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Abstract Studies have shown that there is an intimate connection between
the process of computing recommendations and the process of generating cor-
responding explanations, and that this close relationship may lead to better
recommendations for the user. However, to date, most recommendation expla-
nations are post-hoc rationalizations; in other words, computing recommenda-
tions and generating corresponding explanations are two separate and sequen-
tial processes. There is, however, recent work unifies recommendation and ex-
planation, using an approach that is called Recommendation-by-Explanation
(r-by-e). In r-by-e, the system constructs an explanation, a chain of items from
the user’s profile, for each candidate item; then it recommends those candidate
items that have the best explanations. However, the way it constructs and se-
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lects chains is relatively simple, and it considers only one way of representing
item’s elements — in terms of their features.

In this article, we extend r-by-e. We present a number of different ways
of generating chains from a user’s profile. These methods mainly differ in
their item representations (i.e. whether using item elements as features or
neighbors) and in the weighting schemes that they use to generate the chains.
We also explore r-by-e’s approach to chain selection, allowing the system to
choose whether to cover more aspects of the candidate item or the user profile.
We compare the extended versions with corresponding classic content-based
methods on two datasets that mainly differ on their item feature sets. We find
that the versions of r-by-e that make explicit use of item features have several
advantages over the ones that use neighbors, and the empirical comparison
shows that one of these versions —the one that assigns weights to the item
features based on their importance to that item— is also the best in terms of
recommendation accuracy, diversity, and surprise, while still generating chains
whose lengths are manageable enough to be interpretable by users. It also
obtains the best survey responses for its recommendations and corresponding
explanations in a trial with real users.

Keywords Explanation · Recommendation · Sentiments · User trials

1 Introduction

Explanations can serve a multiplicity of aims: they give credibility to rec-
ommendations (Sinha and Swearingen, 2002; Pu and Chen, 2007), help users
make better choices (Bilgic and Mooney, 2005), positively contribute to a bet-
ter user experience (Konstan and Riedl, 2012), and so on. Due to the wide
adoption of recommender systems in many aspects of our lives, explaining rec-
ommendations has attracted considerable attention (Zhang and Chen, 2018;
Tintarev and Masthoff, 2015).

However, in current recommender systems, computing recommendations
and generating corresponding explanations are considered as two separate,
sequential processes. This affords the recommender the freedom to include
information in the explanation that is different from the information that it
used to compute the recommendation (Abdollahi and Nasraoui, 2016). For
example, in (Rossetti et al., 2013), a recommendation generated by factoriza-
tion of a ratings matrix is explained using topic models mined from textual
data associated with items — data that was not used when when building the
recommendation model. Such differences are one cause of low fidelity (Kulesza
et al., 2013). Fidelity (also called objective transparency (Gedikli et al., 2014))
is the extent to which the explanation reveals the logic of the underlying rec-
ommender. In an experiment with a music recommender, Kulesza et al. found
that higher the fidelity between the explanations and the underlying recom-
mender, the greater the users’ trust in the recommender and the better their
understanding (Kulesza et al., 2013). This finding indicates that there are
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reasons to see a more intimate connection between the process of comput-
ing recommendations and generating corresponding explanations; and that a
closer relationship may even ultimately lead to better recommendations.

To investigate the role and importance of explanations in the process of
computing recommendations, we have previously introduced a novel approach,
Recommendation-by-Explanation (r-by-e) (Rana and Bridge, 2017, 2018). r-
by-e unifies recommendation and explanation to a greater degree than has
been achieved hitherto. The main idea in r-by-e is to recommend the items
that have the best explanations. This turns recommendation and explanation
‘on their heads’. First, for each candidate item, we compute reasons to rec-
ommend the candidate item –these are explanations. Next, we recommend a
top-n set of recommendations: those items with the strongest explanations.
More specifically, our current version of r-by-e implement the two steps of
this process in the following way: chain generation and chain selection. In the
former, for each candidate item, the system constructs and scores an expla-
nation, a chain of items from the user’s profile, referred to as an explanation
chain, based on overlap between the representations of items in the chain;
then, in the second step, it recommends those candidate items that have the
best explanations based on scores that we compute for the chains. Examples
of chains can be seen in Section 6.3.2. In r-by-e, an explanation chain is a se-
quence of items ⟨i1, i2, · · · , in⟩ such that in every neighbouring pair (ir, ir+1),
item ir reinforces its successor ir+1. r-by-e describes each item using a set
of elements. In our original work, elements are item features, but in one of
our extensions (section 4.2), an item’s elements are other items — those that
are its neighbours.r-by-e constructs an explanation chain by iteratively adding
items from the user profile in an effort to cover potentially different elements
of the candidate item. Hence, in the chain, the item closest to the candidate
shares more of its elements with the candidate and the item farthest from the
candidate shares the least with the candidate. Consecutive items in the chain
must also share elements. Thus, the explanation chain enables a user to under-
stand the mutual relationships between adjacent items as well as relationships
between items from her profile and the candidate item in an incremental man-
ner. In some sense, the chain ‘leads’ the user through ever more relevant items
from her profile towards the candidate. This, we believe, has the potential
to explain recommendations in an effective manner that is sensitive to user
understanding.

This paper, drawn from the first author’s PhD research (Rana, 2020), sig-
nificantly extends r-by-e in three ways (see Figure 1). First, as stated above,
we previously described each item using a set of elements (and, previously,
these elements were item features). This treated each element in a description
as having equal importance. In our extensions, we use a scheme for assigning
weights to the elements in each item description, based on their informative-
ness. We define weighted overlap to take advantage of these weights. Second, as
already mentioned, we propose an alternative item representation which makes
no explicit reference to features. We refer to it as a neighbour-based item rep-
resentation. For this new item representation, we define both an unweighted
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Fig. 1: Extended Recommendation-by-Explanation

and weighted overlap. Finally, we also generalize r-by-e’s chain selection. In
place of simply adding two types of overlap (as in (Rana and Bridge, 2018),
summarized in Section 3.2), we define the score to be a linear combination of
the two but controlled by a parameter α that allows us to vary the importance
of the two components of the definition.

We explore these variants using two versions of a movie recommendation
dataset. The first version describes each item (movie) as a set of its keywords.
In the second version of the dataset, we use sentiment data extracted from user
reviews and describe each item as a set of its concepts associated with senti-
ment values. The complete details of these datasets are covered in Section 6.1.
In a set of offline experiments on the first version of the dataset, we com-
pare all four versions of chain generation: i) unweighted feature-based (fb),
ii) weighted feature-based (wfb), iii) unweighted neighbour-based (nb), and
iv) weighted neighbour-based (wnb). Notice that unweighted feature-based is
what we covered already in our previous work (Rana and Bridge, 2018). We
include it here again for better understanding the difference among all four ap-
proaches.1 In these experiments, we found that the approaches that explicitly
use item features perform better than their neighbour-based counterparts, and
weight-based approaches are able to produce more accurate recommendations
while being competitive in terms of diversity and surprise. We also show in the
results that by varying the balancing parameter (α), we can configure r-by-e
so that it selects longer chains that subsequently increase the surprise and
the diversity of the recommendations. Further offline experiments, this time
on the second version of the dataset, compare the weighted feature-based and
weighted neighbour-based forms of chain generation. (As we will explain, the

1 In fact, the results we present here are not identical to the ones in (Rana and Bridge,
2018) because in this work we have included some extra normalization of the scores that
this version uses in order to give a fair comparison with the three other variants.
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unweighted forms of chain generation do not apply to the sentiment version
of the dataset.) In this experiment, we find again that the feature-based and
neighbour-based variants produce sets of recommendations that are compara-
ble in their diversity, but the feature-based approach attains higher levels of
precision at the cost of somewhat lower results for surprise and novelty.

From the offline experiments, we choose the best version of r-by-e to com-
pare with a baseline in a user trial, which is split into two parts: a recommen-
dation trial and an explanation trial. We conduct the trials on the sentiment
version of the dataset. The recommendation trial reveals that r-by-e’s recom-
mendations are more relevant than those from the baseline, and they are also
diverse and serendipitous. The explanation trial reveals that sentiment-aware
chains help users make better informed judgements towards the quality of
recommended movies.

The paper is organized as follows. After a review of related work (Section
2), Section 3 briefly summarises the notion of Recommendation-by-Explanation
and the explanation chains, while Section 4 describes the extensions and re-
finements over the original r-by-e formulation. In Section 5, we evaluate those
extensions in offline experiments with keywords as features, while in Section
6 we detail our Sentiment-Aware Explanation Chains and present both online
and offline experiments to evaluate them. In Section 7, we discuss results the of
our experiments; and, finally, in Section 8, we offer some concluding remarks.

2 Related Work

An explanation of a recommendation is any content additional to the recom-
mendation itself that justifies the recommended item to the user. For instance,
a textual explanation, “We recommend you the movie A Beautiful Mind be-
cause it has the elements drama and biography that you liked before” justifies
the movie ‘A Beautiful Mind’ to the user by means of its elements ‘drama’
and ‘biography’ which she liked before.

Explanations are especially important in high-risk domains where the cost
of making a wrong decision is higher (e.g. buying a laptop, planning a holiday,
etc.) than in low-risk domains (e.g. selecting a song to play) (Herlocker et al.,
2000). The level of detail in an explanation may also vary with the level of risk
associated with the decision-making process (Chen and Pu, 2005). In general,
it also makes more sense if these explanations are personalized to the end-
users so that the explanations are sensitive to the users’ level of understanding
(Tintarev and Masthoff, 2008; Kouki et al., 2019).

Explanations of recommendations vary in many ways. They may vary in
their goals: they may be intended to help the user make a better decision
(effectiveness), change the user’s behaviour (persuasion), make a system more
correctable (scrutability), and so on (Tintarev and Masthoff, 2007b). In our
work, we are interested in effectiveness, which is why one of our user trials is
a re-ranking task.
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Explanations often relate the recommended item to the user through in-
termediary entities (Vig et al., 2009). These intermediary entities may be
other users, other items, item elements, or context. Based on these interme-
diary entities, explanations can be described as either user-based, item-based,
element-based, context-based or, in the case of combinations, hybrid (Bilgic
and Mooney, 2005; Papadimitriou et al., 2012; Kouki et al., 2017).

