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The Role of Synchronization in Digital
Communications Using Chaos—Part II:

Chaotic Modulation and Chaotic Synchronization
Géza Kolumb́an, Senior Member, IEEE, Michael Peter Kennedy,Fellow, IEEE, and Leon O. Chua,Fellow, IEEE

Abstract—In a digital communications system, data are trans-
mitted from one location to another by mapping bit sequences to
symbols, and symbols to sample functions of analog waveforms.
The analog waveform passes through a bandlimited (possibly
time-varying) analog channel, where the signal is distorted and
noise is added. In a conventional system the analog sample
functions sent through the channel are weighted sums of one
or more sinusoids; in a chaotic communications system the
sample functions are segments of chaotic waveforms. At the
receiver, the symbol may be recovered by means of coherent
detection, where all possible sample functions are known, or by
noncoherent detection, where one or more characteristics of the
sample functions are estimated. In a coherent receiver, synchro-
nization is the most commonly used technique for recovering
the sample functions from the received waveform. These sample
functions are then used as reference signals for a correlator.
Synchronization-based coherent receivers have advantages over
noncoherent receivers in terms of noise performance, bandwidth
efficiency (in narrow-band systems) and/or data rate (in chaotic
systems). These advantages are lost if synchronization cannot
be maintained, for example, under poor propagation conditions.
In these circumstances, communication without synchronization
may be preferable. In Part I, the theory and operation of conven-
tional communications systems were surveyed and possible fields
of application of chaotic communications were identified. In Part
II, the theory of conventional telecommunications is extended
to chaotic communications, chaotic modulation techniques and
receiver configurations are surveyed, and chaotic synchronization
schemes are described. In Part III, examples will be given of
chaotic communications schemes with and without synchroniza-
tion, and the performance of these schemes is evaluated in the
context of noisy, bandlimited channels.

Index Terms—Chaos, communication systems, digital commu-
nication, digital modulation, spread spectrum communication.

I. INTRODUCTION

RESEARCH into applications of chaos in communications
has been motivated by the observation that chaotic sys-

tems can be synchronized. The basic idea is that information
can be conveyed to a remote receiver by means of a wideband
chaotic signal. Since 1992, a number of chaotic synchroniza-
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tion and modulation schemes have been proposed, most of
which have been developed using heuristic arguments, without
reference to conventional communications measures [1].

The objectives of this work are threefold:

1) to provide a theoretical context in which the performance
of modulation schemes based on chaotic synchronization
can be evaluated;

2) to develop a unified framework for discussing and
comparing conventional and chaotic communication sys-
tems;

3) to highlight the special problems that arise when chaotic
basis functions are used.

In Part I of this three-part paper [2], we described the major
components of a digital communications system, identified the
role of synchronization in coherent receivers, and motivated
the use of chaotic rather than periodic basis functions.

In Section II of this part, we describe two digital chaotic
modulation schemes—chaos shift keying (CSK) and differ-
ential chaos shift keying (DCSK)—and identify appropriate
coherent, noncoherent, and differentially coherent receiver
architectures.

The theoretical performance of chaotic communications
receivers with and without synchronization is examined in
Section III. We conclude that the synchronization-based re-
covery of chaotic basis functions from noisy received sample
functions offers a potential advantage over noncoherent detec-
tion in terms of noise performance and data rate, but only if
synchronization can be maintained. Under poor propagation
conditions, where synchronization cannot be maintained, the
advantages of coherent detection are lost. In such circum-
stances, a noncoherent receiver offers a more robust and less
complex solution.

In Section IV, we consider the state of the art in synchro-
nization of chaotic systems in the context of digital com-
munications and highlight the weaknesses of current chaotic
synchronization techniques.

In Part III of the paper [34], the performance of representa-
tive coherent and noncoherent chaotic communication schemes
is evaluated in the context of a noisy and bandlimited channel.

II. SURVEY OF CHAOTIC MODULATION

AND DEMODULATION TECHNIQUES

The basic idea of digital communication using a chaotic
carrier is that the bits (binary modulation) or symbols -
ary modulation) are mapped to sample functions of chaotic

1057–7122/98$10.00 1998 IEEE
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Fig. 1. Block diagram of coherent correlation CSK receiver forM = 2:

signals emanating from one or more chaotic attractors. In order
to avoid periodicity, the symbols are mapped to the actual
nonperiodic outputs of chaotic circuits and not to parameters
of certain known sample functions.

The principal difference between a chaotic carrier and a
conventional periodic carrier is that the sample function for a
given symbol is nonperiodic and is different from one symbol
interval to the next. Thus, the transmitted waveform is never
periodic, even if the same symbol is transmitted repeatedly.

