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Abstract—Wireless Sensor Network (WSN) technology has
developed substantially over the past decade or so and now
numerous solutions exist across a diverse range of innovative
applications. The expanding Internet of Things (IoT) sector is
becoming an ever more important aspect of modern technology
and a key motivator for improving security and privacy in WSNs.
Typically, WSN protocols form an integral part of the overall IoT
infrastructure by enabling the sensor to access point communi-
cation links. These wireless links inherently encompass security
challenges, frequently due to external interference and intrusions.
As IoT applications incorporate WSNs in their architecture,
the incentive to attack and compromise these WSNs escalates.
Often, commercial off the shelf devices and standardized open-
access protocols combine to achieve specific WSN deployments.
Numerous WSN vulnerabilities exist, whilst attack approaches
are abundant and change frequently. Thus, to ensure acceptable
performance, safety and privacy in many IoT applications, the
adopted WSN must be secure. This paper discusses IoT security
and privacy, by evaluating a machine learning approach for inter-
ference detection focused entirely on analyzing received In-phase
(I) and Quadrature-phase (Q) samples. Significantly, once an
intrusion is detected, mitigation strategies can be implemented,
thus emphasizing the requirement for interference detection.
Random Forest is chosen as the machine learning classifier as it
consists of a large number of individual decision trees operating
as an ensemble. An intrusion detection system (IDS) is developed
based on Matlab simulated ZigBee data as an initial insight into
whether a real wireless data approach may be viable.

Index Terms—IEEE802.15.4, IoT, Interference, Intrusion, Ma-
chine Learning, Random Forest, Security, WSN and ZigBee.

I. INTRODUCTION

The Internet of Things (IoT) and wireless sensor networks
(WSNs) continue to evolve into integral components of mod-
ern technology and are becoming integrated into safety-critical
applications [1]. These technologies are rapidly changing the
way people live and, hence, the number of connected devices
in the spectrum is growing exponentially [1]. WSNs and
the IoT can enhance individual performances when operated
and connected together. However, this inherently creates new
challenges in terms of spectral coexistence, privacy, safety and
threat identification. As application deployments continue to
explore new safety-critical areas, the incentive for attackers to
access sensitive data, or cause a denial of service, escalates.

Distinctive IoT applications are vast and include everything
from smart appliances to wireless body area networks and

health care [1], [2]. WSN protocols, like ZigBee, can form
an essential part of the IoT architecture, by implementing
the communication link between sensing devices and the IoT
gateway. WSN versatility is observed in the diverse range of
potentially IoT enabled applications, which include aircraft
health monitoring [3], space-based applications [4], unmanned
aerial vehicles [5], precision agriculture and smart buildings,
amongst others [6]. This maturing field of WSNs and IoT
applications results in long-lived deployments where resource-
constrained low-power embedded devices are tightly coupled
to the environment and must execute received instructions and
necessary data transmissions.

Therefore, the security and availability of each commu-
nication link and the delivery of authentic and confidential
packets are essential for the useful operation of WSN and
IoT applications. Security is required to maintain services,
provide privacy and safety, keep data confidential and ensure
efficient battery usage. However, as many protocols and de-
vices are publicly available, certain security vulnerabilities are
identifiable. Additionally, typical edge devices are low-power
resource-constrained isolated equipment which have difficulty
in executing complex algorithms.

This paper works on improving privacy and safety for IoT
applications by developing a machine learning based intrusion
detection system (IDS) focused on the received WSN signal
in-phase (I) and quadrature-phase (Q) samples. This approach
is encompassed in the idea that once an interferer is detected it
can be mitigated, thus motivating a security algorithm focused
on detection. The probability distribution function (PDF) and
statistical analysis of the received samples define a set of
distinct features. Monte Carlo Matlab simulations provide
the necessary ZigBee transmissions with and without added
malicious interference which, in this paper, consists of the
matched protocol approach [7]. Thus, this simulated approach
analyzes whether the identified features and detection strategy
are a viable method for real-world WSN signals.