User-based explanations say that an item is recommended because users
who are similar to the active user liked it. For example, social networks such
as Facebook2 often use user-based explanations when recommending a person
to add as a friend or to follow. However, these methods do not scale up to
user-based collaborative filtering systems, where: the number of neighbours
is usually larger; most, if not all, of the neighbours are not known to the
active user; and the number of co-rated items between the active user and any
neighbour can be too large to be readily comprehended (Bridge and Dunleavy,
2014).

Item-based explanations say that the item is being recommended because
the user liked similar items. Famously, Amazon3 uses item-based explanations
for its recommendations (Linden et al., 2003). Studies show that item-based
approaches present the relationship between the user and recommended items
in an easily interpretable way, which helps users to make accurate decisions
(Bilgic and Mooney, 2005). Accordingly, in (Bridge and Dunleavy, 2014), the
authors showed how even user-based collaborative recommendations can be
explained using item-based explanations. They mined (item-based) rules from
the neighbours’ ratings. However, item-based explanations may have a short-
coming, which is that users may not understand the relationship between the
items in the explanation and the recommended item (Tintarev and Masthoff,
2007a).

Element-based explanations say that the recommended item has elements
that the user likes. For instance, Pandora uses altogether 450 musical at-
tributes for representing each music track4 and provides explanations such
as: Based on what you have told us so far, we are playing this track because
it features a leisurely tempo, a sparse piano solo, a lazy swing groove, major
tonality and many other similarities identified (Tintarev and Masthoff, 2015).
In the literature, elements take numerous different forms, e.g. attribute-value
pairs (Tintarev, 2007; Scheel et al., 2012), item content (Bilgic and Mooney,
2005), user-generated tags (Vig et al., 2009; Gedikli et al., 2011, 2014), opin-
ions mined from user reviews (McAuley and Leskovec, 2013; Muhammad et al.,
2015; Chang et al., 2016; Dong and Smyth, 2017; Costa et al., 2018; Ni and
McAuley, 2018; Lu et al., 2018; Ni et al., 2019), and linked data (Musto et al.,
2016, 2019). Most recently, contextual information has been used in explana-
tions too. In (Sato et al., 2018), Sato et al. proposed explanations that include
contexts suitable for consuming the recommended item.

2 https://www.facebook.com
3 https://www.amazon.com/
4 https://www.pandora.com/about/mgp
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Hybrid explanations are also possible. For example, in the case of item-
based explanations, we often want to show why the items in the explanation
are similar to the recommended item, and this is typically done by showing the
elements that they have in common. Since these item-based explanations com-
bine items and elements, they are hybrid explanations (Papadimitriou et al.,
2012; Kouki et al., 2017). Explanation Chains are of this kind: they are item-
based but they expose item relationships through elements.

In Artificial Intelligence in general, explanations are sometimes categorized
as white-box (also sometimes called model-based) or black-box (sometimes
called model-agnostic) (Herlocker et al., 2000; Friedrich and Zanker, 2011).
The distinction typically reflects on the fidelity of the explanations to the
underlying reasoning done by the AI system.

White-box explanations are built from traces of the system’s reasoning.
These explanations disclose something of the underlying model in order to
reveal ‘how’ the system has reached its conclusions. For example, if we have a
user-based nearest-neighbours recommender that makes recommendations by
finding items liked by the active user’s nearest neighbours, then a histogram
of the neighbours’ ratings (Herlocker et al., 2000) is a white-box explanation.

Black-box explanations, by contrast, make no use of knowledge of how
the system produced its decision. Black-box explanations are post-hoc ratio-
nalizations. For example, the LIME system explains classification decisions
by interrogating the classifier to obtain a dataset from which LIME builds a
distinct explanation model (Ribeiro et al., 2016). Since they make no use of
traces of the system’s reasoning, black-box explanations may make use of other
sources of information that were not used in the decision-making. In (Rossetti
et al., 2013), for example, recommendations are made by matrix factorization
on a ratings matrix but the recommendations are explained using topic models
that are mined from textual data associated with the items but not used by
the recommender.

Black-box explanations raise the issue of fidelity (Kulesza et al., 2013) (also
called objective transparency (Gedikli et al., 2014)): the extent to which the
explanation reveals the logic of the underlying recommender. Kulesza et al.
considered two dimensions of explanation fidelity: soundness and complete-
ness. They defined the former as the extent to which each component of an
explanation’s content is truthful in describing the underlying system; and the
latter as the extent to which all of the underlying system is described by the
explanation. For example, a recommender system that explains its reasoning
with a simpler model than it actually uses (e.g. a set of rules instead of addi-
tive element weights) reduces soundness, whereas a system that explains only
some of its reasoning (e.g. only a subset of a user neighbourhood) reduces com-
pleteness. In an experiment with a music recommender, Kulesza et al. found
that the more that explanations were both sound and complete with respect
to the recommender, the greater the users’ trust in the recommender and the
better their understanding (Kulesza et al., 2013).

Recommendation-by-Explanation seeks to achieve quite high fidelity since,
in r-by-e, explanation is intrinsic to recommendation. Indeed, r-by-e’s expla-
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Fig. 2: Role of explanations in producing recommendations.

nations are not black-box: the recommendation are exclusively guided by ex-
planation quality, and the recommender’s model is driven by the explanations
themselves. This leads to sound and complete explanations, i.e., they do not
oversimplify the model nor expose only a limited part of its reasoning.

In current recommender systems, computing a recommendation and gen-
erating a corresponding explanation are two separate, sequential processes.
Below we will look at some work that challenges this assumption.

It seems obvious that a recommender should first produce its recommenda-
tions and then seek to build explanations for them. This is the classic approach
depicted leftmost in Figure 2. Almost all of the systems that we have cited
previously work in this way.

There have, however, been a few efforts that modify the classical approach
a little. These are shown in the middle of Figure 2. In Re-ranked Recommen-
dations, for example, the system finds some recommendations; it generates
explanations for the recommendations; it scores the explanations; and it re-
ranks the recommendations based on their explanation scores before showing
them to the user (Muhammad et al., 2015, 2016). In (Yu et al., 2009), Yu et
al., for example, use this strategy to increase the recommendation diversity.

Another strategy that falls within the Re-ranked Recommendations cate-
gory is to use explanations to help the users to analyse he recommendation
quality and, if appropriate, to allow the user to propose a change to the rec-
ommender’s predictions (Cleger-Tamayo et al., 2012). For example, Cleger et
al. (Cleger et al., 2014) use explanations to learn a regression model that can
predict the error and thus ‘correct’ the predicted rating for a target item.

Our new approach, Recommendation-by-Explanation, is shown rightmost
in Figure 2. Uniquely, as far as we are aware, it reverses the process. First, it
finds explanations for all the candidate items. Then, it recommends the candi-
dates that have the best explanations. Hence, Recommendation-by-Explana-
tion is an approach that unifies the two processes: computing recommendations
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and generating corresponding explanations. This, we believe, gives it high fi-
delity.

3 Recommendation-by-Explanation

Recommendation-by-Explanation is a novel approach for recommendation and
explanation: the system constructs an explanation (a chain of items from the
user’s profile) for each candidate item (we call this step chain generation); then
it recommends those candidate items that have the best explanations (which
we call chain selection). By unifying recommendation and explanation, r-by-e
finds relevant recommendations with explanations that have a high degree of
fidelity. In this section, we briefly describe the formulations of basic r-by-e. For
more details on this, please refer to Rana and Bridge (2018).

3.1 Chain generation

Given a candidate item, r-by-e works backwards to construct a chain: starting
with the candidate item, it finds predecessors from the user’s profile (i.e. items
that the user likes), greedily selects one, finds its predecessors, selects one; and
so on. At each step, the predecessor that gets selected is the one that most
increases the degree to which the chain ‘covers’ the elements of the candidate
item. This is measured by the notion of overlap. The overlap ovrlp(p, i, C) of
adding predecessor p to partial chain C that explains candidate item i is given
by:

ovrlp(p, i, C) =
|(Fp \ covered(i, C)) ∩ Fi|

|Fi|
+

|(Fp \ covered(i, C)) ∩ Fi|
|Fp|

(1)

Here, Fi and Fp denote the elements of items i and p. covered(i, C) is the set
of elements of candidate i that are already covered by members of the chain
C, i.e. covered(i, C) =

⋃
j∈C Fj ∩Fi. The above formula measures the overlap

with respect to both |Fi| and |Fp| (the two denominators). Readers who are
interested in a detailed rationale behind this and other formulas in this section,
are referred to Rana and Bridge (2018).

3.2 Chain selection

After constructing a chain C for each candidate item i, we must select the
top-n chains so that we can recommend n items to the user, along with their
explanations. This is done greedily in such a way as to ensure a degree of
diversity between the chains that are associated with the items in the top-n.
Specifically, we score ⟨C, i⟩ relative to a list of all the items that appear in
already-selected chains L∗ using the following:

score(⟨C, i⟩, L∗) = candovrlp(⟨C, i⟩, L∗) + prof ovrlp(⟨C, i⟩, L∗) (2)
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where

candovrlp(⟨C, i⟩, L∗) =
sum ovrlps

|C|+ 1
(3)

prof ovrlp(⟨C, i⟩, L∗) =

∣∣∣C \
⋃

j∈L∗ j
∣∣∣

|C|+ 1
(4)

Eq. 3 defines candovrlp as the average of the overlaps of the candidate
elements in the chain: the higher is the term, the greater is the coverage of
the candidate’s elements by the other chain members. Here, sum ovrlps is the
sum of the overlaps (Eq. 1) of the items in chain C.

Eq. 4 defines, prof ovrlp as the coverage of items in the user profile with
respect to the length of the chain: the higher is the term, the more items in
the user’s profile and, hence, a greater variety of the user’s tastes, are covered
by the chain.

In future, whenever we need to refer informally to these two parts of Eq.
2, we will refer to candovrlp as the ‘overlap term’ and prof ovrlp as the ‘profile
term’.

4 Extended Recommendation-by-Explanation

As we mentioned earlier, r-by-e employs two main steps: chain generation and
chain selection. We extend r-by-e by redefining the formulations used in these
steps.

