
Title Explanation in constraint satisfaction: A survey

Authors Dev Gupta, Sharmi;Genç, Begüm;O'Sullivan, Barry

Publication date 2021-08-17

Original Citation Dev Gupta, S., Genc, B. and O'Sullivan, B. (2021) 'Explanation in
Constraint Satisfaction: A Survey', JCAI 2021: Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence,
Montreal, Canada. Virtual Event, 17-27 August, pp. 4400-4407.
doi:10.24963/ijcai.2021/601

Type of publication Conference item

Link to publisher's
version

https://www.ijcai.org/proceedings/2021/601 - 10.24963/
ijcai.2021/601

Rights © 2021 International Joint Conferences on Artificial Intelligence

Download date 2024-04-30 05:42:28

Item downloaded
from

https://hdl.handle.net/10468/12241

https://hdl.handle.net/10468/12241

Explanation in Constraint Satisfaction: A Survey

Sharmi Dev Gupta , Begum Genc and Barry O’Sullivan
School of Computer Science & Information Technology

University College Cork, Ireland
{sharmi.devgupta|begum.genc|b.osullivan}@cs.ucc.ie

Abstract
Much of the focus on explanation in the field of
artificial intelligence has been on machine learn-
ing methods and, in particular, concepts produced
by advanced methods such as neural networks and
deep learning. However, there has been a long his-
tory of explanation generation in the general field of
constraint satisfaction, one of the AI’s most ubiqui-
tous subfields. In this paper we survey the major
seminal papers on the explanation and constraints,
as well as some more recent works. The survey
sets out to unify many disparate lines of work in
areas such as model-based diagnosis, constraint
programming, Boolean satisfiability, truth mainte-
nance systems, quantified logics, and related areas.

1 Introduction
While much of the recent focus on explanation in AI has been
on machine learning, and on explanations for the techniques
based on neural networks and deep learning methods, there
is a considerable and long-standing literature related to ex-
planations in the context of constraints. The objective of this
survey is to briefly review the major directions of research on
explanation for constraint satisfaction and bring together the
many different, but linked, themes from related fields.

Most current approaches to explanation generation in
constraint-based settings are based on the notion of a (set-
wise) minimal set of unsatisfiable constraints, also known as
a minimal conflict set of constraints. However, a minimal
conflict does not necessarily give an intuitive explanation, in
that many users will want to be shown which subsets of their
constraints they can satisfy and which they cannot satisfy. It
has also been shown that minimal conflict-based explanations
can also be spurious and misleading [Friedrich, 2004].

Option Cost
Roof rack 500
Convertible 500
CD Player 500
Leather Seats 2600

c1 Total cost ≤ 3000
c2 Roof rack
c3 Convertible
c4 CD Player
c5 Leather Seats

Figure 1: An example explanation problem: assume there is one
constraint that “convertible cars cannot have roof racks”.

We briefly exemplify some aspects of explanations in con-
straints through an example in Figure 1 based on a well-
known car configuration problem [Junker, 2004]. In this ex-
ample there is one technical constraint that states that con-
vertible cars cannot have roof racks. On the right-hand side
of the figure there are the choices made by the user: the user
has a maximum budget of 3000 (c1), wants a roof rack (c2),
etc. On the left-hand side we see the costs associated with
each option that the user might select.

Clearly the set of user’s choices {c1, . . . , c5} can-
not be satisfied simultaneously. In fact, there are sub-
sets of the user’s choices that also cannot be satisfied:
{c2, c3}, {c1, c2, c5}, {c1, c3, c5}, and {c1, c4, c5}. Note that
any subset, if any, of these subsets of constraints is consistent;
these are often referred to as minimal conflicts. These con-
flicts are somewhat useful as explanations, but they have chal-
lenges. Consider, for example, what happens if we present
{c1, c2, c5} as an explanation for why the set of constraints
{c1, . . . , c5} is not satisfiable. The user would be mistaken
in thinking that simply eliminating this conflict by remov-
ing, say, constraint c2 is enough to recover consistency. It is
not, because {c1, c3, c5} or is also a conflict. Similarly, relax-
ing c5 from {c1, c2, c5} would not have been enough because
{c2, c3} is a conflict. Minimal conflicts only explain why a
set of constraints is inconsistent. In order to recover consis-
tency all minimal conflicts must be eliminated by relaxing a
set of constraints that form a hitting set of the conflicts.

Rather than considering conflicts, one can focus on subsets
of constraints that are consistent. In this example, the sets
of user constraints {c1, c2}, {c1, c5} and {c1, c2, c4} are con-
sistent, and a solution can be found for them. These sets of
constraints are often referred to as relaxations of the problem.
Sets {c1, c5} and {c1, c2, c4} are interesting, since adding any
additional user constraint to them will make them unsatisfi-
able. Such relaxations are often referred to as maximal relax-
ations. None of the conflicts are contained in the relaxation.

In the remainder of this paper, we present our review of
explanation for constraint satisfaction. We can characterise
explanation methods in constraint satisfaction along four di-
mensions. First, explanation methods can be seen as either
solver-specific or solver-agnostic. Solver-specific methods
are typically those that are integrated into the solver itself.
For example, these methods might either be part of a mecha-
nism to record how constraint propagation removes particular

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4400

values from the domains of variables, or they might compute
reasons for a dead-end in search that can be added to the set
of the constraints of the problem to avoid a future failure for
the same reasons. Solver agnostic methods are typically al-
gorithms that perform a-posteriori analysis to generate an ex-
planation. Second, methods can be considered as being user-
focused, for use in an interactive setting or where users add
constraints to express preferences, or for use by a constraint
solver to improve search. Third, there are a variety of mea-
sures of quality one can consider, e.g. finding an explanation
in terms of the most important constraints, finding a small ex-
planation such that it is of minimum cardinality, irreducible,
traceable or in some other way compact. Finally, one might
be interested in computing a single explanation, all possible
explanations, or a selection of possible explanations. In our
review we will highlight the criticals elements of these di-
mensions in the settings we consider.

