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Abstract 1 

Background: Phosphate additives are used in many processed foods as stabilisers and 2 

emulsifiers. They are present in up to 65% of processed meat products. However, consumer 3 

preferences for more natural and less processed foods has resulted in the growth of clean 4 

label trends, meaning shorter ingredient declarations using fewer ingredients that are 5 

unfamiliar to the consumer. Due to the unique characteristics of phosphates, their removal, 6 

while maintaining product quality, is challenging.  7 

Scope and Approach: In this review, phosphate additive-types are discussed, with particular 8 

emphasis on their application in processed meat products.  Through homeostasis, excess 9 

phosphate is readily excreted by individuals with healthy kidney function, but it is 10 

acknowledged that there is now a desire to find more acceptable ingredient alternatives. The 11 

use of alternative, non-synthetic, ingredients in processed meats such as starch, proteins, 12 

seaweeds, hydrocolloids and fibres, as potential phosphate replacers are discussed. Such 13 

ingredients may not impart the same quality attributes in meat products as provided by 14 

phosphates when used singly, however, adopting hurdle approaches of combining alternative 15 

ingredients with novel processing technologies, such as power ultrasound and high pressure 16 

processing, may provide the meat industry with alternatives. 17 

Key findings and conclusions: The key finding of this review is that the interaction between 18 

novel technologies and ingredients has not been studied extensively, yet there is evidence for 19 

their combined potential. For future studies, non-synthetic ingredients like fibres and starches 20 

could be combined with novel processing technologies to improve the interaction between 21 

meat proteins and alternative ingredients. 22 

 23 
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 37 

1. Introduction 38 

Phosphates are essential for human health as they are required for growth, maintenance and 39 

repair of cells and tissues, signalling, energy transfer and other important functions. They are 40 

involved in many metabolic pathways and are naturally found in the form of organic esters in 41 

foods like egg, meat, potatoes and cereals. In general, the Recommended Dietary Allowance 42 

(RDA) of phosphorus (P) for a healthy adult is 700 mg/day (Winger, Uribarri & Lloyd, 2012; 43 

Calvo & Uribarri, 2013). Commonly, higher quantities are consumed but excess phosphate is 44 

readily excreted by the kidneys. However, individuals with poor kidney function such as 45 

those with chronic kidney diseases (CKD) must closely monitor their dietary intake of 46 

phosphate to avoid an occurrence of hyperphosphatemia (Calvo & Uribarri, 2013; Kalantar-47 

Zadeh et al., 2010; Ritz, Hahn, Ketteler, Kuhlmann, & Mann, 2012). This is particularly 48 

important with the increased use of inorganic P containing additives, such as phosphate 49 

(P2O5) in processed foods (Winger, Uribarri & Lloyd, 2012). 50 

Inorganic phosphates are generally regarded as safe (GRAS) by the United States Food and 51 

Drug Administration (FDA) and are used as an effective food additive in many processed 52 

food products such as meat, ham, sausages, cheese, canned fish, beverages and baked 53 

products. Phosphate addition in US is regulated by FDA regulations that controls the 54 

maximum usage levels in food products (Dykes et al., 2019). According to the Scientific 55 

Committee of Food by European Communities, the established maximum tolerable daily 56 

intake of phosphates is 70 mg/kg body weight expressed as P (Commission, 1991). Since 57 

1990, due to increased consumption of processed foods, P intake has doubled from 500 58 

mg/day to 1000 mg/day in the American diet (Kalantar-Zadeh et al., 2010). Studies of Leon, 59 

Sullivan, & Sehgal (2013) showed that processed food contributed to an extra 700-800 mg of 60 

P intake per day and also reported that almost 44% of best-selling groceries in America 61 

contained phosphate additives.  62 

The increase in the use of phosphates in processed foods may be due to their unique 63 

characteristics which often improve product quality. Phosphates serve as buffers, 64 

sequestrants, acidulants, bases, gel accelerants, dispersants, precipitants and ion-exchange 65 

agents. In the EU, phosphates are classified in the Additive Directive (Regulation EC 66 

1333/2008) as belonging to various functional classes such as emulsifier, stabiliser, 67 

sequestrants and thickeners and their use is permitted in several processed food categories. 68 

Phosphates serve several functions in processed meat such as stabilizing pH, increasing water 69 

holding capacity (WHC), decreasing cooking loss, improving texture and sensory qualities 70 

and more (Dykes et al., 2019) As per the EU legislation on food additives, the maximum 71 

allowed concentration of phosphates in processed meat products is 5000 mg/kg expressed as 72 

P2O5 content (EC. No. 1333/2008, 2008).  73 

There is a growing concern over the sustainable usage of phosphates in food sectors in recent 74 

times. The European Food Safety Authority (EFSA) scientists has estimated that the total 75 

intake of phosphates from food has exceeded the safety level set by EFSA. With the current 76 
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average dietary phosphate consumption rate, the scientists have claimed that the dietary 77 

exposure to phosphorus level might exceed the acceptable daily intake level in infants, 78 

children and adolescents with high phosphate diet (Wyers, 2019). Also, in recent times, there 79 

is a general shift towards alternative ingredients in food products with the emergence of 80 

consumer trends such as health concerns, sustainability and convenience (Asioli et al., 2017). 81 

For sustainable processing, alternatives to synthetic phosphates (e.g. valorisation of 82 

functional ingredients from coproducts and waste-streams) could offer an opportunity 83 

towards a sustainable circular economy in the food sector. Consumer preference towards 84 

natural and less processed food has resulted in the growth of clean label trend. The term clean 85 

label first appeared during 1980s which means food products without any E-number additives 86 

on the food label where the E numbers stands for codes for the food additives permitted to 87 

use within the European Union by the European Food Safety Authority (Asioli et al., 2017). 88 

Although, with the growing trend, the term ‘clean label’ does not possess any clear definition 89 

(Asioli et al., 2017). Ingredion (2004) guides clean labelling in Europe as the products that 90 

are positioned as natural, organic and/or free from additives/ peservatives which is very 91 

similar to the approach of ‘natural labelling’ by United States Food and Drug Administration 92 

(FDA) to refer to the products containing no artificial or synthetic additives in them.    93 

