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Seq-ing improved gene expression
estimates frommicroarrays using machine
learning
Paul K. Korir1, Paul Geeleher2 and Cathal Seoighe3,4*

Abstract

Background: Quantifying gene expression by RNA-Seq has several advantages over microarrays, including greater
dynamic range and gene expression estimates on an absolute, rather than a relative scale. Nevertheless, microarrays
remain in widespread use, demonstrated by the ever-growing numbers of samples deposited in public repositories.

Results: We propose a novel approach to microarray analysis that attains many of the advantages of RNA-Seq. This
method, calledMachine Learning of Transcript Expression (MaLTE), leverages samples for which both microarray and
RNA-Seq data are available, using a Random Forest to learn the relationship between the fluorescence intensity of sets
of microarray probes and RNA-Seq transcript expression estimates. We trained MaLTE on data from the
Genotype-Tissue Expression (GTEx) project, consisting of Affymetrix gene arrays and RNA-Seq from over 700 samples
across a broad range of human tissues.

Conclusion: This approach can be used to accurately estimate absolute expression levels from microarray data, at
both gene and transcript level, which has not previously been possible. This methodology will facilitate re-analysis of
archived microarray data and broaden the utility of the vast quantities of data still being generated.

Keywords: RNA-Seq, Microarray, Machine learning, Statistical learning

Background
Much effort has been invested in developing accurate
methods to infer gene expression levels from the fluores-
cence intensities of microarray probes. Typical analysis
pipelines for oligonucleotide microarrays include subtrac-
tion of background signals, normalization of the signal
intensities across samples and summarization of the flu-
orescence intensities of probes that map to the same
genomic feature (gene or transcript) [1, 2]. Numerous
approaches have been applied to obtain gene-level expres-
sion estimates from probe intensities [3] with robust
linear models (RMA, parameter estimation by median-
polish) and multiplicative models (PLIER, MAS5.0, and
dChip) suggested to give the best results [4]. Methods
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that directly leverage existing datasets have also been pro-
posed, for example, sequencing scaled microarray inten-
sities (SSMI) employs quantile-based scaling to produce
intensities that result in higher statistical power to infer
differential expression [5].
Although they remain in very widespread use, microar-

rays have a number of limitations in comparison to
sequencing-based methods for the quantification of
gene expression (generally referred to as RNA-Seq).
Documented advantages of RNA-Seq include improved
reproducibility and dynamic range and gene expression
estimates on an absolute scale [6]. The latter attribute
facilitates comparison of gene expression levels between
different experiments and also enables the expression of
different genes within the same sample to be compared,
which is useful, for instance in modeling regulatory net-
works [6]. Currently, the summarized probe intensity val-
ues obtained from microarrays, by contrast, are on an
arbitrary scale, cannot easily be compared between exper-
iments without renormalization and are not well suited to
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the comparison of expression levels of different genes in
the same sample [7–9]. In addition, the chips are designed
according to specific genome annotations and need to
be adapted when these annotations change. Finally, the
dynamic range of microarrays (a few hundred fold) is an
order of magnitude lower than that of RNA-Seq (approx.
9,000 fold depending on the coverage) making them less
sensitive [10]. However, because of their relatively low
cost, microarrays remain in widespread use and are par-
ticularly important for large-scale studies and in smaller
and less well-funded laboratories [11–13].
Here we investigate an alternative approach to estimat-

ing gene or transcript expression levels from microar-
ray probe level fluorescence intensities, which addresses
many of the limitations discussed above. We refer to
this method as machine learning of transcript expression
(MaLTE). Given a set of samples for which both microar-
ray and RNA-Seq data are available,MaLTE usesmachine-
learning techniques to learn the relationship between the
intensities of a set of probes associated with the gene
and the expression level of the feature as estimated by
RNA-Seq. The regression models can then be applied to
estimate gene expression from microarray data for which
RNA-Seq data is not available. We applied MaLTE to 716
samples from a broad range of tissues profiled by the
Genotype-Tissue Expression (GTEx) project, training the
regression models on a random subset of the samples and
testing on the remainder. Within individual test samples
the gene expression estimates from MaLTE approximate
closely the values estimated by RNA-Seq. Cross-sample
correlation between RNA-Seq and microarray expression
estimates for individual genes was also significantly higher
using MaLTE compared to existing methods to estimate
gene expression from microarrays. Remarkably, MaLTE
can also leverage transcript isoform expression estimates
produced from RNA-Seq to provide a means to esti-
mate the expression levels of specific isoforms from the
microarray data.