2 Formal Background
A constraint satisfaction problem is defined as a triple P :=
〈X ,D, C〉. The set of X denotes a finite set of variables, D
is a finite set of domains of each variable, where domain of a
variable xi ∈ X denoted by D(xi) is defined as a set of finite
values that xi can take, and C is a finite set of constraints.

2.1 Foreground versus Background Constraints
In some contexts, e.g. interactive search, product configura-
tion, etc., it is useful to consider a partition of constraint types.
A problem P can be represented by two sets of constraints
P := (B,F), where B represents the background constraints
(or hard constraints), i.e. the constraints that cannot be re-
laxed, and F the foreground constraints (or soft constraints).
The set F can also be referred as customer requirements in
the context of configuration problems, or user constraints in
other interactive settings. A set of constraints is inconsistent
(or unsatisfiable) if there is no solution; otherwise it is con-
sistent (or satisfiable). A set of constraints C is referred as
over-constrained if they cannot be satisfied at the same time.

We present the basic definitions related to explanations in
CSPs before presenting some related definitions taken from
the various papers we reviewed.
Definition 1 (Relaxation [Junker, 2004]). A subset R of F is
a relaxation of P := (B,F) iff B ∪R has a solution.

A natural and commonly used notion of quality for relax-
ations is that they are maximal with respect to set inclusion.
Definition 2 (Maximal Relaxation). A subset R of F is a
maximal relaxation of a problem P := (B,F) iff B ∪ R has
a solution and there is no c ∈ F \ R such that B ∪ R ∪ {c}
also has a solution.

The complement of a maximal relaxation, those constraints
that are excluded to recover consistency is referred to as a
minimal exclusion set [O’Sullivan et al., 2007]. Capturing
how inconsistency arises, we have the notion of a conflict set
of constraints, and its natural notion of quality that is set-wise
minimal.
Definition 3 (Conflict [Junker, 2004]). A subset C of F is a
conflict of a problem P := (B,F) iff B ∪ C has no solution.

Definition 4 (Minimal Conflict [Junker, 2004]). A conflict C
of F is minimal (irreducible) if each proper subset of C is
consistent with the background B (or if no proper subset of C
is a conflict).

Each of the maximal relaxations (minimal conflicts) are
set-wise incomparable. The number of maximal relaxations
(minimal conflicts) is exponential in the cardinality of F .

There exists a duality between minimal conflicts and max-
imal relaxations. The minimal exclusion sets, the comple-
ments of each maximal relaxation, form a hitting set of
the minimal conflicts in the problem since by excluding
these constraints, all conflicts are removed. This is a prop-
erty that can be algorithmically exploited when enumerat-
ing all possible minimal conflicts [Bailey and Stuckey, 2005;
Reiter, 1987].

2.2 Monolithic Formulas and Sets of Constraints
In some applications no distinction is made between a back-
ground and foreground sets of constraints. Instead the set of
constraints (or the formula in the case of Boolean satisfia-
bility) is regarded as a single conjunction of individual con-
straints (clauses). In the associated literature the terminology
is similar to that presented above.
Definition 5 (Unsatisfiable Core [Lynce and Marques-Silva,
2004]). Given a formula φ, UC is an unsatisfiable core for φ
iff UC is a formula φc s.t. φc is unsatisfiable and φc ⊆ φ.
Definition 6 (Minimal Unsatisfiable Core (MUC) [Lynce and
Marques-Silva, 2004]). A UC for a formula φ is a minimal
unsatisfiable core iff removing any clause ω ∈ UC from UC
implies that UC \ {ω} is not an unsatisfiable core.

When the core is restricted to clauses of the original for-
mula, we have the following related notion, which is equiva-
lent to minimal conflict in the constraint case.
Definition 7 (Minimal Unsatisfiable Subset (MUS) [Liffiton
and Sakallah, 2008]). A subset U ⊆ F is an MUS if U is
unsatisfiable and ∀C ∈ U,U \ {C} is satisfiable.
Definition 8 (Maximal Satisfiable Subset (MSS) [Liffiton and
Sakallah, 2008]). A subset S ⊆ F is an MSS if S is satisfiable
and ∀C ∈ (F \ S), S ∪ {C} is unsatisfiable.

Note that, a MUS is also referred as minimal unsatisfiable
subformula. The analogous notion to minimal exclusion set
discussed above is the minimal correction subset.
Definition 9 (Minimal Correction Subset (MCS) [Liffiton and
Sakallah, 2008]). A subset M ⊆ F is an MCS if F \M is
satisfiable and ∀C ∈M,F \ (M \ {C}) is unsatisfiable.

In the field of model-based diagnosis one can find similar
notions to conflicts, such as diagnosis and minimal diagno-
sis [Felfernig et al., 2012]. In this context, the concept of
minimal diagnosis is analogous to that of an MCS. Finding
an MCS corresponds to finding a minimal hitting set of all
minimal conflict sets of the problem.

The literature in this area is vast and is not possible to in-
clude all papers in the short survey we present here. We refer
readers to an excellent recent survey that provides an in-depth
analysis of inconsistent formulas, including MUS and MCS
computation in non-monotonic formulas [Marques-Silva and
Mencı́a, 2020].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4401

3 Solver-Agnostic Approaches
In this section, we review solver-agnostic, sometimes referred
to as non-intrusive, approaches to explanation generation for
CSPs that can easily integrate with any arbitrary solver, i.e.
the system does not make any assumptions about the solver.

3.1 QUICKXPLAIN
Truth maintenance systems are able to compute explanations
for those problem solvers that create explicit justifications for
each inference step. As this requirement limits the scope of
applicability of truth maintenance systems, there was an in-
terest in solver-agnostic methods that could work for arbitrary
constraint solvers. Bakker et al. [1993] proposed a sequential
method for computing a minimal conflict, but it required a
linear number of consistency checks and was too expensive
for many problems.

It was long believed that the conflict detection problem
could not be solved recursively by successively decomposing
the constraint set into smaller subsets. Indeed, it is not possi-
ble to discard the other subsets when trying to find elements
of a conflict within a selected subset as this conflict might
involve elements from several of the subsets. Instead of dis-
carding these other subsets Junker [2001] proposed to move
them to the background when looking for conflict elements
in a selected subset. This permitted a new recursive con-
flict detection strategy that can scale well and is able to han-
dle complex real-world problems. However, the worst-case
query performance of the proposed algorithm is not better
than Bakker’s algorithm [Marques-Silva and Mencı́a, 2020].