4.1 Feature-based generation

In feature-based settings, an item is described by the set of its features. At
each step of the chain generation, the predecessor that gets selected is the one
that most covers the candidate’s features.

4.1.1 Unweighted overlap

In our new versions of r-by-e, the unweighted overlap ovrlp(p, i, C) of adding
predecessor p to partial chain C that explains candidate item i is given by:

ovrlp(p, i, C) =
2 · |(Fp \ covered(i, C)) ∩ Fi|

|Fi|+ |Fp|
(5)

using the same definitions of Fi, Fp and covered(iC) as before. This is different
from Eq. 1 that we defined in Section 3.1. We now use the harmonic mean of
the two terms of Eq. 1 and return a value of ovrlp in the range of [0, 1]. We
made this change to make it comparable with the other versions of overlap
that we define below.
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4.1.2 Weighted overlap

Features associated with an item can be assigned weights based on how rep-
resentative or informative they are to that item. In the information retrieval
domain, for example, there are many ways to weight the terms of a corpus of
documents (Manning et al., 2008).

We design an approach that deals with weighted features, called weighted
overlap wovrlp(p, i, C). For adding predecessor p to partial chain C that ex-
plains candidate item i, it is defined as follows:

wovrlp(p, i, C) =
2 ·

(∑
f∈(Fp\covered(i,C))∩Fi)

wmax − |wfp − wfi|
)

|Fi|+ |Fp|
(6)

Here, wfi denotes the weight of feature f in item i, and similarly for wfp. The
weights of the features are defined depending on the approach being used. In
this paper, we evaluate with a weighted keyword approach (detailed in Section
5.1.1) and our sentiment-based weighted approach (detailed in Section 6.1.3).

The numerator in the definition of wovrlp(p, i, C) measures p’s weighted
coverage of those features of i that are not yet covered by the chain. Specifically,
it penalizes the number of these features by subtracting the difference between
their weights wfi and wfp. Since weights of features can vary depending on the
type of representation, wmax represents the maximum value that |wfp − wfi|
can assume, thus allowing an increase in wovrlp(p, i, C) based on the closeness
of wfp and wfi. For instance, if two items possess the feature cinematography
and their weights are close, wovrlp(p, i, C) would have a great increase in its
score, whereas if they have very different weights, the difference factor would
have lower score thus contributing less to wovrlp(p, i, C).

4.2 Neighbour-based generation

In neighbour-based settings, an item i is described, not by a set of features,
but by a set of its neighbours Ni. Its neighbourhood contains items whose
similarity to i exceeds a threshold θ: Ni = {j ∈ I \ i : sim(Fi, Fj) > θ}. At
each step, the aim is to cover neighbours of the candidate item instead of
its features. Notice that here item features are still used, but they are used
implicitly, i.e., they provide item-item similarity but they (and their weights,
where appropriate) are not used directly in the formulae.

4.2.1 Unweighted overlap

We will denote the unweighted overlap of adding predecessor p to partial
chain C that explains candidate item i in the neighbour-based setting by
ovrlp(p, i, C), which is the same as we used in the feature-based setting. The
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context will make clear which version is intended at any point. The definition
is:

ovrlp(p, i, C) =
2 · |(Np \ covered(i, C)) ∩Ni|

|Ni \ covered(i, C)|+ |Np \ covered(i, C)|
(7)

Here Ni and Np are the neighbours of items i and p. covered(i, C) is the
set of neighbours of candidate i that are already covered by members of the
chain C, i.e. covered(i, C) =

⋃
j∈C Nj ∩ Ni. The denominator means that

coverage is relative to the size of Ni and Np after removing already covered
neighbours. Including Np in the denominator ensures that p’s fitness to explain
the candidate is not inflated simply by virtue of having more neighbours.

4.2.2 Weighted overlap

Neighbours of an item can be assigned weights based on their closeness to the
item. In this approach, we simply define closeness between two items as the
similarity between their sets of features. So, the weight (wji) of a neighbour j
of a candidate item i equals the similarity between them: wji = sim(j, i).

The weighted neighbour-based overlap wovrlp(p, i, C) of adding predeces-
sor p to partial chain C that explains candidate item i is given by:

wovrlp(p, i, C) =
2 ·

(∑
j∈((Np\covered(i,C))∩Ni)

1− |wjp − wji|
)

|Ni \ covered(i, C)|+ |Np \ covered(i, C)|
(8)

This is analogous to Eq. 6. But notice that in the numerator, we replace
wmax by 1, which we take to be the maximum value of the similarity between
a neighbour and a candidate item.

Overall, we define neighbour-based overlap slightly differently from feature-
based overlap. In this approach, we found that covering a candidate item’s
neighbours may result in relatively loosely connected chains — more loosely
connected than those built by covering its contents. In r-by-e, loosely connected
chains may have lower interpretability. To ‘tighten’ the chains, in the definition
of neighbour-based overlap, we remove already covered elements (covered(i, C))
from the size of neighbours (e.g. Ni and Np) in the denominator. This assures
that chain members have relatively more neighbours in common with the can-
didate’s neighbours.

4.3 Generalized chain selection

In our extensions to r-by-e, we generalize chain selection so that we score a
chain ⟨C, i⟩ relative to a list of all the items that appear in already-selected
chains L∗ using the following:

score(⟨C, i⟩, L∗) = (1− α) · candovrlp(⟨C, i⟩, L∗) + α · prof ovrlp(⟨C, i⟩, L∗) (9)

This is just a more configurable version of Eq. 2, allowing us, through param-
eter α, to alter the relative contributions of the two terms in the combination.
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5 Extended Chains on Keywords

In this section, we evaluate the extensions we have made to the formulation
of r-by-e on a movie dataset in which item features are keywords.

5.1 Dataset

We used the hetrec2011-movielens-2k dataset5 but, in place of the tags given
in that dataset, we assigned each movie its keywords from IMDb6. From the
original dataset, only those movies for which IMDb has keyword information
are used in our experiments. Thus, the dataset comprises 2113 users, 5992
movies, 80639 keywords, and over half a million ratings.

On average, a typical movie has 107 keywords, ranging from 2 to 626,
which shows a very high variance in the number of keywords. We use the
Jaccard similarity measure on item keywords to define an item-item similarity
graph. In this graph, we find that each movie has non-zero similarity with, on
average, 77% of the other movies in the dataset. This suggests that the item-
item similarity graph is highly dense with an average out-degree of a typical
node being around 4600.

5.1.1 Keyword extraction and weighting

For the feature-weighted approaches, we use the well-known term frequency-
inverse document frequency (TF-IDF) weighting scheme (Salton and McGill,
1986). In effect, we treat an item as a document and its features as terms.

As shown in Eq. 10, the weight of a feature f of an item i with respect to
the set of all items I is proportional to the frequency of occurrence of f in i
(denoted as ofi), but inversely proportional to the frequency of occurrence of f
in I overall, thus giving preference to the features that help to discriminate each
item i ∈ I from the other items in the collection. The set of items consisting
of the feature f is denoted as If .

wfi =
(1 + log(ofi)) ·

(
log |I|

|If |

)
√∑

f ′∈i

(
(1 + log(of ′i)) ·

(
log |I|

|If′ |

))2
(10)

The equation above is a variant of TF-IDF modeling with cosine normalization
in feature–item space. Intuitively, it measures the informativeness of a feature
f for an item i with respect to the informativeness of all other features in the
item (Hossain et al., 2012).

5 https://grouplens.org/datasets/hetrec-2011/
6 http://www.imdb.com
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5.2 Offline evaluation

We ran an offline experiment to evaluate different versions of r-by-e on this
dataset. For conciseness, we will refer to the four versions of r-by-e using just
fb for unweighted feature-based, wfb for weighted feature-based, nb for un-
weighted neighbour-based, and wnb for weighted neighbour-based. We com-
pare these versions of r-by-e with two versions of a content-based recom-
mender, which works as follows.

Given a candidate item i, the first content-based recommender, designated
CB, finds the items in the user profile whose similarity to i exceeds θ; it takes
the k of these neighbours with highest similarity; it scores the candidate by
taking a similarity-weighted average of their ratings. Finally, it recommends
the n candidates with highest scores (Lops et al., 2011). In our experiments,
we tried k = {5, 10, 15, 20, 25} and used the best performing value (k = 15).

In the second content-based recommender, we set k in a dynamic fashion,
as follows. If, for candidate item i, r-by-e generates a chain of length |C|, then
the content-based system uses k = |C| when it scores that candidate item.
It follows that k is set dynamically: different candidates may have different
values for k. We designate this system CB-|C|, using a name that emphasizes
that, dynamically, k = |C|. However, we have more than one version of r-by-e
which can furnish the values for k. Hence, we obtain more than one version
of CB-|C|. Specifically, we run experiments using fb-CB-|C|, where k comes
from fb, and wfb-CB-|C|, where k comes from wfb. Similarly, we create CB-|C|
versions for nb and wnb.

We chose these two baselines because one of the main objectives of our
experiments is to reveal the usefulness of chains over sets which requires our
baselines be as similar as possible to r-by-e in all other aspects —to minimise
confounders. As we mentioned earlier, the CB systems rely on similarity rela-
tionships between members of the user profile and the candidate item, whereas
versions of r-by-e, by requiring consecutive members of chains to be similar
to each other, additionally take into account similarity relationships between
members of the user profile themselves. But they both use the same item fea-
tures (keywords), and they both use the same similarity measure (Jaccard).
However, there remains a confounder: these two systems may have different
number of items in their explanations. By additionally including CB-|C|, we
tried to ensure that we had a baseline that was even more comparable to
r-by-e: CB-|C| and r-by-e both have equal number of items in their corre-
sponding explanations. Overall, we will see that, although r-by-e relies on
content-based principles as the baselines, it has the potential to outperform
the classic content-based models irrespective of the number of items that they
use to generate their explanations.

In this experiment, we attempt to reveal the effect of the differences be-
tween the following:

– feature-based versus neighbour-based : The former represents an item as
a set of its keywords, while the latter represents an item as a set of its
neighbours (similar items) in which the keywords are used only indirectly.
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– unweighted versus weighted : The former computes overlap by counting the
number of elements (either features or neighbours) that are shared with
the candidate item, while the latter assigns weights to the elements based
on their informativeness and uses these when computing overlap.

