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Abstract 

In different types of myeloid leukemia, increased formation of reactive oxygen species (ROS) has 

been noted and associated with aspects of cell transformation including the promotion of leukemic 

cell proliferation and migration, as well as DNA-damage and accumulation of mutations.  Work 

reviewed in this article has shown the involvement of NADPH oxidase (NOX)-derived ROS 

downstream of oncogenic protein-tyrosine kinases in both processes, and the related pathways have 

been partially identified. FLT3-ITD, an important oncoprotein in a subset of AML, causes activation 

of AKT and subsequently stabilization of p22phox, a regulatory subunit for NOX1-4. This process is 

linked to ROS formation and DNA damage. Moreover, FLT3-ITD signaling through STAT5 

enhances expression of NOX4, ROS formation and inactivation of the protein-tyrosine phosphatase 

DEP-1/PTPRJ, a negative regulator of FLT3 signaling, by reversible oxidation of its catalytic cysteine 

residue. Genetic inactivation of NOX4 restored DEP-1 activity and attenuated cell transformation by 

FLT3-ITD in vitro and in vivo. Future work is required to further explore these mechanisms and their 

causal involvement in leukemic cell transformation, which may result in the identification of novel 

candidate targets for therapy.  
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Introduction 

The formation of reactive oxygen species (ROS) is essential for normal cell physiology, and has been 

covered in detail in many excellent recent reviews [1-4]. Only a few aspects, which lay the 

groundwork for discussing specific ROS functions in leukemic cells, shall be briefly reiterated here.  

One important type of ROS are superoxide anions (O2
.-) as they are produced as side-products along 

the respiratory chain in mitochondria [5], by activity of NADPH oxidases 1-3, and 5 [4], or by 

different other cellular oxidases. Hydrogen peroxide (H2O2), considered a particular important 

signaling molecule [6], can be produced by NADPH oxidase 4 (NOX4) and the Dual oxidases 1 and 2 

(DUOX1, 2), or by conversion of superoxide anions through superoxide dismutases (SOD). Further 

reactive species such as the short-lived hydroxyl radical (OH.), lipid hydroperoxides, peroxynitrite 

(NO3
-) or hypochloric acid (HOCl) arise by metabolic reactions engaging superoxide or H2O2 (Fig.1). 

Among the specific physiologic functions of ROS is the reversible modification of proteins in the 

course of signal transduction in many cell types. Some of these modifications may not occur by direct 

interaction with any of the listed ROS species, but instead be relayed through intermediate oxidation 

products [3]. The formation of ROS and their reaction products is limited in time and extent by 

efficient cellular “anti-oxidant” systems. For example, peroxiredoxins (PRDXs) and catalase rapidly 

decompose H2O2. Thioredoxins and glutathione peroxidases can revert oxidative modifications, e.g. 

of oxidized protein-thiols or of lipid hydroperoxides, respectively. These and further antioxidant 

systems require NADPH and GSH for their restoration. The expression of several antioxidant 

proteins/enzymes is under positive control of the transcription factor NRF2, whose protein level and 

thereby activity is promoted by modification of an upstream “oxidant sensor” designated KEAP1 

(Fig. 1). If ROS formation exceeds the capacity of the antioxidant mechanisms, cells are exposed to 

“oxidative stress”, leading to damage of cellular macromolecules, and potentially cell death.  

Different types of cancer cells appear to produce higher levels of ROS than their normal counterparts 

[7, 8]. For example, early reports described enhanced ROS production in RAS-transformed fibroblasts 

[9], a finding which has later been corroborated in human CD34-positive hematopoietic progenitor 

cells [10]. More recently, also enhanced antioxidant activities were noted in cancer cells, for example 

as consequence of RAS-mediated transformation [11]. Consistent with a contributing role of this 

mechanism to tumor formation or maintenance, mutations in components of the KEAP1-NRF2 axis 

were found in different tumor types, leading to constitutive NRF2 activation [12-14]. It is likely that 

enhanced antioxidant capacity in some tumor entities is required for enabling cell survival under 

conditions of enhanced ROS production. ROS formation plays also a role in the interaction of cancer 

cells with their microenvironment, such as the cancer stem cell niche, with inflammatory cells or in 

the context of tumor angiogenesis. Clearly, alterations in ROS metabolism in cancer are complex, 
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presumably specific for certain cancer entities, and relate to both alterations in ROS formation and 

antioxidant defense. 