In subsequent work, Junker [2004] showed that this divide-
and-conquer strategy is able to find a lexicographically pre-
ferred and thus minimal (and irreducible) conflict and in-
troduced a consolidated version of the QUICKXPLAIN algo-
rithm. This work influenced many other researchers and won
the AAAI Classic Paper award in 2020.

Whereas QUICKXPLAIN focused on the computation of
conflicts, it formulates the decomposition property for both
conflicts and relaxations. Consider two constraints sets F1

and F2 such that all elements of the first set are preferred to
those of the second set with respect to a total importance or-
der defined on all constraints:

1. If R1 is a lexicographically-preferred relaxation of
(B,F1) and R2 is a lexicographically-preferred re-
laxation of (B ∪ R1,F2), then R1 ∪ R2 is a
lexicographically-preferred relaxation of (B,F1 ∪ F2).

2. If C2 is a lexicographically-preferred conflict of (B ∪
F1,F2) and C1 is a lexicographically-preferred conflict
of (B ∪ C2,F1), then C1 ∪ C2 is a lexicographically-
preferred conflict of (B,F1 ∪ F2).

Many related perspectives have appeared. For example,
around the same time in model-based diagnosis, Mauss and
Tatar [2002] proposed a similar conflict detection algorithm
without taking into account preferences. Their approach re-
cursively divides the constraint set according to the structure
of an inconsistency proof and therefore cannot guarantee that
lex-preferred conflicts are computed. In Boolean satisfiabil-
ity, Lynce and Marques-Silva [2004] focused on finding min-
imum unsatisfiable cores to certify the solver using unsatis-

fiability proofs. They focused on finding the unsatisfiable
cores with a focus on smallest (in terms of the number of
clauses) unsatisfiable cores of a given instance. All unsatisfi-
able formulas have at least one minimum unsatisfiable core,
and the authors highlight that there may be a significant dif-
ference between the length of a minimal unsatisfiable core
and a minimum one. However, their technique is not scalable
enough due to the scale of the search space. Subsequently,
Ignatiev et al. [2015] proposed a more effective approach,
namely FORQES, to tackle the scalability issue. They also
noted that finding the smallest unsatisfiable core is hard for
the second level of the polynomial hierarchy.

Hemery et al. [2006] studied how to extract minimal con-
flict sets from constraint networks as a refinement of the work
of Bakker et al. [1993]. Their proposed conflict-based ap-
proach is based on performing complete runs of backtracking
search by using a conflict-directed variable ordering heuristic.
They iteratively restart the search by keeping the constraint
weightings until no smaller core can be found. They show
that by using dichotomic search to identify an unsatisfiable
set, their approach is bounded by O(loge × ke), where e is
the number of constraints and ke is the number of constraints
of the extracted MUC. When the extracted MUC is small, it
performs better than QUICKXPLAIN in the worst case.

There have been many directions of work inspired by the
QUICKXPLAIN algorithm. O’Callaghan et al. [2005] intro-
duced and studied corrective explanations. The goal of pro-
viding a corrective explanation is to identify reassignments
to a subset of user-generated unary constraints in the case
of an inconsistency or value restoration. Consequently, Li
et al. [2013] improved the performance of this algorithm by
requiring fewer consistency checks.

Felfernig et al. [2012] presented an algorithm called FAST-
DIAG, which is a QUICKXPLAIN-inspired strategy that iden-
tifies one minimal conflict at a time, motivated on configura-
tion problems. Diagnosis approaches usually require the cal-
culation of at least n minimal conflict sets to find a minimal
diagnosis of cardinality n. The FASTDIAG algorithm deter-
mines the preferred diagnosis without calculating the corre-
sponding conflict sets. Laborie [2014] proposed a method,
namely ADEL, to find a MUS, and they showed that it re-
quires fewer consistency checks than QUICKXPLAIN. Sub-
sequently, Marques-Silva and Previti [2014] revisited defini-
tions of MUS, MCS, and MSS under preferences, and anal-
ysed different algorithms and pruning techniques.

Ferguson and O’Sullivan [2007] developed an explana-
tion framework for quantified constraint satisfaction prob-
lems (QCSP). While in the classic CSP variables are implic-
itly existentially quantified, in a QCSP some variables can
also be universally quantified. For universally quantified vari-
ables the constraint set must be satisfied for every possible as-
signment to these variables. The space of possible relaxations
and conflicts in a QCSP is much more complex: relaxations
correspond to restricting the domains of universally quanti-
fied variables, expanding the domains of existentially quan-
tified variables, moving universal quantifiers leftwards in the
quantifier sequences, or replacing universal quantifiers with
existential ones. Mehta et al. [2015] extended the notion of
preferred explanations into the Quantified CSP framework.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4402

3.2 Model-based Diagnosis
One of the earliest studies on constraint-based explanation
was conducted by Raymond Reiter in the 1980s in the con-
text of model-based diagnosis using hitting-set trees (HS-
tree) [Reiter, 1987]. In this approach, the nodes of an HS-
tree are labeled with conflicts, and the edges are labelled with
the elements of conflicts. Given a set of inputs and a set of
expected outputs, a diagnosis is expected to help with ana-
lyzing the observed output and understanding why a system
is not working as expected. Reiter showed that finding all
diagnoses corresponds to finding all minimal hitting-sets of
conflicts, and provided a breadth-first search procedure over
HS-trees with different tree-pruning rules to compute all di-
agnoses. An important remark is that the diagnosis running
time depends heavily on the cost of consistency checking at
each node.

Han and Lee [1999] proposed a method for deriving all
minimal conflict sets of a given conflict set using a different
tree structure, called a CS-tree, for the diagnosis of circuits
using satisfiability. The nodes of a CS-tree are labeled with
subsets of the given conflict set, where no two nodes share
the same label. The technique is based on enumerating all
subsets in the tree and not to visit successors of a node if the
satisfiability test at the node is true. Their proposed approach
is independent of the order of node generation in CS-tree, and
the successor check provides good pruning to the search.

