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Abstract
This paper presents the hybrid, flexible flowshop problem with transportation times between stages,
which is an extension of an existing scheduling problem that is well-studied in the literature. We
explore different models for the problem with Constraint Programming, MILP, and local search,
and compare them on generated benchmark problems that reflect the problem of the industrial
partner. We then study two different factory layout design problems, and use the optimization tool
to understand the impact of the design choices on the solution quality.
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1 Introduction

An important category of production systems comprises hybrid flowshop environments, where
the input jobs need to be processed by different production stages, and multiple identical
machines are available at each stage. In this context, the problem consisting of finding
schedules of minimum length is a well-known NP-hard combinatorial problem, known as
Hybrid Flowshop Scheduling (HFS) [36]. An extension of this problem, which has been the
object of recent studies, is the case where a subset of the jobs are required to skip some of the
stages. This problem is usually denoted as Hybrid Flexible Flowshop Scheduling (HFF) [33].
Since many decades, the solution of HFS/HFFs problems has been fundamental to increase
efficiency of many real world manufacturing systems, related to a wide variety of production
areas like electronics [25, 10], glass [32], textile [22], packaging [1], etc.

Recently, an increasing number of production systems are structured such that the
machines are located in different buildings of the same production site, or even at separate
sites. This may occur for multiple reasons, such as the risk of contamination of materials
during some production stages. As a consequence, the machines may be located at diverse
locations, requiring a non-negligible time to transport a job from one stage to the next
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Figure 1 Logical structure of a hybrid flowshop.

one. These transportation times are known as inter-stage transportation times, in order to
make a distinction with the ones required to deliver the products or acquire raw materials.
Moreover, these transportation times are usually machine-dependent, in the sense that they
are proportional to the physical distance between the two machines involved. In this work,
we introduce the Hybrid Flexible Flowshop with Transportation Times (HFFTT), as an
extension of the HFF where inter-stage, machine-dependent transportation times are taken
into account.

The diagram depicted in Figure 1 summarizes the logical structure of a HFFTT problem,
where multiple machines are associated with each stage and each arrow connecting a couple
of machines (ma, mb) is indicating the fact that a certain time is needed to transport a job
from ma to mb. The main characteristics of the HFFTT are:

An arbitrary number of production stages are considered.
Each stage has multiple identical machines working in parallel.
All jobs are following the same production flow, with the exception that some jobs may
skip some stages.
Each job has a fixed processing time for each production stage, independent of the
machine used.
Transportation times are required to move a job from one machine of a stage to another
machine of the following stage.
The vehicles transporting the jobs are not taken into consideration, since they are
assumed to be enough to avoid any waiting delay. This is justified by the fact that current
production lines are fully automated and the schedules are defined a priori, so that the
transporters can move the jobs in time with no delays.
The objective function value is the maximum completion time, i.e. the makespan of the
schedule. The makespan is a measure of the system efficiency, it is considered in the
standard definition of the HFS and widely used in scheduling.

Other assumptions are that any machine can process only one operation at a time with no
preemption, while all jobs can be processed by only one machine at a time. All tasks are
released at time 0, setup times are negligible or can be aggregated to the jobs’ processing
times. The capacity of the buffers between stages is unlimited, there are no additional
resources needed to run a job on a machine and, finally, the processing times and the
transportation times are deterministic parameters that are known a priori.
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Surprisingly, there are no previous studies focusing exactly on this problem definition, to
the best of the authors’ knowledge. However, studies tackling similar problems are discussed
in Section 2. The HFFTT can be indicated with HFFm|tt|Cmax by means of the three field
notation, which is the most common notation used to identify scheduling problems [21].

Our motivation for studying the HFFTT lies in a real-world practical application arising
in fully-automated pharmaceutical manufacturing, where millions of lots are produced every
year. One of the authors, working for the research and development team of the firm,
provided requirements that we reproduced when we defined the problem and generated our
instances. The aim of this work is twofold. On the one hand, increasing the throughput of a
production site by a small percentage (say 1%) brings a significant economic benefit, due
to the very large volume of production. We formulate the problem in terms of Constraint
Programming (CP), Mixed Integer Linear Programming (MILP), and Local Search in order
to develop optimization approaches based on off-the-shelf solvers and test them on these
realistic scenarios.

On the other hand, the introduction of transportation times leads to another research
question, which is of particular interest for the industry partner. It consists of determining
the positions to be assigned to the machines in order to achieve a high system efficiency. Such
problem belongs to a wide category of optimization problems known as facility layout [14, 4],
with hundreds of papers published in recent years [41]. We address this challenge by using
CP-based scheduling to quantify the performances of different layouts alternatives, hence
providing insights for driving business-related decisions in the real world scenario.

The rest of this document is arranged as follows. Section 2 collocates the problem in the
state of the art, by analyzing similar scheduling problems studied in the past.

