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ABSTRACT

Aims

This study was designed to select lactic acid bacteria with histamine and cholesterol reducing 

abilities to be use as potential probiotics.

Methods and Results

Thirty strains of lactic acid bacteria isolated from an artisanal raw milk cheese were screened for 

their abilities to degrade histamine, reduce cholesterol and hydrolyze bile salts. Strains were also 

screened for safety and probiotic traits, such as resistance to gastrointestinal conditions, adhesion 

to Caco-2 cells. resistance to antibiotics and presence of virulence genes. Two Lactobacillus 

paracasei strains presented high cholesterol- and histamine-lowering abilities, tested negative for 

the presence of virulence genes and showed susceptibility to most important antibiotics. These 

strains were also shown to possess desirable in vitro probiotic properties, revealed by tolerance to 

gastrointestinal conditions and high adhesion to intestinal cells.

Conclusions

Among the screened strains, Lb. paracasei L3C21M6 revealed the best cholesterol and histamine 

reducing abilities together with desirable probiotic and safety features to be used in food 

applications.

Significance and Impact of the Study

The strain L3C21M6 is a good candidate for use as a probiotic with histamine-degrading activity 

and cholesterol lowering effect. In addition, this strain could be use in dairy foods to prevent 

histamine food poisoning. 
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Introduction
The probiotic market is predicted to reach $57.4 billion by 2022 driven largely by consumers’ 

interest in preventative healthcare and the desire for natural products (Allied Market Research, 

2016). Probiotics can be consumed in different forms being encapsulated in pills or incorporated 

into dairy foods including yogurt, cheese and other fermented foods (Granato et al. 2010). Most 

probiotics belong to the lactic acid bacteria (LAB) group, and the most commonly used are 

members of Lactobacillus, Streptococcus and Bifidobacterium species (Parvez et al. 2006). A
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According to the FAO/WHO (2002), probiotic food products are generally fermented foods 

containing a sufficient amount of viable and active “living nonpathogenic microorganisms” 

(bacteria or yeasts) that, when ingested, are able to confer numerous health benefits on the host. 

Key health-promoting properties of probiotic bacteria rely on their ability to survive passage 

through the gastrointestinal tract (GIT), which depends on several factors including their capacity 

to tolerate the acidic pH of the stomach, as well as bile and digestive enzymes (Gobbetti et al. 

2010) and to adhere to intestinal epithelial cells and/or mucus (Marco et al. 2006). 

Different studies in humans have provided evidence of the beneficial effects of probiotics. 

Consumption of probiotics has been shown to stimulate the growth of beneficial microorganisms 

and reduce pathogen load, to alleviate certain intolerances (such as lactose intolerance), and to 

prevent or reduce allergies (Isolauri 2001; Tang et al. 2015). Clinical evidence also exists for 

probiotic efficacy in several conditions including irritable bowel syndrome, constipation, diarrhea, 

bacterial vaginosis, hepatic steatosis and treatment of high cholesterol (Plaza-Diaz et al. 2014; 

Puebla-Barragan and Reid, 2019). In addition, certain LAB may improve the health-promoting 

potential of probiotic foods by degrading anti-nutritional compounds such as biogenic amines and 

cholesterol (Chiang and Pan 2012; Trautvetter et al. 2012). 

The consumption of fermented foods, and especially cheese, with high concentrations of 

biogenic amines, can cause food poisoning such as histamine intoxication, mimicking an allergic 

reaction (EFSA 2011). In individuals with histamine intolerance, ingestion of food with normal 

contents of histamine causes histamine-mediated symptoms, and has been associated with a 

number of inflammatory and neoplastic diseases, such as Crohn disease, ulcerative colitis, allergic 

enteropathy, food allergy and colorectal neoplasms (Maintz and Novak 2007; Ladero et al. 2010). 

Therefore, the use of LAB capable of decreasing the concentration of histamine in foods and in the 

GIT should lead to a reduction in incidence of histamine poisoning and the relief of adverse 

reactions in individuals with histamine intolerance.

High blood cholesterol (hypercholesterolemia) is a risk factor for cardiovascular disease, 

which remains one of the largest causes of death worldwide (Ishimwe et al. 2015). Probiotic 

supplements have been shown to significantly reduce serum total cholesterol in humans (Wang et 

al., 2018). The mechanisms proposed for these cholesterol-lowering effects include deconjugation 

of bile salts by bacterial bile salt hydrolase (Yıldız et al. 2011). Therefore, the ability of LAB to 

hydrolyse bile salts has been included among the criteria for probiotic strain selection (Peres et al. 

2014). A
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In a previous study, LAB strains were isolated from artisanal Pico cheese and evaluated on basis 

of technological, safety and consumer preference (Domingos-Lopes et al. 2017). Thirty strains 

with QPS status (Lactobacillus, Lactococcus and Leuconostoc genus) showed absence of beta-

hemolysis, DNAse, gelatinase and histamine production, in addition to suitable technological 

features. The objective of the present study is to identify potential probiotic strains from this 

group. Therefore, we evaluated the in vitro probiotic potential of these LAB strains concerning 

their safety and ability to degrade histamine, reduce cholesterol and hydrolyze bile salts. In 

addition, 

Materials and methods
Bacteria strains and growth conditions 

A total of 30 LAB strains were previously isolated from Pico cheese (Domingos-Lopes et al. 