Materials andMethods
GTEx data preparation
Affymetrix Human Gene 1.1 ST microarray and RNA-
Seq expression data (derived from 837 samples across 29
tissue types and three cell lines) were downloaded from
the genotype-tissue expression (GTEx) project website
(http://www.broadinstitute.org/gtex) on 30th July 2013.
For 91 of the samples, only microarray data was available
and multiple biological replicates were included for sev-
eral of the cell lines. A total of 716 of the samples were
used in this study.
Raw and RMA (median-polish) processed microarray

data were downloaded from GEO (accession GSE45878).
Library files for Affymetrix Human Gene 1.1 ST
arrays were downloaded from the Affymetrix website

(http://www.affymetrix.com). Custom CDF files for
Human Gene (HuGene11stv1_Hs_ENSG.cdf) that
were used in the GTEx project [14] were also down-
loaded from the Brainarray resource (http://brainarray.
mbni.med.umich.edu). Probes were extracted using
Affymetrix Power Tools (APT v1.12.0) with and without
quantile-normalization and with background correction
(http://www.affymetrix.com/estore/partners_programs/
programs/developer/tools/powertools.affx). Expression
estimates obtained using RMA were downloaded from
GEO. Gene expression was also estimated using PLIER
[15] as implemented in APT using the custom CDF
(HuGene11stv1_Hs_ENSG.cdf).
We mapped genes to probes using two datasets: (i) the

mapping between probes and probe sets implied within
the probe intensities file and (ii) the mapping between
probe sets and genes. The data for (ii) were constructed
using the BEDTools intersect utility. This utility takes
two BED files as input: one for gene and another for probe
set genomic coordinates. Gene coordinates were deter-
mined from the Ensembl v.72 genemodel [16] while probe
set coordinates were downloaded from the Affymetrix
website (http://www.affymetrix.com).
Altogether, we assessed expression estimates for 26,215

genes. These corresponded to 140,212 transcript iso-
forms. Quantile normalization of gene RPKM values for
the 26,215 genes was performed prior to training and
testing.MaLTE as well as RMA and PLIER expression esti-
mates were also quantile-normalized prior to downstream
analyses.

Selecting and tuning the best learning algorithm
We used an independent dataset to select and tune the
optimal learning algorithm. We obtained RNA-Seq data
[17, 18] and Affymetrix Human Exon 1.0 ST array CEL
files [19] for 53 Yoruba (YRI) and 44 European (CEU)
HapMap cell lines [20]. All individuals were unrelated.
Data was downloaded from the GEO database [21] under
accessions GSE25030 (CEU RNA-Seq), GSE19480 (YRI
RNA-Seq) and GSE7851 (CEU and YRI exon array data).
We compared the performance of several learning

algorithms: classification and regression trees (CART),
multivariate adaptive regression splines (MARS), boosted
regression trees (BRT), random forest (RF), conditional
random forest (CRF) and quantile regression random for-
est (QRF) [22–26]. All learning algorithms were compared
to median-polish and PLIER. All methods were applied
in the R statistical computing environment [27]. Perfor-
mance was evaluated based on the mean cross-sample
correlation over all genes (see Results for a definition).
We identified CRF as the best performing algorithm and

then optimized its performance by identifying the best
parameter settings. To do this, we created ten datasets,
each with 1,000 randomly selected genes. We examined
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the following parameters: minimum number of features
(probes) selected (FS), number of randomly sampled pre-
dictor probes (mtry) and number of trees (ntree). We chose
the optimal value of each parameter based on the mean
cross-sample Pearson correlation coefficient of out-of-bag
(OOB) estimates for positively correlated genes (rOOB >

0). We identified the optimal FS by restricting to the n
probes that were most highly correlated with the response
in the training set. We also identified quantile regression
random forest (QRF) as having equivalent performance
with the added benefit of producing prediction intervals
(upper and lower quantiles). Tuned parameters for the
best algorithm were applied without modification on the
GTEx dataset.

