
Title Practical programming for static average-case analysis: the
MOQA investigation

Authors Townley, Jacinta Maria

Publication date 2013

Original Citation Townley, J. M. 2013. Practical programming for static average-
case analysis: the MOQA investigation. PhD Thesis, University
College Cork.

Type of publication Doctoral thesis

Rights © 2013, Jacinta Maria Townley - http://creativecommons.org/
licenses/by-nc-nd/3.0/

Download date 2025-02-06 13:32:14

Item downloaded
from

https://hdl.handle.net/10468/1345

https://hdl.handle.net/10468/1345

Department of Computer Science
National University of Ireland, Cork

A thesis submitted for the degree of

Doctor of Philosophy

Practical Programming for Static
Average-Case Analysis: the MOQA

Investigation

Jacinta Maria Townley

Supervisor:

Dr. Joseph Manning

Head of Department:

Prof. Barry O’Sullivan

September 2013

Contents

List of Figures v

List of Tables viii

Declaration ix

Acknowledgements x

Abstract xi

1 Introduction 1

1.1 Problem Statement . 1

1.2 Aims and Objectives . 2

1.3 Thesis Layout . 2

2 MOQA Background 4

2.1 MOQA Theory . 5

2.2 MOQA Functions . 13

2.2.1 MOQA Product . 16

2.2.2 MOQA Split . 18

2.2.3 MOQA Deletion . 19

2.2.4 MOQA Projection . 21

2.3 Average-case Cost in MOQA . 21

2.4 MOQA Algorithms . 28

2.5 Chapter Summary . 28

3 The MOQA Language 30

3.1 The MOQA Language Implementation 30

3.1.1 MOQA-Java Details . 32

i

CONTENTS ii

3.1.2 MOQA-Java Functions 40

3.2 The Cost of Some MOQA-Java Examples 45

3.2.1 The Space Cost of Insertion-sort in MOQA-Java 45

3.2.2 The Average-case Cost of Quicksort in MOQA-Java . . . 48

3.3 New MOQA Functions . 54

3.3.1 MOQA Top . 55

3.3.2 MOQA Bot . 55

3.3.3 MOQA Lift . 55

3.3.4 MOQA Insert . 56

3.4 MOQA and Reversibility . 57

3.5 Chapter Summary . 61

4 Tracking Data Structure State 63

4.1 Chapter Overview . 64

4.2 Program Control Flow . 67

4.3 Expanding the MOQA Theory 68

4.4 Data Structures Represented by Pβ 77

4.4.1 Fixed Po-structure . 77

4.4.2 Inductive Po-class . 79

4.4.3 Split Po-class and General Split Po-class 91

4.4.4 Compound Structure . 93

4.5 The Average-case Cost of a MOQA Function 98

4.5.1 The Average-case Cost of a MOQA Function Applied to

FPSβ . 98

4.5.2 The Average-case Cost of a MOQA Function Applied to

IPCβ . 98

4.5.2.1 The Average-case Cost of a MOQA Function

Applied to a Finite IPCβ 98

4.5.2.2 The Average-case Cost of a MOQA Function

Applied to an Infinite IPCβ 99

4.5.2.3 The Average-case Cost of a MOQA Function

Applied to an Infinite DIPCβ 100

4.5.2.4 The Average-case Cost of a MOQA Function

Applied to an Infinite NDIPCβ 141

CONTENTS iii

4.5.3 The Average-case Cost of a MOQA Function Applied to

SPCβmax, n and GSPCβmax, Z 156

4.5.4 The Average-case Cost of a MOQA Function Applied to

CSβ . 156

4.6 The Number of Canonically-ordered Labelings on IPCβ 157

4.7 The Number of Canonically-ordered Labelings on SPCβmax, n

and GSPCβmax, Z . 162

4.8 Chapter Summary . 162

5 Duplicate Labels 164

5.1 The Duplicate Label Question 164

5.2 Random Selection . 166

5.3 Label Distribution . 173

5.4 Duplicate Labels in Insertion-sort 176

5.5 Duplicate Labels in Quicksort 182

5.6 Chapter Summary . 184

6 Literature Review 185

6.1 PL and EL . 185

6.2 Metric . 190

6.3 ACE . 196

6.4 COMPLEXA . 200

6.5 LUO . 205

6.6 Mishna . 217

6.7 Sarkar . 219

6.8 Other Related Research . 222

6.9 Randomness Preservation . 224

6.10 Chapter Summary . 231

7 Conclusion 232

7.1 MOQA Assessment . 232

7.2 Future Work . 239

7.3 Thesis Summary . 240

A Treapsort Algorithm 242

B Algorithms LUO Can Analyse 244

CONTENTS iv

Bibliography 245

List of Figures

2.1 I) A total order, II) The unlabeled Hasse diagram of I) 7

2.2 The unlabeled Hasse diagram Ha 8

2.3 A data structure that is not series-parallel 10

2.4 An unlabeled Hasse diagram . 18

2.5 Figure 2.4 after a MOQA product function 18

2.6 The four distinct Hasse diagrams that can result after the MOQA

split function is applied to a discrete Hasse diagram whose size

is four . 19

2.7 Figure 2.5 after a downwards MOQA deletion function 21

3.1 The MOQA-Java class diagram 33

3.2 Adding label values to MOQA data structures in MOQA-Java —

the first argument to a NodeInfo’s constructor is a Label ob-

ject / label value and the second argument is the data associated

with that Label object / label value 35

3.3 LPO I, the MOQA-Java representation of a discrete partial or-

der of size seven, becomes LPO II after the MOQA product

function products elements a, b and c above elements d and e . 38

3.4 LPO II’ is LPO II in Figure 3.3 without the SubLPO design . . 39

3.5 Insertion-sort in MOQA-Java 46

3.6 Quicksort in MOQA-Java . 49

3.7 For the MOQA product function and βmax, half of the possible

input pairs to product(xi, yi) that result in the output of a total

order of size four . 59

4.1 Inductive Po-Class Framework 66

4.2 A simple example in MOQA-Java, program p′1 78

v

LIST OF FIGURES vi

4.3 One of these fixed po-structures will result after the MOQA

deletion function in Figure 4.2 79

4.4 I) A fixed po-structure, II) A fixed po-structure and III) A con-

densed representation of I and II 80

4.5 A simple example in MOQA-Java, program p′2 82

4.6 Control flow graph of Figure 4.5 83

4.7 The five distinct BSTs of size three 86

4.8 The sequence of production rules that constructed the far left

fixed po-structure in Figure 4.7 87

4.9 A simple example in MOQA-Java, program p′4 94

4.10 Control flow graph of Figure 4.9 94

4.11 V LIST — a compound structure 95

4.12 A T production rule sequence that constructs a fixed po-structure

of size four . 104

4.13 Another T production rule sequence that constructs a fixed po-

structure of size four . 105

4.14 II(a) - IV(a) show the labels with ranks from 1 to 3 that can

swapped on to I(a) and ∗(b) shows the canonically-ordered la-

beling that ∗(a) can be reduced to 127

4.15 A fixed po-structure in A’s infinite set 146

5.1 For the label set {1, 2} and βmax, all the distinct labelings of a

discrete fixed po-structure of size three when 2 is assigned twice 165

5.2 For the label set {1, 2a, 2b} and βmax, all the distinct labelings

of a discrete fixed po-structure of size three 165

5.3 Figure 5.1 just after the first node from left to right is connected

above the next two nodes . 166

5.4 Figure 5.2 just after the first node from left to right is connected

above the next two nodes . 167

5.5 New code for a random selection technique discussed in this

section . 169

5.6 New code for Schellekens’s random selection technique [63] . . . 171

5.7 The labelings of Figure 5.4 after adjustment by the MOQA

product function . 172

6.1 Mergesort in MOQA-Java . 189

LIST OF FIGURES vii

6.2 The unlabeled and labeled operations from which LUO’s unla-

beled and labeled combinatorial structures are respectively defined206

6.3 The data structures U and V 211

6.4 Four possible inputs for a product that involves U and V when

they are unrelated structures and the relabelings that result

when LUO’s partitional product connects U above V for the

leftmost input . 212

6.5 The five distinct BSTs of size three with labels 225

List of Tables

2.1 L(Ha
βmax

) . 8

2.2 All distinct canonically-ordered labelings of Figure 2.4 18

2.3 Table 2.2’s labelings after reorganisation by the MOQA product

function depicted in Figure 2.5 18

2.4 All distinct canonically-ordered labelings of Figure 2.5 21

2.5 Table 2.4’s labelings after reorganisation by the MOQA deletion

function depicted in Figure 2.7 21

5.1 L(Dβmax
, K) when N = 3 and K = {1, 2} 174

5.2 L(Dβmax
, K) when N = 3 and K = {1, 2} 175

6.1 L(Uβmax
+ Vβmax

) . 211

6.2 L(Uβmax
) and L(Vβmax

) . 212

viii

Declaration

This thesis is submitted to University College Cork, Ireland, in accordance

with the requirements for the degree of Doctor of Philosophy in the Faculty of

Science. The research and theses presented herein are entirely the work of the

author.

Jacinta Maria Townley

ix

Acknowledgements

I am certain of nothing but of the holiness of the Heart’s affections

and the truth of Imagination.

John Keats

I would first and foremost like to thank my supervisor Dr. Joseph Manning.

His support and kind words never wavered and it seems safe to say that without

him this work would not be in your hands right now. I will fondly remember

the many conversations that we have had over the years and look forward to

the ones to come.

Outside of college there have been those special people who loved and cared

for me, who gave my life real meaning and purpose. These people have left

a lasting impression on my heart. I cannot thank them enough and listing

them here is but poor compensation: Maura, Sandy, Ilona, Stig, Joan, Rosy,

Bert, Carole, Terry, Debbie and Shelly. You all gave me your best with no

consideration of cost while Maura rescued me.

I would also like to show my appreciation to my other good friends, with

whom I have enjoyed many moments. Last but far from least, I would like to

thank my examiners Dr. Patrick Healy and Dr. Kieran Herley. I am sincerely

grateful for the time they took out of their busy schedules to carefully read

and consider this work; they have both my respect and sympathy!

x

Abstract

This work considers the static calculation of a program’s average-case time.

The number of systems that currently tackle this research problem is quite

small due to the difficulties inherent in average-case analysis. While each of

these systems make a pertinent contribution, and are individually discussed in

this work, only one of them forms the basis of this research. That particular

system is known as MOQA.

The MOQA system consists of the MOQA language and the MOQA static

analysis tool. Its technique for statically determining average-case behaviour

centres on maintaining strict control over both the data structure type and

the labeling distribution. This research develops and evaluates the MOQA

language implementation, and adds to the functions already available in this

language. Furthermore, the theory that backs MOQA is generalised and the

range of data structures for which the MOQA static analysis tool can determine

average-case behaviour is increased. Also, some of the MOQA applications and

extensions suggested in other works are logically examined here. For example,

the accuracy of classifying the MOQA language as reversible is investigated,

along with the feasibility of incorporating duplicate labels into the MOQA

theory. Finally, the analyses that take place during the course of this research

reveal some of the MOQA strengths and weaknesses.

This thesis aims to be pragmatic when evaluating the current MOQA the-

ory, the advancements set forth in the following work and the benefits of

MOQA when compared to similar systems. Succinctly, this work’s signifi-

cant expansion of the MOQA theory is accompanied by a realistic assessment

of MOQA’s accomplishments and a serious deliberation of the opportunities

available to MOQA in the future.

xi

Chapter 1

Introduction

1.1 Problem Statement

The characteristics associated with various data structures and the algorithms

that operate on them is a well-studied topic in modern computing. Hence, it

is commonplace to consider an algorithm’s best-case, average-case and worst-

case behaviour. Of these three, best-case and worst-case behaviour establish

the lower and upper bounds for program execution; this information is very

useful to both soft and hard real-time systems. On the other hand, average-

case behaviour may better reveal a program’s nature because it involves all of

the program’s executions for some distribution. However, this latter behaviour

is generally the most difficult of the three to establish because it first requires

the selection of a meaningful distribution and then involves an analysis that

covers many program executions. Accordingly, a variety of methodologies are

currently in use in the area of average-case analysis, one example being Kol-

mogorov complexity [70].

The difficulties surrounding average-case analysis are further compounded

when the move is made is obtain such information statically. One substan-

tial concern is translating the intuitive reasonings performed during a hand-

analysis for a particular approach into machine logic. This issue opens up an

interesting research problem, which is how to calculate an algorithm’s average-

case behaviour automatically. Any static analysis tool that does so would be

a valuable aid to system designers. It would release them from the, often

complicated, mechanics involved in determining average-case behaviour and

knowing this behaviour is helpful when it comes to allocating resources. Thus,

1

CHAPTER 1. INTRODUCTION 2

providing a reason, aside from intellectual curiosity, for the interest in this

subject.

Therefore, there is a small collection of tools that attempt to automatically

estimate an algorithm’s average-case behaviour. One of these is MOQA [63]

and the work reported in this thesis builds upon the MOQA research.

1.2 Aims and Objectives

The aims and objectives of this work revolve around MOQA (MOdular Quan-

tative Analysis), which contributes to recent research into statically determin-

ing the average-case behaviour of computer programs. Published as a book

[63], the MOQA theory aims to simplify the complexity normally associated

with this field.

In closely examining the concepts behind MOQA, this work can be divided

into four main areas:

• Implementing the MOQA language in a manner that encourages the

programmer to adhere to its requirements.

• Expanding the functionality of the MOQA language and theory, along

with identifying gaps yet to be filled.

• Evaluating the claims made about MOQA and its potential.

• Defining the boundaries of MOQA.

The last area is the most ambitious: to objectively examine the MOQA ap-

proach, determine the borders of its effectiveness and hence, clearly delineate

its successes and limitations. This would allow MOQA to be carefully mea-

sured against existing research in the area, which is included in this work’s

objectives, and therefore assist in prioritising future work on MOQA. The au-

thor recognises that this is a considerable aim, difficult to achieve in its entirety,

but hopes to bring some useful insights to light.

1.3 Thesis Layout

This thesis consists of five main chapters and one concluding chapter.

CHAPTER 1. INTRODUCTION 3

Chapter 2 introduces the reader to the MOQA theory and is a foundation

chapter for each of those that follow.

Chapter 3’s theme is the MOQA language. This chapter discusses the

author’s implementation of the MOQA language and considers the cost of

certain algorithms written in it. It also presents new MOQA functions and

investigates whether the MOQA language is a reversible language.

Chapter 4 concerns itself with broadening the MOQA theory. After doing

so, it also provides new average-case formulas, which increase the power of the

MOQA static analysis tool.

Chapter 5 deals with the issue of duplicate labels in MOQA and comes to

an important decision regarding their inclusion in MOQA.

Chapter 6 is where the literature review takes place. This chapter often

appears much earlier in similar bodies of work. However, it is the sixth chapter

here because the reader will have the strongest grasp of the MOQA theory at

this stage and this is the ideal when comparing MOQA to related systems.

Chapter 7 gives an overall assessment of MOQA and then finishes by iden-

tifying some future directions for MOQA.

Chapter 2

MOQA Background

The aim of MOQA [63] is to statically calculate the average-case cost of an

algorithm. In MOQA, the average-case cost of an algorithm is measured by

the average number of label-to-label comparisons that take place within that

algorithm’s data structures. If an algorithm is to be successfully analysed by

MOQA, then it must adhere to a specific form; the functions used by the

algorithm are those provided by MOQA and the algorithm follows certain

control flow constraints. Such an algorithm is then parsed and evaluated by

a MOQA static analysis tool. In general, the average-case cost that results is

expressed as a recurrence relation. MOQA-Java is the current version of the

MOQA language; see Chapter 3 for details. The current version of the MOQA

static analysis tool is called Distri-Track [35].

MOQA functions control how an algorithm’s data structures are accessed

and modified. The intention of this regulation is 1), to remove any uncertainty

statically about all the possible states of a data structure after a MOQA func-

tion is applied to it and 2), to ensure that these states follow a particular

distribution. The average-case behaviour of functions that have these two

properties will be easier to determine statically and such functions are known

in MOQA as random bag preserving or random structure preserving. It is this

concept that drives the MOQA theory. The definition of random bag/structure

preservation is detailed in the following section and includes the anticipated

distribution of states. (From this point onwards, random bag/structure preser-

vation will be referred to as MOQA random bag/structure preservation so as to

distinguish it from another related concept with a very similar name, discussed

in Section 6.9.)

4

CHAPTER 2. MOQA BACKGROUND 5

The sole purpose of this chapter is to concisely summarise over a hundred

pages of core MOQA theory and therefore, will be a brief overview of the work

rather than a direct reproduction. Hence, this recap will include definitions

from works that are not quoted in the MOQA literature. Also, some of the

MOQA-related lexicon of this chapter will differ to that of the other MOQA

literature1.

2.1 MOQA Theory

First, some useful preliminary definitions and concepts shall be introduced.

Notation 1. Let P denote a program.

Definition 1 (Composite variable). A composite variable is a variable in P

that refers to a data structure.

In general, the data structures that will be discussed in this work are DAGs

(Directed Acyclic Graphs).

Notation 2. Let c denote a composite variable.

A program variable that refers to a data structure is identified here as a

composite variable to differentiate the variable name from its possible states

at any particular moment during its lifetime in the program.

Definition 2 (A moment of a composite variable’s lifetime). A moment of a

composite variable’s lifetime is an instant in time, with respect to a sufficiently

coarse grain of time in which changing the value of the composite variable is

an instantaneous operation [16].

Notation 3. Let iP, c denote a moment of c’s lifetime in P .

Notation 4. Let F denote a function.

For any average-case analysis tool, a prerequisite to statically determining

the average-case behaviour of F when applied to c at iP, c is static awareness

of all the various states that c can take at iP, c. There are different approaches

1The motivation behind this difference is an attempt to provide a MOQA notation of
greater economy than the original, along with clarifying the occasional ambiguity that can
be found in the latter.

CHAPTER 2. MOQA BACKGROUND 6

to how these various states are represented statically, the study of which in

Chapter 6 reveals how intertwined the representation and tracking of this in-

formation is. For now, just how MOQA captures this information is under

consideration. As shall be seen shortly, MOQA expects c to always refer to

a Hasse diagram. So the first step is to identify all the unlabeled Hasse

diagrams that c can possibly take at iP, c.

Definition 3 (Reflexive edge). The edge (a, b) in a graph is reflexive if a and

b are the same node.

Definition 4 (Transitive edge). The edge (a, b) in a graph is transitive if there

is a path from a to b of length greater than one.

Definition 5 (Hasse diagram). A Hasse diagram is a DAG with no reflexive

or transitive edges.

For convenience of presentation, the term “Hasse diagram” will be used

interchangeably in this work to mean either the underlying DAG or a drawing

of it with all edges pointing upwards.

Notation 5. Let H denote an unlabeled Hasse diagram.

In addition to statically knowing all the unlabeled Hasse diagrams that c

can possibly take at iP, c, the second step involves statically knowing all of

the possible values that can be stored within the data structures represented

by these unlabeled Hasse diagrams. This motivates the introduction of a label

ordering and a labeling. For these definitions, note that in MOQA the labels

on a Hasse diagram are always selected from a totally-ordered set. So any two

labels in such a set are comparable; the two labels x and y are comparable if

x ≤ y or y ≤ x.

Definition 6 (Partial order). A partial order is a relation on a set of elements

that is reflexive, transitive and antisymmetric.

Definition 7 (Label ordering). A label ordering is a method that assigns labels

to the nodes of an unlabeled Hasse diagram according to some set of constraints.

Note that such a partial order on the labels need bear no relationship with

the direction of the edges in the unlabeled Hasse diagram.

CHAPTER 2. MOQA BACKGROUND 7

7

4

I II

Figure 2.1: I) A total order, II) The unlabeled Hasse diagram of I)

Notation 6. Let β denote a label ordering.

An example of a label ordering would be the ordering of a heap or the

ordering of a binary search tree. In other words, a label ordering describes

how labels can be applied to an unlabeled Hasse diagram; it describes the

rules for the pattern of arrangement, such as the label of a parent node must

always be greater than or equal to the labels of its children nodes, which is

known as max-heap ordered.

Notation 7. Let βmax denote the max-heap label ordering.

Notation 8. Let Hβ denote H and some label ordering β on it.

Definition 8 (Labeling). A labeling maps a label to each node in an unlabeled

Hasse diagram according to a given label ordering.

For the duration of this work, a labeling will always be assembled from a set

of integers though any other totally-ordered data type, such as real numbers

or strings, would be just as acceptable. Figure 2.1 provides an example of a

labeling. In I the labels 4 and 7 are each associated with a node of II according

to some label ordering. It is generally assumed, both here and by Schellekens

[63], that a labeling will map |Hβ| distinct labels to the nodes in Hβ; Chapter

5 discusses stepping away from this assumption of label distinctness.

So, if the average-case cost of F when applied to c at iP, c is to be considered,

then it has just been stated that for the second step it is necessary to statically

know the possible labelings, and precedently the β, of each distinct H that

c can possible take at iP, c. However, if the labels of a Hasse diagram are

selected from an infinite set, then, for any label ordering, the diagram has

an infinite number of distinct labelings from which its possible labelings are

selected. Dealing with infinity is problematic from a static perspective and

avoided where possible. Hence, it is common practise in average-case analysis

CHAPTER 2. MOQA BACKGROUND 8

d

b

e

c

a

Figure 2.2: The unlabeled Hasse diagram Ha

a b c d e
5 4 3 2 1
5 4 3 1 2
5 3 4 2 1
5 3 4 1 2
5 2 4 3 1
5 2 4 1 3
5 1 4 3 2
5 1 4 2 3

Table 2.1: L(Ha
βmax

)

to instead consider a labeling in terms of the relative order between its labels,

as opposed to the actual values of its labels, as relative order is bounded in

terms of the number of labels. Therefore, in MOQA, the Hasse diagram’s finite

number of distinct canonically-ordered labelings for its β is the set from which

its possible labelings are selected.

Definition 9 (Canonically-ordered labeling). A canonically-ordered labeling

is a labeling that has its n distinct labels restricted to the values {1, 2, . . . , n}

[42].

Any labeling of a Hasse diagram can be reduced to a canonically-ordered

labeling by mapping the yth smallest value in the labeling to the value y.

Notation 9. Let L(Hβ) denote the set of all canonically-ordered labelings of

Hβ.

Table 2.1 shows all the distinct canonically-ordered labelings of the unla-

beled Hasse diagram in Figure 2.2 when β is max-heap ordered.

The third step is to statically know, for each distinct Hβ that c can take at

iP, c, not only which of its canonically-ordered labelings can occur but also how

CHAPTER 2. MOQA BACKGROUND 9

often does each one of these labelings occur. In other words, for each distinct

Hβ that c can take at iP, c, what is the distribution of the canonically-ordered

labelings in L(Hβ)? For example, imagine that the first labeling in Table 2.1

is a labeling of Ha
βmax

for four run-times, the next six labelings in the table are

each a labeling of Ha
βmax

for two run-times and the last labeling in the table

is never a labeling of Ha
βmax

. For these sixteen run-times, the frequency of the

first labeling is four and the frequency of each of the next six is two, or it can

be said that the frequency of the first labeling is two and the frequency of each

of the next six is one. (As the last labeling in Table 2.1 is never a possible

labeling of Ha
βmax

, its frequency is always zero.) The revised distribution still

correctly reflects the labelings’ comparative frequency, though the number of

actual run-times involved is now lost. As the average number of label-to-label

comparisons is of interest, and not the total, this loss of information, if it

occurs, has no impact.

To summarise these three steps, MOQA needs to be statically aware of the

following:

• Each distinct H that c can possibly take at iP, c.

• For each distinct H that c can possibly take at iP, c, what its β is and

which of its canonically-ordered labelings are possible values of c at iP, c.

• For each distinct H that c can possibly take at iP, c, the distribution of

its canonically-ordered labelings that are possible values of c at iP, c.

The MOQA static analysis tool uses the above information in conjunction

with the operational semantics of F to calculate the average-case cost of F

when applied to all of c’s possible states at iP, c. Finally, the tool must compute

how F transforms these states, i.e. must determine the above information for

input to the subsequent function.

In order to automatically calculate the average number of label-to-label

comparisons that take place within an algorithm’s data structures, MOQA

tracks the above information by restricting both facets of the data organisation.

Definition 10 (Data organisation). A data organisation is a “class of data

structures together with the associated algorithms for operating on these struc-

tures” [42].

CHAPTER 2. MOQA BACKGROUND 10

Figure 2.3: A data structure that is not series-parallel

A data organisation is also known as an ADT (Abstract Data Type), the

latter term being more widely used.

So MOQA limits both the possible states of c at iP, c and the type of function

that can be applied to c. The latter restriction is that the set of functions

currently allowed to operate on any class of data structures in MOQA must

be a subset of those presented in Sections 2.2 and 3.3. These functions were

designed for series-parallel data structures. This is one of the constraints that

is always placed on each distinct Hβ that c can possibly take at iP, c. The

following definition of a series-parallel data structure is a modified version of

Stanley and Fomin’s definition [69], which is used by Schellekens [63].

Definition 11 (Series-parallel data structure). A series-parallel data structure

is either empty or is obtained from one-node data structures through successive

iterations of the operations of sequential and parallel composition.

The operation of sequential composition connects one data structure above

another. The operation of parallel composition places two data structures in

parallel, i.e. side-by-side. In Section 2.2 it will become obvious that the MOQA

product function is equivalent to the operation of sequential composition. To

briefly counter illustrate, Figure 2.3 shows an example of a data structure that

is not series-parallel. All other figures in this section show series-parallel data

structures.

As well as MOQA specifying that the shape of each distinct Hβ that c

can possibly take at iP, c is series-parallel, it also specifies the distribution of

the canonically-ordered labelings that can be on these Hβs. The MOQA rule

is that, for each distinct series-parallel Hβ that c can possibly take at iP, c, a

MOQA random structure is able to represent Hβ and the distribution of all of

the canonically-ordered labelings that can be on Hβ.

Definition 12 (MOQA random structure). A MOQA random structure con-

sists of a series-parallel Hβ, a positive integer M and a multiset containing M

CHAPTER 2. MOQA BACKGROUND 11

copies of each canonically-ordered labeling in L(Hβ)2.

Notation 10. Let S denote a MOQA random structure.

Notation 11. Let nS denote the size of Hβ in S, i.e. the number of nodes in

that Hβ.

Definition 13 (Multiplicity of a MOQA random structure). The multiplicity

of S is the positive integer M in Definition 12.

Notation 12. Let MS denote the multiplicity of S.

So an unlabeled series-parallel Hasse diagram with label ordering β can

form the basis of a MOQA random structure if all its canonically-ordered

labelings have equal likelihood of occurring, the likelihood being the multiplic-

ity. This information is reflected in the multiset of a MOQA random structure,

which contains all the possible labelings of the Hasse diagram. Like the series-

parallel requirement for H, insisting that all the canonically-ordered labelings

of Hβ have the same multiplicity is necessary because of how the average-case

cost of a MOQA function is derived; see Section 2.3 for more detail.

When these restrictions apply, all of c’s possible states at iP, c can be stored

in a MOQA random bag.

Definition 14 (MOQA random bag). A MOQA random bag is a multiset of

MOQA random structures.

So the generalisation of the above MOQA rule is that a MOQA random

bag is able to represent all of the states that c can possible take at iP, c. This

means that the function applied next to c must not leave it in such a condition

where all of its possible states can no longer be stored in a MOQA random

bag. Therefore, the function applied next must be a MOQA random structure

preserving function.

Definition 15 (A MOQA random structure preserving function). A function

is MOQA random structure preserving if it maps a MOQA random structure

to a multiset of one of more MOQA random structures.

2The original definition of a MOQA random structure, see [63], does not include the
positive integer M as it is defined separately.

CHAPTER 2. MOQA BACKGROUND 12

When a MOQA random structure preserving function is applied to each

MOQA random structure in a MOQA random bag, then the results can be

collected together in a MOQA random bag. Hence, a MOQA random structure

preserving function is also known as a MOQA random bag preserving function.

Definition 16 (MOQA-satisfying program). A MOQA-satisfying program is

a program P whose composite variables can store all of their possible states at

any moment during P in a MOQA random bag.

In other words, all of the functions in a MOQA-satisfying program are

MOQA random bag/structure preserving.

Notation 13. Let p denote a MOQA-satisfying program.

An example of a program that is not MOQA-satisfying would be a program

with a composite variable whose possible values at a particular moment are

those of Ha
βmax

in the previous example on page 9. It would not be possible to

represent those sixteen labelings with a MOQA random structure because the

likelihood of each canonically-ordered labeling in L(Ha
βmax

) occurring is not the

same; there are three different likelihoods, i.e. zero, one or two, so there is no

common multiplicity. Therefore, these states for that particular moment could

not be stored in a MOQA random structure and hence, a MOQA random bag.

Notation 14. Let MRBp, c, β, i denote the MOQA random bag that represents

all of c’s possible states at ip, c.

Notation 15. Let M denote MRBp, c, β, i.

Notation 16. Let MRBp, c, β denote c’s MOQA random bag at the first mo-

ment that c is referred to in p.

What is in MRBp, c, β? If c refers to a variable that has been passed from

another MOQA-satisfying program, then there may be any combination of

MOQA random structures in MRBp, c, β, depending on the behaviour of the

other program. If c does not refer to such a variable and MRBp, c, β was

not provided along with p as input to the MOQA static analysis tool, then

the static assumption in Schellekens’s work [63] is that MRBp, c, β contains

one MOQA random structure. The Hβ of this MOQA random structure is a

discrete Hasse diagram, i.e. a Hasse diagram with no edges, whose size is not

fixed and its multiplicity is one. This will be discussed further in Section 4.3.

CHAPTER 2. MOQA BACKGROUND 13

Definition 17 (The size of a MOQA random bag). The size of a MOQA

random bag is the number of MOQA random structures in it.

Notation 17. Let |M| denote the size of M.

The multiset of canonically-ordered labelings associated with a MOQA

random structure does not need to be explicitly recorded for each S in M. If

required, it would be possible to derive this information for any S using its Hβ

and MS. The reader may also have observed that the notation for a MOQA

random bag, MRBp, c, β, i, includes β. That is not there to imply that all the

MOQA random structures in a MOQA random bag must have the same label

ordering. However, to date, this is what happens. So, for ease of notation, the

common β associated with each MOQA random structure in a MOQA random

bag is recorded just once, in the notation for the bag itself. Hence, a MOQA

random bag can be expanded to the following:

MRBp, c, β, i = {(SM

1 ,MSM
1), (SM

2 ,MSM
2), . . . , (SM

|M|,M
SM

|M|)},

where SM

j is the jth MOQA random structure in M and has a multiplicity of

MSM
j , 1 ≤ j ≤ |M|.

2.2 MOQA Functions

The terminology below is instrumental in defining the MOQA functions.

Definition 18 (Minimal nodes). The minimal nodes in H are the nodes in H

with no incoming edges.

Notation 18. Let m(H) denote the set of minimal nodes in H.

Definition 19 (Maximal nodes). The maximal nodes in H are the nodes in

H with no outgoing edges.

Notation 19. Let M(H) denote the set of maximal nodes in H.

Notation 20. Let ⌊x⌋ denote the set of all nodes that are directly below node

x in H. 3

3Any ambiguity with regard to the phrase “ directly below” should be eliminated by the
original definition of ⌊x⌋: for a partial order (X,⊑) and an element x ∈ X, we define ⌊x⌋ to
be the set of all elements immediately and strictly below x [63]. There is a similar original
definition for ⌈x⌉, which is to be discussed very shortly.

CHAPTER 2. MOQA BACKGROUND 14

This is more informal definition than “for a partial order (X,) and an

element x ∈ X, we define ⌊x⌋ to be the set of all elements immediately and

strictly below x” [63].

Notation 21. For any subgraph I of H, let ⌊I⌋ denote
⋃

x∈I⌊x⌋.

Notation 22. Let ⌈x⌉ denote the set of all nodes that are directly above node

x in H.

Notation 23. For any subgraph I of H, let ⌈I⌉ denote
⋃

x∈I⌈x⌉.

Definition 20 (Isolated subset). A subgraph I of H is an isolated subset if it

satisfies the following three conditions:

1. ⌊I \m(I)⌋ ⊆ I and ⌈I \M(I)⌉ ⊆ I.

2. ∀x, y ∈ m(I) : ⌊x⌋ = ⌊y⌋.

3. ∀x, y ∈M(I) : ⌈x⌉ = ⌈y⌉.

Informally, the subgraph I is an isolated subset if its minimal and max-

imal nodes are the only nodes in I directly related to any nodes outside of

I, and every minimal/maximal node of I has the same set of nodes directly

below/above it.

Notation 24. I ↓ is the subgraph of H that is composed of the nodes of sub-

graph I of H and those of H that are below I, along with all the edges in H

that are between these nodes.

Notation 25. I ↑ is the subgraph of H that is composed of the nodes of sub-

graph I of H and those of H that are above I, along with all the edges in H

that are between these nodes.

Note in the I ↓/I ↑ notation that the nodes of H that are below/above I

are not just those that are directly below/above I.

Definition 21 (Seam). A seam of H is a pair (A, B) of subgraphs of H such

that:

1. A is completely below B, i.e. each node in A is below all of the nodes in

B.

CHAPTER 2. MOQA BACKGROUND 15

2. (A↓) ∪ (B ↑) = H.

Definition 22 (Strictly isolated subset). The subgraph I of H is a strictly

isolated subset if it satisfies the following three conditions:

1. I is an isolated subset.

2. (⌊m(I)⌋,m(I)) is a seam of H.

3. (M(I), ⌈M(I)⌉) is a seam of H.

Informally, the subgraph I is a strictly isolated subset if it is an isolated

subset and there are no nodes to either “side” of it. For example, the isolated

subset comprised of c, d and e in Figure 2.2 is not strictly isolated because

of the “side” node b. Note that the above seam and strictly isolated subset

definitions aim to express the same concepts found in Schellekens’s work [63]

despite the differences in how they are formulated.

Note also that the empty subgraph is both isolated and strictly isolated,

though the tendency is to assume that the subgraphs are not empty.

Definition 23 (Connected component). The subgraph I of H is a connected

component of H if it is a maximal connected subgraph in H.

Notation 26. Let A ||B denote that the two disjoint Hasse diagrams repre-

sented by A and B are in parallel.

Note that all connected components of H are in parallel.

Definition 24 (Label of rank k). The label of rank k in a set of labels is the

kth smallest label in that set of labels.

Hence, the label of rank k in the set of labels for a canonically-ordered

labeling has the value k.

Notation 27. Let swap(x, y) denote the operation that swaps the labels of

nodes x and y.

Notation 28. Let b(x) denote the label value on node x.

Notation 29. For the labeling f on Hβ, let v(lf , Hβ) denote the node in Hβ

that the label value lf is on.

CHAPTER 2. MOQA BACKGROUND 16

Notation 30. For the labeling f on Hβ, let ∧(f,Hβ) denote the minimum

node in Hβ, i.e. the node with the minimum label.

Notation 31. For the labeling f on Hβ, let ∨(f,Hβ) denote the maximum

node in Hβ, i.e. the node with the maximum label.

The MOQA functions currently available are presented in the following

subsections. Each one is MOQA random structure preserving. The Extension

Theorem [63] proves that a MOQA random structure preserving function is

such a function both when applied to an isolated subset of the Hβ represented

by a MOQA random structure and when applied to the entire Hβ represented

by a MOQA random structure.

However, the following subsections do not include all of the MOQA func-

tions presented by Schellekens [63]. Three absentees, which are the MOQA

top, bot and lift functions, were developed during the course of this research

and therefore, are presented separately in Chapter 3 for the purpose of clearly

delineating between existing work and this work.

2.2.1 MOQA Product

Let Hβ denote a series-parallel Hasse diagram with an isolated subset Iβ con-

sisting of exactly two connected components, Aβ and Bβ. The MOQA product

function takes Aβ and Bβ and connects every minimal node of Aβ above every

maximal node of Bβ. Once this relationship has been established, it may be

necessary to reorganise the labeling on Hβ so that it remains in accord with

β. The MOQA product function assumes that β is max-heap ordered, so this

is achieved via the following sequence of steps:

1. For the labeling f on Hβmax
, let minf denote the smallest label in the set

of labels on m(Aβmax
), which of course will also be the smallest label in

the set of labels on Aβmax
, and let maxf denote the largest label in the

set of labels on M(Bβmax
), which of course will also be the largest label

in the set of labels on Bβmax
. If minf < maxf , then carry on to Step 2.

Otherwise, stop because f is consistent with βmax.

2. Swap the minf and maxf labels between their nodes. In other words,

swap(v(minf , Iβmax
), v(maxf , Iβmax

)).

CHAPTER 2. MOQA BACKGROUND 17

3. Apply the push-down logic of the following pseudo-code:

while ⌊v(minf , Iβmax
)⌋ ⊆ Iβmax

and minf < b(∨(f, ⌊v(minf , Iβmax
)⌋))

swap(v(minf , Iβmax
), ∨(f, ⌊v(minf , Iβmax

)⌋))

4. Apply the push-up logic of the following pseudo-code:

while ⌈v(maxf , Iβmax
)⌉ ⊆ Iβmax

and maxf > b(∧(f, ⌈v(maxf , Iβmax
)⌉))

swap(v(maxf , Iβmax
), ∧(f, ⌈v(maxf , Iβmax

)⌉))

5. Go to Step 1.

Observe that the only labels reorganised by the MOQA product function

are those on Iβmax
. In other words, the MOQA product function does not

need to adjust the labels on Hβmax
\ Iβmax

to reconcile the entire labeling f ,

just those on Iβmax
. This is because Iβmax

is an isolated subset of Hβmax
. So

the MOQA product function can view Iβmax
as independent of the portion of

Hβmax
that surrounds it and this is why its “isolation” is advantageous.

Notation 32. Let A ⊗ B denote that the Hasse diagram represented by A

has been producted, via the MOQA product function, above the Hasse diagram

represented by B, when A and B are disjoint4.

A MOQA product function example may be helpful at this point. In Figure

2.4, let A be the Hasse diagram whose nodes are a and b and let B be the Hasse

diagram whose nodes are c and d; note that nodes c and d have already been

connected together by an earlier MOQA product function. Table 2.2 shows all

the distinct canonically-ordered labelings of the overall Hasse diagram depicted

in Figure 2.4. Figure 2.5 then shows the Hasse diagram A ⊗ B and Table

2.3 shows the labelings of Table 2.2 after they have been reorganised by this

MOQA product function.

It is shown, see [63], that applying the MOQA product function to the

isolated subset Iβmax
of Hβmax

of SM

j , which is the jth MOQA random structure

4This is consistent with the implementation of the MOQA language in this work, MOQA-
Java, and with the implementation of the MOQA static analysis tool, Distri-Track [35].
However, A ⊗ B means the reverse in the original MOQA theory [63], i.e. it means that the
Hasse diagram represented by B has been producted above the Hasse diagram represented
by A.

CHAPTER 2. MOQA BACKGROUND 18

c

a b

d

Figure 2.4: An unlabeled Hasse di-
agram

c

a b

d

Figure 2.5: Figure 2.4 after a
MOQA product function

a b c d
1 2 4 3
1 3 4 2
1 4 3 2
2 1 4 3
2 3 4 1
2 4 3 1
3 1 4 2
3 2 4 1
3 4 2 1
4 1 3 2
4 2 3 1
4 3 2 1

Table 2.2: All distinct canonically-
ordered labelings of Figure 2.4

a b c d
4 3 2 1
4 3 2 1
3 4 2 1
3 4 2 1
4 3 2 1
3 4 2 1
3 4 2 1
3 4 2 1
3 4 2 1
4 3 2 1
4 3 2 1
4 3 2 1

Table 2.3: Table 2.2’s labelings af-
ter reorganisation by the MOQA
product function depicted in Figure
2.5

in the MOQA random bag M , results in the multiplication of MSM
j by:

(
|Aβmax

|+ |Bβmax
|

|Bβmax
|

)

.

2.2.2 MOQA Split

Let Iβmax
denote a discrete isolated subset of the series-parallel Hβmax

. Let x

denote a node of Iβmax
. For any labeling on Hβmax

, the MOQA split function

1), connects every node in Iβmax
\ x whose label is greater than the label on x

above x and 2), connects every node in Iβmax
\ x whose label is smaller than

the label on x below x. The labeling then on Iβmax
has no need of modification

because the nature of the MOQA split function ensures that it is correct. The

motivation for Iβmax
being isolated has already been stated in Section 2.2.1.

CHAPTER 2. MOQA BACKGROUND 19

Split

Figure 2.6: The four distinct Hasse diagrams that can result after the MOQA
split function is applied to a discrete Hasse diagram whose size is four

For any labeling on Hβmax
, one of |Iβmax

| distinct Hasse diagrams will result

from the application of the MOQA split function to Iβmax
: one for when the

label on x is the smallest in the set of labels on Iβmax
, one for when the label on

x is the second smallest in the set of labels on Iβmax
, etc. Figure 2.6 illustrates

this by showing the four distinct Hasse diagrams that can result from the

application of the MOQA split function to the discrete Hasse diagram of size

four.

It is shown, see [63], that applying the MOQA split function to the discrete

isolated subset Iβmax
of Hβmax

of SM

j , which is the jth MOQA random structure

in the MOQA random bag M , results in the multiplication of MSM
j by:

(
|⌈x⌉|+ |⌊x⌋|

|⌊x⌋|

)

.

2.2.3 MOQA Deletion

Let Iβmax
denote a strictly isolated subset of the series-parallel Hβmax

. Let

the label of rank k on Iβmax
denote the kth smallest label in the set of labels

on Iβmax
, 1 ≤ k ≤ |Iβmax

|. For any labeling on Hβmax
, the MOQA deletion

function deletes the label of rank k from Iβmax
either upwards or downwards;

this deletion of a label is accompanied by the deletion of a node. A distinctive

characteristic of the MOQA deletion function is that, upon identification of

the label to be deleted, the label to be deleted is viewed as either smaller, if

the label is being pushed downwards, or larger, if the label is being pushed

upwards, than any of the other labels on Iβmax
. By this means the MOQA

deletion function can move the label until it is on one of the extremal nodes in

CHAPTER 2. MOQA BACKGROUND 20

Iβmax
, which it then deletes. The following sequence of steps details how the

label of rank k on Iβmax
is deleted downwards:

1. For the labeling f on Hβmax
, let minf denote the kth smallest label in

the set of labels on Iβmax
after it has been changed to some value less

than b(∧(f, Iβmax
)).

2. Apply the push-down logic of the following pseudo-code:

while ⌊v(minf , Iβmax
)⌋ ⊆ Iβmax

and minf < b(∨(f, ⌊v(minf , Iβmax
)⌋))

swap(v(minf , Iβmax
), ∨(f, ⌊v(minf , Iβmax

)⌋))

3. Now delete v(minf , Iβmax
), which is a minimal node.

The following sequence of steps details how the label of rank k in Iβmax
is

deleted upwards:

1. For the labeling f on Hβmax
, let maxf denote the kth smallest label in

the set of labels on Iβmax
after it has been changed to some value greater

than b(∨(f, Iβmax
)).

2. Apply the push-up logic of the following pseudo-code:

while ⌈v(maxf , Iβmax
)⌉ ⊆ Iβmax

and maxf > b(∧(f, ⌈v(maxf , Iβmax
)⌉))

swap(v(maxf , Iβmax
), ∧(f, ⌈v(maxf , Iβmax

)⌉))

3. Now delete v(maxf , Iβmax
), which is a maximal node.

Informally, the MOQA deletion function deletes the label of rank k from

Iβmax
by pushing it downwards/upwards to a minimal/maximal node and then

removing that node. Iβmax
being strictly isolated for MOQA deletion brings the

same advantages as Iβmax
being isolated for MOQA product, i.e. the MOQA

deletion function can ignore Hβmax
\ Iβmax

.

Table 2.4 shows all the distinct canonically-ordered labelings of the Hasse

diagram depicted in Figure 2.5. Now consider the MOQA downward deletion

of the label of rank four from this Hasse diagram and label set. The label of

rank four is the fourth smallest label and so, in this example, is the largest label

in the set. Figure 2.7 then shows the result of this MOQA deletion function

and Table 2.5 shows the labelings of Table 2.4 after they have been reorganised

by the function. Note that column d is blank in Table 2.5 as this is the node

that has just been deleted.

CHAPTER 2. MOQA BACKGROUND 21

c

a b

Figure 2.7: Figure 2.5 after a downwards MOQA deletion function

a b c d
4 3 2 1
3 4 2 1

Table 2.4: All distinct canonically-
ordered labelings of Figure 2.5

a b c d
2 3 1 -
3 2 1 -

Table 2.5: Table 2.4’s labelings af-
ter reorganisation by the MOQA
deletion function depicted in Fig-
ure 2.7

It is shown, see [63], that applying the MOQA deletion function to the

strictly isolated subset Iβmax
of Hβmax

of SM

j , which is the jth MOQA random

structure in the MOQA random bag M , does not change the multiplicity of

MSM
j .

2.2.4 MOQA Projection

Let Iβ denote an isolated subset of the series-parallel Hβ. For any labeling on

Hβ, the MOQA projection function makes a copy of Iβ. As this function makes

no changes to either the original Iβ or the copy Iβ, the labeling on both is still

in order, and multiplicity is unaffected. So the MOQA projection function

never involves any label-to-label comparisons as it simply clones an isolated

subset.

2.3 Average-case Cost in MOQA

Average-case behaviour is modular, or as Schellekens [63] puts it, it is IO-

compositional. To illustrate, let P denote a program that consists of just

two independent calls, the first to program Q and the second to program R.

Average-case behaviour is said to be IO-compositional because the average-

case behaviour of P is the average-case behaviour of Q plus the average-case

behaviour of R. Unlike average-case behaviour, this is not always true for either

best-case or worst-case behaviour; this point is further discussed in Chapter 6

CHAPTER 2. MOQA BACKGROUND 22

in its review of related works that have come to the same conclusion.

All MOQA functions are MOQA random bag/structure preserving, i.e. they

output a non-empty multiset of MOQA random structures when a MOQA ran-

dom structure is the input. MOQA limits function input to a MOQA random

structure so that its formula for determining the average number of label-

to-label comparisons5 can correctly assume that all the canonically-ordered

labelings of the MOQA random structure’s Hβ are equally likely. The formula

operates by iterating once through the shape of Hβ to determine the average

number of label-to-label comparisons, so combining this assumption with the

additional assumption that β is max-heap ordered enables a key formula ex-

pectation to be accurate. This expectation is that the average-case formula

is equally likely to take each path at any branching point reached during its

traversal of Hβ and this allows for the complexity of these MOQA formulas to

be greatly reduced. Furthermore, the output of a MOQA function is arranged

to be acceptable input for the next MOQA function. Hence, the restriction on

MOQA function input and output simplifies the static analysis.

An important point just noted here and also earlier, which should be re-

tained by the reader throughout this work, is that both the MOQA functions

and the mathematical techniques employed by MOQA assume that β is max-

heap ordered; an assumption so ingrained that it is actually hard-coded into

the MOQA methodology. Though the MOQA approach would also apply if

β is min-heap ordered, max-heap ordered is taken to be the default β value.

This will continue to be the default for the new research presented in coming

chapters.

Deeper attention will now be given to how MOQA reckons the average-

case cost of its functions for a MOQA random structure before moving on

to the average-case cost of its functions for a MOQA random bag. When a

MOQA function is applied to the Hβmax
of a MOQA random structure, then

its MOQA formula for statically calculating the average number of label-to-

label comparisons generally involves subsidiary equations, which are known as

composition laws. These composition laws are divided into four groups, σ, κ,

τ and ∆, and the equations of each group measure a specific property. All of

5At future times the term “label-to-label comparisons” may be abbreviated to simply
“comparisons”. However, the context should still indicate that the comparisons being re-
ferred to are of type label-to-label.

CHAPTER 2. MOQA BACKGROUND 23

these equations have a parameter in common, the series-parallel Hβmax
.

Let Aβmax
and Bβmax

denote two disjoint and non-empty series-parallel

Hβmax
s. So, when the size of the series-parallel Hβmax

parameter for one of

these composition laws is greater than one, then the parameter becomes binary,

i.e. it is a function of two variables as it is equivalent to either Aβmax
⊗ Bβmax

or Aβmax
||Bβmax

. Let •βmax
denote the series-parallel Hβmax

whose size is one.

So, when the size of the series-parallel Hβmax
parameter for one of these com-

position laws is one, then •βmax
is the parameter.

The σup, κup and τup (but not the ∆up) equations given below are all based

on the assumption that the minimum label on the series-parallel Hβmax
param-

eter has just been replaced with a new label, which will be of rank k in the

set of labels now on Hβmax
, 1 ≤ k ≤ |Hβmax

|. (Recall that the label of rank

k in a set of labels is the kth smallest label in that set of labels.) Such label

replacement takes place, for example, during the MOQA product function.

There is now enough background to present equations from each of the four

composition law groups. These equations are taken from Schellekens [63].

The first composition law group is σ(Hβmax
). σup(Hβmax

) is the average

number of label-to-label comparisons that it takes to push the new label on the

series-parallel Hβmax
from a minimal node up to a maximal node when the new

label is of rank |Hβmax
| and the average is taken over every canonically-ordered

labeling in L(Hβmax
), which is the set of all canonically-ordered labelings of

the Hasse diagram H that has the label ordering β on it.

σup(Aβmax
||Bβmax

) =
|Aβmax

|.σup(Aβmax
) + |Bβmax

|.σup(Bβmax
)

|Aβmax
|+ |Bβmax

|
(2.1)

σup(Aβmax
⊗ Bβmax

) = σup(Aβmax
) + σup(Bβmax

) + |m(Aβmax
)| (2.2)

σup(•βmax
) = 0 (2.3)

The second composition law group is κ(Hβmax
). κup(Hβmax

) is the average

number of times that the new label on the series-parallel Hβmax
is pushed up

as far as a maximal node. In other words, let yk denote the average number of

times that the new label on Hβmax
is pushed up as far as a maximal node when

the new label is of rank k and the average is taken over every canonically-

CHAPTER 2. MOQA BACKGROUND 24

ordered labeling in L(Hβmax
). Therefore, κup(Hβmax

) =
∑|Hβmax |

k=1 yk.

κup(Aβmax
||Bβmax

) = κup(Aβmax
) + κup(Bβmax

) (2.4)

κup(Aβmax
⊗ Bβmax

) = κup(Aβmax
) (2.5)

κup(•βmax
) = 1 (2.6)

The third composition law group is τ (Hβmax
). τup(Hβmax

) is the average

number of label-to-label comparisons that it takes to push the new label on

the series-parallel Hβmax
from a minimal node up to its correct position. In

other words, let xk denote the average number of label-to-label comparisons

that it takes to push the new label on Hβmax
from a minimal node up to its

correct position when the new label is of rank k and the average is taken

over every canonically-ordered labeling in L(Hβmax
). Therefore, τup(Hβmax

) =

(
∑|Hβmax |

k=1 xk)/|Hβmax
|.

τup(Aβmax
||Bβmax

) =
|Aβmax

|.τup(Aβmax
) + |Bβmax

|.τup(Bβmax
)

|Aβmax
|+ |Bβmax

|
(2.7)

τup(Aβmax
⊗ Bβmax

) = (|Bβmax
|.τup(Bβmax

) + κup(Bβmax
).|m(Aβmax

)|+

|Aβmax
|.(τup(Aβmax

) + |m(Aβmax
)|+ σup(Bβmax

)))/

|Aβmax
|+ |Bβmax

| (2.8)

τup(•βmax
) = 0 (2.9)

The fourth composition law group is ∆(Hβmax
, k). ∆up(Hβmax

, k) is the

average number of label-to-label comparisons that it takes to delete the label

of rank k on the series-parallel Hβmax
by pushing it up to a maximal node and

then removing that node, when the average is taken over every canonically-

ordered labeling in L(Hβmax
).

CHAPTER 2. MOQA BACKGROUND 25

∆up(Aβmax
||Bβmax

, k) =

((|Bβmax |∑

i=1

(
k − 1

i− 1

)

.

(
|Aβmax

|+ |Bβmax
| − k

|Bβmax
| − i

)

.

∆up(Bβmax
, i)

)

+

(|Aβmax |∑

i=1

(
k − 1

i− 1

)

.

(
|Aβmax

|+ |Bβmax
| − k

|Aβmax
| − i

)

.∆up(Aβmax
, i)

))

/

(
|Aβmax

|+ |Bβmax
|

|Bβmax
|

)

(2.10)

∆up(Aβmax
⊗ Bβmax

, k) =







∆up(Aβmax
, k − |Bβmax

|) if k > |Bβmax
|

∆up(Bβmax
, k) + |m(Aβmax

)|

−1 + ∆up(Aβmax
, |Aβmax

|) if k ≤ |Bβmax
|

∆up(•βmax
) = 0 (2.11)

The σdown, κdown and τdown (but not the ∆down) equations are all based on

the assumption that the maximum label on the series-parallel Hβmax
parameter

has just been replaced with a new label, which will be of rank k in the set of

labels now on Hβmax
. For example, σdown(Hβmax

) is the average number of

label-to-label comparisons that it takes to push the new label on the series-

parallel Hβmax
from a maximal node down to a minimal node when the new

label is of rank 1 and the average is taken over every canonically-ordered

labeling in L(Hβmax
). Hence, the equations for σdown, κdown, τdown and ∆down

will be similar to those above.

Notation 33. Let f denote a MOQA function.

Notation 34. Let T f (Hβmax
) denote the average number of label-to-label com-

parisons that result when the MOQA function f is applied to the series-parallel

Hβmax
, when the average is taken over every labeling in the canonically-ordered

set L(Hβmax
).

So Schellekens’s formula [63] for the average-case cost of the MOQA prod-

uct function when applied to the Hβmax
of a MOQA random structure demon-

CHAPTER 2. MOQA BACKGROUND 26

strates the application of these composition laws:

T prod(Aβmax
||Bβmax

) =
|Aβmax

|.|Bβmax
|

|Aβmax
|+ |Bβmax

|
.(τdown(Bβmax

) + τup(Aβmax
)) +

(
|Aβmax

|.|Bβmax
|

|Aβmax
|+ |Bβmax

|
+ 1

)

.(|M(Bβmax
)|+

|m(Aβmax
)| − 1).

Note that Aβmax
||Bβmax

will have been transformed into Aβmax
⊗ Bβmax

upon

completion of the MOQA product function.

The formula for the average-case cost of the MOQA deletion function that

deletes the label of rank k upwards through the Hβmax
of a MOQA random

structure is simply:

T deleteUp(Hβmax
, k) = ∆up(Hβmax

, k).

However, a MOQA function’s average-case formula is not required to in-

clude the above composition laws, which has been established by Schellekens’s

average-case formula [63] for the MOQA split function. The formula for the

average-case cost of the MOQA split function when applied to a node in the

discrete Hβmax
of a MOQA random structure is:

T split(Hβmax
) = |Hβmax

| − 1.

In general, for each MOQA function f , the MOQA theory should provide

the formula for T f (Hβmax
) when Hβmax

is the appropriate series-parallel data

structure. (Note that, when discussing the average-case cost of a MOQA

function in this work, the term “formula” will refer to the total average-case

cost and the term “equation” will refer to the composition laws involved.)

After presenting the means by which MOQA determines the average-case

cost of a MOQA function when applied to the Hβmax
of a MOQA random

structure, attention can be turned to how MOQA determines this average-

case information when the MOQA function is applied to a MOQA random

bag.

Notation 35. Let T f (S
M

j) denote T f (Hβmax
) for the Hβmax

of that SM

j .

Recall that SM

j denotes the jth MOQA random structure in the MOQA

CHAPTER 2. MOQA BACKGROUND 27

random bag M .

Notation 36. Let T f (M) denote the average number of label-to-label compar-

isons that result when the MOQA function f is applied to the MOQA random

bag M.

As shall be seen shortly, it is necessary to work out the relative frequency

of each SM

j occurring in M if the MOQA static analysis tool is to calculate

T f (M).

Notation 37. Let L(SM

j) denote L(Hβmax
) for the Hβmax

of that SM

j .

Notation 38. Let l(M) denote the multiset union of each SM

j ’s multiset of

canonically-ordered labelings.

Therefore, |l(M)| =
∑|M|

j=1 |L(SM

j)|.MSM
j . So

|L(SM
j)|.M

SM
j

|l(M)|
is the relative

frequency of SM

j occurring in M.

Though the |L(SM

j)| term could be established through generating L(SM

j)

and then counting its size, a more efficient solution was devised. In like manner

to the composition laws, this solution takes advantage of the fact that Hβmax
is

in series-parallel and has the βmax label ordering on it and therefore, only needs

to iterate once through the shape of Hβmax
to get |L(Hβmax

)|. The equations

for this approach, see [63], are as follows.

If Hβmax
= Hβmax, 1 ⊗ . . . ⊗ Hβmax, n, then:

|L(Hβmax
)| =

n∏

i=1

|L(Hβmax, i)|. (2.12)

If Hβmax
= Hβmax, 1 || . . . || Hβmax, n, then:

|L(Hβmax
)| =

(
|Hβmax

|

|Hβmax, 1| . . . |Hβmax, n|

)

.
n∏

i=1

|L(Hβmax, i)|, (2.13)

where

(
|Hβmax

|

|Hβmax, 1| . . . |Hβmax, n|

)

=

(
|Hβmax

|

|Hβmax, 1|

)

.

(
|Hβmax

| − |Hβmax, 1|

|Hβmax, 2|

)

. . .

(
|Hβmax

| −
∑n−1

i=1 |Hβmax, i|

|Hβmax, n|

)

.

CHAPTER 2. MOQA BACKGROUND 28

Accordingly, T f (M) is an amalgamation of the average-case cost of f when

applied to each SM

j in M and the relative frequency of each SM

j occurring in

M. As a formula, this is:

T f (M) =

|M|
∑

j=1

|L(SM

j)|.MSM
j

|l(M)|
.T f (S

M

j). (2.14)

Note that when there is only one MOQA random structure in M, then

T f (M) is simply T f (S
M

1).

