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(Received 14 May 2014; accepted 19 September 2014; published online 29 September 2014)

This is an investigation on the development of a numerical assessment method for

the hydrodynamic performance of an oscillating water column (OWC) wave

energy converter. In the research work, a systematic study has been carried out on

how the hydrodynamic problem can be solved and represented reliably, focusing

on the phenomena of the interactions of the wave-structure and the wave-internal

water surface. These phenomena are extensively examined numerically to show

how the hydrodynamic parameters can be reliably obtained and used for the OWC

performance assessment. In studying the dynamic system, a two-body system is

used for the OWC wave energy converter. The first body is the device itself, and

the second body is an imaginary “piston,” which replaces part of the water at the

internal water surface in the water column. One advantage of the two-body system

for an OWC wave energy converter is its physical representations, and therefore,

the relevant mathematical expressions and the numerical simulation can be

straightforward. That is, the main hydrodynamic parameters can be assessed using

the boundary element method of the potential flow in frequency domain, and the

relevant parameters are transformed directly from frequency domain to time

domain for the two-body system. However, as it is shown in the research, an

appropriate representation of the “imaginary” piston is very important, especially

when the relevant parameters have to be transformed from frequency-domain to

time domain for a further analysis. The examples given in the research have shown

that the correct parameters transformed from frequency domain to time domain

can be a vital factor for a successful numerical simulation. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896850]

I. INTRODUCTION

Oscillating water column (OWC) wave energy converters have been often regarded as the

first generation of wave energy converters and maybe the most studied wave energy devices.

The early success of oscillating water column wave energy converters saw that hundreds of

small scale OWCs have been deployed to power the navigation buoys in remote areas (see

Falcao1 and Chozas2). The development has been since then advanced to large OWC wave

energy plants and now some practical OWC plants have been built and actually generated elec-

tricity to the grid. It is reported that the LIMPET OWC plant has generated electricity to the

grid for more than 60 000 h in a period of more than 10 years (Heath3). A recent development

is the Mutriku OWC wave energy plant in Spain4—a multi-OWC wave energy plant with a

rated power of 296 kW, consisting of 16 sets of “Wells turbinesþ electrical generator”

(18.5 kW each), is estimated a electricity generation of 600 MW h so far. [EVE, Mutriku OWC

Plant, http://www.fp7-marinet.eu/EVE-mutriku-owc-plant.html (accessed on 10/05/2014).]

OWC wave energy converters are one of the most adaptive concepts: they can be built on

shoreline or breakwaters in a bottom-fixed fashion (LIMPET, PICO, and Mutriku OWC plants),

or in near-shore in a form of either bottom-fixed or floating device or offshore in a form of

floating devices. Its adaptivity may be only matched by the overtopping wave energy
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converters, for example, the bottom-fixed Tapchan [Tapered Channel Wave Energy, http://taper-

edchannelwaveenergy.weebly.com/how-does-it-work.html (accessed on 10/05/2014)] and the

floating WaveDragon [Wave Dragon, http://www.wavedragon.net/index.php?option¼com_

frontpage&Itemid¼1 (accessed on 10/05/2014)]. These types of the wave energy converters

have a particular advantage over many other types of wave energy converters in the develop-

ment stages: their pioneer wave energy plants can be simply built on shoreline. One advantage

of the shoreline wave energy plants is that the problems with the wave-structure interaction

(partially), cable connections, and access to the plant are not present (it is also noted that moor-

ing system is not applied in this case), so that in their development stages, the focus can be

more on the wave energy conversion and power take-off (PTO) (air turbine and control system

and strategies). The experience accumulated and lessons learnt from these developments can be

then easily transplanted to the floating OWC wave energy converters, in which the focus can

be paid on the interaction of wave-structure, mooring system, and cabling connection since the

issues with PTO and control system have been addressed in those pioneer plants.

The second advantage of the OWC wave energy converters is their unique feature in power

conversion. In the OWC wave energy converters, the air flow is normally accelerated from the

very slow airflow in the chamber (driven by the internal water surface (IWS)) to a high-speed

airflow through the power take-off system by 50–150 times if the PTO air passage area ratio is

taken 1:50–1:150 to the water column sectional area. This much accelerated air can drive the

air turbine to rotate in a high speed, typically a few hundreds RPM for the impulse turbines

and more than a thousand RPM for the Wells turbines (see O’Sullivan and Lewis5). The high-

rotational speed of the air turbine PTO allows a direct connection to the generator, and thus

the bulky gearbox may not be necessary, and more importantly, for a certain power take-off,

the high rotational speed can also mean a small force or torque acting on the PTO system,

which in turn ensures a high reliability in power take-off systems.

To understand and improve wave energy conversion by the OWC devices, numerical methods

have been developed. Earlier theoretical work on the hydrodynamic performance of OWCs has

shown that OWC devices could have a high primary wave energy conversion efficiency if the opti-

mized damping can be attained (Sarmento and Falcao,6 Evans,7 and Evans and Porter8) for those

fixed or simple OWC devices. For the more complicated and practical OWC devices, the boundary

element method (BEM) (and the relevant commercial software, such as WAMIT [WAMIT, User

Manual, www.wamit.com/manual.htm (accessed on: 10/05/2014)], ANSYS AQWA [AQWA User

Manual, www.mecheng.osu.edu/documentation/Fluent14.5/145/wb_aqwa.pdf (accessed on 10/05/

2014)], etc.) can be readily available for any complexity of the geometries. Regarding the full

scale device, there may be air compressibility problems. Due to the nonlinearity and the non-

Froude similarity nature (see Weber9 and Sheng et al.10), the air compressibility in the air chamber

may not be evident or present in the small scaled models because the scaled models have normally

small scaled air volumes and pressures in the air chamber. Sarmento et al.11 have proposed a line-

arized formula for the flowrate through the power take-off system, based on an assumption of an

isentropic flow. Sheng et al.12 have recently formulated a full thermodynamic equation for the air

flow in the chamber by invoking the simple PTO relation of the chamber pressure-flowrate which,

though simple, has included all the effects of the flow through the air turbine, hence, the detailed

complicated air flow through the turbine can be avoided (note: for improving the performance of

the air turbine, the detailed air flow through the turbine is still very important if the turbine per-

formance is examined). More recently, Sheng et al.13 have also coupled the hydrodynamics and

the thermodynamics for a bottom-fixed generic OWC device and have predicted the internal water

surface and chamber pressure very well when compared to the experimental data.