 

Table 1 

ROS formation in myeloid neoplasms, underlying mechanisms and functional consequences 

Leukemia entity Observed alterations in 
ROS pathways 

Functional consequences References 

CML BCR-ABL drives ROS 
formation through 
PI3K/AKT and glucose 
metabolism 

General inhibition of 
phosphatase activity 

[15, 16] 

CML ROS formation through 
PI3K, mitochondria, and 
AKT  

Genomic instability, 
development of TKI 
resistant cell clones 

[17, 18] 

CML NOX inhibitors synergize 
with TKI in inhibiting 
leukemic cells 

NOX inhibition as potential 
therapeutic strategy 

[19] 

CML BCR-ABL driven ROS 
formation involves 
STAT5 

Acquisition of BCR-ABL 
mutations 

[20] 

Myeloid 
neoplasms 

ROS overproduction 
downstream of oncogenic 
tyrosine kinases 

Cell growth and migration [21] 

Myeloid 
neoplasm 

RAS transformation of  
normal CD34+ cells 
drives ROS formation 
through NOX2 

Promotion of survival and 
proliferation 

[10] 

AML FLT3-ITD mutation 
drives ROS formation 

DNA damage and misrepair [22, 23] 

AML ROS production 
downstream of FLT3-
ITD is mediated by 
p22phox 

STAT5 activation [24] 

AML Overproduction of NOX-
derived ROS 

ROS promoted 
proliferation in vitro 

[25] 

AML FLT3-ITD drives ROS 
through NOX activation 

DNA damage [26] 

AML FLT3-ITD drives ROS 
formation and PTP 
oxidation 

Cell proliferation, 
myeloproliferative disease 

[27, 28] 

AML Reduced expression of 
peroxiredoxin 2 (PRDX2)  

Increased ROS levels upon 
cytokine stimulation;  
low PRDX2 levels 
correlated with poor 
prognosis 

[29] 

 

A plethora of data has indicated alterations in ROS metabolism in leukemia, either linked to etiology, 

prognosis or therapy responses [30, 31]. Many studies have supported the idea that ROS formation 
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may indeed causally contribute to leukemia growth and malignancy. For example, primary AML 

patient cells have been shown to frequently produce high levels of superoxide, a phenomenon which 

could be causally related to AML cell proliferation [25].   Only relatively recently, however, insights 

into the molecular basis of ROS formation in the leukemic cells were obtained. Importantly, the 

activity of key oncoproteins in myeloid leukemia, comprising BCR-ABL, FMS-like tyrosine kinase 3 

with internal tandem duplications (FLT3-ITD), and Janus kinase 2 (JAKL2) V617F could be 

mechanistically connected to metabolic alterations leading to enhanced ROS formation (Table 1, 

Chapter 2). We will summarize here recent findings on these mechanisms, focusing on FLT3-ITD-

driven ROS production in AML and its consequences.  

 

Oncogenic kinases as drivers of ROS formation in myeloid leukemia 

More than 90% of chronic myelogenous leukemia (CML) cases develop from a chromosomal 

abnormality known as the Philadelphia chromosome, which result from a reciprocal translocation 

between chromosomes 9 and 22, generating the chimeric kinase BCR-ABL (reviewed in [32]). BCR-

ABL is known to activate down-stream pro-survival pathways, for example, PI3K/AKT, JAK/STAT 

and RAF/MEK/ERK, resulting in resistance to apoptosis and proliferation [33]. BCR-ABL expressing 

cells have been shown to generate increased levels of ROS compared to untransformed cells [16]. 

Various sources of ROS have been examined in CML including leakage from the mitochondrial 

electron transport chain and NADPH oxidase generated ROS, particularly NOX4. Naughton et al., 

demonstrated NOX4-generated ROS contributing significantly to total endogenous ROS upon BCR-

ABL induction [34]. Treatment of CML cells with the BCR-ABL inhibitors, Imatinib and Nilotinib 

showed a significant decrease in ROS, coinciding with a post-translational down-regulation of the 

small membrane-bound protein p22phox, a key component of the NOX complex [35]. Treatment of 

BCR-ABL expressing cells with panNOX inhibitors, DPI or VAS2870 resulted in a reduction in ROS 

levels. Inhibition of both the PI3K/AKT and RAF/MEK/ERK pathways in combination resulted in 

p22phox down-regulation. BCR-ABL induced NOX4-generated ROS are dependent on PI3K/AKT 

and RAF/MEK/ERK activation and GSK3β inhibition [36]. Mitochondrial ROS also appear to 

contribute to total ROS in CML cells.  