2017) and identified as Leuconostoc mesenteroides (4), Leu. citreum (1), Lactococcus lactis (2), 

Lc. garvieae (1), Lactobacillus plantarum (5), Lb. paraplantarum (1), Lb. paracasei subsp. 

paracasei (15) and Lb. otakiensis (1). Stock cultures were kept at -80 °C in 50% (v/v) glycerol and 

propagated twice in MRS broth (Biokar, Beauvais, France) with 1% (v/v) of inoculum, aerobically 

at 30 °C, for 24 h, before use. 

Assessment of the ability of the LAB strains to degrade histamine

The ability of LAB strains to degrade histamine was tested in a model system similar to that 

previously described by Dapkevicius et al. (2000). LAB strains were tested for their ability to 

degrade histamine in diamine oxidase (DO) broth, consisting of 1 g l-1 glucose, 3 g l-1 yeast 

extract, 3 g l-1 tryptone, 5 g l-1 NaCl, 1 g l-1 Tween 80, 0.25 g l-1 MgSO4·7H2O, 0.038 g l-1 

MnSO4·H2O, 0.08 g l-1 FeSO4.7H2O and 0.05 g l-1 histamine dihydrochloride, pH 6.0. The strains 

were previously grown in MRS broth at 30 °C for 24 h, harvested by centrifugation (5,000 × g, 10 

min, 4°C), washed with phosphate buffer saline (PBS, pH 7.2), and incubated in DO broth (1%) at 

37 ºC, for 30 h. 

The histamine concentration was determined by the spectrofluorometric method of Shore 

(1971). Samples of 1 ml of inactivated broth were added to 9 ml of perchloric acid (0.4 mol l-1) 

and centrifuged at 2,000 × g. The supernatant (2 ml) was added to a mix of 1-butanol, 0.25 ml 

NaOH and 0.75g NaCl (5 ml). The whole mixture was shaken for 5 min and centrifuged for 1 min 

at 2,000 × g. Two ml of the upper layer was added to n-heptane (4 ml) and 3 ml HCl (0.1 mol l-1). A
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After 15 min shaking, the whole mixture was centrifuged again and 2 ml of the under layer 

(aqueous-acid phase) was taken for the o-phthaldialdehyde (OPT)-reaction. The OPT reaction was 

done with the addition of 0.4 ml of NaOH (1mol l-1) to the aqueous acid phase (2 ml) and 0.1 ml 

of OPT-reagent (1 g OPT in 100 ml methanol). This mixture was mixed and allowed to stand at 

room temperature for 4 min. The reaction was stopped with 0.2 ml HCl (3 mol l-1) and histamine 

content was measured with a fluorescence spectrophotometer (Fluostar Omega, BMG), at a 360 

nm excitation and 450 nm emission wavelengths. All determinations were carried out in triplicate. 

The percentage of histamine degradation was calculated as follows: % Histamine degradation = [1 

- (residual histamine in the DO broth)/(histamine content of the control DO broth)]×100. Results 

are expressed as the average of three independent experiments.

Determination of cholesterol-lowering activity

The LAB strains were assessed for cholesterol-lowering activity in MRS liquid broth 

supplemented with cholesterol, according to Damodharan et al. (2015). MRS-CHO broth was 

prepared with MRS broth, 0.05% cysteine-HCl and 500 µg ml-1 (w/v) of cholesterol (Sigma 

Chemical Co., USA). The MRS-CHO broth was inoculated with bacterial culture (2%) and 

incubated at 37 ºC for 24 h. The cholesterol concentration in spent medium was estimated by 

enzymatic colorimetric method (CHOD-PAP cholesterol kit, NS Biotec, Egypt), following the 

manufacturer’s protocol. Cholesterol content of inoculated MRS-CHO broth was compared to 

uninoculated MRS-CHO broth (control) and the percentage of cholesterol removal was calculated 

as follows: % cholesterol reduction = [1 - (residual cholesterol in the broth)/(initial cholesterol 

content of the medium)]×100. Results are expressed as the average of three independent 

experiments. 

Bile salts deconjugation assay

Bile salts deconjugation was measured based on the procedure of  (Solieri et al. 2014). Cultures 

were screened for bile salt hydrolase (BSH) activity by spotting 10 ml of a culture suspension onto 

BSH screening medium which consisted of MRS agar plates supplemented with 0.5% (w/v) 

sodium salt of taurodeoxycholic acid (TDCA; Sigma Aldrich, Milan Italy) and 0.37 g l-1 of CaCl2. 