2.4 MOQA Algorithms

This exploration of the MOQA theory—realised through statically calculat-

ing the average-case behaviour of MOQA functions—concludes with listing

the algorithms that it is capable of automatically analysing. There are four

such algorithms presented in the parental MOQA research [63]: insertion-sort,

quicksort/quickselect, mergesort and treapsort. Later discussions will again

refer to these algorithms but, for now, their descriptions can be found at the

following locations:

• Figure 3.5 on page 46 shows the insertion-sort algorithm, as implemented

in MOQA-Java. (MOQA-Java is the MOQA language implementation

developed during this research; it is introduced in Chapter 3.)

• Figure 3.6 on page 49 shows the quicksort algorithm, as implemented in

MOQA-Java.

• Figure 6.1 on page 189 shows the mergesort algorithm, as implemented

in MOQA-Java.

• Appendix A shows and explains the pseudo-code for the treapsort algo-

rithm, whose inspiration is the heapsort algorithm.

2.5 Chapter Summary

This chapter presented a summary of the MOQA theory, which should be

sufficient for comprehending the work to come. The language implementation

CHAPTER 2. MOQA BACKGROUND 29

of this theory is dealt with in the following chapter. Note that, unless stated

otherwise, the work from this point onwards has been independently developed

by the author.

Chapter 3

The MOQA Language

This chapter concentrates on the MOQA language, with special attention being

given to practicality. The design for the current implementation of the MOQA

language is detailed, along with the raison d’être for many of the design choices.

Next, an examination of implementation costs, specifically space and average-

case cost, is carried out. Subsequently, new MOQA functions are described

and their existence justified. This chapter then concludes with a study of

MOQA language reversibility.

3.1 The MOQA Language Implementation

The MOQA language implementation discussed in this section is based on

the theory [63] summarised in Chapter 21. There is a clear delineation to

be made between MOQA-Java, the current implementation of the MOQA

language, and Distri-Track [35], the current implementation of the MOQA

static analysis tool. The former is the language in which MOQA-satisfying

programs are written and executed. The later is a tool whose input is a

MOQA-satisfying program written in MOQA-Java, and which then parses and

analyses this code to output its average-case behaviour. So the execution of

a MOQA-Java program is simply one run-time of that MOQA-Java program

whereas the execution of a Distri-Track program is one run-time of that Distri-

Track program which considers all the run-times of a particular MOQA-Java

program, thus motivating the MOQA random structure/bag methodology.

1Hence, the new data structure types in Chapter 4 are not part of the current MOQA
language implementation.

30

CHAPTER 3. THE MOQA LANGUAGE 31

So Distri-Track supplies the timing information for a MOQA-Java program

without executing it. Generally, however, the purpose of writing code is to run

it and an aim of MOQA is for programmers to write components of their real-

world applications in MOQA-Java so that they can benefit from information

about the behavioural nature of the code they have just written. Therefore,

the MOQA-Java syntax should encourage programmers to write code that

conforms to the MOQA theory so that the code can be completely and correctly

analysed by Distri-Track. This was a strong motivation behind some of the

MOQA-Java design choices.

MOQA-Java is in the form of a Java 5.0 package2, thereby presenting a

new paradigm in a familiar setting. A programmer will import the MOQA-

Java package if s/he wishes to program in MOQA-Java; modifications to the

MOQA-Java package are only undertaken by implementers of the MOQA lan-

guage. However, MOQA-Java should not be seen as a Java extension, quite

the opposite in fact, as the MOQA theory restricts some of the basic constructs

in the core Java library. The theory limits the range of conditional expressions

allowed in if statements to first-order and second-order conditional expres-

sions; a first-order conditional expression compares label values and a second-

order conditional expression compares the size of a data structure to a closed

arithmetical expression. It also completely excludes while statements because

statically determining how often they iterate can be problematic, which mo-

tivates other static analysis timing tools to bound the number of while loop

cycles [34]. Though while statements are precluded from MOQA, Hickey [35]

explores which instances could be open to analysis by a future MOQA static

analysis tool.

Furthermore, only the classes made available by the MOQA-Java package

should be present in the code submitted for evaluation to the MOQA static

analysis tool. The sole purpose of the MOQA static analysis tool is to track

the average-case cost of the MOQA functions that are applied to the MOQA

data structure, i.e. the series-parallel data structure. This means that classes

outside of the MOQA-Java package are outside of MOQA’s remit. Therefore,

while MOQA-Java code has Java’s syntax and object-oriented design, it cannot

be mixed up amongst other Java code if it is to statically analysed. So it may

be more appropriate to view MOQA-Java as a modest language in the Java

2Java 5.0 was the latest version of Java at the time of development.

CHAPTER 3. THE MOQA LANGUAGE 32

syntax. Thus, MOQA-Java code should be a stand-alone entity that can be

employed by, but does not depend on, non-MOQA-Java code.

The above restrictions on control flow and classes are not enforced by the

MOQA-Java package. Any breach of these regulations would have to be de-

tected by the MOQA static analysis tool. Hickey [35] details the restrictions,

control flow in particular, on the MOQA-Java code that Distri-Track currently

requires for an analysis to successfully complete.

3.1.1 MOQA-Java Details

Figure 3.1 is the MOQA-Java class diagram. Its graphic notation follows the

standard UML graphic notation and is as follows3. Let <<TypeName>> de-

note that TypeName is an interface. Let TypeName denote that TypeName is

an abstract class. Let TypeName denote that TypeName is a standard class.

Let the hexagon at one end of a solid line denote that there is a composition

relationship between two classes. Let the number at one end of a solid line

denote multiplicity. For example, in Figure 3.1 a NodeInfo instance will always

have one Label instance. Inheritance is indicated by a solid line with an un-

filled arrowhead pointing at the super class. A class that realises/implements

the behaviour of an interface is indicated by a dotted line with an unfilled

arrowhead pointing at the interface.

The label ordering on the MOQA data structure is hard-coded into MOQA-

Java and, in line with the definitions of the MOQA functions, is the max-heap

label ordering. (In the future, MOQA-Java could allow the programmer to

specify whether the label ordering is min-heap or max-heap, which would then

lead to the selection of either the min-heap or max-heap versions of the MOQA

functions.) The classes in Figure 3.1 will now be explained.

The MOQA data structure is represented in MOQA-Java by an instance of

the LPO (Labeled Partial Order) class and the subsets of a MOQA data struc-

ture, which are created and then returned by MOQA functions, are instances

of the SubLPO class. So the SubLPO class, in conjunction with the Node class

discussed below, represents part of the MOQA data structure and in particular,

the part it represents is an isolated subset. An instance of the SubLPO class

is only ever created to reflect a structural change within a MOQA data struc-

3The attributes and operations of each class in Figure 3.1 are excluded for ease of reading.

CHAPTER 3. THE MOQA LANGUAGE 33

<<CollectionConstruct>>

OrderedCollectionSet

OrderedCollectionProp

NodeCompProp

OrderedComponentProp

Marker

SubsetCompProp

LabelNode NodeInfo

1

OrderedCollection

SubLPOLPO

OrderedCollectionSubset

1

1

11

<<SingularOrderedComponent>> <<CompositeOrderedComponent>>

<<OrderedComponent>>

Figure 3.1: The MOQA-Java class diagram

CHAPTER 3. THE MOQA LANGUAGE 34

ture/LPO instance. As can be seen from Figure 3.1, the LPO class extends

the OrderedCollectionSet abstract class and the SubLPO class extends the

OrderedCollectionSubset abstract class. Through the OrderedCollectionSub-

set class, the SubLPO class inherits the OrderedComponent interface. Both

of these abstract classes extend the OrderedCollection abstract class, which

represents a collection whose elements are of type OrderedComponent. In

general, an instance of the SubLPO class will be directly contained within an

OrderedCollection instance and it will be a collection of elements that had the

same set of elements above them and the same set of elements below them

within that OrderedCollection instance; an OrderedComponent instance is di-

rectly contained within an OrderedCollection instance when it is not nested

within any other OrderedComponent instance within that OrderedCollection

instance and yet is still within that OrderedCollection instance.

A point to consider is that a programmer in MOQA-Java can never in-

stantiate a SubLPO. This class can only be instantiated internally within the

MOQA-Java package and, as already stated, is done so during the execution

of a MOQA function. Why is this not an option for a programmer in MOQA-

Java? Chapter 2 states the MOQA requirements for statically determining

the average-case behaviour of a function that is applied to a data structure.

First, the data structure is a MOQA data structure whose states are restricted

to a particular distribution and second, any function applied to the MOQA

data structure must preserve this distribution and hence, be a MOQA ran-

dom structure preserving function. So a MOQA data structure should be

exclusively modified by the MOQA functions. Therefore, a programmer in

MOQA-Java should not modify a LPO instance outside of the MOQA func-

tions. As a SubLPO instance is only ever created to reflect a structural change

within a LPO instance, a programmer in MOQA-Java should not bring one

into being independently of the MOQA functions. This constraint is enforced

by the design of MOQA-Java prohibiting a programmer from creating a Sub-

LPO instance. In addition to being returned by MOQA functions, the SubLPO

instances from which a LPO instance is composed can also be accessed via an

Iterator; see Section 3.1.2 for method details.

It can be seen from the MOQA-Java examples in this work, beginning with

Figure 3.2, that the addition of generics to Java 5.0 is used to specify the type

of label value on the elements contained within a LPO instance and hence, on

CHAPTER 3. THE MOQA LANGUAGE 35

LPO<Integer> lpo1 = new LPO<Integer >() ;
LPO<Integer> lpo2 = new LPO<Integer >() ;

NodeInfo<Integer> minusOne = new NodeInfo<Integer >(
new Label<Integer >(−1), ‘ ‘ minusOne ’ ’) ;

NodeInfo<Integer> zero = new NodeInfo<Integer >(0 , ‘ ‘ z e ro ’ ’) ;
NodeInfo<Integer> one = new NodeInfo<Integer >(1 , ‘ ‘ one ’ ’) ;

lpo1 . add (minusOne) ;
lpo1 . add (zero) ;
lpo1 . add (one) ;

lpo2 . add (minusOne) ;
lpo2 . add (zero) ;

Figure 3.2: Adding label values to MOQA data structures in MOQA-Java —
the first argument to a NodeInfo’s constructor is a Label object / label value
and the second argument is the data associated with that Label object / label
value

the elements contained within all of its SubLPO instances.

As indicated by Figure 3.2, the NodeInfo class is used to populate a LPO.

In other words, labels values are added to the MOQA data structure by means

of the NodeInfo class. So each instance of the NodeInfo class has exactly one

instance of the Label class. A Label instance stores a label value. The Label

instance that belongs to a NodeInfo instance is either supplied as an argument

to the NodeInfo constructor or is created by the NodeInfo constructor for the

label value that is supplied as an argument to it. Any data associated with the

label value of the Label instance is stored in the NodeInfo instance. There are

no restrictions on the associated data. For example, it could be the medical

history of some patient whose unique identifier is the corresponding label value.

While the data associated with the label value can be modified at any

time, the label value is constant because modifying it can introduce discord

between the labeling on the MOQA data structure and the obligatory max-

heap label ordering. What about implementing a function that readjusts a

modified labeling? One impediment to this solution is the development of a

MOQA average-case formula for such a function and without the formula there

would be a cost that is not factored into the timing result generated by the

MOQA static analysis tool. There is another serious impediment to consider,

which is that all of the MOQA data structure’s canonically-ordered labelings

CHAPTER 3. THE MOQA LANGUAGE 36

may no longer be equally likely when a label value change necessitates labeling

rearrangement. So rearrangement of the labeling could result in a distribution

of MOQA data structure state that differs from the one dealt with by the

MOQA average-case formulas and therefore, would result in the MOQA static

analysis tool producing a faulty average-case recurrence when other MOQA

functions follow the label value change. Hence, MOQA-Java denies label value

modification after its initial assignment in a Label instance.

As demonstrated in Figure 3.2, the same NodeInfo instance can be added

to one or more LPO instances, i.e. multiple LPO instances can store the same

label value and data pair. (However, all new elements must be added to a

MOQA data structure prior to applying the first MOQA function [63]. So,

because MOQA-Java is built on the MOQA theory [63], a NodeInfo instance

can be added to a LPO instance but not to a SubLPO instance, as it is the

application of a MOQA function that triggers the instantiation of a SubLPO.

Additionally, the NodeInfo instance can only be added to a LPO instance if

the LPO instance is discrete, that is, it is at “starting” state. The adaptation

of the MOQA functions in Section 3.3 would remove these restrictions, and

hence the cost incurred from verifying LPO discreteness, from future MOQA

language implementations.) The LPO instance creates a Node instance for

each NodeInfo instance added to it so the Node class has a one-to-many rela-

tionship with the LPO class. The Node class has package-level visibility which

means that code outside of the MOQA-Java package is unaware of the Node

class. (The Node class has reduced visibility because the algorithms currently

written in MOQA-Java can accomplish their tasks without access to this class.

So the current version of the MOQA-Java package keeps the number of public

classes to a minimum for the sake of simplicity. However, if later work con-

cludes that programmers in MOQA-Java should have access to the Node class

because such access would make programming in MOQA-Java more practical,

then the visibility of the Node class should be increased.) Like the OrderedCol-

lectionSubset class, the Node class inherits the OrderedComponent interface

so it is of the type that can be contained within an OrderedCollection.

The purpose of the Node class is to record the series-parallel relationship

between a Node instance and the other OrderedComponent instances that are

also directly contained within the same OrderedCollection instance. As the

purpose of the NodeInfo class is to record a label value and data pair, the Node

CHAPTER 3. THE MOQA LANGUAGE 37

and NodeInfo design give a measure of separation between the series-parallel

data structure and the labeling on it. Thus, while a NodeInfo instance can be

in multiple LPO instances, a Node instance is unique to a single LPO instance

because it represents one element in the MOQA data structure represented by

that LPO instance. Note that a NodeInfo instance is not bound to its initial

Node instance. The MOQA functions will swap NodeInfo instances between

Node instances during their adjustment of the labeling on the MOQA data

structure.

It has been observed that both the Node class and the SubLPO class inherit

the OrderedComponent interface and that it is objects of this type that are col-

lected within a LPO/SubLPO instance. The moment at which a Node instance

comes into existence has just been explained but when exactly does a SubLPO

instance come into existence? What structural change requires some of the

OrderedComponent instances directly contained within an OrderedCollection

instance to be moved into a new SubLPO instance for that OrderedCollection

instance? (Recall that only the OrderedComponent instances that have the

same set of elements directly above them and the same set of elements di-

rectly below them within that OrderedCollection instance can be moved into

its new SubLPO instance.) MOQA-Java abides by its rule that the Ordered-

Component instances directly contained within an OrderedCollection instance

are always in parallel. There is one permissible exception to this rule, that

of an OrderedCollectionSubset instance with exactly two OrderedComponent

instances directly contained within it. Such OrderedComponent instances can

also be in series. So a SubLPO instance is created during the execution of a

MOQA function to ensure that the entire LPO instance continues to adhere to

this MOQA-Java rule. Figure 3.3 gives an example of SubLPO instantiation;

in this figure a LPO instance is represented by a solid line box and a SubLPO

instance is represented by a dotted line box. In Figure 3.3, LPO I illustrates

how a discrete partial order of size seven is represented in MOQA-Java and

LPO II illustrates the MOQA-Java representation of LPO I after a MOQA

product function involving five elements is applied to it. Note that the outer-

most SubLPO instance in LPO II has been added to maintain LPO parallelism

and that its direct content can be in series because it consists of exactly two

OrderedComponent instances.

One benefit from MOQA-Java representing the series-parallel nature of

CHAPTER 3. THE MOQA LANGUAGE 38

ba c d e g

1 2 3 4 5 6

ba

d e

1

5

2

4 3

f

c f g

7

6 7

LPO I

LPO II

Figure 3.3: LPO I, the MOQA-Java representation of a discrete partial order
of size seven, becomes LPO II after the MOQA product function products
elements a, b and c above elements d and e

the MOQA data structure in this way is that every OrderedComponent in-

stance has at most one OrderedComponent instance directly above it and

at most one OrderedComponent instance directly below it. Figure 3.4 illus-

trates how explicitly recording all of the OrderedComponent instances directly

above and below each OrderedComponent instance differs from the MOQA-

Java approach. (Note that any saving in space from the links being implicit

is overshadowed by the space that a SubLPO instance consumes. The impact

of this is considered in Section 3.2.) This SubLPO design greatly simplifies

the checks for correctness that must be carried out on the arguments supplied

to each MOQA function. For example, let A denote an OrderedComponent

instance and let B denote an OrderedComponent instance distinct from A. If

the MOQA product function is requested to product A above B, then MOQA-

Java can determine whether A and B are legitimate arguments for the MOQA

product function by simply checking whether they are both directly contained

within the same OrderedCollection instance. A final minor characteristic of the

SubLPO design is that it can give some indication of the sequence of MOQA

functions that produced the LPO instance in question.

Returning to the remaining classes in Figure 3.1, a constant instance of the

CHAPTER 3. THE MOQA LANGUAGE 39

ba

1

5

2

4 3

c f g

6 7

d e

LPO II’

Figure 3.4: LPO II’ is LPO II in Figure 3.3 without the SubLPO design

Marker class is used as an argument separator for some MOQA-Java functions.

For example, the MOQA product function in the OrderedCollection class uses

the Marker constant to split its variable number of arguments into two groups.

The first group is the arguments that precede the Marker argument and the

second group is the arguments that succeed the Marker argument. The first

group of arguments is then producted above the arguments of the second group.

The OrderedCollectionSubset, NodeInfo and Marker class implement the

CollectionConstruct interface. This interface is for classes that are visible

outside of the MOQA-Java package and, as the name of the interface suggests,

are involved in the construction of a LPO/SubLPO instance. For example, the

variable number of arguments accepted by the MOQA product function in the

OrderedCollection class are all of type CollectionConstruct.

Finally, the purpose of the OrderedCollectionProp/OrderedComponent-

Prop class, which has package-level visibility, is to gather together all of the at-

tributes and operations common to an OrderedCollection/OrderedComponent.

For example, an OrderedComponentProp instance includes a reference to the

OrderedComponent instance directly above and below its OrderedComponent

instance and the operations for getting the minimal and maximal elements in

its OrderedComponent instance.

Now that the overview of MOQA-Java has come to a conclusion, a synopsis

of the core MOQA-Java functions can follow.

CHAPTER 3. THE MOQA LANGUAGE 40

3.1.2 MOQA-Java Functions

This section outlines the principal methods available to a programmer in

MOQA-Java. Recall that MOQA-Java makes use of generics to specify the

type of label value on the elements contained within a LPO instance, in par-

ticular, the type variables T and L in the method signatures that follow.

The principal methods made public by the OrderedCollection class are:

1. public static <T extends Comparable< T >> OrderedCollectio-

nSet< T > copyOf(OrderedCollection<T> oc)

Returns a deep copy of the specified OrderedCollection. The deep copy

does not include the NodeInfos, which are shallow copied.

2. public int size()

Returns the total number of NodeInfos directly and indirectly contained

within this OrderedCollection.

3. public int directContentSize()

Returns the total number of OrderedComponents directly contained wit-

hin this OrderedCollection, i.e. returns the total number of NodeInfos

and SubLPOs directly contained within this OrderedCollection.

4. public boolean isAtomic()

Returns true when every NodeInfo in this OrderedCollection is atomic4.

5. public boolean isSeries()

Returns true when all of the OrderedComponents directly contained

within this OrderedCollection are in series.

6. public boolean isParallel()

Returns true when all of the OrderedComponents directly contained

within this OrderedCollection are in parallel.

7. public OrderedCollectionSubset<L> product(CollectionConst-

ruct... components)

Returns the OrderedCollectionSubset whose direct content is the result

of producting the specified OrderedComponents preceding the specified

4In Schellekens’s work [63] the term “atomic” is interchangeable with “discrete”.

CHAPTER 3. THE MOQA LANGUAGE 41

Marker above the specified OrderedComponents succeeding it. This

method is the implementation of the MOQA product function.

8. public OrderedCollection<L>5 split(NodeInfo<L> nodeInfo)

Returns the OrderedCollection whose direct content is the result of a

split on the specified NodeInfo. This method is the implementation of

the MOQA split function.

9. public NodeInfo<L> removeKBiggestDown(int k)

Returns the kth biggest NodeInfo in this OrderedCollection after remov-

ing it by pushing it down to one of the minimal elements in this Ordered-

Collection and then deleting that element. This method is an implemen-

tation of the MOQA deletion function6.

10. public NodeInfo<L> removeKSmallestDown(int k)

Returns the kth smallest NodeInfo in this OrderedCollection after re-

moving it by pushing it down to one of the minimal elements in this

OrderedCollection and then deleting that element. This method is an

implementation of the MOQA deletion function.

11. public NodeInfo<L> removeKBiggestUp(int k)

Returns the kth biggest NodeInfo in this OrderedCollection after remov-

ing it by pushing it up to one of the maximal elements in this Ordered-

Collection and then deleting that element. This method is an implemen-

tation of the MOQA deletion function.

12. public NodeInfo<L> removeKSmallestUp(int k)

Returns the kth smallest NodeInfo in this OrderedCollection after remov-

ing it by pushing it up to one of the maximal elements in this Ordered-

Collection and then deleting that element. This method is an implemen-

tation of the MOQA deletion function.

13. public NodeInfo<L> removeMinimum()

Returns the smallest NodeInfo in this OrderedCollection after removing

5An OrderedCollectionSet is only returned when this OrderedCollection is an Ordered-
CollectionSet that has no other discrete NodeInfos directly contained within it so there is
nothing for this method to do. Otherwise, an OrderedCollectionSubset is always returned.

6MOQA-Java uses the term “remove” instead of “delete” so that its method signatures
are more in conformance with those set down in the java.util.Collection interface.

CHAPTER 3. THE MOQA LANGUAGE 42

it by deleting the minimum element in this OrderedCollection. This

method is an implementation of the MOQA deletion function.

14. public NodeInfo removeMaximum()

Returns the biggest NodeInfo in this OrderedCollection after removing

it by deleting the maximum element in this OrderedCollection. This

method is an implementation of the MOQA deletion function.

15. public Iterator<NodeInfo<L>> iterator()

Returns a top-down Iterator over all of the NodeInfos directly and in-

directly contained within this OrderedCollection. The returned Iterator

does not support the remove operation.

16. public Iterator<NodeInfo<L>> iteratorExcept(CollectionCon-

struct... excluding)

Returns a top-down Iterator over all of the NodeInfos directly and indi-

rectly contained within this OrderedCollection minus those represented

by the specified CollectionConstructs. The returned Iterator does not

support the remove operation.

17. public Iterator<NodeInfo<L>> getDirectNodeInfoIter()

Returns an Iterator over all of the NodeInfos directly contained within

this OrderedCollection. The returned Iterator does not support the re-

move operation.

18. public Iterator<OrderedCollectionSubset<L>> getDirectSubs-

etIter()

Returns an Iterator over all of the OrderedCollectionSubsets directly

contained within this OrderedCollection. The returned Iterator does not

support the remove operation.

The principal methods made public by the OrderedCollectionSet class

are:

1. public boolean add(NodeInfo<L> nodeInfo)

Returns true if the specified NodeInfo is successfully added to this Or-

deredCollectionSet. This method is successful when this OrderedCollec-

CHAPTER 3. THE MOQA LANGUAGE 43

tionSet does not already contain a Label whose label value is equal to

the label value of the Label of the specified NodeInfo7.

2. public boolean addLabelValueAndData(L labelValue, Object...

data)

Returns true if the specified label value and data pair are successfully

added to this OrderedCollectionSet. This method is successful when this

OrderedCollectionSet does not already contain a label value equal to the

specified label value; the footnote to the previous method also applies

for this method.

The principal methods made public by the OrderedCollectionSubset

class are:

1. public Set<NodeInfo<L>> removeComplement()

Returns the Set of all the NodeInfos directly and indirectly contained

within this OrderedCollectionSubset’s OrderedCollectionSet minus the

NodeInfos directly and indirectly contained within this OrderedCollec-

tionSubset once this method has removed the NodeInfos to be returned

from this OrderedCollectionSubset’s OrderedCollectionSet. So any Or-

deredCollectionSubset within the complement of this OrderedCollection-

Subset is emptied of all its NodeInfos and is no longer within an Ordered-

CollectionSet, which motivates the next method8.

2. public boolean inCollectionSet()

Returns true when this OrderedCollectionSubset is within an Ordered-

CollectionSet.

7Therefore, adding n NodeInfos to a LPO has a total cost of n2
−n
2

label-to-label compar-
isons and hence, an average-case cost of n−1

2
label-to-label comparisons. Distri-Track does

not yet analyse the code for “filling” a LPO with label value and data pairs and assumes any
LPO that it receives is already initialised and populated by distinct label values only. The
check for label value distinctness could be removed from the implementation on the hope
that programmers in MOQA-Java will follow Distri-Track ’s assumption and never add du-
plicate label values to a LPO. However, removing this check and following this assumption
must come with the caveat that the analysed MOQA code can now execute over a data
structure state not considered by the MOQA static analysis tool, which would make its
average-case analysis incorrect. Chapter 5 considers the capability of the MOQA theory in
handling duplicate label values.

8As programmers in MOQA-Java do not have access to the Node class, the Nodes that
the removed NodeInfos belong to can be safely deleted without fear of there being dangling
references to them outside of the MOQA-Java package.

CHAPTER 3. THE MOQA LANGUAGE 44

3. public boolean isStrictlyIsolated()

Returns true when this OrderedCollectionSubset is strictly isolated.

The principal methods made public by the NodeInfo class are:

1. public Label<L> getLabel()

Returns the Label of this NodeInfo.

2. public Set<NodeInfo<L>> removeComplement(OrderedColle-

ction<L> inColl)

Returns the Set of all the NodeInfos directly and indirectly contained

within the specified OrderedCollection minus this NodeInfo after this

method has removed the NodeInfos to be returned from the specified

OrderedCollection. Any OrderedCollectionSubset in the specified Or-

deredCollection that is completely emptied of all its NodeInfos is no

longer within an OrderedCollectionSet.

3. public void add(Object... newData)

Adds the specified Objects to this NodeInfo; the specified Objects are

data to be associated with the Label of this NodeInfo.

4. public boolean remove(Object data)

Returns true if the specified Object is in, and therefore is removed from,

this NodeInfo; the specified Object is data associated with the Label of

this NodeInfo.

5. public boolean replace(Object oldData, Object newData)

Returns true if the first specified Object is in this NodeInfo and therefore,

is replaced by the second specified Object; the specified Objects are data

associated with the Label of this NodeInfo.

6. public Iterator<Object> iterator()

Returns an Iterator over all of the Objects in this NodeInfo; these Objects

are all the data associated with the Label of this NodeInfo.

So, in addition to implementing the MOQA functions in Section 2.2, it can

be seen from above that MOQA-Java also provides many other functions for

accessing and querying state. However, none of these MOQA-Java functions

are primitive operations in the sense of a standard programming language

CHAPTER 3. THE MOQA LANGUAGE 45

though they are the most basic functions available. The MOQA theory does

not provide simpler constructs, which seems to defy the concept of having sim-

ple ideas that can be gathered together to form more complex ideas, as one

definition of a powerful programming language requires [1]. So, considering the

range of expressiveness that the MOQA functions display, MOQA-Java cannot

be seen as a general-purpose programming language with all the corresponding

capabilities of a commonly used language. Rather, it is a special-purpose pro-

gramming language comprised from a suite of statically analysable functions

and control flow rules.

It will now be of interest to look at some standard algorithms written in

the MOQA-Java syntax and consider the various costs that accompany this

implementation of the MOQA language.

3.2 The Cost of Some MOQA-Java Examples

The following examination of insertion-sort and quicksort in MOQA-Java has

already been published [72].

3.2.1 The Space Cost of Insertion-sort in MOQA-Java

The pseudo-code [13] for this well-known algorithm, commonly used for its

efficiency in sorting small data sets, is as follows:

InsertionSort(A)

for j ← 2 to length[A]

do key ← A[j]

⊲ Insert A[j] into the sorted sequence A[1 . . . j − 1]

i← j − 1

while i > 0 and A[i] > key

do A[i + 1]← A[i]

i← i− 1

A[i + 1]← key

Figure 3.5 shows insertion-sort implemented in MOQA-Java.

After comparing the insertion-sort pseudo-code to Figure 3.5, it is clear

that MOQA provides another level of abstraction. There is no explicit refer-

ence in the MOQA-Java code to the position of the next element to be inserted

CHAPTER 3. THE MOQA LANGUAGE 46

/∗∗
∗ Inse r t i on−s o r t s the s p e c i f i e d OrderedCo l l ec t ion .
∗ @param oc a d i s c r e t e OrderedCo l l ec t ion to be so r t ed .
∗/

public stat ic <L extends Comparable<L>> void

i n s e r t i o n s o r t (OrderedCol lect ion<L> oc) {
i f (oc . s i z e () > 1) {

I t e r a t o r <NodeInfo<L>> ocNodeInfos =
oc . g e tD i r e c tNode In f o I t e r () ;

OrderedCol lect ionSubset<L> so r t ed =
oc . product (ocNodeInfos . next () , ocNodeInfos . next ()) ;

for (int i = 1 ; i < oc . s i z e () ; i++) {
so r t ed = oc . product (ocNodeInfos . next () , s o r t ed) ;

}
}

}

Figure 3.5: Insertion-sort in MOQA-Java

amongst the elements already sorted. Instead, there is an iterator over the Or-

deredCollection to be sorted and this returns the next element for insertion,

whereas in the pseudo-code the variable j is an explicit reference to the posi-

tion of the next element to be inserted. The first two elements returned by this

iterator are the parameters for the first MOQA product function. This func-

tion connects its first parameter’s Node above its second parameter’s Node

and swaps their NodeInfos if the NodeInfo of the top Node is less than the

NodeInfo of the bottom Node. In other words, the labels on the two Nodes

will be swapped if they do not agree with the max-heap label ordering. The

MOQA product function then creates a new OrderedCollectionSubset within

oc and moves the two connected Nodes into this newly created OrderedCol-

lectionSubset, which it then returns. For the MOQA product function in the

body of the for loop, its first parameter’s Node is connected above the Or-

deredCollectionSubset returned by the previous MOQA product function and

the NodeInfos of these Nodes are swapped around until the max-heap label

ordering is satisfied. Once satisfied, the MOQA product function then moves

its first parameter’s Node and the OrderedCollectionSubset now connected be-

low it into a newly created OrderedCollectionSubset within oc, which is then

returned.

Figure 3.5’s insertion-sort does not throw a ConcurrentModificationExcep-

tion and from this it can be seen that a MOQA-Java iterator is not fail-fast ;

CHAPTER 3. THE MOQA LANGUAGE 47

to generalise, if an OrderedCollection is modified at any time after a MOQA-

Java iterator over it is created, then the iterator does not fail. This is because

the iterator is actually created over a shallow copy of the OrderedCollection’s

content. Furthermore, any iteration, whether partial or complete, over an Or-

deredCollection will always return the NodeInfos in the order that their Nodes

are stored in the OrderedCollection. The Nodes are stored in the order that

they were added to the OrderedCollection.

It is also clear that the in-place nature of the insertion-sort pseudo-code

is lost in the MOQA-Java implementation as a new OrderedCollectionSub-

set is created for every element, apart from the first two, in oc; there is just

one OrderedCollectionSubset created for the first two elements in oc. So the

Node associated with the first parameter of each MOQA product function,

along with the Node associated with the second parameter of the first MOQA

product function, is removed from oc and added to a newly created Ordered-

CollectionSubset, that is in turn added to oc. This results in the creation

of n − 1 OrderedCollectionSubsets, so MOQA-Java’s insertion-sort requires

(n− 1).x extra space, where x is the space required by an OrderedCollection-

Subset. This extra space applies when oc is an OrderedCollectionSet because

the direct content of an OrderedCollectionSet must be connected components,

i.e. must be Nodes and/or OrderedCollectionSubsets all in parallel. Otherwise,

if oc is an OrderedCollectionSubset, then MOQA-Java’s insertion-sort requires

(n − 2).x extra space. This is because a new OrderedCollectionSubset is not

created for the final MOQA product function. The function simply connects

the Node above the OrderedCollectionSubset and adjusts the labeling; Section

3.1 explained this design choice.

So the requirement that the MOQA data structure is a partial order re-

sults in its traversal and manipulation being more intricate than that of an

array. The current implementation is one way of representing this additional

complexity and the insertion-sort example demonstrates its extra cost in stor-

age space. While it is worthwhile to focus on the “real-estate” aspect, it is of

greater interest to consider the average-case cost of an algorithm written in

the current MOQA language implementation, i.e. what price does the MOQA

theory carry when it comes to the average-case cost of an algorithm in MOQA-

Java? It will be useful to examine this question with a sorting algorithm that

is not so simplistic in its approach to sorting, the quicksort algorithm.

CHAPTER 3. THE MOQA LANGUAGE 48

3.2.2 The Average-case Cost of Quicksort in MOQA-

Java

Quicksort is one of the more interesting sorting algorithms due to the asymp-

totic difference between its average-case and worst-case behaviour so this sec-

tion will consider the average-case behaviour of quicksort in the MOQA-Java

implementation. This analysis is based on certain assumptions. The first being

that input values are distinct. This assumption is “fundamental to the analysis

of nearly all sorting programs, and it is very often realistic” [66]. Along with

this, it is often assumed when analysing the behaviour of an algorithm that all

permutations of the distinct input values are equally likely. This is the second

of the assumptions and is in agreement with the MOQA theory. Another of

the MOQA-Java quicksort assumptions is that the following costs take a fixed

time:

• the initialisation of a variable,

• the assignment of a value to a variable,

• each arithmetic operator,

• a boolean comparison,

• adding an item to and accessing an item in a collection of items,

• the instanceof keyword,

• the new keyword. (This final fixed-time cost does not cover the cost of

the operations within the constructor of the newly created object. If any

operations are present in the constructor their cost is also calculated).

A further assumption is made regarding these fixed costs, that they are all

equal. This closing assumption can be replaced by a more refined estimation

at a later time.

The pseudo-code [13] for quicksort, which sorts the array A[p . . . r] from

index p to index r inclusive, is:

CHAPTER 3. THE MOQA LANGUAGE 49

/∗∗
∗ Quicksor t s the s p e c i f i e d OrderedCo l l ec t ion .
∗ @param oc a d i s c r e t e OrderedCo l l ec t ion to be so r t ed .
∗/

public stat ic <L extends Comparable<L>> void

qu i ck so r t (OrderedCol lect ion<L> oc) {
i f (oc . s i z e () > 1) {

NodeInfo<L> pivotNI = oc . g e tD i r e c tNode In f o I t e r () . next () ;
OrderedCol lect ion<L> pa r t i t i o n = oc . s p l i t (pivotNI) ;
I t e r a t o r <OrderedCol lect ionSubset<L>> aboveAndBelow =

pa r t i t i o n . g e tD i r e c tSub s e t I t e r () ;
i f (aboveAndBelow . hasNext ()) {

qu i ck so r t (aboveAndBelow . next ()) ;
i f (aboveAndBelow . hasNext ()) {

qu i ck so r t (aboveAndBelow . next ()) ;
}

}
}

}

Figure 3.6: Quicksort in MOQA-Java

Quicksort(A, p, r)

if p < r

then q ← Partition(A, p, r)

Quicksort(A, p, q − 1)

Quicksort(A, q + 1, r)

Partition(A, p, r)

x← A[r]

i← p− 1

for j ← p to r − 1

do if A[j] ≤ x

then i← i + 1

exchange A[i]↔ A[j]

exchange A[i + 1]↔ A[r]

return i + 1

Figure 3.6 shows quicksort implemented in MOQA-Java.

The most basic recurrence for this standard quicksort, which does not take

advantage of the optimisation techniques presented by other works, see [45],

CHAPTER 3. THE MOQA LANGUAGE 50

[37] and [67], is:

T qs(n) = (n− 1) +
2

n
.

n∑

k=1

T qs(k − 1), n > 1. (3.1)

It has already been noted that the MOQA functions are not as primitive

as those generally found in programming languages; the MOQA functions in

MOQA-Java are composed of many Java primitive operations. The main

MOQA function involved in Figure 3.6 is the MOQA split function and is at

least as complex as the algorithm itself; clearly the MOQA split function is in

essence partition, which is central to quicksort. The consequence of a MOQA

split function on a non-empty partial order is a non-empty partial order above

the pivot if there are elements larger than the pivot and a non-empty partial

order below the pivot if there are elements smaller than the pivot. So how

the labels are arranged is under the sole control of the MOQA split function

and indeed this is true for all MOQA functions. Therefore, there is no direct

handling of a data structure’s labels in a MOQA algorithm and this is a marked

difference between Figure 3.6 and the standard quicksort algorithm. So how

does this difference affect the average-case cost of MOQA-Java’s quicksort?

The recurrence generated by Distri-Track [35] for the average-case cost of

MOQA-Java’s quicksort is:

quicksort[n1] := Which[Greater[n1, 1], Plus[−1, n1,

Sum[Times[Power[n1,−1], quicksort[Plus[−1, n1, Times[−1, r0]]]],

{r0, 0, Plus[−1, n1]}],

Sum[Times[Power[n1,−1], quicksort[r0]], {r0, 0, Plus[−1, n1]}]],

True, 0];

method[n0] := quicksort[n0];

This recurrence involves Mathematica functions [49], which are identified here

by the typewriter font. Let n1 denote the size of quicksort’s discrete partial

order parameter and let r0 denote the number of elements that the MOQA split

function connects below the pivot element. According to the above recurrence,

r0 is equally likely to be any integer in the range [0, n1− 1].

CHAPTER 3. THE MOQA LANGUAGE 51

However, the following scrutiny of MOQA-Java’s quicksort is the result of

a hand analysis of both Figure 3.6 and the MOQA-Java implementation of the

relevant MOQA functions. This results in a more detailed recurrence than the

above Distri-Track recurrence, which does not attempt to include MOQA-Java

implementation costs.

The average-case recurrence for MOQA-Java’s quicksort on a discrete par-

tial order of size n is:

Tmqs(n) = c1.n + T split(n) + c2.

(
3.(n− 4) + 10

n

)

+ c3.

(
2.(n− 4) + 4

n

)

+

c4 +
2

n
.

n∑

k=1

Tmqs(k − 1), n > 3, (3.2)

where the first term c1.n is the cost of getting an iterator over the NodeInfos

in the OrderedCollection to be sorted, the third term c2.
(

3.(n−4)+10
n

)

is the

cost of getting an iterator over the OrderedCollectionSubsets in oc after the

MOQA split function and the fourth term c3.
(

2.(n−4)+4
n

)

is the cost of making

the recursive calls. c1, c2 and c3 are constants in these costs and c4 is the other

constant costs that occur in a call to MOQA-Java’s quicksort.

Equation 3.2 can be simplified to:

Tmqs(n) = c1.n + T split(n)−

(
2.c2 + 4.c3

n

)

+ c4 +

2

n
.

n∑

k=1

Tmqs(k − 1), n > 3. (3.3)

The second term in the two previous recurrences is T split(n), which is the

average-case cost of the MOQA split function on n discrete elements. Let X

denote an OrderedCollection that has n discrete elements and let p denote the

pivot element which is one of these discrete elements. The following sequence

of events is a broad description of the MOQA split function:

1. Y = getDiscrete(X, p)

Records in collection Y the discrete elements, excluding p, that are

present in X. This allows X be legal input for the MOQA split function

even when it has connected components whose sizes are greater than one.

2. A,B = relation(Y, p)

CHAPTER 3. THE MOQA LANGUAGE 52

Records in collection A the discrete elements in Y that are greater than

p and records in collection B the discrete elements in Y that are smaller

than p, |A|+ |B|+ 1 = n.

3. relocate(A,B, p)

If |A| > 1, then A’s elements are moved from X into a new Ordered-

CollectionSubset that is directly (if X is an OrderedCollectionSubset) or

indirectly (if X is an OrderedCollectionSet) added to X. If |B| > 1, then

B’s elements are moved from X into a new OrderedCollectionSubset that

is also directly (if X is an OrderedCollectionSubset) or indirectly (if X

is an OrderedCollectionSet) added to X.

4. connect(A, p,B)

If |A| > 0, then the representation of its elements in X is connected above

p and if |B| > 0, then the representation of its elements is connected

below p.

Figure 3.6 gets its reference to pivotNI through an iterator. This iterator

is over a new collection that contains the NodeInfos of all the Nodes directly

contained in oc. The next line in Figure 3.6 calls the MOQA split function,

whose first action is to collect together the NodeInfos of all the discrete Nodes,

excluding p, directly contained in oc. As oc in Figure 3.6 is a discrete Ordered-

Collection, the remaining elements to be returned by the iterator are the same

elements initially collected together by the MOQA split function. This dupli-

cation of information makes a case for the MOQA split function to have an

additional optional parameter, which would refer to the set of discrete NodeIn-

fos to be split around the pivot NodeInfo, i.e. would be the iterator. Tailoring

the implementation of a MOQA function so as to increase its efficiency for a

specific application is far from ideal but, because the definition of the MOQA

split function shows it to be purpose-built for quicksort/quickselect, it would

seem to be an acceptable concession in this instance.

Following the assumptions laid out earlier, the average-case cost of the

above events is:

T csplit(n) = 46.n +

(∑n−2
k=3 32.(k − 1) + 24.n + cx

n

)

+

(
192.n + 4.cx + 73

n

)

+ cy, n > 3, (3.4)

CHAPTER 3. THE MOQA LANGUAGE 53

where cx and cy are constants.

The storage space consumed by MOQA-Java’s insertion-sort depended on

whether the OrderedCollection to be sorted was an OrderedCollectionSet or

an OrderedCollectionSubset. The same principle holds for T split(n) because

its cost is also dependent on whether oc is an OrderedCollectionSet or an

OrderedCollectionSubset. This difference in cost is again tied to the design

decision that all of the direct content in an OrderedCollectionSet is in parallel.

So Equation 3.4 is the common average-case cost of the MOQA split function

regardless of oc’s type. When oc is an OrderedCollectionSet, then T split(n),

which is the average-case cost of the MOQA split function on n discrete ele-

ments, in Equation 3.3 is replaced by:

T splitSet(n) = T csplit(n) +
64

n
+ cr, n > 3, (3.5)

where cr is a constant. When oc is an OrderedCollectionSubset, then T split(n)

in Equation 3.3 is replaced by:

T splitSubset(n) = T csplit(n) + cs, n > 3, (3.6)

where cs is a constant.

Though the average-case behaviour of MOQA-Java’s quicksort is still log-

linear, its cost, as investigated just above, is clearly higher than the standard

given in Equation 3.1. There is no doubt that refining the MOQA-Java imple-

mentation would reduce some of these extra costs. However, MOQA functions

remove certain actions normally carried out directly within an algorithm and

execute these actions internally. So they provide another level of abstrac-

tion between the programmer and the data structure, which comes at a price.

Additionally, the MOQA functions have to be as general-purpose as possible

because they are not geared towards one specific implementation of one specific

algorithm and therefore, will require some input validation, which is another

extra expense. Hence, this all means that it is unlikely that the constants

for a MOQA version of quicksort will ever be reduced to those in Sedgewick’s

non-optimised version of quicksort [67].

In conclusion, there is an additional cost in space for insertion-sort in

MOQA-Java and a tendency towards higher constant values than normal for

CHAPTER 3. THE MOQA LANGUAGE 54

the average-case behaviour of quicksort in MOQA-Java, though the recurrence

does not deviate from the standard trend of quicksort. To statically time al-

gorithms, this work deems it acceptable to carry some extra expense when

it does not change the asymptotic behaviour of the algorithm. Accordingly,

while it would be advantageous to lower these costs to their minimum value,

it can be expected, in order to statically determine the average-case cost of an

algorithm, that the constants will be higher within the same order of growth

as traditional variants.

3.3 New MOQA Functions

This section introduces new MOQA functions developed during the course of

this research, all of which are MOQA random structure preserving.

When aiming to construct a well-designed language, the motivation for

adding a function must extend beyond the benefit of extra functionality. An

actual need for each function added should be perceived. Heapsort algorithm

discussions led to the creation of the MOQA top function, the converse MOQA

bot function and the MOQA lift function. Their introduction then paved the

way for Schellekens’s new treapsort algorithm [63], see Appendix A. (These

functions were first presented in the MOQA book [63]. They are not present in

MOQA-Java as they were conceived after work on the language implementa-

tion was concluded. Future work could include incorporating these functions

into MOQA-Java.) The MOQA insert function contribution is given after its

description below. Another new MOQA function is presented on page 213 in

Section 6.5. This function improves on the MOQA product function but it is

necessary to wait until Section 6.5 for the full details, as the section’s context

helps in explaining this function’s inspiration, description and benefits.

Though not listed below, other MOQA random structure preserving func-

tions were discovered during the course of this research. As some of these

functions currently lack an application, they should not be included in any

implementation of the MOQA language until a need for them arises. Leaving

these functions aside, four of the new MOQA functions are now considered.

CHAPTER 3. THE MOQA LANGUAGE 55

3.3.1 MOQA Top

Let Iβmax
denote an isolated subset of the series-parallel Hβmax

. Let x denote

the maximum node in Iβmax
, i.e. the label on x is greater than the label on

any other node in Iβmax
. For any labeling on Hβmax

, the MOQA top function

connects x above every other maximal node in Iβmax
; all of the nodes below

x prior to the MOQA top function remain as they are. The labeling then

on Iβmax
has no need of modification because the nature of the MOQA top

function ensures that it is correct.

Therefore, the average-case cost of the MOQA top function when applied

to the isolated subset Iβmax
of Hβmax

of SM

j , which is the jth MOQA random

structure in the MOQA random bag M , is zero and the multiplicity of MSM
j

is unaffected.

3.3.2 MOQA Bot

Let Iβmax
denote an isolated subset of the series-parallel Hβmax

. Let x denote

the minimum node in Iβmax
, i.e. the label on x is smaller than the label on

any other node in Iβmax
. For any labeling on Hβmax

, the MOQA bot function

connects x below every other minimal node in Iβmax
; all of the nodes above

x prior to the MOQA bot function remain as they are. The labeling then

on Iβmax
has no need of modification because the nature of the MOQA bot

function ensures that it is correct.

Therefore, the average-case cost of the MOQA bot function when applied

to the isolated subset Iβmax
of Hβmax

of SM

j , which is the jth MOQA random

structure in the MOQA random bag M , is zero and the multiplicity of MSM
j

is unaffected.

3.3.3 MOQA Lift

Let Iβmax
denote an isolated subset of the series-parallel Hβmax

. The label on

the maximum node in Iβmax
is pushed downwards as it would be by the MOQA

deletion function until it reaches a minimal node in Iβmax
, that minimal node

is then deleted and a new node with the deleted label is connected above every

maximal node in Iβmax
.

This new MOQA lift function is plainly the MOQA deletion function aug-

CHAPTER 3. THE MOQA LANGUAGE 56

mented by the reinsertion of the deleted node. Therefore, the average-case

cost of the MOQA lift function when applied to the isolated subset Iβmax
of

Hβmax
of SM

j , which is the jth MOQA random structure in the MOQA random

bag M , is ∆down(Iβmax
, |Iβmax

|) and the multiplicity of MSM
j is unaffected, as

it would be by the MOQA deletion function.

3.3.4 MOQA Insert

Let Iβmax
denote an isolated subset of the series-parallel Hβmax

. The MOQA

insert function adds a new discrete node to Iβmax
.

This is the first proper MOQA insertion function; the MOQA product

function does not count because it adds edges not nodes. Recall that “each

data-labeling is assumed to be priorly constructed via MOQA operations from

a random input list” [63]. So Schellekens’s work [63] does not allow a node to

be added to a data structure during the execution of a MOQA program. This

is functionality now provided by the MOQA insert function.

However, why does Schellekens [63] not allow a node to be added to a data

structure during the execution of a MOQA program? In other words, is there

a good reason why the MOQA insert function is not found in Schellekens’s

research [63]? According to this research, all of a data structure’s n nodes

must be in place prior to MOQA program execution so that it can assume that

the label of each node is equally likely to be any value in the set {1, 2, . . . , n}

when no two nodes can have the same label, n ≥ 0. (Note that none of

Schellekens’s functions [63] can be applied to an empty data structure because

each one deals only with the nodes already present in the data structure.

Therefore, in practise, n will always be greater than zero because there is no

sense in creating empty data structures that are never used.) Yet this label

distribution is just assumed so why not always commence with an empty data

structure and instead assume that the label of each node added to a data

structure of size d is equally likely to fall into any of the d+1 intervals defined

by the d values currently serving as labels on the data structure, d ≥ 0? This

latter assumption is interchangeable with the former and is the one backing

the MOQA insert function, i.e. it is assumed that the label of the discrete

node added to Iβmax
is equally likely to fall into any of the |Hβmax

|+1 intervals

defined by the |Hβmax
| values currently serving as labels on Hβmax

. (This

CHAPTER 3. THE MOQA LANGUAGE 57

latter assumption is also found in work by Knuth [42]. Section 6.9 studies this

research by Knuth and the relation between these two assumptions is explored

further there.) This assumption change does not negatively effect the rest of

the MOQA theory and so, in answer to the questions just posed, there is no

obstacle to the new MOQA insert function. It is acceptable because it is a

proponent of just another way of viewing MOQA’s initial label distribution.

In fact, there are positive outcomes from always commencing with an empty

data structure and then using the MOQA insert function to add nodes. The

scope of MOQA programs is increased because it is now no longer necessary

to fix the number of nodes present in a data structure prior to executing any

sequence of MOQA functions. Also, some of the MOQA theory can now be

simplified. For example, LM′

j , which is a necessary extension to the current

MOQA theory and is introduced in Section 4.4.4, would now become redun-

dant. Finally, this approach is more consistent with how data structures are

normally constructed.

The average-case cost of the MOQA insert function when applied to the

isolated subset Iβmax
of Hβmax

of SM

j , which is the jth MOQA random struc-

ture in the MOQA random bag M , is zero and the multiplicity of MSM
j is

unaffected.

3.4 MOQA and Reversibility

It is stated that “MOQA is close in spirit to reversible languages” [64] and that

“reversibility refers to the fact that for any output it is possible to re-compute

the input which gave rise to the output in question” [64]. The Janus language9

is cited by Schellekens [64] as one of the few examples of a reversible language.

The work of Yokoyama and Glück [79] formalises, and proves the reversibility

of, Janus, and provides the following more formal definition of a reversible

computing system.

Definition 25 (A reversible computing system). A reversible computing sys-

tem [71, 7, 28] has, at any time, at most a single previous computation state as

well as a single next computation state, and thus a reversible computing system

can run programs uniquely forward and backward by following the deterministic

9Developed by C. Lutz for a Caltech course.

CHAPTER 3. THE MOQA LANGUAGE 58

trajectory of the computation.

This is the definition of a logically reversible computing system. A thermo-

dynamically reversible computing system is a physical computing system that

generates almost no new physical entropy; physical entropy is the amount of

energy that cannot be used to do work. Erasing information at a hardware

level generates physical entropy because it requires transferring the heat that

arises from grounding a circuit node that is holding a charge, with the charge

representing the information to be erased. A logically reversible computing

system can reduce or eliminate new physical entropy because reversible func-

tions are less likely to throw away information so that any alteration they make

to their input can be undone [56].

However, not all of the MOQA functions are naturally reversible. Figure 3.7

demonstrates this by showing, for the MOQA product function and the max-

heap label ordering, half of the fourteen possible input pairs to product(xi, yi)

that result in a total order of size four as output. For the other seven possible

input pairs, swap the x and y identifiers in each pair in Figure 3.7; so xa would

now identify the total order of size one whose label is one and ya would now

identify the total order of size three whose labels are four, three and two, and

so on for the other six pairs. This example makes it clear that the standard

MOQA language is not reversible because not all of its functions are reversible.

However, the MOQA product function becomes reversible when “indices

are tracked during computation, where swaps between labels result in a cor-

responding swap between indices of elements” [64]. Recording this additional

information logs the changes the MOQA product function makes to its input

partial order. So when such erudite output from a MOQA product function

is accompanied by an inverse MOQA product function, it is then possible to

step backwards from a MOQA product function’s output and uniquely deter-

mine its input. Does this mean that the MOQA language is close in spirit to

reversible languages?

A language is irreversible when key information about the behaviour of a

program in this language is lost during execution. Both Yokoyama and Glück’s

research [79] and Bennett’s seminal work [6] identify these key areas of infor-

mation loss to be data erasure and the paths taken in conditional branching.

In fact, Yokoyama and Glück further clarify this by stating that the main

difference between standard languages and those that are reversible is “re-

CHAPTER 3. THE MOQA LANGUAGE 59

4

3 1

4

3 2

1

4

2

1

3

3

2

1

yx x y x y x y

2

x

4

y y x y

4 3

3

2

2

4 4

1

3

1 1 2

a a b b c c d d

e e xf f g g

4

3

2

iproduct(x , y)i

1

Figure 3.7: For the MOQA product function and βmax, half of the possible
input pairs to product(xi, yi) that result in the output of a total order of size
four

CHAPTER 3. THE MOQA LANGUAGE 60

versible assignments and control constructs, and the possibility of uncalling

procedures” [79]. So tracking and swapping element indices allow for the pos-

sibility of uncalling the MOQA product function. This is also a possibility for

the MOQA split function because it already has a one-to-one correspondence

between input and output. However, as acknowledged by Schellekens [64], the

MOQA delete function is not reversible. So, as there has been no consideration

about how the MOQA deletion of data can be reversed, the MOQA language

does not currently overcome one of the two main problems that reversible

languages address. In addition to this, there has been no work on reversible

assignments and reversible control constructs in the MOQA language. So this

is the other main obstacle to reversibility that the MOQA language has not yet

overcome and, as only the most basic of programs have no control constructs,

it is one that cannot be avoided. Hence, it would seem to be far too early

to claim reversibility for a language that has no provision for the reversal of

its destructive operations and control flow statements despite the promising

reversibility of its non-destructive functions.

However, it is still possible to reverse a MOQA program. Bennett [6]

considers the logical reversion of computing systems whose functions are not

necessarily bijective and proves that any Turing machine can be made logi-

cally reversible at every step. This is achieved by recording a computational

history during the forward execution of the program that can be cleaned up

during the backward execution of the program. The backward execution of the

program is then given a copy of the forward program’s output and with the

computational history produces the forward program’s input. This appears to

be a common approach to reversibility and is one that enables the reversal of

a program written in any programming language. However, Yokoyama and

Glück [79] make it clear that a language which is reversible in nature has its

own methodology. This methodology means that the deterministic forward

and backward execution of a Janus program does not require a computational

history.

So the MOQA language is not at present close in spirit to high-level re-

versible languages such as Janus. Its programs do not have the potential benefit

of those which are written in such a language, i.e. “programs that are built

from locally invertible primitives and control flow operators have the potential

benefit of reversibility of the underlying reversible structures” [79]. This is be-

CHAPTER 3. THE MOQA LANGUAGE 61

cause MOQA programs only have the underlying reversible structure feature

and they only have this feature when there are no contractive MOQA functions

in the program. Therefore, to logically reverse a MOQA program now would

require the same technique required to logically reverse any program written

in any other irreversible programming language. Hence, the reservation here

regarding the claim that the MOQA language is a reversible language.

3.5 Chapter Summary

MOQA-Java, presented here in detail for the first time, is a working imple-

mentation of the MOQA language theory [63]. The central aim behind its

design is to help MOQA-Java programmers naturally write MOQA-satisfying

programs. However, there is still room to improve, as highlighted by the

space costs revealed in Section 3.2.1. Examination of the MOQA-Java code

at a later date also revealed areas that could do with further refactoring. For

example, there are more areas in the code that would benefit from the ap-

plication of polymorphism. However, these issues are not serious enough to

prevent MOQA-Java from being the language in which programs submitted

to Distri-Track are written and from continuing to maintain its status as the

current implementation of the MOQA language.

The analysis of the quicksort algorithm presented in this chapter demon-

strated the average-case cost of the MOQA-Java split function. This average-

case cost included costs not factored into MOQA’s average-case formulas, giv-

ing a fuller appreciation for the price paid when there is another layer of

abstraction between the programmer and the machine. This chapter also con-

sidered the reversibility of the MOQA language and reasoned that additional

work is required before the MOQA language can be truly be called reversible.

The MOQA language implementation was one of the first undertakings

in this body of research. During the process, new MOQA functions were

found, some of which are reported on in this chapter. In addition to these new

functions, deeper underlying issues were also found in the MOQA theory. What

these issues are and how they are overcome is the main subject matter of the

remaining chapters. Hence, future work could retrofit MOQA-Java for some of

the solutions presented in these chapters, such as the new data structure types,

or it may be considered more appropriate to write a new implementation of

CHAPTER 3. THE MOQA LANGUAGE 62

the MOQA language from scratch.

Chapter 4

Tracking Data Structure State

This chapter begins by expanding the MOQA theory and does so for two

important reasons. First of all, there are concepts in the MOQA book [63]

that are not allowed within the framework of its own theory. A key example of

this incongruity is the MOQA random bag; Schellekens’s definition of this [63]

does not include some of the data structure types inferred to be in it in later

chapters of that work. So this expansion of the MOQA theory will rectify some

of these inconsistencies. Furthermore, the redefining of the MOQA theory will

enable this work to discuss the theoretically capabilities of MOQA with greater

confidence in Chapter 6 and Section 7.1. Another reason, though minor, is to

tighten up some of the current MOQA definitions.

As well as expanding the MOQA theory, this chapter carefully defines vari-

ous data structure types and considers their average-case cost from the MOQA

stance, considering inductive po-class sub-categories in particular depth. New

average-case equations for some of these types are then presented in this chap-

ter, along with new equations that assist in calculating the relative frequency

of these types occurring in the MOQA random bag. The result of this is

that the MOQA static analysis tool will be able to determine the average-

case behaviour of MOQA functions for additional data structure types and

therefore, its application has the potential to be widened. (The phrase “the

MOQA static analysis tool” is used throughout this work and refers to the

ideal MOQA static analysis tool, i.e. there is no statement being made about

the capabilities of the current version, which is Distri-Track [35].) Finally, the

clear categorisation of the data structure types that takes place in this chapter

has the added benefit of clarifying which ones have yet to incorporated into

63

CHAPTER 4. TRACKING DATA STRUCTURE STATE 64

the MOQA theory, thereby identifying areas open to future work.

