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Abstract. Personal Voice Assistants (PVAs) are used to interact with
digital environments and computer systems using speech. In this work
we describe how to identify the room in which the speaker is located.
Only the audio signal is used for identification without using any other
sensor input. We use the output of existing trained models for speaker
identification in combination with a Support Vector Machine (SVM) to
perform room identification. This method allows us to re-use existing
elements of PVA eco-systems and an intensive training phase is not re-
quired. In our evaluation rooms can be identified with almost 90 percent
accuracy. Room identification might be used as additional security mech-
anism and the work shows that speech signals recorded by PVAs can also
leak additional information.

1 Introduction

PVAs such as Amazon Alexa or Google Home are now commonplace. We use
these systems to interact with our environment and computer systems. A PVA
records a user’s voice and converts speech to text using Automated Speech
Recognition (ASR). The obtained transcript is then interpreted by the system
and actions are carried out. The system may then generate an audio response
which is played back to the user via the PVA’s integrated speakers.

A PVA may also use other techniques in addition to ASR to analyse recorded
speech samples. For example, speaker identification may be carried out. In this
case the speech signal is analysed in order to identify who the speaker is that
is supplying a voice command. Such method may be useful in order to tailor
a PVA action to the interacting user. For example, if a user requests to play
their favourite music it is necessary for the system to identify the correct user.
Also, such feature can be used to improve security and is used to implement user
specific PVA access control. Other features that can be extracted from speech
signals are the user’s gender [9], emotional state [14] or health condition [2].

In this work we investigate how to extract features from audio samples cap-
tured by a PVA that allow us to determine the room in which the sample has
been recorded. Such room identification feature is useful to further tailor PVA
usage to the user environment. For example, if the user requests to play their
favourite music the system can recognise in which room the command was issued
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and play music via the correct speaker system. We assume here that either the
PVA is mobile (a mobile Phone) or that it is a smart speaker that can be easily
carried into another room. Room identification is also important from a security
perspective. Room identification can be used as additional security feature. A
PVA could be configured to only accept commands that are placed in specific
rooms. For example, a doctor may only interact with patient data via a PVA in
specific environments such as the consultation room but not the hospital’s cafe-
teria. It has also to be noted that audio based room identification represents a
privacy issue. Users that interact with a PVA do not necessarily want to sacrifice
location privacy.

Existing work has shown that a Deep Neural Network (DNN) can be trained
to identify the room in which a sound was recorded. However, a large data set
is required and training of the DNN takes considerable effort. Also, this new
capability requires additional processing capabilities. To overcome these issues
we investigate in this work a different approach. We propose to use existing
trained models used for speaker recognition to perform the additional task of
room identification. Specifically we evaluate this approach using two trained
speaker recognition systems that we call thinResnet [13] and VGGVox [8]. We
use the output vectors of the speaker recognition system as input for an SVM
which we then use for room identification. The SVM can be configured using a
relatively small number of sound samples and complex training of a specialised
DNN is not necessary. In a PVA eco-system sophisticated trained models for
ASR and speaker recognition are available and the effort to implement room
identification can be reduced.

The specific contributions of this work are:

– Room Identification via Trained Models: We describe a method for room
identification using existing trained models; specifically trained speaker recog-
nition models.

– Evaluation of Room Identification: We evaluate the proposed method using
the two well known speaker recognition systems that we call thinResnet [13]
and VGGVox [8]. We use a public available data set from the Acoustic
Characterisation of Environments (ACE) challenge. We show that rooms
are identified with 89 % accuracy.

In the next section we discuss related work. Section 3 describes on a system
level how room identification is used in a PVA context. Section 4 describes our
method for room identification using existing speaker recognition models. In
Section 5 we detail our evaluation; evaluation setup, data sets and results are
described. Section 6 concludes the paper.

2 Related Work

A number of techniques are available to characterise a room. Some of techniques
have been used to perform room characterization and/or room identification.
Here we detail work closest to ours and highlight differences. The main difference
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to existing work is that i) we use unprocessed original audio files recorded in
different rooms and ii) we use preexisting NN-based models trained for a different
purpose than room identification or verification.

Peters et al. [11] introduced in 2012 a system for room identification by
analysing audio in a video clip. Mel-Frequency Cepstral Coefficient (MFCC)
features are used for analysis. An accuracy of 61% for music and 85% for voice
signals is achieved with no shared data between training testing phase. The term
“Room Identification” was first coined by the authors [12]. Our work differs as
we re-use existing speaker identification models.

Moore et al. [5,6] proposed in 2013 the use of Gaussian Naive Bayes Classifier
(GNBC) using Frequency Dependent Reverberation Times (FDRTs) features
for room identification. A database consisting of 484 Room Impulse Responses
(RIRs) for 22 rooms, with volumes ranging from 29 to 9500 cubic meters, were
used. The FDRTs was used as input feature to the classifier. According to the
obtained results, in the best case scenario an Equal Error Rate (EER) of 3.9%
can be achieved. Special equipment is required to measure the FDRTs. In our
work we use recorded speech directly for room identification instead of dedicated
acoustic measurements.