– CB and CB-|C| versus versions of r-by-e: The CB systems rely on similarity
relationships between members of the user profile and the candidate item,
whereas versions of r-by-e, by requiring consecutive members of chains to
be similar to each other, additionally take into account similarity relation-
ships between members of the user profile themselves. We tried to ensure
that the two systems were as similar as possible. They both use the same
item features (keywords, see below), and they both use the same similarity
measure (Jaccard).

– The influence of α: When selecting the top-n chains, α balances the overlap
of candidate elements and the overlap of items in the user profile (see Eq. 9).
We vary α from 0 (overlap of candidate features or neighbours only) to 1
(overlap with the user profile only) in steps of 0.1.

5.2.1 Evaluation Measures

In the offline experiments, for each user u, we generate a list of top-n (= 10)
recommendations, Ru. We evaluate this list for accuracy (against Tu, the set
of items in the test set that are known to be relevant for user u) and we also
evaluate using a number of ‘beyond-accuracy’ measures. All of these metrics
are calculated as an average of all users in the test set (denoted UT ) using
definitions given in Section 7 of Kaminskas and Bridge (2016). We briefly
describe these metrics as follows.

Precision.This is the fraction of relevant items in the recommended list Ru for
each test user u.

1

|UT |
∑
u∈UT

1

|Ru|
|Ru ∩ Tu| (11)

Mean Average Precision (MAP).This is an average of the estimated area of the
Precision-Recall curve for each user. This metric is rank-aware, since it rewards
early positive occurrences in the top-n rankings. Here, mu is the number of
relevant items for u in Tu, k indexes the positions in the ranking and rel(k) is
a binary function that indicates whether the item in that position is relevant
or not.

1

|UT |
∑
u∈UT

1

mu

N∑
k=1

Precision@k × rel(k) (12)

Diversity.This measures the diversity of the recommendation list Ru as the
average pairwise distance among its elements. In content-based settings, we
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calculate the distance between two items (i, j) as the complement of their
Jaccard similarity computed on their elements sim(Fi, Fj).

1

|UT |
∑
u∈UT

1

|Ru|(|Ru| − 1)

∑
i∈Ru

∑
j∈Ru\i

1− sim(Fi, Fj) (13)

Surprise.This measures the surprise of a recommended item as the minimum
distance between the item and items in the user’s profile Pu. This is averaged
over the recommended items i ∈ Ru .

1

|UT |
∑
u∈UT

1

|Ru|
∑
i∈Ru

min
j∈Pu

1− sim(Fi, Fj) (14)

Novelty.This is based on the fraction of users in the dataset who rated the
item i. The logarithm is used to emphasize the novelty of the most rare items.

1

|UT |
∑
u∈UT

1

noveltymax · |Ru|
∑
i∈Ru

− log2
|u ∈ U, r(u, i) ̸= 0|

|U|
(15)

Here noveltymax = − log2
1

|UT | is the maximum possible novelty value

which is used to normalize the novelty score of each individual item into [0, 1].

Coverage.This is the fraction of the items which are recommended at least
once, across all users. Higher values of coverage indicate that the algorithm
counterbalances the popularity bias by covering a large portion of the catalog.

| ∪u∈UT
Ru|

|I|
(16)

5.2.2 Experiment settings

In r-by-e, user profiles simply contain items the user likes. We treated ratings
of 4 and 5 as ‘likes’, so user u’s profile is given by {i | ru,i ≥ 4}. We split each
user’s ratings into training, validation and test sets in the ratio 60 : 20 : 20,
repeated five times.

We vary the α parameter from Eq. 9 in a [0, 1] interval in steps of 0.1.
We consider the values (0.03, 0.06, 0.09) for the similarity threshold (θ) in the
definition of Ni and different sets of values for the marginal gain threshold
(ϵ): for the feature-based representation, we experimented with (0.03, 0.06,
0.09); and for neighbour-based representation, we experimented with (0.05,
0.10, 0.15).

The reason behind using different values for the marginal gain threshold ϵ
for the two representations is the difference in the size of an item’s set of key-
words (for the feature-based representation) and the size of its set of neighbours
(for the neighbour-based representation). A typical item has on average only
107 keywords while it may have over 4600 neighbours (the average out-degree
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of each node in the item-item similarity graph that we mentioned earlier). This
is the average number of neighbours for a similarity threshold θ of zero. As we
increase θ, the average number of neighbours may decrease; however, it still
remains higher than the average number of keywords for an item. Hence, the
contribution each chain member makes when covering a candidate’s features
is generally lower than when covering its neighbours. Consequently, we experi-
ment with higher values of the marginal gain threshold for the neighbour-based
representation.

Three values of each of θ and ϵ with eleven values of α gives 99 configura-
tions for each of the four versions of r-by-e. When choosing the best configura-
tion, there is an issue about what to optimize. It makes sense, for example, to
choose the configuration that optimizes precision on the validation sets. But
it could be interesting to choose configurations that optimize other criteria.
Therefore, we also show results for the case where we choose the configuration
that optimizes for diversity on the validation set. We also suspect that users
will find an explanation to be easily intelligible only if it is fairly small (chains
or sets of neighbours of size 2–4 items). So we also report results where we
choose configurations which optimize this on the validation set.

We use this offline experiment to decide which version performs the best
and how it works on different values of α.

5.2.3 Experiment results

Table 1 and Table 2 summarize the results of the feature-based and neighbour-
based approaches for top-n (= 10) recommendations. The columns of the table
are the different evaluation measures. The rows are divided into blocks, one
block per optimization criteria for which all hyperparameters are tuned. Rows
within blocks are for different recommendation approaches.

Feature-based chain generation. We looked at the differences in the results
between: i) fb and fb-CB-|C|; ii) wfb and wfb-CB-|C|; and iii) fb and wfb.
The results for the first two comparisons are statistically significant except
for Diversity when optimized for precision. For the most part, differences in
the results for (iii) are small but, since standard deviations are low, in all
but MAP results, they are statistically significant. They are also not signifi-
cantly different for precision when optimized for % of explanations of size 2–4.
In comparison to the fb and wfb recommenders, CB attains higher diversity,
surprise, novelty, and coverage, but around five times lower precision. When
comparing MAP, the difference is even greater. Similarly, the CB-|C| recom-
menders have higher diversity, surprise, and novelty but lower precision, MAP
and coverage. There are no results for the CB recommender when optimizing
for % of explanations of size 2–4 as this criteria is not applicable to CB.

Neighbour-based chain generation. Differences in the results between: i) nb
and nb-CB-|C|; and ii) wnb and wnb-CB-|C| are statistically significant in all
cases. On the other hand, differences in the results for nb and wnb are generally
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Table 1: Results of the offline experiment that uses feature-based representa-
tions, where features are keywords. Highlighted values indicate the best results
of a metric for each of the optimization criteria.

All of the fb and wfb results are statistically significant with respect to fb-CB-|C|
and wfb-CB-|C| respectively and also to CB (t-test with p < 0.05) except the one shown in italics.

θ, ϵ & α % of explanations
Recommender optimized for Precision MAP Diversity Surprise Novelty Coverage of size 2–4

CB

Precision

0.0209 0.0011 0.9803 0.9444 0.5791 0.7606 NA
fb 0.1076 0.0201 0.9274 0.7682 0.3715 0.2026 0.2899

fb-CB-|C| 0.0124 0.0009 0.9251 0.8894 0.4391 0.0585 0.2085
wfb 0.1093 0.0205 0.9256 0.7687 0.3640 0.1990 0.3115

wfb-CB-|C| 0.0124 0.0004 0.9251 0.8893 0.4391 0.0585 0.2048

CB

Diversity

0.0203 0.0009 0.9825 0.9498 0.6062 0.6727 NA
fb 0.0694 0.0114 0.9498 0.7932 0.4429 0.2556 0.4598

fb-CB-|C| 0.0063 0.0004 0.9613 0.9255 0.5198 0.0391 0.5726
wfb 0.0730 0.0119 0.9489 0.7915 0.4312 0.2521 0.4851

wfb-CB-|C| 0.0063 0.0002 0.9613 0.9255 0.5201 0.0391 0.5724

fb 0.0146 0.0014 0.9307 0.8906 0.4390 0.2697 0.9882
fb-CB-|C| % of explanations 0.0050 0.0004 0.9747 0.9346 0.4930 0.0288 0.0074

wfb of size 2–4 0.0152 0.0014 0.9302 0.8901 0.4381 0.2660 0.9878
wfb-CB-|C| 0.0053 0.0002 0.9742 0.9338 0.4915 0.0296 0.0057

Table 2: Results of the offline experiment that uses neighbour-based repre-
sentations, where features are keywords. Highlighted values indicate the best
results of a metric for each of the optimization criteria.

All of the nb and wnb results are statistically significant with respect to nb-CB-|C| and
wnb-CB-|C| respectively and also to CB (t-test with p < 0.05).