Stumptner and Wotawa [2001] further studied an alterna-
tive to Reiter’s procedure for computing diagnoses. Their
method uses a tree-structured system, whose components can
be expressed using either mathematical functions or con-
straints. They speed-up the reasoning for finding all minimal
diagnoses by exploiting the tree using a top-down approach
using forward and backward propagation, and limiting the
maximal cardinality of diagnoses. More recently, Jannach et
al. [2015] improved Reiter’s approach in terms of speeding
up the computation by parallelizing construction of the tree.

Marques-Silva et al. [2013a] used MAXSAT for find-
ing an MCS, and highlighted that although MCS calcu-
lation seems to be promising, existing algorithms do not
scale well to the very hard instances of MAXSAT. Addi-
tionally, Marques-Silva et al. [2013b] presented progression-
based algorithms for MUS extraction. Metodi et al. [2012;
2014] studied this impracticality of model-based diagnosis
systems in the presence of many faults. They proposed an
efficient SAT-based approach to finding either single or all
minimal cardinality diagnoses that performed well on stan-
dard benchmarks. Marques-Silva et al. [2015] built on this
work and proposed a novel encoding into MAXSAT. Several
recent algorithms have been proposed for efficient enumera-
tion of MCSes [Grégoire et al., 2018; Previti et al., 2018].

3.3 Finding All Minimal Conflicts in CSPs
Garcı́a de la Banda et al. [2003], motivated by the problems
of relying on a single conflict as discussed in the introduction
that some explanations may be easier to understand than oth-
ers, proposed a method for finding all minimal unsatisfiable
subsets of a set of constraints to extract the simplest expla-
nation. They used pre-processing, reasoning about indepen-
dence and redundant constraints, use incrementality to speed

up the derivation towards finding satisfiable subsets, and re-
duce the search space to be explored. Subsequently, Bailey
and Stuckey [2005] proposed a hitting set-based approach to
compute all minimal unsatisfiable constraints sets based on
earlier techniques [Gunopulos et al., 2003], which is used
for discovering interesting maximal frequent patterns in data
mining. They adapted it to enumerate both minimal unsatis-
fiable and maximal satisfiable sets of constraints, exploiting
the duality between those. The authors enhanced the proce-
dure by adding information from the constraint graph such as
visiting the sets in increasing order of their cardinalities. The
results were compared with the technique from Garcı́a de la
Banda et al. [2003] and showed significant improvements in
running time. Bailey and Stuckey’s approach is quite similar
to Reiter’s approach, with the main difference being that Re-
iter uses hitting set calculations to find a new minimum un-
satisfiable set at each iteration, whereas Bailey and Stuckey
finds a new maximum satisfiable subset.

In interactive settings the response time is also as impor-
tant as the goodness of an explanation. Some researchers
have compiled a CSP into a suitable data structure, such as
a binary decision diagram or automaton, and then exploited
it at run-time. As an example, Amilhastre et al. [2002] pro-
posed to compile the solutions of a given configuration prob-
lem into an automaton. Then, they proposed tractable algo-
rithms on the automaton that maintains global consistency,
immediately detecting inconsistencies, finding nogoods to of-
fer maximal relaxations, and offer minimal explanations if a
value is removed from the domain of an important variable.
Papadopoulos and O’Sullivan [2009] incorporated user pref-
erences into explanations by making use of prime implicates
to suggest the best relaxation to the unsatisfiable user config-
uration. Their proposed approach is based on computing all
the conflicts in advance and compiling these into a compact
representation to be able to find quick explanations online.

3.4 Finding All Unsatisfiable Subformulas in SAT
Liffiton and Sakallah [2005] proposed CAMUS that ex-
tracts all minimal unsatisfiable subformulas following a sim-
ilar concept to [Bailey and Stuckey, 2005], and showed that
their method outperforms their implementation of Bailey and
Stuckey’s approach for CNF. The CAMUS algorithm uses
hitting set dualization to compute all the MUSes in an un-
satisfiable constraint system. This approach is also based on
the duality between MUS and MCS [Liffiton and Sakallah,
2008]. First, they find all MCSes of a constraint system,
which they show is easier than finding MUSes. Then, they
compute all irreducible hitting sets of MCSes, which corre-
spond to all MUSes of the constraint system. Their approach
uses the fact that MCS and MSS are complementing each
other. First they find an MSS by solving MAXSAT, then
identify the corresponding MCS. Considering the complexity
of finding all MUSes, they propose some further algorithms
that relax the completeness of the algorithm. In the mean-
while, Gregoı́re et al. [2007] presented an improvement to
CAMUS. Their main improvement was to use local search
to identify potential maximal satisfiable subsets before ex-
tracting the corresponding set of minimal unsatisfiable sub-
formula. The approach can be considered as a combination

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4403

of the Liffiton and Sakallah’s complete approach with local
search, and not necessarily complete. They also incorporated
critical clauses to their search, and show that the proposed
approach offers significant improvements.

Liffiton and Malik [2013] noted that most of the algo-
rithms proposed to enumerate interesting MUS for a con-
straint set perform worse in terms of time efficiency when
compared to algorithms focused on finding a single MUS,
more specifically, producing the first output as quickly as the
single MUS algorithms and finding consecutive MUS after
the similar time interval. Their paper proposed a novel al-
gorithm, namely MARCO (Mapping Regions of Constraint
sets), that attempts to address these gaps and it succeeds in
quickly enumerating all the MUSes for any given constraint
system. One can use it with any algorithm that detects a sin-
gle MUS. The empirical analysis shows that MARCO fares
better than the other enumeration algorithms, especially for
applications which do not require all the MUSes in the con-
straint set. CAMUS is faster to enumerate all sets of MUSes
than MARCO but the early results of MARCO are preferred
for applications that require partial MUS enumeration within
a time limit. Subsequently, Liffiton et al. [2016] proposed an
optimised version of their algorithm.