The remainder of this paper is organized as follows: Section
II discusses previous work in the area. Section III briefly
describes the chosen signal model and its security aspects.
Section IV defines the features used to develop the machine
learning model. Section V depicts the Random Forest method



and why it was chosen, while section VI specifies the results
and section VII concludes this paper.

II. RELATED WORK

Using machine learning techniques for classification and
intrusion detection in WSNs is the main focus of this paper
and covers a variety of literature. In [8] the throughput, packet
drop ratio, and the packet average delay of sensor nodes are
used in a Bayesian classification to identify anomalous nodes.
Different techniques are compared in their ability to identify
WSN outliers in [9]. Machine learning in separate areas of
WSNs is discussed in [10], where security and anomaly de-
tection are identified as viable use cases. Using decision trees
as an intrusion detection method is provided in [11], where
the main advantages include having the highest detection
performance, can construct and interpret the model easily
and works well with large datasets. Notably, Random Forest
was highlighted as outperforming other classifiers in terms
of identifying whether data traffic is normal or under attack
when using the NSL-KDD data set [12]. These techniques
have also previously been shown to detect jamming in global
positioning system (GPS) signals [13]. The work in this paper
distinguishes itself by focusing on the received I/Q samples
and neglecting network-level information.

III. SIGNAL MODEL & SECURITY

The chosen signal model is the de-facto standard for low-
rate wireless personal area networks (LR-WPAN), ZigBee.
Almost all available commercial and research sensor nodes are
equipped with ZigBee transceiver chips [14] and it is currently
deployed in both simple monitoring and critical applications.
The standard and its associated devices are essential for the
all-inclusive IoT architecture as, typically, ZigBee can be used
in IoT applications as the communication link from the sensing
platform to an IoT gateway or access point, as visualized in
Fig. 1. The operating topology is either star, mesh or peer-
to-peer and, in each case, is self-organizing, self-repairing,
dynamic and can exploit clustering approaches [15]. ZigBee’s
physical (PHY) and medium access control (MAC) layers are
derived from the IEEE 802.15.4 protocol, which has specifi-
cations as per Table I. Here, the ZigBee operating frequency
range is the unlicensed industrial, scientific and medical (ISM)
2.4 GHz radio frequency band, in which ZigBee coexists with
various other protocols, for example, WiFi and Bluetooth. The
16 relevant channel center frequencies are provided in (1),
where Fc is the center frequency and i is the channel num-
ber. ZigBee uses carrier sense multiple access with collision
avoidance (CSMA-CA) to access the channel and signals are
transmitted using direct sequence spread spectrum (DSSS) and
offset quadrature phase-shift keying (O-QPSK).

DSSS splits every byte into two 4-bit symbols, where each
symbol is spread to a 32-chip (bit) pseudo-noise (PN) sequence
from a predefined mapping table, which adds resilience to
noise. O-QPSK ensures bit transmissions for the I and Q
components occur at different time instants, as the I and
Q components are mutually offset by half a chip duration.

TABLE I
IEEE 802.15.4 (ZIGBEE) PHY & MAC SPECIFICATIONS

Parameter 2.4 GHz Frequency Band Value
Number of Channels 16

Channel Spacing / Width 5 MHz 2 MHz
Channel Range 2.405 → 2.4835 GHz

Data | Symbol Rate 250 kb/s 62.5 ksymbols/s
Byte Spreading DSSS

Chip Rate 2 Mchips/s
Modulation O-QPSK

Pulse Shaping Half Sine/Normal Raised Cosine
Maximum Packet Length 133 bytes

Channel Access CSMA/CA & CCA

Wearables, Sensors, Actuators, ...