In recent years, the clean label trend has become prominent as many new food products 94 

contain fewer inorganic additives (Asioli et al., 2017). However, it is important that 95 

consumers understand that a functional ingredient, such as P2O5, is only added to the EU 96 

Additive Directive by complying with the conditions set out in Regulation 1333/2008.  In 97 

addition, the Additive Directive sets safe limits on the permitted levels of these ingredients in 98 

food products. Nonetheless, there remains an interest in replacing the functional properties of 99 

phosphates with clean label alternatives. In that sense, the chosen ingredient must have 100 

techno-functionality. The European Food Safety Authority (EFSA) describe ingredients as 101 

chemical substances that are added to food as food additives, food enzymes, flavourings, 102 

smoke flavourings and sources of vitamins and minerals while additives are any substances 103 

that are not normally consumed as a food itself and not normally used as a characteristic 104 

ingredients of food, whether or not it has nutritive value, the intentional addition of which to 105 

food for a technological purpose in the manufacture, processing, preparation, treatment, 106 

packaging, transport or storage of such food results in it or its by-products becoming directly 107 

or indirectly a component of such foods (Regulation 1333/2008). Also, with the uncertainty 108 

in the clear definition of natural antimicrobials, colourants, sweeteners or antioxidants 109 

(Carocho et al., 2015), it is more challenging to define natural techno-functional ingredients 110 

when also other aspects like GM-free and allergens are considered. In that sense, there is 111 

difficulty in truly classifying ‘clean-label’ ingredients. Henceforth, all possible alternative 112 

ingredients irrespective of clean label status have been discussed in this review in the later 113 

sections. 114 

Various attempts have been made to replace phosphates in meat with suitable ingredients like 115 

starches, proteins, seaweeds, hydrocolloids and fibres (Younis & Ahmad, 2015;Resconi, 116 

Keenan, Barahona, et al., 2016a). However, the complete replacement of phosphate in meat 117 

with alternative ingredients may have negative effects on appearance, texture and other major 118 
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product characteristics. For example, use of rice starch as a phosphate replacer in whole 119 

muscle cooked hams affected the appearance and sensory qualities of meat (Resconi, Keenan, 120 

Barahona, et al., 2016a). Similar results were obtained when the amount of phosphate added 121 

to meat was reduced without adding any functional ingredients (Glorieux, Goemaere, Steen, 122 

& Fraeye, 2017). Studies have shown that alternative technologies can be effective in 123 

enhancing the quality of meat processed with added alternative ingredients. Among the 124 

technologies, high pressure processing (HPP) proved to be effective in improving the 125 

functionality of meat products by altering the meat structure. The application of HPP in meat 126 

products can modify the protein spatial structure resulting in solubilisation of myofibrillar 127 

proteins. This can reduce the quantities of salts and phosphates required in processed meat 128 

(Tamm, Bolumar, Bajovic, & Toepfl, 2016). For example, reduced-salt cooked ham was 129 

produced without any changes in WHC and texture using a salt replacer (KCl) and HPP at 130 

100 MPa (Tamm, Bolumar, Bajovic, & Toepfl, 2016). Similarly, ultrasound (US) technology 131 

has been widely used to assist effective ingredient distribution and diffusion within food 132 

matrices. For example, US has been shown to accelerate the diffusion of salt (McDonnell, 133 

Allen, Duane, Morin, Casey, & Lyng, 2017) and salt replacers in pork tissue (Ojha, Keenan, 134 

Bright, Kerry, & Tiwari, 2016).  135 

In line with the trend for healthier processed meats, comprehensive reviews exist on 136 

strategies for sodium reduction (Inguglia, Zhang, Tiwari, Kerry, & Burgess, 2017) and nitrite 137 

reduction (Bedale, Sindelar, & Milkowski, 2016) in processed meats. However there is lack 138 

of research on phosphate reduction. The objective of this review is to discuss the potential of 139 

alternative ingredients and novel processing technologies to reduce phosphates in processed 140 

meats. 141 

2. Phosphates in Processed Meat 142 

Phosphates used in processed meat products are the salts of phosphoric acids containing the 143 

positively charged metal ions of sodium or potassium. Various legislations, depending on the 144 

country, exist on phosphate additive use in foods and further information on this can be found 145 

in Dykes et al. (2019). As per European legislations, food grade phosphates are not permitted 146 

in fresh meat however they can be added in a limited concentration to meat preparations and 147 

meat products (Regulation (EC) 853/2004). According to the Food and Agriculture 148 

Organization (FAO) and World Health Organisation (WHO) food standards, the maximum 149 

permitted level of phosphates in finished products, whole pieces or cuts and processed 150 

comminuted meat products is approximately 5041 mg/kg expressed in P2O5 (Codex Standard 151 

192, 1995, Balestra & Petracci, 2019)  152 

2.1. Types of Phosphates Used in Meat 153 

Several forms of molecular forms of phosphate (P2O5) exist and they are selected depending 154 

on their required function in the food matrix. Phosphates are classified according to the 155 

number of phosphorus atoms sharing oxygen atoms (Lampila & Godber, 2002). They are as 156 

ortho- or monophosphates with one phosphate molecule, di- or pyrophosphates with two 157 

phosphate molecules, triphosphates with three phosphate molecules and polyphosphates with 158 
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more than three phosphates molecules.  The molecular structures of phosphates are ring or 159 

metaphosphates, chain /linear phosphates or ultra /branched phosphate structures with a 160 

combination of ring and linear phosphates. 161 

Only linear phosphates are permitted to be used in processed meats. The commonly used, 162 

Graham’s salt (sodium hexametaphosphate) is a linear phosphate with P2O5 content of about 163 

60-70% (Feiner, 2006; Lampila & Godber, 2002). Sodium tripolyphosphate (STPP) is 164 

commonly mixed with sodium hexametaphosphate (SHMP), tetrasodium pyrophosphate 165 

(TSPP) or sodium acid pyrophosphate (SAPP) for use in meat products like ham, bacon, 166 

frankfurters, bologna, precooked breakfast sausages, delicatessen meats, breaded chicken 167 

products and injected poultry pieces (Lampila, 2013). Different types of phosphates are used 168 

for different meat products based on the product process and formulation as explained by 169 

Long et al. (2011). For example, long- chain polyphosphates with better solubility are used to 170 

prepare brine solutions for ham whereas short-chained phosphates are used for emulsified 171 

products like sausages where the added phosphates act on the protein instantly (Feiner, 2006). 172 