Considering the intractability of enumerating all MUSes,
Bendı́k and Cerná [2020a] proposed domain agnostic algo-
rithms that enumerate MUSes online. They examined the
MARCO algorithm and concluded that the efficiency of it
varies a lot with the constraint domain. Hence, they intro-
duced a domain agnostic tool, which implements many MUS
enumeration algorithms and provides support for three con-
straint domains namely SAT, SMT, and LTL. Some recent
better performing approaches in MUS enumeration include
Narodytska et al. [2018] and the UNIMUS algorithm proposed
by Bendı́k and Cerná [2020b].

3.5 Finding Many Explanations
While presenting a single conflict or relaxation is not partic-
ularly insightful and enumerating them is impractical, it can
be useful to be presented with an informative set of expla-
nations. O’Sullivan et al. [2007] proposed an approach to
presenting a subset of all relaxations and exclusion sets of
the user’s constraints along with a set of representative ex-
planations. Their notion of representative set corresponds to
having a relaxation that contains each constraint that appears
in a relaxation and also in an exclusion set. They show that
computing representative explanations is NP-hard consider-
ing polynomial-time consistency checkers. This algorithm
RESPRESENTATIVEXPLAIN is based on [Bailey and Stuckey,
2005]’s method for computing all minimal conflict sets. The
main difference is to reduce the set of minimal exclusion sets
to produce minimal representative set of explanations. This
minimisation is done by removing the explanations that are
not particularly representative. The representative set is lin-
ear in the number of user constraints in the worst case.

Building upon the work of Reiter and Junker, Shcheko-
tykhin et al. [2015] combined hitting set trees and QUICK-
XPLAIN principles and propose a complete approach called
MERGEXPLAIN, which is a divide-and-conquer procedure
that allows computing several minimal conflicts.

4 Solver-Specific Approaches
4.1 Truth Maintenance Systems
A problem solver such as a constraint solver may explore
different decisions and the logical consequences of these de-
cisions. A truth maintenance system (TMS) records all the
decisions and inferences made by the problem solver and
keeps justifications for the recorded inferences [Doyle, 1981].
Based on this information, a TMS is able to provide explana-
tions for the recorded inferences and to identify the decisions
that have led to these inferences. A TMS may also maintain
a belief state, i.e. a subset of the decisions and recorded in-
ferences. If a decision is retracted, the TMS will retract all
inferences that are no longer supported by the remaining de-
cisions according to the recorded justifications. Similarly, if a
decision is re-added, the TMS will re-add all inferences that
are again supported by the re-added decision. When the prob-
lem solver encounters a contradiction, the TMS will record
this inference as well and trigger a particular process, called
dependency-directed backtracking, that retracts decisions un-
til the contradiction is no longer derived from the remain-
ing decisions and the recorded justifications. Dependency-
directed backtracking generates a no-good, i.e. an explana-
tion for the contradiction in terms of the current decisions.
Doyle’s truth maintenance system retracts one of the deci-
sions in the nogood and adds a (non-monotonic) justification
for this retraction that consists of the other decisions in this
nogood. If some of these other decisions are retracted, the
now retracted decision may be re-added, which leads to a
non-monotonic behavior. Unfortunately, this additional re-
vision capability may be problematic in presence of cycles.

An assumption-based truth maintenance system (ATMS)
avoids those problems by maintaining multiple belief states
simultaneously [De Kleer, 1986]. An ATMS computes mul-
tiple explanations for each recorded inference. The ATMS
keeps the explanations for the contradiction node in a partic-
ular nogood database and can thus check whether a given set
of decisions is inconsistent (i.e. is a superset of some of the
nogoods). Moreover, the ATMS keeps the computed expla-
nations for each recorded inference (except for the contradic-
tion) as a label of this recorded inference and can thus check
whether a given set of decisions supports (or implies) this in-
ference (i.e. is a superset of some of the explanations in the
label). Nevertheless, these capabilities may be costly in space
and time as the nogood database, as well as the labels, may be
exponential in size. The ATMS tries to mitigate this by keep-
ing only minimal nogoods and minimal explanations, but in
general a focusing mechanism is necessary to make an ATMS
work in practice.

4.2 Explanations for Improving Search
Several algorithms exist to deal with over-constrained prob-
lems using an intelligent backtracking strategy. For instance,
Ginsberg [1993] presented a method that moves backtrack
points deeper into the search space to avoid losing progress
made on solving a search problem when backtrack method
is called. Ginberg’s technique, called dynamic backtrack-
ing, is a variant of dependency-directed backtracking [Stall-
man and Sussman, 1977]. The original approach by Stallman

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4404

and Sussman includes directly backtracking to the source
of the problem. Some of the key elements here are stor-
ing the previous values of the variables when applying back-
tracking, i.e. reordering the variables already assigned val-
ues thus far. The other key idea is to erase the value given
to a variable instead of backtracking to it. Prosser [1995]
modified the MAC algorithm from Sabin and Freuder [1994]
for maintaining arc consistency, using conflict-directed back-
jumping, to avoid repeating the redundant search. In the
context of satisfiability, one of the most effective explana-
tion approaches is clause learning which is now a stan-
dard component of SAT solvers [Marques-Silva et al., 2009;
Biere et al., 2009].

Other work in this area include the explanation-based
solver, PaLM [Jussien and Barichard, 2000], and related ap-
proaches such as the work by Cambazard et al. [2004] which
use Benders decomposition techniques to generate nogoods
and eventually solve a hard real time allocation problem.

4.3 Explanations and Global Constraints
Providing explanations are straightforward when working
with basic constraints, however as Jussien [2000] identified,
it is not that apparent for global constraints due to their com-
plex nature. The general approach is to express the global
constraints in terms of basic ones first. The decomposed ver-
sions of the global constraints often introduce extra variables,
but decomposition is mostly necessary for producing expla-
nations. As an example, Schutt et al. [2011] explained the
CUMULATIVE global propagator by decomposing it into ba-
sic constraints. They use lazy clause generation, which is a
hybrid approach that combines finite domain propagation and
SAT solving. First, a SAT model of the corresponding prob-
lem is generated, then the explanations concluded by the SAT
solver are used to form an explanation.