Application to archived samples
A dataset consisting of Affymetrix Human Exon 1.0
ST array and RNA-Seq expression estimates from a set
of human brain samples was downloaded from GEO
(accession GSE26586) [28]. To apply MaLTE, trained on
Affymetrix Human Gene 1.1 ST arrays, to data from the
Affymetrix Human Exon 1.0 ST arrays, we needed to
map probes shared between the two platforms using com-
parison spreadsheets. Spreadsheets relating exon array
to gene array meta-probe sets were downloaded from
the Affymetrix website (http://www.affymetrix.com). We
used meta-probe sets classified as “Best Match” to map
exon array probes to gene array probes. A probe was con-
verted if it was part of a probe set that was in ameta-probe
set in the “Best Match” spreadsheet and only if it shared
100% sequence similarity between arrays. In total 425,268
of the 861,493 probes on the gene array could be mapped
to exon array probes in this way. GTEx and brain RNA-
Seq and probe intensities were then quantile-normalized
together but we excluded background correction because
the process of transforming the exon arrays excluded
several background probes, which would hamper com-
parison to non-background-corrected median-polish and
PLIER.
To compare performance between median-polish,

PLIER and MaLTE, we redefined the exon array meta-
probe set mappings. (For a detailed description of the
exon array design please refer to [29]). We did this to
ensure that the same gene-to-probe set definitions were
applied to all methods. Meta-probe sets represent the
gene/transcript level and are quantified by summarizing
the estimates from the individual probe sets. For each
Ensembl gene identifier, we identified all exonic probe
sets using xmapcore (now annmap) [30]. An exonic probe
set is defined as having: (i) all probes mapping to the
genome only once, and (ii) all probes falling within an
exon boundary. We then used the Ensembl gene identi-
fiers as meta-probe set identifiers. We also constructed a
text file of ‘kill list’ (APT option: -kill-list) probes,

which consisted of probes that were excluded from the
modified exon array. Gene expression estimates were then
computed using APT for custom and core meta-probe
sets.

Application to the Affymetrix tissue mixture dataset
The Affymetrix tissue mixture dataset was downloaded
from the Affymetrix website (http://www.affymetrix.
com). This consisted of ninemixtures of brain and heart in
varying proportions (1:0 (heart to brain), 0.95:0.5, 0.9:0.1,
0.75:0.25, 0.5:0.5 (three biological replicates), 0.25:0.75,
0.1:0.9, 0.05:0.95, and 0:1) with three technical replicates
of each. Because this dataset consisted of Affymetrix
Human Gene 1.0 ST arrays, we mapped probes to Human
Gene 1.1 ST probe identifiers. The same custom library
files were used to evaluate median-polish and PLIER
summarization after background correction and quantile
normalization. Tissue mixture proportions were then esti-
mated using the R package CellMix [31] for common genes
following OOB filtering.

Results
We hypothesized that learning the relationship between
single-channel microarray probe intensities and RNA-Seq
expression estimates from samples for which microarray
and RNA-Seq data are available could provide a means
to obtain improved estimates of gene expression from
microarrays. We refer to this general approach as MaLTE.
To investigate the performance of the MaLTE approach
we applied it to 716 samples from a broad range of human
tissues for which high quality Affymetrix Human Gene
1.1 ST microarray and RNA-Seq data have been gener-
ated through the pilot phase of the GTEx project [14].
We selected approximately one-fifth (146) of the 716
unique samples at random for use as the training set and
tested the performance of MaLTE on the remaining sam-
ples. Training on a larger number of samples did not
lead to substantial improvement in prediction accuracy
(Supplementary Fig. S1). For each feature of interest (gene
or transcript), we identified a set of probes with genomic
co-ordinates that overlap the coordinates of the feature
and used quantile regression random forest, including a
feature selection step, to learn the relationship between
the RNA-Seq expression estimates and the probe inten-
sities in the training data (see Online Methods for details
of the choice of regression algorithm). MaLTE is available
as an R software package from http://bioinf.nuigalway.ie/
MaLTE/malte.html.