Murgai et al. [4] conducted research to see if blind estimation of the rever-
beration fingerprint of an unknown room could be performed by monitoring
recorded speech signals. Despite the fact that the cited paper’s main research
goal was room volume classification, the obtained reverberation fingerprints can
also be used for room identification. In this work we look at how to extract
characteristics from audio samples to specifically identify a room using existing
speech identification models.

In 2018 Moore et al. [7] proposed a new method for room identification using
sub-band negative-side variance features. A GNBC is used to classify the fea-
tures. The evaluation used recording samples taken from the evaluation dataset
of the ACE challenge [3]. Voice recordings in five rooms were used. For the best-
case scenario where the training data includes utterances spoken from the same
position as the test data, a 90.5% accuracy is obtained. While our work uses the
same dataset for evaluation we use a different analysis method. We use existing
trained speaker identification models and their output as features to identify
rooms using an SVM.

Papayiannis et al. [10] explored room identification based on the influence of
reverberation on speech. The authors propose Convolutional Recurrent Neural
Networks (CRNNs) to identify the room. For evaluation, Acoustic Impulse Re-
sponses (AIRs) are used from the ACE challenge dataset, measured in 7 rooms.
The AIRs are used to artificially add reverbaration to speech samples; then these
artificial samples are used to identify the rooms. According to the achieved re-
sults, the classification accuracy of the CRNN is 78%. In our work we do not use
generated samples and we use existing trained speaker identification models to
identify rooms.
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3 System Overview

A PVA is a system comprised of two major components: the front end and the
back end (see Figure 1). The front end is either implemented as a dedicated de-
vice, often called a smart speaker, or realised as an app on the user’s smartphone
or other system such as a TV.

Fig. 1. PVA system overview comprising front end and back end infrastructure.

The front is able to record and play audio. It also comprises a wake word
detection; once a wake word such as Alexa is recognised the following speech
signal is recorded and transmitted to the back end.

The following are the key components usually found in the back end: ASR
module, Natural Language Processing (NLP) module, skills management module
(skill service) and natural language generator module (text to speech generator).

The process of turning the recorded speech into text is implemented by the
ASR. This process is carried out using acoustic and language models. An NLP
module is needed for intent recognition. The meaning of the speech and the user’s
expectations are expressed by the intent which results in a structured codified
user request. The natural language generator module may be used to generate
a speech response message played to the user by the front end.

A speaker recognition module may also be used in the back in order to identify
the speaker. The obtained user identification might be used to prevent execution
of a command. For example, when a specific user is deemed not to be allowed
to issue a specific command.

To implement room identification it would be possible to include an addi-
tional module specifically for this purpose in the back end. This module would
be supplied with the recorded voice, similar to the Speech Recognition (SR) to



Room Identification with Personal Voice Assistants 5

perform the task of room identification. As discussed in the related work, models
are existing that could be used for this purpose.

However, this approach introduces two challenges. Firstly, the additional back
end module would require resources to execute; all currently processed speech
samples submitted by front ends require this additional resource. Thus, the back
end infrastructure would need to be scaled up which is costly and also not
energy efficient (Energy consumption is a significant cost factor of data centers).
Secondly, the additional back end module would require to be trained which
requires effort. Significant amount of data from user homes would need to be
available. While it is possible to do to it is an additional overhead.

To overcome these challenges we propose therefore another approach. We
propose to use the output (the feature vectors after processing) of the existing
speaker recognition module to perform room identification. The output of the
speech recognition module is used within a simple SVM to classify the rooms.

4 Room Identification

For speaker identification a neural network can be used. These take an acoustic
signal (the speech signal) as input and then classify the speaker based on the
features extracted from the input signal. Here we make use of a trained neural
network for speaker identification, however, we take the output feature vector
of the neural network to feed an Support Vector Machine (SVM) which is then
used to classify the different rooms.

We take a number of acoustic signals collected in the rooms of interest and
feed these to the trained neural network for speaker recognition. Then we use
the resulting feature vectors to train an SVM. The training of the SVM can be
performed with relatively few samples from rooms and training to classify rooms
is much simpler than training a full end-to-end DNN for this purpose.

The SVM input data is mapped to a higher dimensional feature space via a
kernel function. The feature space is derived using the kernel function, instead
of being strictly defined. In this way, the selection of the kernel is the key to de-
termine the feature space. We chose the Gaussian Radial Basis Function (RBF)
for our SVM. We use in our system two well known speaker recognition systems
that we call thinResnet [13] and VGGVox [8].

thinResNet (512 dimensional feature vector): In this case we use the ‘thinResNet’
[13] trunk architecture with a dictionary-based NetVLAD layer for aggregating
extracted features across time. This neural network model was trained end-to-
end. It is also worth mentioning that here, voice activity detection (or automatic
silence removal) is not applied. The output of the fully connected layer is used
here as the extracted feature vector of 512 elements that is used as input for our
SVM.