Similarly, Downing et al. [2012] observed and examined
various propagation mechanisms for ALLDIFFERENT con-
straint, provided explanations for their propagation, and ex-
perimented with an extended version in order to include ex-
plainability. They also studied the effects of clause learn-
ing on propagation tradeoffs. They observed that it is de-
sirable to have different propagators or decompositions of the
global constraint for explanation as some methods work bet-
ter for some specific problems. They concluded that learn-
ing nogoods is beneficial in general, but is not effective on
some models. More recently, ongoing study of Gontier et
al. highlightd the difficulty of explaining global constraints
in off-the-shelf solvers [Gontier et al., 2020]. They propose
an approach based on conflict-driven clause learning that can
generate explanations for any constraint decomposition, and
demonstrate in on the CUMULATIVE constraint.

5 Explanations and Puzzles
Puzzle solving has long been used as a domain for demon-
strating the value of explanation techniques for constraint
programming. In these settings the puzzle is encoded as a
constraint satisfaction problem [Little et al., 2002]. When
solving puzzles and providing explanations to the user, the
main focus is on providing meaningful and short explana-
tions that are similar to human reasoning so that the user can

understand the rationale behind it. For example, Sqalli and
Freuder [1996] used inference-based constraint satisfaction
to support explanations of problem solving with a case study
on logic puzzles. Their motivation is not only to provide a
solution to the puzzle, but solve the puzzle in a way that the
player would find the thought process natural to follow so
that explainable. Subsequently, Freuder et al. [2001] studied
the problem of how the implications of user choices can be
explained in interactive settings such as when solving the Su-
doku problem. They aim to answer why a user is presented a
particular solution by using dependency records, why a spe-
cific value was assigned to a variable, or why the choices led
to a failure. They use inference methods to determine if se-
lecting a value leads to a solution or failure.

Escamocher and O’Sullivan [2019] proposed an algorithm
that mimics human-type reasoning to solve logic grid puzzles.
The expectation is that, by following a similar reasoning with
the human, the explanations of the system will be more clear
to the user. Their system is capable of producing a solution
for the user, or explaining at each step why a cell is assigned
a specific value. Somewhat related, Bogaerts et al. [2020]
examined the inference steps taken during propagation in a
non-interactive setting to solve logic grid puzzles. The greedy
procedure iteratively builds explanation sequences, and a cost
function is used evaluate the explanation sequences at each
step to select the lowest scoring next explanation.

6 Conclusions and Future Directions
We have brought together the many strands of research re-
lated to explanation generation in constraint satisfaction, in-
cluding the related area of Boolean satisfiability. The core
ideas in this field go back a number of decades, and there are
many parallel lines of work that have significant commonal-
ities. We have attempted to draw these out through our cate-
gorisation of the literature. It is our hope that other subfields
of AI will draw upon the work in constraint satisfaction to find
new ways of applying these results and methods, but also find
inspiration to apply it in their own fields.

Current CP systems are focusing on performance and
whether a solution to the constraint system can be found in
a reasonable time or report none exists. A reported solution
can be verified using certifying solvers. However, it is often
the case that the user wants to understand the reported solu-
tion, or needs to interact with the system to take steps that
lead to a solution. This is the focus of an exciting line of new
work on proof logging [Gocht et al., 2020]. It is also inter-
esting to consider how CSPs can be reformulated to support
better explanation [Cambazard and O’Sullivan, 2008]. As we
deal with larger and more complex models, we expect to see
greater focus on directions like these.

Acknowledgements
The authors are extremely grateful for the feedback and com-
ments provided by Ulrich Junker and anonymous reviewers.
This publication has emanated from research conducted with
financial support of Science Foundation Ireland under Grant
16/RC/3918, 12/RC/2289-P2, and 18/CRT/6223, which are
co-funded under the European Regional Development Fund.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4405

References
[Amilhastre et al., 2002] Jérôme Amilhastre, Hélène

Fargier, and Pierre Marquis. Consistency restora-
tion and explanations in dynamic CSPs application to
configuration. Artif. Intell., 135(1-2):199–234, 2002.

[Bailey and Stuckey, 2005] James Bailey and Peter J.
Stuckey. Discovery of minimal unsatisfiable subsets of
constraints using hitting set dualization. In Practical
Aspects of Declarative Languages, pages 174–186, 2005.

[Bakker et al., 1993] R. R. Bakker, F. Dikker, F. Tempel-
man, and P. M. Wognum. Diagnosing and solving over-
determined constraint satisfaction problems. In Proceed-
ings of IJCAI-93, pages 276–281, 1993.

[Bendı́k and Cerná, 2020a] Jaroslav Bendı́k and Ivana
Cerná. MUST: minimal unsatisfiable subsets enumeration
tool. In Proceedings TACAS 2020, pages 135–152, 2020.

[Bendı́k and Cerná, 2020b] Jaroslav Bendı́k and Ivana
Cerná. Replication-guided enumeration of minimal
unsatisfiable subsets. In Proc. of CP, pages 37–54, 2020.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfi-
ability. IOS Press, 2009.

[Bogaerts et al., 2020] Bart Bogaerts, Emilio Gamba, Jens
Claes, and Tias Guns. Step-wise explanations of constraint
satisfaction problems. In Proceedings of ECAI 2020, vol-
ume 325, pages 640–647, 2020.

[Cambazard and O’Sullivan, 2008] Hadrien Cambazard and
Barry O’Sullivan. Reformulating table constraints using
functional dependencies - an application to explanation
generation. Constraints An Int. J., 13(3):385–406, 2008.

[Cambazard et al., 2004] Hadrien Cambazard, Pierre-
Emmanuel Hladik, Anne-Marie Déplanche, Narendra
Jussien, and Yvon Trinquet. Decomposition and learn-
ing for a hard real time task allocation problem. In
Proceedings of CP 2004, pages 153–167, 2004.

[De Kleer, 1986] Johan De Kleer. An assumption-based tms.
Artif. Intell., 28(2):127–162, 1986.