Sensing / Actuating Platform

LR-WPAN (ZigBee) / 

NFC / WiFi / Bluetooth

IoT Gateway / Access Point 

Internet Protocol (4G / 5G / 

Ethernet) / Optical Fibre

Moblie User / App. User / 
Security Manager / 
Network Manager 

Physical

Virtual

Cyber 
Cloud Services / 
Command Centre 

Fig. 1. IoT Architecture showing the use of ZigBee

The signals are pulse shaped to ideally achieve the desirable
property of zero inter-symbol-interference at the maximum
effect points. This transmission process in the ISM band is
visualized in Fig. 2, by employing a Tektronix real-time spec-
trum analyzer and its associated digital phosphor technology
(DPX), which performs hardware digital signal processing and
rasterizing of samples into pixel information.

Fc = 2405 + 5(i− 11)MHz, for i = 11, 12, ...26 (1)

WSN security can, generally, be described in terms of re-
quirements, vulnerabilities, attacks and defenses. WSNs need
to provide confidentiality, data and origin integrity, services
when required, robustness against various impairments and
ensure energy is conserved, as most WSN devices contain
a finite energy supply. These requirements, typically, ensure
the secrecy and authenticity of important transmitted data.
Guaranteeing these requirements can be challenging as known
WSN security vulnerabilities exist. The open interface of the
wireless channel and the public domain character of many
WSN protocols enable various forms of attacks. Deployed
WSN devices, typically, have low processing power, memory
and speed, which all impede the use of conventional security
protocols. Regularly, deployed WSN nodes are left unattended
in hostile or remote environments, where it is difficult to
guarantee continued surveillance and devices can be physically
available to potential attackers. The availability of advanced
hardware at more affordable rates allows potential intruders
to execute diverse attack strategies, which are numerous [6]
and can occur across the entire protocol stack. Examples
include jamming, spoofing, sinkhole, replaying packets and
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Fig. 2. DPX visualization of a transmitted ZigBee signal in the ISM spectrum

many more. The diverse range of deployments and applications
incentivize intruders and typical defenses include cryptogra-
phy, frame check sequences and DSSS, among others [6].
Here, a defense strategy focused on detection is developed,
which utilizes machine learning and a feature set based on the
received IQ samples.

IV. FEATURES EXPLAINED

Here, the extracted features are briefly described as they
are the data analysis foundations on which the subsequent
machine learning model is built. The features are based on
the received IQ samples and describe ZigBee signals in
terms of error-free transmission with no interferer present
and erroneous reception caused by an interference signal. In
practice, these IQ samples are accessible using a software-
defined radio or, possibly, in the device’s debug mode if,
otherwise, unavailable. The features were developed through
Matlab Monte Carlo simulations involving a maximum like-
lihood decoder where bit errors ≥ 1 led to a packet error.
Bit errors were calculated using known transmitted packets,
a maximum likelihood decoder and leveraged the correlation
equation (2) to identify errors between what was received and
transmitted. Each time a packet error occurred, the samples
were stored for post-processing. Matched signal interference
was the adopted attack as it causes much more damage when
compared to conventional continuous-wave jamming and is
protocol specific, which causes the spectral image to remain
as expected [7]. Each transmission included additive noise,
which satisfied a Gaussian distribution, and each interference
signal incorporated a random phase offset to aid in resembling
real-world transceiver conditions.

Corr12 =

N−1∑
n=0

b1[n]b2[n] (2)

Simulated samples are either analyzed directly or used to
produce a PDF and then evaluated. The expected PDF, when
interference is low and packets are error-free, is a unimodal
shape with a low degree of variance. This changes when
interference is injected into the channel as the PDF begins to
resemble a bimodal shape with larger variance and becomes
more evident as the interference power increases. From the
PDF four distinct features are calculated; the area between bins

-2 to +2, averaged area of the bins -128 to -3 and +3 to 127, the
number of non-zero bins and the maximum peak. Each area is
calculated using the Matlab trapz function, which is provided
in (3), where the spacing is constant, due to PDF construction,
f(x) is the PDF function and N is the corresponding number
of bins. As interference power increases the maximum peak
decreases and the number of non-zero bins increases.∫ b

a

f(x)dx ≈ b− a
2N

N∑
n=1

(f(xn) + f(xn+1)) (3)

