set of preference statements Γ ⊆
LA, denoted H �⊕ Γ, if H satisfies all preference statements
in Γ, i.e., H �⊕ ϕ for all ϕ ∈ Γ.

Definition 2.4 (Consistency). Let 〈A,⊕, C〉 be an HCLP
structure and t ∈ {1, . . . , |C|} a constant. We say Γ ⊆ LA
is C(t)-consistent, if there exists an HCLP model H ∈ C(t)
such that H �⊕ Γ.

It is easy to show that Γ is C(t)-consistent if Γ is C(s)-
consistent for some s < t. Also, the empty model H = ()
always satisfies non-strict statements, but never satisfies strict
statements. Thus, Γ ⊆ LA≤ is always consistent.

Example (continued). Consider preference statements:

(1) I strictly prefer ice cream to apple pie (IC < AP).

(2) I prefer chocolate cake to apple pie (CC ≤ AP).

Then (1) is a strict preference statement, (2) is a non-
strict preference statement. As before, HCLP model H =
({c, s}, {f}) satisfies IC ≺⊕H AP and CC ≺⊕H AP and so
CC �⊕H AP. Thus, (1) and (2) together are consistent.

We can now formulate the Preference Consistency and De-
duction (decision) Problems for classes C(t).
C(t) Preference Consistency Problem (C(t)-PCP): Given
an HCLP structure 〈A,⊕, C〉, a constant t ∈ {1, . . . , |C|} and
a set of preference statements Γ ⊆ LA. Is Γ C(t)-consistent?
C(t) Preference Deduction Problem (C(t)-PDP): Given an
HCLP structure 〈A,⊕, C〉, a constant t ∈ {1, . . . , |C|}, some
preference statements Γ ⊆ LA and ϕ ∈ LA \ Γ. Does
H �⊕ ϕ hold for all H ∈ C(t) with H �⊕ Γ?

Wilson et al. [2015] (in their Proposition 1) show that C(t)-
PCP and C(t)-PDP are mutually expressive, i.e., PCP can be
solved by solving PDP and vice versa:

Proposition 2.5. H �⊕ ϕ for all H ∈ C(t) with H �⊕ Γ
if and only if Γ ∪ {¬ϕ} is C(t)-inconsistent, where ¬ϕ =
βϕ < αϕ for ϕ ∈ LA≤, or ¬ϕ = βϕ ≤ αϕ for ϕ ∈ LA<.

They also established that C(t)-PDP is coNP-complete for
any t ≥ 2 (even if⊕ is strictly monotonic). Thus C(t)-PCP is
NP-complete. A greedy algorithm can solve the special cases
C(1)-PCP and C(1)-PDP in time O(|C| · |Γ|).

3 MILP Formulation
We describe a Mixed Integer Linear Programming (MILP)
formulation for C(t)-PCP with HCLP structure 〈A,⊕, C〉 and
preference statements Γ ⊆ LA, where evaluations C are inte-
gral, ⊕ is the standard addition on integers and n = |C|.
Assigning Evaluations to Level Sets: We introduce a matrix
of Boolean variables Y ∈ {0, 1}n×n such that yi,j = 1 if
and only if evaluation i is included in the j-th level set of
the solution HCLP model. For C(t)-PCP, every evaluation is
contained in at most one level set and the cardinality of the
level sets is bounded by t.

n∑
j=1

yi,j ≤ 1 and
n∑
j=1

yj,i ≤ t ∀i = 1, . . . , n. (1)

Maintaining Values of ⊕-combined Level Sets: The ma-
trix of integer variables X ∈ Qn×|Γ| contains the values
of the combined evaluation functions in the level sets for
the alternatives of the preference statements. Thus, xi,ϕ =⊕

c∈Ci
c(αϕ) −

⊕
c∈Ci

c(βϕ) maintains the degree of sup-
port/opposition of statement ϕ in the i-th level set Ci.

n∑
i=1

yi,j(c(αϕ)− c(βϕ)) = xj,ϕ ∀j = 1, . . . , n, ∀ϕ ∈ Γ.

(2)
We define the bounds Mϕ ≥ xj,ϕ ≥ mϕ for all xj,ϕ by

mϕ = min
E⊆C

∑
c∈E

c(αϕ)− c(βϕ) =
∑

c∈C,c(αϕ)<c(βϕ)

c(αϕ)− c(βϕ),

Mϕ = max
E⊆C

∑
c∈E

c(αϕ)− c(βϕ) =
∑

c∈C,c(αϕ)>c(βϕ)

c(αϕ)− c(βϕ).