[de la Banda et al., 2003] Maria J. Garcı́a de la Banda, Pe-
ter J. Stuckey, and Jeremy Wazny. Finding all minimal
unsatisfiable subsets. In Proceedings of ACM SIGPLAN
2003, pages 32–43, 2003.

[Downing et al., 2012] Nicholas Downing, Thibaut Feydy,
and Peter J. Stuckey. Explaining alldifferent. In Proceed-
ings of ACSC 2012, ACSC ’12, page 115–124, AUS, 2012.

[Doyle, 1981] Jon Doyle. A truth maintenance system. In
Readings in Artificial Intelligence, pages 496 – 516. 1981.

[Escamocher and O’Sullivan, 2019] Guillaume Escamocher
and Barry O’Sullivan. Solving logic grid puzzles with
an algorithm that imitates human behavior. CoRR,
abs/1910.06636, 2019.

[Felfernig et al., 2012] Alexander Felfernig, Monika Schu-
bert, and Christoph Zehentner. An efficient diagnosis al-
gorithm for inconsistent constraint sets. Artif. Intell. Eng.
Des. Anal. Manuf., 26(1):53–62, 2012.

[Ferguson and O’Sullivan, 2007] Alex Ferguson and Barry
O’Sullivan. Quantified constraint satisfaction problems:
From relaxations to explanations. In Proceedings of IJCAI
2007, pages 74–79, 2007.

[Freuder et al., 2001] Eugene C. Freuder, Chavalit Likitvi-
vatanavong, and Richard J. Wallace. Deriving explana-
tions and implications for constraint satisfaction problems.
In Proceedings of CP 2001, pages 585–589, 2001.

[Friedrich, 2004] Gerhard Friedrich. Elimination of spurious
explanations. In Procs of ECAI, pages 813–817, 2004.

[Ginsberg, 1993] Matthew L. Ginsberg. Dynamic backtrack-
ing. J. Artif. Intell. Res., 1:25–46, 1993.

[Gocht et al., 2020] Stephan Gocht, Ross McBride, Ciaran
McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble. Certifying solvers for clique and maximum com-
mon (connected) subgraph problems. In Proceedings of
CP 2020, volume 12333 of LNCS, pages 338–357, 2020.

[Gontier et al., 2020] Arthur Gontier, Charlotte Truchet, and
Charles Prud’homme. Conflict analysis in cp solving: Ex-
planation generation from constraint decomposition. In
CPTAI-20, A CP 2020 Workshop, 2020.

[Grégoire et al., 2007] Éric Grégoire, Bertrand Mazure, and
Cédric Piette. Boosting a complete technique to find MSS
and MUS thanks to a local search oracle. In Proceedings
of IJCAI 2007, pages 2300–2305, 2007.

[Grégoire et al., 2018] Éric Grégoire, Yacine Izza, and Jean-
Marie Lagniez. Boosting mcses enumeration. In Proceed-
ings of IJCAI 2018, pages 1309–1315. ijcai.org, 2018.

[Gunopulos et al., 2003] Dimitrios Gunopulos, Roni
Khardon, Heikki Mannila, Sanjeev Saluja, Hannu Toivo-
nen, and Ram Sewak Sharm. Discovering all most specific
sentences. ACM Trans. Datab.Syst., 28(2):140–174, 2003.

[Han and Lee, 1999] Benjamin Han and Shie-Jue Lee. De-
riving minimal conflict sets by cs-trees with mark set in
diagnosis from first principles. IEEE Trans. Syst. Man Cy-
bern. Part B, 29(2):281–286, 1999.

[Hemery et al., 2006] Fred Hemery, Christophe Lecoutre,
Lakhdar Sais, and Frédéric Boussemart. Extracting mucs
from constraint networks. In Proceedings of ECAI 2006,
volume 141, pages 113–117. IOS Press, 2006.

[Ignatiev et al., 2015] Alexey Ignatiev, Alessandro Previti,
Mark H. Liffiton, and João Marques-Silva. Smallest MUS
extraction with minimal hitting set dualization. In Pro-
ceedings of CP 2015, pages 173–182, 2015.

[Jannach et al., 2015] Dietmar Jannach, Thomas Schmitz,
and Kostyantyn M. Shchekotykhin. Parallelized hitting set
computation for model-based diagnosis. In Proceedings of
AAAI 2015, pages 1503–1510, 2015.

[Junker, 2001] Ulrich Junker. Quickxplain: Conflict detec-
tion for arbitrary constraint propagation algorithms. In
IJCAI’01 Workshop on Modelling and Solving problems
with constraints, 2001.

[Junker, 2004] Ulrich Junker. QuickXplain: preferred expla-
nations and relaxations for over-constrained problems. In
Proceedings of AAAI 2004, pages 167–172, 2004.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4406

[Jussien and Barichard, 2000] Narendra Jussien and Vincent
Barichard. The palm system: explanation-based constraint
programming. In Proc. of TRICS Workshop at CP, 2000.

[Laborie, 2014] Philippe Laborie. An optimal iterative algo-
rithm for extracting mucs in a black-box constraint net-
work. In Proceedings of ECAI, pages 1051–1052, 2014.

[Li et al., 2013] Hongbo Li, Haijiao Shen, Zhanshan Li, and
Jinsong Guo. Reducing consistency checks in generating
corrective explanations for interactive constraint satisfac-
tion. Knowl. Based Syst., 43:103–111, 2013.

[Liffiton and Malik, 2013] Mark H. Liffiton and Ammar Ma-
lik. Enumerating infeasibility: Finding multiple MUSes
quickly. In Proceedings of CPAIOR, pages 160–175, 2013.

[Liffiton and Sakallah, 2005] Mark H. Liffiton and Karem A.
Sakallah. On finding all minimally unsatisfiable subformu-
las. In Proceedings of SAT, pages 173–186, 2005.

[Liffiton and Sakallah, 2008] Mark H. Liffiton and Karem A.
Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Auto. Reas., 40(1):1–33, 2008.

[Liffiton et al., 2016] Mark H. Liffiton, Alessandro Previti,
Ammar Malik, and João Marques-Silva. Fast, flexible
MUS enumeration. Constraints, 21(2):223–250, 2016.