Plates were incubated at 37 ºC for 48 h.  A positive result was interpreted as the presence 

of precipitated bile salts around colonies (opaque halo). The diameters of the precipitation zones A
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were measured to evaluate BSH activity. Results are expressed as the average of three independent 

experiments. 

Screening for probiotic properties 

Resistance to gastric acidity

The methods used and described below were adapted from Argyri et al. (2013). Bacterial cells 

from overnight cultures were harvested (10 000 × g, 5 min, 4 °C), washed twice with sterile PBS 

(pH 7.3), before being re-suspended in 1 ml of PBS, and diluted (1:100) in PBS solution adjusted 

to pH 2.5 to reflect stomach acidity. Resistance was assessed in terms of viable colony counts and 

enumerated in duplicate on MRS agar (Biokar Diagnostics) after incubation at 37 °C for 0, 0.5, 1, 

2, and 3 h, reflecting the time spent by food in the stomach. Results are expressed as the average 

of four independent experiments.  

Resistance to bile acid and pancreatin 

The effect of bile acid and pancreatin on strains was determined as reported by Silva et al. (2015). 

Bacterial cells from overnight cultures were harvested (10,000 × g, 5 min, 4 °C), washed twice 

with PBS buffer (pH 7.3), before being re-suspended in PBS solution (pH 7.3), containing 0.3% 

(w/v) of bile salts and 0.1% (w/v) of pancreatin.  Resistance was assessed in terms of viable 

colony counts and enumerated in duplicate on MRS agar (Biokar Diagnostics) after incubation at 

37 °C for 0, 0.5, 1, 2, and 3 h, reflecting the time spent by food in the small intestine. Results are 

expressed as the average of four independent experiments. 

Adherence to Caco-2 cell line

The strains were examined for their ability to adhere to human colon carcinoma (Caco-2) cells. 

Bacterial adherence to differentiated Caco-2 cells (15 days) was tested as described by Argyri et 

al. (2013) with minor modifications. Caco-2 cells (European Collection of Cell Cultures, ECACC 

09042001) were grown in culture plates pre-coated with rat-tail collagen (Collagen, Type I 

Solution, C3867 Sigma), in Dulbecco’s Modified Eagle’s Medium (D6429, Sigma) supplemented 

with 10% Fetal Bovine Serum (FBS, F2442 Sigma), 1% nonessential amino acids (M7145, Sigma) 

and 1% gentamicin (G1397, Sigma). The cell-line was incubated at 37 °C in a humid atmosphere 

of 5% CO2 and transferred into 24 well tissue culture plates at a seeding density of 104 cells. The 

medium in the wells was replaced with fresh medium every 2-3 days for 15 days, until monolayers A
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formed. Prior to experiments, all bacterial cultures were grown overnight in MRS at 37 °C, 

washed twice with PBS and added to each well (approximately 106 CFU ml-1). Following co-

incubation for 2 h at 37 °C, cells were washed three times with sterile PBS to remove any non-

adherent bacteria. Then, 0.1 ml of trypsin-EDTA solution was added, and the mixture was 

incubated for 10 min at 37 °C in 5% CO2. Each monolayer was disrupted by repeated pipetting 

with 0.4 ml of 0.25% Triton X-100. The number of associated bacteria was determined by plating 

appropriate dilutions of the lysate onto agar plates and incubating for 48 hours at 37 °C. All the 

experiments were repeated three times independently and, in each experiment, the strains were 

tested in duplicate.

Safety evaluation

Susceptibility to antibiotics

Susceptibility to antibiotics was performed by the disc diffusion method, according to CLSI 

(2016). Antibiotic discs (Oxoid, England) were used to determine the susceptibility of the strains 

to 22 antibiotics: β-lactams (combinations) - amoxicillin/clavulanic acid (20/10 g/disc); 

penicillins - carbenicillin (100 g/disc), penicillin (10 IU/disc) and piperacillin (100 g/disc); 

cephalosporins - ceftazidime (30 g/disc), ceftriaxone (30 g/disc), cefotaxime (30 g/disc) and 

cephalotin (30 g/disc); aminoglycosides - gentamicin (10 g/disc), kanamycin (30 g/disc), 

netilmicin (30 g/disc), streptomycin (10 g/disc) and tobramycin (10 g/disc); amphenicols -  

chloramphenicol (30 g/disc), lincosamides - clindamycin (2 g/disc); macrolides - erythromycin 

(15 g/disc), quinolones - nalidixic acid (30 g/disc) and ofloxacin (5 g/disc); rifamycins  - 

rifampicin (5 g/disc), sulfonamides - trimethoprim/sulfamethoxazole (1.25/23.75 g/disc), 

tetracyclines - tetracycline (30 g/disc); and glycopeptides - vancomycin (30 g/disc). Analyses 

were done in duplicate. The discs were placed onto the surface of inoculated Mueller-Hinton 

(AES, France) agar plates seeded with LAB strains that had been previously grown in MRS broth 

for 24 h - 48 h at 30°C. After incubation at 30°C for 24 h, the diameter of inhibition halos around 

the disks was measured with a digital calliper (Absolute Digimatic Caliper, Mitutoyo, USA), to 

assess the susceptibility or resistance of the examined isolates. Each isolate was characterized as 

sensitive (S) or resistant (R) according to the inhibition zone diameters in agreement with the 