The JAK2 V617F mutation is a substitution of a valine for a phenylalanine at amino acid 617 of JAK2 

destabilizing the JH2 “pseudokinase” domain of JAK2. It results in loss of the auto-inhibitory 

function of this regulatory domain, and in turn constitutive tyrosine kinase activity [37]. The mutation 

is present in approximately 6% of myelodysplastic syndromes (MDS) and 50% of myeloproliferative 

neoplasms (MPNs) [38]. Signaling of the JAK2 V617F oncoprotein results in constitutive activation 

of downstream pro-survival signaling, including activation of STAT5, PI3K/AKT and 

RAF/MEK/ERK, and in turn the formation of ROS [39, 40]. The increase in ROS is concurrent with 
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elevated levels of DNA damage [40]. In neutrophils from JAK2 V617F positive patients, an increased 

phosphorylation of the NOX2 subunit p47phox on Ser345 has been observed, suggesting a contribution 

of NOX2 activation to elevated levels of ROS in MDS [41]. 

FLT3, encoding the class III receptor tyrosine kinase FLT3 is the most frequently mutated gene in 

AML (up to 35%) [42, 43]. The prevalent mutations (found in 20-25% of AML patients) encode 

internal tandem duplications of sequence in the FLT3 juxtamembrane or the first part of the kinase 

domain, giving rise to FLT3-ITD oncoproteins. Since the affected kinase regions have a negative 

regulatory function for kinase activity, FLT3-ITD mutations result in ligand independent constitutive 

activation of the FLT3 receptor both at the plasma membrane but also of the newly synthesized kinase 

at the endoplasmic reticulum [44, 45]. Occurrence of FLT3-ITD has been associated with a worse 

patient prognosis [46-48]. Constitutive activity of FLT3-ITD activates down-stream pro-survival 

signaling pathways including PI3K/AKT, STAT5 (whereby STAT5 activation is independent of JAK 

kinase activation [49]) and RAF/MEK/ERK, which are known to promote survival, proliferation and 

transformation [50-52]. Recent findings have identified that in order for PI3K/AKT and 

RAF/MEK/ERK pro-survival pathways to be activated they must be located down-stream of FLT3-

ITD at the plasma membrane and STAT5 is located down-stream of FLT3-ITD at the ER [45, 53]. 

FLT3-ITD expressing cell lines have been shown to produce increased levels of ROS, DNA oxidation 

and double strand breaks (dsbs) when compared to FLT3-WT expressing cell lines [22, 27]. NOX-

generated ROS appear to be a primary source of ROS in FLT3-ITD expressing AML cells. Cells 

harboring the FLT3-ITD mutant have been shown to produce increased levels of NOX2 and NOX4 

and their partner protein p22phox compared to wild type FLT3 cells [26, 28]. Also, stimulation of 

FLT3-WT expressing cells with FLT3 ligand resulted in an increase in p22phox expression and of 

endogenous H2O2 levels [26]. There was no significant difference in mitochondrial ROS observed in 

FLT3-ITD or FLT3-WT cells, and cyclooxygenase-driven ROS formation did not contribute to total 

endogenous H2O2 in FLT3-ITD expressing cells ([26] and J. Moloney, T. Cotter, unpublished data). 

The enhanced ROS formation in FLT3-ITD expressing AML cells serves a signaling function in that 

it promotes cell proliferation and migration, and thereby contributes to leukemic cell transformation 

[21, 27]. In addition, FLT3-ITD driven ROS formation has been associated with DNA damage and 

accumulation of mutations [22, 23, 26]. Both aspects will be discussed in the following parts.  

 

ROS mediated alteration of transforming signal transduction: role of PTP oxidation.  