Maintaining the Sign of Level Sets (Supporting, Opposing
and Indifferent): The Boolean variables s<0

j,ϕ, s
>0
j,ϕ and s=0

j,ϕ

express the sign for xj,ϕ. This is, s<0
j,ϕ = 1 if and only if

xj,ϕ < 0, s>0
j,ϕ = 1 if and only if xj,ϕ > 0, and s=0

j,ϕ = 1 if
and only if xj,ϕ = 0. Since exactly one of the relations holds,

s<0
j,ϕ + s>0

j,ϕ + s=0
j,ϕ = 1 ∀j = 1, . . . , n, ∀ϕ ∈ Γ. (3)

To enforce the equivalences, we make use of the bounds
Mϕ andmϕ and the integrity of the evaluations. In particular,
we use that the lowest positive value xj,ϕ can take is 1 and the
highest negative value is −1.

For the implication s<0
j,ϕ = 1⇒ xj,ϕ < 0, we formulate:

xj,ϕ + s<0
j,ϕ(Mϕ + 1) ≤Mϕ ∀j = 1, . . . , n, ∀ϕ ∈ Γ. (4)

For the implication s>0
j,ϕ = 1⇒ xj,ϕ > 0, we formulate:

xj,ϕ + s>0
j,ϕ(mϕ − 1) ≥ mϕ ∀j = 1, . . . , n, ∀ϕ ∈ Γ. (5)

Finally, we enforce s=0
j,ϕ = 1⇒ xj,ϕ = 0 by

xj,ϕ − (1− s=0
j,ϕ)mϕ ≥ 0 ∀j = 1, . . . , n, ∀ϕ ∈ Γ and (6)

xj,ϕ− (1− s=0
j,ϕ)Mϕ ≤ 0 ∀j = 1, . . . , n, ∀ϕ ∈ Γ. (7)

The equivalences follow from (3) together with (4)-(7).
Satisfaction of Strict and Non-strict Statements: Follow-
ing the definition of 4⊕H , the HCLP model corresponding to
the variable assignments of Y satisfies a non-strict statement
ϕ in Γ if and only if

(I′) for all i = 1, . . . , n, s=0
i,ϕ = 1; or

(II′) there exists some i ∈ {1, . . . , n} such that s<0
i,ϕ = 1 and

for all 1 ≤ j < i, s=0
j,ϕ = 1.

Analogously, a strict statements ϕ in Γ is satisfied if and only
if (II′) holds. It is easy to check that conditions (I′) or (II′)
holding for all ϕ ∈ Γ is equivalent to

i−1∑
j=1

s<0
j,ϕ ≥ s>0

i,ϕ ∀i = 1, . . . , n, ∀ϕ ∈ Γ. (8)

Inequality (8) yields the satisfaction of Γ(≤). We enforce sat-
isfaction of all strict statements in Γ, by

n∑
j=1

s<0
j,ϕ ≥ 1 ∀ϕ ∈ Γ ∩ LA<. (9)

The constraints (1)-(9) form a rather simple MILP formu-
lation for C(t)-PCP. Constraints (3)-(9) could be replaced by
sums with extreme weights to enforce a lexicographic or-
der on the level sets. However, these inequalities lead to
numerical difficulties for the solver. Also, decision vari-
ables yi,j could be substituted by y′i,j such that y′i,j = 1
if and only if i is included in a level set ≥ j. Variables
s<0
j,ϕ, s

>0
j,ϕ, s

=0
j,ϕ ∈ {0, 1} might be replaceable by a variable

sj,ϕ ∈ {0, 1, 2}. However, since our MILP is a satisfaction
problem, not an optimization problem, it is not clear whether
any of these measures improve the formulation. After try-
ing various Constraint Programming models with set or bi-
nary variables, different versions of constraints and differ-
ent search heuristics, the MILP formulation using inequalities
(1)-(9) seemed most promising.