As in the case of conventional digital communications, we
consider four categories of modulation techniques:

1) coherent correlation receiver with chaotic synchroniza-
tion;

2) coherent matched filter receiver;
3) noncoherent detection techniques;
4) differentially coherent reception.

A. Coherent Correlation Receiver with
Chaotic Synchronization

1) Coherent Detection of CSK: Chaos shift keying(CSK)
[3], [4] is a digital modulation scheme where each symbol
is mapped to a different chaotic attractor. The number of
attractors is equal to the size of the signal set in this case. The
attractors may be produced by the same dynamical system for
different values of a bifurcation parameter or by completely
different dynamical systems.

Note that the information to be transmitted is carried not
by the shape of the sample function but by the attractor
which produces the sample function. The objective of the
demodulator is to decide, on the basis of a received noisy
and distorted sample function, which attractor is most likely
to have produced this waveform.

Using the notation introduced in Part I [2], assume that each
attractor produces a basis function and that the elements
of the signal set

are given by for all
In terms of the components of the signal vector, this

corresponds to the case if and if

Furthermore, assume that the autocorrelation of each
with itself in each symbol interval is larger than the

cross correlation with any of the other basis functions. In this
case, a correlation receiver may be used to identify the attractor
which is most likely to have produced the received signal [2].

As in the case of a conventional correlation receiver based
on synchronization, a local synchronized copy of each basis
function has to be producedin the receiver using appro-
priate synchronization circuitry1. In the case of chaotic basis
functions, this topic is calledchaotic synchronization. We will
deal with chaotic synchronization in more detail in Section IV,
but first let us consider the conceptual process.

Synchronizable counterparts of the circuits which produce
the basis functions in the transmitter are used to recover
the basis functions in a coherent correlation receiver, as shown
in Fig. 1. Here, the received signal tries simultaneously
to synchronize all of the “synchronizable chaotic circuits” in
the receiver.

For example, assume that the signal is
transmitted. After a synchronization time which is anal-
ogous to the pull-in time in a phase-locked loop (PLL), the
output converges to By contrast, fails to
synchronize with The decision as to which symbol
was transmitted is made on the basis of the “goodness” of
synchronization. In the ideal case, is more strongly
correlated with than during the interval
Hence, and the decision circuit decides that symbol
1 was transmitted.

In any realistic situation, the received signal is always
corrupted by noise Even in the case of perfect syn-
chronization, the instantaneous value of the received signal
may differ considerably from the recovered chaotic signal.
This is why correlatorsmustbe used for the detection, i.e., to
determine the “goodness” of synchronization. Because of the
time-averaging involved in correlation, the use of correlators
also tolerates loss of synchronization for short periods of time.

In any practical communications system, not only an iso-
lated single symbol, but a sequence of symbols, has to be
transmitted.

1Recall that the weightssij are recovered by computinĝsij =
sT
0

ri(t)gj(t) dt for j = 1; 2; � � � ; N [2].
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Fig. 2. Block diagram of a noncoherent receiver for COOK or CSK.

Even in a linear channel, interference among the successive
symbols may appear, i.e.,intersymbol interference(ISI) [5]
may occur. One source of ISI can be the integrator used in
the correlator. If the initial value of the integrator is reset to
zero at the beginning of each observation period, by means of
an integrate-and-dumpcircuit [5], for example, then this kind
of ISI can be avoided.

We assume in the following that the timing information is
available in the receiver. The initial value of the integrator(s)
is reset to zero at the beginning of every observation period
and the observation vector is generated at the end of each
symbol interval. In Figs. 1–4, the start and end of each
observation period are indicated by the limits of integration
and the decision time instants are represented schematically
by sampling switches.

2) Data Rate of a Coherent Correlation Receiver with
Chaotic Synchronization for CSK:The disadvantage of a
coherent correlation CSK receiver is that synchronization
is lost and recovered every time the transmitted symbol is
changed [4]. The symbol duration is therefore equal to the
sum of the synchronization time plus the estimation time
of the observation vector. The synchronization time puts an
upper bound on the symbol rate and thus the data rate.

To maximize the data rate in conventional digital systems,
synchronization is always maintained. If the transmitted signal
does not contain a signal that can be used as a reference for
synchronization (in the case of suppressed carrier modulation
schemes, for example) then a nonlinear operation is used
to regenerate the reference signal in the receiver [5], [6].
This idea could also be exploited in chaotic communications
if a synchronization technique could be found which was
sufficiently insensitive to some parameter of the chaotic basis
functions. In that case, a selected parameter could be varied
according to the modulation and synchronization could be
maintained continuously. The symbols to be transmitted would
then be mapped to the selected parameter of the chaotic sample
function and only one attractor would be necessary; this is
analogous to a conventional modulation technique where the
attractor is a periodic trajectory whose amplitude, frequency,
or phase might be controlled by the modulation.