2.2. Functionality of phosphates in meat 173 

Phosphates have various functions such as buffering, water-binding, emulsification, colour 174 

stability, oxidation inhibition, antibacterial activity and protein dispersion properties but are 175 

most commonly used in meat products for their emulsifying and stabilising capabilities, 176 

which largely affect the water holding capacity (Nguyen, Gal, & Bunka, 2011).  177 

Water holding capacity is the ability of meat products to retain its inherent water when an 178 

external pressure or force is exerted upon it, as well as during its storage period thereby 179 

affecting weight and juiciness (Gyawali & Ibrahim, 2016;). In general practice, salting is one 180 

of the oldest techniques for preserving meat and aimed to increase water holding capacity 181 

which is obtained only when low quantity is added (Feiner, 2006). Phosphates additives may 182 

interact against water losses due to several underlying mechanisms importantly, phosphates 183 

affect the intrinsic pH of meat by moving from the isoelectric point (pI). For this reason, most 184 

phosphates used in meat products as alkaline (Long et al., 2011), with the exception of 185 

sodium acid pyrophosphate which is acidic in nature and are used for various functions 186 

(Lampila, 2013). This increase in pH results in the increased electrostatic repulsion between 187 

the proteins allowing for water entrapment (Puolanne, Ruusunen, & Vainionpaa, 2001). This, 188 

in turn, results in swelling of the muscle fibres and activation of proteins. This swollen and 189 

active protein traps and immobilises water added to the meat. Hence, the WHC is increased 190 

and this is especially true in case of polyphosphates like SHMP and STPP (Glorieux et al., 191 

2017).  192 

Phosphates also increase the WHC of meats by sequestering the metal ions such as Ca2+, 193 

Mg2+, Fe2+ and Fe3+ present in the actomyosin complex (Long et al., 2011). When added, 194 

phosphates can bind with ions present in the actomyosin complex which is formed during 195 

rigor mortis. Dissociation of actomyosin into actin and myosin increases the solubilisation of 196 

meat proteins through depolymerisation of thick and thin filaments which leads to increased 197 
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WHC, emulsifying and gelling properties (Glorieux et al., 2017; Puolanne & Halonen, 2010). 198 

This can also have a positive impact on the textural characteristics of meat products.  199 

Phosphates also work synergistically with NaCl for improved product quality. This is mainly 200 

due to the positive effect of NaCl on the solubility of myofibrillar proteins. The Cl- ions 201 

induces electrostatic repulsion between the meat proteins and results in swelling of the meat. 202 

Generally, a minimum concentration of 0.6M of NaCl is required to extract myofibrillar 203 

proteins from the muscle but this amount of NaCl can be effectively reduced by adding 204 

phosphates (5000 mg/kg) to meat product formulations. Thus, by phosphate facilitating 205 

actomyosin dissociation, myosin becomes more easily solubilised by NaCl which in turn 206 

immobilises large amounts of added water. Studies of Schwartz & Mandigo (1976) proved 207 

the synergic effect of salt (0.75%) and STPP (0.125%) on restructured pork in improving the 208 

WHC, eating texture, aroma, flavour, cooking loss and juiciness upon storage at -23 oC for 209 

four weeks when compared to salt alone. Later, Knight & Parsons (1988) were one of the first 210 

to provide a detailed description on the structural changes to the myofibril following NaCl 211 

and polyphosphate treatments. Numerous studies were carried out which demonstrate this 212 

synergy and the WHC properties of added phosphates on meat products (Puolanne et al., 213 

2001; Sen, Naveena, Muthukumar, Babji, & Murthy, 2005).  214 

Phosphates and NaCl also helps the emulsion stability of meat products by allowing myosin 215 

to form a tacky protein substance upon mixing, known as the exudate which forms a gel upon 216 

heating (Lampila, 2013). This helps in binding the pieces of meat in production of reformed 217 

products. This development of water- fat- protein emulsion matrix is also critical in 218 

frankfurter and bologna production. The application of phosphates and NaCl in meat 219 

formulations results in myosin solubilisation thereby orienting its hydrophobic tail around fat 220 

droplet and binding its hydrophilic end with water (Lampila & McMillin, 2017). When 221 

heated, the myofibrillar proteins undergo several structural changes which can strengthen the 222 

gel structure and emulsion stability, thereby increasing WHC and reducing cooking loss. 223 

However, the temperature ranges for the structural transitions are dependent on several 224 

factors within the protein system (e.g., species, pH, ionic strength, ingredients) (Chen et al., 225 

2017). To prove the emulsifying property, Anjaneyulu, Sharma, & Kondaiah (1990) studied 226 

the effect of blends of phosphates (65% TSPP, 17.5% STPP and 17.5% SAPP) on buffalo 227 

meat patties with added 2% NaCl. The results showed improved emulsifying capacity and 228 

emulsion stability with increased WHC. 229 

The chelating properties of phosphates also provide some anti-oxidative ability. Lipid 230 

oxidation may be inhibited by phosphates chelating with metal ions that otherwise could 231 

catalyse oxidation of proteins like haemoglobin and lipid like phosphor-lipids. Therefore, 232 

their inclusion in products could play a role in preventing colour degradation and generation 233 

of rancid off-flavours (Feiner, 2006; Long et al., 2011; Dykes et al., 2019). Studies of 234 

Fernandez-Lopez, Sayas-Barbera, Perez-Alvarez, & Aranda-Catala (2004) showed that 235 

addition of sodium tripolyphosphate (0, 0.15 or 0.30%) on pork meat reduced lightness and 236 

stabilised the percentage of oxymyoglobin. However, no effect was seen on redness, 237 

yellowness, chroma and hue saturation of meat colour. Studies by Baublits, Pohlman, Brown, 238 

& Johnson (2005, 2006); Fernandez-Lopez, Sayas-Barbera, Perez-Alvarez, & Aranda-Catala, 239 
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(2004) help in understanding the functions of phosphate mixtures on colour properties of 240 

meat products. 241 

Phosphates can also act as preservative with slight bacteriostatic effect against some gram- 242 

positive bacteria. However, it is less significant in meat products as greater concentration of 243 

phosphates or additional preservatives will be required for effective antibacterial activity 244 