4.1 Chapter Overview

In support of the new research laid out in this substantial chapter, there are

many formal notations, definitions and proofs. Hence, it may aid the reader to

first begin with an informal high-level overview of what is soon to be discussed

in depth.

Before all else, recall two of the fundamental definitions found in the MOQA

book [63] and restated in Chapter 2: the definition of a MOQA random struc-

ture and the definition of a MOQA random bag. These definitions can be

briefly summarised as follows:

MOQA random structure A representation of a particular series-parallel

finite partial order and all of its canonically-ordered labelings when all

of its canonically-ordered labelings have equal likelihood of occurring.

MOQA random bag A representation of a collection of MOQA random

structures and how often each one occurs in relation to the others.

These definitions restrict the MOQA theory to the static analysis of data

structures whose sizes are fixed. This limitation cannot be easily ignored be-

cause it is unusual to statically determine an algorithm’s average-case cost for

a data structure of fixed size1, e.g. determine quicksort’s average-case cost for a

data structure of size 5. Therefore, this chapter expands the above definitions

to incorporate data structures whose sizes can vary, e.g. data structures of size

n. These new definitions can be briefly summarised, for now, as follows:

MOQA′ random structure A representation of any one of the following

series-parallel data structures and all of their canonically-ordered label-

ings2:

• Fixed Po-Structure (FPS), i.e. a finite partial order.

• Inductive Po-Class (IPC), i.e. an inductive type. An inductive po-

class is the same concept as an inductive type, which Hickey [35]

1This is borne out by the literature reviewed in Chapter 6.
2The expected likelihood that these canonically-ordered labelings have of occurring will

be detailed later on.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 65

first introduced to MOQA. It is renamed here for the sole purpose

of consistent terminology.

• Split Po-Class or General Split Po-Class (SPC or GSPC), i.e. the

two categories of data structures that can result from the MOQA

split function. The MOQA book [63] and Hickey [35] introduced

these structures respectively.

• Compound Structure (CS), i.e. a combination in parallel and/or

series of the above structures.

MOQA′ random bag A representation of a collection of MOQA′ random

structures and how often each one occurs in relation to the others.

Note that the first three data structures listed in the MOQA′ random

structure definition are themselves not new to this work. The last three data

structures listed are new additions to the original MOQA random structure

definition as the fixed po-structure is the only data structure that the original

definition catered for.

Though the latter part of the MOQA book [63] does discuss the static

analysis of data structures whose sizes can vary and the current implementation

of the MOQA static analysis tool [35] can determine the average-case cost of

certain algorithms for such data structures, the definitions in the MOQA book

[63] are too narrow to accommodate this effort. So the new definitions given

in this chapter, the above abridgements for example, serve the purpose of

harmonising the MOQA theory with its application for the first-time. This

is a very necessary adjustment and will prevent this work from subsequently

finding itself in the awkward situation of examining and evaluating research

that, in reality, is more powerful than its theory allows for.

Next, this chapter introduces further data structure types, each of which

is a type of inductive po-class, that can be statically analysed by the MOQA

methodology. In other words, the average-case cost of a MOQA function when

applied to one of these new data structure types can now be resolved statically.

To allow for this, composition laws and their requisite proofs are given for

each new type; remember that composition laws are subsidiary equations that

MOQA depends on when statically determining the average-case cost of its

functions and that the four composition law groups are σ, κ, τ and ∆. The

CHAPTER 4. TRACKING DATA STRUCTURE STATE 66

MB
NDIPCNDIPC

EBMB
NDIPCNDIPC

EB

Mix
NDIPCDIPC DIPC

Series
NDIPC

Self−Identity DIPC Self−Identity NDIPC NDIPC
OtherSingularSingular

DIPC NDIPC

IPC

NDIPC
ParallelMBEB

Figure 4.1: Inductive Po-Class Framework

remaining equations that must accompany the composition laws for the new

MOQA data structure types are then provided towards the end of this chapter.

An inductive po-class framework is also introduced throughout this chapter.

The central purpose of this framework is to identify the nature of inductive po-

classes that do, and do not, lend themselves to being analysed by the MOQA

approach. It is visually depicted in Figure 4.1, with each leaf of the tree

denoting an inductive po-class type. The acronyms used in Figure 4.1 are as

follows:

• EB = Empty-Base

• MB = Multi-Base

• DIPC = Deterministic Inductive Po-Class

• NDPIC = Non-Deterministic Inductive Po-Class

Figure 4.1 allows a clear distinction to be made between the inductive po-class

type introduced by Hickey [35], which is the empty-base DIPC and is marked

with a red and a green circle, and the seven types introduced by this work,

which are marked with green and white circles. An inductive po-class type

marked with just a green circle indicates that this research has established all

CHAPTER 4. TRACKING DATA STRUCTURE STATE 67

of its composition laws. An inductive po-class type marked with just a white

circle indicates that all of its composition laws are yet unknown. An inductive

po-class type marked with both a green and a white circle indicates that this

research has established some but not all of its composition laws. Finally,

the empty-base DIPC is marked with both a red and a green circle to indicate

that all of its composition laws have been established by Hickey [35], with some

fine-tuning of these laws taking place here. The benefits of having these extra

MOQA data structure types has already been outlined in the introduction to

this chapter, with the primary benefit being a future MOQA static analysis

tool of possibly greater scope.

With the overview of this chapter complete, it is now time to focus on

specifics. This shall commence with the groundwork being laid for the MOQA

theory expansion.

4.2 Program Control Flow

The flow of control through a program can be represented by a directed graph.

Each vertex in such a graph is a basic block. The following basic block defini-

tion is taken from the well-known dragon book [2].

Definition 26 (Basic block). A basic block for program P is a maximal se-

quence of consecutive instructions in P with the following properties:

• The flow of control can only enter the basic block through the first in-

struction in the block. That is, there are no jumps into the middle of the

block.

• Control will leave the block without halting or branching, except possibly

at the last instruction in the block.

The directed graph that shows all the possible paths of execution through

a program is known as a control flow graph. (It is being assumed that the

program does not contain unreachable code so only execution paths that are

possible are present in the control flow graph.)

Definition 27 (Control flow graph). A control flow graph for program P is

a directed graph whose nodes are basic blocks corresponding to P ’s code and

CHAPTER 4. TRACKING DATA STRUCTURE STATE 68

whose edges indicate which blocks can follow which other blocks, i.e. indicate

potential flow of control between the nodes of P .

Definition 28 (Control flow path). A control flow path is an ordered sequence

of adjacent nodes taken from a control flow graph, i.e. (n1, n2, . . . , nk).

Both of the above definitions are closely based on those given by Zeil [80].

Definition 29 (Originating control flow path). A control flow path is an orig-

inating control flow path if the first node in its ordered sequence has no prede-

cessor in the control flow graph from which it is taken.

Definition 30 (MOQA control flow graph). A MOQA control flow graph is

the control flow graph of a MOQA-satisfying program.

Notation 39. Let MCGp denote the MOQA control flow graph of the MOQA-

satisfying program p.

Notation 40. Let mcfp, na, nb
denote the control flow path (na, . . . , nb) taken

from MCGp.

Notation 41. Let mcf denote mcfp, na, nb
whenever a known p, na and nb are

being dealt with.

Notation 42. Let mcf o denote mcfp, na, nb
when it is an originating control

flow path.

Notation 43. Let M
mcf(M) denote the MOQA random bag after program p

follows control flow path mcf when M is program p’s MOQA random bag at

the moment the control of flow enters node na.

4.3 Expanding the MOQA Theory

Section 2.1 stated that, under certain conditions, MRBp, c, β contains a specific

MOQA random structure. (Recall that MRBp, c, β denotes composite variable

c’s MOQA random bag at the first moment that c is referred to in program p.)

The Hβ of this specific S
MRBp, c, β

1 is a discrete Hasse diagram whose size is not

fixed and the multiplicity of this S
MRBp, c, β

1 is one, thus each labeling in L(Hβ)

has a frequency of one. (Recall that L(Hβ) denotes the set of all canonically-

ordered labelings of the Hasse diagram H that has the label ordering β on

CHAPTER 4. TRACKING DATA STRUCTURE STATE 69

it.) The conditions are 1), MRBp, c, β is not the output of another MOQA-

satisfying program and 2), MRBp, c, β has not been provided as input to the

MOQA static analysis tool.

So, when both of these conditions hold, the size of this discrete Hβ is not

known, that is, n
S

MRBp, c, β
1

is not known. Nonetheless, n
S

MRBp, c, β
1

should have

one stipulation placed on it; n
S

MRBp, c, β
1

should be greater than or equal to the

total number of distinct nodes involved in all of the MOQA functions applied

to c in p. (The number of nodes “involved” in a MOQA function is the number

of nodes in the (strictly) isolated subset considered by that MOQA function.

For example, there are five nodes “involved” in the MOQA product function

that takes the two disjoint connected components of an isolated subset and

products the one with three nodes above the one with two nodes.) This lower

bound, having all of c’s required nodes from its moment of inception, ensures

that n
S

MRBp, c, β
1

is always large enough for any sequence of MOQA functions

applied to c in p. There is no upper bound on n
S

MRBp, c, β
1

.

However, a discrete series-parallel Hasse diagram of no fixed size cannot

be represented by S
MRBp, c, β

1 . In keeping with Schellekens’s definition [63] of a

MOQA random structure, Hβ is a finite series-parallel Hasse diagram. So how

does such a, as yet undetermined, initial size of c integrate with the MOQA

theory? To answer this, the following notation will be of use.

Notation 44. Let (Fmcf, c) denote the sequence of MOQA functions applied to

composite variable c in control flow path mcf .

(Fmcf, c) can be expanded to the following:

(fmcf, c, 1, fmcf, c, 2, . . . , fmcf, c, n−1, fmcf, c, n).

(Fmcf, c) is ordered chronologically; this order is inferred from mcf . For ex-

ample, let fmcf, c, x and fmcf, c, y denote two MOQA functions in (Fmcf, c), 1 ≤

x, y ≤ n and x 6= y. If x < y, then fmcf, c, x is applied to c before fmcf, c, y.

Notation 45. Let I((Fmcf, c)) denote the set of all nodes involved in the MOQA

functions in (Fmcf, c).

Notation 46. Let D((Fmcf, c)) denote the set of all nodes deleted by the MOQA

deletion functions in (Fmcf, c).

CHAPTER 4. TRACKING DATA STRUCTURE STATE 70

So, when the MOQA static analysis tool does not have an exact value for c’s

initial size because c is the discrete series-parallel Hasse diagram just described,

the sizes of the data structures constructed/modified by any (Fmcfo, c) are what

is of interest; these sizes can be inferred from |I((Fmcfo, c))| − |D((Fmcfo, c))|.

If the MOQA static analysis tool can reduce |I((Fmcfo, c))| − |D((Fmcfo, c))|

to a fixed value, then the data structures which (Fmcfo, c) constructs/modifies

can be represented by finite series-parallel Hasse diagrams. Therefore, such

a result of (Fmcfo, c) can be represented by M
mcfo(M) when M is the initial

MOQA random bag under discussion here. Hence, it becomes safe to statically

ignore the unbounded number of leftover nodes in c’s initial discrete series-

parallel Hasse diagram, i.e. the nodes not involved in (Fmcfo, c), and just track

in M
mcfo(M) the fixed number of nodes that result after (Fmcfo, c). So, though

Schellekens’s definition [63] of a MOQA random structure does not allow c’s

initial data structure to be a discrete Hasse diagram of no fixed size, this

does not prevent the static calculation of average-case cost for this situation.

It is just a minor discrepancy in the theory. In addition, if the new version

of the MOQA product function in Section 3.3 replaces the current one, then

this discrepancy disappears. Then c’s initial data structure under the two

conditions stipulated above is an empty partial order, which can be represented

by a Hasse diagram.

However, it is still necessary to extend Schellekens’s definition [63] of a

MOQA random structure and, consequently, the definition of a MOQA random

bag. Not just to harmonise the current theory but, more importantly, to

be able to represent the data structures that result when the MOQA static

analysis tool cannot reduce |I((Fmcfo, c))| − |D((Fmcfo, c))| to a fixed value.

Hence, the MOQA theory is extended as follows.

Definition 31 (Fixed po-structure). A fixed po-structure is a series-parallel

Hasse diagram.

Notation 47. Let FPS denote a fixed po-structure.

Notation 48. Let FPSβ denote a fixed po-structure and some label ordering

β on it.

So FPSβ is equal to Hβ in Section 2.1.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 71

Definition 32 (Inductive po-class). An inductive po-class consists of an in-

ductively defined set of rules and some set of fixed po-structures constructed by

these rules.

Inductive po-classes can represent data structures that do not have a fixed

size, see Section 4.4.2. Generally, in this work the inductively defined set of

an inductive po-class will not be empty.

Notation 49. Let IPC denote an inductive po-class.

Notation 50. Let IPCβ denote an inductive po-class and some label ordering

β on its set of fixed po-structures.

Notation 51. Let R(IPCβ) denote the zero or more size restrictions placed

on IPCβ.

In other words, R(IPCβ) denotes the zero or more size restrictions placed

on the fixed po-structures in IPCβ’s set. Restrictions that can be placed on

IPCβ include:

• IPCβ’s lower bound, i.e. the size of the smallest fixed po-structures in

its set.

• IPCβ’s upper bound, i.e. the size of the largest fixed po-structures in its

set.

• IPCβ’s size range. For example, let IPCβ’s size range be [4, 13]. This

means that its set is finite because it would contain all of the fixed po-

structures from size four to size thirteen that IPCβ can represent.

• General IPCβ size constraints. For example, a fixed po-structure is only

allowed in IPCβ’s set if its size is even.

If R(IPCβ) is empty, then IPCβ’s set is infinite; this is equivalent to R(IPCβ)

just representing that IPCβ’s lower bound is zero. So when it is uncondition-

ally stated in this work that an IPCβ’s set is infinite, it means that it contains

all the fixed po-structures of all the possible sizes that the IPCβ can repre-

sent, potentially including the fixed po-structure of size zero. The discussion

of inductive po-classes in Section 4.4.2 goes into further detail regarding finite

and infinite sets but it is becoming more plausible why an inductive po-class

is suitable for representing data structures that do not have a fixed size.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 72

Notation 52. Let FPSβmax, a, b denote a fixed po-structure that is composed of

three discrete fixed po-structures in series which, from the top, are of size a, 1

and b respectively and the max-heap label ordering on it, a, b ≥ 0.

Definition 33 (Split po-class). For a specific n ≥ 1, a split po-class is the set

{FPSβmax, 0, n−1, FPSβmax, 1, n−2, . . . , FPSβmax, n−2, 1, FPSβmax, n−1, 0}.

The split po-class represents all of the fixed po-structures that can result

after the MOQA split function is applied to a discrete fixed po-structure; n

is the specific size of the discrete fixed po-structure that the MOQA split

function is applied to. Following Schellekens’s definition [63] of a MOQA

random structure, which states that it represents one fixed po-structure, there

would have to be a MOQA random structure for each FPSβ, a, b in a split po-

class’s set. The redefining of the MOQA random structure, which is to follow,

can represent a split po-class so now just one of these new MOQA random

structures can cover all of the fixed po-structures in a split po-class’s set.

Notation 53. Let SPCβmax, n denote a split po-class, with n as in Definition

33.

Definition 34 (General split po-class). A general split po-class is

⋃

n∈Z

SPCβmax, n,

where Z ⊆ {0, 1, 2, . . . }.

Notation 54. Let GSPCβmax, Z denote a general split po-class, with Z as in

Definition 34.

Notation 55. Let GSPCβmax,∞ denote GSPCβmax, Z when Z = {0, 1, 2, . . . }.

GSPCβmax,∞ represents all of the fixed po-structures that can result after

the MOQA split function is applied to a discrete inductive po-class with an

infinite set. (Note that the MOQA split function does not modify input when

it is an empty fixed po-structure or a fixed po-structure of size one.) Z is to

GSPCβmax, Z what R(IPCβ) is to IPCβ. More information regarding split and

general split po-classes can be found in Section 4.4.3. However, it is important

CHAPTER 4. TRACKING DATA STRUCTURE STATE 73

to draw attention here to the fact that the general split po-class concept comes

from research carried out by Hickey [35].

Definition 35 (Compound structure). A compound structure is obtained from

finite numbers of FPSβs, IPCβs, SPCβmax, ns, and GSPCβmax, Zs through suc-

cessive iterations of the operations || and ⊗.

Note that the finite numbers in the above definition include zero. A com-

pound structure can be used to represent all of the possible outputs from a

MOQA function when these outputs cannot be represented by a fixed po-

structure or by one of the above classes, i.e. by one inductive po-class or by

one split po-class or by one general split po-class. The driver for this new

data structure type is to allow MOQA functions involving both a fixed and

an unknown number of nodes to be applied to the same composite variable

during its lifetime in some program. Section 4.4.4 provides a more detailed

explanation of compound structures, along with examples.

Notation 56. Let CS denote a compound structure.

Notation 57. Let CSβ denote a compound structure and some label ordering

β on it.

Each item from which a compound structure is obtained is associated with a

label ordering. In MOQA all of these label orderings are the same, see Section

2.2. Hence, the label ordering that is common throughout the compound

structure can be part of its notation.

Notation 58. Let Pβ denote CSβ.

Due to the compound structure definition, a salient point worth noting here

is that when CSβ represents just one FPSβ, IPCβ, SPCβmax, n or GSPCβmax, Z ,

then Pβ can be said to denote that FPSβ, IPCβ, SPCβmax, n or GSPCβmax, Z .

Notation 59. Let M ′ denote an expression whose variables are FPS proper-

ties.

The number of nodes in a FPS, or the depth of a FPS if it is a tree, are

both examples of FPS properties.

Notation 60. Let M ′(FPS) denote the value of M ′ on a specific FPS.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 74

The background for the following definition is now in place. This definition

pushes the MOQA theory outside of the realm of finite data structures for the

first time.

Definition 36 (MOQA′ random structure). A MOQA′ random structure con-

sists of a Pβ, an expression M ′ that for each FPSβ represented by Pβ evaluates

to a positive integer and, for each FPSβ represented by Pβ, a multiset con-

taining M ′(FPS) copies of each canonically-ordered labeling in L(FPSβ).

Note that the MOQA static analysis tool should also use R(IPCβ) to assist

in recording the FPSβs that are represented by Pβ when Pβ is IPCβ. Though

the tool may individually record each FPSβ represented by IPCβ when its set

is finite, this option is no longer available when IPCβ’s set is conditionally or

unconditionally infinite. R(IPCβ) must then be used to statically record the

infinite number of fixed po-structures in IPCβ’s set.

Notation 61. Let S ′ denote a MOQA′ random structure.

Notation 62. Let nS′ denote the size of Pβ in S ′.

When Pβ is FPSβ, then the size of Pβ is the size of FPSβ, i.e. the number

of nodes in FPSβ. When Pβ is IPCβ, then the size of Pβ can be the size of

any FPSβ in IPCβ’s inductively defined set. When Pβ is SPCβmax, n, then the

size of Pβ is n. When Pβ is GSPCβmax, Z , then the size of Pβ can be the size of

any FPSβ, a, b in GSPCβmax, Z ’s set. When Pβ is CSβ, then the size of Pβ can

be the size of any FPSβ represented by CSβ; see Section 4.4.4 for the FPSβs

that a CSβ represents.

Definition 37 (Multiplicity of MOQA′ random structure). The multiplicity

of S ′ is the expression M ′ in Definition 36.

Notation 63. Let MS′
denote the multiplicity expression of S ′.

An example in MOQA of M ′ is the multiplicity expression for the MOQA

split function; see Section 2.2.2. Note that it is not required for M ′ to have

variables. If M ′ does not have variables, then every M ′(FPS) evaluates to the

same positive integer and FPS is irrelevant.

Definition 38 (MOQA′ random bag). A MOQA′ random bag is a multiset of

MOQA′ random structures.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 75

Definition 39 (A MOQA′ random structure preserving function). A function

is MOQA′ random structure preserving if it maps a MOQA′ random structure

to a multiset of one of more MOQA′ random structures.

A MOQA′ random structure preserving function is also known as a MOQA′

random bag preserving function.

Definition 40 (MOQA′-satisfying program). A MOQA′-satisfying program is

a program P whose composite variables can store all of their possible states at

any moment during P in a MOQA′ random bag.

Notation 64. Let p′ denote a MOQA′-satisfying program.

Notation 65. Let MRBp′, c, β, i denote the MOQA′ random bag that represents

all of c’s possible states at ip′, c.

Notation 66. Let M
′ denote MRBp′, c, β, i.

Notation 67. Let MRBp′, c, β denote c’s MOQA′ random bag at the first mo-

ment that c is referred to in p′.

Definition 41 (The size of a MOQA′ random bag). The size of a MOQA′

random bag is the number of MOQA′ random structures in it.

Notation 68. Let |M′| denote the size of M
′.

Notation 69. Let M
D′

denote a MOQA′ random bag with a MOQA′ random

structure whose Pβ is Pβmax
, which denotes a discrete inductive po-class with

an infinite set, and whose multiplicity is one.

As for a MOQA random structure, the multisets of canonically-ordered la-

belings associated with a MOQA′ random structure are not explicitly recorded

for each S ′ in M
′. While previously this information was not recorded by

choice, now it will not be possible to record these multisets when Pβ of S ′

represents an unbounded number of fixed po-structures.

A MOQA′ random bag can be expanded to the following:

MRBp′, c, β, i = {(SM′

1 ,MSM
′

1), (SM′

2 ,MSM
′

2), . . . , (SM′

|M′|,M
SM

′

|M′|)},

where SM′

j is the jth MOQA′ random structure in M
′ and has a multiplicity of

MSM
′

j , 1 ≤ j ≤ |M′|.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 76

Notation 70. Let L(Pβ) denote the set of all canonically-ordered labelings of

Pβ.

When Pβ is FPSβ, then L(Pβ) is L(FPSβ), c.f. L(Hβ). When Pβ is IPCβ,

SPCβmax, n, GSPCβmax, Z or CSβ, then L(Pβ) can be the L(FPSβ) of any

FPSβ in the collection represented by Pβ.

Notation 71. Let L(SM′

j) denote L(Pβ) for the Pβ of that SM′

j .

Notation 72. Let l(M′) denote the multiset union of each SM′

j ’s multiset of

canonically-ordered labelings.

Notation 73. Let T f (Pβ) denote the average number of label-to-label compar-

isons that result when the MOQA function f is applied to Pβ, when the average

is taken over every labeling in the canonically-ordered set L(Pβ).

Notation 74. Let T f (S
M′

j) denote T f (Pβ) for the Pβ of that SM′

j .

Notation 75. Let T f (M
′) denote the average number of label-to-label compar-

isons that result when the MOQA function f is applied to the MOQA′ random

bag M
′.

So the formula for the average-case cost of the MOQA function f when

applied to the MOQA′ random bag M
′ only differs from Formula 2.14 on page

28 notationally.

T f (M
′) =

|M′|
∑

j=1

|L(SM′

j)|.MSM
′

j

|l(M′)|
.T f (S

M′

j) (4.1)

It has just been established that there may be multiple distinct L(SM′

j)s

when Pβ is IPCβ, SPCβmax, n, GSPCβmax, Z or CSβ. When this is so, then

there may be some confusion in the reader’s mind regarding which set is used

for T f (Pβ). Additionally, if at least two of these sets have distinct cardinalities,

then that confusion may also arise regarding the value of |L(SM′

j)| in Formula

4.1. However, by the end of this chapter, it should be clear how this work

addresses this issue.

Definition 42 (MOQA′ control flow graph). A MOQA′ control flow graph is

the control flow graph of a MOQA′-satisfying program.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 77

Notation 76. Let mcf ′ denote mcfp′, na, nb
whenever a known p′, na and nb

are being dealt with.

Notation 77. Let mcf ′ o denote mcfp′, na, nb
when it is an originating control

flow path.

Notation 78. Let M
mcf ′(M′) denote the MOQA′ random bag after program p′

follows mcf ′ from the MOQA′ random bag M
′.

Definitions FPSβ, IPCβ, SPCβmax, n, GSPCβmax, Z and CSβ have been

introduced in this section. The next sections shall explore these data struc-

ture representations further. Particular attention is paid to IPCβ as it is an

important component in any average-case analysis technique and, with the ex-

tension here of the MOQA theory, its relation to MOQA can now be formally

considered.

4.4 Data Structures Represented by Pβ

4.4.1 Fixed Po-structure

When MRBp′, c, β is M
D′

and |I((Fmcf ′ o, c))|−|D((Fmcf ′ o, c))| can be reduced by

the MOQA static analysis tool to a specific integer, then each Pβ in M
mcf ′ o(MD′

)

is a fixed po-structure. Recall that all the distinct canonically-ordered labelings

of each of these Pβs are equally likely.

An example of a MOQA′ random bag in which each Pβ is a fixed po-

structure can be shown using the MOQA′ program p′1 in Figure 4.2, which is

written in the correct syntax of MOQA-Java; see Chapter 3. The code is a

sequence of three MOQA functions: a MOQA product function involving three

nodes, a MOQA deletion function involving one node, finishing with a MOQA

product function involving three nodes, two that were involved in the previ-

ous MOQA product function and one new node. Let c denote the composite

variable oc and let MRBp′
1
, c, β denote M

D′
. Let mcf ′ o

x denote mcfp′
1
, na, na

, the

only originating control flow path through p′1 of length one when entry and

exit blocks are ignored. The last instruction in this path’s basic block na is

the final MOQA product function in p′1.

There are two MOQA′ random structures in M
mcf ′ o

x (MRBp′
1

, c, β)
. The fact

that there are two of them is due to p′1’s deletion function. p′1’s deletion

CHAPTER 4. TRACKING DATA STRUCTURE STATE 78

/∗∗
∗ A simple example .
∗ @param oc a d i s c r e t e OrderedCo l l ec t ion o f s i z e g r ea t e r than
∗ t h r e e .
∗/

public <L extends Comparable<L>, G> void

eg (OrderedCol lect ion<L , G> oc) {
I t e r a t o r <NodeInfo<L , G>> i t e r = oc . g e tD i r e c tNode In f o I t e r () ;
OrderedCol lect ionSubset<L , G> i n s e r t 1 =

oc . product (i t e r . next () , i t e r . next () , MARKER, i t e r . next ()) ;
NodeInfo<L , G> de l e t e 1 = i n s e r t 1 . removeMaximum () ;
OrderedCol lect ionSubset<L , G> i n s e r t 2 =

oc . product (i n s e r t 1 , i t e r . next ()) ;
}

Figure 4.2: A simple example in MOQA-Java, program p′1

function is only ever executed on a particular fixed po-structure, a v-shaped

Hasse diagram of size three, and it selects one of the structure’s two maximal

nodes for deletion. Both these nodes have an equal chance of selection for

deletion because the deletion function deletes the node with the largest label

and all the distinct canonically-ordered labelings of the fixed po-structure in

question are function input for a constant number of program run-times. So

two fixed po-structures are equally likely to result from p′1’s deletion function.

These are shown in Figure 4.3, the v-shaped Hasse diagram when the rightmost

maximal node has been deleted and the v-shaped Hasse diagram when the

leftmost maximal node has been deleted. The final MOQA product function

connects another node below these fixed po-structures to give two total orders

of size three, the Pβs in M
mcf ′ o

x (MRBp′
1

, c, β)
. Both MOQA′ random structures

in M
mcf ′ o

x (MRBp′
1

, c, β)
have a multiplicity of one. So fixed po-structures are

applicable when the number of nodes involved in all of a MOQA′ program’s

product and deletion functions can be statically determined as a fixed value,

which is when this information is completely independent of the number of

program run-times.

The current MOQA static analysis tool utilises a technique called con-

densed representation [35]. Its definition, slightly modified for consistency

with the terminology here, is as follows.

Definition 43 (Condensed representation). A condensed representation is a

series-parallel partial order representation that contains a component which is

CHAPTER 4. TRACKING DATA STRUCTURE STATE 79

Figure 4.3: One of these fixed po-structures will result after the MOQA dele-
tion function in Figure 4.2

an embedded MOQA random bag. It thus is a single representation for one or

more MOQA random structures in a MOQA random bag, the number of which

depends on the number of MOQA random structures in the MOQA random

bag.

The purpose of a condensed representation is to more efficiently record

multiple fixed po-structures in the same MOQA random bag when they have

a large amount of structural similarity. For example, assume that fixed po-

structures I and II in Figure 4.4 are in the same MOQA random bag. Instead of

individually representing each of these fixed po-structures in the MOQA ran-

dom bag, Hickey [35] would represent them once, the condensed representation

III of Figure 4.4 with its box symbolising the embedded MOQA random bag.

Clearly, letting Hβ of S be a condensed representation breaks Schellekens’s

definition [63] of a MOQA random bag though statically the result is that

“there is a large saving in terms of the space required”[35]. Therefore, Pβ of

S ′ can be extended to also denote a condensed representation, allowing this

useful implementation technique to be in harmony with the expansion of the

MOQA theory in Section 4.3.

4.4.2 Inductive Po-class

As discussed in Section 4.3, there are times when the MOQA static analysis

tool is not able to reduce |I((Fmcf ′ o, c))| − |D((Fmcf ′ o, c))| to a specific integer.

When this is so, then it may be that some or all of the data structures con-

structed/modified by (Fmcf ′ o, c) can be represented by an inductive po-class.

The potential value of inductive po-classes in this situation is that they would

allow the MOQA static analysis tool to continue tracking the state and distri-

bution of a program’s data structures. Later on, careful consideration will be

given to when inductive po-classes are actually suitable for use in the MOQA

context.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 80

IIIIII

or

Figure 4.4: I) A fixed po-structure, II) A fixed po-structure and III) A con-
densed representation of I and II

Definition 32 described an inductive po-class, a set of fixed po-structures

whose structural definition is in terms of itself. This work always uses its

own extended version of the original Backus-Naur Form (BNF) notation to

express structural definitions. This extended BNF notation is the original

BNF notation plus parentheses. The motivation behind including parenthe-

ses is to indicate operator precedence and is purely syntactic sugar because

adding parentheses to the original BNF notation does not increase its power

of expression. Parentheses simply allow for fewer production rules, in the same

way that the Kleene star does in other extended BNF notations. For example,

the following structural definition of an inductive po-class is expressed in this

work’s extended BNF notation and makes use of parentheses.

< R > ::= ()

< R > ::= ((< number > ⊗ < number >) ⊗ < number >) ⊗ < R >

Note that () in the first production rule is the empty string. This structural

definition can also be expressed in just the original BNF notation:

< Q > ::= ()

< Q > ::= < R > ⊗ < Q >

< R > ::= < S > ⊗ < number >

< S > ::= < number > ⊗ < number >

CHAPTER 4. TRACKING DATA STRUCTURE STATE 81

As standard, the production rules in a structural definition are written as

head ::= body, where the left-hand side, the head, may be replaced by the

right-hand side, the body.

Note that there is an important distinction between an inductive po-class

and the structural definition of this inductive po-class. The first is a set of

fixed po-structures that are potentially of different sizes and this set can be

infinite. Hence, knowing that a fixed po-structure belongs to an inductive

po-class does not mean that the number of elements in the partial order is

known. The second is a set of structural rules used to construct each member

of the inductive po-class. So this structural definition determines which fixed

po-structures can be members of the inductive po-class but not which ones

actually are members. It has no influence over member size or quantity. These

attributes depend on the context in which the inductive po-class was formed.

Note also that when Pβ of SM′

j , which is the jth MOQA′ random structure

in the MOQA′ random bag M
′, is an inductive po-class, each fixed po-structure

in its inductively defined set has the same label ordering, which is β, and all

the distinct canonically-ordered labelings of each possible fixed po-structure in

that set are equally likely.

Inductive po-classes are similar to inductively defined types. These are

commonly found in functional programming languages, such as Haskell [33]

and ML [53], where they are known as algebraic types. They are also known

as recursive data structures [39]. In the MOQA book [63] a total of three

inductively defined types are mentioned: discrete, linear list and binary tree.

Not considered in the MOQA book [63] is how inductively defined types fit

into the MOQA theory, as the MOQA theory was not developed with them in

mind, which was a strong motivation for the formal extension of the MOQA

theory in Section 4.3. This work will show that there is a difference between

the set of all inductively defined types and the set of all inductively defined

types possible in MOQA. The other inductive po-class related definitions which

occur later on in this work will assist in detailing the distinction between these

two sets.

So to date one inductive po-class has already been seen, M
D′

, which is a

discrete inductive po-class whose lower size bound is zero. A lower size bound

of zero means that this inductive po-class represents all discrete partial orders

including the empty discrete partial order. A simple example of a MOQA′

CHAPTER 4. TRACKING DATA STRUCTURE STATE 82

1 /∗∗
2 ∗ A simple example .
3 ∗ @param oc a d i s c r e t e OrderedCo l l ec t ion o f any s i z e .
4 ∗/
5 public <L extends Comparable<L>, G> void

6 eg (OrderedCol lect ion<L , G> oc) {
7 I t e r a t o r <NodeInfo<L , G>> i t e r = oc . g e tD i r e c tNode In f o I t e r () ;
8 for (int i = 1 ; i < oc . s i z e () / 2 ; i++)
9 i n s e r t = oc . product (i n s e r t , i t e r . next ()) ;

10 }

Figure 4.5: A simple example in MOQA-Java, program p′2

random bag that contains another inductive po-class whose lower size bound

is zero can be shown using the MOQA′ program p′2 in Figure 4.5. Let c denote

the composite variable oc and let Mp′
2
, c, β denote M

D′
. Figure 4.6 shows the

MOQA′ control flow graph of p′2. Let mcf ′ o
x denote mcfp′

2
, n1, n5

, an originating

control flow path through p′2. Finally, let q denote n
SMD′

1

during the course of

this example3.

The length of mcf ′ o
x depends on the number of times the “yes” edge is

traversed. For example, if this edge is traversed twice, then the length of mcf ′ o
x

is eight, (n1, n2, n3, n4, n3, n4, n3, n5). In turn, the number of times the “yes”

edge is traversed/the number of times basic block n4 is executed depends on

q. This value cannot be resolved to a specific integer because what it depends

on cannot be resolved to a specific integer; q can be any value greater than or

equal to zero so it can be any one of an infinite number of possible values. So

an inductive po-class is used to represent the infinite number of data structures

that can be constructed/modified by (Fmcf ′ o
x , c). This inductive po-class is the

linear list inductive po-class with the label ordering βmax on it. Its structural

definition is:

< LIST > ::= ()

< LIST > ::= < number > ⊗ < LIST >

The size of the linear list inductive po-class when it is the Pβ of the one MOQA′

3Notationally, the node ni in a control flow graph differs to nS′ , which denotes the
size of Pβ in S′, as the former’s subscript is an integer and the latter’s subscript is a
compound structure. Nonetheless, q will denote n

SMD′

1

in this example to eliminate any

possible confusion that may arise between the two notations.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 83

yes no

i = 1

Line 7

Entry Block

i < oc.size()/2

2

3

n

1n

5

n4

n

n Exit Block

Line 9

i++

Figure 4.6: Control flow graph of Figure 4.5

CHAPTER 4. TRACKING DATA STRUCTURE STATE 84

random structure in M
mcf ′ o

x (Mp′
2

, c, β)
is:

⌊
q

2
⌋.

Hence, p′1 ignores

⌈
q

2
⌉

of the nodes in S
Mp′

2
, c, β

1 .

However, could fixed po-structures have been used in this example instead

of inductive po-classes? No. To explain why not, it is worthwhile answering

a more general question first. What does the set of fixed po-structures as-

sociated with the definition of an inductive po-class epitomise? Recall that

a MOQA random bag represents all the possible fixed po-structures that a

composite variable can take at some moment. So when all program run-times

are considered, the composite variable is each of these structures for at least

one run-time. Likewise, when all program run-times are considered, the com-

posite variable’s size is each of the distinct sizes of these structures for at least

one run-time. Therefore, the MOQA′ random structure whose Pβ is an induc-

tive po-class can be viewed as a logically disjunctive series of distinct MOQA′

random bags nested within the overall MOQA′ random bag. Each MOQA′

random bag in the nested series contains only fixed po-structures of the same

size, which are all the fixed po-structures of that size in the inductive po-class’s

set, and in the series there is a MOQA′ random bag for each distinct fixed po-

structure size found in the inductive po-class’s set. The key point is that only

one of these MOQA′ random bags contains the possible fixed po-structures

that the composite variable can take at that moment.

So replacing LIST in the above example with fixed po-structures would

yield an infinite series of MOQA′ random bags nested within M
mcf ′ o

x (Mp′
2

, c, β)
.

It is clearly impossible to explicitly represent each individual element in an

infinite set of fixed po-structures/MOQA′ random bags statically. So such

an infinite number of fixed po-structures/MOQA′ random bags are concisely

represented in a MOQA′ random bag by one Pβ, an inductive po-class.

An inductive po-class can be further classified into one of two sub-types:

deterministic or non-deterministic.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 85

Definition 44 (Deterministic inductive po-class). An inductive po-class is

said to be a deterministic inductive po-class if, for every given size, there is at

most one fixed po-structure of that size in the set.

Notation 79. Let DIPC denote a deterministic inductive po-class.

Notation 80. Let DIPCβ denote a deterministic inductive po-class and some

label ordering β on it.

Definition 45 (Non-deterministic inductive po-class). An inductive po-class

is said to be a non-deterministic inductive po-class if there is at least one size

for which there is more than one fixed po-structure of that size in the set.

Notation 81. Let NDIPC denote a non-deterministic inductive po-class.

Notation 82. Let NDIPCβ denote a non-deterministic inductive po-class

and some label ordering β on it.

An example of a DIPCβmax
has just been highlighted, the linear list induc-

tive po-class with the label ordering βmax on it. When Pβ of SM′

j is a linear list

inductive po-class, then there is exactly one fixed po-structure for any n
SM′

j
.

For a NDIPC, consider the following structural definition:

1. < BT > ::= ()

2. < BT > ::= < number > ⊗ (< BT > || < BT >)

This is the structural definition of a binary tree inductive po-class. The fixed

po-structures in the set belonging to a binary tree inductive po-class correspond

to conventional binary trees with < number > at the root and whose left and

right subtrees correspond to the structures derived from the left and right

< BT > operands of ||, respectively. So, when Pβ of SM′

j is a binary tree

inductive po-class, then the number of distinct fixed po-structures for any

n
SM′

j
depends on the value of n

SM′
j

. For example, a binary tree of size two can

be one of the two distinct fixed po-structures in Figure 4.3, whereas a binary

tree of size three can be one of the five distinct fixed po-structures in Figure

4.7.

The fact that the fixed po-structures in the set belonging to a binary tree

inductive po-class correspond to conventional binary trees raises an important

CHAPTER 4. TRACKING DATA STRUCTURE STATE 86

Figure 4.7: The five distinct BSTs of size three

new concept in this work — that a fixed po-structure in an inductive po-

class’s set is identified not only by shape, which of course is related to size,

but also by the precise sequence of production rules which were used to derive

it. For example, a DAG has no intrinsic concept of “left” or “right” children,

yet by taking into account the actual derivation of the DAG, these concepts

now become meaningful. Therefore, in general, any two fixed po-structures

constructed from the structural definition of an inductive po-class are distinct

if they are constructed via distinct production rule sequences. This can be

expanded on a little further. Let A ⇒i B denote that string B is generated

from string A by applying production rule i to the leftmost applicable non-

terminal in A. Then Figure 4.8 shows the unique sequence of production rules

that constructed the far left fixed po-structure in Figure 4.7; BT ’s production

rules are numbered in its structural definition above.

So the production rule sequence that constructed the far left fixed po-

structure in Figure 4.7 is [2, 1, 2, 2, 1, 1, 1]. Whereas the production rule se-

quence that constructed the fixed po-structure second to the left in Figure 4.7

is [2, 1, 2, 1, 2, 1, 1]. This is why all four fixed po-structures of height two in

Figure 4.7 are considered to be distinct, therefore eliminating the argument

that all four of these fixed po-structures could be interpreted as the same lin-

ear list of length three. So it is this understanding of distinctness between

fixed po-structures constructed from the structural definition of an inductive

po-class that determines the elements of an inductive po-class’s set. Also, it

is the order of the terminals from left to right at each depth of nesting in a

production rule sequence that is the left-to-right order of the nodes at that

depth. So, for the binary tree case, this terminal order in a production rule

sequence specifies the left and right children of a parent node.

Hence, when Pβ of SM′

j is an inductive po-class, its structural definition

determines the number of distinct fixed po-structures for each n
SM′

j
. This

CHAPTER 4. TRACKING DATA STRUCTURE STATE 87

< BT > ⇒2

< number > ⊗ (< BT > || < BT >) ⇒1

< number > ⊗ (() || < BT >) ⇒2

< number > ⊗ (() || (< number > ⊗ (< BT > || < BT >))) ⇒2

< number > ⊗ (() || (< number > ⊗ ((< number > ⊗

(< BT > || < BT >)) || < BT >))) ⇒1

< number > ⊗ (() || (< number > ⊗ ((< number > ⊗

(() || < BT >)) || < BT >))) ⇒1

< number > ⊗ (() || (< number > ⊗ ((< number > ⊗

(() || ())) || < BT >))) ⇒1

< number > ⊗ (() || (< number > ⊗ ((< number > ⊗

(() || ())) || ())))

Figure 4.8: The sequence of production rules that constructed the far left fixed
po-structure in Figure 4.7

means that an inductive po-class is suitable not only when the size is not fixed

but also when the number of distinct fixed po-structures for each size is not

fixed.

It has been shown here how an inductive po-class captures some or all of the

fixed po-structures that a composite variable can take at a particular moment.

Now consider the multiplicity expression associated with an inductive po-class

for the MOQA′ random structure definition. When Pβ of SM′

j is an inductive

po-class, then MSM
′

j captures how often each fixed po-structure in Pβ’s set

occurs when it is among the possible fixed po-structures that c can take at ip′, c.

In other words, for each FPSβ in this Pβ’s set, MSM
′

j (FPS) captures how often

each labeling in L(FPSβ), which is the set of all canonically-ordered labelings

of FPSβ, occurs when FPSβ is among the possible fixed po-structures that

c can take at ip′, c. For example, the multiplicity expression associated with a

linear list inductive po-class captures how often a total order in its set occurs

when it is a possible fixed po-structure; the expression captures how often the

one canonically-ordered labeling of a total order in its set occurs when it is a

possible fixed po-structure. Insertion-sort is an example of this in practise; see

Section 3.2.1 to recall the insertion-sort algorithm.

Let p′3 denote the insertion-sort program and let c denote the composite

CHAPTER 4. TRACKING DATA STRUCTURE STATE 88

variable to which it is applied. Let MRBp′
3
, c, β denote M

D′
. Let mcf ′ o

x denote

mcfp′
3
, nx, ny

, an originating control flow path through p′3 with nx being the

entry block and ny being the exit block. After insertion-sort is finished, there

is one MOQA′ random structure in M
mcf ′ o

x (MRBp′
3

, c, β)
. The Pβ of this MOQA′

random structure is a linear list inductive po-class with the label ordering βmax

on it and its size is n
SMD′

1

. The multiplicity of this MOQA′ random structure is

n
SMD′

1

!. But why is this the multiplicity of the only MOQA′ random structure

in M
mcf ′ o

x (MRBp′
3

, c, β)
?

For any FPSβ in the infinite set belonging to Pβ of S
MRBp′

3
, c, β

1 , each of

its |FPSβ|! distinct canonically-ordered labelings is transformed by p′3 into

a sorted list when that FPSβ is the fixed po-structure that c takes at the

commencement of p′3. So, for any FPSβ in the infinite set belonging to the

Pβ of the only MOQA′ random structure in M
mcf ′ o

x (MRBp′
3

, c, β)
, its one distinct

canonically-ordered labeling occurs |FPSβ|! times when that FPSβ is the fixed

po-structure that c takes at the completion of p′3. Hence, the multiplicity

expression of n
SMD′

1

!.

For this example, the above multiplicity expression is actually irrelevant

because there is just one MOQA′ random structure in M
mcf ′ o

x (MRBp′
3

, c, β)
and

it is clear statically that its multiplicity expression is constant for each FPSβ

of the same size in the set belonging to its Pβ. For this to be clear stati-

cally, without involving any powerful deduction techniques, the multiplicity

expression is either a constant or the overall fixed po-structure size is the only

variable in it. So a multiplicity expression other than one should only exist,

and perhaps not even then, when there is at least one other distinct Pβ in the

same MOQA′ random bag or when there is just one Pβ in the MOQA′ random

bag but some of the fixed po-structures of the same size in its set occur at

different frequencies. Therefore, the above multiplicity expression of the linear

list inductive po-class can be changed to one. The example in Section 4.4.1

can be used to show how multiplicity expressions are dealt with when two or

more of the Pβs in a MOQA′ random bag are judged to be the same. Both

of the MOQA′ random structures in that M
mcf ′ o

x (MRBp′
1

, c, β)
have a multiplicity

expression of one. If the MOQA static analysis tool examined this bag and

considered both of these MOQA′ random structures to be the same, then it

could replace them with just one instance and sum together their multiplicity

expressions, resulting in the instance having a multiplicity expression of two.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 89

Now, with the multiplicity expression of the only MOQA′ random structure in

the bag being a constant, the multiplicity expression can be safely reduced to

one.

Now the focus is on multiplicity expressions associated with the more com-

mon type of inductive po-class, the non-deterministic inductive po-class. A

multiplicity expression that has no variables or all of its variables are |FPSβ|

has just been discussed; so, for such a multiplicity expression, all the fixed po-

structures of the same size in IPCβ’s set are equally likely to occur when that

is the size of the composite variable. (Note that two distinct and equally likely

fixed po-structures of the same size with the same label ordering may not have

the same number of distinct canonically-ordered labelings. So, for example,

one of these fixed po-structures could have four distinct canonically-ordered

labelings and the other could have five, though they are both equally likely.)

Attention is drawn to such multiplicity expressions because in this work they

are the only kind dealt with for non-deterministic inductive po-classes. Ob-

serve that, regardless of the multiplicity expression, it is always true that all

the fixed po-structures of the same size in a DIPCβ’s set are equally likely to

occur when that is the size of the composite variable. This is because, for any

size, there is always at most one fixed po-structure of that size in any DIPCβ’s

set. This distribution pattern is also applied in a previous work that devel-

oped a framework for the automatic average-case analysis of algorithms. In

Flajolet, Salvy and Zimmermann [24], inductive data types are referred to as

decomposable data types and for any inductive data type “all input structures

of a given size n are taken equally likely”. This is also known as the standard

uniform tree model of combinatorics.

In all of the examples so far, an inductive po-class has been employed for

representing an infinite number of fixed po-structures. However, it can also

represent a finite number of fixed po-structures while still being in accord with

its definition. For example, let Pβ of SM′

j denote a binary tree inductive po-

class that has seven fixed po-structures in its inductively defined set, all the

binary trees of size two and three. (This SM′

j can be viewed as two nested

MOQA′ random bags; one with two MOQA′ random structures whose Pβs are

the fixed po-structures of the two binary trees of size two and the other with

five MOQA′ random structures whose Pβs are the fixed po-structures of the

five binary trees of size three.) Clearly, this is a finite set.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 90

Note that an inductive po-class that represents a finite number of fixed po-

structures is not equivalent to a condensed representation. Each of the fixed

po-structures represented by a condensed representation is among the possi-

ble fixed po-structures that a composite variable can take at some moment.

Following the above reasoning, only a subset of the fixed po-structures rep-

resented by an inductive po-class are among the possible fixed po-structures

that a composite variable can take at some moment. However, there is one

situation where it is possible to convert an inductive po-class that represents a

finite number of fixed po-structures into a condensed representation and vice

versa. This is when there are only fixed po-structures of one particular size in

the inductive po-class’s set.

So, when Pβ of SM′

j is an inductive po-class with either a finite or infinite

set, the MOQA static analysis tool must also record the distinct sizes of the

fixed po-structures in Pβ’s set. For example, when Pβ of SM′

j is an inductive

po-class whose set is finite, then the extra information associated with SM′

j

may be a list of each of the distinct fixed po-structure sizes found in Pβ’s set.

Or, when Pβ of SM′

j is an inductive po-class whose set is infinite, all that may

be required is the lower size bound. (Clearly, when Pβ of SM′

j is an inductive

po-class whose set is infinite, the distinct fixed po-structure sizes in its set

must be represented finitely.)

Finally, it is assumed that the structural definition of any inductive po-class

is, if not already stated, tightly defined.

Definition 46 (Tightly defined structural definition). The structural defini-

tion of an inductive po-class is tightly defined if it consists of the minimum

number of production rules in which it is possible to define that inductive po-

class and each of these production rule bodies consist of the minimum number

of terminals and non-terminals in which it is possible to define that production

rule body.

Tightly defining the structural definition of an inductive po-class results

in an equivalent set of rules; equivalent in the sense that both the original

rules and the new rules construct exactly the same possible sets of fixed po-

structures. For any given structural definition, it is clear that a tightly defined

equivalent exists, though no claim is being made that the latter can be pro-

duced by an algorithm that takes the former. Recall that structural definitions

CHAPTER 4. TRACKING DATA STRUCTURE STATE 91

in this work are always expressed in the extended BNF notation defined at the

start of this section. So tightly defining a structural definition may involve

parentheses.

The above structural definition of a linear list inductive po-class exemplifies

a tightly defined structural definition, unlike the following equivalent structural

definition:

< LIST > ::= ()

< LIST > ::= < number >

< LIST > ::= < number > ⊗ < LIST >

The production rule < LIST > ::= < number > is redundant in this structural

definition as it makes it unnecessarily verbose in capturing the description of

a linear list inductive po-class. The next structural definition of a linear list

inductive po-class illustrates how a production rule can be needlessly inflated.

< LIST > ::= ()

< LIST > ::= (< LIST > ⊗ < number >) ⊗ < LIST >

Therefore, stripping an inductive po-class’s structural definition of any repe-

tition is part of tightly defining it. The application of this definition can be

seen in later sections.

4.4.3 Split Po-class and General Split Po-class

Section 2.2.2 showed the finite number of distinct fixed po-structures that

result when a MOQA split function is applied to a discrete fixed po-structure

whose multiplicity is one. Though each of the distinct fixed po-structures that

result can be individually represented in the MOQA random bag via a MOQA

random structure, the split po-class abbreviation was introduced in Section

4.3 so that just one MOQA′ random structure could collectively represent

them in the MOQA′ random bag. In other words, instead of representing each

distinct FPSβmax, a, b and the result of
(

a+b

b

)
for that FPSβmax, a, b with the Hβ

and M of a MOQA random structure, SPCβmax, n and
(

a+b

b

)
are represented

with the Pβ and M
′ of just one MOQA′ random structure. As it is purely an

abbreviation, all the distinct canonically-ordered labelings of each FPSβmax, a, b

CHAPTER 4. TRACKING DATA STRUCTURE STATE 92

in a split po-class’s set are still equally likely. So a split po-class is a condensed

representation; when the issue of efficient memory usage is left to one side, then

it does not matter which representation is used by the MOQA static analysis

tool.

However, there is no such freedom of choice when the MOQA split function

is applied to a discrete inductive po-class whose set is infinite. This is because

the output of the MOQA split function, due to the input, is infinite. There-

fore, it is not statically possible to individually represent each of the fixed

po-structures outputted. It is particularly relevant to consider the MOQA

split function in this context because the function’s inclusion in MOQA was

triggered by the quicksort and quickselect algorithms. If the MOQA static

analysis tool is to determine a general average-case cost for these algorithms,

then being able to track the results of the MOQA split function when applied

to a discrete inductive po-class whose set is infinite is compulsory. Hence, the

definition of a general split po-class, i.e. the definition of GSPCβmax,∞ in Sec-

tion 4.3. This is the motivation behind the same concept minus Z in Hickey’s

earlier research [35], which is defined there as star[n]. So if the MOQA split

function is applied to a discrete inductive po-class with an infinite set whose

multiplicity is one, then the resulting GSPCβmax,∞ and
(

a+b

b

)
are represented

with the Pβ and M
′ of just one MOQA′ random structure. All the distinct

canonically-ordered labelings of each FPSβmax, a, b in a general split po-class’s

set are also equally likely.

In addition to motivation, a general split po-class has much in common with

an inductive po-class. Like an inductive po-class, the set of a general split po-

class can be finite; this will occur when Nx is finite. Furthermore, only all

the fixed po-structures of some unknown but specific size in the general split

po-class’s set are among the possible fixed po-structures that the composite

variable can take at that moment. This principle is explained in detail for

inductive po-classes in Section 4.4.2. Hence, a general split po-class is only

ever equivalent to a condensed representation when the cardinality of Nx is one.

Therefore, with the exception of this case, the fixed po-structures in the finite

set belonging to a general split po-class cannot be individually represented in

the MOQA′ random bag via a MOQA′ random structure. While this may

be technically possible when the set is finite, it is not technically accurate

because not all of them can be possible values for the composite variable.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 93

However, despite sharing traits, an inductive po-class cannot be considered as

a replacement for a general split po-class because no such structural definition

can represent the set of fixed po-structures represented by a general split po-

class.

Note that the multiplicity expression associated with either a split po-class

or a general split po-class will involve
(

a+b

b

)
. These variables are the sizes of

strict subsets of the fixed po-structure selected from the set. Due to this, the

result of
(

a+b

b

)
, and hence the entire multiplicity expression, will vary for fixed

po-structures of the same size in the set. So all the fixed po-structures of

the same size in the set belonging to either a split po-class or a general split

po-class are not equally likely to occur. This is where a general split po-class

deviates from the inductive po-classes discussed in this work.

As a final note, though both the split po-class and general split po-class

are defined in terms of the max-heap label ordering, they could just as equally

have been defined in terms of the min-heap label ordering.

4.4.4 Compound Structure

Section 4.3 introduced the compound structure. A compound structure is an

amalgamation of data structure representations, selected from amongst fixed

po-structures, split po-classes, general split po-classes and inductive po-classes,

joined in parallel and/or series. It can be used for the Pβ of a MOQA′ random

structure when all possible outputs of a MOQA function cannot be symbolised

by just one of these data structure representations, as demonstrated by the

following example.

The MOQA′ program p′4 in Figure 4.9 is an extension of p′2 in Section 4.4.2;

lines 9 and 10 are the new additions. Let c denote the composite variable oc.

Let Mp′
4
, c, β denote a MOQA′ random bag with one MOQA′ random structure

when the multiplicity of this MOQA′ random structure is one and its Pβ is

Pβmax
, which denotes a discrete inductive po-class with an infinite set whose

lower size bound is three. Figure 4.10 shows the MOQA′ control flow graph of

p′4. Let mcf ′ o
x denote mcfp′

4
, n1, n5

, an originating control flow path through p′4.

Finally, let q denote n
SMD′

1

during the course of this example4.

4As noted in Section 4.4.2, the node ni in a control flow graph differs notationally to nS′ ,
which denotes the size of Pβ in S′, as the former’s subscript is an integer and the latter’s
subscript is a compound structure. Nonetheless, q will denote n

SMD′

1

in this example to

CHAPTER 4. TRACKING DATA STRUCTURE STATE 94

1 /∗∗
2 ∗ A simple example .
3 ∗ @param oc a d i s c r e t e OrderedCo l l ec t ion o f s i z e g r ea t e r than
4 ∗ two .
5 ∗/
6 public <L extends Comparable<L>, G> void

7 eg (OrderedCol lect ion<L , G> oc) {
8 I t e r a t o r <NodeInfo<L , G>> i t e r = oc . g e tD i r e c tNode In f o I t e r () ;
9 OrderedCol lect ionSubset<L , G> i n s e r t =

10 oc . product (i t e r . next () , MARKER, i t e r . next () , i t e r . next ()) ;
11 for (int i = 1 ; i < oc . s i z e () / 2 ; i++)
12 i n s e r t = oc . product (i n s e r t , i t e r . next ()) ;
13 }

Figure 4.9: A simple example in MOQA-Java, program p′4

yes no

i = 1

Entry Block

i < oc.size()/2

2

3

n

1n

5

n4

n

n Exit Block

i++

Line 12

Lines 8, 9 & 10

Figure 4.10: Control flow graph of Figure 4.9

CHAPTER 4. TRACKING DATA STRUCTURE STATE 95

Linear List IPC

Figure 4.11: V LIST — a compound structure

Lines 9 and 10 in Figure 4.9 construct a v-shaped fixed po-structure of

size three with the label ordering βmax on it. Producted below this fixed po-

structure is the linear list inductive po-class constructed by the for loop at lines

11 and 12, which also has the label ordering βmax on it. Let V LISTβmax
denote

this compound structure, the v-shaped fixed po-structure in series above the

linear list inductive po-class, illustrated in Figure 4.11. The size of V LISTβmax

when it is the Pβ of the one MOQA′ random structure in M
mcf ′ o

x (Mp′
4

, c, β)
is:

3 + ⌊
q

2
⌋.

Hence, p′4 ignores

⌈
q

2
⌉ − 3

of the nodes in S
Mp′

4
, c, β

1 .

So this compound structure represents an infinite set of fixed po-structures.

Each fixed po-structure in the set is a v-shaped fixed po-structure of size three

producted above a linear list fixed po-structure of some size greater than or

equal to zero and each fixed po-structure in the set has the label ordering βmax

on it. As the composition of V LIST includes an inductive po-class, only all

the fixed po-structures of the same but unknown size in that infinite set are

among the possible fixed po-structures that c can take at the completion of p′4.

In general, whether or not a compound structure represents a finite or infinite

set of fixed po-structures and whether or not all of these fixed po-structures

are among the fixed po-structures that a composite variable can take at some

particular moment will depend on the composition of the compound structure.

eliminate any possible confusion that may arise between the two notations.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 96

However, when Pβ of SM′

j , which is the jth MOQA′ random structure in the

MOQA′ random bag M
′, is a compound structure, then it is always the case

that all the distinct canonically-ordered labelings of each possible fixed po-

structure that it represents are equally likely.