Clinical and Laboratory Standards Institute tables (CLSI 2016).
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Presence of virulence genes 

The strains were tested for the presence of virulence genes: gelatinase (gelE), hyaluronidase (hyl), 

aggregation substance (asa1), enterococcal surface protein (esp), cytolisin (cylA), endocarditis 

antigen, (efaA), collagen adhesion (ace), antibiotic resistance genes (vanA and vanB, both related 

to vancomycin resistance), and genes for histidine decarboxylase (hd2), as reported previously by 

Ribeiro et al. (2014). E. faecalis (Ribeiro et al. 2014) and E. faecium (Lopez et al. 2009) strains 

were used as positive controls in the corresponding PCR reactions. 

Statistical analysis

Data are expressed as means ± SEM. Principal Component Analysis (PCA) with varimax rotation 

was done to group strains based on functional properties (degradation of histamine, cholesterol 

reduction after 24h and 48h, and bile salts deconjugation). In vitro adhesion to Caco-2 cells by 

different strains were compared and analyzed by One-Way ANOVA. Differences were considered 

statistically significant at P < 0.05. Statistical analyses were performed with SPSS software 

package (IBM SPSS Statistics 20, IBM Corporation, New York, USA). 

Results
Functional properties

Thirty autochthonous strains were previously screened for their ability to produce 

histamine by decarboxylation of histidine, and all tested negative for histamine production 

(Domingos-Lopes et al. 2017). The histamine degrading, cholesterol reducing and bile salts 

deconjugating abilities of these strains are summarized in Table 1. Sixteen strains present high 

histamine reduction potential as they degraded histamine to over 50% of its initial concentration in 

culture medium. Among them, three strains of Lb. paracasei (L2A1K8, L2B1K8 and L3B21R2), 

one Leu. mesenteroides (L3A21M4) and one Lb. plantarum (strain 11, L2C21E8) were most 

active in removing histamine (>58% reduction). 

The ability of the strains to reduce cholesterol in vitro also varied between strains and 

among species (Table 1). Cholesterol removal increased from a range of 15–58% after 24 h, and a 

range of 20–66% after 48 h. The highest percentage of cholesterol reduction was achieved by Lb. 

paracasei strain L3B1M2 (22), lowering cholesterol by 54% and 66%, after 24 h and 48 h, 

respectively. Lb. paracasei L3B21R1 strain (23) also presented a high degree of cholesterol 

removal after 24 h and 48 h (58% and 60%, respectively) in association with moderate histamine A
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lowering ability (46%). Likewise, Leu. mesenteroides strain L2B21E3 (2) presented a high degree 

of cholesterol removal after 48 h (60%) and moderate histamine degradation capacity (41%). 

Moreover, strains Lb. paracasei L2B1K8 (20), L3B21R2 (24) and L3C21M6 (28) presented high 

capacity to reduce cholesterol (>50%, after 48h) in association to high capacity to degrade 

histamine (>50%).

Deconjugation of bile salts was also observed for all the strains tested. All the 30 LAB 

strains screened showed the precipitation zone ranging from 12 to 15 mm (Table 1). Curiously, the 

species/strains showing high bile salt hydrolase (BSH) activities (14-15 mm) presented lower 

ability for cholesterol removal (strains 3 to 9, 17 and 30).

Principal component analysis was applied to group the strains according to their different 

capacities to degrade cholesterol, histamine and bile salts. The first two axes accounted for 74% of 

the total variation and distributed the strains into five distinct groups (A, B, C, D and E, Figure 

1a). Principal component 1 (PC-1) accounted for 49% of variation (Fig. 1b) and was mainly 

responsible for grouping the strains according to cholesterol reduction after 24 h and 48 h. 

Principal component 2 (PC-2) accounted for 25% of variation and was responsible for grouping 

the strains according to histamine reduction and BSH activity (Fig. 1b). Cluster A is the largest 

group (14 strains) and includes strains with high histamine reduction ability, but reduced capacity 

to degrade cholesterol (Fig. 1a). Strains clustered in group B (strains 20, 24 and 28) presented high 

capacity to reduce both cholesterol and histamine, but smaller BSH activity (Fig. 1a). Strains 

clustered in the group C (strains 22 and 23) showed high capacity for cholesterol reduction but 

lower capacity for histamine reduction and bile salt deconjugation (Fig. 1a). Cluster D contains 

five strains (1, 13, 14, 21 and 26) showing all together low values of histamine degradation, 

cholesterol removal and BSH activity (Fig. 1a). Finally, group E includes the strains with reduced 

capacity to degrade both histamine and cholesterol, but high BSH activity (strains 2, 4, 5, 6, 9 and 

10, Fig. 1a). 