If synchronization of a chaotic circuit could be maintained in
the presence of other chaotic signals, then it would be possible
to increase the size of the signal set by generating as a
weighted sum of basis functions with more than one nonzero
weight, as discussed in Part I of this paper (see [2, Section III-
B.1]). To our knowledge, none of the chaotic synchronization
techniques which exist in the literature is sufficiently robust to
permit augmentation of the signal set in this way [7].

B. Coherent Matched Filter Receiver for CSK

Matched filters can be used only if the waveforms cor-
responding to each symbol are known in advance and pre-
programmed as the impulse responses of filters. In the case of
CSK modulation, the symbols are mapped to chaotic attractors
and a different sample function is generated each time a
symbol is transmitted2. Therefore, coherent matched filter
receivers simply cannot be used in chaotic communications.

C. Noncoherent Detection

1) Noncoherent Detection of COOK: Chaotic on-off-keying
(COOK) offers the simplest solution to chaotic communica-
tion. In COOK, the chaotic signal is multiplied directly by the
bit sequence to be transmitted, i.e. radiation of a chaotic signal
is disabled for bit and enabled for bit [8].

The COOK receiver shown in Fig. 2 estimates the signal
energy per bit carried by the transmitted signal and
performs the decision by means of a level comparator.

2) Noncoherent Detection of CSK:Signals generated by
different chaotic attractors generally have different statistical
attributes, such as the mean of the absolute value, variance,
and standard deviation. This observation suggests that CSK
signals can also be demodulated by noncoherent receivers [9].

Let us consider chaotic sample functions generated by the
same attractor but originating from different initial conditions
as achaotic stochastic process(for a more precise definition,
see Part III of this paper). Let the binary information to be
transmitted be mapped to the variances of chaotic stochastic
processes. Chaotic stochastic processes with different vari-
ances may be obtained by using two different chaotic attractors
or by multiplying the sample functions of one attractor by
distinct weights.

The block diagram of a noncoherent CSK receiver is shown
in Fig. 2. For the sake of simplicity, let us assume that the
mean of the received signal is zero. In this case, the receiver
can estimate the variance of the received signal using a
correlator. The decision is made by a simple level comparator.
If a parameter of the chaotic attractor other than its variance is
to be evaluated in the demodulation process, the appropriate
operation may be substituted for the multiplier in Fig. 2.

Not just statistical attributes but any robust characteristic
of a chaotic signal may be exploited in order to implement
a noncoherent CSK communication system. For example, in
[10], the basis functions are two chaotic signals which have
different average frequencies; these may be distinguished at the

2Because a chaotic waveform is not periodic, each sample function of length
T is different.
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Fig. 3. Block diagram of a DCSK receiver.

Fig. 4. General block diagram of a CSK receiver.

receiver by measuring the average value of the zero-crossing
rate of the received signal.

Other modulation techniques have also been proposed.
In [11], the autocorrelation function of a chaotic signal is
modified according to the symbols to be transmitted. By
measuring the autocorrelation function of the received signal,
the transmitted symbol can be identified.

D. Differentially Coherent Reception

One or more chaotic basis functions must be recovered
in order to implement a coherent correlation receiver. When
propagation conditions are so poor that it is impossible to
recover basis functions by chaotic synchronization, a differen-
tial modulation scheme (differential chaos shift keying(DCSK)
[9]) and a differentially coherent correlation receiver may be
used [12].

In DCSK, every symbol to be transmitted is represented
by two sample functions. The first sample function serves as
a referencewhile the second one carries the information. In
the case of binary transmission, bit 1 is sent by transmitting
a reference signal provided by the chaos generator twice in
succession. For bit 0, the reference chaotic signal is transmit-
ted, followed by an inverted copy of the same signal. The two
sample functions are correlated in the receiver and the decision
is made by a level comparator, as shown in Fig. 33.

III. T HEORETICAL COMPARISON OFCHAOTIC

MODULATION TECHNIQUES

Noise performance is the most important characteristic of a
modulation scheme and receiver. Since all of the chaotic mod-

3Note that a DCSK receiver differs fundamentally from a conventional
DPSK receiver [6]. Because a reference signal is transmitted ineverysymbol
period, the data rate is halved and the required energy per bit is doubled in
DCSK compared to DPSK. However, the error propagation problem associated
with differential encoding does not arise.

ulation techniques discussed in this paper can be considered
as variants of CSK modulation, we consider only the noise
performance of CSK.