So compound structures, a concept not found in the MOQA book [63],

will enable the current MOQA theory to represent the possible outputs of a

MOQA function for additional situations. Aside from representing the possi-

ble outputs of a MOQA function, there is another situation where compound

structures will prove useful. To explain, return to p′1 of Figure 4.2 from Sec-

tion 4.4.1. For this MOQA′ program let Mp′
1
, c, β denote a MOQA′ random

bag with one MOQA′ random structure when the multiplicity of this MOQA′

random structure is one and its Pβ is Pβmax
, which denotes a discrete inductive

po-class with an infinite set whose lower size bound is four. Now examine

this c’s MOQA′ random bag after the first MOQA product function involving

three nodes. It should contain one MOQA′ random structure. Its Pβ should

represent the fixed po-structure of size three that is constructed by the MOQA

product function and also what is remaining of the discrete inductive po-class

from which the three nodes were selected, which is now a discrete inductive

po-class with an infinite set whose lower size bound is one. The only data

structure representation capable of capturing this information is a compound

structure. So the Pβ of the MOQA′ random structure arising from the first

MOQA product function should actually be the compound structure that is

this fixed po-structure and discrete inductive po-class in parallel. The same

logic applies to the example programs in Section 4.4.2. At any moment during

their construction of a linear list inductive po-class, there will be one MOQA′

random structure in c’s MOQA′ random bag for that moment. For some or all

of these moments, its Pβ should actually be the compound structure that is

the linear list inductive po-class constructed so far in parallel with the discrete

inductive po-class from which the linear list inductive po-class’s nodes have

been pulled. Therefore, continuing this reasoning, V LISTβmax
in the example

above is not the full compound structure of the Pβ of the one MOQA′ random

structure in M
mcf ′ o

x (Mp′
4

, c, β)
. The full compound structure that this Pβ repre-

sents is V LISTβmax
in parallel with a discrete inductive po-class that has the

label ordering βmax on it and whose lower size bound is zero.

So compound structures may also be required when a MOQA′ program

CHAPTER 4. TRACKING DATA STRUCTURE STATE 97

commences with a discrete data structure representation and then uses its

nodes to construct data structures. The compound structures that may occur

in this situation would represent what is constructed by the MOQA′ program

in parallel with the leftover nodes of the initial discrete data structure repre-

sentation, i.e. in parallel with the nodes in the initial discrete data structure

representation that are ignored by the MOQA′ program.

Notation 83. Let LM′

j denote the discrete data structure representation in

a compound structure from which “new” nodes are available when Pβ of SM′

j

represents a compound structure with such a discrete data structure represen-

tation.

However, as already seen, the main focus of interest is the data structures

constructed by the MOQA′ program. The discussion of the example in Sec-

tion 4.4.1 honed in on the fixed po-structure of size three that was built by the

first MOQA product function because this was where cost was incurred. The

discrete inductive po-class in parallel with it just represents a source of new

nodes. Hence, while LM′

j should become part of the current MOQA theory

so as to unify it, it is not necessary to continually reference its existence in

this work. (Recall also that there is the option of the new MOQA functions

in Chapter 3.3, which would allow LM′

j to be completely dropped from the

theory.) Therefore, from this point onwards, when Pβ of SM′

j is a CSβ that

includes LM′

j , the LM′

j part of CSβ will be ignored unless it is directly relevant

to the discussion. Whatever is remaining in CSβ is what Pβ shall be stated as

representing, a useful though technically inaccurate abbreviation. So, return-

ing to the example in Section 4.4.1, the Pβ of the MOQA′ random structure

arising from the first MOQA function would become the fixed po-structure of

size three. For the examples in Section 4.4.2, the Pβ of the one MOQA′ random

structure in any MOQA′ random bag would become the linear list inductive

po-class constructed so far. For the example given in this section, the Pβ of the

one MOQA′ random structure in M
mcf ′ o

x (Mp′
4

, c, β)
is still a compound structure

but would become the one illustrated in Figure 4.11.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 98

4.5 The Average-case Cost of a MOQA Func-

tion

M
′ captures all of c’s possible states at ip′, c. Statically calculating the average-

case cost of the MOQA function applied next to c involves statically calculating

the MOQA function’s average-case cost for each SM′

j in M
′; see Formula 4.1.

(Recall that SM′

j denotes the jth MOQA′ random structure in the MOQA′

random bag M
′.) So the following sections examine when and how the average-

case cost of a MOQA function can be determined for each representation of

SM′

j ’s Pβ that is discussed in this work: fixed po-structures, inductive po-

classes, split and general split po-classes and compound structures.

4.5.1 The Average-case Cost of a MOQA Function Ap-

plied to FPSβ

The MOQA functions and their formulas for average-case behaviour are dis-

cussed in Section 2.2. According to how the MOQA function is defined, each

MOQA function is applied to either an isolated subset or a strictly isolated sub-

set of a series-parallel Hasse diagram. A fixed po-structure is a series-parallel

Hasse diagram. Therefore, when Pβ of SM′

j , which is the jth MOQA′ random

structure in the MOQA′ random bag M
′, is FPSβmax

, the MOQA static anal-

ysis tool can use the standard MOQA formulas to determine the average-case

cost of a MOQA function when it is correctly applied to some subset of Pβ.

4.5.2 The Average-case Cost of a MOQA Function Ap-

plied to IPCβ

Inductive po-classes whose sets are finite will be considered first, then inductive

po-classes whose sets are infinite.

4.5.2.1 The Average-case Cost of a MOQA Function Applied to a

Finite IPCβ

Let Pβ of SM′

j , which is the jth MOQA′ random structure in the MOQA′

random bag M
′, denote an inductive po-class whose set is finite. Is it possible

to statically determine the average-case cost of a MOQA function when it

CHAPTER 4. TRACKING DATA STRUCTURE STATE 99

is applied to such a Pβ? Yes. One solution is to replace SM′

j by the series of

MOQA′ random bags it represents; recall Section 4.4.2. Let k denote the finite

number of distinct fixed po-structure sizes in the set of the original Pβ. There

would now be k additional MOQA′ random bags nested within M
′. Each of

these k MOQA′ random bags contains a finite number of fixed po-structures.

(This expanded M
′ is still an abbreviation for the fact that there are at least

k distinct, separate and equally likely MOQA′ random bags for c at ip′, c; “at

least k” because there may be other SM′

j s in M
′ that can be replaced by a

nested series of MOQA′ random bags.) For each fixed po-structure in each of

the k new MOQA′ random bags nested within M
′, the MOQA function applied

next to c is applied to the relevant subset of that fixed po-structure and so

its average-case cost can be determined using the standard MOQA formulas

discussed in Section 2.2. Of course, the success of each average-case calculation

still depends on whether the application of the MOQA function is in accord

with its definition. When all of these calculations are successful, the result is

k possible average-case costs, one for each of the k new MOQA′ random bags

nested within M
′. These costs cannot be summed together as only one of these

nested MOQA′ random bags contains the possible fixed po-structures that c

can take at ip′, c. The implication of arriving at multiple solutions when trying

to determine the average-case cost of a MOQA function applied to some Pβ

of SM′

j is discussed in Section 4.5.2.3. For now, it is accurate to state that the

MOQA static analysis tool can determine one or more average-case costs for

a MOQA function that is applied to an inductive po-class whose set is finite

and has the max-heap label ordering on it by determining the cost for each of

the fixed po-structures that the inductive po-class represents.

4.5.2.2 The Average-case Cost of a MOQA Function Applied to an

Infinite IPCβ

It is more common in the average-case analysis field to evaluate algorithms for

inductive po-classes whose sets are infinite than to evaluate them for inductive

po-classes whose sets are finite. However, the approach advocated in Section

4.5.2.1 is not applicable when Pβ of SM′

j , which is the jth MOQA′ random

structure in the MOQA′ random bag M
′, denotes an inductive po-class whose

set is infinite. This is because the MOQA static analysis tool cannot apply the

standard MOQA formulas discussed in Section 2.2 to every fixed po-structure

CHAPTER 4. TRACKING DATA STRUCTURE STATE 100

in the infinite set that such an inductive po-class represents. Therefore, a

necessary and novel part of this work is to extend MOQA beyond the original

theory [63] so as to statically determine the average-case cost of a MOQA

function for inductive po-classes with infinite sets.

4.5.2.3 The Average-case Cost of a MOQA Function Applied to an

Infinite DIPCβ

An average-case formula for a MOQA function is a general average-case in-

ductive formula if it can determine the average-case cost of the function when

the function is separately applied to two or more inductive po-classes. So, a

general average-case inductive formula for a MOQA function is not designed

expressly for the unique attributes of one particular inductive po-class and

therefore, unlikely to work for any other inductive po-class. It has a wider

application.

There is no provision of general average-case inductive formulas for any of

the MOQA functions in the MOQA book [63]. It only ever details the average-

case formula of a MOQA function for a specific inductive po-class; specifically,

it only ever details the average-case formula of a MOQA function for three

examples.

The first example is the MOQA split function. Unlike the other MOQA

functions, when the MOQA split function is applied to a fixed po-structure

there is no timing reason to statically iterate through that fixed po-structure.

This is because the MOQA split function must be applied to a discrete fixed

po-structure only. (Depending on the implementation of the MOQA static

analysis tool, there may be a correctness reason to statically iterate through

the fixed po-structure that the MOQA split function is applied to — to verify

that it is actually discrete.) As there is no choice regarding the shape of the

fixed po-structure that the MOQA split function can be applied to, when the

MOQA split function is applied to a fixed po-structure the only variable in

its average-case formula is the size of that fixed po-structure. The formula is

simply the size of the fixed po-structure minus one. With the other MOQA

functions there is flexibility regarding both the shape and the size of the fixed

po-structures that they are applied to. Therefore, the standard formulas for

these MOQA functions need to iterate through the fixed po-structures when

calculating average-case cost. So, heeding the definition of the MOQA split

CHAPTER 4. TRACKING DATA STRUCTURE STATE 101

function, the only inductive po-class that it can be applied to is the discrete

inductive po-class. Hence, when Pβmax
of SM′

j , which is the jth MOQA′ random

structure in the MOQA′ random bag M
′, denotes a discrete inductive po-class,

the average-case formula for the MOQA split function applied to Pβmax
is

n
SM′

j
−1. As the MOQA split function can be applied to only one inductive po-

class, this average-case formula is not a general average-case inductive formula

because it is custom-made for a specific class of data structures.

For the second example, the MOQA book [63] provides a tailor-made σup

and τup for another inductive po-class, the linear list inductive po-class and the

max-heap label ordering on it. (σ and τ are used in some MOQA average-case

formulas, as detailed in Section 2.2.)

For the third example, the MOQA book [63] also provides a tailor-made

σup and τup for what it says is an inductive po-class, the complete binary tree

and the max-heap label ordering on it. 5 In any case, providing hand-crafted

equations for a specific class of data structures is not in the spirit of static

algorithm analysis regardless of whether the class can be inductively defined or

not. Such an approach would reduce the MOQA static analysis tool to nothing

more than a complex book-keeping tool that does not scale well. The MOQA

static analysis tool would be obtaining the average-case cost of an algorithm

by performing arithmetic operations with the averages inputted for each class

of data structures instead of obtaining these averages through mathematical

techniques that cover multiple classes, techniques such as general average-case

inductive formulas.

However, general average-case inductive formulas are found in Hickey’s

work [35]. The inductive po-classes covered by Hickey’s general average-case

inductive formulas fall under its “group structure” definition. A new exact-

ing definition for these inductive po-classes is provided here presently, which

is the empty-base DIPCβ definition. First of all though, some preparatory

definitions are needed. (Note that the rest of this section considers determin-

istic IPCβs whose sets are infinite. Non-deterministic IPCβs whose sets are

infinite are considered in the following section. Like the empty-base DIPCβ

definition, this work developed the deterministic and non-deterministic IPCβ

5However, while a binary tree can be inductively defined, the same cannot be said for a
complete binary tree. The structural definition of a binary tree cannot be reformulated to
ensure that all tree leaves are always at the same depth.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 102

definitions.)

Definition 47 (Base-case production rule). The production rule r in the struc-

tural definition of an inductive po-class is a base-case production rule when the

body of r does not contain the non-terminal that is the head of r and the re-

placement of any non-terminal in the body of r can never involve, either directly

or indirectly, the non-terminal that is the head of r.

Definition 48 (Non base-case production rule). The production rule r in

the structural definition of an inductive po-class is a non base-case production

rule when the body of r contains at least one non-terminal that is the head of

r and/or the replacement of at least one non-terminal in the body of r can

involve, either directly or indirectly, the non-terminal that is the head of r.

The tightly defined structural definition of the linear list inductive po-class

in Section 4.4.2 helps illustrate the difference between base-case and non base-

case production rules. It has one base-case production rule, the production

rule whose body is empty. Its other production rule is a non base-case pro-

duction rule because its body contains the non-terminal LIST , which is the

non-terminal of its head.

Prior to the next definition, it is helpful to underscore the fact that an

IPC’s structural definition describes not only how fixed po-structures are to

be constructed but also the type of data to be stored in fixed po-structures

that are constructed in this manner.

Definition 49 (Self-identity IPC). An IPC is a self-identity IPC if, for each

non base-case production rule r in its structural definition, each non-terminal

in the body of r is either the non-terminal that is the head of r or the non-

terminal that represents the totally-ordered data type of the labelings on the

fixed po-structures in IPC’s set.

Again, the same structural definition of a linear list inductive po-class can

be used as an example of a self-identity IPC. The body of its non base-case

production rule contains two non-terminals. It has just been stated that one

of these non-terminals is the non-terminal of the production rule’s head. The

other non-terminal is number and represents the totally-ordered data type of

the labelings on the fixed po-structures in this linear list inductive po-class’s

set, i.e. each of these labelings is assembled from some set of numbers. Hence,

LIST is a self-identity IPC.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 103

Definition 50 (Empty-base IPC). An IPC is an empty-base IPC if its struc-

tural definition is tightly defined, it is a self-identity IPC and the tightly defined

structural definition has two production rules, one non base-case production

rule and one base-case production rule whose body is empty.

Definition 51 (Multi-base IPC). An IPC is a multi-base IPC if its struc-

tural definition is tightly defined, it is a self-identity IPC and the tightly defined

structural definition has one non base-case production rule and either one base-

case production whose body is not empty or two or more base-case production

rules, one of which may have an empty body.

Proposition 1. A DIPC’s tightly defined structural definition has exactly one

non base-case production rule.

Proof. To be inductively defined is to be defined in terms of oneself. So the

structural definition of any IPC must have at least one production rule r

whose body contains a non-terminal that is the head of r and/or a non-terminal

whose replacement can involve, either directly or indirectly, the non-terminal

that is the head of r. By definition, such a production rule is a non base-case

production rule and so the structural definition of any IPC, whether it is

tightly defined or not, must have at least one non base-case production rule.

One relevant characteristic of a structural definition that is tightly defined

is that each production rule describes a distinct structural feature. In other

words, a tightly defined structural definition does not contain multiple equiv-

alent production rules. Now, consider the tightly defined structural definition

of an IPC with at least two non base-case production rules, r1 and r2. Also,

let [. . .]∗ denote the production rule sequence [. . .] after all base-case produc-

tion rules have been removed from it. For such an IPC, the production rule

sequences [r1, r2]∗ and [r2, r1]∗ are guaranteed to be distinct because r1 and

r2 are distinct due to tightly defining the IPC’s structural definition. These

two distinct production rule sequences will construct two fixed po-structures

of the same size when the original sequences have the same distribution of

base-case production rules. For example, [r1, r2, b1, b1] and [r2, b1, r1, b1] will

construct two fixed po-structures of the same size when b1 denotes one of the

IPC’s base-case production rules. Therefore, if the tightly defined structural

definition of an IPC has at least two non base-case production rules, then the

IPC is non-deterministic.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 104

< T > ⇒2

< number > ⊗ < T > ⇒3

< number > ⊗

(((< number > || < number >) || < number >) ⊗ < T >) ⇒1

< number > ⊗

(((< number > || < number >) || < number >) ⊗ ())

Figure 4.12: A T production rule sequence that constructs a fixed po-structure
of size four

For an IPC to be deterministic, it must have at most one fixed po-structure

of any given size in its set. So, for any fixed po-structure size that occurs

in a DIPC’s set, there must be just one production rule sequence that can

construct a fixed po-structure of that size. Therefore, there must be just one

way to choose s of the n distinct non base-case production rules available

to any production rule sequence that involves s of these n rules, s, n ≥ 1.

However, for this lower bound on s,
(

n

s

)
= 1 only when n = 1. Hence, if the

tightly defined structural definition of an IPC is to have at most one fixed

po-structure of any given size in its set and accordingly be the tightly defined

structural definition of a DIPC, then it must have exactly one non base-case

production rule.

The following structural definition illustrates the non-determinacy of an

inductive po-class whose tightly defined structural definition has two non base-

case production rules:

1. < T > ::= ()

2. < T > ::= < number > ⊗ < T >

3. < T > ::= ((< number > || < number >) || < number >) ⊗ < T >

The production rule sequence [2, 3, 1] in Figure 4.12 and the production rule

sequence [3, 2, 1] in Figure 4.13 both have the same distribution of base-case

production rules and both construct a fixed po-structure of size four. So T is

a NDPIC because, for certain sizes, it has at least two fixed po-structures of

the same size in its set.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 105

< T > ⇒3

((< number > || < number >) || < number >) ⊗ < T > ⇒2

((< number > || < number >) || < number >) ⊗

(< number > ⊗ < T >) ⇒1

((< number > || < number >) || < number >) ⊗

(< number > ⊗ ())

Figure 4.13: Another T production rule sequence that constructs a fixed po-
structure of size four

More than two fixed po-structures of the same size can also be constructed

when the tightly defined structural definition of an IPC has at least two non

base-case production rules, r1 and r2, i.e. when the IPC is non-deterministic.

For example, [r1, r1, r2, r2]∗, [r1, r2, r1, r2]∗, [r1, r2, r2, r1]∗, [r2, r2, r1, r1]∗, . . . ,

all construct fixed po-structures of the same size when the original sequences

have the same distribution of base-case production rules. Correspondingly,

more than two fixed po-structures of the same size can also be constructed

by distinct production rule sequences that involve more than two distinct non

base-case production rules. For example, [r1, r2, r3]∗, [r1, r3, r2]∗, [r2, r1, r3]∗,

[r2, r3, r1]∗, . . ., all construct fixed po-structures of the same size when, again,

the original sequences have the same distribution of base-case production rules.

Proposition 2. The structural definition of a DIPC has an equivalent set of

rules that satisfy the self-identity IPC requirements.

Proof. Assume that the structural definition of DIPC D is tightly defined. It

is safe to ignore the base-case production rules in D’s tightly defined structural

definition because there are no restrictions placed on base-case production rules

by the self-identity IPC definition. Note that D’s tightly defined structural

definition has exactly one non base-case production rule; Proposition 1. Note

also that a non-terminal in the body of this production rule is accepted by the

self-identity IPC definition when it is either the non-terminal of the head or

the non-terminal that represents the totally-ordered data type in question.

Consider the process behind constructing a fixed po-structure according

to D’s structural definition. D’s determinism means that there is at most

one fixed po-structure of any given size in D’s set. So, for any fixed po-

CHAPTER 4. TRACKING DATA STRUCTURE STATE 106

structure size that occurs in D’s set, there is only one way, according to D’s

structural definition, to construct a fixed po-structure of that size. Obviously,

it is D’s structural definition that enforces this singularness. So each of the

fixed po-structures in D’s set is the result of p applications of its only non base-

case production rule and one application of one of its base-case production

rules, whose application will then halt fixed po-structure construction, p ≥ 0.

Additionally, application of D’s only non base-case production rule will always

affix the same fixed po-structure to the fixed po-structure under construction;

note that affixing the same fixed po-structure for each application of D’s only

non base-case production rule is an important contribution to D’s hold on

its determinism. Hence, each fixed po-structure in D’s set is composed of

p repetitions of the fixed po-structure described by D’s only non base-case

production rule and the fixed po-structure described by one of D’s non base-

case production rules. So, D’s only non base-case production rule describes

what this repeat fixed po-structure is and how it is to be affixed to the fixed po-

structure under construction, the latter description involving the non-terminal

D. D’s only non base-case production rule could capture this information with

non-terminals other than those accepted by the self-identity IPC definition.

However, no matter how many other structural definitions this information is

spread over or how convoluted these structural definitions are, they are still

simply involved in describing a single fixed po-structure and its attachment

to the fixed po-structure under construction. Therefore, it is always possible

to replace D’s only non base-case production rule with an equivalent non

base-case production rule that can describe this information using no other

non-terminals than the non-terminal D and the non-terminal that represents

the totally-ordered data type in question. So, if D is not already a self-identity

IPC, then its structural definition has an equivalent set of rules that satisfy

the self-identity IPC requirements.

For example, consider the following DIPC U :

< U > ::= ()

< U > ::= < U > ⊗ < NODE >

< NODE > ::= < number >

U is not a self-identity IPC because the non-terminal NODE is obviously not

CHAPTER 4. TRACKING DATA STRUCTURE STATE 107

U and it is also not the totally-ordered data type of the labelings on the fixed

po-structures in U ’s set. The structural definition of NODE shows that this

data type is once again represented by the non-terminal number. However, U

is clearly equivalent to the linear list inductive po-class defined earlier, which is

a self-identity IPC. Therefore, an equivalent structural definition of U , which

satisfies the self-identity IPC requirements, is as follows:

< U > ::= ()

< U > ::= < U > ⊗ < number >

Proposition 3. The structural definition of a DIPC has an equivalent set

of rules that satisfy the requirements of either an empty-base or a multi-base

IPC.

Proof. Assume that the structural definition of DIPC D satisfies the self-

identity IPC requirements; Proposition 2. Next, assume that this structural

definition is tightly defined. This structural definition will be composed from

base-case and non base-case production rules. It must have at least one base-

case production rule because otherwise the construction of a data structure

would be interminable. Moreover, it must have exactly one non base-case

production rule; Proposition 1. Hence, D’s structural definition will satisfy

the requirements of either an empty-base or a multi-base IPC.

So a simplification of the above proposition, which the previous two propo-

sitions contributed to, is that a DIPC can always be classified as either an

empty-base or a multi-base DIPC.

Another way of defining a DIPC is as follows. Let op denote either ⊗ or ||.

Let FPSx and FPSy denote two distinct fixed po-structures. For a specific op

and a specific FPSx, each fixed po-structure in a DIPC’s set is obtained from

zero or more FPSxs and up to one FPSy through successive iterations of op.

FPSx is the fixed po-structure construed from the tightly defined DIPC’s

non base-case production rule and FPSy is a fixed po-structure construed

from any base-case production rule of the tightly defined DIPC whose body

is not empty. So, for the linear list inductive po-class example, FPSx is the

fixed po-structure of size one and there is no FPSy because the body of this

inductive po-class’s only base-case production rule is empty. Note that FPSx

CHAPTER 4. TRACKING DATA STRUCTURE STATE 108

is the same for all of the fixed po-structures in a DIPC’s set because a tightly

defined DIPC has exactly one non base-case production rule. This guarantee

does not apply to FPSy. This is because a DIPC can be a multi-base DIPC

whose structural definition has at least two base-case production rules whose

bodies are not empty. So, there could be a choice for FPSy among the fixed

po-structures in such a DIPC’s set. FPSx is called a DIPC’s repeat fixed

po-structure as every fixed po-structure in DIPC’s set includes zero or more

FPSxs. FPSy is called one of a DIPC’s base-case fixed po-structures.

Notation 84. Let SRM′

j denote SM′

j ’s repeat fixed po-structure when Pβ of

SM′

j is a DIPCβ.

Notation 85. Let p denote how often SRM′

j is repeated within a fixed po-

structure in Pβ’s set, p ≥ 0.

Notation 86. Let C(SM′

j) denote the set of all SM′

j ’s base-case fixed po-

structures when Pβ of SM′

j is an IPCβ.

Pβ of SM′

j is an IPCβ rather than a DIPCβ in the above notation. This

generalisation is so that the notation will also hold for NDIPCβ.

Notation 87. Let C denote an arbitrary element of C(SM′

j).

Note that C(SM′

j) will always be empty when Pβ of SM′

j is an empty-

base DIPCβ and that C(SM′

j) will always be non-empty when Pβ of SM′

j is

a multi-base DIPCβ. Note also that there will never be two base-case fixed

po-structures of the same size in C(SM′

j) because the inductive po-class Pβ of

SM′

j is deterministic.

The following structural definition is an example of an empty-base DIPC:

< V > ::= ()

< V > ::= ((< number > || < number >) ⊗ < number >) ⊗ < V >

Every fixed po-structure in V ’s set can be obtained from p v-shaped fixed

po-structures of size three through successive iterations of ⊗; V ’s repeat fixed

po-structure is this v-shaped fixed po-structure of size three and its set of

base-case fixed po-structures is empty. So the size of every fixed po-structure

in V ’s set is a multiple of three.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 109

The following structural definition is an example of a multi-base DIPC:

< W > ::= ()

< W > ::= < number >

< W > ::= ((< number > || < number >) ⊗ < number >) || < W >

Every fixed po-structure in W ’s set can be obtained from p v-shaped fixed

po-structures of size three and up to one fixed po-structure of size one through

successive iterations of ||; W ’s repeat fixed po-structure is also this v-shaped

fixed po-structure of size three and its set of base-case fixed po-structures has

one member, the fixed po-structure of size one. So the size of every fixed po-

structure in W ’s set is either a multiple of three or a multiple of three plus

one.

Let Pβ of SM′

j denote an empty-base DIPCβ with an infinite set. So how

is the general average-case inductive formula for a MOQA function applied to

some subset of this Pβ determined? The answer involves the equations given

immediately below, Equations 4.2 through 4.9 inclusive; recall that Section 2.2

explains σ, κ, τ and ∆ for the fixed po-structure scenario. These equations

originate in Hickey’s research [35], which is where their proofs are also found,

and must be applied under the following two conditions. First, β still must

be either max-heap or min-heap ordered, as discussed in Section 2.2, though

max-heap ordered continues to be the default. Second, the subset of Pβ that

the MOQA function is applied to must be obtained from r SRM′

j s through

successive iterations of some specific op, 0 ≤ r ≤ p. These equations can,

where appropriate, replace the standard binary versions in a MOQA func-

tion’s average-case formula and thus transform it into a general average-case

inductive formula. Note that the σ, κ, τ and ∆ equations are being used in the

polymorphic sense, i.e. it is the number and the type of the arguments passed

to an equation that determine which version is called. For example, the left-

hand side of Equation 4.2 is called when three arguments are passed to σup,

whereas the left-hand side of Equation 2.1 is called when just one argument is

passed to σup and that argument is not •βmax
.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 110

Proposition 4. [35][σup for an empty-base DIPCβmax
]

σup(SRM′

j , ||, r) = σup(SRM′

j) (4.2)

σup(SRM′

j ,⊗, r) = r.σup(SRM′

j) + (r − 1).|m(SRM′

j)| (4.3)

Proposition 5. [35][κup for an empty-base DIPCβmax
]

κup(SRM′

j , ||, r) = r.κup(SRM′

j) (4.4)

κup(SRM′

j ,⊗, r) = κup(SRM′

j) (4.5)

Proposition 6. [35][τup for an empty-base DIPCβmax
]

τup(SRM′

j , ||, r) = τup(SRM′

j) (4.6)

τup(SRM′

j ,⊗, r) = (τup(SRM′

j) +
r−1∑

i=1

(τup(SRM′

j) + |m(SRM′

j)|+ σup(SRM′

j , ⊗, i)))/r

(4.7)

Proposition 7. [35][∆up for deleting the label with rank k, i.e. the kth smallest

label, from an empty-base DIPCβmax
]

∆up(SRM′

j , ||, r, k) =

r.
∑|SRM

′

j |

i=1

(
k − 1

i− 1

)

.

(
r.|SRM′

j | − k

|SRM′

j | − 1

)

.∆up(SRM′

j , i)

(
r.|SRM′

j |

|SRM′

j |

)

(4.8)

∆up(SRM′

j ,⊗, r, k) = ∆up(SRM′

j , k mod |SRM′

j |) +

(

r −

⌈
k

|SRM′

j |

⌉)

.

(|m(SRM′

j)| − 1 + ∆up(SRM′

j , |SRM′

j |))

(4.9)

Recall, from Section 2.2.3, the assumption that rank k is always some

CHAPTER 4. TRACKING DATA STRUCTURE STATE 111

value between one and the size of the fixed po-structure under consideration.

However, the ∆ equations of both Hickey’s work [35] and this work extend this

assumption by allowing k to take an additional value, which is zero. The cost

of deleting a label with rank zero from any fixed po-structure will always be

zero, regardless of whether the deletion is upwards or downwards. So now if

the fixed po-structure under consideration is I, then 0 ≤ k ≤ |I|.

Hickey [35] states that there are similar equations for σdown, κdown, τdown

and ∆down. Note that these equations can be applied to a linear list inductive

po-class, thereby making the MOQA book [63] equations for this inductive

po-class redundant.

So, even though an empty-base DIPCβmax
can have an infinite number of

fixed po-structures in its set, it is still possible to determine the average-case

cost of the pertinent MOQA functions applied to such a DIPCβmax
by iterating

through the structure of the DIPCβmax
’s repeat fixed po-structure. But is it

also possible to determine the average-case cost of a MOQA function when it

is applied to a multi-base DIPCβmax
with an infinite set?

Yes, this is possible with the following new equations that incorporate the

base-case fixed po-structures of a multi-base DIPCβmax
. Now, let Pβ of SM′

j

denote a multi-base DIPCβmax
with an infinite set. So there will be at least one

base-case fixed po-structure in C(SM′

j). The other change is that the subset of

this Pβ that the MOQA function is applied to must be obtained from r SRM′

j s

and up to one C through successive iterations of some specific op, 0 ≤ r ≤ p.

So the new equations that are to follow can likewise, where appropriate, replace

the standard binary versions in a MOQA function’s average-case formula and

thus transform it into a general average-case inductive formula.

When solving any one of these new formulas, the static selection of the

correct equation from below may depend on where each fixed po-structure

in C(SM′

j) is located in relation to the repetitions of SRM′

j . These base-case

fixed po-structures always occur at a specific extremity of the relevant fixed

po-structures in Pβ’s set; the relevant fixed po-structures being those obtained

from p SRM′

j s and one C. The location of this specific extremity can be

ascertained from Pβ’s structural definition. This is illustrated by X’s structural

CHAPTER 4. TRACKING DATA STRUCTURE STATE 112

definition.

< X > ::= ()

< X > ::= < number >

< X > ::= ((< number > || < number >) ⊗ < number >) ⊗ < X >

For X, whose specific op is ⊗, all of its base-case fixed po-structures will occur

at the “bottom” of the relevant fixed po-structures in its set. (In this example,

all of X’s base-case fixed po-structures just amount to a total of one.) If X’s

non base-case production rule is changed to:

< X > ::= < X > ⊗ ((< number > || < number >) ⊗ < number >),

then all of its base-case fixed po-structures will occur at the “top” of the

relevant fixed po-structures in its set. Similarly, for a multi-base DIPC whose

specific op is ||, its base-case fixed po-structures will either all occur to the

“leftmost” or all occur to the “rightmost” of the relevant fixed po-structures

in its set.

Notation 88. Let C(SM′

j) denote a set C(SM′

j) in which all of its base-case

fixed po-structures occur at the bottom of the relevant fixed po-structures in the

set belonging to Pβ of SM′

j .

Notation 89. Let C(SM′

j) denote a set C(SM′

j) in which all of its base-case

fixed po-structures occur at the top of the relevant fixed po-structures in the set

belonging to Pβ of SM′

j .

The new σup, κup, τup and ∆up equations for a multi-base DIPCβmax
can

now be introduced.

Proposition 8 (σup for a multi-base DIPCβmax
when op is ||). If σup is applied

to a fixed po-structure obtained from r SRM′

j s through successive iterations of

|| and r > 0, then:

σup(SRM′

j , ||, r) = σup(SRM′

j). (4.10)

If σup is applied to a fixed po-structure obtained from r SRM′

j s through succes-

sive iterations of || and r = 0, i.e. σup is applied to the empty fixed po-structure,

CHAPTER 4. TRACKING DATA STRUCTURE STATE 113

then:

σup(SRM′

j , ||, 0) = 0. (4.11)

If σup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ||, then:

σup(SRM′

j , C, ||, r) =
r.|SRM′

j |.σup(SRM′

j) + |C|.σup(C)

r.|SRM′

j | + |C|
.

(4.12)

Proof of Equations 4.10 and 4.11. The proof of Equation 4.2, which is Equa-

tion 4.10 but without the condition that r > 0, is supplied by Hickey [35].

This work introduces this extra condition because Equation 4.2 [35] should

only be used when r > 0. When r = 0, then the result should be 0, as stated

by Equation 4.11, not σup(SRM′

j).

Proof of Equation 4.12. This proof is an adaptation of the σup(A, ||, B) proof

in the MOQA book [63]. Let I denote a fixed po-structure obtained from r

SRM′

j s and one C through successive iterations of ||. The average number of

comparisons made in pushing up the label of one of I’s minimal nodes when

that label is greater than any of I’s other labels depends only on the labeling

of I and not on the label set. Therefore, the average number of comparisons to

push such a label up through I is σup(SRM′

j) if the label is pushed up through

one of the r SRM′

j s and σup(C) if it is pushed up through C. So Equation 4.12

is the weighted average of r.σup(SRM′

j) and σup(C).

Proposition 9 (σup for a multi-base DIPCβmax
when op is⊗). If σup is applied

to a fixed po-structure obtained from r SRM′

j s through successive iterations of

⊗ and r > 0, then:

σup(SRM′

j ,⊗, r) = r.σup(SRM′

j) + (r − 1).|m(SRM′

j)|. (4.13)

If σup is applied to a fixed po-structure obtained from r SRM′

j s through succes-

sive iterations of ⊗ and r = 0, i.e. σup is applied to the empty fixed po-structure,

then:

σup(SRM′

j ,⊗, 0) = 0. (4.14)

CHAPTER 4. TRACKING DATA STRUCTURE STATE 114

If σup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗ and C ∈ C(SM′

j), then:

σup(SRM′

j , C,⊗, r) = σup(C) + r.σup(SRM′

j) + r.|m(SRM′

j)|.

(4.15)

If σup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗, C ∈ C(SM′

j) and r > 0, then:

σup(SRM′

j , C,⊗, r) = r.σup(SRM′

j) + σup(C) + (r − 1).|m(SRM′

j)|+

|m(C)|. (4.16)

If σup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗, C ∈ C(SM′

j) and r = 0, then:

σup(SRM′

j , C,⊗, 0) = σup(C). (4.17)

Proof of Equations 4.13 and 4.14. The proof of Equation 4.3, which is Equa-

tion 4.13 but without the condition that r > 0, is supplied by Hickey [35].

This work introduces this extra condition because Equation 4.3 [35] should

only be used when r > 0. When r = 0, then the result should be 0, as stated

by Equation 4.14, not −|m(SRM′

j)|.

Proof of Equation 4.15. This proof is an adaptation of the σup(A,⊗, B) proof

in the MOQA book [63]. Let I denote a fixed po-structure obtained from r

SRM′

j s and one C through successive iterations of ⊗ with C ∈ C(SM′

j), i.e. C

is at the bottom of the series. Pushing a label up through I consists of the

following sequence of steps:

1. Push the label up through the bottom C.

2. Swap the label on to the above SRM′

j if there is such a fixed po-structure,

otherwise stop.

3. Push the label up through SRM′

j .

4. Go to Step 2.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 115

For Step 2, the number of comparisons made in swapping from a maximal

node of C to a minimal node of SRM′

j is |m(SRM′

j)|, regardless of the labeling.

There is one such swap when r > 0 but there is no such swap when r = 0.

Likewise, the number of comparisons made in swapping from a maximal node

of SRM′

j to a minimal node of SRM′

j is |m(SRM′

j)|, regardless of the labeling.

There are r − 1 such swaps when r > 0 but there are no such swaps when

r = 0. Since, for Steps 1 and 3, the labelings of C and of each of the r SRM′

j s

are all independent of one another, then the desired average for I is simply the

sum of the averages of these three separate steps. Hence, Equation 4.15.

Proof of Equations 4.16 and 4.17. Both of these proofs closely follow that of

Equation 4.15. Let I denote a fixed po-structure obtained from r SRM′

j s and

one C through successive iterations of ⊗ with C ∈ C(SM′

j), i.e. C is at the top

of the series. Pushing a label up through I consists of the following sequence

of steps:

1. If r = 0, then skip to Step 5.

2. Push the label up through SRM′

j .

3. Swap the label on to the above fixed po-structure. If the above fixed

po-structure is C, then skip to Step 5.

4. Go to Step 2.

5. Push the label up through the top C.

For Step 3, the number of comparisons made in swapping from a maximal

node of SRM′

j to a minimal node of SRM′

j is |m(SRM′

j)|, regardless of the

labeling. There are r − 1 such swaps when r > 0 but there are no such swaps

when r = 0. The number of comparisons made in swapping from a maximal

node of SRM′

j to a minimal node of C is |m(C)|, regardless of the labeling.

There is one such swap when r > 0 but there is no such swap when r = 0.

Since, for Steps 2 and 5, the labelings of each of the r SRM′

j s and of C are

all independent of one another, then the desired average for I when r > 0 is

simply the sum of the averages of these three separate steps. Hence, Equation

4.16.

When r = 0, then only one step counts, Step 5. Therefore, the desired

average for I is simply the average of this step. Hence, Equation 4.17.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 116

Notice that all the new equations above and below ignore the location of the

base-case fixed po-structure when the op in question is ||. This is because, for

any labeling of a fixed po-structure obtained from r SRM′

j s and one C through

successive iterations of ||, the label being pushed will be pushed through only

one of these r+1 fixed po-structures. So how these r+1 fixed po-structures are

ordered in parallel is irrelevant to any of the average-case equations considered

in this work. In contrast, for any labeling of a fixed po-structure obtained from

r SRM′

j s and one C through successive iterations of ⊗, the label being pushed

will be pushed through i of these fixed po-structures, 1 ≤ i ≤ r+1. How these

r + 1 fixed po-structures are ordered in series affects how many comparisons

are required when the label is swapped on to the 2nd, 3rd, . . . and ith of these

fixed po-structures.

Proposition 10 (κup for a multi-base DIPCβmax
when op is ||). If κup is ap-

plied to a fixed po-structure obtained from r SRM′

j s through successive iterations

of ||, then:

κup(SRM′

j , ||, r) = r.κup(SRM′

j). (4.18)

If κup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ||, then:

κup(SRM′

j , C, ||, r) = r.κup(SRM′

j) + κup(C). (4.19)

Proof of Equation 4.18. The proof of Equation 4.18, which is identical to Equa-

tion 4.4, is supplied by Hickey [35].

Proof of Equation 4.19. This proof is an adaptation of the κup(A, ||, B) proof

in the MOQA book [63]. Of later use in this proof is the fact that the average

value of the mth smallest element in an s element subset of the first n positive

integers is m.n+1
s+1

. The proof for this is also given in the MOQA book [63].

The push-up path for a labeling of fixed po-structure A is the path in A

that starts at the node with the minimum label and moves from each node

to the node directly above it with the smallest label — of course, there is the

assumption here that labels are distinct. This is the path that any label being

pushed all the way up through A will follow for that labeling. Let ML(A)

denote the average value of the largest label in A’s push-up path over all of

CHAPTER 4. TRACKING DATA STRUCTURE STATE 117

A’s canonically-ordered labelings. Likewise, let ML(SRM′

j , C, ||, r) denote this

value when A is formed from r SRM′

j s in parallel with one C.

Let tA, l, max denote the value of the largest label in A’s push-up path for

labeling l. For any canonically-ordered labeling cl of A, any label swapped

onto A with rank k > tA, cl, max will be pushed up to the maximal node in

A’s push-up path for cl. So, the number of ranks pushed up to this maximal

node is |A| + 1 − tA, cl, max. Averaging this over all of A’s canonically-ordered

labelings gives κup(A) = |A|+ 1−ML(A). Likewise:

κup(SRM′

j , C, ||, r) = r.|SRM′

j |+ |C|+ 1−ML(SRM′

j , C, ||, r).

Now consider ML((SRM′

j , C, ||, r) |1 SRM′

j), which is the same function as

above in that it is the average value of the largest label in SRM′

j ’s push-up

path. The difference is the set of labelings over which it is averaged. The set

is all the canonically-ordered labelings of r SRM′

j s in parallel with one C for

which 1 is the label of some node in that individual SRM′

j (so that the label

being pushed up is pushed up through that individual SRM′

j). In other words,

the set contains all the canonically-ordered labelings of each distinct label set,

which will contain 1 and |SRM′

j | − 1 other labels selected from the positive

integers between 2 and r.|SRM′

j | + |C|, that can be applied to the individual

SRM′

j . The average of t
SRM′

j , cl, max
when each of these distinct label sets is

applied to the same canonically-ordered labeling cl of this individual SRM′

j is:

1 +
r.|SRM′

j |+ |C|

|SRM′

j |
.(t

SRM′
j , cl, max

− 1).

This is derived using the above equation for the average value of the mth

smallest element. So averaging over all of SRM′

j ’s canonically-ordered labelings

gives:

ML((SRM′

j , C, ||, r) |1 SRM′

j) = 1 +
r.|SRM′

j |+ |C|

|SRM′

j |
.(ML(SRM′

j)− 1).

Therefore, ML(SRM′

j , C, ||, r) can now be expressed as the weighted average

CHAPTER 4. TRACKING DATA STRUCTURE STATE 118

of r ML((SRM′

j , C, ||, r) |1 SRM′

j)s and ML((SRM′

j , C, ||, r) |1 C).

ML(SRM′

j , C, ||, r) = (r.|SRM′

j |.ML((SRM′

j , C, ||, r) |1 SRM′

j) +

|C|.ML((SRM′

j , C, ||, r) |1 C))/

r.|SRM′

j |+ |C|

Substitute this into the previous equation for κup(SRM′

j , C, ||, r) and the

result can be obtained as follows.

= r.|SRM′

j |+ |C|+ 1−ML(SRM′

j , C, ||, r)

= r.|SRM′

j |+ |C|+ 1− (r.ML(SRM′

j) + ML(C)− r)

= r.(|SRM′

j |+ 1−ML(SRM′

j)) + (|C|+ 1−ML(C))

= r.κup(SRM′

j) + κup(C)

Hence, Equation 4.19.

Proposition 11 (κup for a multi-base DIPCβmax
when op is ⊗). If κup is

applied to a fixed po-structure obtained from r SRM′

j s through successive iter-

ations of ⊗ and r > 0, then:

κup(SRM′

j ,⊗, r) = κup(SRM′

j). (4.20)

If κup is applied to a fixed po-structure obtained from r SRM′

j s through succes-

sive iterations of ⊗ and r = 0, i.e. κup is applied to the empty fixed po-structure,

then:

κup(SRM′

j ,⊗, 0) = 0. (4.21)

If κup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗, C ∈ C(SM′

j) and r > 0, then:

κup(SRM′

j , C,⊗, r) = κup(SRM′

j). (4.22)

If κup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗ and either C ∈ C(SM′

j) and r = 0 or C ∈

CHAPTER 4. TRACKING DATA STRUCTURE STATE 119

C(SM′

j), then:

κup(SRM′

j , C,⊗, r) = κup(C). (4.23)

Proof of Equations 4.20 and 4.21. The proof of Equation 4.5, which is Equa-

tion 4.20 but without the condition that r > 0, is supplied by Hickey [35].

This work introduces this extra condition because Equation 4.5 [35] should

only be used when r > 0. When r = 0, then the result should be 0, as stated

by Equation 4.21, not κup(SRM′

j).

Proof of Equation 4.22. This proof is an adaptation of the κup(A,⊗, B) proof

in the MOQA book [63]. Let I denote a fixed po-structure obtained from r

SRM′

j s and one C through successive iterations of ⊗ with C ∈ C(SM′

j) and

r > 0. For any canonically-ordered labeling of I, if a label of rank k ≤

|C|+ (r − 1).|SRM′

j | is swapped on to I, then after its push up is complete it

will end up either in I’s C or in one of I’s r − 1 SRM′

j s not at the top of I’s

series. The nodes of these fixed po-structures are mutually exclusive from I’s

maximal nodes; the maximal nodes of I must be a subset of its top SRM′

j . For

any canonically-ordered labeling of I, if a label of rank k > |C|+(r−1).|SRM′

j |

is swapped on to I, then it will be pushed all the way up through I’s C, all the

way up through the next r − 1 SRM′

j s in the series and then finally swapped

on to I’s top SRM′

j . As a result, this label now has a rank between 1 and

|SRM′

j | in the set of labels for the top SRM′

j . So, the average number of ranks

between 1 and |C| + r.|SRM′

j | that get to the top of I will be precisely the

average number of ranks between 1 and |SRM′

j | that get to the top of I’s top

SRM′

j . Hence, Equation 4.22.

Proof of Equation 4.23. This proof closely follows that of Equation 4.22. Let

I denote a fixed po-structure obtained from r SRM′

j s and one C through suc-

cessive iterations of ⊗ with C ∈ C(SM′

j) and r = 0. So, because r equals zero,

C is also at the top of I’s series. This means that the average number of ranks

between 1 and |C| that get to the top of I will be precisely the average number

of ranks between 1 and |C| that get to the top of C. The same logic applies

when I denotes a fixed po-structure obtained from r SRM′

j s and one C through

successive iterations of ⊗ with C ∈ C(SM′

j) and r = 0. Hence, Equation 4.23

for both of these cases.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 120

Now, let I denote a fixed po-structure obtained from r SRM′

j s and one

C through successive iterations of ⊗ with C ∈ C(SM′

j) and r > 0. For any

canonically-ordered labeling of I, if a label of rank k ≤ r.|SRM′

j | is swapped

on to I, then after its push up is complete it will end up in one of I’s r

SRM′

j s. The nodes of these fixed po-structures are mutually exclusive from I’s

maximal nodes; the maximal nodes of I must be a subset of its top C. For any

canonically-ordered labeling of I, if a label of rank k > r.|SRM′

j | is swapped

on to I, then it will be pushed all the way up through I’s r SRM′

j s and then

swapped on to I’s top C. As a result, this label now has a rank between 1

and |C| in the set of labels for the top C. So, the average number of ranks

between 1 and r.|SRM′

j | + |C| that get to the top of I will be precisely the

average number of ranks between 1 and |C| that get to the top of I’s top C.

Hence, Equation 4.23 for this case.

Proposition 12 (τup for a multi-base DIPCβmax
when op is ||). If τup is applied

to a fixed po-structure obtained from r SRM′

j s through successive iterations of

|| and r > 0, then:

τup(SRM′

j , ||, r) = τup(SRM′

j). (4.24)

If τup is applied to a fixed po-structure obtained from r SRM′

j s through succes-

sive iterations of || and r = 0, i.e. τup is applied to the empty fixed po-structure,

then:

τup(SRM′

j , ||, 0) = 0. (4.25)

If τup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ||, then:

τup(SRM′

j , C, ||, r) =
r.|SRM′

j |.τup(SRM′

j) + |C|.τup(C)

r.|SRM′

j | + |C|
.

(4.26)

Proof of Equations 4.24 and 4.25. The proof of Equation 4.6, which is Equa-

tion 4.24 but without the condition that r > 0, is supplied by Hickey [35].

This work introduces this extra condition because Equation 4.6 [35] should

only be used when r > 0. When r = 0, then the result should be 0, as stated

CHAPTER 4. TRACKING DATA STRUCTURE STATE 121

by Equation 4.25, not τup(SRM′

j).

Proof of Equation 4.26. This proof is an adaptation of the τup(A, ||, B) proof

in the MOQA book [63]. For any canonically-ordered labeling cl of fixed

po-structure A, the label values in A’s push-up path for cl will be some subse-

quence of the first |A| positive integers. Let nA, l denote the number of nodes

in A’s push-up path for labeling l. Let tA, l, i denote the label value of the ith

node in A’s push-up path for labeling l, 1 ≤ i ≤ nA, l. Let n∗
A, l, i denote the

number of nodes directly above this ith node. Then the average number of

comparisons, over all ranks from 1 to |A|, to push a label swapped on to A up

to its correct position for a canonically-ordered labeling cl of A is:

∑nA, cl

i=1 (|A|+ 1− tA, cl, i).n
∗
A, cl, i

|A|
.

τup(A) is the average of this over all of A’s canonically-ordered labelings.

Now consider the average value of t
SRM′

j , cl, i
when r SRM′

j s are in parallel

with one C and 1 is the label of some node in one of the SRM′

j s (so that

the label being pushed up is pushed up through that individual SRM′

j). In

other words, the set of labelings that t
SRM′

j , cl, i
is averaged over contains all

the canonically-ordered labelings of each distinct label set, which will contain

1 and |SRM′

j | − 1 other labels selected from the positive integers between 2

and r.|SRM′

j | + |C|, that can be applied to the individual SRM′

j . Therefore,

the average of t
SRM′

j , cl, i
when each of these distinct label sets is applied to the

same canonically-ordered labeling cl of this individual SRM′

j is:

1 +
r.|SRM′

j |+ |C|

|SRM′

j |
.(t

SRM′
j , cl, i

− 1).

(This is derived using the equation for the average value of the mth smallest

element in an s element subset of the first n positive integers, given in the

proof of Equation 4.19.) So, the average number of comparisons, over all

r.|SRM′

j | + |C| ranks, to push a label swapped on to SRM′

j up to its correct

position for a canonically-ordered labeling cl of SRM′

j is:

∑n
SRM′

j
, cl

i=1

(

r.|SRM′

j |+ |C| −
r.|SRM

′

j |+|C|

|SRM′
j |

.(t
SRM′

j , cl, i
− 1)

)

.n∗
SRM′

j , cl, i

r.|SRM′

j |+ |C|
.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 122

But, by cancelling above and below, this is simply:

∑n
SRM′

j
, cl

i=1

(

|SRM′

j |+ 1− t
SRM′

j , cl, i

)

.n∗
SRM′

j , cl, i

|SRM′

j |
.

Note that this is also the average number of comparisons, over all ranks from

1 to |SRM′

j |, to push a label swapped on to SRM′

j up to its correct position for

a canonically-ordered labeling cl of SRM′

j . So, once again, τup(SRM′

j) would be

the average of this over all of SRM′

j ’s canonically-ordered labelings. Therefore,

the average number of comparisons to push a label up through r SRM′

j s in

parallel with one C when the 1 is on one of the SRM′

j s is exactly the same

as the average number of comparisons to push a label up through one SRM′

j .

The same reasoning applies to the average number of comparisons to push a

label up through r SRM′

j s in parallel with one C when the 1 is on C. Hence,

Equation 4.26 is the average weighted by the probabilities of the 1 being on

each of the r SRM′

j s and C respectively.

Proposition 13 (τup for a multi-base DIPCβmax
when op is ⊗). If τup is ap-

plied to a fixed po-structure obtained from r SRM′

j s through successive iterations

of ⊗ and r > 0, then:

τup(SRM′

j ,⊗, r) =

(

τup(SRM′

j) +
(r − 1).κup(SRM′

j).|m(SRM′

j)|

|SRM′

j |
+

r−1∑

i=1

(i.σup(SRM′

j) + i.|m(SRM′

j)|+ τup(SRM′

j))

)

/r.

(4.27)

If τup is applied to a fixed po-structure obtained from r SRM′

j s through succes-

sive iterations of ⊗ and r = 0, i.e. τup is applied to the empty fixed po-structure,

then:

τup(SRM′

j ,⊗, 0) = 0. (4.28)

If τup is applied to a fixed po-structure obtained from r SRM′

j s and one C

CHAPTER 4. TRACKING DATA STRUCTURE STATE 123

through successive iterations of ⊗, C ∈ C(SM′

j) and r > 0, then:

τup(SRM′

j , C,⊗, r) = (|C|.τup(C) + κup(C).|m(SRM′

j)|+ |SRM′

j |.
r∑

i=1

(σup(C) + (i− 1).σup(SRM′

j) + i.|m(SRM′

j)|

+τup(SRM′

j)) + (r − 1).κup(SRM′

j).|m(SRM′

j)|)/

r.|SRM′

j |+ |C|. (4.29)

If τup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗, C ∈ C(SM′

j) and r > 0, then:

τup(SRM′

j , C,⊗, r) = ((r − 1).κup(SRM′

j).|m(SRM′

j)|+ |SRM′

j |.
r∑

i=1

((i− 1).σup(SRM′

j) + (i− 1).|m(SRM′

j)|+

τup(SRM′

j)) + κup(SRM′

j).|m(C)|+ |C|.

(r.σup(SRM′

j) + (r − 1).|m(SRM′

j)|+ |m(C)|+

τup(C)))/r.|SRM′

j |+ |C|. (4.30)

If τup is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗, r = 0 and either C ∈ C(SM′

j) or C ∈

C(SM′

j), then:

τup(SRM′

j , C,⊗, 0) = τup(C). (4.31)

Notice that Equation 4.27 differs from Equation 4.7 though they are both

for the same function, which is τup(SRM′

j ,⊗, r) when r > 0. (Once again,

Equation 4.7 [35] should only be used when r > 0.) So first the proof for this

work’s version will be presented and this will help when then explaining the

difference between the two.

Proof of Equation 4.27. This proof is an adaptation of the τup(A,⊗, B) proof

in the MOQA book [63]. First, Equation 4.27 is expanded to the following

CHAPTER 4. TRACKING DATA STRUCTURE STATE 124

equation, which is closer to the structure of this proof.

τup(SRM′

j ,⊗, r) = (|SRM′

j |.τup(SRM′

j) + |SRM′

j |.
r−1∑

i=1

(i.σup(SRM′

j) + i.|m(SRM′

j)|+ τup(SRM′

j)) +

(r − 1).κup(SRM′

j).|m(SRM′

j)|)/r.|SRM′

j |

Let I denote a fixed po-structure obtained from r SRM′

j s through successive

iterations of ⊗ with r > 0. For any canonically-ordered labeling of I, if a label

of rank k ≤ |SRM′

j | is swapped on to I, then after its push up is complete

it will end up in I’s bottom SRM′

j . So the number of comparisons involved

will be exactly the same as if the r − 1 SRM′

j s in series above I’s bottom

SRM′

j were not there. For each of the κup(SRM′

j) ranks which are pushed up

as far as the maximal nodes of I’s bottom SRM′

j , when r > 1 there will be an

additional |m(SRM′

j)| comparisons to ensure that the label should not be pushed

any further. So, summing over all ranks k ≤ |SRM′

j | and averaging over all of

I’s canonically-ordered labelings, the total number of comparisons when r > 1

is:

|SRM′

j |.τup(SRM′

j) + κup(SRM′

j).|m(SRM′

j)|.

Otherwise, summing over all ranks k ≤ |SRM′

j | and averaging over all of I’s

canonically-ordered labelings, the total number of comparisons when r > 1 is

|SRM′

j |.τup(SRM′

j).

For any canonically-ordered labeling of I, if a label of rank (i−1).|SRM′

j | <

k ≤ i.|SRM′

j | is swapped on to I, then after its push up is complete it will end

up in I’s ith SRM′

j , 1 < i ≤ r−1. So, each such label must have passed through

i− 1 of I’s SRM′

j s, which is an average of (i− 1).σup(SRM′

j) comparisons, and

been swapped on to each of the preceding (i − 2) SRM′

j s and then on to

the ith SRM′

j , which requires a total of (i − 1).|m(SRM′

j)| comparisons. Now

the label has a rank from 1 to |SRM′

j | in the set of labels on the ith SRM′

j

and so the average number of comparisons in pushing it up through the ith

SRM′

j must be τup(SRM′

j). Finally, for each of the κup(SRM′

j) ranks which

are pushed up as far as the maximal nodes of the ith SRM′

j , there will be an

additional |m(SRM′

j)| comparisons to ensure that the label should not be pushed

CHAPTER 4. TRACKING DATA STRUCTURE STATE 125

any further. Therefore, summing over all ranks |SRM′

j | < k ≤ (r − 1).|SRM′

j |

and averaging over all of I’s canonically-ordered labelings, the total number

of comparisons is:

|SRM′

j |.
r−1∑

i=2

((i− 1).σup(SRM′

j) + (i− 1).|m(SRM′

j)|+ τup(SRM′

j)) +

(r − 2).κup(SRM′

j).|m(SRM′

j)|.

For any canonically-ordered labeling of I, if a label of rank k > (r −

1).|SRM′

j | is swapped on to I, then after its push up is complete it will end

up in I’s top SRM′

j . So, each such label must have passed through r − 1 of

I’s SRM′

j s, which is an average of (r − 1).σup(SRM′

j) comparisons, and been

swapped on to each of the preceding (r − 2) SRM′

j s and then on to the top

SRM′

j , which requires a total of (r−1).|m(SRM′

j)| comparisons. Now the label

has a rank from 1 to |SRM′

j | in the set of labels on the top SRM′

j and so the

average number of comparisons in pushing it up through the top SRM′

j must

be τup(SRM′

j). As this SRM′

j is at the top of I, there is no need to ensure that

the label should not be pushed any further. Therefore, summing over all ranks

k > (r− 1).|SRM′

j | and averaging over all of I’s canonically-ordered labelings,

the total number of comparisons is:

|SRM′

j |.((r − 1).σup(SRM′

j) + (r − 1).|m(SRM′

j)|+ τup(SRM′

j)).

Summing these three equations together and dividing by r.|SRM′

j | to get an

average over all ranks 1 ≤ k ≤ r.|SRM′

j | gives Equation 4.27.

The discrepancy that exists between this work’s τup(SRM′

j ,⊗, r) when r > 0

and that of Hickey’s [35] is now returned to. First, so as to bear a closer

resemblance to Equation 4.27, Hickey’s version is rearranged to:

τup(SRM′

j ,⊗, r) = (τup(SRM′

j) +
r−1∑

i=1

(i.σup(SRM′

j) + i.|m(SRM′

j)|+ τup(SRM′

j)))/r.

Missing from the numerator of this is ((r − 1).κup(SRM′

j).|m(SRM′

j)|)/SRM′

j ,

the motivation for which is italicised in the above proof. The impact of not

CHAPTER 4. TRACKING DATA STRUCTURE STATE 126

having this information in Equation 4.7 can be illustrated using Figure 4.14.