4 Recursive Algorithms
In the following, we describe two recursive search algorithms
for C(t)-PCP. The algorithms are based on properties of PCP
that can be used to prune the search space. Both try to con-
struct a Γ-satisfying HCLP model by sequentially adding new
level sets to the model that do not oppose any preference
statement that is not strictly satisfied so far. Thus, during the
algorithm the current model always satisfies Γ(≤), the non-
strict version of Γ. We backtrack when the current model
cannot be extended further and the model does not satisfy all
strict preference statements. The approaches aim to reduce
the number of Γ(≤)-satisfying HCLP models constructed by
the algorithm. In particular, they try to identify and ignore
level sets which cannot lead to a Γ-satisfying HCLP model
although not opposing the preference statements.
Utilising Sequences of Singleton Level Sets: The first ap-
proach is based on the idea of including as many single-
ton level sets as possible. This seems computationally less
challenging since a Γ(≤)- satisfying sequence of singleton
level sets that is maximal in the number of level sets can be
found in time O(|C| · |Γ|) [Wilson et al., 2015]. Remem-
ber, that Γ(≤) is defined to be the non-strict version of Γ, i.e.,
Γ(≤) = {αϕ ≤ βϕ | ϕ ∈ Γ}. In the following we show
that for strictly monotonic operators ⊕ the recursive search

algorithm never needs to backtrack over the choice of such
singleton sequences. We first establish the following prop-
erty for strictly monotonic operators ⊕ which can be shown
by a short technical proof.

Lemma 4.1. Let ⊕ be a strictly monotonic operator and let
X,Y ⊆ C be sets of evaluation functions with X ⊆ Y . Let
α, β ∈ A be alternatives such that X is indifferent under α
and β, i.e., α ≡⊕X β. Then α ≺⊕Y β if and only if α ≺⊕Y \X β.
Hence, α ≡⊕Y β if and only if α ≡⊕Y \X β.

We define the (non-commutative) combination of two
HCLP models H = (C1, . . . , Cl) and H ′ = (C ′1, . . . , C

′
k) in

C(t) as H ◦H ′ = (C1, . . . , Cl, (C
′
1 \ σH), . . . , (C ′k \ σH)),

where σH =
⋃
i=1,...,l Ci. It is easy to see that H ◦ H ′ is

an HCLP model in C(t) as well. The following proposition
shows how the satisfaction of preference statements Γ from
H ′ persists under combination with sequences of singleton
level sets that only satisfy Γ(≤).

Proposition 4.2. Let (〈A,⊕, C〉,Γ) be an instance of C(t)-
PCP. If H = (c1, . . . , cl) is a Γ(≤)- satisfying model in C(1)
and H ′ = (C ′1, . . . , C

′
k) is a Γ-satisfying model in C(t), then

H ◦H ′ is a Γ-satisfying model in C(t).

Proof. We show, that H ◦H ′ satisfies Γ(≤) and strictly satis-
fies the preference statements thatH ′ strictly satisfies. Hence,
H ◦H ′ is a Γ-satisfying HCLP model in C(t).

Recall that a preference statement ϕ is strictly satisfied
when there exists a level set C supporting ϕ, i.e., αϕ ≺C βϕ,
and all preceding level sets C ′ are indifferent under ϕ, i.e.,
αϕ ≡C′ βϕ. Hence, the preference statements in Γ that are
strictly satisfied by H = (c1, . . . , cl) are also strictly satisfied
byH◦H ′ = (c1, . . . , cl, (C

′
1\σH), . . . , (C ′k\σH)). Let Γ′ be

the set of remaining preference statements that are not strictly
satisfied by H . Since H satisfies Γ(≤), H is indifferent un-
der all statements in ϕ ∈ Γ′, i.e., ci(αϕ) = ci(βϕ) for all
1 ≤ i ≤ l. Consider an arbitrary level set C in H ′ and a pref-
erence statement ϕ ∈ Γ′. Repeatedly applying Lemma 4.1
for the singleton level sets in σH ∩ C yields: αϕ ∼⊕C βϕ if
and only if αϕ ∼⊕C\σH

βϕ, where∼ is one of the relations≺,
≡ or�. Thus, the level sets C ′i \σH in H ◦H ′ have the same
relation towards statements ϕ ∈ Γ′ as the level sets C ′i in H ′.
Since the initial singleton sequence in H ◦ H ′ is indifferent
under preference statements ϕ ∈ Γ′, H ◦H ′ satisfies ϕ if and
only if H ′ satisfies ϕ. Also, all statements Γ \ Γ′ are strictly
satisfied by H ◦H ′. Hence, H ◦H ′ satisfies Γ(≤) and strictly
satisfies all statements in Γ that H ′ strictly satisfies.