In the previous section, we saw that CSK transmissions can
be demodulated in one of three ways:

1) a coherent correlation receiver, where the elements of
the signal set are recovered by synchronization;

2) a noncoherent receiver (in this section, we assume
that the demodulation is performed by estimating the
variance of the received chaotic signal or the COOK
technique is used); or

3) a differentially coherent receiver.

Note that similar circuitry is used to estimate the observation
vector in Figs. 1–3. Each receiver configuration contains one
or more correlators; the difference between the schemes is
in the manner in which the reference signals are generated.
Therefore, we will analyze all three receiver configurations
using the common block diagram shown in Fig. 4. Because
the channel (selection) filter plays an important role in the
DCSK receiver, it is also included explicitly in this figure.

For simplicity, let the elements of signal set be the
basis functions We denote by and
respectively, the reference signal and the filtered version of the
noisy received signal which emerges from the channel filter.
The decision is performed based on the observation vector.
The probability of wrong decisions, and therefore the BER,
depends on the mean value and variance of the observation
vector [6].

A. Coherent Correlation Receiver with
Chaotic Synchronization

In a coherent correlation receiver, the elements of the signal
set are recovered by synchronization from the noisy filtered
received signal. The chaotic synchronization techniques which
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have been published to date are sensitive to both noise and
distortion in the channel (see Section IV). In particular, the
signal cannot be recovered exactly when

Therefore, let denote the recovered chaotic signal,
where if 4. This corresponds to our
reference signal in Fig. 4.

As explained in Section II-A.1, we assume that synchro-
nization is lost and recovered at the beginning of every new
symbol. Since the synchronization transient cannot be used to
transmit information, the observation vector must be estimated
during the interval . Let and denote the
elements of the signal set for binary CSK modulation. Then
the elements of the observation vector are given by

(1)

(2)

where and correspond to and respec-
tively, in Fig. 1.

Note that and are random variables, whose mean
value depends on the bit energy of the chaotic signal and the
“goodness” of synchronization [see the first term in (1)].

The variance of the estimation is determined by the chaotic
signal5 and the filtered noise. Note that the noise has no
direct influence on the variance of estimation. As shown by
the second terms of (1) and (2), the variance of estimation
is influenced only by the cross correlation of noise and the
recovered chaotic signal.

For a given chaotic signal and bandwidth of the channel
filter, the variance of estimation is inversely proportional to
the observation time The mean value of estimation
does not depend on the noise; thus, the receiver is anunbiased
estimator. In particular, this means that the threshold level
required by the level comparator does not depend on the
channel noise.

As in the case of a conventional receiver and periodic basis
functions, the noise performance of a coherent correlation
receiver using chaotic basis functions is theoretically excel-
lent. However, the BER also depends on the “goodness” of
synchronization [equivalently, the closeness of the reference
signal to the desired chaotic basis function Any
synchronization error, especially loss of synchronization, re-
sults in a large degradation in the noise performance of a
correlation receiver.

Loss of synchronization causes the bit error rate (BER) to
rise significantly. Recall that a digital communications link is
automatically severed at the system level if the BER increases

4Recall thatTS is the synchronization time.
5The parameter required for demodulation must beestimatedfrom sample

functions of finite length. In the case of periodic sample functions, this
estimation has zero variance if the observation interval is an integral number
of periods. When chaotic basis functions are used, the estimation has a nonzero
variance which results from the nonperiodicity of the underlying signals; this
increases the overall variance of the observation vector [13]. This problem
will be discussed in detail in Part III.

above a predetermined threshold. Therefore, synchronization-
based receivers are not suitable for noisy propagation envi-
ronments.

Let us consider next a noncoherent receiver.

B. Noncoherent Correlation Receiver

Here, we assume that decisions in the noncoherent receiver
are made by estimating the variance of the received signal.
The reference signal is equal to the noisy filtered signal

in this case, and the observation variable can be
expressed as

(3)

where a new term, which depends only on the filtered noise,
appears.

The mean value of estimation depends on both the bit energy
of the chaotic signal and the filtered noise (see the first and
third terms in (3), respectively). In this case the receiver is a
biased estimator; the threshold level of the comparator used as
a decision circuit now depends on the noise level. In addition,
the variance of estimation becomes much greater than in the
previous case due to the third term in (3).

Imagine that a histogram of the observed values ofis
plotted for a large number of transmitted symbols. Because
binary modulation is used, the histogram will have two distinct
peaks. For a given noise level, channel filter and chaotic signal,
the best noise performance can be achieved if the distance
between the two peaks is a maximum. The separation of the
peaks is determined by the distance between the elements
of the signal set. For the case of noncoherent CSK, COOK
ensures the maximum distance. In this case, the distance
between the elements of the signal set is equal to twice the
mean value of the energy per bit.