I(a) shows a Hasse diagram of size three with some labeling. I(b) shows the

canonically-ordered labeling that this labeling can be reduced to, which is

also the only canonically-ordered labeling possible for such a Hasse diagram.

Now consider the effect of replacing the minimum label in I(a)’s labeling with

a label of each rank from one to three. These are the ranks considered in

calculating τup for a fixed po-structure obtained from three SRM′

j s through

successive iterations of ⊗ when SRM′

j is a fixed po-structure of size one. In

other words, these are the ranks considered in calculating τup for the Hasse

diagram of size three in Figure 4.14. II(a) shows I(a)’s labeling just after

its minimum label has been replaced by a label of rank one. II(b) shows

the canonically-ordered version of this labeling. Now, only one comparison

is required to establish that the new label is already in its correct position.

III(a) shows I(a)’s labeling just after its minimum label has been replaced by a

label of rank two. III(b) shows the canonically-ordered version of this labeling,

which is still in flux. Now, pushing the new label up to its correct position

requires two comparisons. IV(a) shows I(a)’s labeling just after its minimum

label has been replaced by a label of rank three. IV(b) shows the canonically-

ordered version of this labeling, which is still in flux. Again, pushing the

new label up to its correct position requires two comparisons. Therefore, the

average number of comparisons for this τup is 5
3
, which is also the result of

Equation 4.27. On the other hand, Hickey’s equation [35] returns an average

of 1. Hence, any future MOQA static analysis tool should adopt the more

accurate Equation 4.27 instead of Equation 4.7 [35].

Proof of Equation 4.28. Let I denote a fixed po-structure obtained from r

SRM′

j s through successive iterations of ⊗ with r = 0. This I is the empty

fixed po-structure. A label cannot be swapped on to such a fixed po-structure

and therefore, no comparisons take place. Hence, Equation 4.28.

Proof of Equation 4.29. This proof closely follows that of Equation 4.27. Let I

denote a fixed po-structure obtained from r SRM′

j s and one C through succes-

sive iterations of ⊗ with C ∈ C(SM′

j) and r > 0. For any canonically-ordered

labeling of I, if a label of rank k ≤ |C| is swapped on to I, then after its push

up is complete it will end up in C, which is at the bottom of I. So the number

of comparisons involved will be exactly the same as if the r SRM′

j s in series

CHAPTER 4. TRACKING DATA STRUCTURE STATE 127

I(a)

2

4

6

I(b)

3

2

1

2

3

1

4

6

III(a)4

6

1

III(b)

2

1

IV(a)

7

4

6

3

1

2

II(b)II(a)

5

3

IV(b)

Figure 4.14: II(a) - IV(a) show the labels with ranks from 1 to 3 that can
swapped on to I(a) and ∗(b) shows the canonically-ordered labeling that ∗(a)
can be reduced to

CHAPTER 4. TRACKING DATA STRUCTURE STATE 128

above C were not there. For each of the κup(C) ranks which are pushed up

as far as the maximal nodes of C, which is at the bottom of I, there will be

an additional |m(SRM′

j)| comparisons to ensure that the label should not be

pushed any further. So, summing over all ranks k ≤ |C| and averaging over

all of I’s canonically-ordered labelings, the total number of comparisons is:

|C|.τup(C) + κup(C).|m(SRM′

j)|.

For any canonically-ordered labeling of I, if a label of rank (|C| + (i −

1).|SRM′

j |) < k ≤ (|C| + i.|SRM′

j |) is swapped on to I, then after its push up

is complete it will end up in I’s ith SRM′

j , 1 ≤ i ≤ r. So, each such label

must have passed through I’s C and i− 1 of I’s SRM′

j s, which is an average of

σup(C) and (i − 1).σup(SRM′

j) comparisons, and been swapped on to each of

the preceding (i−1) SRM′

j s and then on to the ith SRM′

j , which requires a total

of i.|m(SRM′

j)| comparisons. Now the label has a rank from 1 to |SRM′

j | in

the set of labels on the ith SRM′

j and so the average number of comparisons in

pushing it up through the ith SRM′

j must be τup(SRM′

j). Finally, for each of the

κup(SRM′

j) ranks which are pushed up as far as the maximal nodes of the ith

SRM′

j , when i ≤ (r− 1) there will be an additional |m(SRM′

j)| comparisons to

ensure that the label should not be pushed any further; when i = r, then the ith

SRM′

j is at the top of I so there is no need to ensure that the label should not

be pushed any further. Therefore, summing over all ranks |C| < k ≤ r.|SRM′

j |

and averaging over all of I’s canonically-ordered labelings, the total number

of comparisons is:

|SRM′

j |.
r∑

i=1

(σup(C) + (i− 1).σup(SRM′

j) + i.|m(SRM′

j)|+ τup(SRM′

j)) +

(r − 1).κup(SRM′

j).|m(SRM′

j)|.

Summing these two expressions together and dividing by r.SRM′

j + C to

get an average over all ranks 1 ≤ k ≤ (|C|+r.|SRM′

j |) gives Equation 4.29.

Proof of Equation 4.30. Again, this proof closely follows that of Equation 4.27.

Let I denote a fixed po-structure obtained from r SRM′

j s and one C through

successive iterations of ⊗ with C ∈ C(SM′

j) and r > 0. For any canonically-

ordered labeling of I, if a label of rank (i − 1).|SRM′

j | < k ≤ i.|SRM′

j | is

CHAPTER 4. TRACKING DATA STRUCTURE STATE 129

swapped on to I, then after its push up is complete it will end up in I’s ith

SRM′

j , 1 ≤ i ≤ r. So, each such label must have passed through i − 1 of

I’s SRM′

j s, which is an average of (i − 1).σup(SRM′

j) comparisons, and been

swapped on to each of the preceding (i − 2) SRM′

j s and then on to the ith

SRM′

j , which requires a total of (i− 1).|m(SRM′

j)| comparisons. Now the label

has a rank from 1 to |SRM′

j | in the set of labels on the ith SRM′

j and so the

average number of comparisons in pushing it up through the ith SRM′

j must

be τup(SRM′

j). Finally, for each of the κup(SRM′

j) ranks which are pushed up

as far as the maximal nodes of the ith SRM′

j , when i ≤ (r − 1) there will be

an additional |m(SRM′

j)| comparisons to ensure that the label should not be

pushed any further; when i = r there will be an additional |m(C)| comparisons

to ensure that the label should not be pushed any further. Therefore, summing

over all ranks k ≤ r.|SRM′

j | and averaging over all of I’s canonically-ordered

labelings, the total number of comparisons is:

|SRM′

j |.

r∑

i=1

((i− 1).σup(SRM′

j) + (i− 1).|m(SRM′

j)|+ τup(SRM′

j)) +

(r − 1).κup(SRM′

j).|m(SRM′

j)|+ κup(SRM′

j).|m(C)|.

For any canonically-ordered labeling of I, if a label of rank k > r.|SRM′

j |

is swapped on to I, then after its push up is complete it will end up in C,

which is at the top of I. So, each such label must have passed through r of I’s

SRM′

j s, which is an average of r.σup(SRM′

j) comparisons, and been swapped

on to each of the preceding (r − 1) SRM′

j s and then on to the top C, which

requires a total of (r − 1).|m(SRM′

j)| + |m(C)| comparisons. Now the label

has a rank from 1 to |C| in the set of labels on the top C and so the average

number of comparisons in pushing it up through the top C must be τup(C).

As this C is at the top of I, there is no need to ensure that the label should

not be pushed any further. Therefore, summing over all ranks k > r.|SRM′

j |

and averaging over all of I’s canonically-ordered labelings, the total number

of comparisons is:

|C|.(r.σup(SRM′

j) + (r − 1).|m(SRM′

j)|+ |m(C)|+ τup(C)).

Summing these two expressions together and dividing by r.SRM′

j + C to

get an average over all ranks 1 ≤ k ≤ (|C|+r.|SRM′

j |) gives Equation 4.30.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 130

Proof of Equation 4.31. Let I denote a fixed po-structure obtained from r

SRM′

j s and one C through successive iterations of ⊗ with C ∈ C(SM′

j) and

r = 0. So, because r equals zero, I is obtained from just one C. This means

that the average number of comparisons to push a label swapped on to the

bottom of I up to its correct position is exactly the same as the average number

of comparisons to push a label swapped on to the bottom of C up to its correct

position. The same logic applies when I denotes a fixed po-structure obtained

from r SRM′

j s and one C through successive iterations of ⊗ with C ∈ C(SM′

j)

and r = 0. Hence, Equation 4.31.

Proposition 14 (∆up for deleting the label with rank k, i.e. the kth smallest

label, from a multi-base DIPCβmax
when op is ||). If ∆up is applied to a

fixed po-structure obtained from r SRM′

j s through successive iterations of ||

and r > 0, then:

∆up(SRM′

j , ||, r, k) =

r.
∑|SRM

′

j |

i=1

(
k − 1

i− 1

)

.

(
r.|SRM′

j | − k

|SRM′

j | − i

)

.∆up(SRM′

j , i)

∏r

x=1

(
x.|SRM′

j |

|SRM′

j |

) .

(4.32)

If ∆up is applied to a fixed po-structure obtained from r SRM′

j s through succes-

sive iterations of || and r = 0, i.e. ∆up is applied to the empty fixed po-structure,

then:

∆up(SRM′

j , ||, 0, k) = 0. (4.33)

If ∆up is applied to a fixed po-structure obtained from r SRM′

j s and one C

CHAPTER 4. TRACKING DATA STRUCTURE STATE 131

through successive iterations of || and r > 0, then:

∆up(SRM′

j , C, ||, r, k) =
(

r.
(

|SRM
′

j |
∑

i=1

(
k − 1

i− 1

)

.

(
r.|SRM′

j |+ |C| − k

|SRM′

j | − i

)

.

∆up(SRM′

j , i)
)

+

|C|
∑

i=1

(
k − 1

i− 1

)

.

(
r.|SRM′

j |+ |C| − k

|C| − i

)

.∆up(C, i)
)

/

r∏

x=1

(
x.|SRM′

j |+ |C|

|SRM′

j |

)

.

(4.34)

If ∆up is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of || and r = 0, then:

∆up(SRM′

j , C, ||, 0, k) = ∆up(C, k).

(4.35)

Notice that Equation 4.32 differs from Equation 4.8 though they are both

for the same function, which is ∆up(SRM′

j , ||, r, k) when r > 0. (Once again,

Equation 4.8 [35] should only be used when r > 0.) So first the proof for this

work’s version will be presented and this will help when then explaining the

difference between the two.

Proof of Equation 4.32. This proof is an adaptation of the ∆up(A, ||, B, k) proof

in the MOQA book [63]. Let I denote a fixed po-structure obtained from r

SRM′

j s through successive iterations of || with r > 0. For each i between 1 and

|SRM′

j |, consider the number of ways to split the set of labels on I such that

the kth smallest label in the entire set becomes the ith smallest on one of the

r SRM′

j s that I is obtained from. For such a split to take place, i − 1 labels

are chosen from the set of k− 1 smallest labels to put on SRM′

j and |SRM′

j |− i

labels are chosen from the set of |I| − k largest labels to put on SRM′

j . So,

for each i between 1 and |SRM′

j |, select i − 1 labels smaller than rank k, one

label of rank k and |SRM′

j | − i labels greater than rank k to put on SRM′

j ,

(i − 1) + 1 + (|SRM′

j | − i) = |SRM′

j |. Since the two choices are independent,

there are exactly
(

k−1
i−1

)
.
(|I|−k

|SRM′
j |−i

)
different splits of the set of labels in which

CHAPTER 4. TRACKING DATA STRUCTURE STATE 132

the kth smallest label in the full set becomes the ith smallest label in the set

of labels on SRM′

j . The average number of comparisons for deleting the ith

smallest label on SRM′

j is simply ∆up(SRM′

j , i). Summing over all i for each of

the r SRM′

j s and taking an average over all the different possible splits of the

set of labels on I gives Equation 4.32.

So why is Equation 4.32 different to that given by Hickey [35]? The first

of the two discrepancies is between the second binomial coefficient in both

numerators.

Here :
(r.|SRM

′

j |−k

|SRM′
j |−i

)
[35] :

(r.|SRM
′

j |−k

|SRM′
j |−1

)

As explained in the above proof, this binomial coefficient selects labels greater

than rank k to put on SRM′

j . The number selected completes the set of labels on

SRM′

j when i labels have already been selected for the set of labels on SRM′

j . So

this binomial coefficient chooses |SRM′

j |− i labels as i+(|SRM′

j |− i) = |SRM′

j |.

However, the binomial coefficient in Hickey’s work [35] chooses |SRM′

j | − 1

labels though i+(|SRM′

j |−1) = |SRM′

j | only holds when i = 1. Note that this

may have been a typographical error.

The other discrepancy between the two equations can be found in the

denominator. The denominator used in Hickey’s work [35] does not cover, as

it should, all of the different possible splits of the set of labels on the r SRM′

j s

in parallel. A simple example demonstrates this. Let |SRM′

j | = 2 and let r = 3.

So there are six elements in the set of labels on the three SRM′

j s that are in

parallel. The total number of different possible splits of this set is
(
6
2

)
.
(
4
2

)
.
(
2
1

)
.

Though all of this information is captured by Equation 4.32’s denominator,

Hickey’s denominator [35] just captures the first part, i.e.
(
6
2

)
. Therefore, any

future MOQA static analysis tool should adopt the more accurate Equation

4.32 instead of Equation 4.8 [35].

Proof of Equation 4.33. Let I denote a fixed po-structure obtained from r

SRM′

j s through successive iterations of || with r = 0. This I is the empty

fixed po-structure. A label cannot be swapped on to such a fixed po-structure

and therefore, no comparisons take place. Hence, Equation 4.33.

Proof of Equation 4.34. This proof closely follows that of Equation 4.32. Let

I denote a fixed po-structure obtained from r SRM′

j s and one C through suc-

cessive iterations of || with r > 0. The proof of Equation 4.32 considered

CHAPTER 4. TRACKING DATA STRUCTURE STATE 133

the number of ways to split the set of labels on I such that the kth smallest

label in the entire set becomes the ith smallest on one of these r SRM′

j s. Now

the number of ways in which to split the set of labels on I such that the kth

smallest label in the entire set becomes the ith smallest on C also needs to be

considered. Using the logic in the proof of Equation 4.32, there are exactly
(

k−1
i−1

)
.
(
|I|−k

|C|−i

)
different splits of the set of labels in which the kth smallest label

in the full set becomes the ith smallest label in the set of labels on C. Again,

the average number of comparisons for deleting the ith smallest label on C is

simply ∆up(C, i). Summing over all i for each of the r SRM′

j s and the one C

and taking an average over all the different possible splits of the set of labels

on I gives Equation 4.34.

Proof of Equation 4.35. Let I denote a fixed po-structure obtained from r

SRM′

j s and one C through successive iterations of || with r = 0. So, be-

cause r equals zero, I is obtained from just one C. This means there is only

one set of labels possible on C, i.e. the set of labels on I. Therefore, the kth

smallest label in the set of labels on I will always be the kth smallest label in

the set of labels on C. So the average number of comparisons for deleting the

kth smallest label on I is simply ∆up(C, k) and averaging this over the only

possible split of the set of labels on I gives Equation 4.35.

Proposition 15 (∆up for deleting the label with rank k, i.e. the kth smallest

label, from a multi-base DIPCβmax
when op is ⊗). If ∆up is applied to a fixed

po-structure obtained from r SRM′

j s through successive iterations of ⊗ and

r > 0, then:

∆up(SRM′

j ,⊗, r, k) = ∆up(SRM′

j , k mod |SRM′

j |) +
(

r −

⌈
k

|SRM′

j |

⌉)

.(|m(SRM′

j)| − 1 + ∆up(SRM′

j , 1)).

(4.36)

If ∆up is applied to a fixed po-structure obtained from r SRM′

j s through suc-

cessive iterations of ⊗ and r = 0, i.e. ∆up is applied to the empty structure,

then:

∆up(SRM′

j ,⊗, 0, k) = 0. (4.37)

CHAPTER 4. TRACKING DATA STRUCTURE STATE 134

If ∆up is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗, C ∈ C(SM′

j) and k ≤ |C|, then:

∆up(SRM′

j , C,⊗, r, k) = ∆up(C, k) +

r.(|m(SRM′

j)| − 1 + ∆up(SRM′

j , 1)). (4.38)

If ∆up is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗, C ∈ C(SM′

j), k > |C| and r > 0, then:

∆up(SRM′

j , C,⊗, r, k) = ∆up(SRM′

j , (k − |C|) mod |SRM′

j |) +
(

r −

⌈
k − |C|

|SRM′

j |

⌉)

.(|m(SRM′

j)| − 1 +

∆up(SRM′

j , 1)). (4.39)

If ∆up is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗, C ∈ C(SM′

j), k ≤ r.|SRM′

j | and r > 0, then:

∆up(SRM′

j , C,⊗, r, k) = ∆up(SRM′

j , k mod |SRM′

j |) +
(

r −

⌈
k

|SRM′

j |

⌉)

.(|m(SRM′

j)| − 1 +

∆up(SRM′

j , 1)) + |m(C)| − 1 +

∆up(C, 1). (4.40)

If ∆up is applied to a fixed po-structure obtained from r SRM′

j s and one C

through successive iterations of ⊗, C ∈ C(SM′

j) and either k ≤ r.|SRM′

j | and

r = 0 or k > r.|SRM′

j |, then:

∆up(SRM′

j , C,⊗, r, k) = ∆up(C, k mod |SRM′

j |). (4.41)

Once again, notice that Equation 4.36 differs from Equation 4.9 though

they are both for the same function, which is ∆up(SRM′

j ,⊗, r, k) when r > 0.

(Once again, Equation 4.9 [35] should only be used when r > 0.) So first the

proof for this work’s version will be presented and this will help when then

explaining the difference between the two.

Proof of Equation 4.36. This proof is an adaptation of the ∆up(A,⊗, B, k)

CHAPTER 4. TRACKING DATA STRUCTURE STATE 135

proof in the MOQA book [63]. Let I denote a fixed po-structure obtained

from r SRM′

j s through successive iterations of ⊗ with r > 0. It is known that

all of the labels on I’s wth SRM′

j from the bottom are greater than all of the

labels on I’s (w − 1)th SRM′

j from the bottom, 2 ≤ w ≤ r. Therefore, a label

has rank k in the set of labels on I’s wth SRM′

j from the bottom if and only

if it has rank k + (w − 1).|SRM′

j | in the set of labels on all w of I’s bottom

SRM′

j s, which is the same as it having rank k + (w − 1).|SRM′

j | in the set of

labels on I.

Let J denote I’s ⌈k/|SRM′

j |⌉
th SRM′

j from the bottom. The label of rank k

in the set of labels on I is in the set of labels on J and has rank (k mod |SRM′

j |)

in this set of labels. (Note that (k mod |SRM′

j |) equals zero when the label of

rank k in the set of labels on I has rank |SRM′

j | in the set of labels on J . This

is acceptable however because a label with rank |SRM′

j | in the set of labels on

SRM′

j is already on one of SRM′

j ’s maximal nodes so the cost of deleting the

label up through SRM′

j is zero, which is also the cost of deleting a label with

rank zero up through SRM′

j .) So deleting a label with rank k up through I

consists of the following sequence of steps:

1. Delete the label of rank (k mod |SRM′

j |) from J by pushing it up through

J .

2. Swap the label on to the above SRM′

j if there is such a fixed po-structure,

otherwise go to Step 5.

3. Delete the label, which is now of the smallest rank in the set of labels

on the current SRM′

j , from the current SRM′

j by pushing it up through

SRM′

j .

4. Go to Step 2.

5. Delete the maximal node that the label has been pushed up to in the

current SRM′

j .

For Step 1, as the average number of comparisons made in deleting a label

up through J is independent of the labels on the surrounding (r − 1) SRM′

j s,

the average number of comparisons made in deleting the label of rank (k mod

|SRM′

j |) from J by pushing it up through J is ∆up(SRM′

j , k mod |SRM′

j |). For

Step 2, when the label being deleted has been pushed up through SRM′

j , then

CHAPTER 4. TRACKING DATA STRUCTURE STATE 136

the number of comparisons made in swapping that label on to the above SRM′

j ,

if there is such a fixed po-structure, is |m(SRM′

j)| − 1. (It is one less than the

corresponding number of comparisons for a Push-Up because in this context

it is not necessary to compare the smallest label on the above SRM′

j to the

label being deleted, since it will always be larger.) Finally, for Step 3, as the

average number of comparisons made in deleting a label up through SRM′

j is

independent of the labels on the surrounding (r−1) SRM′

j s, the average number

of comparisons made in deleting the smallest label from SRM′

j by pushing it

up through SRM′

j is ∆up(SRM′

j , 1). Steps 2 and 3 are repeated r−⌈k/|SRM′

j |⌉

times as this is the number of SRM′

j s above J in I. Note that Step 5 does not

involve any comparisons. Hence, Equation 4.36.

The difference between Equation 4.36 and Equation 4.9 is now returned to.

According to Equation 4.9 [35], once the label being deleted has been swapped

on to the above SRM′

j it has the largest rank in the set of labels on that SRM′

j .

(Leaving aside the use of ∆up throughout Equation 4.9 [35], the fact that the

number of comparisons to swap between SRM′

j s is |m(SRM′

j)| − 1 shows the

intent to swap the label being deleted upwards.) However, as stated in the

above proof, all of the labels on any SRM′

j are greater than all of the labels

on any SRM′

j that has been producted below it. Therefore, the label being

deleted upwards must have the smallest rank, not the largest, in the set of

the labels on the SRM′

j that it has just been swapped on to. Therefore, any

future MOQA static analysis tool should adopt the more accurate Equation

4.36 instead of Equation 4.9 [35].

Proof of Equation 4.37. Let I denote a fixed po-structure obtained from r

SRM′

j s through successive iterations of ⊗ with r = 0. This I is the empty

fixed po-structure. A label cannot be swapped on to such a fixed po-structure

and therefore, no comparisons take place. Hence, Equation 4.37.

Proof of Equation 4.38. This proof applies concepts explained in the proof of

Equation 4.36. Let I denote a fixed po-structure obtained from r SRM′

j s and

one C through successive iterations of ⊗ with C ∈ C(SM′

j). If a label of rank

k ≤ |C| is to be deleted up through I, then this label has rank k in the set of

labels on C because C is at the bottom of I. Therefore, the average number

of comparisons made in deleting the label of rank k from C by pushing it

up through C is ∆up(C, k). Steps 2 to 5 in the proof of Equation 4.36 finish

CHAPTER 4. TRACKING DATA STRUCTURE STATE 137

deleting the label up through the remainder of I. Steps 2 and 3 are repeated r

times as this is the number of SRM′

j s above C in I. Hence, Equation 4.38.

Proof of Equation 4.39. This proof applies concepts explained in the proof of

Equation 4.36. Let I denote a fixed po-structure obtained from r SRM′

j s and

one C through successive iterations of ⊗ with C ∈ C(SM′

j) and r > 0. Let J

denote I’s ⌈k−|C|/|SRM′

j |⌉
th SRM′

j from the bottom. If a label of rank k > |C|

is to be deleted up through I, then this label is in the set of labels on J and has

rank ((k− |C|) mod |SRM′

j |) in this set of labels. (Recall the assumption that

rank k is some value between zero and the size of I. So, if rank k is greater

than the size of C, then r must be greater than zero for this assumption to

hold. Hence, deleting the label of rank k > |C| up through an I whose C is at

the bottom is only considered when r > 0.) Therefore, the average number of

comparisons made in deleting the label of rank ((k − |C|) mod |SRM′

j |) from

J by pushing it up through J is ∆up(SRM′

j , (k − |C|) mod |SRM′

j |). Steps 2

to 5 in the proof of Equation 4.36 finish deleting the label up through the

remainder of I. Steps 2 and 3 are repeated r−⌈k− |C|/|SRM′

j |⌉ times as this

is the number of SRM′

j s above J in I. Hence, Equation 4.39.

Proof of Equation 4.40. This proof applies concepts explained in the proof of

Equation 4.36. Let I denote a fixed po-structure obtained from r SRM′

j s and

one C through successive iterations of ⊗ with C ∈ C(SM′

j) and r > 0. Let J

denote I’s ⌈k/|SRM′

j |⌉
th SRM′

j from the bottom. If a label of rank k ≤ r.|SRM′

j |

is to be deleted up through I, then this label is in the set of labels on J and

has rank (k mod |SRM′

j |) in this set of labels. Therefore, the average number

of comparisons made in deleting the label of rank (k mod |SRM′

j |) from J by

pushing it up through J is ∆up(SRM′

j , k mod |SRM′

j |). Steps 2 to 4 in the

proof of Equation 4.36 continue deleting the label by pushing it up through

the SRM′

j s that are above J in I. Steps 2 and 3 are repeated r − ⌈k/|SRM′

j |⌉

times as this is the number of SRM′

j s above J in I. Finally, after the label

being deleted has been pushed up through I’s rth SRM′

j from the bottom, it is

then swapped on to the above C, pushed up through it and the maximal node

in C that it arrives at is deleted. The average number of comparisons made in

swapping the label on to the above C is |m(C)| − 1 and the average number

of comparisons made in deleting the label from C by pushing it up through C

is ∆up(C, 1). Hence, Equation 4.40.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 138

Proof of Equation 4.41. Let I denote a fixed po-structure obtained from r

SRM′

j s and one C through successive iterations of ⊗ with C ∈ C(SM′

j) and

r = 0. This I is the fixed po-structure C and if a label of rank k ≤ r.|SRM′

j | is

to be deleted up through this I, then the rank k is zero. Therefore, Equation

4.41 should return zero because this is the cost of deleting a label with rank zero

up through any fixed po-structure. As (k mod |SRM′

j |) = (0 mod |SRM′

j |) = 0,

Equation 4.41 becomes ∆up(C, 0) and so will return zero.

Now let I denote a fixed po-structure obtained from r SRM′

j s and one

C through successive iterations of ⊗ with C ∈ C(SM′

j). If a label of rank

k > r.|SRM′

j | is to be deleted up through I, then this label is in the set of

labels on C and has rank (k mod |SRM′

j |) in this set of labels. The average

number of comparisons made in deleting the label of rank (k mod |SRM′

j |) from

C by pushing it up through C is ∆up(C, k mod |SRM′

j |). As C is at the top

of I, all that remains is to delete the maximal node in C that the label being

deleted has been pushed up to. This does not involve any comparisons. Hence,

Equation 4.41.

There would be similar σdown, κdown, τdown and ∆down equations for a multi-

base DIPCβmax
.

So the multiple possible solutions for these new equations can lead to mul-

tiple average-case results for the algorithm under static analysis. The code

below demonstrates this. For the program p′ that this code is a snippet from,

let c denote composite variable c. Let M
′ denote c’s MOQA′ random bag when

the for loop below is reached. Let there be one MOQA′ random structure in

this M
′ and let its Pβmax

be the following inductive po-class Y whose set is

infinite.

< Y > ::= ()

< Y > ::= < number >

< Y > ::= < Y > ⊗ ((< number > || < number >) ⊗ < number >)

builtSoFar in the code below references c for the initial and subsequent loop

iterations and iter is an iterator whose underlying collection is LM′

1 .

CHAPTER 4. TRACKING DATA STRUCTURE STATE 139

for (int i = 0; i < n; i++)

builtSoFar = c.product(builtSoFar, c.product(

iter.next(), iter.next(), MARKER, iter.next()));

After each loop iteration, there is one MOQA′ random structure in c’s MOQA′

random bag for that moment and the Pβ of this MOQA′ random structure is

Yβmax
. It is still Yβmax

because the outer MOQA product function conforms to

Y ’s structural definition. Now let Aβmax
denote the fixed po-structure of size

two whose two nodes are in parallel, let Bβmax
denote the fixed po-structure of

size one and let Cβmax
denote the v-shaped fixed po-structure of size three. So

the average-case cost of the above for loop is:

n.T prod[Aβmax
⊗ Bβmax

] + n.T prod[Yβmax
⊗ Cβmax

].

T prod[Aβmax
⊗ Bβmax

] can be solved by using the standard binary equations

for τup(Aβmax
) and τdown(Bβmax

); see Section 2.2 for the average-case formula

for the MOQA product function and these standard binary equations. Like-

wise, T prod[Yβmax
⊗ Cβmax

] can be solved with the standard binary equation

for τdown(Cβmax
) but τup(Yβmax

) must be selected from one of the appropriate

multi-base DIPCβmax
equations. The appropriate equations are Equations

4.27, 4.28, 4.30 and 4.31. (Equation 4.29 does not apply here as it is clear from

the structural definition of Y that all its base-case fixed po-structures will be

located at the top of the relevant fixed po-structures in Y ’s set.) Therefore,

because of these four appropriate equations, there are four possible solutions

to T prod[Yβmax
⊗ Cβmax

] and so, there are a total of four possible average-case

costs for the above for loop. (If Y ’s set of base-case fixed po-structures had a

cardinality of two instead of one, then there would be a total of six possible

average-case costs for this loop because both Equation 4.30 and Equation 4.31

would have two possible solutions, one for each base-case fixed po-structure.

And so on as the cardinality of Y ’s set of base-case fixed po-structures in-

creases.)

This example confirms an important fact, which is that these new multi-

base DIPCβmax
equations may result in there being more than one average-

case solution. Similarly, when Pβmax
of SM′

j denoted an inductive po-class

whose set is finite, it was established that multiple average-case solutions could

result from applying a MOQA function to such a P
βmax

. Moreover, Hickey’s

CHAPTER 4. TRACKING DATA STRUCTURE STATE 140

empty-base DIPCβmax
equations [35] may also have this effect as it has been

identified here, on pages 125, 132 and 136, that some of them do not cover

the case when r equals zero, thereby requiring this work to supply additional

equations for such cases. (In the MOQA book [63], binary σ, κ, τ and ∆ each

have additional “base-case” equations also; see page 23 to page 25. These

equations are applied when the size of the fixed po-structure is zero or one.

However, there is always exactly one average-case solution because the binary

equations for σ, κ, τ and ∆ are applied to finite partial orders and therefore,

are always resolved to some rational number.) Yet, it is necessary that such

empty-base and multi-base DIPCβmax
equations exist because their presence

will enable a MOQA static analysis tool to analyse data structures whose sizes

are not fixed, while still adhering to the mathematical approach advocated by

Schellekens [63]. A MOQA static analysis tool would not be of much practical

use if it only examined fixed po-structures. Nonetheless, any system that

statically calculates any algorithmic behaviour should aim to provide its user

with a single solution. So the MOQA static analysis tool will often fall short

in this regard for both the current and the new DIPCβmax
equations. This

is a serious failing because it is not the desired resolution to the problem

that the MOQA book [63] proclaims to solve and so, it is not a flaw to be

easily dismissed. However, it could be argued that Hickey’s equations [35]

and the new equations presented here are still an advance over the MOQA

static analysis tool furnishing no average-case solution at all and perhaps the

multiple outputs will still supply some useful sense of algorithmic behaviour

to the end-user.

In conclusion, existing equations have been corrected and new ones devel-

oped so that the MOQA static analysis tool can provide average-case results

for algorithms that involve DIPCβmax
s whose sets are infinite6. These equa-

tions reveal that Schellekens’s mathematical approach is weak when it comes

to providing a single average-case solution for data structures whose sizes are

not fixed, i.e. it is weak for the general case. Such obscurity negatively impacts

on how useful the MOQA approach is, an issue that is returned to later on in

this work. For now, the next point of order to consider is NDIPCβs whose

sets are infinite.

6Note that these equations will also apply for the min-heap label ordering. Recall that
any other label ordering is not considered by MOQA.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 141

4.5.2.4 The Average-case Cost of a MOQA Function Applied to an

Infinite NDIPCβ

Initially, some specific IPC types shall be defined.

Definition 52 (Singular self-identity IPC). An IPC is a singular self-identity

IPC if it is a self-identity IPC and, for each non base-case production rule r

in its structural definition, there is exactly one non-terminal that is the head

of r in the body of r.

Definition 53 (Empty-base singular IPC). An IPC is an empty-base singular

IPC if its structural definition is tightly defined, it is a singular self-identity

IPC and the tightly defined structural definition has two or more non base-case

production rules and one base-case production rule whose body is empty.

Definition 54 (Multi-base singular IPC). An IPC is a multi-base singular

IPC if its structural definition is tightly defined, it is a singular self-identity

IPC and the tightly defined structural definition has two or more non base-

case production rules and either one base-case production rule whose body is

not empty or two or more base-case production rules, one of which may have

an empty body.

Definition 55 (Singular IPC). A singular IPC is either an empty-base or a

multi-base singular IPC.

As an aside, it may be of interest to the reader to note that the tightly de-

fined structural definition of a DIPC also meets the requirements of a singular

self-identity IPC. It was not necessary to explicitly state this fact earlier as it

was already covered by a DIPC’s determinism. If the structural definition of

an IPC has one non base-case production rule and the body of this production

rule has two or more head non-terminals, then there would be at least one size

for which there is more than one fixed po-structure of that size in the IPC’s

set. Such an IPC would therefore be non-deterministic. Hence, a DIPC’s

tightly defined structural definition has exactly one head non-terminal in the

body of its one non base-case production rule.

Returning to topic, a singular NDIPC can be defined as follows. As in

the previous section, let op denote either ⊗ or ||. Now let FPSx denote

a finite multiset of s fixed po-structures, {FPSx1
, FPSx2

, . . . , FPSxs
}, with

CHAPTER 4. TRACKING DATA STRUCTURE STATE 142

s ≥ 2. FPSy denotes a fixed po-structure. For a specific FPSx, each fixed

po-structure in a singular NDIPC’s set is obtained from zero or more FPSx1
s,

zero or more FPSx2
s, . . . , zero or more FPSxs

s and up to one FPSy through

successive iterations of op. Each FPSxi
is a fixed po-structure construed from

one of the tightly defined singular NDIPC’s non base-case production rules,

1 ≤ i ≤ s. So s is the number of non base-case production rules in a singular

NDIPC’s tightly defined structural definition. Hence, s is always greater

than or equal to two. FPSy is still a fixed po-structure construed from any

base-case production rule of the tightly defined singular NDIPC whose body

is not empty. FPSxi
is called one of a singular NDIPC’s multi-repeat fixed

po-structures as every fixed po-structure in the singular NDIPC’s set includes

zero or more FPSxi
s. FPSy is, as before, called one of a singular NDIPC’s

base-case fixed po-structures.

Notation 90. Let MR(SM′

j) = {M1,M2, . . . ,Ms} denote the multiset of all

SM′

j ’s multi-repeat fixed po-structures when Pβ of SM′

j is a singular NDIPCβ.

Recall that SM′

j denotes the jth MOQA′ random structure in the MOQA′

random bag M
′.

Notation 91. Let pi denote the number of times that Mi is repeated within a

fixed po-structure in Pβ’s set, pi ≥ 0.

Why is MR(SM′

j), and therefore FPSx, defined above as a multiset rather

than a set? The definition of a singular NDIPC includes inductive po-classes

such as Z.

< Z > ::= ()

< Z > ::= < number > ⊗ < number >

< Z > ::= (< number > || < number >) || < Z >

< Z > ::= (< number > || < number >) ⊗ < Z >

Two identical fixed po-structures are construed from the two non base-case

production rules in this tightly defined structural definition, i.e. the fixed po-

structure of size two whose nodes are in parallel is construed twice. However,

when Pβ of SM′

j is the above Zβ, both instances of this fixed po-structure

are separately represented in MR(SM′

j) (and therefore in FPSx). The mo-

tivation for this duplication is to have a one-to-one relationship between Z’s

CHAPTER 4. TRACKING DATA STRUCTURE STATE 143

multi-repeat fixed po-structures and Z’s non base-case production rules. Ac-

cordingly, for any singular NDIPC, each multi-repeat fixed po-structure is

uniquely associated with a specific non base-case production rule and vice

versa. Therefore, MR(SM′

j) and FPSx are multisets.

There is not much flexibility in the structural arrangement of a fixed po-

structure from a DIPC’s set. Such a fixed po-structure is composed of p copies

of the DIPC’s repeat fixed po-structure and, at a specific extremity of these p

structures, there is one non-empty fixed po-structure when the set containing

all of the DIPC’s base-case fixed po-structures is not empty. The specific

extremity is established by the DIPC’s tightly defined structural definition,

as previously explained in Section 4.5.2.3 with the aid of inductive po-class X.

So, for an empty-base DIPC, p is the only variable in the structural arrange-

ment of any fixed po-structure selected from its set. For a multi-base DIPC,

an additional variable is introduced when its tightly defined structural defini-

tion has two or more base-case production rules. This variable represents the

fixed po-structure, empty or otherwise, which has been placed at the specific

extremity of the fixed po-structure selected from the multi-base DIPC’s set.

However, for a fixed po-structure in a singular NDIPC’s set, there is not only

choice with regard to how often each of the NDIPC’s multi-repeat fixed po-

structures are repeated within that fixed po-structure but there is also choice

with regard to the location of these multi-repeat fixed po-structures relative to

one another within that fixed po-structure. This is because the structural defi-

nition of a singular NDIPC does not impose a relative order between its multi-

repeat fixed po-structures. For example, the structural definition of a singular

NDIPC does not stipulate that one of its multi-repeat fixed po-structures

must always be above another of its multi-repeat fixed po-structures. While

a multi-base singular NDIPC has the same structural arrangement choice as

a multi-base DIPC when both tightly defined structural definitions have two

or more base-case production rules, all multi-base singular NDIPC’s have a

further structural arrangement choice when their tightly defined structural def-

initions allow a fixed po-structure, empty or otherwise, to be placed at multiple

extremities. The following IPC, A, is a multi-base singular NDIPC whose

tightly defined structural definition introduces this extra alternative. A’s only

base-case fixed po-structure of size one can be located either at the bottom or

CHAPTER 4. TRACKING DATA STRUCTURE STATE 144

to the left of a fixed po-structure from A’s set.

< A > ::= < number >

< A > ::= ((< number > || < number >) || < number >) ⊗ < A >

< A > ::= < A > || (< number > ⊗ < number >)

So a singular NDIPC has two additional structural options. Of the two,

let us first of all introduce notation to represent the distribution of and the

relative ordering between a singular NDIPC’s multi-repeat fixed po-structures

within a fixed po-structure from the singular NDIPC’s infinite set.

Let Pβ of SM′

j denote a singular NDIPCβ with an infinite set. For the

positive integer x, let Rx denote a set of n positive integers whose sum is x,

i.e. denote a partition of x, Rx = {px, 1, px, 2, . . . , px, n} and 1 ≤ n ≤ x. Let R0

denote the set whose only element is zero, R0 = {0}. So Rx will never contain

the element zero, only R0 contains this element. Here the x of Rx represents pi

when it is a positive integer and the 0 of R0 represents pi when it is zero; recall

that pi denotes how often Mi is repeated within a fixed po-structure in Pβ’s set.

The pi repetitions of Mi do not have to be grouped all together within a fixed

po-structure from Pβ’s set, i.e. there do not have to be pi successive iterations

of op involving Mi. So Rpi
represents one possible way the pi repetitions of Mi

can be arranged into separate groups within a fixed po-structure from Pβ’s set

by representing the number and the size of these separate groups. Note the

implicit assumption that there will be at least one other Mi between any two

of these groups, without which they would not be separate. Let H∞ denote

the set of all Rx sets for every x and the set R0. Hence H∞ is an infinite set,

as indicated by its notation. H∞ represents all the possible ways that all pi

repetitions of Mi can be separated into groups within a fixed po-structure in

Pβ’s set. Now, let the s sets Rp1
, Rp2

, . . . , Rps
each denote some set in H∞,

Rpi
= {ppi, 1, ppi, 2, . . . , ppi, n} or Rpi

= {0} and 1 ≤ i ≤ s. (This s is the same

s that represents how many multi-repeat fixed po-structures belong to Pβ; s

is a constant value for a specific Pβ.) So, for each Mi in MR(SM′

j), there is

a selection of one possible way from H∞ that the pi repetitions of Mi can be

arranged into separate groups within a fixed po-structure in Pβ’s set. Note that

two or more of these s selections can refer to the same set in H∞. Let P denote

the multiset union of Rp1
, Rp2

, . . . , Rps
. Let d denote one permutation of P ’s

CHAPTER 4. TRACKING DATA STRUCTURE STATE 145

elements. d represents one distribution of and relative ordering between Pβ’s

multi-repeat fixed po-structures within a fixed po-structure from Pβ’s set. Let

d′ denote permutation d when adjacent elements from the same Rpi
are replaced

by their sum and when all zero elements are removed. d′ merges adjacent

elements when these elements represent groups of the same Mi because these

groups are not separated by at least one other Mi and therefore, are not

actually separate groups. d′ drops all zero elements because each of these

represent an empty group, a Mi that is not present in the fixed po-structure

from Pβ’s set. So d′, more succinctly than d, represents one distribution of and

relative ordering between the p1 M1s, p2 M2s, . . . and ps Mss within a fixed

po-structure in Pβ’s set.

Note that Rpi
is selected from an infinite set. Hence the multiset P can be

any one of an infinite number of multisets and hence, the permutation d′ can

be any one of an infinite number of permutations.

Inductive po-class A provides a concrete example of this notation. Let E

denote a fixed po-structure of size three whose nodes are in parallel and let F

denote a fixed po-structure of size two whose nodes are in series. So {E,F}

shall be A’s multiset of multi-repeat fixed po-structures. Now let Rp1
, one

possible way the p1 repetitions of E can be arranged into separate groups within

a fixed po-structure in A’s infinite set, be {pp1, 1, pp1, 2, pp1, 3} and let Rp2
, one

possible way the p2 repetitions of F can be arranged into separate groups

within a fixed po-structure in A’s infinite set, be {pp2, 1, pp2, 2}. Therefore:

P = {pp1, 1, pp1, 2, pp1, 3, pp2, 1, pp2, 2}.

One permutation of P is:

d = [pp1, 3, pp1, 1, pp2, 2, pp1, 2, pp2, 1].

Note that none of the elements in d are zero elements as both Rp1
and Rp2

have a cardinality greater than one. Hence:

d′ = [(pp1, 3 + pp1, 1), pp2, 2, pp1, 2, pp2, 1].

This d′ still represents an infinite number of possible arrangements between

the p1 Es and p2 F s within a fixed po-structure from A’s infinite set. It is an

CHAPTER 4. TRACKING DATA STRUCTURE STATE 146

Figure 4.15: A fixed po-structure in A’s infinite set

infinite amount because, though this d′ specifies a relative ordering between

A’s multi-repeat fixed po-structures, their distribution is still unknown; each

variable in this d′ has yet to be replaced by some positive integer, of which there

is of course an infinite number. So, for the next step, let (pp1, 3 + pp1, 1) = 2,

pp2, 2 = 2, pp1, 2 = 1 and pp2, 1 = 1. With these fixed values, d′ now represents

one distribution of and relative ordering between the p1 Es and p2 F s within

a fixed po-structure from A’s infinite set. In this work, a d′ permutation is

always read from left to right. Figure 4.15 shows the fixed po-structure that

the example d′ represents when it is read from left to right. For completeness,

A’s base-case fixed po-structure is also included in Figure 4.15 and is indicated

by the dotted lines. Therefore, Figure 4.15 is one of the fixed po-structures in

A’s infinite set.

Now consider the second of the two additional structural options, which

is only an option for a multi-base singular NDIPC. This is the possibility

that the empty fixed po-structure and/or the NDIPC’s base-case fixed po-

structures can be placed at multiple extremities of the fixed po-structures in

the NDIPC’s set. For a fixed po-structure in the set of a multi-base singu-

lar NDIPC whose structural definition allows for such a choice, the specific

extremity that the empty fixed po-structure/one of the NDIPC’s base-case

fixed po-structures is located at within that fixed po-structure depends on the

distribution of and the relative ordering between the NDIPC’s multi-repeat

CHAPTER 4. TRACKING DATA STRUCTURE STATE 147

fixed po-structures within that fixed po-structure. This was demonstrated in

the last example. The specific extremity that A’s base-case fixed po-structure

is located at in Figure 4.15, which is to the left of the overall fixed po-structure

as opposed to the bottom of it, is determined by the relative ordering repre-

sented by that d′.

With a clearer understanding of the extra structural variations available to

a singular NDIPC, the equations involved in calculating the average-case cost

of a MOQA function when applied to a singular NDIPCβmax
with an infinite

set can be developed. The main challenge presented by a singular NDIPC

with an infinite set is that there is an infinite number of ways to arrange

its multi-repeat fixed po-structures, in contrast to the one way of arranging a

DIPC’s repeat fixed po-structure. However, recall the discussion on page 116,

which is in Section 4.5.2.3, about pushing a label up through the labeling of a

fixed po-structure obtained from y fixed po-structures in parallel, y ≥ 0. The

conclusion was that the relative ordering between these y fixed po-structures

is irrelevant when determining the average number of comparisons involved.

So in this situation it is safe to ignore how a NDIPCβmax
’s multi-repeat fixed

po-structures are relatively ordered within a fixed po-structure and instead be

concerned only by how often each one occurs in the overall fixed po-structure.

Definition 56 (Parallel singular NDIPC). A singular NDIPC is a parallel

singular NDIPC if || is the only operation that can connect any two of its

multi-repeat fixed po-structures.

Though A on page 144 is not a parallel singular NDIPC, B is.

< B > ::= < number >

< B > ::= ((< number > || < number >) || < number >) || < B >

< B > ::= < B > || (< number > ⊗ < number >)

B shows that being a parallel singular NDIPC does not necessarily exclude ⊗

from the production rules; ⊗ can still be used in the formation of the NDIPC’s

base-case and multi-repeat fixed po-structures as the structural definition of

B makes evident in one of its non base-case production rules.

Now, let Pβ of SM′

j denote a parallel singular NDIPCβmax
with an infinite

set. The subset of this Pβ that the MOQA function is applied to must be

CHAPTER 4. TRACKING DATA STRUCTURE STATE 148

obtained from r1 M1s, r2 M2s, . . . , rs Mss and up to one C through successive

iterations of ||, 0 ≤ r1 ≤ p1, 0 ≤ r2 ≤ p2, . . . , 0 ≤ rs ≤ ps. Under this condi-

tion, the following are the new σup, κup, τup and ∆up equations for a parallel

singular NDIPCβmax
. These new equations can, where appropriate, replace

the standard binary versions in a MOQA function’s average-case formula and

thus transform it into a general average-case inductive formula. Their proofs

are excluded because they are closely related to those given in Section 4.5.2.3.

Proposition 16 (σup for a parallel singular NDIPCβmax
). If σup is applied

to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs Mss through

successive iterations of || and
∑s

i=1 ri > 0, then its value is:

∑s

i=1 ri.|Mi|.σup(Mi)
∑s

i=1 ri.|Mi|
. (4.42)

If σup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss through successive iterations of || and
∑s

i=1 ri = 0, i.e. σup is applied to

an empty fixed po-structure, then its value is:

0. (4.43)

If σup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss and one C through successive iterations of ||, then its value is:

(
∑s

i=1 ri.|Mi|.σup(Mi)) + |C|.σup(C)

(
∑s

i=1 ri.|Mi|) + |C|
. (4.44)

Proposition 17 (κup for a parallel singular NDIPCβmax
). If κup is applied

to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs Mss through

successive iterations of ||, then its value is:

s∑

i=1

ri.κup(Mi). (4.45)

If κup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss and one C through successive iterations of ||, then its value is:

(
s∑

i=1

ri.κup(Mi)

)

+ κup(C). (4.46)

CHAPTER 4. TRACKING DATA STRUCTURE STATE 149

Proposition 18 (τup for a parallel singular NDIPCβmax
). If τup is applied to a

fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs Mss through successive

iterations of || and
∑s

i=1 ri > 0, then its value is:

∑s

i=1 ri.|Mi|.τup(Mi)
∑s

i=1 ri.|Mi|
. (4.47)

If τup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss through successive iterations of || and
∑s

i=1 ri = 0, i.e. τup is applied to

an empty fixed po-structure, then its value is:

0. (4.48)

If τup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss and one C through successive iterations of ||, then its value is:

(
∑s

i=1 ri.|Mi|.τup(Mi)) + |C|.τup(C)

(
∑s

i=1 ri.|Mi|) + |C|
. (4.49)

To help improve the readability of the following proposition, let L denote

the set of labels on the entire fixed po-structure that the equation is consider-

ing. Therefore, |L| =
∑s

i=1 ri.|Mi| in Equation 4.50 and |L| = (
∑s

i=1 ri.|Mi|)+

|C| in Equation 4.52.

Proposition 19 (∆up for deleting the label with rank k, i.e. the kth small-

est label, from a parallel singular NDIPCβmax
). If ∆up is applied to a fixed

po-structure obtained from r1 M1s, r2 M2s, . . . , rs Mss through successive

iterations of || and
∑s

i=1 ri > 0, then its value is:

∑s

i=1 ri.
∑|Mi|

x=1

(
k−1
x−1

)
.
(

|L|−k

|Mi|−x

)
.∆up(Mi, x)

∏s

i=1

∏ri

y=1

(
|L|−(

Pi−1

z=1
rz .|Mz |)−(y−1).|Mi|

|Mi|

) . (4.50)

If ∆up is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss through successive iterations of || and
∑s

i=1 ri = 0, i.e. ∆up is applied to

an empty fixed po-structure, then its value is:

0. (4.51)

If ∆up is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

CHAPTER 4. TRACKING DATA STRUCTURE STATE 150

Mss and one C through successive iterations of ||, then its value is:

((s∑

i=1

ri.

|Mi|∑

x=1

(
k − 1

x− 1

)

.

(
|L| − k

|Mi| − x

)

.∆up(Mi, x)

)

+

|C|
∑

x=1

(
k − 1

x− 1

)

.

(
|L| − k

|C| − x

)

.∆up(C, x)

)

/

s∏

i=1

ri∏

y=1

(
|L| − (

∑i−1
z=1 rz.|Mz|)− (y − 1).|Mi|

|Mi|

)

.

(4.52)

There would be similar σdown, κdown, τdown and ∆down equations for a par-

allel singular NDIPCβmax
.

Attention can now be turned to the series singular NDIPC.

Definition 57 (Series singular NDIPC). A singular NDIPC is a series

singular NDIPC if ⊗ is the only operation that can connect any two of its

multi-repeat fixed po-structures.

So now let Pβ of SM′

j denote a series singular NDIPCβmax
with an infinite

set. The subset of this Pβ that the MOQA function is applied to must be

obtained from r1 M1s, r2 M2s, . . . , rs Mss and up to one C through successive

iterations of ⊗, 0 ≤ r1 ≤ p1, 0 ≤ r2 ≤ p2, . . . , 0 ≤ rs ≤ ps. Under this

condition, the following are the new σup and κup equations for a series singular

NDIPCβmax
. Again, these new equations can, where appropriate, replace the

standard binary versions in a MOQA function’s average-case formula and thus

transform it into a general average-case inductive formula. As before, their

proofs are excluded because they are closely related to those given in Section

4.5.2.3.

Proposition 20 (σup for a series singular NDIPCβmax
). Let Mx denote that

Mx is the fixed po-structure that occurs at the bottom of the entire fixed po-

structure considered by the equation, 1 ≤ x ≤ s.

If σup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . ,

CHAPTER 4. TRACKING DATA STRUCTURE STATE 151

rs Mss through successive iterations of ⊗ and
∑s

i=1 ri > 0, then its value is:

(
s∑

i=1

ri.σup(Mi)

)

+

(
x−1∑

i=1

ri.|m(Mi)|

)

+ (rx − 1).|m(Mx)|+

s∑

i=x+1

ri.|m(Mi)|. (4.53)

If σup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss through successive iterations of ⊗ and
∑s

i=1 ri = 0, i.e. σup is applied to

an empty fixed po-structure, then its value is:

0. (4.54)

If σup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss and one C through successive iterations of ⊗ and C ∈ C(SM′

j), then its

value is:

σup(C) +
s∑

i=1

ri.(σup(Mi) + |m(Mi)|). (4.55)

If σup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss and one C through successive iterations of ⊗, C ∈ C(SM′

j) and
∑s

i=1 ri >

0, then its value is:

(
s∑

i=1

ri.σup(Mi)

)

+ σup(C) +

(
x−1∑

i=1

ri.|m(Mi)|

)

+

(rx − 1).|m(Mx)|+

(
s∑

i=x+1

ri.|m(Mi)|

)

+ |m(C)|. (4.56)

If σup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss and one C through successive iterations of ⊗, C ∈ C(SM′

j) and
∑s

i=1 ri =

0, then its value is:

σup(C). (4.57)

Until Proposition 20, all the new equations in this work could be solved

for a specific IPC up to the point where r, or each ri, and perhaps k were

CHAPTER 4. TRACKING DATA STRUCTURE STATE 152

the only remaining variables in each equation. Now Proposition 20 introduces

another variable that cannot be uniquely solved for a specific IPC. This

variable is Mx, which is a placeholder for the multi-repeat fixed po-structure

at the bottom of the fixed po-structure when C is not at the bottom of or even

present in the fixed po-structure. (Knowing what is at the bottom of the fixed

po-structure allows the average number of comparisons involved in swapping

the label up onto the fixed po-structure to be excluded from the equation;

the equation should only include the average number of comparisons that take

place within the fixed po-structure.) While there is an infinite number of

possible substitutions for r/each ri, there are just s possible substitutions for

Mx. Therefore, Equations 4.53 and 4.56 can be calculated for each of these

s substitutions. However, despite the strong likelihood of there being only a

few non base-case production rules in the tightly defined structural definition

of a series singular NDIPC, having additional results for each of these two

equations further contributes to the total number of average-case solutions for

a MOQA function applied to such a NDIPCβmax
when the function’s average-

case formula involves Equations 4.53 and/or 4.56.

Proposition 21 (κup for a series singular NDIPCβmax
). Let Mx denote that

Mx is the fixed po-structure that occurs at the top of the entire fixed po-structure

considered by the equation, 1 ≤ x ≤ s.

If κup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . ,

rs Mss through successive iterations of ⊗ and
∑s

i=1 ri > 0, then its value is:

κup(Mx). (4.58)

If κup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss through successive iterations of ⊗ and
∑s

i=1 ri = 0, i.e. κup is applied to

an empty fixed po-structure, then its value is:

0. (4.59)

If κup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss and one C through successive iterations of ⊗, C ∈ C(SM′

j) and
∑s

i=1 ri >

0, then its value is:

κup(Mx). (4.60)

CHAPTER 4. TRACKING DATA STRUCTURE STATE 153

If κup is applied to a fixed po-structure obtained from r1 M1s, r2 M2s, . . . , rs

Mss and one C through successive iterations of ⊗ and either C ∈ C(SM′

j) and
∑s

i=1 ri = 0 or C ∈ C(SM′

j), then its value is:

κup(C). (4.61)

In the same way that extra average-case solutions can arise because of Mx

in Proposition 20, extra average-case solutions can also arise because of Mx in

Proposition 21.

There would also be similar σdown and κdown equations for a series singular

NDIPCβmax
.

The τup and ∆up equations for a series singular NDIPCβmax
are not pro-

vided by this work. Recall, in Section 4.5.2.3, the τup and ∆up proofs for a

multi-base DIPCβmax
when op is ⊗. It is simple to apply the logic used in

these proofs to the case where the fixed po-structure is instead selected from

a series singular NDIPCβmax
’s infinite set. Adapting the τup logic for such a

fixed po-structure means that it would be necessary to determine the average

number of comparisons that result when the label being pushed up through

the fixed po-structure ends up in each instance of each multi-repeat fixed po-

structure. Determining the average number of comparisons for each instance

involves all of the multi-repeat fixed po-structure instances below it. Overall,

this amounts to knowing not only the distribution of but also the relative or-

dering between the multi-repeat fixed po-structures within the selected fixed

po-structure. Adapting the ∆up logic for such a fixed po-structure means that,

in determining the average number of comparisons, it would be necessary to

determine the initial multi-repeat fixed po-structure instance that the label of

rank k is on. It would also be necessary to determine all of the multi-repeat

fixed po-structure instances above this initial instance. So, once again, both

the distribution of and the relative ordering between the multi-repeat fixed

po-structures within the selected fixed po-structure is required information.

However, the equations in this work are realised because either 1), they

safely ignore the relative ordering within the selected fixed po-structure or 2),

there is a set number of possible relative orderings within the selected fixed po-

structure and an equation is then provided for each of these orderings. This is

why there are no difficulties in providing equations for both DIPCβmax
types;

CHAPTER 4. TRACKING DATA STRUCTURE STATE 154

a fixed po-structure from a DIPC’s set does not have much flexibility in its

structural arrangement/relative ordering, as detailed earlier in this section. So

this equation format is not designed to deal with an unknown number of rela-

tive orderings within the selected fixed po-structure. (Besides k, distribution

is the only unknown that the format can deal with, via the r and ri variables.

Hence, the presence of the above σup and κup equations for a series singular

NDIPCβmax
is due to the fact that distribution is the only unknown factor

in both calculations.) Therefore, as neither τup nor ∆up for a series singular

NDIPCβmax
with an infinite set is suited to this style of equation, because

both calculations consider the relative ordering within the selected fixed po-

structure and there is an infinite number of these possible, their equations are

missing from this work.

Finally, the remaining tightly defined NDIPCs can be discussed. Such

a NDIPC is either a singular NDIPC that is not in parallel or series or a

NDIPC that is not a singular NDIPC. For the former of these two NDIPC

categories, two operations can now connect the NDIPC’s multi-repeat fixed

po-structures; A above is an example of this. To determine σ, κ, τ or ∆ for a

fixed po-structure in this singular NDIPCβmax
’s infinite set, it would be nec-

essary to know the sequence of operations that connect the multi-repeat fixed

po-structures within the fixed po-structure because this knowledge is needed

by all of the equations presented both here and in the MOQA book [63]. This

is akin to knowing the distribution of and the relative ordering between the

multi-repeat fixed po-structures within the selected fixed po-structure. Why

make this correlation? Each production rule associated with each multi-repeat

fixed po-structure instance within the selected fixed po-structure specifies what

the adjoining operation is. Therefore, the full sequence of operations can be

established from the selected fixed po-structure’s d′ by reading this d′ from

left to right. Hence, the requirement of knowing exact distribution and rel-

ative ordering. This means a return to the situation where access is needed

to an infinite body of information that cannot be incorporated into the style

of equations presented in this work. (The extra operation also broadens the

set of choices for the specific extremity that the NDIPC’s base-case fixed

po-structure, if it has at least one, can be located at. For a parallel singular

NDIPC, the set of choices is {left, right}. For a series singular NDIPC, the

set of choices is {bottom, top}. Now for a singular NDIPC that is neither of

CHAPTER 4. TRACKING DATA STRUCTURE STATE 155

these, the set of choices is {left, right, bottom, top}. As before, the structural

definition of the NDIPC will decide the subset of choices available to the fixed

po-structures in its set.)