The problem admits multiple alternative formulations, which are presented and discussed
in Section 3. Section 3.2 presents a CP formulation for the HFTT. Section 3.3 discusses how
to extend the MILP formulations available in the state of the art for the HFF, in order to
take into account transportation times. Section 3.4 provides a local search procedure, which
is used to compute good feasible solutions and initialize the solvers. Section 4 describes
the computational experiments that we conducted. These experiments are performed on
realistic instances, whose structure comes from the real world scenarios discussed with the
pharmaceutical firm, as mentioned before. The instance generation and the scenarios are
discussed in Section 4.1 and Section 4.2, respectively. The computational results, describing
the performance of the proposed models, are presented in Section 4.3. Section 5 concludes
the paper.

2 Related Work

As discussed in the introduction, the HFFTT is an extension of the HFF, which is a HFS
problem where certain jobs are required to skip some production stages. The HFS is a
well-studied problem, whose literature includes many problem variants. It is NP-hard in
its general form and in most of its restrictions. As an example, the case where there is
one machine per stage is a flowshop problem, which is known to be NP-hard [20]. Some
polynomially solvable special cases are arising when some special properties and precedence
relationships are verified [13].

The reader is referred to [36] for an in-depth survey, which describes papers published
up to 2010. Another, more recent review [40] is covering the works published from 2010
to 2020, with a special focus on metaheuristic approaches. The literature of the HFF is
less rich with respect to the HFS. Four different MILP formulations are proposed in [33]
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and assessed computationally. A general discussion about the impact of including different
realistic constraints is given in [37]. The most recent metaheuristic developed for the HFF is
an iterated greedy approach based on a hyperheuristic [8]. Finally, the use of CP approaches
in HFS/HFF problems is tackled by [26] and [45]. [26] considers a HFS with multiprocessor
tasks and proposes a memetic algorithm, which uses a CP-based branch and bound algorithm
as a local search engine. [45] studies a HFF problem inspired by a real-world application,
formulates it in terms of CP and solves it utilizing Gecode.

The HFFTT is more general than the HFF and the HFS, hence it is NP-Hard as its
special cases. The HFFTT includes inter-stage, machine-dependent transportation times,
but they are not the only type of transportation times studied by the scheduling community.
In fact, the first scheduling paper taking transportation into account is [31], which dates back
to 1980, and considers purely job-dependent transportation times. The authors consider a
two-machine flowshop problem with a sufficient number of transporters, so that whenever a
job is completed on the first machine it can be transported to the second machine immediately.
Another paper [29] focuses purely on the job transportation in a HFS with two stages. Other
HFSs with some form of job transportation have been considered in other works, the reader
is referred to Section 2 of [30] for a recent and detailed review about this topic. A recent
paper [44] studies two problems where there is only one transporter in a HFS with two
stages. These problems are very close to the HFFTT, with the two main differences being
the fact that the transporter is seen as a further resource to be shared among the jobs and
the number of stages is restricted to 2. Another similar problem to the one defined in this
paper is presented in [30]. The main differences are that buffers are assumed to be finite,
there is only one transporter per stage, and the jobs are not skipping any stage. [42] deals
with another HFS with transportation times, differing from our problem because it considers
a limited number of transporters with finite capacities and because the transportation
times are purely stage-dependent, since they do not depend on the machine positions. [15]
studies a single-transporter HFS with machine eligibility where the transportation times are
not machine-dependent. The same authors propose in [16] and [17] a MILP model and a
metaheuristic for a cyclic HFS, with multiple robots devoted to perform the transportation
operations. The main difference with the HFFTT is the fact that they deal with a cyclic
problem and they use as an objective a throughput rate maximization, that is the number of
parts completed in the cycle time. [24] presents a two-centers hybrid flowshop, where the
machines of each stage are aggregated in centers. Contrarily to our problem, here only two
stages are considered and the transportation times are purely job-dependent.

Other recent works are dealing with scheduling problems with transportation times,
which consider different types of production environment, such as a groupshop [3], a flexible
jobshop [35] and a batch-flowshop [6].

A large number of studies have been devoted to the design of facility layouts in order to
improve the system productivity and/or reduce costs. However, we did not find any study
related to designing facility layouts for HFS. A survey about facility layout problems is
provided in [4], where a survey of the mathematical optimization approaches is presented.
These approaches are based on solving a variety of optimization problems, that are expressed
in terms of MILP or conic programming. In some cases, simulation and optimization
interoperate to find the best layouts. [5] presents a simulation-based genetic algorithm
encoding each single layout as a string and evaluating the performances of each layout by
means of simulation. [19] discusses the case where simulation-based optimization is used for
facility layout optimization under uncertainty. CP has been adopted to solve different types
of layout problems. An example is [39], where the authors show the effectiveness of CP for
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designing manufacturing cells. Another related study is [43], where the authors propose a
CP approach for multi-objective wind farm layout optimization. To the best of the authors’
knowledge, there are no previous studies using constraint-based scheduling for the design of
facility layouts.