Is there a way to produce an unbiased estimator with
antipodal signals [12] which ensures the maximum distance
between the elements of a binary signal set? The answer is
yes; DCSK offers a potential solution.

C. Differentially Coherent Reception

In a DCSK receiver, the reference signal is a delayed
version of the filtered noisy signal. Note that different sample
functions of filtered noise corrupt the inputs of the correlator.
If the time-varying channel varies slowly compared to the
symbol rate, then the observable element is

(4)
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where the sign of the first and second terms depends on
the binary modulation. The signals and
denote the sample functions of filtered noise that corrupt the
reference and information-bearing parts of the received signal,
respectively.

By proper design of the channel filter6, the two sample
functions of the noise become uncorrelated and (4) can be
simplified as follows

(5)

Note that the receiver is anunbiased estimatorin this case.
This means that the threshold level of the decision circuit is
zero and is independent of the noise level.

The mean value of the estimation depends on the bit energy
of the chaotic signal; the variance of estimation is determined
by the chaotic signal and the filtered noise. The application
of antipodal signals ensures the maximum distance between
the elements of the signal set for DCSK [see the first term
in (5)]. As in the case of a coherent correlation receiver
with synchronization, the noise has no direct influence on the
variance of estimation. However, in contrast with (1), two
cross-correlation terms appear in (5). For correct operation,
we need to ensure that the first term, corresponding to the bit
energy, dominates the two cross-correlation terms contributed
by the noise.

D. Coherent CSK versus DCSK

The main advantage of DCSK over CSK is that both the
reference and information-bearing components of the trans-
mitted signal pass through thesamechannel so they undergo
the same transformation. This transformation does not change
the correlation that carries the information, provided that the
time-varying channel remains almost constant for the symbol
duration.

Because there is no need for synchronization, the DCSK
technique can be used even under poor propagation condi-
tions. However, the symbol rate is halved compared with a
synchronization-based receiver in which synchronization is
maintained.

Recall, however, that the synchronization time of a
coherent receiver is wasted—no information can be carried
during this interval. If each symbol must be synchronized
independently and the synchronization time is comparable
to the correlation time then a DCSK system can in
principle operate at thesame symbol rateas a synchronization-
based coherent receiver, with the added advantage of superior
performance under poor propagation conditions.

Thus, synchronization-based recovery of chaotic basis func-
tions from a noisy received signal offers superior performance
to DCSK in terms of data rate only if synchronization can be
maintained. This advantage is lost if the modulation technique

6Let the channel filter be an ideal bandpass filter with bandwidthBWRF :
The cross-correlation of~n1(t) and~n(t�T=2) becomes zero ifBWRFT =
n; n = 1; 2; 3; � � � [6].

requires the loss and recovery of synchronization at the begin-
ning of every new symbol or if poor propagation conditions
make it impossible to maintain synchronization.

IV. SYNCHRONIZATION IN CHAOTIC

COMMUNICATIONS SYSTEMS

As explained in Part I of this paper, the primary use
of synchronization in digital communications systems is for
recovering basis function(s) in coherent correlation receivers,
as illustrated for binary CSK in Fig. 1. In a real system,
the signal which is received differs from that which was
transmitted. At the very minimum, the signal is corrupted
by additive noise as it passes through the channel; usually,
it is also bandpass filtered. The transformation may be more
severe if the channel is nonlinear, time-varying, or suffers from
multipath effects.

Thus, the objective of the synchronization process is to
recover basis functions from the noisy received signal in
order to maximize the probability of correctly identifying
the transmitted symbols. In this section, we examine chaotic
synchronization techniques from this perspective.

A. Chaotic Synchronization Schemes

Chaotic steady-state solutions are characterized by sensitive
dependence on initial conditions: trajectories of two identical
autonomous continuous-time dynamical systems started from
slightly different initial conditions quickly become uncorre-
lated [14]. Surprisingly perhaps, it is nevertheless possible to
synchronize these systems in the sense that a trajectory of one
asymptotically approaches that of the other.

Several notions of synchronization have been proposed for
chaotic systems, the strongest and most widely-used of which
is identical synchronization, where the state of the receiver
system converges asymptotically to that of the transmitter [14].
More recently, two weaker notions of synchronization, called
generalized synchronization[15], [16] andphase synchroniza-
tion [17], [18] have been introduced.