θ, ϵ & α % of explanations
Recommender optimized for Precision MAP Diversity Surprise Novelty Coverage of size 2–4

CB

Precision

0.0209 0.0011 0.9803 0.9444 0.5791 0.7606 NA
nb 0.0361 0.0061 0.9129 0.8410 0.4130 0.1771 0.6518

nb-CB-|C| 0.0125 0.0009 0.9240 0.8914 0.4467 0.0641 0.4266
wnb 0.0357 0.006 0.9128 0.8410 0.4104 0.1772 0.7409

wnb-CB-|C| 0.0124 0.0009 0.9240 0.8913 0.4464 0.0642 0.4245

CB

Diversity

0.0203 0.0009 0.9825 0.9498 0.6062 0.6727 NA
nb 0.0138 0.0019 0.9456 0.8896 0.4896 0.2904 0.8174

nb-CB-|C| 0.0041 0.0003 0.9885 0.9524 0.5596 0.0264 0.4102
wnb 0.0177 0.002 0.9463 0.8895 0.4664 0.2907 0.8131

wnb-CB-|C| 0.0040 0.0003 0.9885 0.9524 0.5598 0.0265 0.4078

nb 0.0157 0.0015 0.9121 0.8775 0.4101 0.1602 0.9756
nb-CB-|C| % of explanations 0.0041 0.0003 0.9837 0.9469 0.5483 0.0215 0.0870

wnb of size 2–4 0.0159 0.0015 0.9124 0.8774 0.4087 0.1599 0.9750
wnb-CB-|C| 0.0041 0.0003 0.9837 0.9468 0.5490 0.0627 0.0868

very low and in no case are they statistically significant. Overall, the CB-|C|
recommenders attain higher values of diversity, surprise, and novelty, but have
lower precision, MAP and coverage. Moreover, one can see that both nb and
wnb have produced more explanations (in their case, chains) of size 2–4 size
than the CB-|C| systems in all of the optimization criteria.
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Feature-based vs. neighbour-based chain generation. We will now compare the
two types of item representation by looking at results from both Table 1 and
Table 2 together. When optimizing hyperparameters for precision, feature-
based approaches attain three times higher precision and MAP, with similar
levels of diversity and % of explanations of size 2–4. The neighbour-based ap-
proaches result in more surprising and novel recommendations. In the case of
optimizing for diversity, feature-based approaches give five times more relevant
recommendations with a nearly equal level of diversity. Again, neighbour-based
approaches attain higher levels of surprise and novelty with over 81% of chains
of size 2–4. Finally, when hyperparameters are optimized for % of explanations
of size 2–4, the two types of approaches recommend items with almost equal
precision and MAP, with nb and wnb producing greater, but not statistically
significant, values. However, feature-based approaches produce recommenda-
tions with greater variety, higher levels of surprise and novelty and with a
somewhat greater percentage of chains of size 2–4.

Let us select one of the four approaches for further study. To pick one, let
us assume that optimizing for the % of explanations of size 2–4 is best, since
it generally gives explanations that are not so long as to be uninterpretable.
In this setting, wfb performs better than other versions of r-by-e, and so this
is the version that we will explore further.

We will study the effect of hyperparameters θ, ϵ, and α on the perfor-
mance of wfb. Although we considered different values (0.03, 0.06, 0.09) for
the similarity threshold θ in the definition of Ni, we found that varying θ
does not make any noticeable effect on the evaluation measures. Therefore, we
only show results for θ = 0.03. Varying the marginal gain threshold ϵ affects
the chain generation step (in particular, the chain length) and the balancing
parameter α plays a role in the scoring function of the chain selection step
(hence it affects the top-n recommendations).

Figure 3 has six sub-figures — one for each evaluation measure. Each line
that we plot in a sub-figure is for one of the three different values of ϵ. In most
cases, increasing ϵ does not change the trend of the measure; it only ‘shifts’ the
values of the measure because higher values of ϵ impose a stricter constraint. It
can also be seen that in almost all the plots, values of the evaluation measures
remain constant for α ∈ [0.06−0.09]. This means that almost the same chains
are selected in the top-n for this range of values for α. We look in the detail
at the results for each evaluation measure individually. We explain results by
referring to Eq. 9: recall that, for conciseness, we refer to candovrlp, which
indicates the average amount of overlap of candidate elements, as the overlap
term; and we refer to prof ovrlp, which indicates the overlap of items in the
user profile with respect to the length of the chain, as the profile term.

Chain length: In Figure 3(a), we see that the length of top-n chains (aver-
aged over all users) increases up to α = 0.5; then, further increase in α does
not affect the length much. This indicates that increasing α, which gives more
weight to the profile term, enables the system to select longer chains. It is also
noteworthy that increasing ϵ imposes a stricter constraint on chains such that
their average length reduces substantially.
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Fig. 3: Results for wfb with θ = 0.03, ϵ ∈ {0.03, 0.06, 0.09}, and α ranges in
[0.0− 1.0] for extended chains on keywords.

Precision: In Figure 3(b), we see that precision varies in four different
ways as we increase the value of α: i) up to 0.2, it increases; ii) from 0.2
to 0.7, it decreases; iii) from 0.7 to 0.9, it remains almost constant; and iv)
at 1.0, it slightly decreases. We find that, in explanation chains, precision is
proportional to the candidate’s coverage: the greater the candidate’s coverage,
the higher is the precision. We will define the candidate’s coverage as the ratio
of the number of candidate’s elements covered by the chain members to the
size of the candidate’s element set. The variation in precision with respect
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Fig. 4: Relationships between precision, diversity and surprise with candidate
coverage, uniqueness, chain length and surprise at θ = 0.03 and ϵ = 0.03.
Above each sub-figure, we show Pearson correlation. All of the correlation
coefficient values are statistically significant (i.e. p < 0.05).

to α indicates that the system selects those chains where: in the case of (i),
adding members to the chain (as chain length increases) helps to increase
the candidate’s coverage; for (ii), the overlap term dominates, so the system
selects chains that have a large candidate element set that cannot be covered
easily, which reduces the coverage and so also reduces the precision; for (iii), the
system selects almost similar chains; and for (iv), the system totally ignores the
overlap term and so the chains it selects do not try to cover the candidate, they
only try to cover the profile, hence precision decreases. We plot the relationship
between the precision and the candidate’s coverage in Figure 4(a).

Diversity : In Figure 3(c), we see that, (i) up to α = 0.4, diversity decreases;
and (ii) it then increases up to α = 1.0. In explanation chains, the diversity of
the top-n recommendations depends upon the uniqueness of the chain mem-
bers: the lower the overlap among chains, the higher is the level of diversity.
We will define the uniqueness of a set of chains recommended to a user as the
ratio of the number of distinct items in the union of the chains over the sum of
their lengths. We find that diversity is highest at α = 0.0 because there is least
overlap among chains; increasing α, for (i), increases the chain length and so
the overlap; however, for (ii), when the profile term starts to dominate, the
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system selects even longer chains which increases uniqueness among chains,
and thus diversity. In Figure 4(b), we show that both diversity and uniqueness
follow the same trend for increasing α.

Surprise: Figure 3(d) shows that up to α = 0.6, surprise increases; then it
remains almost unchanged (up to α = 0.9); and finally, at α = 1.0, it increases
again. Increasing α gives more weight to the profile term. In effect, the system
selects longer chains that increases their surprise. The intuition behind this
relationship is that chains are shorter when they easily cover the candidate’s
elements, while they are longer when the candidate’s elements are not easily
covered. We find a correlation between the surprise and the chain length that
we show in Figure 4(c). We also see in Figure 4(d) that precision and surprise
exhibit almost the opposite behaviour of each other. This is confirmed by the
Pearson correlation values (also shown in the Figure) that are negative for all
values of α. This inverse relation between precision and surprise also indicates
inverse proportionality between surprise and the candidate’s coverage.

Novelty : Figure 3(e) shows that novelty decreases up to α = 0.2; then,
increases up to α = 0.6; up to α = 0.9, it remains almost unchanged; and
finally, at α = 1.0, it slightly increases. It can be seen that novelty varies
in a way that is similar to surprise on increasing α. This indicates that for
lower values of α, the system selects those chains that have high coverage
of candidates: intuitively, popular items can be easily covered. As α increases,
the system suggests novel items which cannot be covered easily and need more
items from the user profile to support them.

Coverage: In Figure 3(f) we see that coverage varies in a way that is quite
similar to diversity on increasing α. First, it decreases up to α = 0.3, then
it increases up to α = 0.6, it becomes almost unchanged up to α = 0.9, and
finally, it increases at α = 1.0. Shorter chains with low levels of uniqueness
cannot cover much of the catalog, while longer chains with high uniqueness
cover a larger part of it.

This experiment on keyword-based representations clearly presents some
interesting relationships. First and foremost, wfb attains the best results of all
the approaches. By analysing its results more thoroughly, we find that surprise
and chain length are directly proportional while precision and surprise are
inversely proportional. We now would like to confirm these findings on another
dataset, which is presented in the next section.

6 Extended Chains on Sentiments

Thus far, we have described some extensions to r-by-e and evaluated them
in a keyword-based scenario. But those extensions, especially the weighted
approaches, enabled us to develop Sentiment-Aware Explanation Chains.

Using keywords as item features presents some issues, mainly: i) where
we use weights, they only convey frequency and rarity information; ii) they
do not necessarily convey the elements of the items that interest the users;
iii) they may be ambiguous if taken out of context. Taking these issues into
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consideration, we turn to user-provided texts, i.e. user reviews, in order to
further aggregate semantics to our explanation chains.

Using these texts, allied with state-of-the-art natural language processing
tools, we are able to produce semantically richer item features which can both
help produce better explanation chains and help users understand their rec-
ommendations. These features are ‘concepts’, which convey an idea, and hence
they do not suffer from the same issues of synonymy and polysemy that key-
words suffer from. For instance, before we could have a keyword bank, which
could mean a land mass or a financial institution; now we would have a con-
cept for each of those meanings. Moreover, we can extract sentiments towards
those features, since user reviews are opinionated texts.

In this section we evaluate Sentiment-aware Explanation Chains, which
are extended chains that use sentiment-aware concepts instead of keywords.
These chains guarantee that items are connected only if they share features
with close polarity (sentiment) scores.

6.1 Dataset

In this study, to increase the chances of user familiarity with the movies, we
only use hetrec2011-movielens-2k movies that were released between the years
2000 and 2011 inclusive. This results in trials that use 1851 (≈ 30%) of the
5992 movies in the dataset. In the offline experiments and user trial that we
report in the remainder of this paper, we use sentiment data extracted from
user reviews for each of these 1851 movies.

6.1.1 User reviews to concepts

A concept, in the approach given in (D’Addio et al., 2018, 2019), describes an
idea or a notion. Concepts can be seen as synsets, i.e. sets of word synonyms
which define an idea. As stated before, using concepts instead of words reduces
the problems of synonymy and polysemy.

In order to extract concepts and sentiments from user reviews, two different
natural language processing resources were used: Stanford CoreNLP7 (Man-
ning et al., 2014) for sentence splitting, parsing and sentence-level sentiment
analysis; and BabelFy8 (Moro et al., 2014) for word sense disambiguation and
entity linking.

First, the items’ reviews were processed with Stanford CoreNLP using
the following pipeline: tokenization, part-of-speech (POS) tagging, parsing,
sentence splitting and sentiment analysis.