Probiotic properties

The survival of LAB strains under low pH (2.5) is presented in Fig.2a. Generally, all 

strains showed poor resistance to the gastric environment as demonstrated by the rapid loss of 

viability after exposure to pH 2.5 (Fig. 2a). Leu. mesenteroides (L2B21E3), Lb. plantarum 

L2A21R1 and  Lb. paracasei  strains (L2A1K8, L3B21R1, L3B21R2 and L3C21M6) showed A
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highest survival to acidic conditions for 2 h. Only one strain (strain 9, Lb. plantarum LA21R1) 

was detectable (1.6 log CFU ml-1) after 3 h of exposure to the acidic conditions. 

In contrast to poor resistance to acidic conditions, most strains were found to be tolerant to bile 

salts and pancreatin (Fig. 2b). In fact, even after 3 h of exposure, most strains retained their 

viability. In contrast, two strains (Leu. mesenteroides L3A21M4 and Lb. paracasei L2B1K8) 

demonstrated an important loss in viability after 3 h and one Lb. paracasei (L3B21K4) was highly 

sensitive to bile salts and pancreatin (undetectable after two hours of exposition). Other strains, 

including Leu. mesenteroides L2B21E3 (strain 2) and Lb. paracasei L3B1M2 and L3B21R1 (22 

and 23), exhibited survival greater than 80% after 3 h in the presence of bile salts and pancreatin 

(Fig. 2b).

The probiotic potential of strains was also evaluated for their ability to colonize the GIT 

epithelial cells. The efficiency of each strain's capacity to adhere to a Caco-2 cell line is presented 

in Fig. 2c. In general, all strains displayed high adhesion capacity to Caco-2 cells and no 

significant differences (P > 0.05) were found between strains.

Safety

The antibiotic susceptibility of the LAB strains is presented in Fig. 3. All strains were sensitive to 

amoxicillin/clavulanic acid, chloramphenicol, carbenicillin, penicillin, piperacillin and 

tetracycline. Most of the strains were resistant to aminoglycosides (kanamycin, streptomycin and 

tobramycin), with the exception of netilmicin. Few strains were resistant to erythromycin (Lc. 

garvieae L3B1M8), cefalotin (Lb. paraplantarum L2B21R5 and Lb. paracasei L3B21R2), 

ofloxacin (Lb. paracasei L2B21R1a) and rifampicin (Leu. mesenteroides L2B21E3 and Lc. lactis 

L3A21M1). Vancomycin resistance was found in three strains of Leu. mesenteroides (strains 

L2A21E7, L3A21M4 and L3C21R7), two Lb. plantarum (strains L2B21R1b and L3C1E8) and 

four Lb. paracasei (strains L2A1K8, L2B1K8, L3A21R8 and L3B1K1). 

The results of evaluation of the virulence potential of the strains are presented in Table 2. 

None of the strains harbored the gene for the hyaluronidase (hyl). The gene for endocarditis (efaA) 

was more common, detected in the majority of strains, with the exception of one Leu. 

mesenteroides (strain 4, L3C21R7) and seven Lb. paracasei (strains 16, 17, 18, 19, 22, 26 and 28, 

L2A1K8, L2A21K5, L2B21R1a, L2B21R3, L3B1M2, L3B1K1 and L3C21M6, respectively). 

Most of the strains harbour at least one virulence gene, but six strains (strain 4, Leu. mesenteroides A
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L3C21R7 and strains 16, 18, 19, 22, 28, Lb. paracasei L2A1K8, L2B21R1a, L2B21R3, L3B1M2, 

L3C21M6, respectively) tested negative for all the virulence genes studied.

Discussion
Large amounts of histamine and other biogenic amines can be found in a variety of foods, 

particularly in fish, cheese and other fermented food products (Doeun et al. 2017; Park et al. 

2019). Several studies have described the use of bacteria for reducing biogenic amine 

concentrations in foods, especially in fermented products (Dapkevicius et al. 2000; Zaman et al. 

2010; Lee et al. 2016). Dietary-derived biogenic amines are mainly metabolized in the digestive 

tract by diamine oxidase (DAO) (Kawashima et al. 2011). Reduced DAO activity in individuals 

can lead to histamine intolerance. Therefore, the presence of probiotic bacteria with biogenic 

amine-degrading activities may be useful to help detoxification, particularly when intestinal DAO 

is reduced. 

Among biogenic amines, histamine is the most likely to cause food poisoning (Izquierdo-

Casas et al. 2019). In this study, high percentages of histamine degradation (over 50%) were 

detected for sixteen strains, making these good candidates for probiotic use (Table 1). 

Remarkably, all strains showed the ability to degrade histamine, with a large variation between the 

strains. Similarly, Zaman et al (2009) found that all the bacteria isolated from fish sauce which did 

not produce biogenic amines, had the ability to degrade histamine, although with different 

efficiencies (in the range from 5% to 60%).  The percentages of histamine degradation were 

slighter higher in the present study (29% to 60%), but these results were comparable to the study 

of Dapkevicius et al. (2000). In their study, lactobacilli isolated from naturally fermented fish 

pastes were found to reduce histamine by 20–56% in culture media enriched with histamine, but 

the percentage of positive strains was very low. However, the different source of LAB may be 

responsible by this result, since scombroid fish is frequently a source of histamine-food poisoning. 