1) Identical Synchronization:Two continuous-time dy-
namical systems

(6)

and

(7)

are said tosynchronize identicallyif

for any combination of initial states and
From a communications perspective, we may think of

system (6) as the transmitter and (7) as the receiver. The
signal which is transmitted is a linear combination of
basis functions For simplicity, we consider the case
where only one basis function is used and we assume that

At the receiver, we must recover the scalar basis
function which has been derived from the state
of the transmitter (6). By synchronizing the state of the receiver

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 24,2010 at 13:01:44 EDT from IEEE Xplore.  Restrictions apply. 



KOLUMBAN et al.: SYNCHRONIZATION IN DIGITAL COMMUNICATIONS USING CHAOS—PART II 1135

identically with that of the transmitter, and applying the same
readout function the basis function can be recovered. In
particular, if can be made to converge to then the
estimate will converge to

2) Generalized Synchronization:Systems (6) and (7) are
said to exhibitgeneralized synchronizationif there exists a
transformation such that

where the properties of the transformation are independent of
the initial conditions and

Generalized synchronization occurs, for example, in
unidirectionally-coupled chaotic systems where the driven
system (the “synchronizable chaotic circuit” block in Fig. 1)
is asymptotically stable [21].

If the transformation is invertible, then

approaches However, the transformation is not nec-
essarily invertible, so recovering the state in a coherent
receiver does not necessarily permit one to recover the required
basis function.

3) Phase Synchronization:Phase synchronization of two
coupled systems occurs if the difference between
the “phases” of the two systems is bounded by a constant [19],
where the “phase” is some suitably chosen monotonically
increasing function of time. For example, in the case of a
spiral Chua attractor [22], the angle of rotation about the
unstable equilibrium point in a two-dimensional projection of
the attractor would be a suitable choice.

In this work, we are concerned with recovering basis func-
tions exactly, so we focus exclusively onidentical synchro-
nization. Since we are dealing with one-way communication
between a transmitter (the drive system) and a receiver (the
response system), we consider only unidirectional coupling
between two systems. This is called a “drive-response” or
“master-slave” configuration. In the following subsections, we
present two classical approaches to identical drive-response
synchronization of unidirectionally-coupled systems: Pecora-
Carroll synchronization and error-feedback synchronization. In
the language of control theory, Pecora-Carroll synchronization
corresponds to open-loop state estimation, and error-feedback
synchronization corresponds to asymptotic state estimation.

B. Pecora-Carroll Synchronization

In the drive-response synchronization scheme proposed by
Pecora and Carroll [23], a chaotic dynamical system

(8)

with scalar output as shown in Fig. 5, is
decomposed into two subsystems with states and
respectively:

(9)

(10)

Fig. 5. Block diagram of drive system described by (8).

Fig. 6. Pecora-Carroll decomposition of (8) into two subsystems described
by (9) and (10).

Fig. 7. Pecora-Carroll drive-response synchronization. The response system
is a copy of the second subsystem in the drive system shown in Fig. 6.

where and

is the scalar output signal, as before; this is illustrated in Fig. 6.
The system is partitioned in such a way that the conditional

Lyapunov exponents7 (CLE’s) [23] of the second subsystem
(10) are negative.

Qualitatively, the CLE’s characterize the stability of the
second subsystem (10) when driven by If all CLE’s are
negative, the trajectory is asymptotically stable [23].
This means that the states of two or more copies of the
second subsystem will synchronize identically when driven
by the same input This is the basis of Pecora-Carroll
drive-response synchronization.

In particular, consider “Subsystem” in Fig. 7. This system
is described by

(11)

If the CLE’s of this subsystem (called the “response sys-
tem”) are all negative and is sufficiently close to

7Lyapunov exponents (LE’s) [24] quantify the average exponential rate of
separation of trajectories in a dynamical system under steady-state conditions.
If one or more LE’s is positive, then there is a “direction” in the system along
which trajectories are stretched apart exponentially. In this case, the system is
said to be chaotic. Conditional Lyapunov exponents (CLE’s) are a measure of
the average local exponential rate of separation of trajectories in a dynamical
system along a reference trajectory which is defined by a prescribed input.
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Fig. 8. Basis function recovery using cascaded Pecora-Carroll drive-re-
sponse synchronization.

Fig. 9. Chua’s circuit consists of a linear inductorL; two linear capacitors
(C2; C1); a linear resistorR; and a voltage-controlled nonlinear resistorNR:

and then the state of the response system
converges asymptotically to i.e.