VGGVox (1024 dimensional feature vector): VGGVox was proposed by Nagrani
et al. [8] and this architecture is based on the VGG-M [1] Convolutional Neural
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Network (CNN), which is noted for its great efficiency and image classification
ability. Using the 1024 dimension FC7 vectors, feature vectors from the classifi-
cation network can be obtained. Here, we use the extracted feature vectors for
training our SVM classifier.

5 Evaluation

5.1 Dataset

The ACE Challenge database is used. The ACE Challenge was set up to encour-
age research on blind estimation of acoustic parameters from noisy speech using
newly collected reverberant speech samples under different conditions [3]. The
database contains so called babble noise recorded in seven different rooms (Two
offices, two lecture rooms, two meeting rooms and lobby).

The babel noise is created by four to seven persons sitting in close proxim-
ity and chat constantly for the duration of the audio recording. The files were
recorded on two separate occasions using the same microphones, with the mi-
crophones moved to the new position between the two occasions. For each of the
rooms, two babble noise samples were obtained (for two different microphone
positions).

We have seperated the babble noise samples into 2.5 second length audio
samples. This way we we obtained 1352 samples in total distributed across the 7
rooms as follows: No.1. First Living Room (FLRoom) 200 samples, No.2. First
Meeting Room(FMRoom) 167 samples, No.3. First Office (FOffice) 153 sam-
ples, No.4. Second Living Room (SLRoom) 243 samples, No.5. Second Meeting
Room(SMRoom) 178 samples, No.6. Second Office (SOffice) 205 samples, and
No.7.Lobby (Lobby) 206 samples.

5.2 thinResNet

In order to train our SVM we used 502 voice samples, with 850 samples being
used to test the chosen model. The training and test data-set samples were chosen
randomly. Table 1 shows the summary of results obtained. Figure 2 shows the
obtained confusion matrix.

As seen in Figure 2, the multiclass-classifier accurately identified all samples
as belonging to the first office, with the exception of three that were wrongly
identified as samples being recorded in the first living room (two samples) and
the second meeting room (one sample). It can be illustrated in the same figure
that, for the second meeting room, the number of mistakenly rejected samples
was zero and the false negative rate is zero.

According to Table 1, the best F1-score of 99% is achieved for the second
living room (there were only two incorrectly classified samples and there was
no incorrectly rejected sample in this class), while the worst F1-score of 77% is
achieved when we want to recognize the second meeting room.

We can conclude from Table 1 that, the overall accuracy of 89% can be
obtained when we train our model using the thinResnet feature vectors (512
dimensional extracted feature vectors).
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Fig. 2. thinResnet: The obtained confusion matrix using 850 voice samples.

Table 1. SVM Classification Results - thinResnet

Type of Rooms Precision Recall F1-score Support

FLRoom 0.97 0.94 0.96 71
FMRoom 0.85 0.82 0.84 68
FOffice 0.88 0.94 0.91 49
SLRoom 0.98 1.00 0.99 93
SMRoom 0.78 0.77 0.77 64
SOffice 0.96 0.88 0.91 73
Lobby 0.81 0.87 0.84 84

accuracy 0.89 502



8 Mohammadreza Azimi and Utz Roedig

5.3 VGGVox

Figure 3 shows the resulting confusion matrix using VGGVox. As it can be seen
in Figure 3 for the second living room, 94 samples were classified and identified
correctly, while two samples were mistakenly and incorrectly rejected by the
system. As it is shown in Figure 3, the worst case scenario is when we want to
identify Room no.2 (the first meeting room) using the obtained samples. As it
is mentioned before, the training data set is completely separate from the test
data-set and the samples were randomly chosen for these two separate data sets.

Table 2 summarises the results obtained using VGGVox in vombination with
the SVM. The best f1-score is 98% for Room no.4 and the lowest f1-score is 67%
for Room no.2. The overall accuracy is 86%.

Fig. 3. VGGVox: The obtained confusion matrix using 850 voice samples.

6 Conclusion

This work has shown that room identification based on voice samples are feasible
and that existing neural networks used for other tasks such as speaker identifi-
cation can be re-purposed for this task. By doing so it can be avoided to train
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Table 2. SVM Classification Results - VGGVox

Type of Rooms Precision Recall F1-score support

FLRoom 0.79 0.89 0.84 66
FMRoom 0.74 0.61 0.67 51
FOffice 0.87 0.93 0.90 56
SLRoom 0.98 0.98 0.98 96
SMRoom 0.87 0.78 0.82 76
SOffice 0.74 0.82 0.80 71
Lobby 0.92 0.93 0.92 82

accuracy 0.86 498

complex networks just for this task and existing elements of a PVA infrastructure
can be re-used.

In this work we used the public available dataset collected by the Acoustic
Characterisation of Environments (ACE) Challenge. This data was not specif-
ically collected for a PVA context. Thus, in our next steps we plan to collect
our own data set issuing voice commands to a PVA. We will then repeat the
experiments detailed in this paper using this more specific dataset.
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