Protein phosphorylation of tyrosine residues plays a fundamental role in diverse cellular functions 

such as proliferation, growth, metabolism and differentiation. Protein-tyrosine kinases (PTKs) 

mediated signal transduction is regulated by protein-tyrosine phosphatases (PTPs) and failure of 

regulation of either protein family can contribute to unfavorable diseases like cancer. The human PTP 
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superfamily consists of more than 100 members. Many of these enzymes are identified by the unique 

consensus signature motif HCX5R involved in the catalytic function. Despite of their sequence and 

structural similarity, PTPs show a wide range of substrate specificity [54, 55].  

In AML, several members of the PTP superfamily were found to be altered by genetic aberration, 

promoter methylation or gene overexpression.  PTPN11 (also known as SHP-2) positively regulates 

FL ligand mediated FLT3 receptor signaling [56] and not surprisingly, activating mutations 

(commonly found SHP-2 E76K mutant) were identified in AML [57, 58]. Phosphatase PTEN 

negatively regulates PI3K signaling downstream of FLT3 receptor and is also mutated, though rarely 

in AML [59]. Several recent findings claim a role for deregulated gene expression of dual specificity 

phosphatases such as PRL2, PRL3 and DUSP6 in AML cases with and without FLT3 mutation [60-

62]. Recently STS1 and STS2 (also known as UBASH3B and UBASH3A), which belong to a PTP 

subfamily with histidine-based catalysis [54], were identified to be directly regulating the FLT3 

receptor tyrosine phosphorylation in hematopoietic stem cells [63]. However, their potential role in 

regulating constitutively active FLT3-ITD phosphorylation or FLT3 signaling in AML is yet 

unknown. Other examples include the transmembrane PTP PTPRD (PTPδ), which is downregulated 

by promoter methylation and may be a tumor suppressor in pediatric AML [64], and CDC25, which is 

mutated in familial platelet disorder with predisposition to AML [65].  

PTPs can modulate signal transduction in many ways, both negatively and positively. For example, 

they prevent the non-specific activation of PTKs, e.g. by averting the ligand-independent activation of 

RTKs. In other contexts, PTPs can promote signaling by activation of SRC family kinases or of the 

RAS pathway [55].   PTP activity is regulated by several mechanisms [66] and one such regulatory 

process is the reversible oxidation of the catalytic cysteine by ROS. H2O2 is considered an important 

ROS species in the PTP oxidation process. Upon oxidation, the active-site thiol moiety (-SH) is 

converted to a sulfenyl moiety (-SOH), which further reacts to more stable reaction products in 

intramolecular reactions, like sulfenylamides or disulfides. The widely presumed role of H2O2 in PTP 

oxidation may in fact be indirect [3] and other oxidants, such as lipid peroxides, can also effectively 

oxidize PTPs [67, 68].  PTP oxidation is typically transient, and reduction back to the active state is 

accomplished by interaction with cellular antioxidants like GSH or thioredoxin [67]. Reversible PTP 

inactivation facilitates the efficient RTK signal transduction in the cells upon ligand/growth factor 

stimulation [1]. Emerging reports claim, however, that PTPs are also important targets of 

pathologically generated ROS and that in such circumstances ROS mediated PTP inactivation could 

contribute to diseases like cancer. In support that such processes play a role in leukemia, an early 

study showed that high ROS levels in BCR-ABL transformed cells were associated with low levels of 

overall PTP activity, and treatment with antioxidants reverted these effects [15]. As outlined above, 

apart from BCR-ABL, also other myeloid leukemia-specific PTK oncoproteins, JAK2 V617F and 

FLT3-ITD, cause constitutive formation of elevated levels of ROS and their possible consequences 
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for PTP deregulation deserve attention.  The transmembrane PTP PTPRJ (also known as DEP-1, and 

CD148) was previously identified as bona fide PTP negatively regulating FLT3 receptor signaling in 

myeloid cells [69]. DEP-1 regulates FL ligand-induced FLT3 receptor signaling by associating with 

[70] and dephosphorylating FLT3 directly, thereby attenuating the activation of FLT3. When the role 

of DEP-1 for regulation of the FLT3-ITD oncoprotein was analyzed, DEP-1 was discovered to be 

oxidized and partially inactivated due to high levels of sustained ROS generation leading to elevated 