In terms of a communications system, the drive system
(8) produces a chaotic basis function which we assume,
for simplicity, is transmitted directly through the channel and
received, noisy and distorted, as

Recall that the objective of synchronization in a coherent
receiver is to estimate given Therefore the
response system must play the role of basis function recovery.
It is not sufficient to recover we need to recover both

and This can be accomplished using cascaded drive-
response synchronization. A second subsystem is added which
is driven by the first, as shown in Fig. 8. Here,

(12)

(13)

If the CLE’s of (12) are all negative, and is suffi-
ciently close to and then converges
asymptotically to If, in addition, the CLE’s of (13) are
negative, then converges asymptotically to i.e.

and the output converges asymptoti-
cally to In this way, a basis function may in principle
be recovered from the received signal

1) Example: Pecora-Carroll Synchronization in Chua’s
Circuit: We illustrate basis function recovery using Pecora-
Carroll cascaded drive response synchronization in Chua’s
circuit [25]. This widely-studied circuit, shown in Fig. 9,
consists of a linear inductor, a linear resistor, two linear
capacitors, and a single nonlinear resistor

Fig. 10. Drive system using Chua’s circuit to produce chaotic basis function
g(t):

Fig. 11. Power spectrum of chaotic basis functiong(t) from Chua’s circuit.
Horizontal axis:f (kHz); vertical axisP (f) (dB).

The dynamical behavior of the circuit is described by three
ordinary differential equations:

(14)

(15)

(16)

where and
is the piecewise-linear driving-point characteristic

of the nonlinear resistor
This system may be partitioned into two subsystems in a

number of different ways. Since the subcircuit consisting of
and [described by (15) and (16)] is passive, and there-

fore has negative CLE’s, we choose this as “Subsystem 2.”
“Subsystem 1” is described by (14) and the drive signal
is

When mH, nF, nF,
mS, mS, and V,

the circuit shown in Fig. 10 produces a chaotic basis function
whose power spectrum is shown in Fig. 11; this is our

drive system.
The response system contains a cascaded drive-response

configuration. The first section, denoted “Subsystem” and
described by

(17)

(18)

is a copy of Subsystem 2. As shown in Fig. 12, this circuit
is followed by a copy of subsystem 1, which we label
“Subsystem :”

(19)
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Fig. 12. Recovery ofg(t) from r(t) using Chua’s circuit in a Pecora-Carroll cascaded drive-response configuration.

If then approaches asymptotically.
If and, in addition, is sufficiently close to

and the CLE’s of “Subsystem” are negative, then
approaches asymptotically and

In this way, a basis function can be recovered from the
received signal if and the parameters of the drive
and response system are matched.

C. Robustness of Pecora-Carroll Synchronization

In the discussion above, we have assumed that the param-
eters of the drive and response systems are identical, that a
single basis function is transmitted, that
that the CLE’s of the response subsystems are negative, and
that the initial conditions of the systems are close; this rather
extensive set of assumptions allows us to recover

However, we pointed out in Part I of this paper that the
minimum channel nonidealities which must be considered in
a practical communications system are additive white Gaussian
noise and linear bandpass filtering. Therefore, we must con-
sider carefully the robustness of the modulation/demodulation
scheme. How well can we recover using synchronization
from the noisy distorted version

In every practical implementation of a telecommunications
system, the transmitter and receiver circuits operate under
different conditions, so it is necessary to consider the case
of a mismatch between the parameters of the transmitter and
receiver. The parameter mismatch also depends on temper-
ature, aging, etc. The effect of parameter mismatch on the
recovery of has not been widely studied; further research
is required in this area.

Pecora-Carroll drive-response synchronization is fundamen-
tally an open-loop state estimation technique, the objective of
which is to reconstruct the state of the transmitter, given
a noisy observation of a basis function Open-
loop state estimators are sensitive to noise and parameter
mismatch. Consequently, identical synchronization using the
Pecora-Carroll technique is not robust, as we shall demonstrate
by example in Part III of the paper.

CLE’s are a local concept which characterize the behavior
of a system close to a prescribed reference trajectory. If a
driven system is nonlinear, then different inputs may drive the
system through different regions of its state space and produce
different CLE’s. If a synchronization scheme relies on negative
CLE’s to recover then the CLE’s should be negative for
all possible inputs under expected operating conditions.

Fig. 13. Error-feedback synchronization.

One way to guarantee that the CLE’s of the response
subsystem are negative is to make that subsystem passive,
as we did in our Chua’s circuit example above. In this
case, generalized synchronization always occurs, even if the
parameters of the drive and response subsystems are mis-
matched. In this sense, generalized synchronization is a robust
phenomenon. However,identical synchronization, which is
required for recovering chaotic basis functions, occurs only
if the parameters are matched.

Here, we have discussed a continuous-time state estimator.
Variations on this theme which estimate the state by means of
Takens-type delay reconstructions [26] are also possible.