Proposition 4.2 immediately leads to the next result.

Proposition 4.3. Let H be a Γ(≤)-satisfying model in C(1)
that consists of a maximal number of singleton level sets. If
Γ is C(t)-consistent, then there exists a Γ-satisfying model in
C(t) with H as initial sequence.

Based on Proposition 4.3, we describe the algorithm PC-
check that solves C(t)-PCP by trying to construct a Γ-
satisfying HCLP model. This method is summarised in the
algorithm below disregarding the framed parts. After find-
ing an initial singleton sequence (c1, . . . , ck) that is maximal

while satisfying Γ(≤) (in time O(|C| · |Γ|) by a greedy algo-
rithm [Wilson et al., 2015]), we consider every possible (not
opposing) level set C of size 2 ≤ |C| ≤ t. Let Γ′ be the set
of preference statements in Γ that are not strictly satisfied by
H = (c1, . . . , ck, C). We try to extend the sequenceH by an-
other Γ′-satisfying HCLP model. We construct this extending
model by recursively calling the method for the subproblem
with statements Γ′ and evaluations C′ = C−{c1, . . . , ck}−C.
If no such extension exists (that satisfies Γ), we backtrack
over the last chosen level set C and try a new level set. Note,
that by Proposition 4.3, we never have to backtrack over the
choice of singleton level sets, which can be a significant ad-
vantage over solving the MILP model. As soon as the cur-
rently considered sequence in the algorithm satisfies Γ we
stop and return the sequence, i.e., showing that the instance
is C(t)-consistent. If no Γ-satisfying sequence can be found
after exploiting all possible (Γ(≤)-satisfying) HCLP model,
we stop and return that the instance is C(t)-inconsistent.

Maintaining Conflicting Sets: In the following, we extend
the algorithm PC-check(C,Γ,⊕, t) by maintaining conflicting
sets that cannot be contained in the later level sets, and thus
reduce the number of backtracks. Proposition 4.4 shows that
the satisfaction of Γ persists for an HCLP model H ′ when
combining with an HCLP model H that extends an initial se-
quence of level sets of H ′ by one more level set and only
satisfies Γ(≤).

Proposition 4.4. Let (〈A,⊕, C〉,Γ) be an instance of C(t)-
PCP that is C(t)-consistent. Let H = (C1, . . . , Ck, B)
be a Γ(≤)-satisfying HCLP model in C(t) and let H ′ =
(C1, . . . , Ck, Ck+1, . . . , Cl) be a Γ-satisfying HCLP model
in C(t) with B ⊆ Cj for some k + 1 ≤ j ≤ l. Then
H ◦ H ′ = (C1, . . . , Ck, B,Ck+1, . . . , (Cj \ B), . . . , Cl) is
a Γ-satisfying HCLP model in C(t).

Proposition 4.4 is proved in a similar way as Proposi-
tion 4.2 using Lemma 4.1. Negating the statement yields: If
there exists no Γ-satisfying HCLP model in C(t) that extends
H , then there exists no Γ-satisfying HCLP model in C(t)
that extends (C1, . . . , Ck) and contains B in some level set.
In the second recursive approach, extending the algorithm
below by framed parts, we maintain such conflicting sets
B. When the algorithm backtracks because no Γ-satisfying
extension of the current HCLP model can be found, we mark
the last added level set C to be a conflicting set if |C| ≤ s.
Then, a new next level set is chosen that does not contain
any conflicting set. Although reducing the search space,
a potentially exponentially large list of conflicting sets is
maintained, where s regulates the space complexity.

Example. Consider a C(3)-PCP instance with the following
evaluation functions c1, . . . , c5 and statements on α, β, γ, δ.