(Feiner, 2006; Long et al., 2011). 245 

3. Strategies to reduce phosphates in meat products 246 

Consumer’s awareness of food additives and their interests towards clean label food products 247 

has led to a need to reduce and/or remove phosphates and often, replace them with various 248 

functional ingredients that can serve as fillers, binders, emulsifiers and stabilisers. This can be 249 

achieved by product reformulation and/or process modification. Figure 2 summarises 250 

strategies for replacing phosphates in meat with suitable phosphate replacers and novel 251 

processing technologies. Various novel technologies are discussed in brief, while emphasis is 252 

placed on the discussion of US and HPP which show more potential in the application of 253 

phosphate-free meat products. Thus, this review will discuss the possible ingredient and 254 

technology approaches for phosphate reduction in meat products with respect to specific 255 

quality characteristics including water-binding, emulsion stability, sensory, texture, colour 256 

and oxidative status. 257 

3.1 Ingredient strategies for phosphate reduction in processed meat 258 

There are various alternative functional ingredients for phosphates available such as native 259 

and modified starches, proteins, fibres, hydrocolloids, seaweeds, vegetable powders, 260 

carbonate salts and high pH alkaline solutions. These ingredients have potential to off-set 261 

some quality losses when phosphates are removed or reduced (Resconi, Keenan, Barahona, et 262 

al., 2016b; Glorieux, Goemaere, Steen, & Fraeye, 2017). Alternative ingredients can be 263 

added in small quantities to replicate some of the functionalities of phosphates in meat 264 

products. As discussed earlier, the ingredients irrespective of their clean label status are 265 

discussed in this section for their ability to replace the various techno-functionality of 266 

phosphates such as WHC and cook yield, emulsion stability, textural and sensorial properties. 267 

Table 2 lists the various ingredients that can be used as phosphate replacers based on their 268 

ability to produce specific techno-functionality in meat products.    269 

3.1.1. Water-binding and emulsifying properties 270 

One of the main techno-functionalities of phosphates in meat products is increasing the water 271 

holding capacity (WHC) and cooking yield (Nguyen, Gal, & Bunka, 2011). Ingredients like 272 

starches, proteins, fibres, hydrocolloids and bicarbonate salts can also improve WHC and 273 

cook yield when used in meat products (Petracci et al., 2013). Many studies have been made 274 

on these ingredients to improve the WHC of meat products without any added phosphates 275 

(Resconi, Keenan, Garcia, et al. 2016b; Prabhu & Husak, 2014; Casco et al., 2013; Sousa et 276 

al., 2017). For example, the study of Wachirasiri et al. (2016) investigated the phosphate 277 

replacing ability of sodium bicarbonate at low concentration for freezing of white shrimp 278 
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(Penaeus vannamei). The shrimps were treated with sodium bicarbonate (NaHCO3), lysine 279 

and sodium bicarbonate – lysine mixture at various concentrations and frozen. Results of 280 

thawing yield, cooking yield, colour, textural values were compared with those of sodium tri 281 

polyphosphates (STPP) treated shrimps. It was concluded that the shrimps treated with 282 

NaHCO3 /lysine each at 1% (w/v) improved the water holding capacity and cooking yield 283 

(100.45%, w/w) similar to that of STPP treated samples (101.73%, w/w), proving that 284 

NaHCO3 can act as a possible phosphate replacer. In a study by Casco et al. (2013), 285 

SavorPhos - mixture of citrus flour that is rich in fibre content, all-natural flavourings and 286 

less than 2% sodium carbonate is used as phosphate replacer in water and oil-based 287 

marinades in rotisserie birds and boneless-skinless breast. SavorPhos when used in water 288 

marinade resulted in equal performance in WHC and cook loss as that of control phosphate 289 

blend whereas when used in oil marinade, it increased WHC and decreased cook loss. The 290 

study of Bertram, Meyer, Wu, Zhou, & Andersen (2008) elucidated to the structural changes 291 

induced by sodium bicarbonate (NaHCO3), salt (NaCl) and tetrasodium pyrophosphate 292 

(Na4O7P2) in enhanced pork by use of low-field nuclear magnetic resonance and confocal 293 

laser scanning microscopy. It was found that sodium bicarbonate (NaHCO3) resulted in 294 

increased solubilisation of proteins and a higher degree of swelling of the myofibril, resulting 295 

in increased yield and reduced cooking loss (Bertram et al., 2008). 296 

Similarly, starches have potential to affect the water-binding properties of meat. In the study 297 

made by Genccelep et al. (2015), both physically and chemically modified starches are used 298 

to study the steady state and dynamic rheology of meat emulsions. In the study, acid modified 299 

starch (AMS), dextrinized modified starch (DMS) and pre gelatinised modified starch (PGS) 300 

is compared with native potato starch (NPS). From the results, it was concluded that the meat 301 

emulsions with PGS is a good thickener and can be used as a stabilizer for meat emulsions 302 

due to their higher water and oil binding capacity, particle size, intrinsic viscosity and 303 

solubility than NPS. Thus, there is evidence that starches can be modified to impart specific 304 

characteristics in meat products. It should be noted that physically modified starches are 305 

modified without enzymatic hydrolysis and chemicals and therefore, are classified as native 306 

starches, while often having more functionality than native starches. 307 

Similar to WHC, studies have been made to prove the emulsion stabilizing property of 308 

different ingredients in meat emulsions. Native starches, fibres, seaweeds, vegetable powders 309 

and hydrocolloids can be used to improve emulsion stability in meat batters (Petracci et al., 310 

2013). Studies of Youssef & Barbut (2011) revealed that the addition of soy protein isolates 311 

to lean meat emulsion batters increased moisture retention; increased emulsion stability and 312 

decreased cook loss. Similarly, Paglarini et al. (2018) studied the influence of carrageenan on 313 

WHC of meat emulsion gels at different concentrations mixture using Plackett –Burman 314 

design. Results of WHC tests revealed that carrageenan addition increased the WHC of 315 

emulsion mixture and improved emulsion stability. In another study made by Younis & 316 