The samples can be analyzed directly as IQ components
to develop the remaining features. These signal characteristics
include the sample variance/standard deviation, the entropy of
the signal, the mean value and the absolute maximum value in
the received sample set. As the interference power increases,
the signal details shift to a bimodal, high variance construction
and so (4) can be used to calculate the sample variance, where
µ is the mean and, as a result, (5) calculates the standard
deviation. The mean and absolute maximum value in the
received samples both increase as the interferer becomes more
prominent, while the entropy of the samples (6) decreases
as the noise-like error-free signal becomes encompassed by
a more dominant interferer.

V =
1

N − 1

N∑
i=1

|Ai − µ|2 (4)

s =
√
V =

√√√√ 1

N

N∑
i=1

Ai (5)

S = −
∑

Pi log2 Pi (6)

V. MACHINE LEARNING ALGORITHM: RANDOM FOREST

In this paper, the detection of interference in the IoT sensor
to IoT gateway communication link is defined as a classi-
fication problem. This approach suits the overall concept of
interference detection as, here, the goal is to determine whether
what is observed in the received signal is due to an intruder, or
not. A decision tree algorithm seems appropriate as, typically,
this concept is near the top of the classifier hierarchy [16].
Decision trees can be explained by focusing on an individual
structure in Fig. 3, where each tree is constructed as a series
of binary intermediate nodes, each successively choosing the
attribute and associated threshold that provides the best split
of the sample subset. Here, the input is deconstructed into
a feature set that is used by the individual decision trees
to split the observed input into groups that are as different
from each other as possible, while the members of each group
are as similar as possible. In terms of this paper, the groups
would be error-free ZigBee signals and received signals with
interference causing a range of bit errors. The features outlined
in section IV try to define these distinct groups with as much
mutual separation as possible.

The Random Forest algorithm [17] is a supervised machine
learning approach and is chosen as it consists of a large



number of individual decision trees that operate as an en-
semble. This simple yet powerful ensemble concept forms the
fundamental theory upon which the Random Forrest algorithm
depends. The ”wisdom of crowds” approach specifies that the
collective consensus of a group of individuals is usually more
valuable than that of any singular entity. Thus, this algorithm
operates by combining a large collection of relatively uncor-
related models, sub-optimal decision trees, as a committee
to produce a composite decision of higher quality that will
outperform any of the individual constituent models. Decision-
making depends on a diverse group rather than a predom-
inantly homogeneous approach. Essentially, each individual
tree is unique and specifies a vote and the output with the
most votes is the overall prediction. This is visualized in Fig.
3, where 7 trees predict interference and 2 trees predict a clean
signal, therefore the decision is that interference is present.

This idea depends on having low correlation between indi-
vidual trees, as this protects each tree from their individual
error [16]. Uncorrelated decision trees are ensured by two
methods: bagging (bootstrap aggregating) and feature random-
ness. The former exploits each decision tree’s high sensitivity
to the training data used and the latter ensures each tree can
only pick from a random subset of available features. Random
forest allows each individual decision tree to be constructed by
choosing a random subset of the training samples. Applying
replacement allows examples to be repeated to maintain the
sample size N, while, concurrently, allowing for a unique tree
to be modeled. Thus, as each sample-set is randomly chosen
from the total training sample set, the corresponding decision
trees, known as weak-learners, contain different variations of
the original classification, which reduces variance and helps
to avoid over-fitting. The random sample-set and feature set
allows for the creation of uncorrelated trees that protect each
other from their own errors and, once a set of decision trees has
been computed, a new sample can be classified by performing
a majority voting scheme, as visualized in Fig. 3.