α ≤ β ≤ γ < δ

c1 1 0 0 0
c2 0 2 2 2
c3 1 1 0 1
c4 0 2 1 1
c5 2 0 1 0

Algorithm: PC-check(C,Γ,⊕, t, S = ∅, s)
H ← (c1, . . . , ck) some Γ(≤)-satisfying singleton se-
quence with k maximal
if H � Γ then return H
for all C ⊆ C − {c1, . . . , ck} with 2 ≤ |C| ≤ t
such that there exists no S ∈ S with S ⊆ C
and αϕ 4⊕C βϕ for all ϕ with αϕ ≡⊕H βϕ do
H ← (c1, . . . , ck, C)
if H � Γ then return H
else if H � Γ(≤) then

Γ′ = {ϕ ∈ Γ | αϕ ≡⊕H βϕ}, C′ = C − σ(H)
H ← (c1, . . . , ck, C,PC-check(C′,Γ′,⊕, t, S, s))
if H � Γ then return H else S ← S ∪ C

return Inconsistent

Let ⊕ be the standard addition on Z. Suppose, in the first
step PC-check finds the maximal singleton sequence (c2, c1)
(which cannot be extended by any other evaluation without
violating Γ(≤)). Then the algorithm will in turn consider sets
{c3, c4}, {c3, c5}, {c4, c5} and {c3, c4, c5}. The sequences
c2, c1, {c3, c4} and c2, c1, {c4, c5} violate Γ(≤). The se-
quence c2, c1, {c3, c5} satisfies Γ(≤) but cannot be extended
to satisfy Γ. In PC-check(C,Γ,⊕, t,S, s), the set {c3, c5} is
added to the conflicting sets S and thus the set {c3, c4, c5}
does not have to be checked (by Proposition 4.4). PC-
check(C,Γ,⊕, t) finds that c2, c1, {c3, c4, c5} violates Γ(≤).
Thus none of the possible sets leads to a Γ-satisfying se-
quence and “Inconsistent” is returned. Note, that PC-check
does not have to backtrack over the choice of evaluations in
the initial singleton set sequence c2, c1 (by Proposition 4.3).

5 Experimental Runtime Comparisons
In our experiments, we compare the approaches from Sec-
tion 3 and 4 for solving PCP by their running time. Here,
the MILP formulation functions as a baseline and is expected
to be outperformed by the two recursive approaches as they
directly exploit the problem structure to perform less back-
tracks in a way that is not recognized by CPLEX. Note, that
it is not obvious how to incorporate the pruning of the search
space, that is preformed by the recursive algorithms, in a
MILP model in form of constraints or heuristics. We inves-
tigate the degree of improvement of the recursive algorithms
towards the rather simple MILP formulation and the relation
of the recursive algorithms towards each other. Though PC-
check(C,Γ,⊕, t,S, s) prunes the search space further than
PC-check(C,Γ,⊕, t), the list of maintained conflicting sets
can grow exponentially large. Thus, it is not obvious if main-
taining conflicting sets is advantageous.
Instances: For our experiments we considered different in-
stance sizes, to observe the effect on the running time by vary-
ing the number of evaluations n and the number of preference
statements g. For the lack of real world data, we generated
50 instances uniformly at random with evaluation functions
with domains {0, 1, 2, 3, 4, 5} for each of the problem sizes
n, g ∈ {10, 15, . . . , 50} where we fix the number of alterna-
tives that the preference statements are based on to m = 25.
Note, that not all alternatives generated are involved in prefer-

ence statements. Thus, m has no direct influence on the size
of the search space or the running time. For time reasons,
some experiments were not conducted for all instance sizes.
Implementation: We implemented all three approaches in
Java Version 1.8 using the IBM ILOG CPLEX (version
12.6.2) library for the MILP formulation. All experiments
were conducted independently on a 2.66Ghz quad-core pro-
cessor with 12GB memory.

We choose ⊕ as the standard addition on the integers. To
reduce the number of experiments, we allow the cardinality
bound on the level sets to be t = n, the number of evaluations,
and fix the cardinality bound on the maintained conflicting
sets to s = 5 (which gives the bound |S| ≤

(
n
s

)
≤
(

50
5

)
=

2118760). Since C(k′) ⊆ C(k) for all k′ < k, we expect the
running times to be lower for smaller t. Also, C(k) = C(n)
for all k ≥ n, i.e., the running times are the same for bigger t.
Experimental Results: As expected, solving the MILP for-
mulation of PCP (as presented in Section 3) by the CPLEX
solver is much slower than by the two recursive algorithms
PC-check (as presented in Section 4), see Table 2. However,
it is remarkable how quickly the ratio between the mean times
of solving the MILP and PC-check grows with the number of
statements and evaluations in the instances.