Ahmad (2015), apple pomace powder obtained from apple processing used as a functional 317 

ingredient in buffalo sausages effectively improved the emulsion stability, water activity and 318 

cooking yield.  319 
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While research has shown that many ingredients can increase the water-binding and 320 

emulsification of meat matrices, as shown in Table 2, protein solubilisation and muscle 321 

binding remain a challenge when phosphates are removed. That is because these ingredients 322 

do not act on the acto-myosin complex like phosphate (Prabhu & Husak, 2014). One specific 323 

challenge is in binding of pieces to create reformed products as for it is difficult to form a 324 

sticky exudate without phosphate, for which transglutaminase could be an option (Feiner, 325 

2006; Lampila, 2013). 326 

3.1.2. Texture and sensory characteristics of phosphate-free meat products 327 

Phosphates plays a major role in the textural properties of meat products. Many studies have 328 

assessed the effect of different ingredients on the textural and sensory characteristics of meat. 329 

In a study made by the Cox & Abu-Ghannam (2013), adding seaweed, H. elongata, at 330 

different concentrations (0, 10, 20, 30 & 40%) to beef patties resulted in improved water 331 

binding properties, decreased the cooking losses, increased tenderness and sensory properties. 332 

Similar results were obtained when the H. elongata (5.5%) was incorporated in frankfurters 333 

and breakfast sausages whereby the hardness and chewiness of the products were also 334 

enhanced upon their addition (Lopez-Lopez, Cofrades, Ruiz-Capillas, & Jimenez-Colmenero, 335 

2009). A recent study by Choe et al. (2018) using winter mushroom powder 336 

(Flammulinavelutipes) as a phosphate replacer in emulsion-type sausages showed that adding 337 

1% of mushroom powder inhibited lipid oxidation and produced better textural characteristics 338 

in sausages.  339 

Though the ingredients have various advantages of replacing phosphates, there are some 340 

negative attributes imparted in the meat products. For example, although there was improved 341 

water holding capacity and decreased cooking and purge losses, studies revealed that 342 

incorporating pea proteins in meat products produced negative impact on the textural attribute 343 

(Pietrasik & Janz, 2010; Sun & Arntfield, 2012). Studies of Resconi, Keenan, Garcia, et al. 344 

(2016b) suggested that a reduction in phosphate content can be made by adding significant 345 

amount of starch to the reformed hams without compromising the quality. However, a 346 

reduction in the sensory quality was observed when phosphates are completely replaced by 347 

rice or potato starch. Hence, some ingredients have demonstrated potential and could be 348 

optimised with further research but it remains challenging to replace phosphates due to their 349 

multifunctionality in meat products. 350 

3.1.3. Colour and oxidative stability  351 

In principle, phosphates play a small role in controlling the lipid oxidation and improving the 352 

colour stability of the meat products (Choe et al., 2018). While the majority of research has 353 

been conducted with emphasis on other quality parameters, some research has been 354 

conducted on the effect of phosphate alternatives on colour and oxidative stability. In a study 355 

of Choe et al. (2018) it was shown that there is no significant colour difference in the 356 

emulsion type sausages when added with winter mushroom powder. In contrast, in the study 357 

made by Choi et al. (2016), addition of apple pomace fibre to fat-reduced chicken sausages 358 

affected the colour of the product. Thus, the colour of the meat products may vary according 359 
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to the type of ingredients used as some ingredients may have naturally darker colour than the 360 

meat or phosphates and thereby contribute to the colour, independent of oxidative status.  361 

In general, studies of high pH alkaline solutions such as sodium chloride, ammonium 362 

hydroxide, sodium hydroxide solutions show potential to replace phosphates in the meat 363 

enhancement solutions (Parsons et al., 2011a; Parsons et al., 2011b; Rigdon et al., 2017). 364 

Using the high pH alkaline solutions as enhancement solution increase the pH of the meat 365 

system resulted in increased water holding capacity, improved tenderness and colour. For 366 

example, study of Parsons et al., (2011a) using a brine containing 1% ammonium hydroxide 367 

(AHT) in beef strip loins demonstrating that phosphates can be replaced with improved 368 

colour and retail display properties. However, due to the increased pH, the microbial load of 369 

the AHT strip loins were higher when compared to the control. Hence, care must be taken to 370 

optimise the pH without affecting the shelf life of the product  371 

In relation to oxidative stability, studies of Bao, Ushio, & Ohshima, (2008) demonstrated an 372 

increase in pH and a decrease in oxidation when 5ml of mushroom extract containing 373 

ergothioneine was added to beef and fish meats thus improving the retail display 374 

characteristics. Also, the study of Choe et al. (2018) showed there is no significant difference 375 

between the oxidation of sausages treated with phosphates or winter mushroom powders. 376 

Thus, ingredients which do not modify colour and antioxidative activity could contribute 377 

towards phosphate reduction in meat. 378 

3.2 Processing technologies for phosphate reduction in processed meat 379 

The consumer demand for high quality and less processed foods with minimal ingredients 380 

and additives has resulted in the shift towards innovative non-thermal clean processing 381 

technologies like power ultrasound, high pressure, plasma technology, pulsed X- ray, 382 

ultrafiltration and electrical methods. These non-thermal technologies can overcome the 383 

disadvantages of thermal technologies by maintaining the sensory and nutrient value and 384 

ensuring microbial safety of the processed foods (Inguglia et al., 2017). The mechanisms of 385 

some technologies could assist in phosphate reduction in meat products when used alone or in 386 

combination with phosphate alternatives. Cold atmospheric plasma, pulsed UV light and 387 

ozone are used as surface treatment and mainly used for surface decontamination of 388 

pathogens in meat products (Troy et al., 2016).  Pulsed electric fields (PEF) and Shockwave 389 

(SW) are two emerging technologies for meat application. Both technologies have the 390 

potential to rupture the meat matrix and thereby could improve ingredient interaction with the 391 

proteins. A study by Toepfl, Heinz and Knorr, (2006) demonstrated that PEF could improve 392 

the WHC, yield and texture of injected hams containing phosphate. Similarly, while SW has 393 

not been assessed directly for phosphate removal, in a study on sausages containing various 394 

levels of salt (1.8-1.9 % or 2.2-2.4 % NaCl), SW treatment reduced the cook loss by 2% in 395 

the 1.8-1.9% NaCl sausages (Heinz, 2014). Recent comprehensive reviews of the 396 

mechanisms and potential of PEF and SW for the tenderisation of meat exist (Troy et al., 397 