3 Models

We now present different models for the selected problem, using various solver technologies.
We only explain one CP model in full detail due to space considerations.

3.1 Notation
In this section, we introduce the notation used in the different problem formulations. Let
J be a set of jobs, M be a set of machines and S be a set of production stages. Each job
j ∈ J requires a processing time pj,s to complete a stage s ∈ S. The set of all jobs that
need to be processed in stage s ∈ S is indicated with Js ⊆ J , while the stage before s ∈ S

where a job j ∈ J needs to be processed is indicated with prec(s, j). The transportation
time δm,m′ is required to move a job from machine m ∈ Ms to m′ ∈ Ms′ , where s, s′ ∈ S

and s′ is successive to s in the production system. By following the general concept used in
CP for scheduling problem including the HFS [44], we define a task as the execution of a
job at some production stage. Hence, one task per stage used is associated to each job. We
indicate the set of all tasks with T. Finally, the set of all the tasks associated with a certain
stage s ∈ S is denoted as Ts and the set of all tasks associated with a certain job j ∈ J is
denoted as Tj .

3.2 CP
For this type of scheduling problem with precedence and machine choice there are two main
choices of modelling in Constraint Programming. The first approach uses a two-dimensional
diffn [7] constraint, where the first (x) dimension represents time, and the second (y)
dimension represents the machine allocated to a task. Each task is represented by a rectangle
whose width is the duration of the task, and the height is one, while the x start position
represents the start time, and the y value indicates the machines on which it is run. This
constraint states that tasks are either scheduled on different machines, or do not overlap in
time. This type of model goes back to CHIP [12], and can be expressed in many CP systems,
we use it in our MiniZinc [34] and SICStus Prolog [9] formulations. The transport time
between two consecutive tasks of the same job is expressed by a table constraint, which
links the machine variables of the tasks to the transport time, by enumerating all possible
combinations. This provides maximum flexibility in expressing the transport time constraint,
while allowing for efficient, domain consistent constraint propagation.

The second approach uses optional interval task variables [28] to represent the machine
choices. For each task and each machine on which the task can be scheduled, there is
an optional interval variable which represents the choice whether the task is run on this
machine. Exactly one of the optional variables for a task must be selected (using an
alternative constraint), while all optional tasks on the same machine are constrained to
be non-overlapping. This model is required by IBM’s CPOptimizer [28], but can also be
expressed with MiniZinc 1. Expressing the transport time between tasks is more complex,

1 Unfortunately, the MiniZinc model with interval variables is not competitive solving even the smallest
problem instances, and is not used in the experiments.
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IBM provides a specific constraint to deal with sequence dependent setup times on the
same machine, but not for expressing transport times between consecutive tasks of the same
job on different machines. We have to link additional machine assignment variables via
presenceOf constraints to the optional tasks, and use allowedAssignments constraints to
handle the transport times, linking the machine assignment variables and the transport time
of consecutive tasks. The default search in CPOptimizer automatically switches between
different search methods during the search phase, and is, like our custom SICStus Prolog
search described below, independent of the selected time resolution.

3.2.1 Diffn Model
We now describe the first constraint model of the problem in full detail, using MiniZinc as
the description language. We first define the constants to use, and the arrays that hold the
input data. The set T is the index-set of all tasks, for every task we have the fixed duration,
the stage to which it belongs, and the set of machines on which it can run. We also have a set
P of precedence relations between tasks that will be used to set up precedence constraints.
Note that this formulation is more generic than the flowshop problem, and allows to handle
other generic scheduling problems as well.

1 include " globals .mzn";
2 % constant definitions
3 set of int:T; % tasks
4 set of int:P; % precedences between tasks
5 set of int:M; % machines
6 set of int:S; % stages
7 set of int: tuples ; % transport time table size
8 int:lb; % lower bound on the cost
9 int:ub; % upper bound on the cost

10 % constant arrays
11 array[T] of int: duration ;
12 array[T] of int:stage;
13 array[P ,1..2] of int:prec; % precedence pairs
14 array[T] of set of int: machines ; % machine domains
15 array[tuples ,1..3] of int: transportTime ;
16 % data file
17 include "data/data.dzn";

For every task, we have three variables, the start of the task, the machine on which it is run,
and the travel time from the machine of the previous task to its own machine. In addition,
we use the variable cmax as the overall cost.