Studies concerning histamine degradation by LAB isolated from cheese are scarce. The few 

studies concerning histamine degradation are related to LAB isolated from fermented fish because 

this food, in particular scombroid fish, is one of the main sources of histamine food-poisoning. 

Although from a different matrix, LAB isolated from cheese share similarities with fish isolates, 

included the ability to degrade histamine. In a different study, Leuschner et al. (1998) found 27 

histamine-degrading bacteria out of 64 LAB isolated from food, but did not specified the food A
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source. Herrero-Fresno et al. (2012) also found a reduced number of Lb. casei strains (17 out of 

157) presenting over 25% of histamine degradation rate, but they were isolated from high biogenic 

amine cheeses. 

In the present study, 14 strains were clustered in group A of the PCA plot (Fig. 1a) that 

showed high histamine reduction ability, although reduced capacity to degrade cholesterol. This 

cluster was dominated by Lb. paracasei (9 strains), although other species were also included, 

such as Lb. plantarum, Lc. garvieae, Lc. lactis and Leu. mesenteroides. These strains have the 

potential to be used as probiotics in individuals with reduced DAO activity, but also in food 

fermentations to reduce histamine content. The mechanism involved in histamine reduction by 

these strains is unknown, but other studies described the amino-oxidase activity of food-

fermenting microorganisms as a way to reduce biogenic amines (Leuschner et al. 1998).

Cholesterol-lowering ability is also an important trait for probiotic bacteria. Some studies 

have revealed a relationship between consumption of fermented dairy products and a reduction of 

serum cholesterol levels in humans and animals (Andrade and Borges 2009; Hjerpsted et al. 2011; 

Yadav et al. 2019). The hypocholesterolemic effects of fermented foods were attributed to the 

presence of bacteria able to remove cholesterol in the small intestine (Huang et al. 2014; Michael 

et al. 2017; Zhang et al. 2017). The cholesterol-lowering efficacy of probiotic bacteria was shown 

to be highly strain-specific (Papanikolaou et al. 2012; Zhang et al. 2013; Saravanan et al. 2015; 

Nami et al. 2018). We observed similar results in this study, as LAB strains removed the 

cholesterol in vitro at variable levels (20–66%, after 48 h). However, only two strains of Lb. 

paracasei (L3B1M2 and L3B21R1) were clustered in the group displayed high cholesterol-

lowering efficacy (group C, Fig.1a). These strains showed high levels of cholesterol reduction 

(>50%) after 24 h (Table 1).

Cholesterol removal by bacteria has been shown to improve with the addition of bile salts 

to culture media (Taranto et al. 1997). Previous reports on cholesterol reduction by Lactobacillus 

strains showed high levels (28–86%) of cholesterol reduction in liquid medium supplied with 

0.3% bile oxgall (Yıldız et al. 2011; Papanikolaou et al. 2012). In the present work, some strains 

showed high levels of cholesterol removal (>50%), although no bile salts were used in the culture 

media. 

The mechanisms of cholesterol-lowering activity of LAB include its adsorption to the cell 

wall and assimilation into the cell membrane. The incorporation of cholesterol into the cell 

membrane has been proposed as a tool to improve survival of lactobacilli in the gastrointestinal A
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tract (Dambekodi and Gilliland 1998; Horáčková et al. 2018). Other mechanisms of cholesterol 

reduction by bacteria involve the conversion of cholesterol to coprostanol and co-precipitation of 

cholesterol with deconjugated bile salts (Yıldız et al. 2011; Gérard 2014). In the present study, 

cholesterol reduction was not observed when cells were not removed by centrifugation (data not 

shown). Therefore, cholesterol adsorption to the cell wall or membrane is likely to be the 

mechanism involved in cholesterol removal from fermentation media by these strains.

Hydrolysis of bile salts by the gut microbiota has been proposed by several authors as an 

additional mechanism for reducing cholesterol (Gérard 2014; Michael et al. 2017). The removal of 

cholesterol by gut bacteria was revealed to be linked to the BSH activity of the cells, releasing 

unconjugated bile acids that induce cholesterol co-precipitation (Taranto et al. 1997; Liong and 

Shah 2005). In this study, all 30 isolates screened showed BSH activity as confirmed by the 

precipitation zone, in agreement with other studies (Saravanan et al. 2015). However, no 

correlation was found between cholesterol reduction and BSH activity by the cells. Similarly, 

Dambekodi and Gilliland (1998) showed no relationship between the ability to deconjugate bile 

salts and cholesterol assimilation by bacteria. Bile salts deconjugation might play a vital role in 

sustaining the stability of the gut microbiota. According to Smet et al. (1995), BSH activity allows 

lactobacilli to persist under harsh intestinal bile stress. In addition, Ma et al. (2019) showed that 

strains exhibiting greater BSH ability in vitro have also higher potential to decrease serum 

cholesterol levels in vivo. However, high BSH deconjugation activity may produce detrimental 

effects for the host. Indeed, if this hydrolysis is more extensive in the gut, it could lead to colon 

cancer, gallstones, and other GIT diseases (McGarr et al. 2005).