2016; Warner et al., 2017). However, their application on the processed meat is limited. 398 

Hence, ultrasound (US) and high pressure processing (HPP) will be discussed in more detail. 399 

Specific focus is put on their interaction with alternative ingredients in creating minimally 400 
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processed meats with reduced or removed phosphate, which is a novel approach to cleaner 401 

labelled processed meats.  402 

3.2.1 Power Ultrasound  403 

Power ultrasound is a non-thermal processing technology that uses sound energy of 404 

frequencies higher than human audible range (>20 kHz) and lower than microwave 405 

frequencies (10 MHz). The detailed information on various physical and chemical 406 

mechanisms that causes ultrasonic effects can be found in several comprehensive reviews 407 

(Alarcon-Rojo, et al., 2015; Alarcon-Rojo, et al., 2019). Studies have been conducted using 408 

ultrasound for microbial inactivation in meat (Kang et al., 2017a), meat tenderness (Warner et 409 

al., 2017; Chang et al., 2015), accelerated meat processing like brining and curing 410 

(McDonnell, Lyng, Arimi, & Allen, 2014; Ojha et al., 2016).  In terms of the possibility of 411 

US in a phosphate reduction strategy, this could include improved functionality of ingredients 412 

for meat application by pre-treatment with US, improved ingredient distribution within the 413 

meat matrix or the effect of US on meat quality parameters when applied to the manufactured 414 

product.  415 

3.2.1.1. Water-binding and ingredient distribution properties 416 

US can also be used to modify the WHC and oil holding capacity (OHC) of added alternative 417 

ingredients without any adverse effect on their properties. Studies of Resendiz-Vazquez et al. 418 

(2017) showed that there is a significant change in the WHC and OHC of jackfruit seed 419 

protein isolates when treated with high intensity ultrasound for 15 min at 20 kHz with power 420 

input level of 200, 400 or 600 W. Further, Kohn et al. (2016) studied the effects of US on the 421 

water absorption capacity of added ingredients. When two groups of ingredients (proteins and 422 

polysaccharides) were treated in an ultrasonic water bath at 40 kHz frequency for 15 and 30 423 

min, significant increases in the water absorption capacity (WAC) for polysaccharides were 424 

observed. In a recent study, Pinton et al. (2019) found that 18 min of US (25 kHz, 230W) 425 

could account for a 50% reduction in phosphate levels in meat emulsions.  426 

US has been shown to accelerate mass transfer into the meat matrix. Studies of Ozuna, Puig, 427 

Garcia-Perez, Mulet, & Carcel (2013) assessed the application of ultrasound on pork brining 428 

kinetics and found that US increased the NaCl and the moisture effective diffusivities. 429 

Similarly, research by McDonnell, Lyng, Arimi, & Allen (2014) proved that meat curing time 430 

can be reduced by up to 50% by operating US at pilot-scale on pork curing. In the same 431 

study, there was no significant effect on the quality and sensory properties of sonicated meat. 432 

Ojha et al. (2016) also showed that ultrasound treatment during pork brining could accelerate 433 

the diffusion of a commercially available salt replacer which targets sodium replacement. 434 

Thus, US can accelerate the diffusion of salt and possibly, other additives in meat during 435 

brining. 436 

Therefore, this combined ability of US to reduce additive requirements, improve ingredients 437 

distribution in meat products and increase the functionality of ingredients could be applied as 438 

hurdle approach towards phosphate reduction in meat products and warrants further 439 

investigation. 440 
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3.2.1.2. Texture/sensory properties 441 

Application of ultrasound through a biological structure produces compressions and 442 

depressions in the microstructure resulting in cavitation and studies have indicated that this 443 

results in microstructural changes to the meat matrix (Siro et al., 2009). A number of 444 

experiments have studied the effect of ultrasound on the textural properties of meat (Alarcon-445 

Rojo et al., 2015). As discussed in a comprehensive review by Warner et al. (2017) the effect 446 

of US on meat texture is dependent on many processing parameters, thus, the results in the 447 

literature are variable. Similarly, Pinton et al. (2019) found that the efficiency of ultrasound 448 

in meat processing was dependent on processing parameters when applying US (25 kHz, 449 

230W) for 9 or 18 min to meat emulsions. It was found that 18 min of US could off-set 450 

defects caused by up to 50% phosphate reduction including increased cohesiveness and 451 

higher texture scores in sensory analysis. On the other hand, other authors have found no 452 

change to textural properties of meat sonicated during brining, however they did find 453 

accelerated diffusion of NaCl (McDonnell et al., 2014). Therefore, there is evidence that US 454 

has the ability to reduce additive requirements, improve ingredients distribution and off-set 455 

quality defects caused by phosphate reduction. However, the optimisation of several process 456 

parameters is required when applying US to meat.  457 

 458 

3.2.1.3. Oxidative stability 459 

Ultrasound treatment can lead to the formation of free radicals that might accelerate lipid 460 

oxidation in meat products. Studies showed that using high intensity ultrasound on meat 461 

products increases the lipid and protein oxidation that could affect the textural properties 462 

(Chang et al., 2015; Kang et al., 2017b; Alarcon-Rojo, et al., 2019). However, they can be 463 

controlled using various factors like pressure, temperature and ultrasound settings (Pinton et 464 

al., 2019). In the study made by Pinton et al. (2019), there is no increased lipid oxidation 465 

when cooked meat emulsions were treated with ultrasonic power of 25kHZ for 9 and 18 466 

mins. Thus, optimisation of processing parameters is important to maintain quality 467 

parameters. 468 

4.2. High Pressure Processing 469 

High Pressure Processing (HPP) is another important non-thermal processing technology. 470 

HPP subject food products to very high hydrostatic pressure from 300-600 MPa and mild 471 

temperatures (<45oC) which can inactivate micro-organisms and enzymes in food products 472 

without any effect on product colour, flavour and nutritional composition (O'Flynn et al., 473 