Correlation with RNA-Seq
Given a putatively accurate measure of gene expression
(here RNA-Seq), our goal is to approximate this mea-
sure from the array probe intensities. For most genes
we could estimate the RNA-Seq expression level, given

http://www.affymetrix.com
http://www.affymetrix.com
http://www.affymetrix.com
http://bioinf.nuigalway.ie/MaLTE/malte.html
http://bioinf.nuigalway.ie/MaLTE/malte.html
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as reads per kilobase of transcript per million mapped
reads (RPKM) relatively accurately (Fig. 1). For the lowest
expressed genes, accuracy is limited by stochastic fluc-
tuation in the number of reads from a given transcript
and for the highest expressed genes we underestimate
expression level due to saturation of microarray probe
intensities. We also calculated the correlation between
MaLTE and RNA-Seq and compared it to the correlations
with RNA-Seq obtained from two existing widely-used
methods to estimate expression from sets of microar-
ray oligonucleotide probe intensities (median polish [2]
and PLIER [15]). Comparison was carried out both for
correlation within samples and across samples. The for-
mer provides an indication of the agreement between
the methods on the relative expression of different genes
within the same sample, while the latter is an indica-
tion of how well the variation across samples detected
by RNA-Seq is captured by the array estimates. Strik-
ingly, gene expression levels estimated by MaLTE on the
test samples showed dramatically higher within-sample
Pearson correlation with the RNA-Seq estimates than
median-polish or PLIER (Fig. 2a–2d). Importantly, the
improved within-sample Pearson correlation is not sim-
ply a result of MaLTE rescaling the microarray expression
estimates to match the RNA-Seq data, as MaLTE also
results in substantially higher within-sample rank correla-
tion (Fig. 2e). The slopes of the within-sample regression
lines were close to unity for MaLTE (e.g. Fig. 2c). In
contrast, the expression estimates from the other meth-
ods are not on the same scale as the RNA-Seq values
(Fig. 2a and 2b). By placing gene expression estimated

from the arrays on the absolute scale defined by RNA-Seq,
MaLTE allows comparison of gene expression between
genes on the array. This is not possible with standard
summarization techniques, such as median-polish and
PLIER [6, 8, 9].
The correlation of microarray and RNA-Seq estimates

of gene expression has been investigated previously in
several studies [17, 32, 33]. Because not all genes vary sub-
stantially across samples, while within individual samples
mRNA abundance ranges over several orders of magni-
tude [34], cross-sample correlations tend to be lower than
within-sample correlations. MaLTE significantly outper-
formed median-polish and PLIER in cross-sample corre-
lation (Fig. 3). For example, mean cross-sample Pearson
correlation (r̄), in test data was 0.76 for MaLTE com-
pared to 0.72 for median-polish (p < 1 × 10−322, from a
Wilcoxon rank sum test of cross-sample correlations) and
0.68 for PLIER (Fig. 3a). Mean Spearman cross-sample
correlations (ρ̄) obtained from MaLTE were also much
higher (0.69 compared to 0.64 for median-polish and 0.61
for PLIER; Fig. 3b).

Restricting to well-estimated genes
The performance of MaLTE is better for some genes. For
example, low values of cross-sample correlation between
MaLTE and RNA-Seq can be obtained for genes with
low variation in expression across samples. Such genes
will typically also show poor cross-sample correlation
when their expression is estimated using median-polish
and PLIER. However, MaLTE has the advantage that it
provides an estimate of the accuracy with which the

Fig. 1 Estimation accuracy. MaLTE provides an estimate of the RNA-Seq gene expression levels from microarray probe intensities. (a) The relative
error (i.e. difference between MaLTE estimate and RNA-Seq, divided by the RNA-Seq value) as a function of the RNA-Seq expression level. Each point
corresponds to a bin of 75 genes. The data represents all genes but with a random subset of 10 samples for each gene. Only relative errors below 2
and RNA-Seq values between 1 and 1000 are represented. Low expression genes were excluded due to high stochasticity for low read counts. A
Loess regression line is shown in red, illustrating that MaLTE slightly underestimates RNA-Seq particularly for highly-expressed genes. (b) The
distribution of relative error with percentage median error and median absolute error displayed with the median error indicated by the dashed red
line
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Fig. 2Within-sample correlation with RNA-Seq. (a, b, c) Scatter plot of gene expression for a single exemplary sample for each method against
RNA-Seq. The sample with the within-sample Pearson correlation closest to the median over all samples was chosen. Box plots are provided to
show the range of within-sample (d) Pearson and (e) Spearman correlation coefficients across samples in the test dataset. Median correlations are
indicated beneath in brackets