PCA plot was effective in showing the differences among strains concerning phenotypic 

features (Fig. 1). Lb. paracasei strains clustered in group B (strains 20, 24 and 28) of the PCA plot 

displayed the highest functional properties, because they showed higher activities for cholesterol 

and histamine removal, while they presented satisfactory BSH activity (12.5-13.5 mm). Among 

the strains clustered in this group, strain 20 (Lb. paracasei L2B1K8) was the least tolerant to acid 

and bile salts and pancreatin. In addition, this strain also presented the lowest adhesion to Caco-2 

cells (<104 UFC cm-2). The remaining two strains (24 and 28) showed similar tolerance to GIT 

conditions and adhesion to Caco-2 cells did not differ significantly (P > 0.05). However, strain 28 

(Lb. paracasei L3C21M6) held the highest probiotic traits, including both cholesterol, histamine 

and BSH activities. Both these strains were considered safe, as they were sensitive to most of the 

antibiotics tested, with the exception of cephalosporins and aminoglycosides. However, A
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aminoglycoside resistance has been described as an intrinsic feature of Lactobacillus species 

(Campedelli et al. 2019). In addition, Lb. paracasei L3C21M6 tested negative for all virulence 

genes. Although expression of genes was not assessed, the presence of virulence genes is a safety 

issue due to the potential transfer to pathogenic bacteria in the gut. 

In a previous study, strain Lb. paracasei L3C21M6 was showed to hold important 

enzymatic properties for dairy application, including high esterase/lipase activities, extracellular 

proteolytic activity and strong production of diacetyl from citrate (Domingos-Lopes et al. 2017). 

This strain was also displayed the ability to produced a pleasant aroma/flavour in experimental 

fresh cheeses (Domingos-Lopes et al. 2017).

In conclusion, the present study revealed that Lb. paracasei L3B21R2 and L3C21M6 

strains isolated from Pico artisanal cheese possessed good cholesterol and histamine-lowering 

abilities and bile salt hydrolase activities. These strains were not only tolerant to gastrointestinal 

conditions but also presented high adhesion to intestinal cells and were considered safe. The 

probiotic potential of Lb. paracasei L3C21M6 is complemented with a previous report of 

desirable technological and sensory characteristics in experimental cheeses. Therefore, Lb. 

paracasei L3C21M6 could be considered as a potential probiotic LAB strain for food and 

technological applications.
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Table 1. Histamine degradation (%), cholesterol removal (%) after 24 and 48 h, and bile salt hydrolase 

activity (diameters of the precipitation zones) of bacterial strains used in the study. 

N Species Strain 
Accession 

No. 

Histamine 

degradation 

(%) 

Cholesterol 

removal (%) 