1 % variables
2 array[T] of var 0.. ub:start;
3 array[T] of var M: machine ;
4 array[T] of var 0.. ub: travel ;
5 var lb..ub:cmax;

We have five constraint types in the model. The first links the makespan variable to the
end of all tasks. The second handles the precedence constraints within a job, linking the
first to the second task by the duration of the first task, and the required travel time between
the machines used. The third constraint expresses that each task can only be run on a
specific subset of the machines. The fourth constraint is the diffn constraint for each stage,
representing the tasks as rectangles. Note that a single diffn constraint for all tasks would
suffice, but multiple constraints with disjoint subsets of tasks lead to better performance. In
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addition, a cumulative [2] constraint linking the tasks and the number of available machines
of each stage may lead to additional propagation in some systems. The final constraint
generates the table constraint for the travel times, linking the machines assigned and the
time required, via a single table of all allowed travel time combinations.

1 % constraints
2 constraint forall (i in T)
3 (cmax >= start[i]+ duration [i]);
4 constraint forall (p in P)
5 (start[prec[p ,2]] >= start[prec[p ,1]]+
6 duration [prec[p ,1]]+
7 travel [prec[p ,2]]);
8 constraint forall (i in T) ( machine [i] in machines [i]);
9 constraint forall (s in S)

10 (diffn ([ start[i]|i in T where stage[i]=s],
11 [ machine [i]|i in T where stage[i] = s],
12 [ duration [i]|i in T where stage[i] = s],
13 [1|i in T where stage[i] = s]));
14 constraint forall (p in P)
15 (table ([ machine [prec[p ,1]] ,
16 machine [prec[p ,2]] ,
17 travel [prec[p ,2]]] , transportTime ));
18 % solve
19 solve minimize cmax;

With the free search of Chuffed [11] we find solutions for smaller problem sizes, but it
initially finds solutions with high costs. When giving a conservative value for ub, Chuffed
spends most of its time decreasing the cost value one by one from that initial high value.
We need an alternative to find good solutions quickly, the strategy chosen will assign tasks
from left to right, fixing start and machine of the task together. Note that other strategies,
like assigning all start values before the machine assignment or vice versa, do not lead to
viable solutions, as the machine assignment determines the transport time between tasks,
and therefore has a direct effect on the start times. Conversely, if we fix the start times to
their smallest value, we remove too much flexibility in the machine assignment to complete
the assignment.

We use the priority_search annotation of Chuffed [18] to assign start and machine
together. We select a task with the smallest value in the domain of its start, and fix the start
and then the machine of the task to values in their domain. Note that the sequence here is
important to place tasks to their left-most position.

1 include " chuffed .mzn";
2

3 solve :: priority_search (start ,
4 [ int_search ([ start[i], machine [i]], input_order , indomain_min )| i

in T],
5 smallest , complete ) minimize cmax;

For the search in the SICStus Prolog [9] model, which uses the same constraints, we
define a custom search routine that iteratively increases the start time considered, and for
each time point, decides if the remaining tasks should start at this time or not. Once the
start is fixed, we try to find a machine on which the task will be run. The search times out
after a limited amount of backtracking, and restarts with a different initial task ordering,
until either the lower bound is reached, or the global time budget is exceeded.
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3.3 MILP
The HFFTT admits multiple MILP formulations. It is possible to extend the HFF formula-
tions in [33] so that they include inter-stage transportation times. In fact, Model 1, Model
3 and Model 4 of [33] can be extended by including continuous time variables ∆j,s ∈ R+,
representing the transportation time required by job j ∈ J to reach stage s ∈ S. Analogously,
Model 2 of [33] can be adapted by including continuous time variables ∆j,s,m ∈ R+, repres-
enting the transportation time required by a job j ∈ J to reach a machine m ∈ M , belonging
to stage s ∈ S. The variables ∆j,s and ∆j,s,m need to be linked with the real transportation
times δm,m′ . This can be done by imposing that they are greater than or equal to δm,m′ ,
in the case the job j ∈ J is processed by the machines m, m′ ∈ M , which is determined by
the binary variables related to the machines’ assignments. Finally, the constraints linking
the jobs’ start and completion times at the different stages need to be modified in order to
include the transportation times.

We implemented all four adapted models and performed a set of preliminary tests, where
Model 4 yielded the best results. Hence, we focus on the modified version of Model 4. To
simplify notation, let us define a dummy stage s0 preceding all other stages, with no machines
Ms0 = ∅ and performed by all the jobs with 0 duration. The decision variables are:

xi,j,s ∈ {0, 1} equal to 1 if job i ∈ Js comes after job j ∈ Js at a certain stage s ∈ S, 0
otherwise.
yj,s,m ∈ {0, 1} equal to 1 if the job j ∈ Js is processed by machine m ∈ Ms at stage
s ∈ S ∪ {s0}, 0 otherwise.
∆j,s ∈ R+ is the inter-stage transportation time required by job j ∈ Js to reach stage
s ∈ S from the previous one.
Cj,s ∈ R+ is the completion time of job j ∈ Js in stage s ∈ S ∪ {s0}.
Cmax ∈ R+ represents the makespan.