The performance of the receiver in a drive-response config-
uration may be improved significantly by adding feedback in
the state estimator. This technique, which we discuss in the
next section, is called error-feedback synchronization.

D. Error-Feedback Synchronization

The goal of the “synchronizable chaotic circuit” block in
a receiver (see Fig. 1) is to estimate the basis function
given a noisy observation of the signal. Error-feedback
synchronization is a technique whereby the instantaneous
difference between the estimate and the received signal

produces a scalar error signal which modifies the
state of the receiver so as to minimize the error.

Assuming that the basis function has been generated
by the system shown in Fig. 5, then the corresponding error-
feedback synchronizable system has the structure given in
Fig. 13.

Here,

(20)

where and as before.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on March 24,2010 at 13:01:44 EDT from IEEE Xplore.  Restrictions apply. 



1138 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 11, NOVEMBER 1998

Fig. 14. Error-feedback synchronization in Chua’s circuit.

With appropriate choices for and

If converges to then converges to
1) Example: Error-Feedback Synchronization in Chua’s

Circuit: Consider again the drive system formed by a Chua’s
circuit shown in Fig. 10 which produces a chaotic basis
function Error-feedback synchronization using linear
feedback may be implemented by the circuit configuration
given in Fig. 14.

Here,

(21)

(22)

(23)

where and
For a sufficiently small value of the coupling resistor

synchronizes with and

E. Proof of Synchronization

Synchronization in Pecora-Carroll drive-response systems
may be established by numerically calculating the CLE’s of
the system. This approach is unsatisfactory in two respects:
extensive simulation is required to calculate the CLE’s. More-
over, the synchronization theorem is valid only for trajectories
in the receiver which come sufficiently close to the reference
trajectory in the transmitter.

Although one may justifiably argue that because the basis
function belongs to an attractor and that ergodicity on this
attractor ensures that the trajectory will eventually come
close to and “pull-in,” there is noa priori upper bound on
the pull-in time [4]. For a practical communications system,
this is unacceptable. Worse still,local stability of the reference
trajectory is not sufficient to guarantee that will
remain close to when random perturbations are added to
the drive signal, as happens in a realistic channel model.

Recent work has highlighted the qualitative difference be-
tween “weak” and “strong” forms of chaotic synchronization
in systems which have identical transversal Lyapunov expo-
nents [27]. In the case of strong synchronization, additive noise
produces a small synchronization error which is related to the

noise level. Weak synchronization is characterized by intermit-
tent desynchronization bursts of large amplitude when noise
or parameter mismatches are present. Consequently, weak
synchronization is not suitable for chaotic communications.

By contrast, several examples exist in the literature where
global stability can be proven for the case when
strong error-feedback synchronization is used [28]–[30]. This
can be accomplished by using Lyapunov’s direct method [31]
to prove that the error system has a globally
asymptotically stable equilibrium point at the origin.

In the case of error-feedback synchronization, design of
the feedback and analysis of the stability of the error system
reduces to a nonlinear observer design problem [32]. Syn-
chronization performance in the presence of noise can also be
improved by filtering the error signal before applying it
to the summing node in Fig. 13 [33].

V. CONCLUDING REMARKS

Much of the recent research in chaotic communications has
focused on synchronization. Our objectives in this work have
been:

1) To provide a theoretical context in which the perfor-
mance of modulation schemes based on chaotic syn-
chronization can be evaluated,

2) To develop a unified framework for discussing and
comparing conventional and chaotic communications
systems, and

3) To highlight the special problems that arise when chaotic
basis functions are used.

In Part I, we surveyed the theory and operation of the
conventional digital communications systems and identified
the minimum requirement for a realistic channel model. The
use of chaotic carrier signals was motivated by highlighting
the limitations of narrowband communications.

In Section II of Part II, we described the CSK, COOK, and
DCSK modulation techniques.

We compared the theoretical performance of a coherent
correlation receiver with synchronization, a noncoherent corre-
lation receiver, and a DCSK correlation receiver in Section III.

We concluded that synchronization-based recovery of
chaotic basis functions from noisy received sample functions
offers potential advantages in terms of data rate and noise
performance, but only if synchronization can be maintained.
If synchronization cannot be maintained, then noncoherent
detection represents a better choice.

In Section IV we surveyed the state-of-the-art in syn-
chronization of chaotic systems in the context of digital
communications.

In Part III, performance targets for chaotic communica-
tions techniques are summarized and examples (CSK with
synchronization, noncoherent CSK and COOK, and DCSK
correlation receiver) are given. We evaluate the performance
of these systems in the context of a noisy and bandlimited
channel. We also highlight a fundamental problem in chaotic
communications of minimizing the variance of the estimation
in the correlator.
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