So far, though successful to some extent, a reliable numerical simulation for the perform-

ance of the OWC wave energy converters is not available yet. Hence, the development of

OWC wave energy converters frequently relies on the experiments in laboratories. Essentially,

physical models include all the effects if the scaling is well prepared. For instance, the model

should be large enough to ensure the scaling correct in which the Reynolds number would be

large enough to minimise the Reynolds effect (see Sheng et al.10). In physical model tests, the

scaled OWC models mean smaller air chambers and smaller chamber pressure responses, and
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therefore, the air compressibility (i.e., the “spring-like effect”) cannot be scaled and present.

Nonetheless, experiments could provide valuable assessments to the performance of the OWC

devices if the model tests are well conducted. For example, experimental studies on the

bottom-fixed or floating OWCs have shown that the wave energy conversion efficiency of an

OWC device very much depends on the damping coefficients of the flow passing through the

power take-off system, as well as the size and length of the water column (water column sec-

tional area and length). Toyota et al.14 have shown that both the size of the air chamber and

the length of the horizontal duct length of a Backward Bent Duct Buoy (BBDB) device have

significant effects on the primary power conversion of the OWC wave energy converters. Imai

et al.15 have studied the influence of the horizontal duct length to the wave energy capture

capacity in a BBDB device and shown that a longer horizontal duct has increased the maximum

IWS response to a longer resonance period. As a result of this, a longer horizontal duct may be

desirable for tuning the BBDB to the wave states of longer wave periods. Morris-Thomas

et al.16 have experimentally studied the hydrodynamic efficiency on fixed OWCs with different

front shapes. From the comparison, it can be seen that the front shapes have some but limited

influence on the wave energy conversion efficiencies of the fixed OWC. For the four different

front shapes, the wave energy capture efficiencies are overall similar, and the maximum wave

energy conversion efficiency is about 70%, but no reason has been given why the maximum

wave energy conversion efficiency is only about 70%.

Generally, reliable numerical assessments have not been well established for OWC wave

energy converters though this type of wave energy converter has been widely studied and may

have a longest history when compared to other types of wave energy converters. In this

research, the focus is on the development of a numerical assessment method for the hydrody-

namic performance of OWC wave energy converters, and the details on how to reliably assess

the hydrodynamic performance, which is a prerequisite condition in the overall performance

assessment for an oscillating water column wave energy converter, are presented and discussed.

Examples have shown that special care must be taken if a reliable hydrodynamic model is

deemed to be developed for the OWC wave energy converter.

II. METHODOLOGY

A. Frequency domain analysis

Potential theory has been well-developed in the last century and now widely used in marine

and offshore applications, and more recently applied in wave energy conversions, including the

oscillating water column devices.

For some specific OWC devices, such as two-dimensional OWC devices, or some three-

dimensional OWCs with simple structures, analytical solutions are possible (Evans and Porter,8

Martins-rivas and Mei,17 and Mavrakos and Konispoliatis18), but more popular approaches are

the numerical analysis using the commercial codes based on the boundary element method,

such as WAMIT and ANSYS AQWA. These commercial codes are readily available for any

geometry of interest.

Based on the assumption of the potential flow, the velocity potential of the flow around the

floating structure satisfies the Laplace equation,

r2u ¼ 0; (1)

where u is the frequency-domain velocity potential of the flow around the floating structure

(the corresponding time-dependent velocity potential should read U ¼ ueixt since the dynamic

system is assumed to be linear in the hydrodynamic study).

An earth-fixed coordinate system is defined for the potential flow problem. The coordinate

is fixed in such a way that the x-y plane is on the calm water surface and z-axis positive up ver-

tically. In the coordinate, the free surface conditions can be expressed in the frequency domain

(see Lee and Nielsen19), as

053113-3 Sheng, Alcorn, and Lewis J. Renewable Sustainable Energy 6, 053113 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.239.246.125 On: Tue, 30 Sep 2014 06:26:25



@u
@z
� x2

g
u ¼

0; on Sfð Þ
� ix

qg
p0; on Sið Þ;

8<
: (2)

where x is the wave frequency, q is the density of water, g is the acceleration of gravity, p0 is

the pressure amplitude acting on the internal free surface, Si is the internal free surface in the

water column, and Sf is the free surface but excludes the internal free surface.

It must be noted that the pressure amplitude acting on the internal free surface is an

unknown, which must be solved when a power take-off system is applied.

Hydrodynamically, the water surface in an OWC can be regarded as a moonpool, which

has been found applications in the operations of offshore platforms and studied in theoretical

and numerical approaches (see Refs. 20–23). The difference between a moonpool and an oscil-

lating water column is that the application of the power take-off system in the OWC wave

energy converters will apply a reciprocating pressure (the alternative positive and negative

chamber pressure, and they may be nonlinear if the nonlinear PTO is applied) on the internal

water surface, which would make the problem more complicated.