A tightly defined NDIPC in the second category, that is, a tightly defined

NDIPC that is not a singular NDIPC, is not a singular self-identity IPC

and maybe not even a self-identity IPC. The lack of the former characteristic

would mean that there is more than one head non-terminal in the body of at

least one non base-case production rule in the NDIPC’s structural definition;

see BT ’s structural definition in Section 4.4.2. The lack of the latter character-

istic would mean that the body of at least one non base-case production rule

in the NDIPC’s structural definition references another non-trivial structural

definition which may or may not be inductive. The added complexity intro-

duced by a non singular NDIPC is left for unravelling by future work, though

Chapter 7 points to more fundamental issues that future work should address

first. However, it seems safe to conclude that some of these NDIPCβmax
s,

particularly those that are not singular self-identity IPCs, will run into the

above relative ordering difficulties if the above equation techniques are applied

in determining σ, κ, τ or ∆.

Therefore, when Pβ of SM′

j represents a NDIPCβmax
in either of these

two final categories or when it represents a series singular NDIPCβmax
and

the average-case formula for the MOQA function applied to Pβ involves τ

or ∆, then, at this point in time, the average-case cost of the MOQA func-

tion applied to Pβ must be supplied to the MOQA static analysis tool by a

user. However, when Pβ of SM′

j represents a parallel singular NDIPCβmax

or when it represents a series singular NDIPCβmax
and the average-case for-

mula for the MOQA function applied to Pβ involves σ or κ, then new equations

that give rise to general average-case inductive formulas have been developed7,

thereby enabling the MOQA static analysis tool to provide average-case be-

haviours for certain MOQA functions when they are applied to certain groups

of NDIPCβmax
s whose sets are infinite.

7Note that these equations will also apply for the min-heap label ordering.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 156

4.5.3 The Average-case Cost of a MOQA Function Ap-

plied to SPCβmax, n and GSPCβmax, Z

As the average-case cost of the MOQA split function has already been exam-

ined, the focus of this section is the average-case cost of a MOQA function

when applied to the result of a MOQA split function.

First of all, suppose the result is a split po-class. This is a condensed

representation. Therefore, the average-case cost of a MOQA function when

applied to a split po-class can be separated into the average-case cost of the

MOQA function when applied to each of the fixed po-structures represented

by the split po-class, which has already been considered in Section 4.5.1.

Second of all, suppose the result is a general split po-class so let Pβ of

SM

j , which is the jth MOQA random structure in the MOQA random bag M ,

denote GSPCβmax, Z . When GSPCβmax, Z ’s set is finite, then the average-case

cost of the MOQA function applied to this Pβ can be determined in the same

manner as outlined in Section 4.5.2.1 for IPCβs whose sets are finite. When

GSPCβmax, Z ’s set is infinite, then the average-case cost of the MOQA function

is its average-case cost when applied to FPSβmax, a, b, where a = n
SM′

j
−1−b and

0 ≤ b ≤ n
SM′

j
− 1. This FPSβmax, a, b can be viewed as a compound structure.

The compound structure interpretation is a discrete inductive po-class of size

n
SM′

j
− 1 − b in series with a fixed po-structure of size one in series with a

discrete inductive po-class of size b. As the set belonging to GSPCβmax, Z is

infinite, the sets belonging to both of these discrete inductive po-classes are

infinite. So can the average-case cost of a MOQA function that is applied to

such a composite variable be statically determined? This is the subject of the

following section. However, the conclusion taken from Section 4.5.4 is “yes”,

because it is possible to statically determine the average-case cost of a MOQA

function when correctly applied to both a discrete inductive po-class whose set

is infinite and a fixed po-structure.

4.5.4 The Average-case Cost of a MOQA Function Ap-

plied to CSβ

A compound structure consists of a finite number of the data structure repre-

sentations discussed in this chapter. Therefore, the MOQA static analysis tool

CHAPTER 4. TRACKING DATA STRUCTURE STATE 157

can determine the average-case cost of the MOQA function applied to some

subset of a compound structure if it can determine the average-case cost of

the function applied to each data structure representation in that subset. The

previous sections have just detailed the representations for which such timing

information can be statically obtained, along with how.

4.6 The Number of Canonically-ordered La-

belings on IPCβ

Knowing the total number of distinct canonically-ordered labelings on each

Pβ in the MOQA′ random bag is also part of statically deriving the complete

average-case cost of the MOQA function applied to that bag; see Section 2.2.

There are already equations for the total number of distinct canonically-

ordered labelings on Pβ when it represents some fixed po-structure, c.f. Equa-

tions 2.12 and 2.13. Corresponding equations are also needed for when Pβ

represents an IPCβmax
with an infinite set. However, such equations are only

needed for IPCβmax
s for which the average-case cost of a MOQA function can

be statically calculated. Currently, these are the IPCβmax
s of Section 4.5.2.3

and 4.5.2.4. There is no need to deal with other IPCβmax
s because, when the

MOQA static analysis tool cannot resolve the average-case cost of a MOQA

function that is applied to an IPCβmax
, an impasse is reached whether or not it

can calculate the relative frequency of that IPCβmax
occurring in the MOQA′

random bag.

If Pβ represents an empty-base DIPCβmax
and the structural definition

operation that connects its repeat fixed po-structure is ||, then either Equation

4.62 or Equation 4.63 will provide the distinct canonically-ordered labeling

count on a fixed po-structure selected from its set.

If FPSβ is an empty fixed po-structure, then:

|L(FPSβ)| = 0. (4.62)

Recall that L(FPSβ) denotes the set of all canonically-ordered labelings of the

fixed po-structure FPS that has the label ordering β on it.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 158

If FPSβ is selected from a DIPCβmax
’s set, r > 0 and

FPSβ =

r
︷ ︸︸ ︷

SRM′

j || . . . || SRM′

j ,

then Hickey [35] states that:

|L(FPSβ)| =

(r∏

i=1

(
i.|SRM′

j |

|SRM′

j |

))

.|L(SRM′

j)|r. (4.63)

A relevant aside is that, in addition to Equation 4.62, there should also be

the following simple base-case equation for both the equations in this section

and Equations 2.12 and 2.13.

If FPSβ is a fixed po-structure of size one, then:

|L(FPSβ)| = 1. (4.64)

On the other hand, if Pβ represents an empty-base DIPCβmax
and

the structural definition operation that connects its repeat fixed po-structure

is ⊗, then either Equation 4.62 or Equation 4.65 will provide the distinct

canonically-ordered labeling count on a fixed po-structure selected from its

set.

If FPSβ is selected from a DIPCβmax
’s set, r > 0 and

FPSβ =

r
︷ ︸︸ ︷

SRM′

j ⊗ . . . ⊗ SRM′

j ,

then Hickey [35] states that:

|L(FPSβ)| =
r∏

i=1

|L(SRM′

j)| = |L(SRM′

j)|r. (4.65)

Note this work’s minor addendum of placing a restriction on r’s range in

both of Hickey’s equations, Equations 4.63 [35] and 4.65 [35]. Note also that

Equation 4.63 has been rearranged in this work.

The remaining equations shall now be provided. If Pβ represents an multi-

base DIPCβmax
and the structural definition operation that connects its

repeat fixed po-structure is ||, then Equation 4.62, 4.63 or 4.66 will provide

CHAPTER 4. TRACKING DATA STRUCTURE STATE 159

the distinct canonically-ordered labeling count on a fixed po-structure selected

from its set.

If FPSβ is selected from a multi-base DIPCβmax
’s set and

FPSβ =

r
︷ ︸︸ ︷

SRM′

j || . . . || SRM′

j || C,

then it can be shown that:

|L(FPSβ)| =

(r∏

i=1

(
i.|SRM′

j |+ |C|

|SRM′

j |

))

.|L(SRM′

j)|r.|L(C)|. (4.66)

If Pβ represents an multi-base DIPCβmax
and the structural definition

operation that connects its repeat fixed po-structure is ⊗, then Equation 4.62,

4.65 or 4.67 will provide the distinct canonically-ordered labeling count on a

fixed po-structure selected from its set.

If FPSβ is selected from a multi-base DIPCβmax
’s set and

FPSβ =

r
︷ ︸︸ ︷

SRM′

j ⊗ . . . ⊗ SRM′

j ⊗ C,

then it can be shown that:

|L(FPSβ)| = |L(SRM′

j)|r.|L(C)|. (4.67)

If Pβ represents a parallel empty-base singular NDIPCβmax
, then

either Equation 4.62 or Equation 4.68 will provide the distinct canonically-

ordered labeling count on a fixed po-structure selected from its set.

If FPSβ is selected from a parallel singular NDIPCβmax
’s set,

∑s

i=1 ri > 0

and

FPSβ =

r1

︷ ︸︸ ︷

M1 || . . . || M1 || . . . ||

rs
︷ ︸︸ ︷

Ms || . . . || Ms,

then it can be shown that:

|L(FPSβ)| =

(s∏

i=1

ri∏

y=1

(
|FPSβ| − (

∑i−1
z=1 rz.|Mz|)− (y − 1).|Mi|

|Mi|

))

.

s∏

i=1

|L(Mi)|
ri , (4.68)

CHAPTER 4. TRACKING DATA STRUCTURE STATE 160

where

|FPSβ| =
s∑

i=1

ri.|Mi|.

If Pβ represents a series empty-base singular NDIPCβmax
, then either

Equation 4.62 or Equation 4.69 will provide the distinct canonically-ordered

labeling count on a fixed po-structure selected from its set.

If FPSβ is selected from a series singular NDIPCβmax
’s set,

∑s

i=1 ri > 0

and

FPSβ =

r1

︷ ︸︸ ︷

M1 ⊗ . . . ⊗ M1 ⊗ . . . ⊗

rs
︷ ︸︸ ︷

Ms ⊗ . . . ⊗ Ms,

then it can be shown that:

|L(FPSβ)| =
s∏

i=1

|L(Mi)|
ri . (4.69)

If Pβ represents a parallel multi-base singular NDIPCβmax
, then

Equation 4.62, 4.68 or 4.70 will provide the distinct canonically-ordered label-

ing count on a fixed po-structure selected from its set.

If FPSβ is selected from a parallel multi-base singular NDIPCβmax
’s set

and

FPSβ =

r1

︷ ︸︸ ︷

M1 || . . . || M1 || . . . ||

rs
︷ ︸︸ ︷

Ms || . . . || Ms || C,

then it can be shown that:

|L(FPSβ)| =
s∏

i=1

ri∏

y=1

(
|FPSβ| − (

∑i−1
z=1 rz.|Mz|)− (y − 1).|Mi|

|Mi|

)

.

(
s∏

i=1

|L(Mi)|
ri).|L(C)|, (4.70)

where

|FPSβ| = (
s∑

i=1

ri.|Mi|) + |C|.

If Pβ represents a series multi-base singular NDIPCβmax
, then Equa-

tion 4.62, 4.69 or 4.71 will provide the distinct canonically-ordered labeling

count on a fixed po-structure selected from its set.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 161

If FPSβ is selected from series multi-base singular NDIPCβmax
’s set and

FPSβ =

r1

︷ ︸︸ ︷

M1 ⊗ . . . ⊗ M1 ⊗ . . . ⊗

rs
︷ ︸︸ ︷

Ms ⊗ . . . ⊗ Ms ⊗ C,

then it can be shown that:

|L(FPSβ)| = (
s∏

i=1

|L(Mi)|
ri).|L(C)|. (4.71)

The particular extremity at which C is located in the FPSβ of the above

germane equations has no affect on their result. Hence, the placement of C

at the end of the chain in the notations for these FPSβs is a random choice

of no significance. Likewise, where each instance of each Mi is located within

the FPSβ of the above germane equations does not affect their result. So,

once again, their sequential placement in the notations for these FPSβs is a

random choice of no significance.

So clearly there are multiple equations for counting the total number of

distinct canonically-ordered labelings on each type of IPCβmax
that the above

Pβ represented. (Note that these equations will also apply for the min-heap

label ordering.) To illustrate these multiple equations, we just saw that when

Pβ represents a series multi-base singular NDIPCβmax
, then Equations 4.62,

4.69 and 4.71 provide the distinct canonically-ordered labeling count on a

fixed po-structure selected from its set. Similarly, there are multiple average-

case equations for each of these IPCβmax
types in Sections 4.5.2.3 and 4.5.2.4.

There is a correspondence between these two equation categories: the average-

case equation involved in obtaining the average-case cost of a MOQA function

applied to one of these IPCβmax
types determines which of the above equations

is involved in obtaining the relative frequency of that IPCβmax
occurring in

the MOQA random bag. For example, if Pβ represents a parallel multi-base

singular NDIPCβmax
and Equation 4.44 is part of determining the average-case

of a MOQA function applied to Pβ, then Equation 4.70 is part of determining

the relative frequency of Pβ occurring in the MOQA random bag.

CHAPTER 4. TRACKING DATA STRUCTURE STATE 162

4.7 The Number of Canonically-ordered La-

belings on SPCβmax, n and GSPCβmax, Z

If a non-empty FPSβ is selected from a SPCβmax, n’s set or a GSPCβmax, Z ’s

set, then it is simple to infer from the MOQA book [63] that the total number

of distinct canonically-ordered labelings on it are:

(a + b)!
(

a+b

b

) .

Equation 4.62 gives the total when the selected fixed po-structure is empty.

When Hβ of SM

j , which is the jth MOQA random structure in the MOQA

random bag M , denotes the fixed po-structure FPSβmax, a, b, the MOQA book

[63] makes the point that |L(SM

j)|.MSM
j , which is the relative frequency of SM

j

occurring in MSM
j , can be reduced to (a+ b)!. (Recall that L(SM

j) denotes the

set of all canonically-ordered labelings of the jth MOQA random structure in

the MOQA random bag M when that structure has the label ordering β on

it.) This is because:

|L(SM

j)|.MSM
j =

(a + b)!
(

a+b

b

) .

(
a + b

b

)

= (a + b)!.

Therefore, when Pβ of SM′

j denotes SPCβmax, n, |L(SM′

j)|.MSM
′

j can be reduced

to (n − 1)!; recall that a + b = n − 1. Similarly, when Pβ of SM′

j denotes

GSPCβmax, Z , then |L(SM′

j)|.MSM
′

j can be reduced to (n
SM′

j
− 1)!.

4.8 Chapter Summary

The MOQA approach to statically determining average-case behaviour cen-

tres on iterating through the shape of a fixed po-structure. By adhering to

the essence of MOQA, this work has added to the data structure types that

can be included in the MOQA′ random bag. While Chapter 6 presents other

mechanisms for statically attaining the average-case behaviour of data struc-

ture types, one aim of this work, and specifically of this chapter, is to push the

current boundaries of MOQA. Hence, the style of the new equations developed

here for σ, κ, τ , ∆ and L(SM′

j). Due to these equations, there may be more

CHAPTER 4. TRACKING DATA STRUCTURE STATE 163

than one average-case solution for the algorithm under static analysis8 and,

when this occurs, a user may not be able to extract meaningful average-case

information from these multiple solutions. However, this chapter has shown

that this is not a challenge new to MOQA and the MOQA approach may still

have the benefit of being able to provide a unique insight into the formula-

tion of average-case behaviour for particular algorithms. Also achieved in this

chapter was the further augmentation of the general MOQA theory through

the expansion of its definitions and additional categorisations.

8An example of an algorithm whose MOQA static analysis would yield more than one
average-case solution is given on page 138.

Chapter 5

Duplicate Labels

All the labels of a canonically-ordered labeling are distinct by definition and a

MOQA/MOQA′ random structure only deals with canonically-ordered label-

ings. Though it is not unusual to take the stance that a data structure’s values

are distinct, this chapter considers whether duplicate labels can be integrated

into MOQA’s approach to average-case analysis.

5.1 The Duplicate Label Question

To aid with this discussion, this section will begin with a duplicate label exam-

ple. Figure 5.1 shows, for the label set {1, 2} and the max-heap label ordering,

all the distinct labelings of a discrete fixed po-structure of size three when

the label value 2 is assigned twice. It is possible to distinguish between the

two identical label values in each labeling of Figure 5.1 by identifying one of

them as 2a and the other as 2b. However, if their new identities resulted in

these label values being viewed as distinct, then Figure 5.1 would no longer

correctly show all of the fixed po-structure’s distinct labelings. Rather, Figure

5.2 would show, for the label set {1, 2a, 2b} and the max-heap label ordering,

all the distinct labelings of a discrete fixed po-structure of size three.

Now consider the average-case cost of a MOQA function when duplicate

labels are involved. Continuing with the discrete fixed po-structure of size three

example, give specific consideration to this for the MOQA product function

that products from left to right the first node above the next two node. For

each labeling in Figure 5.1, Figure 5.3 shows the result of this MOQA product

function when the connections between minimal and maximal nodes have been

164

CHAPTER 5. DUPLICATE LABELS 165

1

2

2 2

I

II

III

2 2

1

1

2

Figure 5.1: For the label set {1, 2} and βmax, all the distinct labelings of a
discrete fixed po-structure of size three when 2 is assigned twice

1

1 2

2

2

2 2

2 1

2 2 1

2 2

2

1

1

I

II

III

IV

V

VI

a b

b 2a

a b

b a

a b

b a

Figure 5.2: For the label set {1, 2a, 2b} and βmax, all the distinct labelings of
a discrete fixed po-structure of size three

CHAPTER 5. DUPLICATE LABELS 166

1

2

II*

III*

2 2

2

2 1

2

1

I*

Figure 5.3: Figure 5.1 just after the first node from left to right is connected
above the next two nodes

made but, as of yet, the function has not broached adjusting the labeling. For

each labeling in Figure 5.2, Figure 5.4 shows likewise.

During the process of ensuring that a labeling is consistent with its label

ordering, the MOQA product and deletion functions will select the node with

the smallest/largest label in some isolated subset of nodes; see Section 2.2.

If there is more than one node with the smallest/largest label in that subset,

then these duplicate labels introduce a further choice; which node is the mini-

mum/maximum node in that subset? The following section will look at some

ways in which this decision can be made and, through the examples just given,

discuss their impact on average-case cost.

5.2 Random Selection

When a MOQA function is faced with choosing between nodes whose label

values are equal, then one approach to this problem is that the MOQA func-

tion randomly selects one of these nodes. For the sake of simplicity, it shall

be naively assumed that the implementer of any random selection method dis-

cussed in this section does not sin1 and therefore, each node in some group of

nodes from which there is a random selection is equally likely to be selected.

The push-down and push-up logic of the MOQA product function will find

1“Anyone who uses arithmetic methods to produce random numbers is in a state of sin.”
- John von Neumann

CHAPTER 5. DUPLICATE LABELS 167

1

1 2

IV*

1

VI*

I* II*

1

2

III*

V*

1

22

2

2

1 2 2

a b b a

2a 2b

b a

2 2a

b

b

a

Figure 5.4: Figure 5.2 just after the first node from left to right is connected
above the next two nodes

that II∗ and III∗ in Figure 5.3 are already consistent with the max-heap label

ordering. Only I∗ in Figure 5.3 will need adjustment. Applying the approach

just suggested, let the leftmost minimal node of I∗ be the node randomly

selected for the swap operation. So, after that swap operation and thus the

MOQA product function completes, I∗ becomes III∗. The other equally likely

possibility is that the rightmost minimal node of I∗ is the node randomly

selected for the swap operation. If so, then, after that swap operation and

thus the MOQA product function completes, I∗ becomes II∗.

Hence, the MOQA product function will be deterministic for inputs II

and III of Figure 5.1 but non-deterministic for input I of Figure 5.1 due to

random selection. Though the MOQA product function will always produce

three outputs for these three inputs, it is not sure whether these three out-

puts will be {II∗, III∗, III∗} or {II∗, II∗, III∗}. In other words, the three

outputs will be {II∗, III∗, (II∗ | III∗)}. So what is the average number of

label-to-label comparisons for this random selection MOQA product function

during its examination and possible adjustment of the labelings in Figure 5.3?

Figure 5.5 illustrates the new code that could be used for this random se-

CHAPTER 5. DUPLICATE LABELS 168

lection2. Its getMaximumElement would replace the code for ∨(f, Iβmax
)

in the standard MOQA product function. There would be a corresponding

getMinimumElement, which would replace the code for ∧(f, Iβmax
) in the

standard MOQA product function. Otherwise, the standard MOQA product

function as described in Section 2.2 would remain untouched. Let Tprod(X) de-

note the total number of label-to-label comparisons for this random selection

MOQA product function when it examines and possibly adjusts the labeling

on X, when X is a fixed po-structure with some labeling on it. Therefore,

the average-case cost of this random selection MOQA product function when

applied to the labelings in Figure 5.3 is:

1

6
.Tprod(I

∗) +
1

6
.Tprod(I

∗) +
1

3
.Tprod(II∗) +

1

3
.Tprod(III∗).

The first Tprod(I
∗) is for when the MOQA product function randomly selects

the leftmost minimal node of I∗ for the swap operation and the second Tprod(I
∗)

is for when it randomly selects the rightmost minimal node. Using the code

in Figure 5.5, this average-case cost can be evaluated to:

(
1

6

)

.10 +

(
1

6

)

.12 +

(
1

3

)

.6 +

(
1

3

)

.4 = 7. (5.1)

Note that Equation 5.1 ignores the number of comparisons involved in the

random selection of a node and in iterating through a set of nodes because only

label-to-label comparisons are under scrutiny here. Though MOQA’s domain

is exact average-case cost, this example shows that the non-determinism of this

random selection technique causes a shift into the area of expected average-case

cost.

Duplicate labels are briefly mentioned in the MOQA book [63], which states

that they are “allowed in MOQA” when the technique for handling them is

random selection. However, Schellekens [63] advocates random selection via a

different approach. Prior to the execution of every MOQA program, he sug-

gests that a unique subscript from a totally-ordered set of elements is randomly

assigned to each label in the labeling on the input series-parallel Hβ; so the size

of this totally-ordered set must be at least the number of nodes in the input

2The only aim in presenting this code is to clearly demonstrate some of the involved
comparisons. Hence, it is not necessary for this code, and that which follows, to agree with
the MOQA-Java syntax.

CHAPTER 5. DUPLICATE LABELS 169

/∗∗
∗ Returns the maximum element in the s p e c i f i e d s e t .
∗ @param s e t a non−empty s e t o f e lements .
∗/

public Element getMaximumElement (Set<Element> s e t) {
List<Element> maximumElements = getMaximumElements (s e t) ;
i f (maximumElements . s i z e () > 1) {

// Return element randomly s e l e c t e d from maximumElements .
}
return maximumElements . get (0) ;

}

/∗∗
∗ Returns a l i s t o f the maximum elements in the s p e c i f i e d s e t .
∗ @param s e t a non−empty s e t o f e lements .
∗/

private List<Element> getMaximumElements (Set<Element> s e t) {
List<Element> maximumElements = new ArrayList<Element>() ;
I t e r a t o r <Element> i t e r = s e t . i t e r a t o r () ;
maximumElements . add (i t e r . next ()) ;
Element currentElement ; int compare ;
while (i t e r . hasNext ()) {

currentElement = i t e r . next () ;
compare = maximumElements . get (0) .

compareTo (currentElement) ;
i f (compare < 0) {

maximumElements . c l e a r () ;
maximumElements . add (currentElement) ;

} else i f (compare = = 0) {
maximumElements . add (currentElement) ;

}
}
return maximumElements ;

}

public class Element implements Comparable<Element> {
. . .

/∗∗
∗ Returns a nega t i v e in t ege r , zero , or a p o s i t i v e i n t e g e r
∗ when t h i s e lement i s l e s s than , equa l to , or g r ea t e r than
∗ the s p e c i f i e d element .
∗/

public int compareTo (Element element) {
return (this . label < element . label ? −1 :

(this . label = = element . label ? 0 : 1)) ;
}

}

Figure 5.5: New code for a random selection technique discussed in this section

CHAPTER 5. DUPLICATE LABELS 170

Hβ. Then, when comparisons between two nodes reveal their label values to be

equal, a further comparison takes place between their label subscript values to

determine the smaller/larger of the two. Therefore, nodes whose label values

were deemed to be equal before subscript assignment are now no longer equal

due to their values having distinct subscripts. Though this point is not stated

in the MOQA book [63], its random selection technique again causes a do-

main shift into the arena of expected average-case cost because |Hβ|− 1 nodes

are randomly selected during the subscript assignment that takes place at the

beginning of every MOQA program. This differs from the other random selec-

tion technique just discussed because for that technique a node is randomly

selected only when the required node has multiple possibilities, which has the

minor advantage of only engaging in random selection when duplicate labels

are actually present.

Figure 5.2 displays how the MOQA book’s random selection technique [63]

would transform the input labelings of Figure 5.1. So what is the average

number of label-to-label comparisons for the MOQA book’s random selection

MOQA product function during its examination and possible adjustment of

the labelings in Figure 5.4, when a < b is taken to be the ordering of the

label subscripts? Figure 5.6 illustrates the new code that could be used for

Schellekens’s random selection [63]. Its getMaximumElement would replace

the code for ∨(f, Iβmax
) in the standard MOQA product function. There would

be a corresponding getMinimumElement, which would replace the code for

∧(f, Iβmax
) in the standard MOQA product function. Additionally, the push-

down logic of the standard MOQA product function would have to be modified

to include subscript comparison and, therefore, would become:

while ⌊v(minf , Iβmax
)⌋ ⊆ Iβmax

and

v(minf , Iβmax
).compareTo(∨(f, ⌊v(minf , Iβmax

)⌋)) < 0

swap(v(minf , Iβmax
), ∨(f, ⌊v(minf , Iβmax

)⌋))

There would have to be a similar modification to the push-up logic of the

standard MOQA product function. Hence, using the code in Figure 5.6, the

average number of label-to-label comparisons, which includes label subscript

comparisons, in rearranging the labelings in Figure 5.4 so that they become

CHAPTER 5. DUPLICATE LABELS 171

/∗∗
∗ Returns the maximum element in the s p e c i f i e d s e t .
∗ @param s e t a non−empty s e t o f e lements .
∗/

public Element getMaximumElement (Set<Element> s e t) {
I t e r a t o r <Element> i t e r = s e t . i t e r a t o r () ;
Element maximumElement = i t e r . next () ;
Element currentElement ;
while (i t e r . hasNext ()) {

currentElement = i t e r . next () ;
i f (maximumElement . compareTo (currentElement) < 0) {

maximumElement = currentElement ;
}

}
return maximumElement ;

}

public class Element implements Comparable<Element> {
. . .

/∗∗
∗ Returns a nega t i v e i n t e g e r or a p o s i t i v e i n t e g e r when t h i s
∗ element i s l e s s than or g r ea t e r than the s p e c i f i e d element .
∗/

public int compareTo (Element element) {
return (this . label < element . label ?

−1 : (this . label = = element . label ?
(this . l a b e l Sub s c r i p t < element . l a b e l Sub s c r i p t ?
−1 : 1) : 1)) ;

}
}

Figure 5.6: New code for Schellekens’s random selection technique [63]

the labelings in Figure 5.7 is:

(
1

6

)

.13 +

(
1

6

)

.12 +

(
1

6

)

.14 +

(
1

6

)

.7 +

(
1

6

)

.12 +
1

6
=

32

3
. (5.2)

The first fraction is the average number of label-to-label comparisons in rear-

ranging I∗ to I∗∗, the second fraction is the average number of label-to-label

comparisons in rearranging II∗ to II∗∗, etc. Note that Equation 5.2 ignores

the number of comparisons involved in the random selection of a node, i.e. the

|Hβ| − 1 nodes randomly selected prior to each execution of a MOQA pro-

gram, and in iterating through a set of nodes for the same reason that these

comparisons are ignored by Equation 5.1.

CHAPTER 5. DUPLICATE LABELS 172

1 2

IV**

1

VI**

I** II**

III**

V**

1

2

2

2

1 2 2

a a

2b 2b

a a

2 2b

a

b

a

2b

1

2b

1

Figure 5.7: The labelings of Figure 5.4 after adjustment by the MOQA product
function

However, the MOQA book [63] asserts that its random selection “amounts

to considering all labels distinct and hence our analysis, which is carried out

on states and under the assumption of distinct labels, will yield the correct

result”. Is this hypothesis of equivalence correct? Does the average-case cost

of this random selection technique really never differ from the average-case

cost that would normally be determined by MOQA? The above example for

the MOQA book’s random selection technique [63] makes this claim simple

to test as its average-case cost can be compared to the average-case cost that

would result from the MOQA static analysis tool. So, for a discrete fixed po-

structure of size three, what is the average-case cost of the standard MOQA

product function that products from left to right the first node above the next

two nodes? The MOQA static analysis tool uses the average-case formula

for the standard MOQA product function in Section 2.3 to give an answer of

10/3. Clearly, this is not the result of Equation 5.2. Therefore, Schellekens’s

supposition [63] does not hold for this relatively simple example. Intuitively

this makes sense because the extra comparisons introduced by the MOQA

book’s random selection technique [63] would have to result in a higher average;

CHAPTER 5. DUPLICATE LABELS 173

there are extra comparisons even when prior to subscript assignment there are

no duplicate labels in the labeling on the input Hβ. Hence, this work rejects

the assumption that the standard MOQA average-case solution applies for this

random selection technique [63]. This lack of interchangeability is also true for

the other random selection technique/randomised algorithm, as evidenced by

Equation 5.1 not being equal to 10
3
.

5.3 Label Distribution

An important point that has not yet been explicitly discussed is the distribu-

tion of duplicate labels on a fixed po-structure. This would seem to be relevant

information as “knowing a distribution on the inputs can help us to analyze

the average-case behavior of an algorithm” [13].

Notation 92. Let Dβmax
denote a discrete fixed po-structure with label ordering

βmax on it and let N denote its size.

Notation 93. Let K denote a finite non-empty label set.

Definition 58 (Label collection). A label collection on Dβmax
with K is a label

multiset of size N whose elements are members of K.

Definition 59 (Unique label collection). A label collection on Dβmax
with K

is a unique label collection if all of its elements are distinct, hence N ≤ |K|.

Definition 60 (Duplicate label collection). A label collection on Dβmax
with

K is a duplicate label collection if its elements are not all distinct.

Figure 5.1 showed, for the label set {1, 2} and the max-heap label ordering,

all the distinct labelings of a discrete fixed po-structure of size three when the

label value 2 is assigned twice. However, {1, 2, 2} is just one of the duplicate

label collections possible on this fixed po-structure with this label set. Instead

of this collection, the label value 1 could have been assigned twice; {1, 1, 2}

would have resulted in the subsequent MOQA product function being deter-

ministic hence returning to the exact average-case behaviour that MOQA nor-

mally investigates. The other possible duplicate label collections are {1, 1, 1}

and {2, 2, 2}. (The random selection technique used by the MOQA book [63]

does not need to be concerned with how duplicate labels are distributed on a

CHAPTER 5. DUPLICATE LABELS 174

a b c
1 1 1
2 2 2
1 1 2
1 2 1
2 1 1
2 2 1
2 1 2
1 2 2

Table 5.1: L(Dβmax
, K) when N = 3 and K = {1, 2}

fixed po-structure because its solution to duplicate labels is to remove them,

thereby side-stepping the problem but at an additional cost.) So average-case

cost can be calculated over one duplicate label collection on a discrete fixed

po-structure with some label set as happened for the example of Figure 5.1

onwards. It can also be calculated over all distinct label collections on a dis-

crete fixed po-structure with some label set. (Attention is being given to the

distribution of labels on a discrete fixed po-structure because, as discussed in

Section 4.3, this is normally the type of structure that a MOQA′-satisfying

program receives as input.)

Notation 94. Let L(Dβmax
, K) denote the union of the set of all labelings for

each distinct label collection possible on Dβmax
with K.

As duplicate label collections can be among the label collections possible

on Dβmax
with K, L(Dβmax

, K) has a cardinality of |K|N since the label of

each node in Dβmax
can be chosen in |K| ways. So L(Dβmax

, K) includes all

the labelings of Dβmax
for each distinct duplicate label collection possible on

Dβmax
with K. For example, when N = 3 and K = {1, 2}, then Table 5.1

shows all of the |K|N = 23 = 8 labelings in L(Dβmax
, K). When N ≤ |K|,

L(Dβmax
, K) includes all the N ! labelings of Dβmax

for each distinct unique

label collection possible on Dβmax
with K. For example, when N = 3 and

K = {1, 2, 3}, then Table 5.2 shows all of the |K|N = 33 = 27 labelings in

L(Dβmax
, K).

Note that L(Dβmax
, K) is in stark contrast to L(Dβmax

). Recall that the

latter is the set of all canonically-ordered labelings on Dβmax
so there are no

duplicate labels in any of these canonically-ordered labelings. In addition,

CHAPTER 5. DUPLICATE LABELS 175

a b c
1 1 1
2 2 2
3 3 3
1 1 2
1 2 1
2 1 1
1 1 3
1 3 1
3 1 1
2 2 1
2 1 2
1 2 2
2 2 3
2 3 2

a b c
3 2 2
3 3 1
3 1 3
1 3 3
3 3 2
3 2 3
2 3 3
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

Table 5.2: L(Dβmax
, K) when N = 3 and K = {1, 2}

L(Dβmax
) has a cardinality of N ! as opposed to |K|N because it just contains

the N ! labelings of Dβmax
for a unique label collection possible on Dβmax

.

Finally, in this work the uniform probability distribution is always defined

on the sample space L(Dβmax
, K).

Definition 61 (Uniform probability distribution (UPD)). There is a uniform

probability distribution on the finite or countably infinite sample space S when

every elementary event s ∈ S has probability

Pr{s} =
1

|S|

and, for any event A,

Pr{A} =
∑

s∈A

Pr{s},

since elementary events, specifically those in A, are mutually exclusive [13].

The uniform probability distribution on S can be described as “picking an

element of S at random” [13].

CHAPTER 5. DUPLICATE LABELS 176

5.4 Duplicate Labels in Insertion-sort

The average number of comparisons for either of Section 5.2’s random selection

examples is over one of the duplicate label collections possible on a discrete

fixed po-structure of size three with label set {1, 2} rather than over all of the

distinct label collections possible on that fixed po-structure with that label set.

Hence, the argument could be made that the conclusions drawn from com-

paring these averages to the average number of comparisons for the standard

MOQA product function example in that section are not definitive because the

random selection averages were not over all distinct label collections. These

averages also depend to a certain degree upon their implementations. Hence,

it could also be argued that the implementations in Section 5.2 are particu-

larly unwieldy — a claim the author would not try and dispute because no

attempt was ever made to fine tune these implementations — and therefore,

the discrepancy between these averages could be reduced. Perhaps even re-

moved? In fact, certain works, see [67], [45] and [65], show that appropriately

modifying insertion-sort and quicksort implementations can improve their ef-

ficiency/reduce the number of comparisons involved. Additionally, research

by Wegner [77] shows that the average number of comparisons for various

quicksort derivatives over distributions involving duplicate labels also varies.

There is no consideration given in the MOQA book [63] to the label col-

lections over which the label-to-label comparison count should be averaged

when duplicate labels are involved or to implementation details for duplicate

labels beyond what is repeated in Section 5.2. So both of these arguments

are speculative defences of Schellekens’s concept [63] that there is a way to

view the distribution of repeated input so that it does not prevent MOQA

in its current form from correctly determining the average-case behaviour of

a MOQA-satisfying program. This works’s response to the above arguments

and to this concept is that there is no technique, which does not significantly

alter algorithm behaviour, that can guarantee that the average-case behaviour

of an algorithm will be unaffected by how its input is distributed when the

algorithm’s behaviour is determined by its very input.

This response is demonstrated by 1), determining the average number of

swaps for MOQA’s insertion-sort on the input Dβmax
of size N when all the

possible labelings of Dβmax
are represented by L(Dβmax

, K) and then 2), com-

CHAPTER 5. DUPLICATE LABELS 177

paring this average to the average number of swaps for MOQA’s insertion-sort

on the input Dβmax
of size N when L(Dβmax

) represents all the possible label-

ings of Dβmax
; insertion-sort was chosen because it is one of the MOQA book’s

[63] few key application examples. First of all, this comparison between aver-

ages addresses the label collection issue raised by the first objection. Second

of all, the average number of swaps, not comparisons, for MOQA’s insertion-

sort is of interest because while its average number of comparisons may be

inherently linked to implementation detail, its average number of swaps is not.

Therefore, if this comparison between averages shows that the average number

of swaps for MOQA’s insertion-sort depends upon the label collections under

consideration, then it cannot be claimed that there is some implementation

where the average number of comparisons have no such dependence. Hence,

such evidence would overcome the second objection and show the fallacy of

the MOQA book’s [63] dismissal of distributions that involve duplicate labels.

Notation 95. Let Tβmax
denote a linear fixed po-structure of size n−1, n ≥ 2.

Notation 96. Let eβmax
denote a discrete fixed po-structure of size one.

In accomplishing the first aim, consider the MOQA product function that

products eβmax
below Tβmax

when these fixed po-structures are disjoint con-

nected components of the same isolated subset. Assume that Tβmax
is the result

of n − 2 MOQA product functions on an initially discrete fixed po-structure

of size n− 1. Prior to these n− 2 functions, let L(Dβmax
, K) represent all the

possible, and thus equally likely, labelings over the N nodes comprised from

these n − 1 discrete nodes, eβmax
and the N − n other discrete nodes in the

same isolated subset, 2 ≤ n ≤ N . After the n − 2 MOQA product functions,

whatever labels are on Tβmax
will be sorted in order according to the max-heap

label ordering but once the subsequent MOQA product function connects eβmax

below Tβmax
, then the labeling on the linear fixed po-structure that is now of

size n will have to be examined and possibly adjusted. The expressions that

immediately follow form Expression 5.9, which is the average number of swaps

that it takes for the MOQA product function to push the label of the newly

attached bottom node up to its correct position in this linear fixed po-structure

of size n, when the average is taken over every labeling in L(Dβmax
, K) after

the n − 2 MOQA product functions that formed Tβmax
have been applied to

each of these |K|N labelings. Note that the totals of Expressions 5.3 to 5.8

CHAPTER 5. DUPLICATE LABELS 178

are also over every labeling in L(Dβmax
, K) after the n − 2 MOQA product

functions that formed Tβmax
have been applied to each of these |K|N labelings.

Note also that 00 is taken to be 1 in this section.

Notation 97. Let i denote the label value of eβmax
.

Let j denote the total number of nodes in Tβmax
that have the largest label

in the set of labels on Tβmax
, 1 ≤ j ≤ n − 1; these j sequential nodes will

be located from Tβmax
’s top node downwards. Therefore, when n > 1 and

1 ≤ j < n− 1, the total number of swaps that occur for all possible values of

i when i is equal to the label values of the top j sequential nodes in Tβmax
is:

(n− 1− j).

|K|−1
∑

i=1

i(n−1−j).|K|N−n.

(
n− 1

j

)

. (5.3)

In other words, this expression is for the case when the label value of eβmax
is

equal to the label values of exactly j sequential nodes in Tβmax
, j ≥ 1 and these

j nodes are located from Tβmax
’s top node downwards though never reaching

far enough to include its bottom node — as there are no swaps when j = n−1

it is safe to ignore the number of swaps for this value of j. If j = 0 in the above

expression, then Expression 5.3 will also apply for another scenario. In this

scenario, when n > 1 and j = 0, Expression 5.3 is the total number of swaps

that occur for all possible values of i when i is greater than the label value of

Tβmax
’s top node. Summing these two scenarios together for all possible values

of j gives:

n−2∑

j=0

(n− 1− j).

|K|−1
∑

i=1

i(n−1−j).|K|N−n.

(
n− 1

j

)

. (5.4)

Next, let the node of rank r in Tβmax
denote Tβmax

’s rth node from the

bottom upwards, 1 ≤ r ≤ n − 1. So, the node of rank one in Tβmax
is Tβmax

’s

bottom node, the node of rank two in Tβmax
is Tβmax

’s second node from the

bottom up and so on, until the node of rank n−1 in Tβmax
is Tβmax

’s top node.

Let s denote the total number of nodes in Tβmax
whose label values are equal

to i, 0 ≤ s ≤ n− 1; these s nodes will be sequential in Tβmax
. Therefore, when

n > 3, 2 ≤ r ≤ n − 2 and 1 ≤ s ≤ n − 1 − r, the total number of swaps that

occur for all possible values of i when i is equal to the label values of s nodes

CHAPTER 5. DUPLICATE LABELS 179

of rank r to (r + s− 1) in Tβmax
is:

(r − 1).

|K|−2
∑

i=1

ir−1.(|K| − 1− i)(n−r−s).|K|N−n.

(
n− 1

r − 1 + s

)

.

(
r − 1 + s

r − 1

)

. (5.5)

In other words, this expression is for the case when the label value of eβmax

is equal to the label values of exactly s sequential nodes in Tβmax
, s ≥ 1 and

the ranks of these s nodes never encompass Tβmax
’s top or bottom nodes —

Expression 5.3 is for when i is equal to the label value of Tβmax
’s top node

and it has already been noted that there are no swaps when i is equal to the

label value of Tβmax
’s bottom node. Hence, for all possible values of r and s,

Expression 5.5 becomes:

n−3∑

r=1

r.

(n−2−r)
∑

s=1

(|K|−2)
∑

i=1

ir.(|K| − 1− i)(n−r−1−s).|K|N−n.

(
n− 1

r + s

)

.

(
r + s

r

)

. (5.6)

Finally, when n > 2 and 1 ≤ r ≤ n − 2, the total number of swaps that

occur for all possible values of i when i is greater than the label value of Tβmax
’s

node of rank r and less than the label value of Tβmax
’s node of rank r + 1 is:

r.

|K|−2
∑

i=1

ir.(|K| − 1− i)n−r−1.|K|N−n.

(
n− 1

r

)

. (5.7)

Hence, for all possible values of r, Expression 5.7 becomes:

n−2∑

r=1

r.

|K|−2
∑

i=1

ir.(|K| − 1− i)n−r−1.|K|N−n.

(
n− 1

r

)

. (5.8)

Therefore, dividing the sum of Expressions 5.4, 5.6 and 5.8 by |K|N gives

the average number of swaps that it takes for the MOQA product function to

push the label of the newly attached bottom node eβmax
, which was selected

from N − n + 1 discrete nodes, up to its correct position in Tβmax
, when the

average is taken over every labeling in L(Dβmax
, K) after the n − 2 MOQA

product functions that formed Tβmax
have been applied to each of these |K|N

labelings. By merging Expression 5.8 into Expression 5.6 and rearranging

CHAPTER 5. DUPLICATE LABELS 180

Expression 5.4, this division is:

((n−2∑

r=1

r.

(n−2−r)
∑

s=0

(|K|−2)
∑

i=1

ir.(|K| − i− 1)n−r−1−s.|K|N−n.

(
n− 1

r + s

)

.

(
r + s

r

))

+
n−1∑

j=1

j.

|K|−1
∑

i=1

ij.|K|N−n.

(
n− 1

j

))

/|K|N . (5.9)

Notation 98. Let AK, N, n denote the numerator of Expression 5.9.

Empirical evidence suggests that AK, N, n is equal to:

(n− 1).|K|N−2.
(|K| − 1).|K|

2
.

This equivalence3 has first been tested with a Python script for |K| = [1, . . . , 8],

for each value of |K|, N = [1, . . . , |K|3] and, for each value of N , n = [1, N];

this is a total of 224, 130 individual tests. It has then been tested for larger

values of |K|, e.g. for |K| = 33, N = 4324 and n = 4223.

As AK, N, 2 = |K|N−2. (|K|−1).|K|
2

, Expression 5.9 can be rewritten as:

(n− 1).AK, N, 2

|K|N
.

The solution to this section’s initial aim can now be provided. Insertion-

sort in MOQA-Java is the code of Figure 3.5. The average number of swaps

for its first MOQA product function, which products eβmax
below a Tβmax

of

size one, is:

1.AK, N, 2

|K|N
=

(
1

2
−

1

2.|K|

)

.

For 3 ≤ y ≤ n and n = N , the average number of swaps for each of its

subsequent MOQA product functions, which product eβmax
below the Tβmax

of

size y − 1, is:

(y − 1).AK, N, 2

|K|N
.

3This equivalence was initially identified during the manual examination of sample
datasets.

CHAPTER 5. DUPLICATE LABELS 181

So the average number of swaps for MOQA’s insertion-sort on the Dβmax
of

size N when L(Dβmax
, K) represents all the possible labelings of Dβmax

is the

average of the sum of the average number of swaps for these N − 1 MOQA

product functions, which is:

(
AK, N, 2

|K|N
+

N∑

y=3

(y − 1).AK, N, 2

|K|N

)

/(N − 1) =

(N−1∑

y=1

y.AK, N, 2

|K|N

)

/(N − 1) =

1

4
.N.

(

1−
1

|K|

)

. (5.10)

Now attention can be turned to the second of the two aims laid out at the

start of this section, which is the comparison of Expression 5.10 to the average

number of swaps for MOQA’s insertion-sort over all permutations of the one

unique label collection possible on the Dβmax
of size N when |K| = N . This

set of N ! permutations is of course the only set of possible labelings on Dβmax

that is addressed by the MOQA theory.

As K becomes larger and larger, the probability of selecting the same label

more than once from K approaches zero because the number of possible labels

greatly exceeds the number of labels to be selected/sorted [66]. So, for very

large values of |K|, 1
|K|

in Expression 5.10 becomes 1
∞

, which tends to zero.

Hence, Expression 5.11 is the average number of swaps for MOQA’s insertion-

sort on the Dβmax
of size N when L(Dβmax

) represents all the possible labelings

of Dβmax
.

1

4
.N (5.11)

So, though Expression 5.10 asymptotically equals Expression 5.11, their dif-

ference in constants refutes any argument that the exact number of average

swaps for MOQA’s insertion-sort over L(Dβmax
) and over L(Dβmax

, K) are the

same. This further supports this work’s rebuttal of the assertion by Schellekens

[63] that the MOQA approach, in addition to determining the average-case be-

haviour of a MOQA-satisfying program over one unique label collection, is also

able to determine a MOQA-satisfying program’s average-case behaviour over

distributions that involve duplicate labels.

CHAPTER 5. DUPLICATE LABELS 182

5.5 Duplicate Labels in Quicksort

The conclusions being drawn in this chapter regarding the MOQA book’s

[63] assessment of duplicate labels are finally evidenced by contrasting quick-

sort’s average-case behaviour over distinct labels to its average-case behaviour

over duplicate labels using the MOQA measure for evaluating average-case

behaviour, which is clearly defined to be the average number of label-to-label

comparisons. Quicksort was chosen because it, along with quickselect, is also

one of the MOQA book’s [63] few key application examples.

This contrast for an array-based implementation of quicksort has already

been detailed by Sedgewick [66]4. The average-case behaviour of quicksort

when all N ! labelings for a unique label collection on the Dβmax
of size N are

equally likely is:

2.(N + 1).

(

HN+1 −
4

3

)

,

where HN+1 denotes the (N + 1)th harmonic number, HN ≤ ln(N) + 1 for all

N ≥ 1.

Continuing with N ≥ 2, Sedgewick [66] then examines quicksort’s average-

case behaviour for two other distributions of input. The first is when all N !

labelings for a duplicate label collection on the Dβmax
of size N are equally

likely. For this situation, the average-case behaviour of quicksort for duplicate

label collection {x1 · 1, . . . , x|K| · |K|} is at least:

N − |K|+ 2.
∑

1≤h<j≤|K|

xh.xj

xh + . . . + xj

,

where xi is how often label i is duplicated, x1 + . . . + x|K| = N and j is the

pivot label. The upper bound given by Sedgewick [66] for the average-case

behaviour of quicksort in this situation is also not in closed-form because it

too has a dependence on the values of x1, . . . , x|K|. This upper bound is:

2.
∑

4≤h+3≤j≤|K|

xh.xj

1 + xh+1 + . . . + xj−1

+ I(x1, . . . , x|K|).

4Chapter 3 presents the MOQA-Java implementation and gives the extra overhead that
quicksort in MOQA-Java carries in comparison to an array-based implementation. Hence,
Sedgewick [66] considers a version of quicksort that is more efficient than MOQA-Java’s.

CHAPTER 5. DUPLICATE LABELS 183

The I(x1, . . . , x|K|) of this equation is defined as:

I(x1, . . . , x|K|) =
∑

1≤h≤|K|−2

C(xk, xk+1, xk+2)−
∑

1≤h≤|K|−3

C(xk+1, xk+2),

where C(x1, . . . , x|K|) is the maximum number of comparisons needed on av-

erage to sort a permutation of the multiset {x1 · 1, . . . , x|K| · |K|}.

The next distribution of input examined by Sedgewick [66] is when all |K|N

labelings in L(Dβmax
, K) are equally likely to be on the Dβmax

of size N . For

this situation, the average-case behaviour of quicksort is at least:

2.N.

(

1 +
1

|K|

)

.H|K| − 3.(N + |K|)

or, for large values of |K|, at least:

2.(N + 1).HN − 4.N + 2.

(
N

|K|

)

.(HN − 1) + O

(
N3

|K|2

)

.

The upper bound for the average-case behaviour of quicksort in this situation

is:

2.N.

(

1−
1

|K|

)

.H|K| − 3.N + 2.
N

|K|
− 9.

(
N

|K|

)2

− 7.
N

|K|2

or, for large values of |K|, is:

2.N.(HN + 1)− 2 + O

(
N2

|K|

)

.

So clearly duplicate labels effect the average-case behaviour of quicksort

and, more specifically, the very model describing how repeated input is dis-

tributed will influence average-case behaviour. (Note that the quicksort deriva-

tives in Wegner’s research [77], which are over the N ! labelings for a duplicate

label collection, aim for the above lower bounds established by Sedgewick [66];

a goal in which some are successful.) Hence, there can be no further doubt

about the inaccuracy of Schellekens’s statement [63] that no serious amend-

ments to the current MOQA theory are required for it to correctly obtain the

average-case behaviour of a MOQA-satisfying program when duplicate labels

are involved. As the MOQA formulas for the average-case cost of its functions

CHAPTER 5. DUPLICATE LABELS 184

have been crafted on the assumption that all canonically-ordered labelings of

the specified isolated subset have equal likelihood of occurring, these formulas

cannot subsume, and hence generate the correct answer for, any other distri-

bution of labelings. Therefore, new formulas are required if MOQA is to ever

precisely calculate the average-case cost of its functions for any other distribu-

tion of labelings on the specified isolated subset. Like their predecessors, i.e.

those given in the MOQA book [63] and Chapter 4, these new formulas would

have to be created by hand.

5.6 Chapter Summary

The MOQA theory was designed with distinct labels in mind so this chapter

reasoned whether the current theory can also encompass duplicate labels. In

comparison to the unique label distribution, it was shown that extra work,

and accordingly cost, is generated on average by the MOQA product function

for some of the distributions involving duplicate labels that are considered in

this chapter; the focus was on the MOQA product function because it is the

core MOQA function. So the MOQA book’s [63] ungrounded assertion that

its theory can correctly determine the average-case cost of each MOQA func-

tion for any distribution of input was plainly exposed to be erroneous. This

enhancement was also supported by other quicksort-related research, which

demonstrated how average cost fluctuates according to the distribution of la-

belings. The final point made in this chapter was that the creation of new

formulas for the average-case cost of MOQA functions over a specific distri-

bution involving duplicate labels would allow the MOQA static analysis tool

to provide timing information for that distribution. Justifying which distribu-

tions to develop these new formulas for, along with their actual development,

is left to future work.

Chapter 6

Literature Review

This chapter examines research in the field of automated average-case analysis

and compares it to the MOQA principles. Such a detailed study highlights

some of the contributions made by the MOQA theory. It also identifies areas

in which the MOQA theory is comparatively weaker and thereby opens up

these areas for improvement in the future.

This literature review is not limited to systems that only consider the

average-case behaviour of a program. Tools that address other behaviours,

such as best-case and worst-case, are also discussed here for the purpose of

providing a more complete view of the range of techniques that can be em-

ployed when it comes to evaluating program complexity.

Concepts related to those found in MOQA’s body of work are also explored

in this chapter. As a thorough contextualisation of MOQA has not yet been

carried out, it is hoped that this chapter may be the beginning of a valuable

research contribution. It is recommended that prior to reading this chapter

the reader has fully acquainted themselves with the MOQA theory in Chapter

2.

6.1 PL and EL

Cohen and Zuckerman [11] present one of the first works to attempt the auto-

matic estimation of an algorithm’s behaviour. To do so, Cohen and Zuckerman

[11] proposed two languages and developed their processors.

The first of these languages is the programming language PL (Programming

Language). PL is Algol 60 [55] with restrictions, a principle one being the

185

CHAPTER 6. LITERATURE REVIEW 186

prohibition of recursive algorithms. The PL processor takes a PL program

as input and then outputs that program’s time-formula, which is a symbolic

formula for the time it takes to execute the input program. The PL processor

translates the input program into a time-formula through the syntactic rules

that it has at its disposal. The most important of these syntactic rules are

listed by Cohen and Zuckerman [11]. One of them is as follows:

if b then s→ (+ @IFOH b (#IFn s))

So there are #IFn, #SIGMA and #WHILEn operators involved in the PL

processor’s translation of if, for and while statements, respectively; the number

n being the order in which the statement appears in the PL program. Opera-

tors such as PROCDEC and PROCCALL are used when the PL processor

translates procedure declarations and calls. This syntax-directed translation

of the input program also replaces operations such as ∗, −, assignment and

variable declaration by their time-variables; hence, ∗ would be replaced by

@MULTI, − by @SUBI, assignment by @ASSIGN and variable declaration

by @TY PED. A time-variable denotes operation cost and can be replaced by

an actual cost later on. So @IFOH in the above syntactic rule example is the

time-variable for the overhead of an if statement. All of the PL processor’s

operators and time-variables are listed by Cohen and Zuckerman [11].

The next language is EL (Evaluation Language), which is an interactive

language of commands. These commands are inputted to, and then executed

by, the EL processor. The EL commands enable a user to provide additional

information about the time-formula produced by the PL processor. In other

words, they enable a user to assist in solving the execution time of the PL

input program. Two of these EL commands are:

retrieve <file> : retrieves the time-formula file <file> outputted by the PL

processor.

bind <variable> <number> <arithmetic expression> : replaces each

occurrence of variable <variable> in block number <number> with

arithmetic expression <arithmetic expression>.

One application of the EL bind command is to replace a time-variable by a con-

stant based on the specific compiler-machine architecture on which the input

CHAPTER 6. LITERATURE REVIEW 187

PL program is to be executed. In total, there are twenty-two EL commands.

Other EL commands allow the user to specify the probability of a conditional

expression, the number of times a while statement is executed, and the type of

execution behaviour that the time-formula is to be evaluated for, which can be

actual, best-case or worst-case execution time1. Another set of EL commands

plot actual/best-case/worst-case execution time graphs for the time-formula

that the EL processor currently has to hand when there is only one variable

in that time-formula. (A user can replace a time-formula’s variables with

constants via the appropriate EL commands and, when necessary, it is this

mechanism that will reduce the number of variables in a time-formula to one.)

So when the type of execution behaviour and a set of possible values for that

remaining variable is user-specified, the EL processor will determine and then

plot the time-formula’s actual/best-case/worst-case execution time for each

of these possible values. Note that this useful visual aid could be an inter-

esting extension to a future MOQA static analysis tool. The most complex

of the EL commands is the eval command, which attempts to further resolve

the time-formula through the symbolic simplification techniques then available

[18], [78].

The main distinction that is obvious between this research [11] and MOQA

is the algorithmic behaviours that they examine. Cohen and Zuckerman [11]

address three algorithmic behaviours, which are an algorithm’s actual, best-

case and worst-case execution time, and it appears that their estimation of

these behaviours is fairly accurate based on the examples provided. MOQA

addresses one algorithmic behaviour, which is the average number of label-to-

label comparisons that take place within an algorithm’s data structures. Yet,

despite this important difference, the two works still have much in common.

PL is comparable to MOQA-Java in that it is the language in which pro-

grams to be statically analysed are written. Both PL and MOQA-Java drop

some features from their parent languages, which are Algol 60 and Java, re-

spectively, so that each language then matches the interpretive abilities of the

tool that statically analyses programs written in it.

Like the PL processor, the current MOQA static analysis tool, Distri-Track,

1Heeded by Cohen and Zuckerman [11] is the fact, as is heeded by Schellekens [63],
that neither best-case nor worst-case behaviour is IO-compositional and they state that
this is something that an EL user will have to bear in mind when supplying time-formula
information.

CHAPTER 6. LITERATURE REVIEW 188

will parse its input program to provide a formula for the behaviour of that pro-

gram. Interestingly, the formulas produced by Distri-Track [35] are similar in

structure to those produced by the PL processor. However, the complexity of

the techniques used by Hickey [35] in acquiring these formulas supersedes the

complexity of those used by Cohen and Zuckerman [11]. Distri-Track needs

to be more sophisticated than the PL processor because 1), of the type of

behaviour it tracks, 2), it tracks data structure state, something never consid-

ered by Cohen and Zuckerman [11], and 3), the MOQA book [63] allows for

recursive algorithms so Distri-Track must be able to tackle such algorithms,

whereas the PL processor will never encounter recursive algorithms due to

their exclusion from PL.