Next, BabelFy processes the texts, returning disambiguated concepts in the
form of BabelNet synsets (Navigli and Ponzetto, 2012). BabelNet9 is a knowl-
edge base that links several linguistic resources, such as Wikipedia, Wikidata,

7 https://stanfordnlp.github.io/CoreNLP/
8 http://babelfy.org/
9 https://babelnet.org/
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and WordNet, among others. Its unified ontology organizes all these resources
into BabelNet synsets, which define both concepts (such as “romance”, “action
movie”) and named entities (such as “Steven Spielberg” or “Willem DaFoe”),
and provides links between them.

The synsets that are selected to compose our vocabulary (i.e., our features)
are only those that come from common and proper nouns, and noun phrases.
Our vocabulary is built only with these parts-of-speech because, in sentiment
analysis, features most commonly come from nouns and noun phrases (such as
‘action’, ‘plot’ and ‘special effects’ in a movie review). Adjectives and adverbs
are opinion words, i.e. words that indicate sentiment towards features, and
thus are used in calculating the sentiment of a feature, sentence or document
(Liu and Zhang, 2012). This vocabulary, in its current state, is very large and
contains many noisy and useless features. Before assigning sentiments to them,
first we need to filter out some of the concepts, reducing the vocabulary size.
In the following, we employ TF-IDF weights to aid in that filtering. After that,
we assign sentiments to the remaining concepts, which will be used as weights
in the generation of explanation chains.

6.1.2 Filtering concepts

In this experiment, explanation chains are built over concepts. In order to
improve their quality and informativeness, concepts were filtered using the
following two steps:

– Concepts that appear in only one item were removed from the vocabulary.
Since our chains are constructed from links between features of the target
item and items present in the user profile, it is natural that features which
appear in a single item are removed because they will not influence chain
generation. Similarly, concepts that were present in all the items in the
dataset were also removed since they are too general.

– Concepts obtained from the previous step were assigned weights using co-
sine normalized TF-IDF scores as in Eq. 10. Concepts whose average weight
across the reviews in which they appeared were less than 0.01 were removed.
The remaining concepts constitute the vocabulary which was used to pro-
duce item representations. Notice that here we use TF-IDF scores only to
filter out the concepts and not to assign weights to them. We explain the
weights separately below.

With that filtering done, the vocabulary contains 34,088 concepts. On av-
erage, a typical movie has 324 concepts ranging from 104 to 646, which shows
a very high variance in the number of concepts.

6.1.3 Representing items and producing explanation chains

Finally, items are represented as a set of concepts. Each item-concept pair
may have a sentiment, which gives the average quality of that concept for that
movie. Sentiments are measured as scores in the range of [1, 5], which can be
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classified as positive (>= 4), negative (< 3), or neutral (= 3). The overall
sentiment score for a feature of an item is the average of the sentiment scores
related to its appearances in the reviews of the corresponding item. In order
to calculate this, we use the Stanford CoreNLP sentiment analysis tool, which
assigns polarities to each sentence of a document. These polarities are con-
verted into the [1, 5] scale, with 1 symbolizing a very negative sentiment and 5
a very positive sentiment. For each concept of each item, we take the average
sentiment across the sentences in which it is mentioned. As an example, the
concept “photography” may be mentioned in reviews related to the movie Life
of Pi. If three out of four sentences in which “photography” was mentioned
were ‘very positive’ (= 5) and the remaining sentence classified it as ‘nega-
tive’ (= 2), then the final sentiment score would be the average value, 4.25.
This, of course, is still a feature-based representation (not a neighbour-based
representation).

However, we can define the item-item similarity graph on this feature-based
representation. From this, we can also define the neighbour-based representa-
tion, where each item is a set of its neighbours in the graph. On this dataset, we
use the cosine similarity measure (Manning et al., 2008) to build the item-item
similarity graph. In this graph, each movie has non-zero similarity with 90%
(over 1670) of the other movies in the dataset. This suggests that the item-
item similarity graph is even denser than the graph which described items
using keywords and defined similarity as Jaccard similarity, where each item
was connected to 77% of the other movies. Also, the average item-item simi-
larity is greater in comparison to the previous version of the dataset which, we
will see, will affect the quality of the top-n chains recommended to the user.

The concepts’ sentiments are like the weights we used in our weighted
approaches. Hence, unweighted versions of the sentiment-aware approaches do
not make any sense. Therefore, we run experiments only on weighted versions:
weighted feature-based (wfb) and weighted neighbour-based (wnb).

6.2 Offline evaluation

We ran an offline experiment to evaluate the performance of sentiment-aware
r-by-e. We compare i) wfb and wnb with each other; ii) both wfb and wnb
with a classic content-based recommender (CB); and iii) both wfb and wnb
with their corresponding dynamic content-based recommenders: wfb-CB-|C|
and wnb-CB-|C|.

6.2.1 Experiment settings

We use the same experiment settings as we described previously. The only
difference is in the values of the similarity threshold (θ) and the marginal
gain threshold (ϵ). We experimented with θ from (0.06, 0.09, 0.12) for both
wfb and wnb; and we use ϵ from (0.03, 0.06, 0.09) for wfb, and from (0.10,
0.20, 0.30) for wnb. Greater average similarity among items than before (i.e.
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Table 3: Results of the offline experiment that uses feature-based representa-
tions on concepts. Highlighted values indicate the best results of a metric for
each of the optimization criteria.

All of the wfb results are statistically significant with respect to wfb-CB-|C| and CB (t-test
with p < 0.05).

θ, ϵ & α % of explanations
Recommender optimized for Precision MAP Diversity Surprise Novelty Coverage of size 2–4

CB
Precision

0.0145 0.0044 0.9383 0.9126 0.5048 0.3068 NA
wfb 0.1053 0.0502 0.9130 0.8697 0.3468 0.3271 0.4040

wfb-CB-|C| 0.0036 0.0014 0.9300 0.9094 0.5597 0.0282 0.0000

CB
Diversity

0.0145 0.0044 0.9383 0.9126 0.5048 0.3068 NA
wfb 0.0223 0.0064 0.9225 0.9006 0.4056 0.5185 0.9025

wfb-CB-|C| 0.0033 0.0012 0.9308 0.9102 0.5619 0.0245 0.0000

wfb % of explanations 0.0838 0.0432 0.9104 0.8778 0.3752 0.4930 0.9731
wfb-CB-|C| of size 2–4 0.0014 0.0011 0.9483 0.9234 0.6102 0.0361 0.2054

in the keyword dataset) causes us to use higher similarity thresholds. Greater
similarity between chain members means they are less likely to cover different
elements of the candidate item and therefore the marginal gain threshold (ϵ)
for wfb has to be lower. In contrast, higher similarity values result in greater
overlap among the neighbours of chain members and the candidate item which
causes us to use higher ϵ for wnb.

As before, three values of each of θ and ϵ with eleven values of α gives
99 configurations for each of the two versions of r-by-e used here, optimized
on validation data for three criteria: precision, diversity, and the percentage
of explanations of size 2–4. We use this offline experiment to decide which
version performs the best and how it works on different values of α.

6.2.2 Experiment results

Table 3 and Table 4 summarize the results of the weighted feature-based and
weighted neighbour-based approaches.

Feature-based chain generation. We looked at the differences in the results
between: i) CB and wfb; and ii) wfb and wfb-CB-|C|. The wfb results for
both the comparisons are statistically significant. In comparison to the wfb
recommender, the CB and wfb-CB-|C| recommenders attain higher levels of
diversity, surprise, and novelty but lower values of precision, MAP and cov-
erage. In particular, the wfb-CB-|C| recommender covers only around 3% of
the catalog with almost irrelevant recommendations. For the same reason as
before, there are no results for the CB recommender when optimizing for %
of explanations of size 2–4. One thing worth noticing is that wfb-CB-|C| is
capable of producing a very small number of explanations of size 2–4; in fact,
while optimizing hyperparameters for precision and diversity, it selected no
explanations of that size. wfb, on the other hand, was able to attain over 90%
of explanations of that size for two out of three of the optimization criteria.
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Table 4: Results of the offline experiment that uses neighbour-based represen-
tations on concepts. Highlighted values indicate the best results of a metric
for each of the optimization criteria.

All of the
wnb results are statistically significant with respect to wnb-CB-|C| and CB (t-test with p < 0.05).

θ, ϵ & α % of explanations
Recommender optimized for Precision MAP Diversity Surprise Novelty Coverage of size 2–4

CB
Precision

0.0145 0.0044 0.9383 0.9126 0.5048 0.3068 NA
wnb 0.0342 0.0101 0.9003 0.8884 0.4072 0.1305 0.8448

wnb-CB-|C| 0.0024 0.0015 0.9327 0.9108 0.5926 0.0348 0.0000

CB
Diversity

0.0145 0.0044 0.9383 0.9126 0.5048 0.3068 NA
wnb 0.0088 0.0024 0.9276 0.9053 0.4695 0.7462 0.9857

wnb-CB-|C| 0.0020 0.0015 0.9448 0.9211 0.6241 0.0739 0.7061

wnb % of explanations 0.0117 0.0027 0.9186 0.9005 0.4250 0.2700 0.9997
wnb-CB-|C| of size 2–4 0.0018 0.0014 0.9513 0.9247 0.5989 0.0976 0.1804

Neighbour-based chain generation. Now, we see the differences in the results
between: i) CB and wnb; and ii) wnb and wnb-CB-|C|. They are statistically
significant in all cases. Changing the item representation does not apply to CB,
so its results are the same as before. The CB and wnb-CB-|C| recommenders
attain higher values of diversity, surprise, and novelty than wnb, while having
lower precision, MAP and % of explanations of size 2–4, in two out of three
configurations – while optimizing for Diversity, wnb was not able to have higher
precision and MAP than CB. In particular, the wnb-CB-|C| recommender has
lower catalog coverage with explanations satisfying the size constraint than
wnb.