expression level of a given gene can be predicted. This
is provided by the cross-validation carried out by Ran-
dom Forest when the gene-specific regression model is
learned from the training data [24]. Each regression tree
in the forest is constructed from a subset of the samples.
The expression level of the gene in a given sample can
be estimated from the regression trees from which that
sample was omitted. This is called the out-of-bag (OOB)
estimate. For example, to estimate how well MaLTE will
perform for a given gene as assessed by cross-sample
correlation with RNA-Seq, we calculate the cross-sample
correlation between the OOB estimates and the RNA-Seq
data from the training samples. This provides an accu-
rate estimate of the cross-sample correlation in test data
(Supplementary Fig. S2). The OOB estimate can be used
as a filter, so that MaLTE returns expression estimates
only for genes with a desired property. By thresholding
on the OOB cross-sample correlation, we found that very
high values of cross-sample correlation can be achieved
for a subset of genes (Fig. 4a). Because genes that pass the
OOB cross-sample correlation threshold are likely to have
high cross-sample variation, median-polish and PLIER
also achieve higher cross-sample correlation for these

genes. However, MaLTE maintains a performance advan-
tage over the other methods with increasing threshold
values (Fig. 4a).

Inference of differential expression
For many gene expression studies a key objective is to
identify the set of genes that are differentially expressed
between groups of samples (e.g. disease versus non-
disease or treatment versus control). To assess the per-
formance of MaLTE in differential expression analysis we
compared gene expression between two different GTEx
tissues, heart muscle and skeletal muscle. RNA-Seq has
been shown to have higher statistical power than microar-
rays for detecting differentially expressed genes [32];
therefore, we used similarity to the set of differentially
expressed genes identified by RNA-Seq as the metric to
evaluate the performance ofMaLTE compared tomedian-
polish and PLIER (Supplementary Fig. S3 and Fig. S4). To
limit the influence of differences in platform-specific tech-
niques for identifying differentially expressed genes (e.g.
Cuffdiff for RNA-Seq, limma for microarrays) we used
standard t-tests, and ranked the 21,367 common genes
by the q-value. We measured the agreement between the
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Fig. 3 Cross-sample correlation with RNA-Seq. For each gene, the cross-sample correlation was determined between the gene expression values
estimated from the microarrays using MaLTE, median-polish and PLIER. Density plots show the distribution across genes of (a) Pearson and (b)
Spearman correlation coefficients. Mean and median values of the correlation coefficients are provided in parentheses next to the method name in
the legend. Vertical lines show mean cross-sample correlation for MaLTE (solid), median-polish (dashed) and PLIER (dotted)

ranked lists produced from the microarrays by alterna-
tive methods and from RNA-Seq using the concordance
correlation coefficient (ρc) and cumulative Jaccard index
(see Online Methods; Supplementary Fig. S3a). MaLTE
showed significantly higher concordance with RNA-Seq

than median-polish or PLIER (ρc = 0.34, 0.16 and 0.12,
respectively; Supplementary Fig. S3b), crucially demon-
strating that MaLTE has performed better than these
competing methods in identifying differentially expressed
genes.

Fig. 4 The effects of OOB filtering. Mean cross-sample Pearson correlation as a function of OOB correlation threshold for (a) genes and (b)
transcripts. Error bars correspond to two standard errors. Note that transcript-level estimates are not provided by RMA and PLIER. The black line
represents the number of genes/transcripts at each level
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Estimation of transcript isoform expression
A major advantage of RNA-Seq over microarrays is that
RNA-seq can be used to discover and quantify the expres-
sion of novel transcript isoforms, resulting, for example,
from alternative splicing. It is very difficult to obtain reli-
able estimates of expression at the level of transcript iso-
forms from gene expression microarrays, although some
tentative methods have been proposed [35–37]. MaLTE
extends naturally to the estimation of the abundance of
specific isoforms by replacing gene expression as the fit-
ted variable with transcript expression. Although it con-
tains a lower density of probes than Affymetrix exon
microarrays, the Affymetrix Human Gene 1.1 ST array
contains multiple probe sets along human genes and can
be used to measure exon inclusion [38]. Using multiple
response regression we learned the relationship between
the expression level of multiple transcript isoforms esti-
mated from the RNA-Seq data and the fluorescence inten-
sity of all probes mapping to the gene. We predicted the
expression of 140,212 transcript isoforms, achievingmean
cross-sample correlation with RNA-Seq estimates of 0.29.
Again, the OOB expression estimates enabled us to iden-
tify smaller sets of transcript isoforms whose variation
across samples can be predicted more accurately (Fig 4b).
Using this approach, expression can be measured very
accurately for about 25,000 transcript isoforms, which
have amean Pearson cross-sample correlation of over 0.65
(Fig. 4b and Supplementary Fig. S5).