FLT3 activity and promotion of downstream signaling pathways, including STAT5 and RAS/ ERK1/2 

activation, causally contributing to cellular transformation [27]. Investigating the relevant ROS 

sources it could recently be convincingly shown that NOX4 mRNA and protein expression are 

elevated in FLT3-ITD positive AML cells and that NOX4 expression is directly transcriptionally 

regulated by STAT5 [28]. The NOX4 promoter possesses STAT binding elements, and STAT5 was 

demonstrated by ChIP assays to bind to these elements in a FLT3-ITD dependent manner. General 

interference with ROS formation by different means, downregulation of NOX4 with RNAi, or 

treatments with potential small molecule NOX4 inhibitors caused a pronounced decrease in ROS 

levels, rescued DEP-1 PTP activity, and attenuated transforming FLT3-ITD-driven signaling and cell 

transformation in vitro and in vivo.  Double depletion of DEP-1 and NOX4 partially rescued the effect 

of NOX4 depletion on transformation in vitro, suggesting that DEP-1 reactivation is essential for the 

inhibitory effect of NOX4 depletion.  Interestingly, murine hematopoietic stem cells transduced with a 

combination of FLT3-ITD with other potent oncogenic drivers (Hoxa9/Meis1, or MLL-AF9) and with 

genetic inactivation or downregulation of Nox4, did not grow in absence of cytokines in vitro, and 

were impaired in their capacity to elicit a myeloproliferative disease in sublethally irradiated recipient 

mice in vivo, respectively [28]. These findings revealed an important role played by NOX4 dependent 

ROS formation for oxidation of DEP-1, a bonafide PTP of FLT3 as a transforming event in FLT3-

ITD harboring aggressive AMLs (Figure 2). It will be interesting to know whether NOX4 dependent 

oxidative inactivation of DEP-1 is a selective mechanism or reflects a more general attenuation of 

PTPs in FLT3-ITD cells. While NOX4 may indeed be of interest as a therapeutic target in FLT3-ITD 

subtype AMLs, there are still several other potential sources of ROS formation, whose investigation is 

warranted.  

 

ROS-mediated DNA damage and potential implications for leukemia biology 

Genomic instability has been suggested to be the main cause of genetic diversity in cancer 

[71, 72]. Also disease progression in leukemia is associated with the accumulation of multiple 

mutated genes, resulting in resistance to apoptosis, abnormal cell growth and a block in differentiation 

[43, 73]. To explain the multiple mutations, the leukemic cells must likely acquire some form of 

genetic instability. Increasing evidence has shown that an increase in ROS formation, which is 
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associated with an increased DNA damage, may be important in this context. Oxidative DNA damage 

can cause a wide range of DNA alterations such as base pair mutations, insertions and deletions [74]. 

DSBs are one of the most dangerous lesions resulting in translocations and deletions. Alternative 

mechanisms involved in the generation of genomic instability include unfaithful or insufficient repair 

of DNA damage [75]. There are two DNA repair systems responsible for DNA dsb repair: a precise 

homologous recombination and a less precise non-homologous end-joining (NHEJ). Increased activity 

of the unfaithful AEJ repair pathway and down-regulation of the faithful NHEJ pathway were found 

associated with FLT3-ITD and BCR-ABL oncogenic signaling [23, 76, 77]. For example, an earlier 

study revealed that inhibition of FLT3-ITD using PKC412 resulted in significant decrease in dsbs and 

non- homologous repair of DNA damage. On the other hand, PKC412 had no effect on dsbs or the 

DNA repair pathways in FLT3-WT expressing cells [78], showing the importance and involvement of 

FLT3-ITD oncogene in genomic instability. It was also shown that increased repair of FLT3-ITD 

stimulated DNA damage contributes to drug resistance, which coincides with the high relapse rate 

associated with FLT3-ITD expressing AML cases [78]. The BCR/ABL mutation in CML is involved 

in a cycle of genomic instability similar to the FLT3-ITD mutation. The oncogenic effects of 

BCR/ABL cause increased levels of ROS production leading to enhanced DNA damage and 

compromised DNA repair [79]. Not only levels of DNA damage are much higher in BCR/ABL 

transformed cells compared to non-transformed cells, also the rate of DNA repair by unfaithful end 

joining systems is much higher. Importantly, the resulting accumulation of DNA damage and genetic 

abnormalities contributes to resistance against drugs that are commonly used in the treatment of CML 

including Imatinib [80, 81]. 