Feature-based vs. neighbour-based chain generation. We will now compare the
two types of item representation by looking at results from both Table 1 and
Table 2 together. One can see that wfb attained, in all configurations, a much
higher level of precision and MAP. When optimized for % of explanations
with size 2–4, it achieved around eight times more relevant suggestions than
wnb. Furthermore, a MAP score 160 times higher suggests that relevant items
were ranked much higher in wfb than wnb. When optimized for precision and
% of explanations of size 2–4, wfb also presented greater coverage. On the
other hand, wnb presented greater levels of novelty and % of explanations
with size 2–4 in every configuration, with surprise being greater in two out
of three configurations. As for diversity, they both present similar results in
every configuration.

We now select one of the two representations for further study. As before,
to pick one, we assume that optimizing for the percentage of explanations of
size 2–4 is best, since it generally gives explanations that are not so long as to
be uninterpretable. In this setting, wfb performs better than wnb, and so this
is the version that we will explore further.

We will study the effect of hyperparameters ϵ and α on the performance
of wfb. Figure 5 shows six sub-figures — one for each evaluation measure. It
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Fig. 5: Results for wfb with θ = 0.06, ϵ ∈ {0.03, 0.06, 0.09}, and α ranges in
[0.0− 1.0] for extended chains on sentiments.

can be seen that in, all the plots, for ϵ ∈ {0.06, 0.09}, values of the evaluation
measures remain almost constant for values of α in the range of [0.02− 0.09].
Only for ϵ = 0.03 is there some variation in the evaluation measures but this
variation occurs only for the initial and last values of α; the measures remain
largely constant in between. This shows the effect of high similarity among
items in this experiment.

We look in detail at the results for each evaluation measure individually.
Again, we refer to Eq. 9 and, as before, for conciseness, we refer to the two
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Fig. 6: Relationships between precision, diversity and surprise with candidate
coverage, uniqueness, chain length and surprise at θ = 0.06 and ϵ = 0.03.
Above each sub-figure, we show Pearson correlation. All of the correlation
coefficient values are statistically significant (i.e. p < 0.05).

terms that make up its definition as the overlap term and the profile term
respectively.

Chain length: In Figure 5(a), we see that the length of top-n chains in-
creases up to α = 0.4; then, increasing α does not show a noticeable effect on
the length. This indicates that for lower α, the overlap term dominates, and
the system selects shorter chains. For higher values of ϵ, the system imposes a
stricter constraint on chains so their average length reduces substantially.

Precision: In Figure 5(b), for ϵ = 0.03, we see that precision varies in
three different ways when increasing the value of α: i) up to 0.5, it decreases;
ii) from 0.5 to 0.9, it remains unchanged; and iii) at 1.0, it decreases again.
As we mentioned before, in explanation chains, precision is proportional to
the candidate’s coverage. In particular, for this experiment, in the case of (i),
items are very similar to each other and adding more members to the chain (i.e.
increasing chain length) does not necessarily increase the candidate’s coverage;
for (ii), the system selects almost similar chains; and for (iii), the system totally
ignores the overlap term, selects chains based only on the profile term and these
chains do not try to cover the candidate, only the profile; therefore, precision
decreases. For ϵ ∈ {0.06, 0.09}, where there is a stricter constraint, precision
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becomes constant even earlier. We show the relationship between the precision
and the candidate’s coverage for different values of α in Figure 6(a).

Diversity : In Figure 5(c), we see diversity remains almost unchanged up
to α = 0.9 and decreases at α = 1.0 for ϵ = 0.03 (and increases for ϵ ∈
{0.06, 0.09}). In our system, as we have shown in the previous experiment,
the diversity of the top-n recommendations depends upon their uniqueness:
the lower the overlap among the members of top-n chains, the higher is the
diversity. However, in this experiment, items are quite similar to each other so
varying α does not affect the uniqueness of the top-n chains except at α = 0.0
when the profile term is totally ignored. We show in Figure 6(b) that, in all but
one case, uniqueness of chain members is negatively correlated with diversity.

Surprise: Figure 5(d) shows that for ϵ = 0.03, (i) surprise increases up to
α = 0.4; after that (ii) it remains almost unchanged up to α = 0.9; and (iii) it
increases again at α = 1.0. In the case of (i), the system initially selects shorter
chains that easily cover the candidate’s elements thus giving low surprise,
but, as α increases, the system selects those candidates that need more chain
members (i.e. longer chains) to be covered. We show the relationship between
the chain length and the surprise in Figure 6(c). It shows negative correlation
at the extremes of α because, for lower values of α, variation in the values
of surprise is much lower than the chain length, while the reverse applies at
α = 1.0. We also see in Figure 6(d) that precision and surprise behave almost
the reverse of each other. This is confirmed by the Pearson correlation values
in the Figure that are all negative.

Novelty : Figure 5(e) shows that novelty increases up to α = 0.4, then
remains almost at the same level. It shows that on lower values of α, the
overlap term dominates, enabling the system to recommend mostly popular
items which can be easily covered by shorter chains; on increasing α, the
profile term dominates and the system suggests novel items that cannot be
easily covered. On ϵ ∈ {0.06, 0.09}, novelty may slightly increase with the
increase in chain length.

Coverage: Figure 5(f) shows that coverage increases up to α = 0.4, then
remains almost unchanged. In this experiment, this indicates that up to α =
0.4, coverage increases with the increase in the chain length; afterwards, it
remains nearly at the same level as the chain length. On higher values of ϵ,
the system imposes a stricter constraint that lowers the coverage.

The experimental results on sentiment-based representations confirm that
wfb performs the best out of all r-by-e approaches. Again, we find that surprise
and chain length are directly proportional while precision and surprise are
inversely proportional. However, because of greater similarities among items,
the balancing parameter α does not have as much impact as it had when we
used keyword-based representations.
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6.3 User trials

In (Rana and Bridge, 2018), we reported the results of a user trial for the
basic version of r-by-e (as described in Section 3) on the keyword dataset
that we summarised in Section 5.1. We updated our web-based system (Rana
and Bridge, 2018) in order to conduct a new user trial on the sentiment-
aware version of the dataset. From our offline experiments, we considered
configurations of r-by-e that optimized the percentage of explanations of size
2–4. With this criterion, wfb performs better than other versions of r-by-e, and
so this is the version that we picked for the new user trial. We compare wfb
with wfb-CB-|C| with both using sentiment-aware concepts as features.

r-by-e is, above all, a recommender and so we designed one trial to measure
recommendation quality and a second trial to measure explanation quality. We
recruited participants through personal email lists and Twitter. In total, 144
people attempted the trials. The majority of them were undergraduate and
postgraduate students from universities in Ireland, Brazil, and India. Par-
ticipants were fully anonymized and we collected no demographic data. We
assigned half the participants to the recommendation trial and the other half
to the explanation trial. Of the 144, only 100 completed all parts of the trial to
which they were assigned, 55 for the recommendation trial and 45 for the expla-
nation trial. To familiarize our participants with the interface functionalities,
we provided instructions in our invitation email. Also, on-screen instructions
were given at every stage of the trial.

6.3.1 Recommendation trial

In this trial, we investigate whether wfb generates more diverse, serendipitous
and relevant recommendations than wfb-CB-|C| or not.

Experiment settings. The recommendation trial is defined as follows. We asked
users to evaluate two different lists of recommendations produced by the two
recommenders we were comparing. These lists of recommendations have length
5 and are sorted in decreasing order of recommender scores.

Before displaying the recommendations, we ensured that the two lists con-
tained different movies. Each movie that was common to both lists was re-
moved and the next best recommendations from the top-10 were added to the
end of the lists. If it was not possible to create two different lists of length
5 from the top-10 recommendations, the user’s responses to the survey were
discarded. We did this to avoid skewing responses about the diversity of rec-
ommendations: shorter lists are less likely to be diverse. In our experiments,
there were only two users whose responses were discarded for this reason.

For half the users, the list on the left (‘List A’) came from r-by-e and the
list on the right (‘List B’) from CB-|C|; for the other half of the users, List A
was from CB-|C| and List B from r-by-e. Users were not aware of which list
belonged to which recommender.
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Table 5: Results of the Recommendation Trial for Extended r-by-e on Senti-
ments.

User’s opinion Diversity Serendipity Satisfaction

Much more r-by-e 11 8 20
More r-by-e 17 16 14
About the same 9 12 5
More CB-|C| 11 12 7
Much more CB-|C| 7 7 9

Participants were required to answer three questions on Diversity, Serendip-
ity and Satisfaction.

– Diversity: Which list has a greater variety of movies?
– Serendipity: Which list has more pleasantly surprising recommendations?
– Satisfaction: Which list has more recommendations that you would be

likely to try?

Their answers were on a 5-point: Much more List A than List B; More List
A than List B; About the Same; More List B than List A; and Much more
List B than List A.

Experiment results. Fifty-five participants completed this trial. Table 5 sum-
marizes their responses.

– Diversity question: 50.9% of participants found r-by-e recommendations
to be much more diverse or more diverse than CB-|C| recommendations,
16.4% found the recommendation lists to be equally diverse, leaving 32.7%
finding CB-|C| to be much more or more diverse.

– Serendipity question: 43.7% of participants found r-by-e recommendations
to be much more or more pleasantly surprising, 21.8% found the recom-
mendation lists to be equally surprising, leaving 34.5% finding CB-|C| to
be much more or more surprising.

– Satisfaction question: 61.8% of participants found r-by-e recommendations
to be ones they would be much more or more likely to try, 9.1% found the
recommendations to be equally worthy of trying, leaving 29.1% finding
CB-|C| to be much more or more worth trying.

On all criteria r-by-e produced the better recommendation lists. However,
only in the case of the satisfaction question was this statistically significant.
(We used two-tailed proportion tests with significance level p0 = 0.05. The null
hypothesis was that those preferring r-by-e was equal to those preferring CB-
|C|, i.e. ignoring those who thought the two lists were about the same.) This
is also in line with the results of the offline experiments where the weighted
feature-based approach attains better precision than the other approaches,
while remaining competitive on measures of diversity and serendipity. Since
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precision is directly related to user satisfaction, i.e. the former directly evalu-
ates the recommender’s ability to generate relevant suggestions, r-by-e is able
to provide in both offline and online settings more relevant (and thus, more
satisfactory) suggestions than its baseline competitor.

6.3.2 Explanation trial

In this trial, we investigate whether wfb generates more effective explanations
than wfb-CB-|C| or not.