To solve the linear hydrodynamic problems in the OWC wave energy devices, different

approaches have been developed and used. The popular approaches include the massless piston

model19,24 and the pressure distribution model.7 In the former approach, the internal free sur-

face is assumed to behave as a massless rigid piston (a zero-thickness structure), and the target

solution is the motion of the internal water surface. The internal water surface motion is then

coupled with the PTO so that the chamber pressure can be solved. A slightly different version

of the massless piston model is a two-body system for the OWCs, in which the first rigid body

is the device itself and the second rigid body is an imaginary thin piston at the internal free sur-

face to replace part of the water body in the water column. Hydrodynamically, the two-bodies

are strongly coupled (see Refs. 13, 25, and 26). By applying a power take-off system, the rela-

tive motion between the two-body could produce a reciprocating pressure in the air chamber. In

the latter approach, the internal free-surface condition is represented in terms of the dynamic

air pressure in the chamber (see Refs. 27 and 28) and in the numerical simulation, a reciprocity

relation must be employed as shown by Falnes29 so that the conventional BEM can be used.

However, it must be pointed out that this method may be only applicable for the cases of linear

PTOs. Tank test and field test data have shown the nonlinear chamber pressure (with both wave

frequency and high frequency components in regular waves) even though the internal water sur-

face motion can be reasonably linear when a nonlinear PTO is applied for wave energy

conversion.

Relatively, the physical meaning of the first approach is more obvious, and its implementa-

tion in the numerical assessment is more straightforward. Hence in this research, this approach

is applied and studied.

To represent the dynamic system better, a convention for a two-body system is used: The

motion modes of the first body are given by xi (i¼ 1, 2,…, 6), corresponding to the first rigid

body motions of surge, sway, heave, roll, pitch, and yaw, respectively, and the motion modes

of the second body are given as xi (i¼ 7, 8,…, 12), which corresponds to the 6 degrees of free-

dom motion of the second body, i.e., surge, sway, heave, roll, pitch, and yaw. To simplify the

analysis in the oscillating water column wave energy conversion, only the heave motions of the

two bodies are considered for power conversion, because for power conversion in the OWC,

the other motion modes may not be useful in contributing to generate power in this particular

case, and because it is generally acceptable when the motions are not too severe, the heave

motions may not be coupled with other types of motions (the generic OWC considered in the

research has an axi-symmetrical structure).

The heave motions of the two bodies in frequency domain can be written as

f�x2½m33 þ a33ðxÞ� þ ixb33ðxÞ þ c33gf3 þ f�x2a39ðxÞ þ ixb39ðxÞ þ c39gf9 ¼ f3ðxÞ;
f�x2a93ðxÞ þ ixb93ðxÞ þ c93gf3 þ f�x2½m99 þ a99ðxÞ� þ ixb99ðxÞ þ c99gf9 ¼ f9ðxÞ;

(
(3)
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where m33 and m99 are the masses of the first and the second bodies; a33(x), a 39(x), a 93(x),

and a99(x) are the frequency-dependent added masses for the heave motion for the first and

second bodies and their interactions at the infinite frequency; c33, c99 and c93, c39 are the restor-

ing force coefficients and their interactions (hydrostatic coefficients); b33, b99 and b93, b39 are

the hydrodynamic damping coefficients for heave motions and their interactions; f3 and f9 are

the excitations for the first and second bodies, and f3 and f9 are the complex heave motion am-

plitude of the two bodies, respectively.

Solving Eq. (3), the relative heave motion (complex) between the two bodies termed as the

IWS can be calculated as

fr ¼ f9 � f3: (4)

Here, f3 and f9 are the complex heave motion amplitudes for both bodies.

Accordingly, the amplitude responses of the device heave motion, X3, the piston heave

motion, X9, and the internal water surface motion, Xr, are given as follows:

X3 ¼
jf3j
A

X9 ¼
jf9j
A

Xr ¼
jfrj
A

;

8>>>>>>><
>>>>>>>:

(5)

or

X3 ¼
2jf3j

H

X9 ¼
2jf9j

H

Xr ¼
2jfrj

H

;

8>>>>>>><
>>>>>>>:

(6)

where A and H are the amplitude and height of the incoming wave, respectively, and j*j means

the modulus of the complex response.

B. Time domain analysis

For OWC wave energy converters, the whole dynamics may very likely be nonlinear if an

air turbine PTO take-off system is included, for example, a linear Wells turbine. When a full

scale OWC device is considered, the air chamber and the pressure can be large enough, so that

the air compressibility in the air chamber can be obvious (see Falcao and Justino30), which is

essentially nonlinear. If mooring system is included, the nonlinearity will be more obvious

when the large motions of the device are induced. For a nonlinear dynamic system, frequency-

domain analysis is no longer suitable; hence a time domain analysis must be employed.

In the time-domain analysis in the research work, the Cummins-Ogilvie hybrid frequency-

time domain analysis is used, in which the hydrodynamic parameters can be first analysed in

frequency domain, and then the Cummins time-domain equation is established using the

Ogilvie’s relation (Cummins31 and Ogilvie32). This hybrid frequency-time domain approach has

been a popular choice in the development of wave energy conversions.27,33–36 The nonlinear

effects from PTO or any other sources can be fully implemented in the time-domain analysis.

1. Time domain equations

To simplify the problem in the oscillating water column wave energy conversion, we

assume only the heave motions of the two bodies are useful for power conversion. The
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assumption may be acceptable when the motions are not too severe, and the heave motion may

not be coupled with other types of motions, especially for the cylinder-type structures.

The heave motion of the two bodies can be written in time-domain as

½m33 þ A33ð1Þ�€x3ðtÞ þ
ðt

0

K33ðt� sÞ _x3ðsÞdsþ C33x3ðtÞ þ A39ð1Þ€x9ðtÞ

þ
ðt

0

K39ðt� sÞ _x9ðsÞdsþ C39x9ðtÞ ¼ F3ðtÞ; (7)

A93ð1Þ€x3ðtÞ þ
ðt

0

K93ðt� sÞ _x3ðsÞdsþ C93x3ðtÞ þ ½m99 þ A99ð1Þ�€x9ðtÞ

þ
ðt

0

K99ðt� sÞ _x9ðsÞdsþ C99x9ðtÞ ¼ F9ðtÞ; (8)

where m33 and m99 are the masses of the first and the second bodies; A33(1), A39(1), A93(1),

and A99(1) are the added masses for the heave motion for the first and second bodies and their

interactions at the infinite frequency; C33, C99 and C93,C39 are the restoring force coefficients

and their interactions; K33, K99 and K93, K39 are the impulse functions for heave motions and

their interactions; F3 and F9 are the excitations for the first and second bodies.