g = n = 10 n = 15 n = 20

10

PC-check(C,Γ,⊕, t) 0.011 0.01 0.04
PC-check(C,Γ,⊕, t,S, s) 0.003 0.01 0.03
MILP 0.22 10.53 149.81
minimal ratio: MILP/PC-check 20 1053 3745.25

15

PC-check(C,Γ,⊕, t) 0.003 0.01 0.29
PC-check(C,Γ,⊕, t,S, s) 0.001 0.01 0.28
MILP 0.22 220.28 >41472
minimal ratio: MILP/PC-check 73.33 22028 >143006.89

Table 2: Mean times in seconds to solve PCP with the MILP
formulation over 25 and with PC-check over 50 instances.

The two algorithms PC-check(C,Γ,⊕, t) and PC-
check(C,Γ,⊕, t,S, s) show similar behavior of running
times for different instance sizes. Figure 1 shows some
of the running times for PC-check(C,Γ,⊕, t) and PC-
check(C,Γ,⊕, t,S, s). Here, we can see that the running
times increase with the number of evaluations n and the
number of statements g.

10 20 30 40 50
10−3

10−2

10−1

100

101

102

103

Number of Statements g
10 20 30 40 50

10−3

10−2

10−1

100

101

102

103

Number of Statements g

n =
30
25
20
15
10

Figure 1: Mean times in seconds of PC-check(C,Γ,⊕, t)
(left) and PC-check(C,Γ,⊕, t,S, s) (right).

A detailed analysis shows that in 57% of the mea-
sured instance sizes PC-check(C,Γ,⊕, t) is slower than PC-
check(C,Γ,⊕, t,S, s). The ratios of the mean running times

of the two algorithms demonstrate that PC-check(C,Γ,⊕, t)
is at most 3.67 times slower than PC-check(C,Γ,⊕, t,S, s)
and PC-check(C,Γ,⊕, t,S, s) is at most 1.03 times slower
than PC-check(C,Γ,⊕, t). This insignificant difference be-
tween the running times of the two algorithms means that for
these instances reducing the number of backtracks by ruling
out conflicting sets is not worth the effort and space needed
to maintain the list of conflicting sets (of size < 5).

To find an explanation for the behavior of the running times
as shown in Figure 1, we observed the occurrence of instances
that have solutions in C(1), in C(t) with t > 1, or are inconsis-
tent. The whole search space must be explored until deciding
inconsistency for all t, which can lead to high running times.
PC-check solves C(1) instances in polynomial time. The in-
stance distribution may suggest that the running times go up
with the number of inconsistent instances, e.g., see Figure 2.

10 15 20 25 30 35 40 45 50

0

20

40

60

80

100

10 15 20 25 30 35 40 45 50

20

40

60

80

100

Number of Statements

Pe
rc

en
ta

ge

Inconsistent for all t, C(t)-consistent, t > 1, C(1)-consistent

Figure 2: Percentages of instance classes for the tested ran-
dom instances with n = 30 (top) and n = 35 (bottom).

6 Conclusion
Exploiting the theoretical results on properties of consistent
instances developed in Section 4 allow the algorithms PC-
check to prune the search space much further than a MILP
solver could do for the MILP formulation given in Section 3.
The experimental results confirm, that the algorithms PC-
check are solving the instances faster than CPLEX. Even
more, the ratios between the mean solving times of the MILP
and PC-check increase extremely quickly with the number of
evaluations and statements. It is not obvious how the pruning
rules of the PC-check algorithms can be incorporated in the
MILP formulation as constraints.

There is no significant difference between the mean run-
ning times of the two recursive algorithms PC-check on the
tested instances. Thus, in PC-check(C,Γ,⊕, t,S = ∅, s), the
effort of maintaining a list S of (possibly exponentially many)
conflicting sets to prune the search space further, is not pay-
ing off. An analysis of the instance consistency types indi-
cates that the running times for algorithms PC-check might
increase with the number of inconsistent instances.

A further analysis could involve the size of the search
space, i.e., counting the number of Γ(≤)-satisfying HCLP
models and the number of HCLP models that were actually
considered during the search. In future work, we will try us-
ing a relaxation of a MILP formulation as a fast check for
inconsistency within PC-check(C,Γ,⊕, t). If the relaxation
shows that the current subproblem is inconsistent, we can
avoid another (time consuming) recursive call.