The following formulation of the HFFTT holds:

min Cmax (1)
subject to:

Cj,s0 = 0 ∀j ∈ J (2)
yj,s0,m = 0 ∀j ∈ J, m ∈ M (3)∑
m∈Ms

yj,s,m = 1 ∀j ∈ Js, s ∈ S (4)

Cj,s ≥ Cj,prec(s,j) + pj,s + ∆j,s ∀j ∈ Js, s ∈ S (5)
Cj,s ≥ Ci,s + pj,s − Λ(3 − xj,i,s − yj,s,m − yi,s,m) ∀i ̸= j ∈ Js, s ∈ S, m ∈ Ms (6)
Ci,s ≥ Cj,s + pi,s − Λxj,i,s − Λ(2 − yj,s,m − yi,s,m) ∀i ̸= j ∈ Js, s ∈ S, m ∈ Ms (7)
Cmax ≥ Cj,s ∀j ∈ Js, s ∈ S (8)

∆j,s ≥ δm′,m(yj,s,m + yj,prec(s,j),m′ − 1) ∀m′ ∈ Mprec(s,j), m ∈ Ms, j ∈ Js, s ∈ S (9)

Please note that the parameter Λ ∈ R+ indicates a large enough real constant. Further-
more, prec(s, j) indicates the stage where j ∈ J was processed before stage s ∈ S. The
objective is to minimize the makespan (1). Constraints (2) and (3) are related to the dummy
stage, which is the first stage for all the jobs and requires no time for its completion and no
machine usage. Constraints (4) ensure each job j ∈ Js is processed by exactly one machine
at each stage s ∈ S. Constraints (5) link the completion time of a job in a stage with the
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completion time of the same job in the previous stage. Please note that such constraints
reduce to Cj,s ≥ pj,s in the case where prec(s, j) = s0, since Cj,s0 = 0 and no time is
required to reach the first stage after s0 (∆j,s = 0). Constraints (6) and (7) determine
the completion times of the jobs in a stage, by taking into account the precedence and
the machines availability. Constraints (7) enforce that Cmax is greater than or equal to
the completion time of all the jobs at any stage. Constraints (8) link the values of the
transportation time variables with the time needed to transport each job in order to achieve
a machine at a certain stage. Please note that ∆j,s is not involved in any constraint if
prec(s, j) = s0, since Ms0 = ∅.

3.4 Dispatch Rule and Local Search

In order to evaluate the results of our models in a broader context, we also introduced two
incomplete methods of finding solutions. The Dispatch model takes the jobs in some given
order, and schedules each job in sequence, placing the tasks at the first available time, on
the first available machine. This can be done efficiently by keeping track of the allocated
time on each machine, and by considering the required precedences and travel time when
looking for the next available machine. In our system, we randomly permute the job order,
and rerun the Dispatch model repeatedly, keeping improved solutions. We stop the search
when we either reach the given lower bound, or hit a timeout limit.

We’ve added a Local Search variant of this model, by allowing swaps of two jobs and
insertion of jobs into the job sequence at a different place. When we run out of possible
moves, we restart the search with a new permuted job order, and continue until we reach the
lower bound or the time limit.

Note that neither variant uses constraints, or estimates about the achievable makespan
given a partial solution, while both rely on the simplicity of the method to evaluate many
possible job sequences.

3.5 Lower Bound Calculation

A good lower bound on the makespan can be useful to stop the search having found an
optimal solution reaching that lower bound, or to understand the remaining optimality gap
of the instances tested. We have extended the bounds in [23] to deal with the transportation
time between stages, while adding one more bound based on the job type distribution. The
following gives an intuition of the bounds used.

An obvious lower bound on the makespan is the minimum duration of any job to be
scheduled. This consists of the sum of the duration of the tasks of the different stages, and an
estimate of the transport time required between consecutive tasks. The easiest approximation
of this is using the smallest transport time between each pair of stages as an estimate, a
more complex model can use Dynamic Programming to find the shortest path from start to
finish over all machines. This job related lower bound is quite strong if the number of jobs is
small, but will become useless as the number of jobs in the schedule increases. Note that the
constraint models will infer the first version of this lower bound from the precedence and
travel time constraints, this then becomes the initial lower bound of the makespan variable.

For larger instances we can do better than this, by considering a stage based bound. If
we consider any set of tasks belonging to the same stage, we can compute a lower bound on
the overall makespan as the minimum time to start one of the tasks of the set (minStart),
the time to process all tasks in the set on the machines for that stage, and the minimum
time that is required from the end of a task in the set to the overall project end (minEnd).
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While it is clearly not possible to evaluate this bound for every subset of the tasks for each
of the stages, we can group tasks by their minStart and minEnd values.