The impulse functions can be obtained if the frequency-domain added mass or damping

coefficients have been assessed via the transform as

Kij tð Þ ¼ 2

p

ð1
0

bij xð Þcos xtdx; (9)

or

Kij tð Þ ¼ 2

p

ð1
0

x aij xð Þ � aij 1ð Þ
� �

sin xtdx; (10)

where aij and bij are the added mass and damping coefficients in frequency domain, aij(1) is

the added mass at the infinite frequency, which is a frequency-independent value.

2. IWS motion in time domain

The internal water surface in the water column is the parameter for creating a reciprocating

chamber pressure in the air chamber, thus the pneumatic power which can be used for power

conversion. The internal water surface motion is given by the relative heave motions of the two

bodies as

xrðtÞ ¼ x9ðtÞ � x3ðtÞ: (11)

III. PISTON REPRESENTATION

To illustrate the problem more clearly, a cylindrical OWC wave energy converter is consid-

ered here. This is a generic OWC wave energy converter which has been widely tested and

studied in HMRC wave basin (see Sheng et al.37). A photo of the device is shown in Figure 1.

The OWC device has a schematic drawing of the vertical section shown in Figure 2. The

whole column of the device (the water and air columns) has a diameter of 0.23 m, and an over-

all length of 0.3 m, of which 0.15 m is emerged in water (i.e., a draft of 0.15 m). The device

has a float of 0.04 m thick and 0.2 m high surround the entire column providing the buoyancy

and stability for the device and 0.10 m submerged in water. A circular plate is fixed on the top
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of the air column, with an orifice in middle to model a nonlinear PTO take-off (that is, a non-

linear air turbine PTO). The overall weight of the device is 3.39 kg. The device was also bal-

lasted for a good stability to float rightly in the waves.

As shown in Figure 2, a piston is used to represent part of the water body in the water col-

umn (in the figure half of the length of the water body in the device column), whose motion can

be equivalent to the uniform motion of the water body in the water column. For wave energy

conversion, the up-and-down motions of the piston relative to the column structure can generate

a pressurised and de-pressurised air in the air chamber which could exhale or inhale air through

the air turbine and to drive it to rotate, so to generate electricity if it is connected to a generator.

A. Natural period of the piston motion

As shown by Evans and Porter,8 the interior free surface has a natural period, T0, if the

length of the cylinder is much larger than its diameter (actually this condition is not well satis-

fied in this case, but for a comparison, the formula is used) as

FIG. 1. A generic cylinder OWC wave energy converter.

FIG. 2. Water column in water and the corresponding piston (the length of the piston is same as the full length of the water

column).
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T0 ¼ 2p

ffiffiffiffi
D

g

s
¼ 0:777s; (12)

where D (¼0.15 m) is the draft of the water depth or the length of the water column and g the

gravity acceleration. This formula corresponds to the natural period of a cylinder of a draft D
in water without a correction from the added mass.

If the imaginary piston is considered as an isolated cylinder, its added mass for the heave

motion has been given according to McCormick (Ref. 38, p. 48) when the draft D is far larger

than its diameter (again, this condition is not fully satisfied. But unlike the previous case, the

added mass has been included. And for comparison, the formula is again used here) as follows:

a33 ¼ 2:664qR3; (13)

where R is the radius of the cylinder.

The corresponding natural period of the heave motion would be

T0 ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 0:848R

g

s
¼ 0:998s: (14)

For a large water column or a moonpool, its natural period of the water surface motion has

been studied by Veer and Thorlen,23 and they gave a formula for the calculation of the natural

period of the internal water surface motion as

T0 ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 0:41 � S

1=2
0

g

s
¼ 0:970s; (15)

where S0 is the sectional area of the moonpool/water column.

A more appropriate approach in obtaining the internal water surface motion, and thus its rele-

vant natural period is employing the conventional BEM (in this case, WAMIT). In the BEM code,

the interaction between the water body and the floating structure is fully accounted. Hence, the

natural period of the internal water surface would be more accurately calculated via the BEM.

All the natural periods using different formulas, including the one obtained from WAMIT

simulation are listed in Table I. One can see that those semi-empirical and numerical methods

give quite similar estimations to the natural period of the internal water surface motion if an

appropriate added mass can be included.

In this study, WAMIT has also been used to study the behaviour of the device and the inter-

nal water surface. In the simulation, the two-body system has been used. Figure 3 shows that the

device and the piston have different natural periods (two spikes in the responses in Figure 3), that

is, the imaginary piston has a natural period of 0.935 s, which is close to the results from

Eqs. (14) and (15), but larger than that given by Eq. (12), whilst the heave motion of the device

has a natural period of 0.740 s.

From Figure 3, it can be also seen that both heave motion responses of the device and the

piston are modified due to their interaction. For the heave response of the device, there is a

TABLE I. Natural periods of the internal water surface.

Method Natural period of internal water surface, T0 Reference

Evans et al. 0.777 s 8

McCormick 0.998 s 38

Veer et al. 0.970 s 23

WAMIT 0.935 s …
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small response when the wave period is at the natural period of the piston heave motion; while

for the piston response, due to the heave motion of the device, the response is modified signifi-

cantly when the wave period is at the natural period of the heave motion of the device. As a

result of the relative heave motion between the cylinder and the piston, the IWS motion (Xr)

has two peaks which correspond to the natural periods of the device and the piston heave

motion, respectively. All three responses have large peak values (more than 5.0). This is mainly

because in WAMIT, only hydrodynamic damping is considered, while the other types of the

damping, for instance, the viscous damping, are ignored in the analysis.