As outlined above, FLT3-ITD expressing cells have been shown to generate increased levels 

of ROS. p22phox and p22phox dependent NOX isoforms, particularly NOX4, have been shown to be the 

primary source of ROS in FLT3-ITD expressing cells [24, 28]. Recently, further research has 

therefore been carried out to investigate the specific pathways leading to ROS formation and ROS-

mediated DNA damage and genomic instability in FLT3-ITD positive AML cells [26].  MV4-11 

cells, a human AML-derived cell line with endogenous FLT3-ITD, and 32D cells, a murine 

immortalized myelobast-like cell line stably transfected with FLT3-ITD or FLT3-WT expressing 

plasmids, were employed in these studies. Inhibition of FLT3-ITD, NOX and p22phox (by siRNA) in 

MV4-11 cells resulted in a significant decrease in nuclear H2O2 measured with Nuclear Peroxy 

Emerald 1 (NucPE1). NOX4 and p22phox were shown to co-localize in the nucleus, thus reinforcing 

that nuclear NOX activity may contribute to genomic instability in AML [26]. FLT3-ITD expressing 

32D cells exhibited a 100% increase in endogenous H2O2 compared to FLT-WT expressing cells as 

quantified by flow cytometry using the H2O2 specific probe Peroxy Orange 1 (PO1), and a 25% 

increase in nuclear H2O2. There was, however, no significant difference in mitochondrial generated 

ROS between FLT3-ITD- and FLT3-WT-expressing cells. FLT3-ITD mediated DNA damage was 
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characterized using two different readouts: Phosphorylated histone H2AX (γH2AX), one of the most 

widely used marker for detecting DNA dsbs [82], and 8-hydroxy-2’ deoxyguanosine (8-OHdG), the 

predominant form of ROS-induced DNA lesion, also widely used as a marker of oxidative stress [83]. 

MV4-11 cells showed a 50% increase in dsbs compared to the FLT3-WT expressing AML cell line 

HL-60. In 32D cells, similar results were obtained. There was a 75% increase in levels of dsbs in 32D 

cells with FLT3-ITD compared to 32D cells with FLT3-WT. Moreover, in FLT3-ITD expressing 32D 

cells 100% higher levels of the oxidative stress marker 8-OHdG were detectable as compared to 

FLT3-WT expressing cells [26].  Knockdown of p22phox and thereby inhibition of p22phox dependent 

NOXs in MV4-11 cells resulted in a 30% decrease in the number of dsbs and DNA oxidation. Thus, 

in FLT3-ITD expressing cells p22phox is necessary for NOX-generated ROS to oxidatively damage 

DNA.  Conversely, p22phox knockdown in FLT3-WT expressing cells showed no effect on 

endogenous H2O2 and no alterations in dsbs.  However, when 32D FLT3-WT expressing cells were 

stimulated with the FLT3 ligand FL, an increase in p22phox protein expression was observed, and 

concurrently a 40% increase in endogenous H2O2 and a 20% increase in nuclear H2O2. The increase in 

p22phox protein expression coincided with a 50% increase in the number of dsbs, demonstrating the 

DNA damaging capacity of also H2O2 produced downstream of ligand-stimulated FLT3-WT. The 

possible contribution of individual NOXs in FLT3-ITD expressing 32D cells to ROS formation and 

dsbs was investigated by siRNA experiments. NOX4 knockdown had the largest effect resulting in a 

30% decrease in endogenous H2O2 levels and dsbs. NOX2 knockdown resulted in a 20% decrease in 

endogenous H2O2 and a 30% decrease in dsbs. In contrast, NOX1 knockdown resulted only in a 

marginal decrease in both H2O2 and DNA damage. Taken together, these data identified a p22phox and 

NOX2/4 axis for ROS formation in FLT3-ITD expressing cells causing DNA damage and genetic 

instability [26] (Figure 3). 

Unfortunately, ROS-mediated damage in AML and CML has major implications in the 

treatment of leukemia. It is increasingly more difficult to treat leukemia due to the accumulation in 

genetic abnormalities leading to resistance to protein tyrosine kinases inhibitors, for example, 

PKC412 and imatinib and further progression of the malignancy (Fig. 3). 