Acknowledgment
This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) un-
der Grant Number SFI/12/RC/2289.

References
[Booth et al., 2010] R. Booth, Y. Chevaleyre, J. Lang,

J. Mengin, and C. Sombattheera. Learning conditionally
lexicographic preference relations. In ECAI ’10, Lisbon,
Portugal, August 16-20, 2010, Proceedings, pages 269–
274, 2010.

[Boutilier et al., 2004] C. Boutilier, R. I. Brafman,
C. Domshlak, H. Hoos, and D. Poole. CP-nets: A
tool for reasoning with conditional ceteris paribus
preference statements. Journal of Artificial Intelligence
Research, 21:135–191, 2004.

[Bräuning and Hüllermeier, 2012] M. Bräuning and
E. Hüllermeier. Learning conditional lexicographic
preference trees. In Preference Learning (PL-12),
ECAI ’12 workshop, Montpellier, France, August 28th,
2012, Proceedings, 2012.

[Bridge and Ricci, 2007] D. Bridge and F. Ricci. Supporting
product selection with query editing recommendations. In
RecSys ’07, Minneapolis, MN, USA, October 19-20, 2007,
Proceedings, pages 65–72. ACM, 2007.

[Dombi et al., 2007] J. Dombi, C. Imreh, and N. Vincze.
Learning lexicographic orders. European Journal of Op-
erational Research, 183(2):748–756, 2007.

[Figueira et al., 2005] J. Figueira, S. Greco, and M. Ehrgott.
Multiple Criteria Decision Analysis—State of the Art Sur-
veys. Springer International Series in Operations Research
and Management Science Volume 76, 2005.

[Flach and Matsubara, 2007] P. A. Flach and E.T. Matsub-
ara. A simple lexicographic ranker and probability esti-
mator. In ECML ’07, Warsaw, Poland, September 17-21,
2007, Proceedings, pages 575–582, 2007.

[Fürnkranz and Hüllermeier, 2010] J. Fürnkranz and
E. Hüllermeier. Preference Learning. Springer-Verlag
New York, Inc., New York, NY, USA, 1st edition, 2010.

[George et al., 2015] A.-M. George, A. Razak, and N. Wil-
son. The comparison of multi-objective preference infer-
ence based on lexicographic and weighted average models.
In ICTAI ’15, Vietri sul Mare, Italy, November 9-11, 2015,
Proceedings, pages 88–95, 2015.

[George et al., 2016] A.-M. George, N. Wilson, and
B. O’Sullivan. Towards Fast Algorithms for the Prefer-
ence Consistency Problem Based on Hierarchical Models
(extended version of IJCAI-2016). http://ucc.insight-
centre.org/nwilson/PCPalgorithmsProofs.pdf, 2016.

[Liu and Truszczynski, 2015] Xudong Liu and Miroslaw
Truszczynski. Learning partial lexicographic preference
trees over combinatorial domains. In AAAI ’15, Austin
Texas, USA, January 2530, 2015, Proceedings, pages
1539–1545. AAAI Press, 2015.

[Marinescu et al., 2013] R. Marinescu, A. Razak, and
N. Wilson. Multi-objective constraint optimization with
tradeoffs. In CP ’13, Uppsala, Sweden, September 16-20,
2013, Proceedings, pages 497–512, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[Trabelsi et al., 2011] W. Trabelsi, N. Wilson, D. Bridge,
and F. Ricci. Preference dominance reasoning for con-
versational recommender systems: a comparison between
a comparative preferences and a sum of weights ap-
proach. International Journal on Artificial Intelligence
Tools, 20(4):591–616, 2011.

[Wilson and Borning, 1993] M. Wilson and A. Borning. Hi-
erarchical constraint logic programming. The Journal of
Logic Programming, 16(34):277–318, 1993.

[Wilson et al., 2015] N. Wilson, A.-M. George, and
B. O’Sullivan. Computation and Complexity of
Preference Inference Based on Hierarchical Models
(extended version of IJCAI-2015). http://ucc.insight-
centre.org/nwilson/PrefInfHCLPproofs.pdf), 2015.

[Wilson, 2014] N. Wilson. Preference inference based on
lexicographic models. In ECAI ’14, 18-22 August 2014,
Prague, Czech Republic - Including PAIS ’14, pages 921–
926, 2014.