We still have to define how to estimate the time required to process all tasks of a set on
the machines of the selected stage. Ideally, we can solve a separate bin-packing constraint to
find the best solution, but that itself is a hard problem, and therefore not really appropriate
for a lower bound. We use three lower bounds on the bin packing problem instead:

The maximum duration of any task in the set is a bound on the time required to process
all tasks of the set.
The total duration of all tasks in the set, divided by the number of available machines, is
another lower bound.
If we order the tasks of the stage by decreasing duration, then the sum of the kth and
k + 1th element of the task list is a lower bound on the total duration, if the stage has k

machines.

Finally, we consider the most common product types, for which there are multiple jobs
in the order set. When minimizing the overall makespan, these jobs are identical, and in
our test scenarios, quite common. The most common product accounts for up to 25% of
all orders. It is worthwhile to obtain a lower bound for these jobs. We consider the sub
problem of scheduling only a single product type, in that case we do not have to allow all
permutations of the jobs, since they are all identical. The solution to this simpler problem
is a valid lower bound for the overall makespan. In the selected scenarios, this bound very
rarely dominates the other bounds, but it becomes useful when the power-law distribution of
product types is changed to consider fewer, more common products.

Given these bounds, we still observe rather wide optimality gaps (up to 20%) for some
medium sized instances. Further improvements could consider:

The total surface estimate assumes that there are no other tasks that overlap the selected
period, but there may be longer tasks starting earlier that are still active at this time.
A study of energetic reasoning for the cumulative constraint [2] may be appropriate to
understand if we can apply some of the reasoning here.
Some tasks may be required to achieve the shortest minStart and shortest minEnd time
at the same time. But it may not be possible to use the same tasks for both roles, so
that more time either at the start or the end is required.
There can be a conflict between lower bounds for different stages, which require different
sets of jobs to be scheduled early to avoid loosing too much production capacity at the
start or end of the schedule. By considering multiple, non-consecutive bottleneck stages
at the same time we may be able to improve the lower bounds significantly, without
having to solve hard combinatorial sub-problems to optimality.

4 Computational Experiments

In this section we describe how we generate sample problem instances based on assumptions
on the manufacturing process, which design alternatives we want to explore, and which
results we achieve. The results allow us to understand the impact of the different models and
solving technologies, and how the factory design choices affect the overall solution quality for
different solvers. A final step, not presented here, then integrates our results with a financial
analysis of the costs and risks of the design alternatives, to help the decision making process
for the industrial partner.
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4.1 Instance Generation

We have built an instance generator for the problem, which produces fully parametrized
instances of the problem. The generated test cases will be made available as an appendix
in the final publication. In our experiments we selected some parameters to be typical of
the situation of the industrial partner, while allowing for flexibility in other parameters. All
experiments shown use 8 stages, where stage 4 and 8 can be skipped with 10% probability.
We allow 10 machines at each stage, and consider two scenarios, one, where each stage has
the same number of machines, and one where the number of machines per stage is adjusted
downwards based on the total workload for each stage. For space reasons we only report
results for the uniform machine number case. We vary the number of jobs between 20 and
400, noticing that the larger instances may require large amounts of memory for some solvers.

For machines within the same building, we consider a lane model (see Figure 2a), where
machines are arranged in a grid pattern, all machines of the same stage being placed in the
same column, and machines in the same row requiring the smallest transport time between
them. Transport time increases with the difference of the lanes in which the machines are
placed. Note that this layout design is only one of the choices in the instance generator, and
does not directly affect the models, which use a table of transport times between machines.

Each job belongs to a given job type, jobs of the same type have the same manufacturing
constraints. We select the job type based on a discrete power law (Zipf) distribution, with
exponent 1.05. This means that some products are more common than others, but many
products only have a single job in the order set. This choice corresponds to the semi-custom
production model for which the factory is being designed. The task duration is randomly
chosen within a range of 1 to 10, while the transport times vary from 1 to 9, and an
inter-building transport requires 10 time units. The instances generated are available at [38].

4.2 Scenarios

We use our models to answer two design questions, one designing the transport inside a
single factory, the other dealing with the potential split of the production between sites.

4.2.1 Reach of Transport between Stages

This problem considers the lane based layout inside a single factory as a starting point. The
question is how far the transport should reach between lanes. If each job stays within its
initial lane during production, then transport requirements are minimal, but there is little
flexibility in the scheduling. If, on the other hand, we allow transport between any two lanes,
a lot of infrastructure needs to be provided, which may or may not pay off in improved
solution quality. The result will be an understanding of how transport flexibility affects
solution quality, and if using different solvers for the experiments lead to different results.

4.2.2 Single Factory vs. Multiple Locations

Another important design question is whether it is better to have a single facility where
production is concentrated, or whether (for example) two locations should be selected. We
consider five alternatives:
1. We use a single facility where all products are made. Transport is between lanes of

consecutive stages of production within the location.
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2. Consider two facilities that run sequentially, all production of the early stages is done in
one location, the intermediate products are then moved to another location, where the
later stages of production are performed.