Application of MaLTE trained on GTEx data to independent
microarray datasets
To determine whether MaLTE regression models, trained
on a diverse panel of GTEx tissues, can be applied to
estimate expression frommicroarrays generated indepen-
dently we downloaded a dataset, consisting of Affymetrix
Human Exon 1.0 ST microarrays and RNA-Seq data from
a set of brain samples from a recent study [28]. The fact
that these data were from a different array platform (an
exon rather than gene array) posed a particular chal-
lenge, requiring that we restrict MaLTE to the subset of
probes that are shared between the platforms (425,268
of 5,432,523 of the exon array probes are on the gene
array). In spite of this, MaLTE again provided dramatic
improvements in within-sample correlations compared
to median-polish and PLIER and similar performance in
cross-sample correlation (Figs. 5 and Supplementary Fig.
S6). For this comparison, all of the methods used only
the set of probes shared between the platforms because
these are the only probes available toMaLTE.Without this
restriction, the cross-sample correlations obtained using
median-polish and PLIER applied to all core probe sets
were, in fact, lower than for MaLTE. This is likely to be
the result of noise resulting from lower quality probe sets
that are not shared between the two platforms. Indeed

the majority of exon array probes have been shown to
contribute little to expression signals [38].

Evaluation of MaLTE applied to a controlled tissue mixture
dataset
Both of the evaluations of MaLTE discussed thus far
involve comparison of expression estimates learned from
microarrays with RNA-Seq estimates. This is the pri-
mary evaluation because the objective of MaLTE is to
use arrays to approximate RNA-Seq (or any gold-standard
measure that replaces it and for which a suitable train-
ing dataset is available). However, we also applied MaLTE
to a tissue mixture dataset, provided by Affymetrix
(http://www.affymetrix.com), for which only microarray
data are available. The dataset consists of expression
estimates from nine mixtures of commercially available
heart and brain total RNA, with proportions 1:0 (pure
heart), 0.95:0.05, 0.9:0.1, 0.5:0.5 (three biological repli-
cates), 0.1:0.9, 0.05:0.95 and 0:1 (pure brain). At each mix-
ture ratio three technical replicates were conducted, for a
total of 33 arrays. Tissues were assayed using Affymetrix
Human Gene 1.0 ST arrays. There were 9,455 genes that
were called differentially expressed (FDR < 0.05) between
the pure heart and pure brain samples with each of the
three methods. In the absence of biological noise and
measurement error we expect to find a perfect linear
correlation between the tissue proportion (i.e. brain or
heart proportion) and the expression level for these genes.
Because the biological noise is shared between the meth-
ods, the Pearson correlation coefficient gives an estimate
of how consistent the gene expression measurements are
across different sample mixtures. In this test, we would
expect PLIER and RMA to outperform MaLTE because
PLIER and RMA directly summarize the probe intensi-
ties, whereas MaLTE allows more complex relationships
between expression levels of different probes and the
gene expression estimate. The key advantage of MaLTE
is that it provides an estimate of the absolute expression
level, whereas, although the RMA and PLIER estimates
are consistent across tissue mixtures, their relationship
with actual gene expression level can be unclear. Nonethe-
less, the mean absolute value of the Pearson correlation
coefficient from MaLTE was similar to that of RMA and
PLIER (0.839 versus 0.874 and 0.896 for MaLTE, RMA
and PLIER, respectively). Because MaLTE provides gene
expression estimates on the absolute scale, characteristic
of RNA-Seq it has significant advantages over the other
methods in certain settings. For example, MaLTE out-
performed the other methods when we applied CellMix
[31], to estimate the tissue mixture proportions from
the expression data, using gene expression deconvolu-
tion techniques [39]. The correlation between true and
estimated proportions was high for all methods (Supple-
mentary Fig. S7), but values estimated using MaLTE were