Here, Random Forest, specifically decision trees, suit the
identified problem for many reasons. This algorithm was used
to develop an interference detection scheme in GPS signals
[13], it is cited as being suitable for classification and intrusion
detection [11], is fast, scalable, robust to noise, does not overfit
[18] and, importantly, can work with large datasets. As Monte
Carlo experimentation, either through simulations and/or live
data, is required for WSN transmission analysis, the chosen
algorithm must be capable of working with large example
datasets. Multiple iterations (likely in the tens of thousands)
are required to sufficiently model the wireless channel, as
typical channels and environments change regularly. WSNs
are commonly deployed in environments where the spectrum
changes rapidly due to the number of connected devices,
demand, packet size or services in operation and the physical
channel changes due to varying fading levels, obstacles, path
losses, and spurious interference. Furthermore, employing
machine learning techniques on low power embedded systems
by exploiting low-power micro-controllers is becoming more
achievable in IoT applications [2], [19], meaning optimizing

Prediction: Interference

Prediction: Interference

Prediction: Interference

Prediction: Interference

Prediction: Interference

Prediction: Interference

Prediction: Interference

Prediction: Clean 

Prediction: Clean 

Tally: 7 Interference and 2 Clean
Prediction = Interference 

Fig. 3. Visualization of a Random Forest Model making a Prediction

machine learning algorithms for WSN nodes is possible.
Hence, developing this type of algorithm for use in a WSN is
an achievable task and is becoming more relevant as training
begins to shift from the data centers to the edge nodes.

VI. RESULTS

Here, Matlab is used as the development tool, which uti-
lizes the necessary machine learning libraries, to design the
IoT WSN interference detection algorithm. Specifically, the
Breiman and Cutler Random Forest method [17] has been
selected as the classification approach for the advantages
described in section V and for previous work in detecting
interference is DSSS real-world GPS signals [13]. The Matlab
’TreeBagger’ class is used with all necessary settings to
implement the Breiman and Cutler method. Fig. 4 provides the
basic approach of the designed algorithm, where a Matlab sim-
ulated ZigBee signal, with(out) added interference, is received,
deconstructed based on the defined feature set and classified by
the designed procedure. To achieve this IDS, data is required to
train, evaluate and test the algorithm. Monte Carlo simulations,
utilizing ZigBee transmissions, additive noise and interference,
supplied the data. Training data is stored in a NxD matrix
and the associated annotation vector is of size Nx1, where
N is the number of training examples and D is the number
of dedicated features for each example. Clearly, each column
contains a specific feature and each row corresponds to a
data-point example. Hence, each row needs to be annotated
as either ’error-free’ or ’erroneous’, where errors are induced
by applying a matched protocol attack [7].

The number of features, as per section IV, is nine, which
may need optimization and/or expansion at a later stage, and
the training data size is 70% of all available data points.
Presently, some features may be related but, as each tree
takes a random subset of features, the data is simulated and
this is the first iteration of the algorithm, this fact is kept
for a later optimization and analysis stage. For error-free
data, 20,000 simulations were executed and deconstructed into
the specific features, thus, providing 14,000 (70%) examples
for training. Erroneous data includes jamming-to-signal-ratios
(JSR) decreasing in steps of 1 dB from 40 dB to -15 dB. As
the probability of error (Pe) increases with JSR, the number
of simulations executed rises as the JSR decreases. Once a
packet error occurs, the data is deconstructed and logged.
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Thus, 70% of the packet error data at each available data point
is used for training. The number of executed simulations is in
a logarithmic scale from 10,000 at 40dB JSR to 60,000 at -
15dB JSR and visualized in Fig. 5 (a), where the performed
number of trials and resulting packet errors are provided. A
successful attack produces bit errors in a packet, as it results in
either rejection or non-reception and requires retransmission.
Here, a constant packet length of 40 bytes is used with an
attack packet of matching length for a tight comparison across
the JSR range. The designed algorithm attempts to identify
why packets contain errors by simply taking a snapshot of
the received IQ samples. However, as it is based on simulated
results, the feature set contains differences from error-free data
even at a JSR value of -15 dB. This concept is visualized by
analyzing the out-of-bag (OOB) error, which is a method of
measuring the prediction error of a decision tree algorithm,
utilizing bagging to sub-sample data samples used for training.
OOB is the mean prediction error on each training sample xi,
using only trees that did not have xi in their bootstrap sample.