 

Future directions 

Despite the significant advances in understanding mechanisms of ROS formation in myeloid 

leukemia, notably downstream of the AML oncoprotein FLT3-ITD as outlined above, there are 

obviously many open questions. For example, more work appears warranted with respect to the 

topology of NOX-mediated ROS formation in the leukemic cells. H2O2, which may directly oxidize 

targets such as PTP molecules, is a stable molecule but still short-lived in cells due to very efficient 

cellular antioxidants. Therefore close proximity of target and H2O2 source may be essential for 
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interaction [2]. While nuclear p22phox and NOX4 may be important for eliciting DNA damage [26], 

the topological relationships of NOX4 and DEP-1/PTPRJ remain to be assessed. It appears also likely 

that in FLT3-ITD transformed cells, in addition to DEP-1/PTPRJ, other signaling molecules may be 

modified by oxidation such as other PTPs, protein kinases, or transcriptional regulators thereby 

contributing to cell transformation. Generic methods to detect oxidative protein modifications [84] 

may be helpful in identifying these targets. More work will also be needed to further establish the 

putative causal role of ROS formation for the biology of myeloid leukemia. For example, mouse 

strains with constitutive or conditional deficiency of NOX enzymes and several regulators are 

available [85] and may be investigated in transplantation-based or transgenic leukemia models. These 

studies may help in establishing components in the pathways for ROS formation in cells of myeloid 

leukemia as candidate drug targets. Inhibition of AML-cell proliferation and attenuation of the 

development of a FLT3-ITD driven myeloproliferative disease in mice by compounds reported to 

inhibit NOX4 have been recent promising findings [28]. However, many currently available 

compounds for interference with ROS formation are not entirely specific or controversial with respect 

to their mechanism of action [86]. Given the importance of NOX mediated ROS formation not only in 

leukemia but many other pathological contexts, the improvement of compounds can be expected and 

their testing in leukemia models will be an exciting perspective.  
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Figure legends 

Figure 1. Reactive oxygen (ROS) species, their origins, and cellular systems involved in ROS 

metabolism. Major ROS sources are the mitochondria and NADPH oxidases, and several 

oxidases/peroxidases also contribute to ROS formation. Superoxide anions, hydrogen peroxide, lipid 

peroxides, hypochloride, and the hydroxyl radical can oxidize and thereby modify cellular 

macromolecules. This can serve essential signaling functions (“green” range), but also cause 

deleterious effects (“red” range) designated oxidative stress, potentially leading to cell death. Several 

enzyme systems can modify the formed ROS, have antioxidant activity for preventing damage and 

reverting macromolecule oxidations (right part). NADPH and GSH are required for efficient 

antioxidant responses. The KEAP-NRF2 system is a master regulator of genes for antioxidant 

response. 

 

Figure 2. Role of ROS formation in leukemic cell transformation by the oncoprotein FLT3-ITD. 

FMS-like tyrosine kinase 3 (FLT3) with internal tandem duplications (FLT3-ITD) causes elevated 

ROS levels in cells of Acute Myeloid Leukemia (AML). This involves activation of signal transducer 

and activator of transcription 5 (STAT5), which can directly bind to the promoter of NADPH oxidase 

4 (NOX4), leading to elevated transcription. Increased NOX4 levels cause elevated formation of 

ROS, which oxidize the catalytic cysteine of density enhanced phosphatase-1 (DEP-1; a 

transmembrane protein-tyrosine phosphatase, also designated PTPRJ or CD148). In contrast to its 

activity in normal cells, the oxidized and thereby (reversibly) inactivated DEP-1 can no longer 

dephosphorylate FLT3-ITD, enabling elevated signal transduction and promoting cell transformation. 

 

Figure 3. Oncoprotein-driven ROS formation in myeloid cells causes DNA damage.   FLT3-ITD 

but also ligand-activated FLT3 or the BCR-ABL oncoprotein can drive oxidative DNA damage 

through a signaling chain involving AKT activation, elevated expression of p22phox, and activation of 

p22phox-interacting NADPH oxidases. DNA damage, involving DNA oxidation and generation of 

double-strand breaks, contributes to genetic instability and the accumulation of mutations associated 

with aggressive phenotypes, drug resistance and relapse. 
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