Bile salt 

hydrolase 

activity 

(mm) 
24 h 48 h 

1 Leu. mesenteroides L2A21E7 KM079353 29.2 ± 5.8 38 ± 6.5 45 ± 2.9 12.0 

2 Leu. mesenteroides L2B21E3 KM079354 41.0 ± 7.1 32 ± 5.6 60 ± 3.2 13.5 

3 Leu. mesenteroides L3A21M4 KM079355 59.6 ± 8.1 32 ± 6.2 37 ± 4.1 15.0 

4 Leu. mesenteroides L3C21R7 KM079356 43.4 ± 8.9  19 ± 2.6 38 ± 7.1 15.0 

5 Leu. citreum L3C1E7 KM079357 35.5 ± 9.3 46 ± 8.1 47 ± 5.5 14.5 

6 Lc. lactis lactis  L3B1M7 KM079358 44.4 ± 8.3 28 ± 8.5 38 ± 5.9 15.0 

7 Lc. garvieae  L3B1M8 KM079359 55.6 ± 9.1 27 ± 4.9 43 ± 5.0 14.5 

8 Lc. lactis  L3A21M1 KF193424 50.3 ± 3.3 36 ± 6.5 45 ± 4.5 14.5 

9 Lb. plantarum  L2A21R1 KM103931 36.6 ± 5.0 31 ± 8.8 39 ± 5.9 14.5 

10 Lb. plantarum L2B21R1b KM103932 39.0 ± 5.0 27 ± 8.9 39 ± 1.3 13.5 

11 Lb. plantarum L2C21E8 KM103933 59.2 ± 8.5 30 ± 3.2 48 ± 8.9 14.0 

12 Lb. plantarum L3A21R6 KM103934 52.7 ± 9.4 34 ± 9.7 39 ± 8.4 13.5 

13 Lb. plantarum L3C1E8 KM079361 43.8 ± 6.9 37 ± 6.2 42 ± 9.8 13.0 

14 Lb. paraplantarum L2B21R5 KM079360 40.8 ± 8.5 32 ± 5.4 34 ± 9.5 13.0 

15 Lb. paracasei  L2A21R9 KM096813 54.2 ± 4.2 33 ± 5.8 34 ± 6.5 13.5 

16 Lb. paracasei  L2A1K8 KM096814 58.4 ± 9.2 37 ± 2.6 39 ± 1.3 12.0 

17 Lb. paracasei  L2A21K5 KM096815 55.8 ± 4.5 31 ± 2.4 39 ± 8.4 14.5 

18 Lb. paracasei  L2B21R1a KM096816 57.8 ± 2.8 35 ± 3.8 37 ± 0.8 13.0 

19 Lb. paracasei  L2B21R3 KM096817 52.3 ± 8.3 24 ± 6.9 34 ± 5.9 12.5 

20 Lb. paracasei  L2B1K8 KM096818 58.1 ± 6.2 39 ± 8.1 52 ± 5.5 12.5 

21 Lb. paracasei  L3A21R8 KM096819 40.3 ± 6.2 38 ± 5.1 47 ± 2.5 13.0 

22 Lb. paracasei L3B1M2 KM096820 40.8 ± 9.5 54 ± 7.0 66 ± 2.5 13.0 

23 Lb. paracasei  L3B21R1 KM096821 46.0 ± 9.4 58 ± 6.0 60 ± 7.1 12.5 

24 Lb. paracasei  L3B21R2 KM096822 59.2 ± 5.5 42 ± 7.3 51 ± 5.5 12.5 A
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25 Lb. paracasei  L3B21R7 KM096823 52.0 ± 9.7 15 ± 8.0 20 ± 9.0 12.5 

26 Lb. paracasei  L3B1K1 KM096824 45.1± 8.0 21 ± 2.1 49 ± 5.5 12.5 

27 Lb. paracasei  L3B21K4 KM096825 50.9 ± 7.7 21 ± 0.8 36 ± 9.7 13.0 

28 Lb. paracasei  L3C21M6 KM096826 55.0 ± 5.8 47 ± 3.8 56 ± 0.4 13.5 

29 Lb. paracasei  L3C1K8 KM096827 46.4 ± 8.2 24 ± 4.7 32 ± 0.8 13.5 

30 Lb. otakiensis L3C1R1 KM096828 55.3 ± 8.8 23 ± 4.8 31 ± 1.7 14.5 
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Table 2.  Incidence of virulence genes in LAB strains. The virulence genes tested were 

gelatinase (gelE), hyaluronidase (hyl), aggregation substance (asa1), enterococcal surface 

protein (esp), cytolisin (cylA), endocarditis antigen (efaA), collagen adhesion (ace), resistance 

to vancomycin (vanA and vanB) and histidine decarboxylase (hdc2).  

 

 

 

 

LAB Strains 

 

Virulence genes* 

 Antibiotic 

resistance 

genes* 

 
Histamine 

genes* 
  

  

gelE hyl asa1 esp cylA efaA ace  vanA vanB  hdc2 

Leu. mesenteroides             

L2A21E7 - - - - + + -  - -  - 

L2B21E3 - - + - - + +  - -  + 

L3A21M4 - - - - - + +  - -  - 

L3C21R7 - - - - - - -  - -  - 

Leu. citreum             

L3C1E7 - - - - - + -  - -  - 

Lc.lactis             

L3B1M7 - - - - - + -  - -  - 

L3A21M1 - - - - - + -  - -  - 

Lc. garvieae             

L3B1M8 - - - - - + -  - -  - 

Lb. plantarum             

L2A21R1 - - - - - + +  - -  - 

L2B21R1b - - - - - + -  - -  - 

L2C21E8 - - - - - + -  - -  - 

L3A21R6 - - - - - + -  - -  - 

L3C1E8 - - - - - + +  - -  - 

Lb. paraplantarum             

L2B21R5 - - - - - + -  - -  - 

Lb. paracasei             

L2A21R9 + - + + + + +  - -  - 

L2A1K8 - - - - - - -  - -  - 

L2A21K5 - - - - - - -  + -  - 

L2B21R1a - - - - - - -  - -  - 

L2B21R3 - - - - - - -  - -  - 

L2B1K8 - - - - - + -  - -  - A
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L3A21R8 - - - - - + -  - +  - 

L3B1M2 - - - - - - -  - -  - 

L3B21R1 - - - - - + -  - -  - 

L3B21R2 - - - - + + -  - -  - 

L3B21R7 - - - - + + +  - -  - 

L3B1K1 - - + - - - -  - -  - 

L3B21K4 - - - - - + -  - -  - 

L3C21M6 - - - - - - -  - -  - 

L3C1K8 + - + + - + +  - +  - 

Lb. otakiensis             

L3C1R1 - - + - - + +  - -  - 

* Positive (+) and negative (-) results for virulence genes.  
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Fig. 1 
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Fig. 2 
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Fig.3  
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