The OOB is provided in Fig. 6 for four cases including a
two-class case for error-free and erroneous, an extended three-
class case to separate the erroneous stage into PER regions of
≥ 0.32 and ≤ 0.32 and an erroneous case above and below a
JSR of 5dB, which were identifiable during feature extraction.
The PER regions relate to the decreasing slope towards low
levels of PERs in Fig. 5, relating to, typically, unintentional
interference. Finally, a four-class case is presented based on
the packet/bit errors in Fig. 5. A PER of ≤ 10% and bit

0 20 40 60 80 100
Number of grown trees

0

0.05

0.1

0.15

O
ut

-o
f-

ba
g 

cl
as

si
fi

ca
ti

on
 e

rr
or 2 Classes

3 Classes - 5dB
3 Classes - 2dB
4 Classes

Fig. 6. Designed Random Forest Algorithm: Out of bag errors

TABLE II
DESIGNED RF ALGORITHM: SPECIFICATIONS

Predictor Depth No. Trees Train Time Prediction Time
Validation Set 5 55 41.44 s 191 ms
Training Set 5 55 169.205 s 420 ms

errors ≤ 15 defines a region where unintentional interference
or high channel noise may exist, a PER from 11% → 32%
and bit errors from 15 → 20 defines a subtle jamming or
signal collision region and above these resides a high impact
jamming region. Fig. 6 specifies that the OOB decreases
with the number of trees and this OOB is much smaller for
the two-class case. However, having such small differences
between ’good’ and ’bad’ signals is, typically, not the best
approach to ensure low false positives and high true positives.
Also, as bit errors are sporadic when interference is supplied,
visualized in Fig. 5 (b), being able to identify different zones
is advantageous. Therefore, the algorithm’s ability to define
multiple cases is beneficial, as the high and medium jamming
regions have a higher separation from error-free signals.

The four-class case was validated using available validation
and testing data to determine the optimal metrics, including
the number of decision trees, feature depth and minimum per-
centage error. Validation data contained 20% of all available
data and included varying the maximum feature depth from
one to nine and the number of decision trees from one to one
hundred and thirty-nine. These results are supplied in Fig. 7,
which specifies the lowest error level for the four-class case at
≈ 5.87% using fifty-five decision trees and a maximum feature
depth of five. The training time and average prediction time
are supplied in Fig. 8 and Fig. 9, respectively, while Table II
supplies the final algorithm metrics. These results highlight an
optimization prospect in terms of prediction time and provide
motivation for a real-world signal approach.

VII. CONCLUSION

This paper used simulated ZigBee transmissions to demon-
strate the suitability of using received IQ samples and a ma-
chine learning algorithm for malicious interference detection
in WSNs for IoT applications. The concept was designed using
a Random Forest approach and malicious matched protocol in-
terference. The procedure is built upon deconstructing received
signals into a set of features entirely based on the received I/Q
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samples. This work on Monte Carlo Matlab simulated ZigBee
transmissions provided substantial evidence that the developed
feature set and machine learning approach could be adapted to
real-world wireless signals. The classifier allocates observed
(received) signals into groups, either error-free, erroneous or a
sub-set of erroneous. Thus, in future work, as attack strategies
change, the potential exists that the number of observed groups
will expand to provide both interference detection and attack
classification. Live real-world signals are the next stage of
expansion as this approach needs to be tested and trained
using real-world live WSN signals in various environments
and channels. As machine learning has previous applications
on low-power embedded devices, this approach is a viable
and achievable security enhancement. Once this algorithm is
adapted to real-world signals and various attack approaches,
the overall approach requires optimization for use on low-
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power WSN edge devices. In addition, the implementation
results and trade-offs for using this approach on resource-
constrained devices need to be determined and analyzed.
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