B. Piston length and motion responses

As it is well known that, in many cases in studying an OWC wave energy converter, the

water column of an OWC device has been represented by a thin piston or a zero thickness

structure.25,26 The zero thickness structure is replaced the internal free surface (see Figure 4). It

has been shown theoretically by Falcao et al.25 (also Evan et al.24) that the added mass for the

thin rigid-body is the entire entrained-water by the water column plus some additional added-

mass. This interesting result can be taken that the mass of the thin piston plus the entrained

water (i.e., the major part of the corresponding added-mass) may be possibly equivalent to that

FIG. 3. Responses of the heave motions of the float and the piston and their relative motion (X3-heave response of the

device; X9-heave response of the piston; Xr-the relative response of the internal water surface).

FIG. 4. A very thin piston on the internal free surface (L is small or zero).
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of a full piston. An extreme case of the thin piston is the zero thickness structure (i.e., a mass-

less piston), which has been also studied by Lee et al.19,39 via a method called “generalised

modes,” and the generalised modes for the internal water surface motion can be simply speci-

fied as the additional motion modes in the boundary element codes, so that a significant modifi-

cation to the code is not necessary. As can be seen in many practical cases, the thin/massless

pistons or the full pistons are both popular in studying the performance of an OWC device.

Therefore, there may be a question, what will happen if a certain length of the piston is consid-

ered, as shown in Figure 5.

In the above OWC device, a longest piston length could be the full length of the water

column of 0.15 m (i.e., L¼ 0.15 m, where L is the actual length of the piston), and the shortest

piston length is zero in the massless piston (Figure 4). In-between, the length of the piston

could be any length between 0.0 m and 0.15 m (Figure 5). In Figure 6, a comparison of the in-

ternal water surface responses for different piston lengths is shown (the lengths “L¼ 0.001 m,”

“L¼ 0.01 m,” etc., indicating the lengths of the pistons). It can be seen that the IWS responses

are very similar when the wave period is larger than 0.5 s for all five piston lengths (Figure 6).

However, the values at the second peaks may be slightly different for the different lengths of

the pistons, especially for the full length of the piston (L¼ 0.15 m). And in all these responses,

there are two obvious resonances: the first resonance of a shorter period corresponds to the

device heave motion resonance and the second resonance corresponds to the natural period of

the pistons. From the comparison, it can also be seen that in the region of very short periods,

the IWS responses can be very different for short pistons (see Figure 7): these response spikes

may correspond to their inherent natural periods of the “pistons” when they are not isolated

without the interaction from the water column structures. The shorter the piston, the shorter the

natural period is (can be deduced from Eqs. (12), (14), or (15)). In the frequency domain analy-

sis, the relative internal water surface motion responses are dominated by the heave responses

of the two bodies. The small spikes of the motion responses in very short waves are often

beyond any interest (not power extraction from that!).

It must be noted that in the IWS responses in Figures 6 and 7, they are only damped via

their inherent hydrodynamic damping coefficients. Hence, the responses are relatively high at

the corresponding resonance periods.

C. Piston length and added mass

When a time domain analysis is needed for the dynamics of the wave energy converter, the

relevant hydrodynamic parameters can be obtained by a transform from frequency domain to

time domain, based on the Cummins time domain equation31 and the Ogilvie relation.32 This

FIG. 5. An illustration of a thick piston for representing the internal free surface.
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method has been often named as hybrid frequency-time domain method36 and very popular in

the applications in wave energy conversion thanks to its low computation burden and its

straightforward physical meaning. One important aspect in such an application is the assessment

of the added mass at the infinite frequency, because this special added mass and the device

mass itself can form the overall mass in the dynamic system in the time domain system, which

in turn very much decides the dynamic responses of the system, especially the resonance

response. Hence, its correctness is of vital importance in such a dynamic system.

Table II shows the masses and the added-masses at infinite frequency for the pistons and

the device from the simulations using WAMIT. For the massless piston (its length D¼ 0.0 m),

the “generalised modes” have been used, which represents the IWS motion (named as the

mode 7), while for the cases of certain lengths of pistons, two-body system is used in WAMIT

simulations.

From the table, the added masses for the device heave motion at the infinite frequency are

very close except the one in the massless case, which is obviously “wrong” (a very large nega-

tive added mass!). And the added mass for the “generalised mode” is also wrong (even a larger

negative added mass). For the cases of certain lengths of the pistons, the overall mass for the pis-

ton can be different, and their correctness will be examined later in this research. However, one

can see that when the piston length is larger than 0.05 m, the overall mass (given by the mass

and added mass together) is very similar, though the piston mass itself can be very different

(2.08 kg for the piston length 0.05 m and 6.23 kg for the piston length of 0.15 m), see Figure 8.

FIG. 6. IWS response predictions with a 2-body system.

FIG. 7. IWS response predictions (zoom for the responses in short periods).
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Figure 9 shows a comparison of the added mass for four different lengths of the pistons.

From the figure, it can be seen that for the cases of small lengths of the piston, its added mass

can be a large positive or negative value at certain short periods. These very spiky added

masses (both large positive and negative) happen at the different periods for the different

lengths of the pistons (T¼ 0.76 s for L¼ 0.15 m, T¼ 0.445 s for L¼ 0.05 m, and so on), the cor-

responding periods should be very close to the piston natural periods in the absence of the

interaction between the piston and the device. Figure 10 shows a comparison for long

(L¼ 0.10 m and L¼ 0.15 m). For the cases of piston lengths of 0.10 m and 0.15 m, the added

mass may still be spiky at very short waves, where the negative and positive added masses can

be seen clearly, but not as severe as those of shorter pistons.