Chapter 4 details each data structure type that can have the average-case

cost of a MOQA function that is applied to it determined by a MOQA static

analysis tool; some of these types are new additions by this work. A MOQA

static analysis tool should be initialised with the average-case equations for

each of these data structure types and therefore, the average-case cost of a

MOQA function applied to any one of these data structure types can be stat-

ically determined without any outside help. However, if Distri-Track is to de-

termine the average-case behaviour of the entire MOQA-Java algorithm, then

there are other tasks that it may need external assistance with. In fact, the

MOQA book states that “in general, some user input is required to guide the

analysis” [63]. Inductive po-classes for which Distri-Track cannot determine

the average-case cost of MOQA functions is one area where external assistance

is required. So a Distri-Track user can specify the average-case formula for a

function applied to such an inductive po-class. Another area where external

assistance is required is establishing that an algorithm’s integer parameter is

actually the size of the data structure to which one of the algorithm’s MOQA

functions is applied. This identification will result in that variable being part

of the static average-case calculations, as it should be. For example, the merge-

sort algorithm in Figure 6.1 has the integer parameter noOfNodes. This vari-

able is actually the size of the data structure to which mergesort’s MOQA

product function is applied. Therefore, it should be part of Distri-Track ’s re-

currence relation for mergesort but this knowledge would have to be supplied

by a Distri-Track user. Furthermore, for any conditional expression other than

a first-order or second-order conditional expression, Distri-Track will definitely

CHAPTER 6. LITERATURE REVIEW 189

/∗∗
∗ Mergesorts the s p e c i f i e d OrderedCo l l ec t ion .
∗ @param oc a d i s c r e t e OrderedCo l l ec t ion o f s i z e g r ea t e r than
∗ zero .
∗/

public stat ic <L extends Comparable<L>> Col l e c t i onCons t ruc t
mergesort (OrderedCol lect ion<L> oc , int noOfNodes ,
I t e r a t o r <NodeInfo<L>> ocNodeInfos){
i f (noOfNodes == 1){

return ocNodeInfos . next () ;
}
int mid = noOfNodes /2 ;

return oc . product (mergesort (oc , mid , ocNodeInfos) ,
mergesort (oc , noOfNodes − mid , ocNodeInfos)) ;

}

Figure 6.1: Mergesort in MOQA-Java

require a user-specified probability if it is not to remain unknown.

So Distri-Track does not provide an interactive language like EL but it too

allows for users to interact with it through Java annotations in the MOQA-Java

code. A full list of the areas in which Distri-Track allows for user assistance,

and the syntax of their Java annotations, is available [63]. Hence, Distri-Track

is akin to EL and the PL and EL processor because Java annotations/EL com-

mands can supplement the behavioural deductions made by Distri-Track/the

PL and EL processor. Of course, any MOQA static analysis tool with this

feature has the same limitation as the EL processor, which is “the quality of

the results obtained by the EL user in manipulating time-formulas is directly

proportional to his competence” [11].

In summary, both Cohen and Zuckerman [11] and Schellekens [63] follow

related paths in their consideration of how to statically determine algorithmic

behaviour though, as Cohen and Zuckerman [11] acknowledge, average-case

behaviour requires far more ingenuity. So, overall, there is little question that

MOQA is the more accomplished work of the two. However, one of the works

that followed PL and EL attempted to move beyond reliance on user interaction

and also included average-case behaviour in its automatic estimation of an

algorithm’s behaviour. Hence, PL and EL can be seen as a precursor of this

system, which is called Metric and which is reviewed in the next section.

CHAPTER 6. LITERATURE REVIEW 190

6.2 Metric

Definition 62 (Repetitive algorithm). A repetitive algorithm relies on recur-

sion and/or on at least one unbounded iterative statement.

Definition 63 (Non-repetitive algorithm). A non-repetitive algorithm relies

only on straight-line code and/or on bounded iterative statements, i.e. it is an

algorithm that is not repetitive.

Metric [76] is a system that statically analyses Lisp programs and derives,

by means of recurrence relations where necessary, closed-form expressions for

their behaviour. Closed-form expressions are derived for the best-case, worst-

case and average-case behaviour of repetitive and non-repetitive algorithms.

For both these algorithm types, closed-form expressions are also derived for the

variance of average-case behaviour. In comparison, the MOQA book [63] only

derives closed-form expressions for the average-case behaviour of non-repetitive

algorithms. When considering the average-case behaviour of non-repetitive

algorithms, MOQA never goes further than recurrence relations.

Of the differences between Metric and MOQA, the one that has the greatest

impact is the measure(s) (or metric(s)) that they use to calculate algorithmic

behaviour. MOQA always uses the average number of comparisons that take

place within an algorithm’s data structures to calculate algorithmic behaviour.

Therefore, the measure tracked by MOQA is an internal data structure char-

acteristic.

Definition 64 (Internal data structure characteristic). An internal data struc-

ture characteristic is a data structure property that depends on the actual values

stored within the data structure.

Definition 65 (External data structure characteristic). An external data stru-

cture characteristic is a data structure property that is independent of the actual

values stored within the data structure.

Metric on the other hand is designed for a choice of measures, one of which

is selected by the user for the algorithm that they wish to analyse. (There is

obviously no such option for users of the MOQA static analysis tool because it

is designed for one and only one measure.) Metric’s analysis of the algorithm

may involve measures that are in no way associated with the algorithm’s data

CHAPTER 6. LITERATURE REVIEW 191

structures but that all depends on the choice of user-specified measure. How-

ever, any Metric measure that is associated with an algorithm’s data structure

is an external data structure characteristic. Size is an example of an external

list characteristic and is one of the Metric measures. At times, Metric may

find it appropriate to analyse a portion of the algorithm for a measure other

than the one specified. This is commonplace when the user-specified measure

is time as the timing of many algorithms will be linked to their data structures’

external characteristics, external characteristics such as list size.

Hence, the fact that the MOQA measure relies on the comparisons that

take place within a data structure, i.e. relies on an internal data structure

characteristic, means that its system deals with labeled data structures. Con-

versely, Metric will only ever deal with unlabeled data structures because the

only data structure characteristics that it takes into account are external.

Metric data types are limited to lists, whereas MOQA data types are lim-

ited to series-parallel data structures. Structural equations are used by Weg-

breit [76] to define each measure that Metric can track for a list. For example,

the structural equations for the size of list L are:

size(L) = if null(L) then 0

else 1 + size(car(L)) + size(cdr(L))

In addition to these structural equations, Metric stores the time costs for a sub-

set of Lisp’s primitive functions; this subset includes the functions car, cdr and

cons. Metric also stores the time costs of language overhead activities, such

as function calls and references to variables and constants. These time costs

can be either symbolic or explicit costs. In a similar vein, the MOQA static

analysis tool stores the average-case costs for MOQA’s “primitive” functions,

which are the MOQA functions in Sections 2.2 and 3.3. These average-case

costs can also be described as structural equations because they too are gen-

erally defined in terms of how the data is structured. Both Metric and the

MOQA static analysis tool have their respective structural equations supplied

to them, with Metric also having the time costs for the Lisp functions and

language overheads supplied to it.

A simple example illustrates how the choice of measure can impact static

analysis. The purpose of this example is twofold: to show how the measure

CHAPTER 6. LITERATURE REVIEW 192

selected can influence the static analysis process and to emphasise how the

selection of two different measures can result in two different average-case

costs for the same algorithm. So, due to tracking different measures, two

static analysis systems can produce two distinct results that are respectively

correct when determining the average-case behaviour of the same algorithm.

As such a disparity is shared by Metric and MOQA, it is useful to demonstrate

it here while comparing and evaluating these two systems.

Consider the very common concept of adding an item to the start of a list.

Let L denote a list and let n denote the size of L. What is the most basic

algorithm that Metric can analyse which performs this task? In Lisp, the

function cons adds an item to the start of a list. So Metric would analyse the

one-line algorithm that, by means of cons, adds the algorithm’s first parameter

to the start of L, which is the algorithm’s second parameter. Metric would

find the behaviour of this algorithm to be fixed; the behaviour of an algorithm

is fixed when the algorithm’s best-case and worst-case behaviour, and hence

the algorithm’s average-case behaviour and its variance, are the same. So, if

the user-specified Metric measure is time, then the fixed cost of this algorithm

is the time to execute one cons. If the user-specified Metric measure is, say,

list size, then the fixed cost is n + 1. Now consider the MOQA version of

this algorithm. Its single parameter will be L and the cons function will

be replaced by the MOQA product function. (The MOQA version of this

algorithm can keep the second parameter, which is the item to be added to L,

when the new MOQA insert function in Section 3.3 is the replacement MOQA

function.) However, in addition to adding a new item to the start of L, the

MOQA product function may also have to reorganise the labeling now on L.

(Recall that this reorganisation is required when, due to the label of the newly

added node, the labeling now on L is no longer in accord with the max-heap

label ordering.) So the MOQA static analysis tool considers the average-case

behaviour of this algorithm to be the average number of comparisons that it

takes to push the new label into its correct position in L. The MOQA static

analysis tool will use the following average-case formula for the MOQA product

CHAPTER 6. LITERATURE REVIEW 193

function to deduce this average.

T prod(•βmax
||Lβmax

) =
| •βmax

|.|Lβmax
|

| •βmax
|+ |Lβmax

|
.(τdown(Lβmax

) + τup(•βmax
)) +

(
| •βmax

|.|Lβmax
|

| •βmax
|+ |Lβmax

|
+ 1).(|M(Lβmax

)|+

|m(•βmax
)| − 1)

=
1.n

1 + n
.(τdown(Lβmax

) + 0) + (
1.n

1 + n
+ 1).(1 + 1− 1)

=
n

1 + n
.(τdown(•βmax

,⊗, n)) +
n

1 + n
+ 1

=
n

1 + n
.
n− 1

2
+

n

1 + n
+ 1

=
n + 2

2

The equations that produce (n−1)/2 for the above τdown(•βmax
,⊗, n) come from

Equation 4.7 and the equations that it references when every up that occurs in

them is replaced by down. So this simple example clearly demonstrates that

the measure tracked by a static analysis tool has a significant impact on the

result.

Metric performs up to three steps to produce a closed-form expression for

algorithmic behaviour. In the first step, another algorithm is derived from

the original. This algorithm computes the complexity of the original for the

measure under consideration. A complexity reference in the transformed al-

gorithm is replaced by a closed-form expression when 1), it is a measure of an

algorithm other than the current algorithm or 2), it is a measure of the current

algorithm but the measure differs from the one currently under consideration.

These closed-form expressions are obtained by Metric recursively calling itself

for the algorithm and measure in question. The logic behind implementing

this step is quite detailed as examples demonstrate, see [76]. However, from

this brief description, it is clear that Metric can never obtain closed-form ex-

pressions for mutually recursive algorithms. If the transformed algorithm has

a complexity reference to itself for the measure under consideration after all

possible closed-form substitutions have taken place, then and only then does

Metric move onto the second step, which is recursion analysis. Commencing

with the result from the first step, some of the main features of the second

step include:

CHAPTER 6. LITERATURE REVIEW 194

• determining which variables are irrelevant to the measure under consid-

eration or are constant and therefore can be ignored,

• determining how the recursion variables change from one call to the next

call,

• mapping the recursion variables that are lists onto integers by replacing

the lists with some suitable abstraction, such as their size.

By the end of the second step Metric has a difference equation to describe the

original algorithm; a difference equation being a specific type of recurrence

relation. The third and final step that Metric undertakes is solving the differ-

ence equation for the four asymptotic behaviours. When it is determined by

Metric that the best-case and worst-case behaviour differ, then the average-

case behaviour and its variance are solved with generating functions. Metric

even goes as far as manipulating and simplifying each closed-form expression

to emphasise its dependence on the algorithm’s parameter(s).

So both Metric, during its first step, and the MOQA static analysis tool

get the performance of a non-repetitive algorithm through the composition of

the algorithm’s local costs. How recurrence relations for repetitive algorithms

written in MOQA-Java are obtained by Distri-Track is described in Hickey’s

work [35]. While the techniques used by Distri-Track in determining these

recurrence relations differ from those used by Metric, Distri-Track needs to

deduce much of the knowledge that Metric does during its second step, in

particular all of the above itemised points. However, some of this knowledge

still has to be user-specified to Distri-Track, knowledge such as the first two

itemised points above. (The data type of a MOQA recursion variable is not

limited to lists, whereas in Metric it is, because of Lisp. Nonetheless, the

current MOQA static analysis tool has only constructed recurrence relations

for recursive algorithms whose recursion variables are discrete partial orders.

So while it may be possible for a MOQA static analysis tool to correctly

construct recurrence relations for recursive algorithms with other recursion

variable types, this has yet to be demonstrated in practice. Therefore, it

is still too early to categorically state that MOQA recursion variable range is

broader than Metric recursion variable range.) A comparison between Metric’s

third step and the MOQA static analysis tool is not possible because the latter

CHAPTER 6. LITERATURE REVIEW 195

halts once a recurrence relation for the algorithm’s average-case behaviour is

obtained.

It is worthwhile to underscore the difference between the recurrence rela-

tions produced by the two static analysis tools. The measure tracked by the

MOQA static analysis tool during algorithm analysis is actually more than

a data structure property. It is a particular behaviour of that data structure

property, i.e. the average number of comparisons. This means that Distri-

Track ’s recurrence relations already reflect the average-case behaviour. The

measures tracked by Metric during algorithm analysis are data structure prop-

erties. Metric needs to further analyse its recurrence relations if it is to produce

a closed-form expression for each of the four asymptotic behaviours that it

considers. Though this approach is more work-intensive than MOQA’s, whose

recurrence relations are already in the correct format, the benefit is a wider

range of results. It is noted by Wegbreit [76], and by Schellekens [63], that

obtaining the best-case or worst-case behaviour of an algorithm through the

composition of local best-case or worst-case behaviours does not necessarily

lead to the correct overall answer. For example, the worst-case behaviour of

an algorithm derived in this manner would be incorrect if two algorithms that

it relies upon have worst-case behaviours that can never occur during the same

run-time. Rephrasing this in the MOQA book [63] terminology, best-case and

worst-case behaviour is not guaranteed to be IO-compositional.

In conclusion, Metric [76] and MOQA [63] have a meaningful amount of

overlap. They can both determine the average-case behaviour of certain al-

gorithms with the measure(s) that they track and they both use recurrence

relations when the algorithm is repetitive. However, Metric only considers

unlabeled data structures and MOQA only considers labeled data structures.

More specifically, Metric and MOQA track different algorithmic measures with

Metric tracking external data structure characteristics, see Definition 65, and

MOQA tracking an internal data structure characteristic, see Definition 64.

In general, the difference between Metric’s measures and MOQA’s measure

means that these static analysis tools will never both give the same average-

case behaviour for the same algorithm. Hence, in general, each will provide an

average-case solution that is accurate for its own measure/context but not for

the other’s; this is illustrated on page 192. Based on the examples presented

by Wegbreit [76], this divergence between the two tools results in Metric being

CHAPTER 6. LITERATURE REVIEW 196

capable of analysing more recursive algorithms than the current MOQA static

analysis tool. This is mainly due to the measure that MOQA tracks and, as a

consequence, the other restrictions that MOQA places on the algorithms that

it analyses, one of the main ones being that every function in an algorithm is

MOQA random structure preserving.

6.3 ACE

The system ACE (Automatic Complexity Evaluator) is the work of Le Métayer

[51]. ACE statically evaluates the worst-case behaviour of programs written

in the FP language [3]. Hence, an obvious and major difference between ACE

and MOQA is ACE’s consideration of worst-case, rather than average-case,

behaviour. However, ACE is still of interest due to its method for statically

determining worst-case behaviour, a method that relies on FP’s powerful al-

gebra of programs.

“This algebra can be used to transform programs and to solve equa-

tions whose “unknowns” are programs in much the same way one

transforms equations in high school algebra. These transformations

are given by algebraic laws and are carried out in the same language

in which programs are written [emphasis added]. Combining forms

are chosen not only for their programming power but also for the

power of their associated algebraic laws. General theorems of the

algebra give the detailed behaviour and termination conditions for

large classes of programs” [3].

The fact that the FP language is such a mathematical model enables ACE

to use FP axioms and recursive definitions to convert the input FP function

into a non-recursive FP function that evaluates to the input function’s worst-

case behaviour. So, to complete its task, ACE relies fully on FP. This is

clearly very different to MOQA, which provides mathematical formulas for the

average-case cost of its functions but has to rely on standard static analysis

techniques when analysing program construction; see [35] for details beyond

those given in this work. Hence, it is worthwhile to consider the ACE system

and what it accomplishes.

CHAPTER 6. LITERATURE REVIEW 197

The ACE system can be divided into two parts. The first part derives a FP

recursive function Cf from the input FP recursive function f ; Cf evaluates to

the worst-case complexity of f . This derivation is achieved by applying ACE’s

syntax-directed worst-case rules for a particular type of complexity to f , with

the possible complexity types being time, length and size2. For example, one

of the syntax-directed worst-case rules for time-complexity is:

T (E1→ E2; E3) = E1→ +o[T (E1), T (E2)]; +o[T (E1), T (E3)],

where

(E1→ E2; E3) : x =







E2 : x if E1 : x = T

E3 : x if E1 : x = F

⊥ otherwise

,

(f1of2) : x = f1 : (f2 : x) and [f1, . . . , fn] : x = 〈f1 : x, . . . , fn : x〉.

The second part attempts to transform Cf into a non-recursive FP func-

tion. (Fait accompli if Cf is already a non-recursive function due to f being

a non-recursive function.) The following sequence of steps describe the ACE

system in its entirety, with steps 3 to 6 detailing this transformation process.

1. The function Cf is derived from the function f .

2. The user-defined functions in Cf are identified and ACE is recursively

called for each one, i.e. ACE proceeds to Step 1 for each one. After

which, ACE proceeds to Step 3.

3. Application of the recursion induction principle: the McCarthy recursion

induction principle3 is the theory behind this key transformation step,

which tries to match Cf to one of the patterns in ACE’s library of

FP recursive definitions. If a match is found, then the equivalent non-

recursive FP function for that pattern is used to transform Cf into a

non-recursive FP function, whereupon ACE has successfully completed

its analysis. If no match is found, then ACE proceeds to Step 4.

2length〈x1, . . . , xn〉 = n and size〈x1, . . . , xn〉 = /+ : 〈size : x1, . . . , size : xn〉, with
length : ∅ = size : ∅ = 0.

3“The McCarthy recursion induction principle can be stated as follows [50]: ‘two functions
which verify the same recursive equation are equivalent over the domain of the function
defined by this equation’ ”[51].

CHAPTER 6. LITERATURE REVIEW 198

4. Factorisation: ACE attempts to put Cf in the form C om, where m

denotes a measure. If the current complexity is either length or size,

then m represents that complexity. Otherwise, m represents a part of

the argument modified in the recursive call. ACE next verifies whether

the value selected for m is actually correct and if it is, then ACE proceeds

to Step 2; the verification technique is outlined by Le Métayer [51], along

with its proof of correctness. If none of the values that can be selected

for m turn out to be correct, then ACE proceeds to Step 5.

5. Splitting: when Cf is of the form:

Cf = P1→ E1; P2→ E2; . . . Pn→ En; E ′(Cf),

ACE splits it into n equations:

Cf1 = P1→ E1; E ′(Cf1)
...

Cfn = Pn→ En; E ′(Cfn).

ACE is then recursively called for each of these n equations. If Cf1 =

. . . = Cfn, then Cf = Cfi and ACE proceeds to Step 2; the proof of

correctness for this technique is outlined by Le Métayer [51]. Otherwise,

ACE proceeds to Step 6.

6. Substitution: ACE tries to prove that H = E(H) when Cf is of the

form:

Cf = p→ H; E(Cf).

The proof of correctness for this step is outlined by Le Métayer [51]. If

this step succeeds, then Cf = H and ACE has successfully completed

its analysis. Otherwise, ACE has failed.

Each of the above steps will also use FP axioms to further simplify Cf .

So ACE clearly takes advantage of the mathematical properties associated

with FP. (Note that these mathematical properties could be similarly applied

to any other purely functional language, though the transformation process

CHAPTER 6. LITERATURE REVIEW 199

would not be as smooth.) The wide variety of programs for which ACE can

calculate worst-case behaviour include sorting programs, such as quicksort,

insertion-sort and selection-sort, numerical programs, graph programs, search

programs and a parser. Adding more FP axioms and recursive definitions to

the ACE library would further increase its capabilities.

In comparison, MOQA is one level of abstraction above ACE because it is

centred on the mathematical properties of its functions as opposed to being

centred on the mathematical properties of the language in which these func-

tions are defined. So the MOQA theory does not depend on the language

in which MOQA programs are written; at most, the theory prohibits certain

language features, such as while statements. While there may be some advan-

tages to this independence — it would be reasonable to highlight such uni-

versality as an advantage, tethering the MOQA theory to a purely functional

language would expose it to the powerful algebra that is an inherent attribute

of languages in this class. Hence, future work should seriously consider this

previously ignored path.

Le Métayer’s research [51] also takes a step back and nicely breaks the

general problem of automatically obtaining a recursive algorithm’s asymptotic

behaviour into two sub-problems. The first sub-problem is establishing the

structural property that the algorithm’s asymptotic behaviour depends upon

and the second sub-problem is expressing this behaviour as a non-recursive

equation. When working towards worst-case time, ACE’s manipulation of f

may involve the structural properties length and/or size and their involve-

ment is determined by f ’s construction. By contrast, for average-case time,

the MOQA book [63] addresses the first sub-problem by decreeing that the

structural property is always the average number of label-to-label comparisons

that take place within the algorithm’s data structures. For the second sub-

problem, the steps above show how ACE produces a non-recursive equation

but this sub-problem falls outside of MOQA’s purview. Once the MOQA static

analysis tool determines a recursive algorithm’s recurrence relation, it is then

deemed the responsibility of some other tool, e.g. Mathematica [49], to further

transform that recurrence relation. So, contemplating Le Métayer’s analysis

of the general problem domain leads to the conclusion that MOQA handles

the first sub-problem by fixing the structural property and ignores the second

sub-problem, which is a non-trivial problem, as Le Métayer states [51]. It is

CHAPTER 6. LITERATURE REVIEW 200

a serious handicap for any static analysis tool in this domain, regardless of

the specific asymptotic behaviour(s) it examines, to evade such an important

part of its job. Hence, Le Métayer’s reasoning supports the contention that a

significant limitation of MOQA is that it halts too early on.

In comparing itself to Metric, which was the only other related system

available at that time and is discussed in Section 6.2, Le Métayer’s research

[51] recognises that ACE has fewer hurdles to overcome because it can over-

look certain issues that systems statically considering average-case behaviour

cannot. For example, the probability of a conditional expression is acknowl-

edged by Le Métayer as irrelevant when contemplating worst-case behaviour,

yet it is a “tricky question” [51] whose answer is essential when establishing

average-case behaviour. (Hence, the efforts of the MOQA book [63] to provide

probabilities for a narrow range of conditional expressions.) So, in general,

the worst-case behaviour of a program is easier to statically deduce than its

average-case behaviour. Accordingly, it is very important to never lose sight of

this fact when comparing any worst-case static analysis tool, such as ACE, to

any average-case static analysis tool, such as MOQA. In other words, worst-

case static analysis tools take less effort and can accomplish more.

6.4 COMPLEXA

COMPLEXA [81, 82] is an extension of Metric [76], which is reviewed in Sec-

tion 6.2. Like Metric, COMPLEXA considers the best-case, worst-case and

average-case behaviour of algorithms. It introduces data types other than

lists which extends Metric to typed algorithms, other data types such as bi-

nary search trees. Each new data type is represented by a set of constructor

terms. This set corresponds to the structural definition of an inductive po-

class; see Section 4.4.2. In harmony with Metric, each external data structure

characteristic that COMPLEXA tracks for a new data type is also defined

by structural equations. Including data types other than lists leads COM-

PLEXA to generalise certain operations within Metric’s three step process for

producing a closed-form expression for an algorithm’s behaviour. For example,

COMPLEXA generalises the mapping of recursion variables onto integers to

include the mapping of recursion variables that are not lists onto integers.

Qualified difference equations is one specific Metric area that greatly ben-

CHAPTER 6. LITERATURE REVIEW 201

efits from the COMPLEXA extension. Here is a qualified difference equation

example produced by Metric’s second step, where a0, a1 and a2 are constant

values.

F (0) = a0

F (n + 1) =

{

a1 if x = car(y)

a2 + F (n) otherwise

As Metric does not know the probability of x = car(y) for this qualified dif-

ference equation, it represents the unknown probability with a variable. How

Metric solves this and other such difference equations for the various asymp-

totic behaviours is then detailed by Wegbreit [76]. COMPLEXA has a different

approach to qualified difference equations. While COMPLEXA does not have

any additional ability over Metric’s to determine the probability of conditional

expressions evaluating to true, Zimmermann [82] demonstrates that it is pos-

sible to extract non-qualified information regarding two qualified difference

equations when they have the same conditional expression. This new COM-

PLEXA feature means that the asymptotic behaviours that it produces will

have fewer variables than those produced by Metric for certain algorithms.

Hence, COMPLEXA will be more precise in its timing information for these

algorithms.

If COMPLEXA is to determine non-qualified information regarding two

qualified difference equations, then they must have the following structures,

where cond is some conditional expression.

a0 = c0

an+1 =

{

p1(n + 1) + c1(n)an if cond

p2(n + 1) + c1(n)an otherwise

b0 = d0

bn+1 =

{

q1(n + 1) + d1(n)bn if cond

q2(n + 1) + d1(n)bn otherwise

If, in addition to the above equation structures,

CHAPTER 6. LITERATURE REVIEW 202

d1(n)(p1(n + 1)− p2(n + 1))(q2(n)− q1(n)) =

c1(n)(q2(n + 1)− q1(n + 1))(p1(n)− p2(n)),

then COMPLEXA can perform a dependency analysis between an+1 and bn+1

that is independent of cond.

How is this new COMPLEXA feature integrated into Metric’s system?

As COMPLEXA examines dependency between recurrence relations, it needs

to gather together the recurrence relations that form the composition of the

algorithm it is analysing. However, recall that Metric’s first step substitutes a

closed-form expression for each complexity reference that is both a measure of

an algorithm and meets the specifications outlined in Section 6.2. So Metric

gathers together the closed-form expressions that form the composition of the

algorithm it is analysing. Therefore, Metric’s first step is modified in this

regard as follows. In COMPLEXA, each complexity reference that is both a

measure of an algorithm and meets the specifications outlined in Section 6.2 is

replaced by its unsolved difference equation instead. This adjustment gathers

together all the recurrence relations from which the algorithm being analysed is

composed. If any two recurrence relations summed together in this composition

meet the above requirements for COMPLEXA’s dependency analysis, then

COMPLEXA will calculate a replacement recurrence relation that represents

their sum. Importantly, this new replacement recurrence relation will not be

qualified, unlike the recurrence relations of which it is the sum. COMPLEXA

will then solve the recurrence relations that now form the composition of the

algorithm it is analysing.

The new COMPLEXA feature may be of further assistance when it is

analysing a recursive algorithm with one or more parameters. Specifically,

it will be of assistance when 1), two or more distinct code segments4 deter-

mine the recursive algorithm’s argument(s) and 2), the difference equations for

the complexity of these distinct code segments meet the above requirements

for COMPLEXA’s dependency analysis; the complexity of each distinct code

segment will rest on a measure and this measure is the one to which the re-

cursive algorithm’s arguments are mapped. In this situation, COMPLEXA

will uncover a non-qualified dependency between recursion variables that are

individually influenced by some qualification. The following illustration will

4So these code segments are not identical line-for-line though they may have lines in
common.

CHAPTER 6. LITERATURE REVIEW 203

help to clarify this further. Let L denote a list and let n denote the size of

L. Let COMPLEXA analyse a recursive algorithm whose single argument is

L, which is mapped to the measure length during COMPLEXA’s analysis of

the algorithm. Let this algorithm contain exactly two calls to itself. So the

context of these two calls, i.e. the code segments that lead to these two calls,

separately determine a value for the algorithm’s argument. Now assume that

these code segments comply with the two specific conditions just described

here. In other words, for the measure length, the difference equations for the

complexity of these two distinct code segments meet the above requirements

for COMPLEXA’s dependency analysis. Despite the presence of cond in both

of these difference equations, COMPLEXA’s dependency analysis can express

the dependency between the two recursion variables without any reference to

cond. So perhaps COMPLEXA concludes that the length of these two recur-

sion variables added together is equal to n − 1. Therefore, COMPLEXA’s

new approach enables it to concisely express the relationship between recur-

sion variables in terms of the relevant measure. Metric would not be able to

extract such succinct information because it has no technique for analysing

conditional expressions that are not directly related to external data structure

characteristics.

COMPLEXA’s dependency analysis between recursion variables reveals in-

determinacy. For example, the dependency analysis between the two recursion

variables in the last example showed that the length of each could be satisfied

by more than one value. Hence, in step three COMPLEXA may have to solve

a recurrence relation that does not fix the measure to which at least two re-

cursion variables are mapped. If this is the case, then COMPLEXA factors in

the indeterminacy to conclude the best-case and worst-case behaviour of the

algorithm it is analysing. This is consistent with the Metric method. When

it comes to determining the average-case behaviour, COMPLEXA makes the

uniform distribution assumption regarding the indeterminacy. So, for the last

example, COMPLEXA would assume that the n+1 distinct possible solutions

to the dependency between the length of the two recursion variables are equally

likely. It is noted by Wegbreit [76] that Metric does not consider indetermi-

nacy so the introduction of COMPLEXA’s dependency analysis means that

COMPLEXA can reveal indeterminacy where Metric cannot and then resolve

it.

CHAPTER 6. LITERATURE REVIEW 204

So COMPLEXA allows for more data types than Metric does and this,

along with its dependency analysis, means that COMPLEXA augments the

set of algorithms that Metric can analyse. COMPLEXA’s dependency anal-

ysis proves to be of particular use for divide-and-conquer algorithms with an

intelligent conditional expression, e.g. the quicksort algorithm; a conditional

expression is here deemed to be intelligent when establishing exactly how it

affects program flow is beyond the abilities of the static analysis tool. While

neither Metric nor COMPLEXA can figure out the probability of an intel-

ligent conditional expression evaluating to true, COMPLEXA can produce

asymptotic behaviours free of probability variables for a divide-and-conquer

algorithm with an intelligent conditional expression. Metric cannot drop such

probability variables. Accordingly, it can be said that COMPLEXA is a solid

advancement on Metric.

Now to compare COMPLEXA to MOQA. Clearly, Section 6.2’s compar-

isons between Metric and MOQA also hold for COMPLEXA because it ex-

tends Metric. However, the new features of COMPLEXA allow it to analyse

algorithms that Metric cannot but MOQA can, algorithms such as quicksort

and quickselect. COMPLEXA now matches the MOQA static analysis tool

in that it is able to deal with a range of data types, though COMPLEXA

is not restricted to series-parallel data types as the MOQA theory is. While

COMPLEXA can on occasions ignore conditional expressions, and hence on

these occasions the issue of their probability becomes moot, it, like Metric, can

never calculate the probability of a conditional expression evaluating to true.

In this regard, the MOQA static analysis tool is more powerful than both Met-

ric and COMPLEXA because on occasions it can calculate this probability;

more specifically, the MOQA static analysis tool can calculate the probability

of certain conditional expressions that query data structure characteristics.

An interesting COMPLEXA consideration is the point at which the uniform

distribution assumption comes into play. This assumption is applied at a

relatively late stage in the process, when COMPLEXA has already constructed

the difference equations. By contrast, the assumption of uniform distribution is

completely embedded in the MOQA theory from the start. This would indicate

that COMPLEXA has greater flexibility in its design than the design found in

the MOQA book [63]. Other advantages COMPLEXA has over MOQA include

statically determining the best-case and worst-case behaviour of algorithms in

CHAPTER 6. LITERATURE REVIEW 205

addition to their average-case behaviour, not relying on user-interaction and

not requiring the syntax of algorithms to be reformatted with new language

constructs such as the MOQA product function.

Overall, it is this work’s conclusion that COMPLEXA’s aims are very close

in nature to MOQA’s.

A considerable COMPLEXA weakness is that its dependency analysis “is

not decidable in the general case” [81]. So COMPLEXA’s expansion of Metric

is targeted at solving the complexity of algorithms that fall into a specific and

narrow category, that is, divide-and-conquer algorithms. (As will be brought

out later in this work, targeting a specific and narrow category of algorithms

is also one of MOQA’s limitations. However, the category of algorithms that

MOQA is restricted to is not the same category that COMPLEXA is restricted

to.) Hence, the Zimmermanns [81] point to another average-case static analysis

system as offering a more general solution. This system is called LUO and is

discussed in Section 6.5.

6.5 LUO

The LUO (Lambda–Upsilon–Omega, which is also denoted as ΛΥΩ) system

statically calculates the average-case behaviour of algorithms that are applied

to combinatorial structures, i.e. countable discrete structures. Both the theory

behind LUO and its implementation are thoroughly discussed, see [19], [22],

[23] and [24].

LUO accepts combinatorial structure definitions and algorithms which are

written in its own language Adl (Algorithm Description Language). “Adl is

a language whose primitives correspond closely to the type structuring mech-

anisms” [23] and its expressions are Lisp-like. LUO converts the structural

definitions of combinatorial structures into counting generating functions; the

coefficient of the nth term giving the number of combinatorial structures of size

n. For an algorithm that is applied to combinatorial structures, LUO converts

the algorithm’s structural specification into generating functions of average-

case costs; the coefficients giving the average-case cost of the algorithm over

random data of size n. These latter generating functions are known as complex-

ity descriptors. After gathering together the algorithm’s complexity descrip-

tors and the relevant counting generating functions, the well-characterised an-

CHAPTER 6. LITERATURE REVIEW 206

Unlabeled Labeled
union union
cartesian product partitional product
sequence partitional sequence
cycle partitional cycle
set partitional set
multiset

Figure 6.2: The unlabeled and labeled operations from which LUO’s unlabeled
and labeled combinatorial structures are respectively defined

alytic properties that exist for such generating functions are then used by LUO

to determine the asymptotic growth of their coefficients. Hence, more simply

put, LUO determines an algorithm’s average-case behaviour by applying ad-

vanced analysis techniques to the generating functions that it has associated

with the input algorithm and its data structures.

The LUO theory tightly defines the combinatorial structures and language

features for which it can automatically provide generating functions, and hence

average-case behaviour. First, consider the combinatorial structures that LUO

accepts. Typical examples include words, permutations, trees and graphs.

These combinatorial structures can be either unlabeled or labeled. LUO ad-

mits an unlabeled combinatorial structure when it is defined in terms of the

unlabeled operations listed in Figure 6.2. Likewise for a labeled combinatorial

structure. The most basic component of an unlabeled structure is the atom

primitive. This primitive represents a single element of size one, e.g. a letter

or a node. Similarly, the most basic component of a labeled structure is the

latom primitive. The LUO theory provides the set of rules that translate unla-

beled combinatorial structures into ordinary generating functions and labeled

combinatorial structures into exponential generating functions.

The key LUO attribute of any labeled structure of size n ≥ 1 is that its n

latoms have distinct integer labels from 1 to n. However, the cartesian product

of two such labeled structures will result in some ordered pairs with the same

integer value for both components. So to avoid pairs of duplicate integers,

which nullify the key LUO attribute of any labeled structure, partitional prod-

uct replaces cartesian product when the structures involved are labeled. “The

partitional product of labeled structures U and V consists of forming ordered

CHAPTER 6. LITERATURE REVIEW 207

pairs (u, v) from U × V and relabeling them in all possible [well-labeled] ways

that preserve the order of the labels in u and v”[74]. (In combinatorics, an

object of size n is well-labeled if each of its atoms has a distinct label from

the set {1, 2, . . . , n}. This concept is the same as Knuth’s canonically-ordered

labeling [42].) The number of possible relabelings is
(
|U |+|V |

|V |

)
. An example of

partitional product follows later. Partitional product is a standard concept

in combinatorial analysis and is fully detailed in various works, see [12], [27]

and [30]. The other partitional operations in Figure 6.2 are partitional in the

same sense and for the same reason. Note that the union operation definition

ensures label value distinctness and that the nature of the multiset operation

disqualifies it for labeled structures.

The structural definitions of LUO’s combinatorial structures can be either

iterative or recursive. To illustrate, the following is an iterative structural

definition of all non-empty binary strings with alphabet {a, b}, which is an

unlabeled combinatorial structure.

Word = sequence(Letter);

Letter = union(a, b);

a, b = atom;

Next, consider the language features accepted by LUO, i.e. consider Adl.

All of its basic primitives are mechanisms for traversing through the combina-

torial structures. One example is the Test on Union primitive:

A = union(B,C)

P [a : A] = if a ∈ B then Q[a] else R[a],

where P [a : A] denotes that the argument of procedure P is a and that the

type of a is A, and similarly, Q[b : B] and R[c : C]. Another example is the

Component Iteration primitive:

A = cycle(C)

P [a : A] = forall b in a do Q[b],

where Q[c : C]. For more primitive details, see [23].

CHAPTER 6. LITERATURE REVIEW 208

Specifically, the LUO system is composed of three parts:

1. Algebraic Analyser (ALAS): translates combinatorial structure defini-

tions and their algorithms into counting generating functions and com-

plexity descriptors respectively. ALAS does this by using formal trans-

lation rules that map the Adl language onto generating functions.

2. Solver: attempts to derive closed-form expressions for the generating

functions outputted by ALAS.

3. Analytic Analyser (ANANAS): tries to extract average-case behaviour

on the coefficients of the generating functions outputted by the Solver.

Its manipulation and analysis of the generating functions relies upon “an

extensive collection of routines” [24].

The LUO theory is taken from research in the fields of combinatorial analy-

sis, applied mathematics and analytical number theory. So, it is clearly driven

by strong mathematical techniques and therefore, the LUO engine can always

be further strengthened as new results in these areas become available. In

fact, a more modern version of LUO is now available as the combstruct pack-

age [21], which is part of the Algolib library [47]. (Some of the combstruct

package’s online examples model series and parallel circuits. Adapting the

MOQA theory for this field is an active area of current research. Therefore,

it may be appropriate for this continuing research to also examine LUO from

the hardware angle.)

The LUO system is the most successful average-case static analysis tool

encountered by this work. This is clearly demonstrated by the sheer range of

algorithms for which it can deduce average-case behaviour. These algorithms

can be loosely organised into three categories: 1), regular languages and fi-

nite automata, 2), context-free languages, terms and symbolic manipulation

algorithms and 3), combinatorial problems. Many examples of algorithms in

all three categories are given [23] and some of these examples are listed in

Appendix B.

It is recognised in the MOQA book [63] that “the use and incorporation

of generating functions in the MOQA context” should be investigated in the

future and this research was responsible for commissioning a detailed study

of LUO [14], which includes a helpful introduction to generating functions.

CHAPTER 6. LITERATURE REVIEW 209

(However, the present work is the first to give proper attention to how the

two systems compare.) Therefore, any future work that contemplates adding

generating functions to the MOQA theory will have to seriously consider the

following two questions. The first question is how would their addition impact

on MOQA’s originality? Techniques that produce recurrence relations for an

algorithm’s average-case behaviour are mentioned by Flajolet and Sedgewick

[25] and they state that these “recurrence relations are either solved directly

— whenever they are simple enough — or by means of ad hoc generating

functions, introduced as a mere technical artifice.” So, despite the fact that

generating functions can be used to solve the recurrence relations produced by

the MOQA static analysis tool and that this would supplement the MOQA

theory without negatively effecting its originality, it is not an approach that

incorporates generating functions into the MOQA theory. Besides, supple-

menting the MOQA theory in such a way is not innovative, as evidenced by

the comment made by Flajolet and Sedgewick. On the other hand, if the

MOQA theory is just replaced by the theory of generating functions, then

there may be difficulty in distinguishing this new theory from LUO’s. Hence,

it is important that an original way of amalgamating generating functions

with the MOQA theory is found. This prompts the second question. What

advances would this amalgamation bring to LUO’s area of expertise, whose

intent is to automatically establish an algorithm’s average-case behaviour via

analytic combinatorics? This question is especially relevant since this is an

ongoing area of research, see Section 6.6, that continues to be dominated by

one of LUO’s architects, Philippe Flajolet. For example, there is a recently

published book on the topic of analytic combinatorics [25]. Therefore, any

future contribution by MOQA to this field would have a lot of ground to cover

to produce state of the art research.

Although LUO and MOQA take markedly different paths to computing

the average-case behaviour of an algorithm, new vistas are opened up when

their respective data structure operations are examined and contrasted, as the

reader shall now see.

Product stands out when LUO’s labeled operations are compared to the

MOQA functions5 because LUO’s partitional product and MOQA’s product

5LUO’s unlabeled operations are not compared to the MOQA functions because they are
separate universes. Section 6.2 discusses the disparity between unlabeled and labeled data

CHAPTER 6. LITERATURE REVIEW 210

introduce the same relationship between the nodes of the two structures that

they product together; note that this likeness hinges on the nodes, not on

the labels of the nodes. In addition to this similarity, the number of relabel-

ings performed by LUO’s partitional product is equal to the factor by which

MOQA’s product increases structure multiplicity, i.e.
(
|U |+|V |

|V |

)
when U and V

denote the two structures being producted together. So it is worthwhile to

further compare these two products.

Recall that MOQA’s function products together two isolated components

from the same isolated subset, which has the βmax label ordering on it. In other

words, the MOQA product function operates within one labeled structure. It

then relabels the newly connected sub-structure so that the labeling on it is still

in accord with βmax. This relabeling leads to the output of exactly one labeling.

By contrast, LUO’s function products together two unrelated structures and

then relabels the newly connected structure to preserve the label order that

was on each structure. So each structure’s labeling is still in accord with the

label ordering that was on that structure, whatever this label ordering is. This

relabeling leads to the output of one or more labelings.

Though both functions safeguard the label ordering on each of the two

structures that they product together, their methodology differs. The MOQA

product function preserves the label orderings by simply insisting that the

label ordering on both structures is max-heap (or alternatively min-heap) or-

dered. It then relabels to satisfy that particular label ordering. On the other

hand, LUO’s partitional product does not make any demands about the type

of label ordering on either of the two structures. It just relabels to remove

duplicate labels while ensuring that neither of the pre-product label orderings

are disturbed.

Another crucial difference between the two products is that MOQA, unlike

LUO, prevents its function from connecting two unrelated structures. The

MOQA product function never connects two unrelated structures because the

introduction of duplicate labels is disruptive to the current MOQA theory6.

While duplicate labels have the same negative impact on the LUO theory, its

partitional product can connect two unrelated structures because the prod-

structures.
6A simple modification to the MOQA theory is proposed in the MOQA book [63], with

the claim that it can then handle duplicate labels. This proposal is shown to be ineffective
in Chapter 5.

CHAPTER 6. LITERATURE REVIEW 211

ba c d

VU

Figure 6.3: The data structures U and V

a b c d
1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2
2 1 3 4
2 1 4 3
2 3 1 4
2 3 4 1
2 4 1 3
2 4 3 1

a b c d
3 1 2 4
3 1 4 2
3 2 1 4
3 2 4 1
3 4 1 2
3 4 2 1
4 1 2 3
4 1 3 2
4 2 1 3
4 2 3 1
4 3 1 2
4 3 2 1

Table 6.1: L(Uβmax
+ Vβmax

)

uct’s relabeling process removes all duplicate labels. The following example

illustrates this distinction. When the structures U and V in Figure 6.3 are two

isolated components from the same isolated subset, which has the βmax label

ordering on it, then Table 6.1 gives all the canonically-ordered labelings of U

and V . So clearly there is no risk of duplicate labels when the MOQA prod-

uct function involves two isolated components from the same isolated subset.

Now assume that the structures U and V in Figure 6.3 are unrelated and that

both structures have the βmax label ordering on them. In this case, Table 6.2

gives all the canonically-ordered labelings of U and, likewise, of V . From these

labelings, Figure 6.4 then depicts the four possible inputs for any product that

involves this U and V . While the duplicate labels in each possible input cat-

egorically rules it out as input for MOQA’s product, each one is acceptable

input for LUO’s product. For example, Figure 6.4 goes on to depict the six

relabelings that result when partitional product connects U above V for the

leftmost of these four possible inputs.

So MOQA’s product is less flexible than LUO’s due to its constraint on

CHAPTER 6. LITERATURE REVIEW 212

a b
1 2
2 1

c d
1 2
2 1

Table 6.2: L(Uβmax
) and L(Vβmax

)

1

1 2

2 1

2 1

2 2

21

1 2 1

2 1

a b

dc c d

ba a b a b

dc c d

dc

a b

1

dc

a b

4

2

1

dc

a b

3

1

23

2 4 3 4

U

V

dc

a b

1 2

43

dc

a b

2 4

1 3

dc

a b

3 4

1 2

Partitional Product(U, V)

Figure 6.4: Four possible inputs for a product that involves U and V when they
are unrelated structures and the relabelings that result when LUO’s partitional
product connects U above V for the leftmost input

label ordering type and its inability to work with duplicate labels. However,

this is not unexpected as MOQA’s theory is also less flexible than LUO’s.

This is evidenced by LUO being able to analyse a larger range of algorithms.

The types of algorithms LUO can analyse are classified above and Appendix

B gives fifteen examples. In comparison, MOQA can only analyse the class of

algorithms whose average-case behaviour is asymptotically equivalent to the

average number of comparisons that take place within the algorithm’s data

structures. The MOQA book [63] presents just four examples that MOQA is

capable of analysing, which are listed in Section 2.4. The greater diversity and

complexity of the algorithms that LUO can handle in comparison to MOQA

is evidenced when comparing the fifteen LUO examples, which are not the full

CHAPTER 6. LITERATURE REVIEW 213

set of LUO examples, against the four MOQA examples.

The last example can be used to illustrate the next point too. Take the

twenty-four relabelings that result when LUO’s partitional product that con-

nects U above V is applied in turn to each of the four inputs depicted in Figure

6.4. Furthermore, apply the MOQA assumption regarding the uniform distri-

bution of input and assume that the four inputs for this partitional product

are equally likely. As a consequence, these twenty-four relabelings are also

equally likely. Next, consider the MOQA product function at the point where

it has just finished connecting U ’s nodes above V ’s for each of the labelings

in Table 6.1 but before it has performed any push-ups or push-downs. The

twenty-four equally likely labelings resulting from LUO’s partitional product

are equal to the twenty-four equally likely labelings that this MOQA product

function currently has to hand. In other words, the twenty-four labelings that

result from LUO’s partitional product are equal to the labelings given in Table

6.1. So this example supports the following notable point: over all canonically-

ordered input uniformly distributed, LUO’s product, after it is applied to any

two unrelated series-parallel structures that both have the βmax label ordering

on them, is equivalent to MOQA’s product at the point just specified when

MOQA’s product is applied to the same structures, except that they now are

isolated components of the same isolated subset. (The MOQA product func-

tion then takes the extra and final step of ensuring that the labeling over the

newly-connected structure also satisfies βmax; this may require push-ups and

push-downs.)

After identifying the correspondence that exists between these two prod-

ucts, this work was inspired to develop a new MOQA function. The new

MOQA function is an enhanced version of the current MOQA product func-

tion, which is improved by the addition of partitional product’s logic; the

average-case formula for the current MOQA product function will have to be

adjusted accordingly. So, when the two structures being producted together

are isolated components from the same isolated subset, then the new MOQA

product function behaves just as before. However, when the two structures be-

ing producted together are unrelated but otherwise adhere to the MOQA spec-

ifications, then the new MOQA product function follows partitional product’s

relabeling technique either before or after it introduces the new connections.

It then performs the required push-ups and push-downs. This new MOQA

CHAPTER 6. LITERATURE REVIEW 214

random structure preserving function now offers the best of both worlds be-

cause it can product within and across structures without any duplicate label

complications, although the MOQA constraint on max-heap or min-heap label

ordering still applies. Nonetheless, this is an important new function because it

increases the range of a core MOQA function, which should certainly motivate

its use in the future.

Now, observe that the LUO language is without deletion operations. This

is because “no general method is known in order to analyse intrinsically dy-

namic algorithms that repeatedly modify a structure” [24]. LUO’s discussion

of this matter is referred to early on in the MOQA book [63], which states

that “this led to the consideration of the redesign of standard data structur-

ing operations and general novel language design to address the problem”, i.e.

led to MOQA. Yet, despite any suggestion that MOQA overcomes this LUO

limitation, MOQA does not supply a general method for analysing dynamic

algorithms. What is the basis for such a strong statement? Is there not a

MOQA deletion function? Well, contemplate the MOQA deletion function.

Like the other MOQA functions, its average-case formula when applied to a

fixed po-structure is given in the MOQA book [63]. This formula correctly

calculates the average-case cost of deleting a node from a fixed po-structure

and the MOQA static analysis tool is able to keep account of each fixed po-

structure that can result from this deletion because there is a finite number of

them. However, this MOQA deletion function must be employed exclusively

in algorithms that construct specific fixed po-structures because it has been

designed for application to specific fixed po-structures; see Section 4.4.1 for an

illustrative example that involves this MOQA deletion function. Algorithms

that construct specific fixed po-structures have limited use and their average-

case behaviour is a reasonably trivial affair because it is averaged over the few

canonically-ordered labelings of their specific fixed po-structures. Hence, in

addition to calculating such average-case behaviour statically, it is also easy

to calculate it by hand or empirically. It is for such algorithms that the core

MOQA theory [63] has been developed.

So data structure classes are not admitted in the domain of the above

MOQA deletion function. No average-case static analysis tool calculates the

average-case behaviour of an algorithm whose structures are defined by class

by calculating the average-case behaviour of the algorithm for just one specific

CHAPTER 6. LITERATURE REVIEW 215

fixed po-structure of that class. This would not yield the algorithm’s average-

case behaviour simply because it is not averaged over the general class. How-

ever, it is algorithms of this calibre that any serious average-case static analysis

tool should be interested in timing. Accordingly, Hickey [35] and Chapter 4

extended Schellekens’s average-case formulas [63] so that the MOQA static

analysis tool can determine average-case behaviour when MOQA functions

are applied to certain inductive po-classes. Although the new average-case

formulas for the MOQA deletion function correctly calculate its cost for these

inductive po-classes, there is now the issue of whether the MOQA static anal-

ysis tool is able to keep account of each fixed po-structure that can result from

this deletion. To explain, for the inductive po-class I whose set is infinite,

let Z denote the multiset of fixed po-structures of size n− 1 that result after

the MOQA deletion function is applied to each fixed po-structure of size n

in I’s set, n ≥ 1. The next two properties are expected to hold true for Z:

1), each of Z’s fixed po-structures are equally likely and 2), Z’s set of fixed

po-structures is equal to the set of fixed po-structures of size n− 1 in I’s set.

If at least one of these properties is not true for at least one value of n, then it

is no longer possible for I to represent the fixed po-structures that can result

after the MOQA deletion function is applied to I. So, in this case, the MOQA

deletion function cannot be applied to I because the MOQA static analysis tool

has no means of representing the fixed po-structures that can result. (This de-

ficiency is acceptable only when this MOQA deletion function is the very last

under analysis, as the infinite number of fixed po-structures that can result is

then irrelevant.) For that reason, the MOQA static analysis tool needs to be

informed by a user when it is safe for an inductive po-class to have the MOQA

deletion function applied to it. Then, and only then, can the MOQA deletion

function be applied to that inductive po-class.

Clearly, there is no general MOQA tactic for analysing dynamic algorithms

because Schellekens’s MOQA deletion function [63] only works when applied

to specific fixed po-structures and the new MOQA deletion functions given by

Hickey [35] and Chapter 4 only work when applied to some strict subset of

the inductive po-classes that Chapter 4 permits, e.g. the discrete inductive po-

class is in this strict subset. These are tailor-made solutions and therefore, they

can be firmly rejected as a “general method”. This is emphasised by the fact

that the lack of any general approach for analysing dynamic algorithms leaves

CHAPTER 6. LITERATURE REVIEW 216

LUO “helpless” [24] when it comes to typical algorithms such as heapsort and

balanced trees. MOQA is just as helpless for these algorithms too7 and so, has

made no advances with regard to this key “bottleneck” [24].

As well as struggling with the static analysis of dynamic algorithms, LUO

and MOQA share two other common traits. One of these traits is that writing

a program that LUO or MOQA can statically analyse requires a solid under-

standing of their respective theories. It should be apparent at this point that

LUO is designed for programs whose style is functional and MOQA is designed

for programs whose style is object-oriented. However, once a programmer is

comfortable with these language styles, writing programs in either syntax will

not be challenging. It will require effort though to gain a knowledge of the

mathematical concepts that LUO/MOQA rely on so as to write programs

for which an average-case solution can then be automatically determined by

LUO/MOQA. In other words, it is necessary to grasp what it is that makes

LUO/MOQA capable of handling particular algorithms and then apply these

principles when it comes to writing new programs for their analysis. This is

not a simple task. Once a programmer has mastered the LUO/MOQA theory,

LUO/MOQA should produce an average-case solution that is asymptotically

correct for the specified program. There can be confidence in the average-case

solution produced because 1) both LUO and MOQA have verified the results

that they have already produced by comparing these results against the litera-

ture and, more importantly, 2) both LUO and MOQA have established theory

reliability via proofs. So, the asymptotic accuracy of their results is another

trait that is shared by LUO and MOQA.

In summary, LUO’s recursively defined labeled combinatorial structures

are akin to MOQA’s inductive po-classes in that both use their admissible op-

erations when recursively defining a class of data structures; LUO’s admissible

operations for labeled combinatorial structures are those listed in the second

column of Figure 6.2 and MOQA’s admissible operations are the functions

described in Sections 2.2 and 3.3. However, the mathematical foundation on

7It is also accepted by the MOQA book [63] that it fails to statically determine the
average-case cost of its own version of heapsort, which is called percolating heapsort. The
treapsort algorithm is another of the MOQA algorithms, see Appendix A, and is presented
alongside heapsort; it takes advantage of the MOQA top function from this work. The
MOQA static analysis tool does succeed at statically determining the average-case cost of
the treapsort algorithm but, because it has a worst-case time of O(n2), it is not actually a
genuine variant of heapsort.

CHAPTER 6. LITERATURE REVIEW 217

which LUO rests gives “results of sweeping generality” [25] as indicated by the

variety of algorithms referred to in Appendix B, whereas it is a struggle to find

useful algorithms that the MOQA static analysis tool can analyse in addition

to the few sorting algorithms outlined in the MOQA book [63] and itemised

in Section 2.4. In fact, Flajolet, Salvy and Zimmermann [24] succinctly gets

to the heart of the matter after introducing the LUO framework:

“This specification of a precise mathematical level of expertise also

ensures that our ‘automatic theorems’ actually represent automatic

results (and not a haphazard collection of ad hoc recipes put into

a large programme!).”

As the MOQA theory has been customised for very specific algorithms and

situations, it seems fair to state that the MOQA system is a closer match

to the above “haphazard collection of ad hoc recipes” than to a “ specifica-

tion of a precise mathematical level of expertise”. For example, the MOQA

split function was developed for the quicksort and quickselect algorithms, the

MOQA top, bot and lift functions were developed for the treapsort algorithm

and the MOQA deletion function can only be applied to the small group of

structures defined above. An unavoidable consequence of this difference in ap-

titude is that MOQA is outperformed by LUO when it comes to the number

of algorithms for which it can derive average-case behaviour.

6.6 Mishna

Mishna [52] presents a technique for advancing the LUO system; LUO is sur-

veyed in the previous section. This technique relies upon attribute grammars

and a specification for their conversion into generating functions. (Attribute

grammars were originally conceived by Knuth [41].) Mishna [52] uses attribute

grammars because, as she points out, “an attribute describes the number of

steps (however that is defined) an algorithm requires when a given structure is

input”. Therefore, Mishna pairs an attribute grammar definition with the

structural definition of a LUO combinatorial structure, with the attribute

grammar definition adhering to the form given by the structural definition.

Take, for example, the following structural definition of a LUO combinatorial

CHAPTER 6. LITERATURE REVIEW 218

structure:

T = ǫ

T = product(atom, set(T))

This is the structural definition of an unlabeled tree. One of Mishna’s exam-

ples then pairs this structural definition with the following attribute grammar

definition for the internal pathlength of such a tree:

ipl(T) = 0

ipl(T) = set(ipl(T)) + size(T)− 1

So attribute grammars are used by Mishna’s research [52] to describe LUO

combinatorial structure properties because this type of knowledge is often help-

ful when establishing an algorithm’s average-case behaviour.

While Mishna notes that it is not unusual to describe algorithms with

attribute grammars8, it is the relationship that exists between attribute gram-

mars and generating functions that makes these grammars so amenable for

integration into LUO; this relationship has been established by earlier works,

e.g. see [15]. (Recall that generating functions are a key part of the LUO the-

ory because they reveal information about averages.) A noteworthy feature

of the generating functions introduced by attribute grammars is that they are

multivariate whereas the generating functions in LUO are univariate. So, this

additional characteristic enables Mishna’s work [52] to determine the average-

case behaviour of certain algorithms for which LUO cannot. Mishna’s work [52]

also formally proves that it can determine the average-case behaviour of any

algorithm for which LUO can. For example, both LUO and Mishna’s extension

can analyse quicksort but Mishna’s extension can also handle quickselect.

Finally, Mishna [52] adds a new operation to those listed in Figure 6.2 in

Section 6.5. This operation is known as the box or min label operator and

it assigns the minimum label to a component. It was originally developed by

Green [31], who also provided the generating function relationship. This new

operation enables Mishna’s extension to model increasing trees; an increasing

tree is a tree of size n labeled by distinct integers from the set {1, 2, . . . , n}

8This point is demonstrated by Metric’s use of structural equations; see Section 6.2.

CHAPTER 6. LITERATURE REVIEW 219

with the restriction that the label on any node is greater than the label on its

parent. Therefore, Mishna’s structural definition of an increasing binary tree

I is:

I = ǫ

I = product(min(atom), I, I)

This min label operation is of particular interest because it would make it pos-

sible to now model in the LUO syntax a MOQA inductive po-class that has

the min-heap label ordering on it. If the corresponding max label operation

and generating function relationship was also added to the LUO system, then

it would become possible to model in the LUO syntax a MOQA inductive po-

class that has the max-heap label ordering on it. Consequently, the MOQA

inductive po-classes discussed in Chapter 4 can have their structural defini-

tions readily translated into the LUO syntax. (Doing a similar translation for

MOQA’s fixed po-structures is rather lacking in purpose for the reason given

on page 214 in Section 6.5.) Hence, for future work, it may be of interest to

obtain the enhanced LUO implementation, i.e. the LUO system with Mishna’s

additions, to see if it can successfully analyse insertion-sort, mergesort and

treapsort; these are the three other algorithms, in addition to quicksort, that

the MOQA book [63] considers. If this analysis was favourable and then sup-

plemented with a formal MOQA-to-enhanced-LUO translation or simulation,

then a proof could be given for whether or not this LUO extension has the

ability to determine the average-case behaviour of any algorithm for which the

MOQA static analysis tool can determine average-case behaviour.