Users who were directed to this trial participated in a re-rating task. Re-
rating tasks are an established method of evaluating explanation quality when
the goal of the explanation is effectiveness: helping users make better decisions
(Bilgic and Mooney, 2005; Gedikli et al., 2014). The users are initially asked to
rate a recommendation in the case where they are given only the explanation
and not the identity of the movie. This is called the explanation-rating. The
users are asked later to re-rate the recommended item in the case where they
are given information about the item, including its identity. This is called the
actual-rating. An effective explanation is one where the explanation-rating is
close to the actual-rating. Effective explanations will be ones for which (a) µd

(the mean difference between explanation-ratings and corresponding actual-
ratings) is close to zero; (b) σd (their standard deviation) is small; and (c) r
(their Pearson correlation) is highest.

Experiment settings. Explanation Chains were displayed in the fashion shown
in Figures 7 and 8: arrows connect a movie to its successor in the chain. CB-
|C|’s explanations (sets of neighbours, rather than chains), on the other hand,
were displayed in the fashion shown in Figure 9: arrows connect each movie
to the recommended movie. Note how the movie identity is redacted.

In both cases, users can mouse over parts of the explanation, which causes
the system to display features that movies have in common. A maximum of
three features are displayed in any box. The challenge in selecting the features
is to rank them. We cannot use features’ sentiment scores: positive sentiment
features will always have higher scores than the other two sentiment types and
so this ranking approach will most likely return positive sentiment features.
Therefore, we use the following steps: i) we split the features into three lists,
one for each type of sentiment; ii) we calculate the proportion of the full feature
list that is accounted for by each of the three lists; iii) we rank each list using
features’ TF-IDF scores —specifically, in order to make sure that the feature
is important for both the movies we sum up both the feature’s TF-IDF scores
for both movies and rank the list based on these; iv) finally, we select features
from the three ranked lists in the order of their proportion (i.e. the highest
proportion sentiment type features will be added first) such that the top three
features maintain nearly the same proportion of sentiment types as they have
in the original list. Each feature is also associated with an emoji indicating
the sentiment of the feature. We used different colors for different sentiments:
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Fig. 7: A screenshot of an explanation chain. The user has moused over the
arrow that connects the first two movies, which causes the system to bring up
boxes of sentiments that these two movies have in common.

Fig. 8: A screenshot of an explanation chain. The user has moused over the
icon for the first movie, which causes the system to display an arrow between
that movie and the recommended movie and to bring up boxes of sentiments
that these two movies have in common.

positive (green smiley face), negative (red frowny face), and neutral (yellow
neutral face).

We asked the user to supply an explanation-rating (1-5 stars): how much
they thought they might like the movie based only on the explanation. We
do it for both r-by-e and CB-|C| explanations. After the users have given
these 2n ratings, the system then shows them in a random order each of the
n recommended movies again. This time, the identity of the movie is not
redacted but no explanation is shown. Instead, we show genre, plot synopsis,
main cast members, directors, writers, duration, and release date. Again we
ask them for ratings to indicate how much they think they will like the movies.
Note that, although users have rated the same movie three times, nothing in
the on-screen instructions makes this apparent.
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Fig. 9: A screenshot of a CB-|C| explanation. The user has moused over the
icon for the first movie, which causes the system to increase the width of the
arrow between that movie and the recommended movie and to bring up boxes
of sentiments that these two movies have in common.
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Fig. 10: Ratings from the Explanation Trial for Extended chains on Sentiments.

Experiment results. Forty-five participants completed this trial: it is quite
onerous and more participants abandoned it partway through than did for the
other trial. In total, we obtained 675 ratings, this being three ratings for 225
recommended movies. Figure 10 shows the distribution of the users’ ratings;
Table 6 gives summary statistics.

We can see that users mostly think they will like the movies that the
system recommends, both when they see explanations only and when they see
movie identities. For the differences between explanation-ratings and actual-
ratings, Figure 11 shows the distribution of values and Table 7 gives summary
statistics.

The mean difference between r-by-e ratings and actual ratings is 0.0756;
for CB-|C|, it is 0.1467. Hence, both kinds of explanations cause users to
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Table 6: Mean (µ), standard deviation (σ) and Pearson correlation (r) of
ratings from the Explanation Trial for Extended r-by-e on Sentiments.

Rating type µ σ r

Actual 3.2400 1.2193 –
r-by-e 3.3156 1.0492 0.5338
CB-|C| 3.3867 1.0925 0.1613
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Fig. 11: Differences in ratings from the Explanation Trial for Extended r-by-e
on Sentiments.

Table 7: Differences in ratings from the Explanation Trial for Extended r-by-e
on Sentiments.

Explanation type µd σd 95% Conf. Int.

r-by-e 0.0756 1.1054 (-0.0688, 0.2199)
CB-|C| 0.1467 1.5002 (-0.0494, 0.3427)

overestimate their actual-ratings. Using a two-tailed paired t-test (p0 = 0.05),
we observed that in this study, i) the difference between r-by-e-ratings and
actual-ratings are not statistically different; ii) the differences between CB-
|C|ratings and actual-ratings are also not statistically significant; and iii) r-
by-e-ratings and CB-|C|-ratings are not statistically different. In terms of µd

and σd, then, neither kind of explanation is better than the other. But there
is still the question of correlation with the actual-ratings.

Table 6 shows r, the Pearson correlation between explanation-ratings and
actual-ratings. We see that r-by-e-ratings are better correlated with actual-
ratings. We calculated the probability of getting this correlation due to chance
to be 0 in both cases. This is evidence that the relationships between items de-
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picted in r-by-e’s explanation chains are capable of providing a more thorough
explanation to users, thus helping them make accurate and informed decisions
towards items.

7 Discussion

We have presented a comprehensive empirical comparison of all four versions of
r-by-e with their corresponding customized classic content-based methods on
two variants of a movie recommendation dataset. We saw that feature-based
approaches performed the best in our experiments. On both the datasets,
feature-based approaches attained greater recommendation accuracy and, in
most cases, remain competitive on beyond-accuracy measures. Indeed, content-
based methods generate more diverse and serendipitous recommendations, but
they were less accurate. Such recommendations are concentrated on a small
fraction of the catalog that results in lower catalog coverage than the ver-
sions of r-by-e. In general, a random recommender, for example, may gener-
ate diverse set of recommendations, but they are less likely to be relevant to
the user. Alternatively, a popularity-based recommender may, in many cases,
achieve high accuracy but such recommendations may be less surprising (Ado-
mavicius and Kwon, 2008). Content-based approaches only consider item-item
similarities and are unable to provide a balance between recommendation ac-
curacy, diversity and surprise. As stated before, feature-based r-by-e attempts
to cover the features of the candidate item as well as the items in the user
profile. This enables r-by-e to generate more relevant recommendations while
remaining competitive in its diversity and serendipity.

Further, the results for neighbour-based r-by-e indicate that a comparison
between these approaches and the content-based baselines follow roughly the
same pattern of comparison as with the feature-based approaches. This high-
lights r-by-e’s capability of understanding user’s preferences better than the
content-based approaches even when the item representations make no explicit
use of item features.

On comparing feature-based approaches to neighbour-based ones, we find
that the feature-based r-by-e performs better. Neighbour-based approaches try
to cover neighbours of the candidate items instead of their features. Intuitively,
this may lead to higher levels of diversity and surprise than the feature-based
approaches. Our offline results confirm that the neighbour-based recommen-
dations are more diverse and surprising but there is a trade-off with their
relevance. However, they still perform better than the content-based baselines.

We also observed that the use of sentiment-based features in the construc-
tion of the chains adds another layer of information: users are able to perceive
not only the features shared by the movies they like, as well as the reasoning
behind the chain, but also whether those features are perceived as positive
or negative elements of the films. All of this semantic information, coupled
with the chain itself, provides sufficient support to users to make appropriate
decisions towards recommended movies.
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Finally, even though the user trial described in this article cannot be
directly comparable to the one presented previously in (Rana and Bridge,
2018), if we look at the results of both Explanation Trials, we can see that
the sentiment-based representation, on average, produces more closely re-
lated explanations and actual ratings, with a greater correlation among them.
This is an indication that sentiment-based representations do help r-by-e con-
struct more effective explanations than keyword-based representations; how-
ever, more experiments are required to support this claim.

8 Conclusion

In this paper, we considered various extensions to r-by-e. We presented two
item representations: i) feature-based; and ii) neighbour-based. The former
describes an item by a set of its features, and the latter makes no explicit
reference to features but describes an item as a set of its neighbours instead.
For each of these representations, we also explored weighting schemes to assign
weights to the features (or neighbours) and thus defined four versions of r-by-
e’s chain generation. We also generalized r-by-e’s chain selection by redefining
the scoring function.

We evaluated these extensions to r-by-e on two different datasets: first,
where items are described by keywords, and second, where items are described
by features weighted by sentiment scores. Our offline experiments show that
weighted feature-based (wfb) version gives more relevant recommendations than
all other versions of r-by-e and the baselines while being competitive on mea-
sures of diversity and serendipity.

We also conducted user trials with sentiment-aware explanation chains to
evaluate the quality of recommendations and the effectiveness of the corre-
sponding explanations. We found that r-by-e produces recommendations that
are more diverse and serendipitous than those of a baseline (although this is
not statistically significant) and with statistically significantly higher levels
of user satisfaction. User responses also confirmed that the sentiment-aware
explanation chains allow users to make more accurate judgements about the
quality of the recommended items than do the baseline’s explanations.

In our offline experiments for r-by-e, we have found a correlation between
surprise and chain length for a top-n recommendation. For higher values of α,
r-by-e generates longer chains, which, on the whole, results in more surprising
recommendations. It would be valuable to conduct user trials to measure how
users perceive the surprise of the recommendations generated, for example, on
different values of α.

Another interesting research direction would be to extend the explana-
tion chains from a content-based setting to collaborative settings. In principle,
chains can still be constructed using coverage heuristics, but now coverage
would be of ratings rather than of items’ elements. However, explaining item-
item relationships among chain members will become more challenging espe-
cially if we do not want to compromise the fidelity of the recommender.
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