2014). More detailed information on effects of HPP mechanism on meat products are found 474 

in several studies (Hygreeva & Pandey, 2016; Chen et al., 2017).  475 

3.2.2.1. Water-binding properties 476 

HPP can cause conformational changes in proteins leading to protein denaturation, 477 

aggregation or gelation which helps to improve the functionality of comminuted meat 478 

products. In doing so, HPP also plays a major role in improving the water holding capacity of 479 
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meat products. Various studies have reported on the effect of HPP on the water binding 480 

capacity (WBC) of meat products (Zheng, Han, Yang, Xu, & Zhou, 2018). Pressurisation of 481 

meat products resulted in an improvement in gel-forming properties of meat proteins thus 482 

enhancing the WHC and textural characteristics of meat product. Results from various studies 483 

showed that HPP increased the emulsion stability, chewiness, cohesiveness, hardness, 484 

gumminess and decreased cooking and purge loss in meat products (Inguglia et al., 2017). 485 

Studies of Crehan, Troy, & Buckley (2000) assessed the effect of HPP on frankfurters with 486 

various salt levels and reported notable improvements in the juiciness and textural properties. 487 

Studies have also shown that HPP plays a major role in replacing additives in meat products 488 

by promoting the cohesive properties of meat particles. Heat set gels formed after HPP 489 

treatment in comminuted meat products have improved characteristics with both low and 490 

high salt concentrations (Ikeuchi, Tanji, Kim, & Suzuki, 1992). Grossi et al. (2012) studied 491 

the effect of HPP treatment on salt-reduced sausages with carrot fibre and/or potato starch as 492 

salt replacers. Pork sausages with different formulations of salt, carrot fibre and/or potato 493 

starch were treated with 400, 600, or 800 MPa for 5 minutes at 5 or 40 oC. Results of WBC 494 

tests proved that the incorporation of HPP and a new functional ingredient improved the 495 

water holding capacity of low salt sausages to the same level as high salt sausages. From the 496 

experiment it was concluded that HPP at 600 MPa can reduce the salt content of hydrocolloid 497 

containing pork sausages from 1.8 to 1.2% without any negative impact on the WBC, texture 498 

and colour. Similar results were obtained when salt reduced hams were treated with 100 MPa 499 

(Tamm et al., 2016).  500 

3.2.2.1. Texture and sensory properties 501 

O'Flynn et al. (2014) investigated the use of high pressure processing on phosphate-reduced 502 

breakfast sausages and its effect on physicochemical and sensory characteristics. Sausages 503 

with 0, 0.25, 0.5% phosphate content were manufactured using the raw minced pork meat 504 

which was pre-treated with HPP at 150 or 300 MPa for 5 minutes. Analysis found that HPP 505 

treated phosphate-free sausages had improved emulsion stability compared to the non-HPP 506 

treated control. However, a slight decrease in the juiciness was observed for the sausages 507 

treated with HPP. From the comprehensive results it was concluded that the administration of 508 

HPP treatment at 150 MPa for 5 minutes had a positive effect in reducing the phosphate 509 

content in low fat breakfast sausages to 0.25% without any negative impact on the functional 510 

characteristics. Despite various successful results, evidences from experiments showed that 511 

there were some negative effects on the sensory and acceptability characteristics on the meat 512 

products. Decreased functional properties in sausages were observed when they are treated 513 

with HPP at 300 MPa (O'Flynn et al., 2014). Application of high pressure over 400 MPa 514 

reduced the WHC in meat batters thus affecting the sensory characteristics of the meat 515 

product.  516 

3.2.2.3. Colour and oxidative stability 517 

The study of Fuentes et al., (2010) showed that application of high hydrostatic pressure of 518 

600 MPa for 6 minutes increased the lipid and protein oxidation in vacuum packaged Iberian 519 

dry cured ham. Similar increase in the protein and lipid oxidation were obtained when high 520 
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pressure of 600 MPa was applied to the cooked and raw ground beef for 5 minutes (Jung et 521 

al., 2013). Other disadvantages of HPP are a reduction in sensory properties due to the 522 

resistance offered by food enzymes and pressure resistant bacterial spores resulting in 523 

spoilage of food (Inguglia et al., 2017). This highlights the importance of optimisation 524 

processes which is suitable for processing parameters. 525 

Nonetheless, the ability of HPP to solubilise and extract myofibrillar proteins, improve WHC 526 

and ingredient interaction in meat helps in the reduction of additives like phosphates. Indeed, 527 

there are a lack of studies assessing the interaction of HPP and alternative ingredients as 528 

phosphate replacers in meat products.  529 

5. Conclusion (Future Trends) 530 

With focus on consumer’s preference towards clean label healthier food products, this review 531 

discussed the potential options available to create processed meat with reduced or removed 532 

phosphate additives. Different potential phosphate replacers and advanced processing 533 

technologies were outlined to overcome the phosphates added in meat products. Although 534 

studies proved that there were many advantages with these alternative techniques, there are 535 

often negative effects on the quality of the meat products. Studies on phosphate reducing 536 

strategies should be made considering the physicochemical and sensory characteristics of 537 

processed meat products. Combining novel technologies like HPP and US with potential 538 

phosphate replacers could be one possible solution. However, cost -analysis study of these 539 

technology usage would be required in order to ensure their commercial viability in the 540 

future. 541 

 542 
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Table 1. List of phosphates used in meat products with corresponding P2O5 content adapted from Nguyen et 

al. (2011) and Lampila & McMillin (2017) 

Common names Chemical structure pH (1% 

solution) 

P2O5 content 

(%) 

E* number 

Monosodium phosphate 

 

4.4-4.8 59.2 E339(i) 

Disodium phosphate 

 

8.6-9.4 50.0 E339(ii) 

Trisodium phosphate 

 

11.9-12.5 43.3 E339(iii) 

Tetrasodium pyrophosphate 

 

9.9-10.7 53.4 E450(iii) 

Sodium acid pyrophosphate 

 

4.0-4.4 64 E450(i) 

Sodium tripolyphosphate or 

pentasodium phosphate  

 

9.5-10.2 57.9 E451(i) 

Sodium hexametaphosphate 

 

6.3- 7.3 69.6 E452(i) 

Potassium monophosphate 

 

4.4-4.8 52.1 E340(i) 

Dipotassium phosphate 

 

8.6-9.4 40.8 E340(ii) 

Tripotassium phosphate 

 

11.9-12.5 33.4 E340(iii) 

Tetrapotassium 

pyrophosphate 
 

10.0-10.5 43.0 E450(v) 

Potassium tripolyphosphate 

 

9.5-10.2 47.5 E451(ii) 

 



*E numbers – stands for the codes for the food additives permitted to use within the European Union by the 

European Food Safety Authority. Roman numerical in the E numbers denotes the different type of phosphate 

with same cationic group. For example, E339 (i), (ii), (iii) denotes the different types of sodium phosphate 

groups while E450 (i), (iii) denotes the different sodium pyrophosphates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 List of different ingredients that can used as a potential phosphate replacer based on the techno-functionality they impart in different meat products. 