In summary, the work of Mishna [52] strengthens the potency and potential

of LUO and Mishna’s capacity to model increasing trees is closer to how MOQA

represents its data structures.

6.7 Sarkar

Research by Sarkar and Hennessy [62] and solely Sarkar [61] considers the

automatic partitioning of a program for the purpose of scheduling it over mul-

tiple processors, with an estimation of program behaviour determining how

it is carved up. This led to Sarkar presenting a framework for determining

CHAPTER 6. LITERATURE REVIEW 220

the average-case behaviour of a program and its variance [60]. The central

tenet of this latter research by Sarkar is that such information can be ex-

tracted from intelligently monitoring one or more executions of the program.

So the average-case behaviour of a program and its variance, as determined in

Sarkar’s work [60], is extrapolated from run-time information.

The first step Sarkar [60] takes towards his goal is to construct a control

flow graph for the program under analysis; a program’s control flow graph is

defined in Section 4.2. (Note that this is also Distri-Track ’s first step.) The

loop cycles in this control flow graph are next identified; the loop cycles in

a control flow graph are also known as the interval structure of the control

flow graph. The control flow graph is then extended according to Sarkar’s

specifications [60]; most of the new nodes and edges added to the control flow

graph further emphasise its interval structure. This extended control flow

graph is finally converted into a forward control dependence graph by ignoring

all of its back edges. The control flow graph extension means that valuable

loop cycle information is not lost when back edges are disregarded.

Sarkar [60] next adds counter variables to the compiled program code to

track the frequency with which segments of it are executed. These counter

variables are incremented during program execution and are stored in a pro-

gram database at the end of each program execution. The program’s forward

control dependence graph is used to locate the counter variables in the com-

piled program code and this is a more sophisticated approach, which results

in it being more efficient than simply having a counter variable for each node

in the program’s control flow graph. For example, this advancement assigns

a counter variable per control condition, thereby eliminating the duplicate

counter variables that would arise when there is a counter variable for each

node in the program’s control flow graph and multiple nodes depend alike on

a single control condition. So it is the storing of this variable information that

enables the average execution frequency of each node in the program’s forward

control dependence graph to be estimated. Of course, the average execution

frequency of each node should become more and more accurate when aver-

aged over more and more distinct program executions. The average execution

frequency of each node, in conjunction with its cost, is then used to estimate

the total average-case behaviour of the program. Variance, which arises from

conditional branching and involves formulas of greater complexity than those

CHAPTER 6. LITERATURE REVIEW 221

given for average-case behaviour, is also estimated in Sarkar’s framework [60].

So Sarkar [60] collects run-time information about a program and then uses

average-case and variance formulas to interpret this data. The result is an exe-

cution profile of the program. This is substantially different to any of the other

methods that have been considered up until now because none of these methods

required actual program execution. Therefore, Sarkar’s technique [60], which

estimates a program’s average-case behaviour and its variance through the

profiling of program execution, is quite dissimilar to that of the MOQA book

[63], which calculates a program’s average-case behaviour solely through static

techniques; recall that a program’s average-case behaviour according to Sarkar

relies on the frequency with which program statements are executed whereas

a program’s average-case behaviour according to MOQA relies on the number

of comparisons that take place within the program’s data structures. Hence,

it is reasonable to state that these two bodies of work have little theoretical

overlap.

How useful is Sarkar’s approach? He reckons that statically calculating

conditional branch probabilities and the number of loop cycles is feasible for

“only a few restricted cases” [60], of which some examples are given. It turns

out that Sarkar’s examples are a generalisation of when statically calculating

conditional branch probabilities and the number of loop cycles is deemed feasi-

ble in the MOQA book [63] and in Hickey’s research [35]; it is feasible in these

for certain first-order and second-order conditional expressions and bounded

loop cycles. So Sarkar advocates analysing a program with his execution pro-

file technique when such static calculations are not feasible for part of the

program in question. (Note that Sarkar’s work [60] does takes advantage of

bounded loop cycles. The counter variable for a bounded loop cycle is simply

set to the number of loop iterations instead of being incrementing by one for

each loop iteration.) Hence, Sarkar provides a way of estimating a program’s

average-case behaviour and its variance when there is no other means of do-

ing so. Therefore, Sarkar’s approach [60] to average-case analysis allows it to

analyse a wide variety of programs because, after identifying suitable places of

observation within the program, it monitors program behaviour at run-time

and then analyses the results.

CHAPTER 6. LITERATURE REVIEW 222

6.8 Other Related Research

A selection of systems that analyse program behaviour has just been care-

fully considered. Each of these systems is scrutinised because it is among

those closest in nature to MOQA and/or it successfully determines average-

case behaviour. For example, Sarkar [60] successfully determines average-case

behaviour, although its observational approach is quite different to that of the

others. However, these are not the only systems to analyse program behaviour

and so this section will give a synopsis of those that remain.

Ramshaw [59] presents a formal frequency system that firstly, calculates a

program’s average-case time-formula and then secondly, evaluates that time-

formula, which is in the form of a difference equation. This frequency system

rests on the theory used in program correctness verification systems and in the

determination of loop invariants. Specifically, it rests on the work of Floyd

[26] and Hoare [38], although Ramshaw’s complexity assertions differ from

theirs. The complexity assertions of Floyd [26] and Hoare [38] describe prop-

erties satisfied by program variable values at certain points in the program,

whereas Ramshaw’s complexity assertions [59] describe properties satisfied by

the distribution of program variable values at certain points in the program.

Ramshaw’s work [59] is also based on Kozen’s denotational semantics for prob-

abilistic programs [46]. Kozen [46] considers programs as linear operators on

Banach spaces of measures, with Banach spaces being a well-used mathemat-

ical technique in functional analysis. While Ramshaw [59] does supply pro-

grams that his system is capable of analysing, there is no implementation of

this system. This is a later accomplishment of Hickey and Cohen [36], for the

FP language. However, despite Hickey and Cohen’s successful implementa-

tion and analysis of some non-trivial programs, the subsequent opinion of one

of its authors is that “unfortunately, Ramshaw’s approach is formally entic-

ing but practically ineffectual” [9]. One reason given for this opinion is that

Ramshaw’s approach struggles with programs containing arrays.

Hickey and Cohen [36] deal with recurrence relations, as this work realises

Ramshaw’s [59], but they state that “the problem of solving the resulting

equations may be complex”. MOQA faces this problem too because the MOQA

static analysis tool also produces the same type of equation, which reaffirms

the fact that the MOQA book’s [63] avoidance of this complex issue is an

CHAPTER 6. LITERATURE REVIEW 223

unfortunate deficiency; this point was initially made in Section 6.3.

Certain works divide the analytical analysis of algorithms into two cate-

gories: macroanalysis and microanalysis. One such work by Cohen [10] defines

these categories as follows:

“The macroanalysis of algorithms consists of choosing a dominant

operation of an algorithm and expressing execution time as a func-

tion of the number of times this operation is used. In contrast, the

microanalysis of programs consists of expressing the execution time

as a function of the time needed to execute each of the operations

in the program.”

Cohen [10] goes on to summarise the field of microanalysis. Some of these

works have been examined here in Section 6.2, Section 6.3 and, in the case of

Ramshaw, in the preceding paragraphs. The other relevant works reviewed by

Cohen [10] are Ramamoorthy [58] and Beizer [5]. Both of these systems use

a discrete Markov model to statically determine average-case behaviour. So,

if Ramamoorthy [58] has 1), a program’s control flow graph, 2), the constant

probability of taking each branch in that control flow graph and 3), the execu-

tion time of each basic block in that control flow graph, then he can calculate

the program’s average-case behaviour and its variance. The work of Beizer [5]

is similar to that of Ramamoorthy [58]; the main difference between the two

is that the latter gears itself towards programs that perform multiplication at

the hardware level.

The worst-case static analysis tool ACE [51], see Section 6.3, is the only

system of those surveyed up until now which does not consider average-case

behaviour. It is fitting that each of these other systems study average-case

behaviour because such behaviour is at the heart of the system which un-

derpins this work, i.e. MOQA [63]. An additional reason for the focus on

average-case static analysis tools is that average-case behaviour is generally

far more challenging to resolve than worst-case behaviour, as concluded in

Section 6.3. Therefore, worst-case static analysis tools frequently rely on theo-

retical concepts that would be lacking in information if average-case behaviour

was sought instead, which means that only a limited amount of their theory

would be suitable for average-case analysis. (This reasoning also holds for any

best-case static analysis tool.) However, as the implementor of the current

CHAPTER 6. LITERATURE REVIEW 224

MOQA static analysis tool Distri-Track, Hickey [35] does discuss worst-case

static analysis tools like Gustafsson, Lisper, Sandberg and Bermudo [32], Liu

and Gomez [48] and Puschner and Schedl [57] because average-case and worst-

case static analysis tools often have mechanical details in common, such as

program transformation techniques. Nonetheless, as this work is primarily in-

terested in establishing and extending the MOQA theory and not in the finer

details of the system for its delivery, as Hickey [35] is, ACE [51] is the only

static analysis tool designed exclusively for worst-case analysis that merited

close attention here.

There is one final MOQA attribute left to explore. This is the MOQA

random structure preserving feature of any MOQA function and the following

section examines how it relates to existing research.

6.9 Randomness Preservation

The MOQA functions are MOQA random structure preserving and this at-

tribute is an important factor in MOQA’s success. Knuth also examines

functions that preserve data structure randomness because he too finds the

average-case analysis of such functions easier. Though the aim of both Knuth

and Schellekens is to simplify average-case analysis for certain problems, the

meaning behind Knuth’s preservation of randomness [42] differs from the mean-

ing found in the MOQA book [63].

In exploring this difference, the following definitions will be useful. Let α

denote a data structure family and the label ordering on that data structure

family. For example, let αbst denote the binary tree family and the label order-

ing that requires the label of a parent node to be greater than the label of its left

child and smaller than the label of its right child9. Let Iα(x) denote the α in-

sertion function that inserts label x. Let Dα(x) denote the α deletion function

that deletes label x. Let Sα(x1, x2, . . . , xn) denote the data structure of type

α and size n that is constructed from the sequence Iα(x1), Iα(x2), . . . , Iα(xn)

when applied to an initially empty data structure. So Sαbst
(1, 3, 2) is binary

tree I in Figure 6.5. Note that Sα can represent the same data structure for two

or more distinct label insertion permutations of the same length. To illustrate,

Sαbst
(2, 1, 3) and Sαbst

(2, 3, 1) both represent binary tree III in Figure 6.5.

9This label ordering assumes that labels are distinct.

CHAPTER 6. LITERATURE REVIEW 225

1 1

3

2 3

2

2

1 3

3 3

1

1

2

2

III III IV V

Figure 6.5: The five distinct BSTs of size three with labels

Let Xn denote the set of n! distinct permutations of the set {1, 2, . . . , n}

when n ≥ 1 and let X0 = {}. Let SXn, α denote the multiset of data structures

that is Sα(p) for each permutation p in Xn, i.e. SXn, α =
∑

p∈Xn
Sα(p), n ≥ 0.

(SXn, α is a multiset as opposed to a set because two or more of the Xn label

insertion permutations for Sα may result in the same data structure.) For

example, SX3, αbst
is the multiset of data structures in Figure 6.5 when binary

tree III has a multiplicity of two and the others have a multiplicity of one. Let

A(SXn, α) denote the set of elements in SXn, α, i.e. multiple repetitions of the

same element in SXn, α are reduced to one membership in A(SXn, α).

Both Knuth and Schellekens assume that only distinct labels are inserted

into a data structure and that all insertion permutations of these labels are

equally likely though the two differ in how this is actually accomplished. Knuth

[42] simply assumes that only distinct labels are inserted into an initially empty

composite variable, that these labels are selected from the set {1, 2, . . . , n} and

that all of these label insertion permutations as represented by Xn are equally

likely. Schellekens [63] assumes that a composite variable is initialised as a

discrete partial order of size n, that its possible labelings are represented by

Xn and that all of these canonically-ordered labelings are equally likely. So

Xn in the context of Knuth’s work [42] represents the possible label insertion

permutations on the initially empty composite variable and Xn in the context

of Schellekens’s work [63] represents the possible canonically-ordered labelings

on the initial discrete composite variable of size n. So MOQA’s “insertion”

functions, such as the MOQA top function, actually rearrange an existing data

structure as they insert edges rather than nodes whereas Knuth allows for

labels/nodes to be really inserted during program run-time. There is another

way of viewing Schellekens’s assumption that all data structure labels/nodes

are already present prior to any sequence of MOQA functions: that n insertion

CHAPTER 6. LITERATURE REVIEW 226

functions which do nothing more than add a label/node and are in accord

with Knuth’s assumptions above have already been applied to the composite

variable prior to any sequence of MOQA functions10. It is clear that both

works are only concerned with the relative order of labels.

There is now enough background to examine randomness preservation as

presented by Knuth.

Definition 66 (Knuth’s randomness preservation [42]). At a particular mo-

ment in its lifetime, a composite variable of type α and size n is randomness

preserving if all of its possible states at that moment are equal to SXn, α after

the multiplicity of every distinct element in the multiset of its possible states

has been divided/multiplied by some common divisor/multiplier11.

So, when a sequence of functions is applied to an initially empty com-

posite variable and that sequence consists of n insertion functions that are

in agreement with Knuth’s assumptions enumerated above, then the result-

ing composite variable of size n is always randomness preserving according to

this definition. (For this case, the common divisor, or equally it could be the

common multiplier, for the frequency of every distinct state that can possibly

result is simply one.) As Knuth states: “Occasionally an analysis of mixed

insertions and deletions turns out to be workable because it is possible to

prove some sort of invariance property; if we can show that deletions preserve

“randomness” of the structure, in some sense, the analysis reduces to a study

of structures built by random insertions” [42]. So Dα(x) preserves Knuth’s

randomness when it is applied to a randomness preserving composite variable

of type α and size n and the resulting possible states are equivalent from the

average-case standpoint to the possible states after n − 1 insertion functions

on an initially empty composite variable.

Why are these two state multisets equivalent from the average-case stand-

point? While the set of distinct states that can possibly result after this ran-

domness preserving deletion function is equal to A(SXn−1, α), the multiplicity

of each distinct state possible will be some fixed multiple larger/smaller than

its multiplicity in SXn−1, α. For example, the multiset of data structures whose

elements are ten instances of binary tree III in Figure 6.5 and five instances of

10Some of the new MOQA functions in Section 3.3 apply Knuth’s viewpoint instead.
11This definition is not directly found in Knuth’s paper [42] but does capture his intent.

CHAPTER 6. LITERATURE REVIEW 227

each of the other binary trees in Figure 6.5 is equivalent from the average-case

standpoint to SX3, αbst
because the multiplicity of each distinct state in the

former multiset is five times larger than its multiplicity in the later. So though

a distinct state’s multiplicity may not be the same in both of the multisets, its

comparative frequency to any of the other distinct states within either of the

multisets is the same. Hence, both state multisets are considered equivalent

from the average-case analysis perspective. (This was also briefly discussed in

Section 2.1.)

Consider the initially empty composite variable that has had applied to

it a sequence of functions consisting of i insertion functions, which automati-

cally preserve Knuth’s randomness, and d deletion functions that also preserve

Knuth’s randomness, 0 ≤ d ≤ i and i−d = n. What is the average-case cost of

the function, i.e. the (i + d + 1)th function, next applied to the composite vari-

able when that function too preserves Knuth’s randomness? It is the sum of

the function cost when applied to each state in SXi−d, α divided by |SXi−d, α|. So

effectively these d deletion functions can be ignored when calculating average-

case cost. However, if some of the deletion functions in the sequence of i + d

functions did not preserve randomness and/or the (i + d + 1)th function is a

deletion function that does not preserve randomness, then SXi−d, α is no longer

guaranteed to correctly reflect the possible data structure states. So, according

to Knuth’s definition of randomness, only deletion functions can destroy data

structure randomness.

Knuth’s work [42] also categorises different types of insertion and deletion

functions and proves which combinations preserve the randomness of a com-

posite variable, i.e. proves the conditions under which deletion insensitivity is

maintained.

Schellekens’s definition of randomness preservation is now cast into the

syntax of this section to allow for an easier comparison between the two defi-

nitions.

Definition 67 (Schellekens’s randomness preservation [63]). At a particular

moment in its lifetime, a composite variable of type α and size n is randomness

preserving if all of its possible states at that moment are equal to A(SXn, α) after

the multiplicity of every distinct element in the multiset of its possible states

has been divided by the highest common divisor.

CHAPTER 6. LITERATURE REVIEW 228

In other words, the set of possible states for such a composite variable is

equal to A(SXn, α) and all of these states are equally likely to occur. Hence,

while Knuth’s insertion functions never destroy what he considers to be data

structure randomness, there is no such guarantee for insertion functions un-

der Schellekens’s definition of data structure randomness. So, according to

Schellekens’s definition of randomness, both insertion and deletion functions

can destroy data structure randomness.

It should now be clear that data structure randomness in the MOQA book

[63] is more fragile than it is in Knuth’s research [42] because the former can

be jeopardised by a greater range of functions. This is why MOQA functions,

the edge insertion functions in particular, are so restrictive in comparison to

the functions that Knuth allows. For example, consider the data structure

of size four in Figure 2.3 when it results from just insertion functions. This

data structure can have five distinct canonically-ordered labelings on it for the

max-heap label ordering. The number of label insertion permutations on the

initially empty data structure or the number of canonically-ordered labelings

on the initial discrete data structure of size four which map to any one of these

five canonically-ordered labelings depends on the type of insertion function

applied; assuming, of course, that the type of insertion function applied main-

tains max-heap label ordering. However, following Knuth, the data structure

in Figure 2.3 with the max-heap label ordering is always random regardless

of the insertion function applied because insertion functions intrinsically pre-

serve Knuth’s randomness. On the other hand, following Schellekens, the data

structure in Figure 2.3 with the max-heap label ordering is never random re-

gardless of the insertion function applied. This is a strong statement to make,

yet simple to verify. The total number of distinct canonically-ordered labelings

possible on the initial discrete data structure of size four divided by the total

number of distinct canonically-ordered labelings possible on the data structure

in Figure 2.3, i.e. 4!/5, never resolves to a whole number. Therefore, it is never

possible for the five distinct canonically-ordered labelings on this data struc-

ture to be equally likely when all of the distinct canonically-ordered labelings

on the initial discrete data structure are equally likely. Hence, Schellekens’s

randomness can never be obtained for the data structure in Figure 2.3 when

the max-heap label ordering is on it.

Note that α in the MOQA theory [63] can change throughout the composite

CHAPTER 6. LITERATURE REVIEW 229

variable’s lifetime. Initially α will refer to the discrete partial order family and

the max-heap label ordering. MOQA functions, such as the MOQA product

and split function, can then change α’s data structure family though they

will not change its label ordering. By contrast, α in the Knuth theory [42] is

constant throughout the composite variable’s lifetime.

The major commonality between these definitions is that they both require

the composite variable of type α and size n to be stationary. Flajolet, Françon

and Vuillemin [20] define a composite variable of type α and size n as stationary

when the average-case cost of the α function next applied to the composite

variable can be correctly calculated knowing only the composite variable’s size.

Hence, the sequence of functions previously applied to a stationary composite

variable is irrelevant when it comes to determining the average-case cost of the

function next applied.

As Knuth’s definition of randomness allows for a wider range of data or-

ganisations, does it make sense to consider it as a replacement for the defi-

nition used by MOQA? As already covered in detail, every MOQA function

has its own specific formula that calculates its average-case cost when it is

applied to a fixed po-structure by iterating through the shape of that fixed

po-structure. These formulas are then supplied to the MOQA static analysis

tool. To change the meaning of randomness in MOQA would require discard-

ing the current average-case formulas for fixed po-structures and supplying

to the MOQA static analysis tool a new average-case formula for each of the

functions that are now chosen for analysis. The functions chosen for analysis

will be some subset of the functions that the tool is now capable of analysing,

which due to the randomness change include any Iα(x) and any Dα(x) that

preserves Knuth’s randomness. So the key question is, for each freshly chosen

function, can a formula that calculates its average-case cost when it is applied

to a fixed po-structure be provided to the MOQA static analysis tool? (The

average-case formulas for MOQA functions when they are applied to induc-

tive po-classes is properly addressed for the first time by Hickey [35] and here.

The MOQA book’s theory [63] is for functions when they are applied to fixed

po-structures. Therefore, this is the context for which the randomness swap

is considered.) As the current MOQA average-case formulas step through the

shape of a fixed po-structure, there would appear to be no reason why not, if

the new formulas continue to adhere to MOQA’s literal approach to average-

CHAPTER 6. LITERATURE REVIEW 230

case derivation. In fact, in the worst-case scenario, the average-case cost that

arises from applying a function that preserves Knuth’s randomness to a data

structure of type α and size n can be calculated as follows: generate each data

structure in SXn, α, obtain function cost for each data structure by stepping

through its shape, sum together all of these function costs and then divide

the sum by |SXn, α|. Admittedly, the average-case formulas for the current

MOQA functions are not as intensive as this. Only once do they need to step

through the shape of the fixed po-structure to which they are applied due to

the shape being in series-parallel, instead of stepping through the shape for ev-

ery canonically-ordered labeling on the fixed po-structure. Nonetheless, either

way, there is a finite number of data structures being iterated through.

It is worth acknowledging that there will be instances of the worst-case sce-

nario where generating each of the data structures in the finite multiset SXn, α

is too large a problem to solve in practice, no matter how much computational

power is thrown at the problem, because of the magnitude of n in conjunction

with the specific α. However, there will be many instances of the worst-case

scenario where the number of data structures in SXn, α is modest enough for

them to be individually generated statically and so, in these cases, the worst-

case scenario is solvable in practice. It is also worth noting that not much

attention is generally given to the efficiency of non real-time static analysis

tools; the focus is generally on their accuracy. So the number of hours/days

taken by the MOQA static analysis tool to complete its analysis has never

been of particular concern because it is a one-off event, whereas it is probable

that the program being analysed will be executed many times.

Though at times the worst-case scenario will be the only solution for some of

the functions chosen for analysis, it may be that the average-case formulas for

the other functions chosen can also take shortcuts in their calculations because

of the data structure family, label ordering and distribution of canonically-

ordered labelings that they specifically deal with. It could be decided that

only functions with a level of abstraction in their average-case formulas are to

be included in the new repertoire. So the conclusion here is that this change

to Schellekens’s randomness appears to be achievable. If implemented, then

the result would be a more powerful MOQA static analysis tool because the

tool is now able to get the average-case cost of far more insertion and deletion

functions. The main foreseen downside to this change is that the MOQA book

CHAPTER 6. LITERATURE REVIEW 231

[63] would suffer from a loss of novelty as its uniqueness rests on it being

able to statically analyse algorithms that comply with its own definition of

randomness.

6.10 Chapter Summary

Alan Turing proved that the halting problem is undecidable [73] and, as a

consequence, a general tool that determines the average-case behaviour of any

program cannot exist, since some of the programs will not halt. Yet, it is still

reasonable to aim for a tool that can determine average-case behaviour for a

range of diverse algorithms. So this chapter examined the progress made by

others towards this aspiration. While the majority of systems discussed here

contributed in some way towards the automation of average-case analysis, the

system that clearly made the greatest progress is LUO, which was subsequently

improved upon by Mishna’s extension.

As well as reviewing the current literature, this chapter carefully com-

pares each key work against MOQA. This had not been done before in any

significant detail and the benefits of such attention are plain. Firstly, the com-

parison revealed how MOQA distinguishes itself from other tools, e.g. Metric

tracks unlabeled data structures whereas MOQA tracks labeled data struc-

tures. Secondly, it identified various features that could be assimilated into

future versions of MOQA. For example, MOQA could take advantage of the

mathematical properties inherent in functional languages as ACE does if it

switched to a functional language or it is likely that MOQA could be strength-

ened from replacing its definition of randomness preservation with Knuth’s.

Indeed, the development of a new MOQA function resulted from contrast-

ing LUO’s product function with MOQA’s product function. So, all in all,

this chapter concretely shows how MOQA profits from a thorough comparison

against existing research.

Chapter 7

Conclusion

This chapter commences with an overview of MOQA for the purpose of de-

limiting its scope. Next, there is a summary of paths that the research can

take in the future. The chapter then concludes with a synopsis of this work’s

contributions.

7.1 MOQA Assessment

A variety of MOQA theory evaluations are dispersed throughout this work

and occur relative to context. The aim of this section is to gather together

the most important of these conclusions and to cultivate some of them further.

This unification will provide a more coherent and comprehensive assessment

of MOQA.

For ease of presentation, this assessment is separated into the following five

topics.

Recurrence relations

MOQA aims to express the average-case cost of a recursive algorithm as a

recurrence relation. If a closed-form solution is desired, then the suggestion is

that this recurrence relation is plugged into some existing automated solver,

such as Mathematica [49].

The first drawback with this is that MOQA cannot claim to be among

the leading average-case static analysis systems if it can only produce closed-

form expressions for straight-line code; static analysis systems that succeed

232

CHAPTER 7. CONCLUSION 233

in determining closed-form expressions for the average-case cost of recursive

algorithms are detailed in Chapter 7. The second drawback is that it neatly

sidesteps the fact that automatically solving recurrence relations can be dif-

ficult and, in some cases, may result in closed-form expressions from which

asymptotic growth is “unpleasant” to identify [81].

Another concern is that MOQA lags behind the latest methods in its field,

which revolve around generating functions because they can represent recur-

rence relations and they are “easier to handle with a computer algebra system”

[81]. Note, however, that generating functions do not eliminate the need for

a sophisticated automated solver. For example, LUO devotes over 5, 000 lines

of its code to solving such equations; LUO is reviewed in Section 6.5.

Therefore, MOQA is not yet a complete solution and so it is paramount that

this issue is resolved regardless of the manner in which closed-form expressions

for MOQA recurrence relations are actually derived, i.e. regardless of whether

MOQA itself is extended or the pipeline to some other system is implemented.

Label ordering

It is assumed that the label ordering on any data structure that can be rep-

resented in a MOQA′ random bag is max-heap ordered1. This allows label

ordering to be an implicit constant in MOQA’s average-case formulas, as op-

posed to being an explicit variable. In other words, this assumption allows the

MOQA calculations to fuse the label ordering onto the data structure. Nailing

down the label ordering severely restricts MOQA’s extensibility in this regard

because the addition of a new label ordering, such as the binary search tree

label ordering, to the MOQA theory would require each of the MOQA func-

tion’s average-case formula(s) for each acceptable data structure type to be

recalculated by hand for this label ordering. For example, the MOQA product

function’s average-case formula(s) for a fixed po-structure and for each of the

inductive po-class categories defined in Chapter 4 would have to be redone

from scratch for each new label ordering.

Is this level of effort always to be expected when a system that automat-

ically determines average-case behaviour has a label ordering added to it?

Consider the addition of Green’s box/min label operator to the LUO gram-

1The other possibility is that the label ordering is min-heap ordered. Either of these
assumptions are acceptable because MOQA’s average-case formulas apply in either scenario.

CHAPTER 7. CONCLUSION 234

mar; this is discussed in Section 6.6 and the average-case static analysis system

LUO is discussed in Section 6.5. This operator assigns the minimum label to

a component of a data structure, which allows a LUO user to define not only

a data structure but also the min-heap label ordering on it. (A similar max

label operator can be introduced for the max-heap label ordering.) Due to the

design of LUO, it is only necessary to update LUO’s engine with the generat-

ing function for the new box operator. So a label ordering is added to LUO

by layering the label ordering definition over the data structure definition and

this removes the need to rework the generating functions that already exist in

LUO’s engine. Hence, LUO can translate a structural definition that involves

the box operator into a generating function after a straightforward system

extension and this ease is due to the compositional nature of LUO’s trans-

lation process. So it would be just as simple to add yet another label order

operator to LUO’s grammar once the generating function for that operator is

determined. Therefore, LUO’s system and Mishna’s provision of separate op-

erators for label order allows average-case behaviour to be calculated without

“baking” label ordering into every operator, as MOQA does. Hence, this la-

bel ordering approach is far more extensible than MOQA’s, which shows that

MOQA’s awkwardness in this matter is due to how it own theory has been

developed, rather than being due to a theoretical limitation.

Data structure representation

In Artificial Intelligence, an environment can be modelled either iconically or

logically.

• An iconic representation has a strong structural resemblance to the en-

vironment it is representing.

• A logical representation describes the environment it is representing but

there is no necessity for it to have a strong structural resemblance to the

environment.

According to this classification, MOQA represents its data structures icon-

ically. Such a form of representation is required because of MOQA’s average-

case formulas, which usually iterate over the shape of a data structure2. How-

2The new average-case formulas developed by this work for inductive po-classes, and
presented in Chapter 4, behave similarly because they are an extension of the MOQA system.

CHAPTER 7. CONCLUSION 235

ever, any formula that needs to explicitly iterate over the shape of a data

structure takes a very literal path in deriving its result. So, as MOQA’s

average-case formulas mainly rely on there being some concrete representation

of data structure shape, it is evident that MOQA introduces little abstraction

between the actual data structures and its modelling of them. Hence, it is

argued here that this approach costs MOQA because more conceptual data

structure representations tend to give more scope for analysis and crucially,

may result in closed-form expressions for average-case cost, which would be a

marked improvement on the recurrence relations that MOQA produces.

To demonstrate the power of abstraction when it comes to data structure

representation, take, once again, the example of the more successful LUO; see

Section 6.5 for details. The LUO system represents its data structures with

generating functions and hence, represents them logically. Although it may

not be obvious at first glance what type of data structure a particular gener-

ating function represents, it is this abstraction from data structure shape to

equation that lends LUO much of its strength because data structures are now

represented in a conceptual form that can be mined for average-case data via

existing mathematical techniques, and this results in closed-form expressions

for average-case cost. Therefore, this evidence is supportive of this work’s

conclusion, which is that MOQA seriously impedes its own success by repre-

senting data structures iconically and thus, by its literalness when it comes to

calculating average-case cost.

The complexity of average-case analysis

Consider the following observation:

“Systems simple enough to be understandable are not complicated

enough to behave intelligently; systems complex enough to behave

intelligently are not simple enough to understand [17].”

This paradox makes the interesting, and somewhat intuitive, point that simple

systems cannot manage the intricacy associated with complex problems; such

intricacies are very apparent in large-scale systems that predict the weather or

diagnose space shuttle faults in real-time. Though fully detailed in Chapter 2,

the MOQA solution to average-case analysis can be summed up as follows:

apply one of the limited number of MOQA functions to a series-parallel data

CHAPTER 7. CONCLUSION 236

structure whose canonically-ordered labelings are all equally likely and then

iterate over the shape of that data structure to obtain that function’s average-

case cost. Clearly, MOQA is a simple system. Yet it is well-known that

determining average-case behaviour is often a complex task, whether doing so

by hand or automatically. Wegbreit states that “the analysis of many algo-

rithms requires considerable mathematical expertise; an expert system would

necessarily include all the techniques in the monumental work of Knuth” [76].

This is illustrated by Jonassen and Knuth in a paper aptly title “A simple al-

gorithm whose analysis isn’t” [40], which shows that a “surprisingly intricate

analysis” is required to determine the performance of the standard insertion,

deletion and search operations on binary search trees of size three. There-

fore, while MOQA can be lauded for its simplicity, the main repercussion is

that it is unable to analyse algorithms whose average-case behaviour is diffi-

cult to establish. In other words, MOQA’s simplicity prevents it from being

“intelligent” enough to handle the usual complications that arise in average-

case analysis. This is further emphasised by considering the algorithms that

MOQA can analyse.

A MOQA function is always applied to a series-parallel data structure

whose canonically-ordered labelings are all equally likely and consequently, the

function will always return a series-parallel data structure whose canonically-

ordered labelings are all equally likely. In the field of automated average-case

analysis, it is novel indeed to rely on functions that can guarantee such a uni-

form distribution of output, as the MOQA book [63] highlights. However, it is

the class of algorithms that actually use, and only use, such functions which is

of real import. The algorithms in this class only consider series-parallel data

structures and continuously maintain the uniform distribution of their data

structures’ canonically-ordered labelings, i.e. no matter the modification made

by one of these algorithms to one of its series-parallel data structures, all of

the data structure’s canonically-ordered labelings are still equally likely when

considered over all possible executions of the algorithm. So MOQA can only

analyse algorithms with this specific behaviour, e.g. insertion-sort, quicksort

and mergesort. Such algorithms are generally found towards the start of text-

books that explain algorithm analysis, with “The Big Book (of Algorithms)”

[13] being an example of one such book, because it is not too hard to reason

out their average-case behaviour and so is a gentle introduction to the field.

CHAPTER 7. CONCLUSION 237

Thus, MOQA can only analyse an algorithm whose very predictability ensures

that its average-case behaviour is relatively simple to ascertain. Hence, MOQA

is unable to statically analyse a considerable swath of algorithms because its

theory is too basic to manage the level of intricacy normally associated with

average-case analysis.

Algorithms that can be analysed

All the following requirements must hold true if MOQA is to successfully anal-

yse an algorithm:

1. each of the algorithm’s data structures must be in series-parallel through-

out the algorithm,

2. each of the algorithm’s data structures must have either the max-heap

or the min-heap label ordering on it throughout the algorithm,

3. for each of the algorithm’s data structures, the initial uniform distribu-

tion of its canonically-ordered labelings must never be disrupted by the

algorithm regardless of the modifications the algorithm makes to it,

4. it must be possible to express the algorithm solely in terms of the MOQA

functions and the reduced range of if statements, for statements and other

program constructs that Hickey [35] allows for, and finally,

5. it must be possible to express the algorithm’s average-case cost solely in

terms of the average number of comparisons that take place within its

data structures.

Additionally, these requirements were composed for algorithms whose data

structures can be statically represented with fixed po-structures. However, it

is atypical for there to be interest in the analysis of such algorithms. To il-

lustrate why, consider the algorithm that applies some sequence of functions

to the data structure which initially is the fixed po-structure illustrated in

Figure 2.2. The average-case cost of this algorithm is averaged over the costs

of just eight run-times; eight being the number of distinct canonically-ordered

labelings of that fixed po-structure whose size is five. Hence, such a scenario

is not usually considered in average-case analysis because the fixed number

of distinct algorithm executions means that determining the average-case cost

CHAPTER 7. CONCLUSION 238

of an algorithm whose data structure size remains constant is a frivolous en-

terprise3. Instead, it is far more conventional to consider the average-case

cost of an algorithm whose data structure size is the variable n, with n ≥ 0.

However, the MOQA theory was specifically designed for fixed po-structures

and this constraint motivated Section 4.3’s expansion of the MOQA theory;

the updated theory admits inductive po-classes and inductive po-classes can

represent data structures of size n. (The MOQA fixed po-structure design

also contributed to why MOQA selected such a literal data structure repre-

sentation, which was discussed in an earlier topic.) So, this new version of

the MOQA theory permits an algorithm’s data structure to be statically rep-

resented with the inductive po-class I. When this is the case, then the third

requirement above becomes the following: all of I’s fixed po-structures of size

n must be equally likely, all the canonically-ordered labelings of each of these

fixed po-structure must be equally likely and these two initial properties of I

must never be disrupted by the algorithm regardless of the modifications the

algorithm makes to I.

This is a very specific set of requirements; the previous topic examined how

the third requirement, on its own, rules out the MOQA analysis of many algo-

rithms. Therefore, while an algorithm may satisfy some of these requirements,

it is not common to satisfy all of them. Take the heapsort algorithm as an

example. While it is a comparison-based algorithm with the max-heap/min-

heap label ordering on its series-parallel data structure4, it does not maintain

the required uniform distribution of output after the initial extraction of the

largest/smallest label from the heap. The binary search algorithm demon-

strates an algorithm whose average-case cost cannot be expressed in terms of

the MOQA measure because each of its comparisons take place between the

label of a node within the sorted list and the label of an item outside of the

sorted list.

Therefore, MOQA’s rigid design prevents it from being categorised as a

general average-case static analysis tool. Instead, it falls into the same category

3There is also a programmer’s concern about code smell when encountering a data struc-
ture whose size is hard-coded.

4While a heap is in series-parallel, there is still a static analysis problem when it comes
to representing all heaps of size n with a definition that is inductively defined. This problem
stems from the fact that such a structural definition cannot represent a complete or nearly
complete tree, which is part of the definition of a heap. This dilemma, in the MOQA context,
was first identified by Hickey [35].

CHAPTER 7. CONCLUSION 239

of systems that COMPLEXA does, see Section 6.4, because it is a purpose-

built system for a small tightly defined range of algorithms.

To summarise this section, the MOQA average-case solution is often ex-

pressed as a recurrence relation and therefore, is often an incomplete solution.

The MOQA average-case solution is also limited when it comes to expansion

opportunities. This is due to the literal, and hence inflexible, approach that it

takes in calculating average-case cost and the restrictions that it places on the

algorithms that it can analyse. These constraints are particularly unfriendly

when considering the complexity regularly inherent in average-case analysis.

However, the MOQA concept could prove to be a useful teaching tool; it

could be a helpful way of introducing undergraduate students to the average-

case analysis of common sorting algorithms. So, this is an area where the novel

MOQA random structure preserving functions could be a boon.

7.2 Future Work

Certain key tasks for the future were identified during the course of this re-

search and they are as follows:

• The new MOQA functions discussed in Section 3.3 could be added to

the current MOQA language MOQA-Java and thereupon, incorporated

into the current MOQA static analysis tool Distri-Track .

• Distri-Track could have its erroneous average-case formulas, which are

detailed in Section 4.5.2.3, replaced by the correct versions, which are

also detailed in the same section.

• Distri-Track could be augmented with Chapter 4’s new inductive po-

class types and their average-case formulas.

• The MOQA language could become functional, instead of being object-

oriented, to take advantage of the mathematical properties associated

with such languages; see Section 6.3 for further explanation.

• The MOQA static analysis tool could be extended to derive closed-form

expressions, in place of recurrence relations, for average-case behaviour.

As difficult recurrence relations can be solved via generating functions,

it may be helpful to explore current developments in this area.

CHAPTER 7. CONCLUSION 240

7.3 Thesis Summary

This thesis revolves around MOQA, whose objective is “to present a new ap-

proach to the Average-Case Analysis of Algorithms” [63].

Initially, this research developed an implementation of the MOQA lan-

guage. This implementation, which is known as MOQA-Java, is designed to

assist programmers in writing code that adheres to the requirements specified

in the MOQA book [63]. After carefully designing and implementing this Java

package, a few algorithms, whose translation into MOQA-Java is straightfor-

ward, were analysed by hand. The aim of this examination was to look at

the extra overhead that the MOQA functions introduce because of their very

definitions and therefore, to compare the behaviour of algorithms when writ-

ten in these functions to their usual behaviour. The study revealed that the

MOQA-Java implementation does result in extra costs. However, these extra

costs are not significant enough to cause the asymptotic behaviour of each

analysed algorithm to deviate from what is expected.

The MOQA-Java development led this work to create new helper functions

and, far more importantly, to create new MOQA functions. These new MOQA

functions increase the potential for MOQA to implement and analyse more

algorithms. For example, some of the MOQA functions that originated in this

work enabled MOQA to statically analyse the treapsort algorithm described in

Appendix A. Moreover, consider the new MOQA product function described

in Section 6.5. This function products together two distinct data structures

and is the first of the MOQA functions to be applied across separate data

structures.

In scrutinising the MOQA language, this work found the MOQA claim

regarding the reversibility of its language to be lacking and detailed why. It

also discovered a gap between how the MOQA theory is defined and what

the MOQA book [63] envisions will be accomplished by the MOQA theory,

which is explored in Chapter 4. Firstly, this chapter redefines and expands

upon the MOQA theory. As a result, the theory can now encompass data

structures other than those of a fixed size and shape. In other words, it can

now encompass data structures of size n, e.g. inductive po-classes. This was

a crucial evolution because tracking the average-case cost of an algorithm for

a fixed data structure offers little reward. Secondly, this chapter carries on

CHAPTER 7. CONCLUSION 241

the research that Hickey [35] began; Hickey developed general average-case

MOQA formulas for one type of inductive po-class. In doing so, this work

constructed an inductive po-class framework, into which Hickey’s type [35]

was placed after corrections were made to some of the formulas developed

by that work. Next, general average-case MOQA formulas were developed

for some of the other inductive po-class types in this framework. These new

MOQA data structure types and their corresponding formulas, like the new

MOQA functions, further increase the potential for MOQA to implement and

analyse more algorithms. Additionally, the inductive po-class categorisation

facilitated this work in identifying those that present a significant challenge

when it comes to generating general average-case MOQA formulas for them.

Attention was given to whether MOQA can handle duplicate labels al-

though it appeared to Schellekens that duplicate labels could be safely intro-

duced into MOQA with negligible effort [63]. However, the work here showed

this initial reasoning to be erroneous. This finding was also supported by ex-

amples; one of the examples that dispelled the notion that it would be simple

to add duplicate labels to MOQA calculated the average number of swaps for

MOQA’s insertion-sort for a particular distribution of input that involved du-

plicate labels. These examples helped in cementing this work’s verdict on the

matter, which is that admitting duplicate labels to the MOQA theory would

require it to be altered considerably.

Finally, a thorough literature review was performed. Although much of this

literature was referenced in earlier works on MOQA, there had never previously

been an intensive comparison between MOQA and the other systems in its

field. This investigation revealed areas in which MOQA fell short and also areas

in which it flourished. Moreover, it gave support to the MOQA assessment

that followed, which perceives MOQA to be a system with narrow applicability

despite some of its creative ideas for static average-case analysis.

To speak ad rem, the author trusts that these contributions meet the aims

and objectives laid out at this work’s commencement.

Appendix A

Treapsort Algorithm

The treap data structure was first introduced by Seidel and Aragon [68]. A

treap is a binary search tree in which each node has both a key and a priority.

As for a binary search tree, the inorder traversal of the treap’s nodes returns

the keys of the treap in ascending order. Furthermore, the treap’s priorities

are max-heap ordered.

For the treapsort pseudo-code below, let A denote a discrete partial order.

This partial order is first converted into a treap by the treapgen algorithm.

This treap is then converted into a total order by |A|−1 consecutive iterations

of the MOQA lift function. Let Atreap, i denote the treap that results from

treapgen after i nodes have been deleted from it by the MOQA lift function,

0 ≤ i ≤ |A| − 2.

TreapSort(A):

TreapGen(A)

for i = 0 to |A| − 2 do

Lift(Atreap, i)

For the treapgen pseudo-code below, let A denote a discrete partial order

whose nodes are randomly ordered as a1, . . . , a|A|. When the MOQA top func-

tion determines that the node aj is the maximum node in A, let Aleft denote

the discrete partial order that is a1, . . . , aj−1 and let Aright denote the discrete

partial order that is aj+1, . . . , a|A|, 1 ≤ j ≤ |A|.

242

APPENDIX A. TREAPSORT ALGORITHM 243

TreapGen(A):

if |A| > 1 then

Top(A)

TreapGen(Aleft)

TreapGen(Aright)

Distri-Track ’s analysis of the MOQA book’s treapsort algorithm [63] is

detailed in Hickey’s research [35], where the algorithm is known as HOTsort.

Appendix B

Algorithms LUO Can Analyse

The LUO system is designed for the purpose of statically calculating an al-

gorithm’s average-case cost and this system is discussed in Section 6.5. The

following list of algorithms/problem types are just some of those for which

LUO can statically determine average-case cost. The LUO Cookbook [23]

thoroughly details the analysis process for each example below, as well as for

other examples whose descriptions are too complex to briefly summarise here.

1. Computation of exponential xc in group structure G, e.g. the integers

modulo a prime, using the standard binary method.

2. Computation of exponential xc in group structure G using the two heuris-

tics developed by Morain and Olivos [54].

3. A concurrent access problem along the lines of the problems detailed by

Beauquier et al [4] and Geniet [29], where the problem is described in

terms of finite automata and each transition is associated to a procedure

to which a cost is attached.

4. Given two rows consisting of n points each, how many ways are there of

drawing straight lines between them so that (I) from each point there is a

line, (II) no lines cross, and (III) a line from point i in row a can only go to

points i−1, i, i+1 in row b, and vice versa? This combinatorial problem

was introduced by Steven Bird in the transaction 1107@epistemi.ed.ac.uk

of the newsgroup Sci.math.

5. A differentiation procedure as typically encountered in computer algebra

244

APPENDIX B. ALGORITHMS LUO CAN ANALYSE 245

systems and a modified version of this procedure where its subtrees are

copied instead of shared.

6. Computation of higher order derivatives using iterated differentiation.

7. Partial analysis of the left-distributivity rule, which is used classically in

the expand primitive of computer algebra systems.

8. A term rewriting system with mutually recursive operators, as introduced

by Choppy et al [8].

9. Three distinct ways of shuffling a binary tree, as introduced by Choppy

et al [8].

10. Determining the collection of letters that can occur as initial letters in

a regular language generated by a regular expression using an example

provided by Vivares [75].

11. Estimating the expected number of connected components in a random

labeled 2-regular graph of size n, where an undirected graph is said to

be 2-regular if each node has degree 2.

12. Pollard’s rho-method for integer factorisation, as described in [43].

13. The variance of internal pathlength in binary trees.

14. The number of partitions of n into k parts, when k is fixed and n→∞.

15. Banach’s matchbox problem, which is a particular case of the toilet paper

problem [44].

Bibliography

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and

Interpretation of Computer Programs (2nd Edition). MIT Press, 1996.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-

pilers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley,

2006.

[3] John Backus. Can programming be liberated from the von Neumann

style?: a functional style and its algebra of programs. Communications

of the ACM, 21(8):613–641, 1978.

[4] J. Beauquier, B. Bérard, and L. Thimonnier. On a concurrency measure.

Technical Report 306, Laboratoire de Recherche en Informatique, 1986.

[5] Boris Beizer. Micro Analysis of Computer System Performance. John

Wiley & Sons, 1978.

[6] Charles H. Bennett. Logical reversibility of computation. IBM Journal

of Research and Development, 17(6):525–532, 1973.

[7] Charles H. Bennett. Notes on the history of reversible computation. IBM

Journal of Research and Development, 32(1):16–23, 1988.

[8] C. Choppy, S. Kaplan, and M. Soria. Algorithmic complexity of term

rewriting systems. In Proceedings of the 2nd Rewriting Techniques and

Applications Conference, pages 256–273. Springer, 1987.

[9] Jacques Cohen. Automatic Analysis of Programs (Microanalysis).

http://pages.cs.brandeis.edu/∼jc/automatic analysis of

programs.html .

246

BIBLIOGRAPHY 247

[10] Jacques Cohen. Computer-assisted microanalysis of programs. Commu-

nications of the ACM, 25(10):724–733, 1982.

[11] Jacques Cohen and Carl Zuckerman. Two languages for estimating pro-

gram efficiency. Communications of the ACM, 17(6):301–308, 1974.

[12] Louis Comtet. Advanced Combinatorics. Reidel Publishing Company,

1974.

[13] Thomas H. Corman, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms (2nd Edition). MIT Press, 2001.

[14] Paidi Creed. Generating Functions and their Application to the Average-

case Time Complexity of Algorithms. 2004 Final Year Project Report,

http://www.ceol.ucc.ie/public.php .

[15] Maylis P. Delest and Jean Marc M. Fedou. Attribute grammars are useful

for combinatorics. Theoretical Computer Science, 98(1):65–76, 1992.

[16] E.W. Dijkstra. Letter from E.W.Dijkstra to C.A.R.Hoare, 1970, EWD

292. http://www.cs.utexas.edu/users/EWD .

[17] George B. Dyson. Darwin Among The Machines: The Evolution Of Global

Intelligence. Helix Press, 1997.

[18] J.P. Fitch. On algebraic simplification. The Computer Journal, 16(1):23–

27, 1973.

[19] Philippe Flajolet. Analytic analysis of algorithms. In Proceedings of the

19th International Colloquium on Automata, Languages and Program-

ming, pages 186–210. Springer, 1992.

[20] Philippe Flajolet, Jean Françon, and Jean Vuillemin. Computing inte-

grated costs of sequences of operations with application to dictionaries.

In STOC ’79: Proceedings of the 11th ACM Symposium on Theory of

Computing, pages 49–61. ACM Press, 1979.

[21] Philippe Flajolet and Bruno Salvy. Computer algebra libraries for combi-

natorial structures. Journal of Symbolic Computation, 20(5–6):653–671,

1995.

BIBLIOGRAPHY 248

[22] Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Lambda-Upsilon-

Omega: an assistant algorithms analyzer. Applied Algebra, Algebraic Al-

gorithms and Error-Correcting Codes, 357:201–212, 1989.

[23] Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Lambda-Upsilon-

Omega: the 1989 cookbook. Research Report 1073, Institut National de

Recherche en Informatique et en Automatique, 1989.

[24] Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Automatic

average-case analysis of algorithms. Theoretical Computer Science,

79(1):37–109, 1991.

[25] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-

bridge University Press, 2009.

[26] Robert W. Floyd. Assigning meaning to programs. In Proceedings of the

AMS Symposia in Applied Mathematics, pages 19–32. American Mathe-

matical Society, 1967.

[27] Dominique Foata. La Série Génératrice Exponentielle dans les Problèmes

d’Énumération. Presses de l’Université de Montréal, 1974.

[28] Michael P. Frank. Introduction to reversible computing: motivation,

progress and challenges. In Proceedings of the 2nd Conference on Com-

puting Frontiers, pages 385–390. ACM Press, 2005.

[29] D. Geniet. Automaf, un système de construction d’automates synchronisés

et de mesure de parallélisme. PhD thesis, University of Paris-Sud, Orsay,

France, 1989.

[30] Ian P. Goulden and David M. Jackson. Combinatorial Enumeration. John

Wiley & Sons, 1983.

[31] Daniel Green. Formal Languages and their Uses. PhD thesis, Stanford

University, CA, USA, 1985.

[32] J. Gustafsson, B. Lisper, C. Sandberg, and N. Bermudo. A tool for auto-

matic flow analysis of C-programs for WCET calculation. In Proceedings

of the 8th International Workshop on Object-Oriented Real-Time Depend-

able Systems, pages 106–112. IEEE Press, 2003.

BIBLIOGRAPHY 249

[33] Haskell. http://www.haskell.org .

[34] Christopher Healy, Mikael Sjödin, Viresh Rustagi, and David Whalley.

Bounding loop iterations for timing analysis. In Proceedings of the IEEE

Real-Time Applications Symposium, pages 12–21. IEEE Press, 1998.

[35] David Hickey. Tracking Data Structures for Automated Average Time

Analysis. PhD thesis, University College Cork, Cork, Ireland, 2008.

[36] Timothy Hickey and Jacques Cohen. Automating program analysis. Jour-

nal of the ACM, 35(1):185–220, 1988.

[37] C.A.R. Hoare. Quicksort. Computer Journal, 5(1):10–16, 1962.

[38] C.A.R. Hoare. An axiomatic basis for computer programming. Commu-

nications of the ACM, 12(10):576–580, 1969.

[39] C.A.R. Hoare. Recursive data structures. International Journal of Com-

puter and Information Sciences, 4(2):105–132, 1975.

[40] Arne T. Jonassen and Donald E. Knuth. A trivial algorithm whose anal-

ysis isn’t. Journal of Computer and System Sciences, 16:301–322, 1978.

[41] Donald E. Knuth. Semantics of context-free languages. Mathematical

Systems Theory, 2(2):127–145, 1968.

[42] Donald E. Knuth. Deletions that preserve randomness. IEEE Transac-

tions on Software Engineering, 3(5):351–359, 1977.

[43] Donald E. Knuth. The Art of Computer Programming: Seminumerical

Algorithms, Volume 2 (2nd Edition). Addison-Wesley, 1981.

[44] Donald E. Knuth. The toilet paper problem. The American Mathematical

Monthly, 91(8):465–470, 1984.

[45] Donald E. Knuth. The Art of Computer Programming: Sorting and

Searching, Volume 3 (2nd Edition). Addison-Wesley, 1998.

[46] Dexter Kozen. Semantics of probabilistic programs. In Proceedings of the

20th Symposium on Foundations of Computer Science, pages 101–114.

IEEE Press, 1979.

BIBLIOGRAPHY 250

[47] Algolib Library. http://algo.inria.fr/libraries/ .

[48] Yanhong A. Liu and Gustavo Gomez. Automatic accurate time-bound

analysis for high-level languages. In Proceedings of the ACM SIGPLAN

Workshop on Languages, Compilers, and Tools for Embedded Systems,

pages 31–40. Springer-Verlag, 1998.

[49] Mathematica. http://www.wolfram.com/mathematica .

[50] John McCarthy. A basis for a mathematical theory of computation. Com-

puter Programming and Formal Systems, pages 33–70, 1963.

[51] Daniel Le Métayer. ACE: an automatic complexity evaluator. ACM

Transactions on Programming Languages and Systems, 10(2):248–266,

1988.

[52] Marni Mishna. Attribute grammars and automatic algorithm analysis.

Advances in Applied Mathematics, 30(1–2):189–207, 2003.

[53] ML. http://www.smlnj.org .

[54] F. Morain and J. Olivos. Speeding up the computations on an elliptic

curve using addition-subtraction chains. Research Report 983, Institut

National de Recherche en Informatique et en Automatique, 1989.

[55] Peter Naur. Revised report on the algorithmic language ALGOL 60.

Communications of the ACM, 6(1):1–17, 1963.

[56] University of Florida Reversible & Quantum Computing Research Group.

http://www.cise.ufl.edu/research/revcomp .

[57] Peter Puschner and Anton Schedl. Computing maximum task execution

times - a graph-based approach. Journal of Real-Time Systems, 13(1):67–

91, 1997.

[58] Chittoor V. Ramamoorthy. Analysis of computational systems: discrete

Markov analysis of computer programs. In Proceedings of the 1965 20th

National Conference, pages 386–392. ACM Press, 1965.

[59] Lyle H. Ramshaw. Formalizing the Analysis of Algorithms. PhD thesis,

Stanford University, CA, USA, 1979.

BIBLIOGRAPHY 251

[60] Vivek Sarkar. Determining average program execution times and their

variance. SIGPLAN Notices, 24(7):298–312, 1989.

[61] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multi-

processors. MIT Press, 1989.

[62] Vivek Sarkar and John Hennessy. Partitioning parallel programs for

macro-dataflow. In Proceedings of the 1986 ACM conference on LISP

and Functional Programming, pages 202–211. ACM Press, 1986.

[63] Michel Schellekens. A Modular Calculus for the Average Cost of Data

Structuring. Springer, 2008.

[64] Michel Schellekens. MOQA; unlocking the potential of compositional

static average-case analysis. Journal of Logic and Algebraic Programming,

79(1):61–83, 2010.

[65] Robert Sedgewick. Quicksort. PhD thesis, Stanford University, CA, USA,

1975.

[66] Robert Sedgewick. Quicksort with equal keys. SIAM Journal on Com-

puting, 6(2):240–268, 1977.

[67] Robert Sedgewick. Implementing quicksort programs. Communications

of the ACM, 21(10):847–857, 1978.

[68] Raimund Seidel and Cecilia Aragon. Randomized search trees. In Proceed-

ings of the 30th Symposium on Foundations of Computer Science, pages

540–545. IEEE Press, 1989.

[69] Richard P. Stanley and Sergey Fomin. Enumerative Combinatorics Vol-

ume 2. Cambridge University Press, 2001.

[70] Jiang Tao, Li Ming, and Paul M. B. Vitányi. Average-case analysis of

algorithms using Kolmogorov complexity. Journal of Computer Science

and Technology, 15(5):402–408, 2000.

[71] Tommaso Toffoli. Reversible computing. Automata, Languages and Pro-

gramming, Lecture Notes in Computer Science (LNCS), 85:632–644, 1980.

BIBLIOGRAPHY 252

[72] Jacinta Townley, Joseph Manning, and Michel Schellekens. Sorting al-

gorithms in MOQA. Electronic Notes in Theoretical Computer Science,

225(C):391–404, 2009.

[73] Alan M. Turing. On computable numbers with an application to the

Entscheidungs problem. In Proceedings of the London Mathematical So-

ciety, pages 230–265. LMS, 1937.

[74] Jeffrey Scott Vitter and Philippe Flajolet. Average-case analysis of algo-

rithms and data structures. In Handbook of Theoretical Computer Science,

Volume A, chapter 9. MIT Press, 1990.

[75] F. Vivarès. Contribution à la modélisation de méthodes. Application

aux méthodes de Jackson. PhD thesis, École Nationale Supérieure de

l’Aéronautique et de l’Espace, Toulouse, France, 1991.

[76] Ben Wegbreit. Mechanical program analysis. Communications of the

ACM, 18(9):528–539, 1975.

[77] Lutz Michael Wegner. Quicksort for equal keys. IEEE Transactions on

Computers, 34(4):362–367, 1985.

[78] D. Wooldridge. An algebraic simplify in LISP. Memo 11, Stanford Arti-

ficial Intelligence Laboratory, 1963.

[79] Tetsuo Yokoyama and Robert Glück. A reversible programming lan-

guage and its invertible self-interpreter. In Proceedings of the ACM SIG-

PLAN/Workshop on Partial Evaluation and Semantics-based Program

Manipulation, pages 144–153. ACM Press, 2007.

[80] Steven J. Zeil. Selectivity of data flow and control-flow path criteria.

In Proceedings of the ACM SIGSOFT/IEEE 2nd Workshop on Software

Testing, Verification and Analysis, pages 216–222. IEEE Press, 1988.

[81] Paul Zimmermann and Wolf Zimmermann. The automatic complexity

analysis of divide-and-conquer algorithms. Research Report 1149, Institut

National de Recherche en Informatique et en Automatique, 1989.

[82] Wolf Zimmermann. How to mechanize complexity analysis. Technical

Report, University of Karlsruhe, 1988.