http://www.affymetrix.com
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Fig. 5 Application to archived data. MaLTE, trained using the GTEx data, was applied to predict gene expression from published microarray data
based on brain samples for which RNA-Seq data was also available. Despite the fact that the two studies used different array platforms (Affymetrix
Human Exon 1.0 ST arrays and Affymetrix Human Gene 1.1 ST arrays for the brain and GTEx studies, respectively), MaLTE predictions exceeded the
within-sample correlations obtained using median-polish and PLIER. MaLTE predictions were based on probes shared between the two array
platforms. Box plots of (a) Pearson and (b) Spearman within correlations are shown. (c) Pearson and (d) Spearman cross sample correlations with
OOB filtering. The black line represents the number of genes/transcripts at each level

closest to the true proportions (the slope of the regres-
sion line was 1.02 for MaLTE, compared to 0.86 and
0.96 for RMA and PLIER, respectively; Supplementary
Fig. S7). Both Spearman and Pearson correlation coeffi-
cients between the true and estimated proportions were
also highest for the estimates from MaLTE. In all cases
filtering was applied (using OOB and removal of noisy
genes; see Online Methods) at the training stage to
determine which genes could be estimated accurately by
MaLTE, but expression estimates for the same set of genes
were provided to CellMix for each of the array estimation
techniques.

Running time
A parallel implementation of MaLTE is provided to facil-
itate application to large gene expression datasets. We
timed MaLTE, RMA and PLIER on the task of estimating
expression of 22,704 genes in 837 samples, using a double
dual opteron compute node (quad core, 2.3GHz). RMA
completed this task in 36 minutes, MaLTE (distributed
over 12 cores) took 2 hours, 19 minutes and PLIER took
6.3 days.

Discussion
Oligonucleotide expression microarrays frequently
include multiple probes targeting genes or parts of genes.
For these arrays, a key consideration is how to summarize
fluorescence intensity signals from multiple probes in
order to arrive at an estimate of the feature (e.g. gene or
exon) of interest. A wide range of strategies to evaluate
the performance of different microarray analysis tools
and pipelines have been developed [3, 4]. We propose
an alternative method to estimate gene and transcript
expression from microarrays as well as a very different
approach to the evaluation of performance. Given a
gold standard measure of gene expression our goal is to
obtain expression estimates from the microarray data
that approximate it as closely as possible. The evaluation
of performance then becomes a matter of determining
how closely the expression estimates derived from the
microarrays match the gold standard estimates. In princi-
pal any high-throughput measure of gene expression can
play the role of gold standard, provided a sufficiently large
and diverse set of training samples with both microarray
and gold standard expression data is available. Here we
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use RNA-Seq because it has been shown to have several
important advantages over microarrays [10, 40]. Our goal
is to estimate gene expression from microarrays in a way
that attains some of these advantages. To achieve this,
we learned the relationship between RNA-Seq transcript
expression levels and microarray probe intensities from a
subset of the GTEx [14] samples, evaluating performance
on the remainder, as well as on data from a second study
[28] that also generated RNA-Seq and microarrays from
the same set of samples.
Compared to two widely-used methods to estimate

expression levels from microarrays, MaLTE obtained
much greater within-sample correlation with RNA-Seq
estimates on both the test GTEx data [14] and on the
brain dataset [28] and comparable (for the brain dataset)
or significantly better (for the GTEx test data) cross-
sample correlation. The performance on the brain dataset
was achieved in spite of the use of very different array
platforms for the training and test samples in this case
that shared only a small proportion of probes (an exon
microarray for the brain dataset and a gene microarray
for GTEx). In addition to high within-sample correlation
coefficients, the slopes of the regression lines of MaLTE
against RNA-Seq for each sample were close to one
(Supplementary Fig. S6). Taken together, this indicates
that MaLTE provides an estimate of the RNA-Seq data
on the same scale as RNA-Seq. MaLTE can be applied in
the context of large studies where RNA-Seq and arrays are
applied to a subset of the samples and arrays only to the
remainder. The performance on the Mazin dataset sug-
gests that MaLTE, trained on the GTEx data, can also
be applied to archived samples, despite batch effects and,
in this case, differences in array platforms. Further improve-
ments in performance are likely to be possible if batch effects
aremodeledappropriateandmethods exist for this purpose.
Tissue-specific alternative splicing can complicate the

relationship between the signal from a collection of probes
and gene expression level because different transcript
isoforms may dominate in different tissues. We have
found (data not shown) that the performance of MaLTE
can be further improved by first carrying out principal
component analysis on the probe intensity matrix and
including a subset of the principal components as fea-
tures that MaLTE uses to predict gene expression. In
this case the feature set for a given gene includes shared
(experiment-wide) principal components in addition to
the gene-specific probe intensities.