Techno -

functionality 

Ingredients Meat product Effects Reference 

Water holding 

capacity & cook 

yield 

Potato starch and 

sodium carbonate 

Pork loin Improved cook yield Prabhu & Husak (2014) 

Rice starch and fructo-

oligosaccharides 

Cooked hams Improved WHC and negative cook yield Resconi, Keenan, Barahona, et al. 

(2016a) 

SavorPhos containing 

citrus fibre 

Marinades for rotisserie 

birds and boneless-skinless 

breast 

Same WHC and cook yield when 

compared to the control 

Casco et al. (2013) 

Pea and carrot fibre Comminuted meat products Increased WHC Petracci et al. (2013) 

Seaweed H. elongata Beef patties Improved water binding and cooking 

yield 

Cox & Abu-Ghannam (2013) 

Dehydrated beef protein Brines  for beef steaks Decreased total fluid loss Lowder et al. (2011) 

Cuttlefish gelatine Turkey meat sausages 2.5% increase in WHC Jridi et al. (2015) 

Pea protein Comminuted meat products Improved WHC and decreased cook and 

purge loss 

Pietrasik & Janz, 2010; Sanjeewa, 

Wanasundara, Pietrasik, & Shand 

(2010) 

Rye bran, oat bran and 

barley fibre 

Low-fat sausages and 

meatballs 

Oat bran (6%) increased gelling 

properties, decreased frying loss in 

sausages while rye bran (2.1%) improved 

sensory characteristics 

Petersson, Godard, Eliasson, & 

Tornberg (2014) 

Carrageenan Tumbled meat products Improved cook yield, WHC Petracci et al. (2013) 



Sugarcane dietary fibre Low-fat meat batter Increased water and fat-binding. 2% 

sugarcane dietary fibre resulted in 

comparable acceptability to the control 

Zhuang, Han, Kang, Wang, Bai, Xu, & 

Zhou (2016) 

Carrageenan Turkey sausages Increased WHC Ayadi et al. (2009) 

Sodium bicarbonate Cooked chicken breast fillets Increased WHC and texture properties Mudalal et al. (2014) 

Microbial 

transglutaminase 

Pork batter gel Decreased cooking loss with increase in 

transglutaminase concentration 

Pietrasik & Li-chan (2002) 

Sodium bicarbonate Marination of broiler breast 

meat 

Higher water retention and improved 

cook yield 

Petracci et al. (2012) 

Sodium bicarbonate White shrimp Improved WHC and cook yield Wachirasiri et al. (2016) 

Emulsion 

stability 

Apple pomace powder Buffalo sausages Improved emulsion stability and water 

activity 

Younis & Ahmad (2015) 

Apple pomace powders Reduced fat chicken 

sausages 

Increased emulsion stability Choi et al. (2016) 

Carrageenan Meat emulsion gels Increased emulsion stability Paglarini et al. (2018) 

Makgeolli lees fibre 

 

Reduced fat pork 

frankfurters 

A 10% fat reduction can be achieved, 

with similar product characteristics, by 

2% fibre addition 

Choi, Park, Kim, Hwang, Song, Choi, 

Kim (2013) 

Pig plasma 

transglutaminase 

Low-salt chicken meat balls Increased gel strength and increased 

emulsion stability 

Tseng, Liu, chen (2000) 

Mushroom powder 

Agaricusbisporus 

Meat emulsion batters Increase in emulsion stability Kurt & Genccelep (2018) 



Textural and 

Sensory Quality 

Winter mushroom 

powder 

Emulsion type sausages Inhibited lipid oxidation and better 

textural properties 

Choe et al. (2018) 

Rice starch and potato 

starch 

Reformed ham Reduction in sensory qualities were 

observed when phosphate is completely 

removed 

Resconi, Keenan, Garcia, et al. (2016b) 

Soy hull pectin and 

insoluble fibre 

Beef burger patty Pectin minimized water loss and texture 

defects 

Kim, Miller, Lee, & Kim (2016) 

Wheat fibre Reduced meat and fat 

burger patty 

Up to 3.75 g fibre addition achievable 

with the same sensory acceptance as the 

control 

Carvalho, Pires, Baldin, Munekata, de 

Carvalho, Rodrigues, Trindade (2019) 

Citrus fibre Uncured all-pork bologna 

and oven-roasted turkey 

breast 

Products had similar physical, chemical 

and sensory characteristics to products 

with phosphates in them 

Powell (2017) 

H. elongata 

 

Frankfurters and breakfast 

sausages 

Enhanced hardness and chewiness Lopez-Lopez, Cofrades, Ruiz-Capillas, & 

Jimenez-Colmenero (2009) 

Seaweeds L. japonica Fat reduced pork patties Improved textural and sensory qualities Choi et al. (2012) 

Sodium carbonate and 

inulin 

Restructured poultry steaks Same sensory and textural qualities Őztűrk and Serdaroğlu (2017) 

Potassium carbonate Pork meat Increased sensory quality LeMaster et al (2019) 

Ammonium hydroxide 

(1%) 

Brine for beef strip loins Improved display quality Parsons et al. (2011a) 

Alkaline electrolysed 

water 

Pork loin Negative textural and sensorial 

properties 

Rigdon et al. (2017a) 



 



 

Figure 1. Some important functionalities of phosphates in meat products 

*However, the quantities used in meat are not high enough to have a significant bacteriostatic 

effect.  

 

  Figure 2.  Phosphate replacing strategy in meat products using phosphate replacers and novel 

processing technology 



Highlights:  

• Phosphates are highly functional additives in meat products 
• Alternative ingredients cannot fully replace the effect of phosphates in meat 
• Novel technologies can be combined with ingredients for better functionality in meat 
• Power ultrasound can accelerate ingredient diffusion and dispersion in meat 
• High pressure processing can improve meat-protein interaction with ingredients 

 