3. We use two facilities which run in parallel in relatively close proximity, each handling
part of the workload. Intermediate products can be moved between facilities at a (high)
inter-building transport cost.

4. Take two facilities in different geographical regions, with no intermediate product move-
ment between them. For each order, the choice of facility where it is manufactured is left
to the scheduling algorithm.

5. We choose the layout as in the previous case, but 80% of the orders are preassigned to a
facility due to customer location, only 20% of the orders can be assigned freely.

4.3 Results
We now present some results on the solution quality obtained with the different models and
solvers.

4.3.1 Selected Solvers
We compare the results for the following solver alternatives, all running on a Windows 10
laptop with i7-6920HQ CPU running at 2.90GHz, and 64 GB of memory. All solvers are
using a single core, to ease comparison. CPOptimizer and Cplex allow to use multiple cores,
while Chuffed and SICStus do not provide this functionality out of the box. Both MiniZinc
and SICStus solutions are run as separate solver processes from the main Java application.

CP Optimizer by IBM, Version 20.1.0, task interval model, default search
SICStus Prolog Version 4.3.5, diffn model, with a custom search routine
MiniZinc Chuffed, Free Search Version 2.5.5, diffn model, free search
MiniZinc Chuffed, Priority Search Version 2.5.5, diffn model, priority search on start and

machine variable
MiniZinc Cplex, Free Search Version 20.1.0, diffn model, free search
Cplex Version 20.1.0, MILP model of Section 3.3

The Dispatch Rule and Local Search solvers of Section 3.4 were implemented in Java,
and are run inside the main application.

We use a timeout of 300 seconds for each solver and each instance. The best computed
lower bound from Section 3.5 is provided to each solver, and we also provide an initial upper
bound by running the Dispatch rule solver for 10 seconds for each instance.

Both the Cplex version of the MiniZinc model, and our own MILP model of Section 3.3
were not able to improve the given upper bound within the timeout, even for the smallest
instances. This seems due to a poor initial LP relaxation, probably due to the added machine
assignment choice. This contrasts with the results in [27], where MILP models were shown
to be competitive for smaller problem instances of the job-shop problem type, where the
machine for each task is known a priori.

Table 1 shows a comparison of the different solution approaches for a sample set of
instances, ranging from 20–400 jobs.

While for the smaller instances the difference in solution quality is quite small, the
difference increase as the number of jobs increases. We can see that the initial upper bound
obtained in 10 seconds is quite good, with only modest further improvement made by the
Dispatch and Local Search solvers. CPOptimizer with its default search finds better solutions,
and is the best overall on medium sized instances, but SICStus Prolog with a custom search
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Table 1 Average Cmax Value over 25 instances dependent on size (number of jobs), 8 stages,
Lanes Transport, Zipf Exponent 1.05 Job Type Distribution, 10 machines/stage, best solver marked
in green, – indicates no solution better than upper bound found, timeout 300s.

Size
Lower
Bound

Upper
Bound

CP
Opt

Chuffed
Free

Chuffed
Priority

Dispatch
Rule

Local
Search SICStus

20 61.88 63.56 62.72 63.48 63.04 63.28 63.20 62.72
25 62.84 65.96 64.24 – 64.76 65.20 64.84 64.16
30 64.12 70.24 66.68 – 68.44 69.16 68.24 66.84
40 65.32 77.36 72.56 – 75.40 76.08 75.28 73.28
50 67.24 84.52 78.40 – 82.24 83.16 82.24 79.40

100 94.72 120.12 115.16 – 116.96 118.28 118.92 113.04
200 153.08 185.16 180.48 – 181.32 182.80 184.76 176.72
300 214.96 249.12 248.96 – 248.76 246.96 248.88 240.96
400 275.36 311.60 311.28 – – 308.76 311.40 303.16

on average provides the best solution for larger instances. The 32 bit version of SICStus used
here runs out of memory when we increase the problem size even further. The Chuffed free
search only finds a better solutions than the given upper bound for the smallest problem size,
the priority search in Chuffed scales better, but also times out for larger problem instances.

4.3.2 Scenario 1
Table 2 shows the result for a scenario with 200 jobs solved with different solvers. For each
solver, we show the average makespan for a given parameter value, as well as the percentage
increase over the best result obtained for that solver. We see that increasing the reach of
the transport improves the quality of the schedule that can be reached for all solvers except
CPOptimizer. CPOptimizer is much less affected by the transport restriction, and finds the
best solutions for the strongly constrained cases, but is not as successful for the more relaxed
cases. The custom search for SICStus finds the best solutions in the more relaxed cases,
but only finds rather poor solutions in the more restricted scenarios. Comparing the best
results for all solvers, not allowing transport beyond the initial lanes (limit 0) incurs a cost
of 4.92%, while only allowing movement to neighboring lanes (limit 1) costs 2.66% over the
unrestricted case. Note that for some instances better solutions were found by imposing a
limit on the transport.