Conclusion
Our results show that MaLTE, trained on the GTEx
dataset, can be applied to estimate gene expression accu-
rately from microarray data generated in other studies.
There are currently over 24,000 expression microarray
datasets in the GEO database [41] including more than

9,000 from humans. Affymetrix GeneChip gene and exon
array platforms together account for over 1,100 expres-
sion array experiments, involving over 19,000 samples.
MaLTE offers an alternative approach to the analysis of
these data, which will allow the estimated gene and tran-
script expression levels to become more comparable with
expression estimates from RNA-Seq. Archived microar-
ray datasets represent a rich resource of data and, by
learning the relationship between probe intensities and
RNA-Seq expression estimates, MaLTE offers the possi-
bility of joint analysis of data generated using RNA-Seq
and microarrays. In general, training datasets that have
been assayed using different platforms represent a Rosetta
Stone for gene expression measurement, allowing mea-
surements from one platform to be translated to another.
Due to the study size and the breadth of sample types,
GTEx serves this role for Affymetrix gene oligonucleotide
arrays and RNA-Seq.

Additional file

Additional file 1: Additional information containing online methods
is provided as a PDF file. Figure S1. The effect of training size on
predictions. A test set of 100 samples was used for all training sample sizes.
Figure S2. Out-of-bag (OOB) filtering. Scatter plot of cross-sample
correlation coefficients from on OOB gene expression estimates and
estimates obtained on test data for 1,000 randomly selected genes.
Figure S3. Comparison of differential expression results. Comparison of
the performance of MaLTE and median-polish on the problem of detecting
differential gene expression between five heart-muscle and five
skeletal-muscle samples in the GTEx dataset. Each method results in a list
of genes, ranked by the q-value from the comparison of the gene
expression level in the two groups of samples. We used the (a) cumulative
Jaccard index and (b) concordance correlation to compare the similarity as
a function of rank and the overall similarity, respectively, between lists of
genes ranked by MaLTE/median-polish and by RNA-seq. The set of genes
assessed were defined by RNA-Seq: genes with RPKM of above one in both
tissues. Bootstrap re-sampling (100 pseudo-replicates) was used to assess
the effect of sampling error for both cumulative Jaccard index and
concordance correlations. Results of bootstrapping are shown as faint lines
around the observed Jaccard index and yield the density plots shown in
(b). Log of fold change estimates for (c) 120 differentially expressed genes
common to MaLTE and median-polish and (d) MaLTE and PLIER for six
common genes. Figure S4. Comparison of 10-sample DGE to 44-sample
DGE. (a) Self-comparisons (e.g. MaLTE 10-sample DGE to MaLTE 44-sample
DGE, with five and 22 samples in each tissue, respectively).
Forty-four-sample DGE results are treated as putative true differential
expressions at the indicated (top right or each plot) false discover rates
(FDRs). FDRs were computed using the q-value method (Storey and
Tibshirani 2003). Comparisons are made using the Jaccard index. (b)
Comparison of each method to 44-sample DGE using RNA-Seq. Figure S5.
Transcript isoform expression estimates. Densities of (a) Pearson and (b)
Spearman cross-sample correlations for transcript isoform expression
estimates obtained using MaLTE. Filtered data corresponds to transcript
isoforms with rOOB > 0. Figure S6. Box plots of slopes β computed by
linearly regressing RNA-Seq against array method. Dotted red line indicates
unit gradient. Each box plot represents 12 slopes for brain samples.
RNA-Seq expression is restricted to RPKM between one and 1000 because
of high uncertainty at low values and few genes at high values
representing 78% of genes quantified. Using all genes results in the same
medians but wider variance in slopes due to outlying genes. Figure S7.
Estimation of tissue mixture proportions. (a) MaLTE, (b) median-polish
(RMA), and (c) PLIER. Each plot shows comparisons of true and estimated
proportions with key statistics indicated in the legends.

http://www.biomedcentral.com/content/supplementary/s12859-015-0712-z-s1.pdf
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