The added mass in high frequencies (very short waves) are difficult to calculate, though in

WAMIT, it is possible to specify a simulation so that the added mass at infinite frequency can

be calculated. However, in many practical cases, we may assume that the added mass at a fre-

quency large enough can be taken as the added mass at infinite frequency. Then a question

may arise: how large of the frequency is enough?

Figure 11 shows the added mass calculations in very short waves of wave periods from

0.005 s to 0.25 s, which correspond to high frequencies 25.1 rad/s and 1256 rad/s, respectively,

for the pistons with different lengths. It can be seen that the added mass for L¼ 0.15 m and

L¼ 0.05 m are very steady in most of the periods, but not in the very short wave periods. For

the case of L¼ 0.001 m, the added mass tends to be steady, but it is very close to zero.

Obviously, it is not correct, and the issue will be further discussed later in this research. For the

case of the piston L¼ 0.01 m, it is varying very much at all high frequencies.

To calculate the internal water surface motion correctly, the correct calculations of the rele-

vant parameters for the time domain equations (7) and (8) are very important. Among them, the

calculation of the added mass at the infinite frequency is extremely important. Due to the limi-

tation of the panels in the numerical simulation, the calculation of the added mass at infinite

frequency is not reliable as other conventional hydrodynamic parameters, which may cause

TABLE II. Piston mass and its added mass.

Piston L(m) 0 0.001 0.005 0.01 0.02 0.05 0.1 0.15

M33 3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39

A33 �43.44 1.43 1.44 1.44 1.45 1.45 1.45 1.46

A77(1) �70.10 … … … … … … …

M99 … 0.04 0.21 0.42 0.83 2.08 4.15 6.23

A99(1) … 4.35 5.77 6.30 6.66 6.43 4.66 2.93

M99þA99(1) … 4.39 5.98 6.72 7.49 8.51 8.81 9.16

FIG. 8. Masses and the added masses of the pistons in different lengths.
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FIG. 9. Added mass predictions for the pistons with different lengths.

FIG. 10. Added mass predictions for the pistons (L¼ 0.10 m and L¼ 0.15 m).

FIG. 11. Added mass in high frequency waves (very short waves).
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serious problems in the time-domain analysis, because the dynamic responses are fully related

to the overall mass in the dynamic system. This becomes more obvious when the piston is cho-

sen as a massless (i.e., a zero-length piston) or a very thin piston, the added mass at the infinite

frequency may be wrongly calculated (the huge spiky added mass for very short waves, see

Figure 11). The reason for this may be due to the zero or very short length of the piston for

which the corresponding natural period of the piston itself may be extremely small.

Relatively, the added mass at the infinite frequency is more reliable and may be easier to

obtain when the piston is long.

The utilisation of the different pistons in the numerical simulation of the OWC wave

energy converters may have some practical benefits and considerations. As it is shown that for

a full-length of a piston, it seems beneficial because more reliable and stable added mass can

be relatively easy to attain. However, a full length piston in an OWC device is only possible

when the OWC has a uniform water column. Unfortunately, this is not the case in many engi-

neering applications. A good example is the BBDB OWC device.14,40,41 Their bent duct of the

BBDB device does not allow a full length of a piston to be implemented if a two-body system

is used. Hence, it is an advantage to choose an appropriate length of the piston for representing

the internal water surface in this regard.

In some practical applications, people have to make a decision how large of the frequency

is enough when its added mass can be taken as the added mass at infinite frequency. Table III

shows the added mass at different frequencies for the pistons with different lengths. When the

massless piston is used, the added mass at infinite frequency is a large negative value, which is

obviously incorrect. For short lengths of the pistons, its added mass will be very varying

regarding to the frequencies. In this particular example, when the piston length is longer than

0.05 m, the added mass tends to be steady regardless of the frequencies (also see Figure 12).

However, it must be noted that even for the longest piston (L¼ 0.15 m), its added mass at very

high frequency can be unsteady significantly (see Figure 11). Hence, it can be very tricky when

the added mass is decided if the real added mass at infinite frequency is not available. In addi-

tion, for the case of massless piston, or the very short piston (L< 0.05 m), the added mass at in-

finite frequency is not well predicted. This may cause a large variation when the added mass at

infinite frequency is calculated when compared to other cases in Table III.

D. Piston length and hydrodynamic damping coefficient

For the pistons with different lengths, the damping coefficients are all very close, especially

when the wave periods are long, for instance, larger than 0.5 s (see Figures 13(a) and 13(b)),

and for very short pistons, the vibrant damping coefficients can be seen in very short waves

when its period is less than 0.25 s. In this vibrant coefficients, negative damping coefficients

can be also seen. It is believed that the negative damping coefficients may be caused by the

inappropriate panel sizes for those very short waves. If the pistons are longer, the vibrant damp-

ing coefficients are less severe. However, it can be seen that corresponding to the inherent natu-

ral periods, the damping coefficients exhibit large changes (see Figure 13(b)).

TABLE III. Added mass (in kg) at different frequencies.

L(m) x¼ 10 rad/s x¼ 20 rad/s x¼ 40 rad/s x¼ 80 rad/s x¼1

0 8.869 6.833 23.177 0.043 �70.10

0.001 8.918 12.369 �0.713 0.282 4.348

0.005 8.751 10.915 0.437 �0.995 5.771

0.01 8.551 11.345 3.784 7.272 6.304

0.02 8.158 22.029 6.074 6.559 6.663

0.05 6.907 6.055 6.373 6.418 6.429

0.1 2.967 4.608 4.650 4.662 4.662

0.15 2.746 2.903 2.927 2.933 2.934
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E. Piston length and impulse function

Figure 14 shows the comparison of the impulse functions for the heave motions of the pis-

tons of different lengths. It can be seen that impulse functions are very similar, regardless of

the piston lengths. One can notice that for the piston of length 0.10 m, some high frequency

oscillations can be seen for a long time, which is corresponding to large spike at its inherent

natural period. It will be seen later in the research that the small oscillations in the impulse

function for L¼ 0.10 m will not cause any problem in the time-domain simulation, because this

frequency of the impulse function oscillation is very different from that of the natural frequency

of the dynamic system, and its influence to the motion responses is very small.