4.3.3 Scenario 2
Figure 2 illustrates the different layout alternatives studied in Scenario 2, with the relevant
transport times indicated for one machine in stage 3, which is linked to machines in stages 4
and 5, as stage 4 is skipped for certain products. In Scenario 2a, we consider a single facility,
where the transport time between machines is determined by their distance. In Scenario
2b, there are two facilities, transport between the facilities requires a longer inter-building
transport time, marked in red. In Scenario 2c, there are two facilities working in parallel,
where jobs can be moved between the buildings, at a higher cost. This transport is not
allowed in Scenario 2d and 2e, jobs can only move between machines in the same facility.

Table 3 shows the results for a run of 25 instances with 200 jobs each for the different
layout scenarios. We concentrate on the results with SICStus, which are better than those
for the other solvers, and which differentiate the different scenarios more clearly. Splitting
the production between two facilities sequentially (Scenario 2b) increases the makespan by
4.5% on average, as every job is delayed by the long transport between the facilities. On the
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Table 2 Results for Scenario 1 – Changing transportLimit parameter for different solvers, average
Makespan over 25 instances, 8 stages, 10 machines/stage, Zipf exponent 1.05 Job Type Distribution,
average lower bound is 153.08, best average solution marked in green.

Transport Limit Between Lanes No
Solver 0 1 2 3 4 5 Limit

SICStus 204.40 184.20 180.44 178.52 177.88 177.40 177.36
% over Best 15.51 4.09 1.97 0.88 0.52 0.25
CPOptimizer 186.08 182.96 180.60 180.72 180.80 180.84 180.88
% over Best 3.89 2.14 0.83 0.89 0.94 0.96
Dispatch Rule 200.84 186.72 184.08 183.72 183.32 182.92 182.92
% over Best 9.99 2.26 0.81 0.61 0.39 0.18
Local Search 199.32 188.56 186.20 185.48 185.12 184.68 184.80
% over Best 8.21 2.37 1.09 0.69 0.50 0.26 0.33

other hand, splitting the work between two facilities in parallel has a smaller impact. If we
are still able to transport intermediate products between locations (Scenario 2c), then the
makespan increases by less than 1%. This doubles to 2% if transport between facilities is no
longer allowed in Scenario 2d. Restricting the problem further, by considering the assignment
of jobs to facility as given for 80% of the orders, causes no further degradation in result
quality. Instead, for a small number of cases, the scheduler finds an improved solution, as the
domain of the machine assignment variables is cut in half, reducing the search complexity.
We are of course not able to explore any of these search spaces completely. But the results
for the SICStus solver are statistically significant, when tested with paired t-tests. With
the exception of scenarios 2d and 2e, which cannot be distinguished, all scenarios produce
significantly different results over the generated 25 instances.

The change of the schedule quality based on the layout scenario is only one aspect in
evaluating the alternatives, other parts use customer specific data, and are not reported here.

Table 3 Results for Scenario 2 – Average Makespan over 25 instances with 200 jobs, different
Solvers, 10 machines/stage, Zipf 1.05 Job Type Distribution, average lower bound is 159.80.

Scenario
Solver Size 2a 2b 2c 2d 2e

SICStus 200 176.84 184.84 178.28 180.52 180.48
% over Best 0.00 4.52 0.81 2.08
CPOptimizer 200 184.40 190.92 186.00 183.52 183.52
% over Best 1.23 4.81 2.11 0.75
Dispatch 200 182.76 190.44 184.28 184.60 184.64
% over Best 0.00 4.20 0.83 1.01
Local Search 200 184.68 192.24 185.76 186.08 185.96
% over Best 0.13 4.23 0.72 0.89
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(a) Scenario 2a. (b) Scenario 2b.

(c) Scenario 2c. (d) Scenario 2d/e.

1 2 3 4 5 6 7 Inter Building

Facility 1 Facility 2

Figure 2 Scenario 2 - Layout Alternatives and Sample Transport Times.

5 Future Work and Conclusion

In this paper we have presented a novel variant of a hybrid, flexible flowshop problem which
adds transportation time between stages. We have explored different models for the problem,
using CP and other technologies, and compared them on a number of generated problem
instances, based on parameters given by the industrial partner. While some solvers seem
promising on small instances, several of the solvers considered failed to handle the problem
sizes required for a realistic scenario. We then considered two factory design problems and
compared the solutions obtained for different problem settings. These results can be used
to evaluate the impact of the design choices on the operational efficiency of a plant layout.
While the results obtained are very encouraging, there is still a rather big gap between the
lower bound found and the best solutions. Future work will be focused on improving the
bounds, while also considering hybridisation techniques that might allow us to find better
solutions for large problem instances. Finally, we believe that the problem of designing
optimized facility layouts, where the positions of all the machines are computed to increase
efficiency, may be of interest for future research.
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