[Little et al., 2002] James Little, Cormac Gebruers, Derek
Bridge, and Eugene Freuder. Capturing constraint pro-
gramming experience: A case-based approach, 2002.

[Lynce and Marques-Silva, 2004] Inês Lynce and João P.
Marques-Silva. On computing minimum unsatisfiable
cores. In Proceedings of SAT 2004, 2004.

[Marques-Silva and Mencı́a, 2020] João Marques-Silva and
Carlos Mencı́a. Reasoning about inconsistent formulas. In
Proceedings of IJCAI 2020, pages 4899–4906, 2020.

[Marques-Silva and Previti, 2014] Joao Marques-Silva and
Alessandro Previti. On computing preferred MUSes and
MCSes. In Proceedings of SAT, pages 58–74, 2014.

[Marques-Silva et al., 2009] João P. Marques-Silva, Inês
Lynce, and Sharad Malik. Conflict-driven clause learning
SAT solvers. In Handbook of Satisfiability, pages 131–
153. 2009.

[Marques-Silva et al., 2013a] João Marques-Silva, Federico
Heras, Mikolás Janota, Alessandro Previti, and Anton
Belov. On computing minimal correction subsets. In Pro-
ceedings of IJCAI 2013, pages 615–622, 2013.

[Marques-Silva et al., 2013b] João Marques-Silva, Mikolás
Janota, and Anton Belov. Minimal sets over monotone
predicates in boolean formulae. In Proceedings of CAV
2013, volume 8044 of LNCS, pages 592–607, 2013.

[Marques-Silva et al., 2015] João Marques-Silva, Mikolás
Janota, Alexey Ignatiev, and António Morgado. Efficient
model based diagnosis with maximum satisfiability. In
Proceedings of IJCAI, pages 1966–1972, 2015.

[Mauss and Tatar, 2002] Jakob Mauss and Mugur M. Tatar.
Computing minimal conflicts for rich constraint lan-
guages. In Proceedings of ECAI, pages 151–155, 2002.

[Mehta et al., 2015] Deepak Mehta, Barry O’Sullivan, and
Luis Quesada. Extending the notion of preferred expla-
nations for quantified constraint satisfaction problems. In
Proceedings of ICTAC, pages 309–327, 2015.

[Metodi et al., 2012] Amit Metodi, Roni Stern, Meir Kalech,
and Michael Codish. Compiling model-based diagnosis to
boolean satisfaction. In Proceedings of AAAI, 2012.

[Metodi et al., 2014] Amit Metodi, Roni Stern, Meir Kalech,
and Michael Codish. A novel sat-based approach to model
based diagnosis. J. Artif. Intell. Res., 51:377–411, 2014.

[Narodytska et al., 2018] Nina Narodytska, Nikolaj Bjørner,
Maria-Cristina V. Marinescu, and Mooly Sagiv. Core-
guided minimal correction set and core enumeration. In
Proceedings of IJCAI 2018, pages 1353–1361, 2018.

[O’Sullivan et al., 2007] Barry O’Sullivan, Alexandre Pa-
padopoulos, Boi Faltings, and Pearl Pu. Representative
explanations for over-constrained problems. In Proceed-
ings of AAAI 2007, pages 323–328, 2007.

[O’Callaghan et al., 2005] Barry O’Callaghan, Barry
O’Sullivan, and Eugene C Freuder. Generating corrective
explanations for interactive constraint satisfaction. In
Proceedings of CP 2005, pages 445–459. Springer, 2005.

[Papadopoulos and O’Sullivan, 2009] Alexandre Pa-
padopoulos and Barry O’Sullivan. Compiling all possible
conflicts of a CSP. In Proc. of CP, pages 639–653, 2009.

[Previti et al., 2018] Alessandro Previti, Carlos Mencı́a,
Matti Järvisalo, and João Marques-Silva. Premise set
caching for enumerating minimal correction subsets. In
Proceedings of AAAI 2018, pages 6633–6640, 2018.

[Prosser, 1995] Patrick Prosser. MAC-CBJ: maintaining arc
consistency with conflict-directed backjumping. Technical
report, Tech Report 95/177, Dept.CS, Glasgow, 1995.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artif. Intell., 32(1):57–95, 1987.

[Sabin and Freuder, 1994] Daniel Sabin and Eugene C.
Freuder. Contradicting conventional wisdom in constraint
satisfaction. In Proc. of ECAI, pages 125–129, 1994.

[Schutt et al., 2011] Andreas Schutt, Thibaut Feydy, Peter J
Stuckey, and Mark G Wallace. Explaining the cumulative
propagator. Constraints, 16(3):250–282, 2011.

[Shchekotykhin et al., 2015] Kostyantyn M. Shchekotykhin,
Dietmar Jannach, and Thomas Schmitz. MergeXplain:
Fast computation of multiple conflicts for diagnosis. In
Proceedings of IJCAI 2015, pages 3221–3228, 2015.

[Sqalli and Freuder, 1996] Mohammed H. Sqalli and Eugene
Freuder. Inference-based constraint satisfaction supports
explanation. In Proc. of AAAI, pages 318–325, 1996.

[Stallman and Sussman, 1977] Richard M. Stallman and
Gerald J. Sussman. Forward reasoning and dependency-
directed backtracking in a system for computer-aided cir-
cuit analysis. Artif. Intell., 9(2):135–196, 1977.

[Stumptner and Wotawa, 2001] Markus Stumptner and
Franz Wotawa. Diagnosing tree-structured systems. Artif.
Intell., 127(1):1–29, 2001.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

4407

	Introduction
	Formal Background
	Foreground versus Background Constraints
	Monolithic Formulas and Sets of Constraints

	Solver-Agnostic Approaches
	QuickXplain
	Model-based Diagnosis
	Finding All Minimal Conflicts in CSPs
	Finding All Unsatisfiable Subformulas in SAT
	Finding Many Explanations

	Solver-Specific Approaches
	Truth Maintenance Systems
	Explanations for Improving Search
	Explanations and Global Constraints

	Explanations and Puzzles
	Conclusions and Future Directions