In the calculation of the impulse functions, the spiky damping coefficients must be taken

carefully, otherwise it can create a very vibrant oscillation in the impulse functions. To get

good impulse functions shown in Figure 14, the hydrodynamic damping coefficients are

actually those shown in Figure 15, in which the very spiky damping coefficients in high fre-

quencies should not be included in the calculation.

F. Piston length and excitation

Figure 16 shows a comparison of the excitation given in the WAMIT simulations. It can

be seen that when the wave periods is longer than 1.0 s, the excitations for the different pistons

FIG. 12. Added mass at different frequencies for different “pistons” (compared to the added mass “black dots” at infinite

frequency).

FIG. 13. Damping coefficients for the pistons of different lengths.
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FIG. 14. Impulse functions for the pistons of different lengths.

FIG. 15. Damping coefficients for the piston of different lengths.

FIG. 16. Excitations on the pistons of difference lengths.
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are almost identical. However, for very short wave periods, the excitation can be very spiky

(see both Figures 16 and 17). The maximum values can be much larger than the excitation in

the longer waves. The reason for this may be the interaction between the float and the piston,

and it may be also caused due to the panel limitation for the calculation in very short waves

(see the following comments on this issue). However, the very large spiky excitations do not

create same spiky motion responses (see Figures 3 and 6). The reason why the very spiky exci-

tations do not generate large responses is that the corresponding periods are much shorter than

the natural periods of the pistons in the dynamic system.

1. Comments on the piston representation

Some additional comments are given as follows:

First of all, in the boundary element method employed in this study, the generation of the

appropriate panels must be considered carefully. For a good simulation, as a rule of thumb, the

largest length of the panels in the simulation must be smaller than 1/7 of the wave length.42

Meanwhile, a good practice in the panel generation is to avoid any rapid change in the sizes of

the adjacent panels. Ideally, the adjacent panels would have a similar size (WAMIT manual).

In this regard, the simulation at the infinite frequency or very high frequencies may be not sat-

isfactory, since the panels satisfying the conditions are impossible. However, this does not

mean the calculation of the added mass at infinite frequency can not be conducted. Examples

have shown that the reliable results for the added mass at infinite frequency may be obtained,

but care must be taken for those very short pistons as shown in the example.

The second comment will be on the natural periods of the pistons. If there is no interaction

between the piston and the device itself, a thin piston would have a short natural period in

heave according to Eqs. (12), (14), or (15) (note: in the calculation, L should be taken as the

actual length of the piston, rather than the length of the water column). In this regard, it can be

deduced that the heave resonance period will be longer for a longer piston. Then why all the

pistons mentioned above have same natural periods, regardless of the piston lengths?

Indeed, the thin piston has a short natural period in heave, which can be given by Eqs.

(12), (14), or (15), and this will become evident when we look at the effect of the piston

lengths later in the research. However, due to the interaction between the float body and the

imaginary pistons, in the dynamic system, the mass and added mass must be considered to-

gether, as shown in Table II. Meanwhile, it can be also understood when a very thin piston is

considered, it will perform as a “wave rider,” which only follows the motion of the water body

in the water column in waves. Hence in this regard, the motion of the water body (i.e., the full

piston) decides the motion of the piston. This may explain why different pistons experience

same responses.

FIG. 17. Excitations on the pistons of difference lengths (zoom).
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IV. RESULTS AND ANALYSIS

For studying the time domain analysis, irregular waves of a significant wave height

Hs¼ 0.1 m and a mean period of T01¼ 1.0 s are chosen due to its closeness to the resonance

periods of the piston motion (T0¼ 0.934 s).

In the irregular waves, the effects of the infinite frequency added mass to the motions are

examined here. An important factor in the time domain analysis is the assessment of the added

mass at infinite frequency. From the time domain equations (7) and (8), the natural frequency

of the dynamic system will be very much decided by the restoring coefficient and the total

mass (structure or piston mass plus their added mass at infinite frequency). Hence, the reliable

computation of the added mass at infinite frequency is of vital importance.

As shown in Ref. 43, the time domain result can be checked when it is compared to the

transferred result from the frequency domain response, because the later analysis has only

related to the parameters at the relevant wave frequencies, rather than the problems in assessing

the infinite frequency added mass.

A. Criteria of accuracy

Following Sheng and Lewis,44 two values are used to assess the goodness of the time-

domain simulation. The first value is the commonly used correlation coefficient (“R”), which is

a good indicator of the two time-series in phase comparison, but not in the relative amplitudes.

For instance, when two time series are fully in phase regardless of their very different ampli-

tudes, the correlation between them would be a unit.

The correlation coefficient is calculated as

R ¼

PN
i¼1

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

xi � �xð Þ2
PN
i¼1

yi � �yð Þ2
s : (16)

The second value is the relative square root error (“RRE”), which can be used for distin-

guishing the actual difference between the two time series. This relative square root error is

employed because it removes the effects of the absolute amplitude in the target time series. The

RRE can be calculated as

RRE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi � xið Þ2

PN
i¼1

yi � �yð Þ2

vuuuuuut : (17)

B. Bottom-fixed OWC

In the first case, the time domain analyses have been conducted for the OWC device in a

fixed manner, hence there is no motion for the device, but the piston heave motion (i.e., the in-

ternal water surface in this case) can be calculated without a consideration of the device heave

motion. Figures 18–22 show the comparisons between the time domain analysis and the fre-

quency domain analysis for the different length pistons. It can be seen when the piston is very

short, the time domain simulation shows significant differences to the result from the frequency

domain analysis (see Figures 18 and 19). The main reason for the difference is the added mass

at infinite frequency, as it can be seen in Figure 8, for the very short piston, the added mass at

infinite frequency is well underpredicted, hence the corresponding dynamic system for a very

short piston would have a higher natural frequency than it should be, so in the specific irregular
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FIG. 18. Heave motion of the piston (piston length L¼ 0.001 m).

FIG. 19. Heave motion of the piston (piston length L¼ 0.01 m).

FIG. 20. Heave motion of the piston (piston length L¼ 0.05 m).

FIG. 21. Heave motion of the piston (piston length L¼ 0.10 m).
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wave, the heave motion of the piston is far away from the resonance with the wave, that is

why the amplitude of the piston heave motion is much smaller than it should be (note: the

damping and the excitation for all pistons are very similar from Figures 16 and 14).

When the piston is getting longer, better time domain result can be seen, because their cal-

culated overall mass is getting closer to the actual one, and thus the dynamic system would

have a closer natural frequency to the actual one. For the lengths L¼ 0.10 m and L¼ 0.15 m,

the time-domain result is almost identical to that from the frequency domain (Figures 21 and

22). Table IV shows the accuracy of the time domain analysis. It can be seen that in the cases

of the very short pistons, the accuracy of the time domain analysis is very low. The correlation

coefficient is getting larger when the piston is getting longer, while the RRE is getting smaller,

which indicates the closeness of the two time series. For the cases of L¼ 0.10 m and

L¼ 0.15 m, the correlation coefficients are close to unit, which means that the two time series

are very much in phase, while the corresponding small RRE means a small difference between

the two time series.

C. Floating OWC

Similar to the cases of the bottom-fixed OWC, the time domain analyses have been carried

out for the floating OWC device, in which the OWC device itself and the imaginary piston can

both move un-restrainedly. Figures 23–26 show the comparisons between the time domain and

the frequency domain analyses when the pistons of different lengths are used. Again, it can be

seen that when the piston is very short, the time domain simulation shows significant difference

to that from the frequency domain analysis (see Figure 23). When the piston is getting longer,

better time domain analysis result can be seen. Again, for the lengths L¼ 0.10 m and

L¼ 0.15 m, the time-domain result is same as that from the frequency domain (Figures 25 and

26). Table V shows the accuracy analysis of the time domain simulations, which is very similar

to Table IV, and hence same conclusions can also be drawn.

It must be pointed out that the prediction of the heave motion of structure is better repro-

duced than that of the heave motion of piston, especially when the piston is short. The reason

for this is the added mass at infinite frequency for the device heave motion is very much reli-

able regardless of the piston lengths (see Table II). However, it must be also noted that the

heave motions of the two bodies are coupled together (from Eqs. (7) and (8)), the inaccurate

prediction of the piston heave motion would have eventually affected the heave motion of the

device. That is why we can see some differences of the heave motion between the time domain

FIG. 22. Heave motion of the piston (piston length L¼ 0.15 m).

TABLE IV. Accuracy analysis of the time domain simulations.

L¼ 0.001 m L¼ 0.01 m L¼ 0.05 m L¼ 0.10 m L¼ 0.15 m

R 0.395 0.328 0.870 0.974 0.999

RRE 0.925 0.967 0.494 0.226 0.047
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and the frequency domain analyses for the very short piston (see Figure 23), though the corre-

sponding added mass at the infinite frequency is well calculated (also see Table II).

V. CONCLUSIONS

In hydrodynamic study of OWC wave energy converters, different methods have been

developed in frequency domain if a linear dynamic system is assumed. However, for a full

scale OWC or the practical OWC plant, its dynamics may be nonlinear due to the factors of

the nonlinear air compressibility and maybe of a nonlinear air turbine (PTO). Hence, for such a

dynamic system, time-domain analysis must be conducted. In this research, we focus on a two-

FIG. 23. Heave motions of the floating structure and the piston (piston length L¼ 0.01 m).

FIG. 24. Heave motions of the floating structure and the piston (piston length L¼ 0.05 m).
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FIG. 25. Heave motions of the floating structure and the piston (piston length L¼ 0.10 m).

FIG. 26. Heave motions of the floating structure and the piston (piston length L¼ 0.15 m).

TABLE V. Accuracy analysis of the time domain simulations.

L¼ 0.001 m L¼ 0.01 m L¼ 0.05 m L¼ 0.10 m L¼ 0.15 m

R 0.423 0.401 0.908 0.981 0.999

RRE 0.914 0.929 0.419 0.194 0.060
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body system to represent the device itself and the imaginary piston for the OWC wave energy

converter for their hydrodynamics. The main reason for such a consideration is that the two-

body system has a very clear physical meaning and the study and implementation of the two-

body system are very straightforward.

In implementing the time-domain analysis, the Cummins-Ogilvie’s equation is used, in

which the hydrodynamic parameters are transformed from the parameters in the frequency-

domain analysis to time domain, such as the added mass at infinite frequency and the impulse

functions. In the research work, we examine how reliable we can conduct a time domain analy-

sis for the hydrodynamic performance of an OWC wave energy converter.

From the results and the analyses, following conclusions can be drawn:

(i) The length of the imaginary piston for the water body in the water column has little influ-

ence on the responses of the motions for the frequency range of interest.

(ii) In very short waves (high frequency waves), there will be vibrant responses in added mass,

damping coefficients, and the excitation, though these spiky responses have no significant

effect on the overall responses of motions in frequency domain analysis, but they tend to

cause problems when we choose the added mass at infinite frequency or at a very large fre-

quency, or the calculation of the impulse function. As a result of these difficulties, the time

domain solution based on these parameters may not be appropriate.

(iii) The examples show that a favourable length of the piston must be chosen so that reliable

time-domain analysis can be obtained.
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