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Abstract

Bilinear pairings can be used to construct cryptographic systems with very desirable prop-

erties. A pairing performs a mapping on members of groups on elliptic and genus 2

hyperelliptic curves to an extension of the finite field on which the curves are defined.

The finite fields must, however, be large to ensure adequate security. The complicated

group structure of the curves and the expensive field operations result in time consuming

computations that are an impediment to the practicality of pairing-based systems.

The Tate pairing can be computed efficiently using the ηT method. Hardware architectures

can be used to accelerate the required operations by exploiting the parallelism inherent to

the algorithmic and finite field calculations. The Tate pairing can be performed on elliptic

curves of characteristic 2 and 3 and on genus 2 hyperelliptic curves of characteristic 2.

Curve selection is dependent on several factors including desired computational speed, the

area constraints of the target device and the required security level.

In this thesis, custom hardware processors for the acceleration of the Tate pairing are

presented and implemented on an FPGA. The underlying hardware architectures are de-

signed with care to exploit available parallelism while ensuring resource efficiency. The

characteristic 2 elliptic curve processor contains novel units that return a pairing result in

a very low number of clock cycles. Despite the more complicated computational algorithm,

the speed of the genus 2 processor is comparable. Pairing computation on each of these

curves can be appealing in applications with various attributes. A flexible processor that

can perform pairing computation on elliptic curves of characteristic 2 and 3 has also been

designed. An integrated hardware/software design and verification environment has been

developed. This system automates the procedures required for robust processor creation

and enables the rapid provision of solutions for a wide range of cryptographic applications.
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Explanatory Note

The research work presented in this thesis was performed between the years 2003 and 2007

inclusive. Chapters 1-6 are written in the context of the state of the art of pairing-based

cryptography at that time. Chapter 7 reviews the advances and changes in the research

area between the years 2008 and 2015 inclusive.
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Chapter 1
Introduction

1.1 Motivation

The earliest cryptographic schemes were employed to ensure the secrecy of a message

in physical transit. Methods included substitution cyphers, in which each letter of the

message was replaced with a letter offset by a fixed number of positions in a repeating

alphabet. Julius Caesar famously employed this scheme to communicate with his generals

during his military campaigns. The secret key in this case was the number of letters

through which the message was shifted, but once this was known, decryption was trivial.

The importance of privacy has grown at a staggering rate and cryptographic systems have

become increasingly robust to meet the requirements of parties that wish to communicate.

The rotor machines of World War II are perhaps the most well known cryptographic

devices of the early 20th century. The rotors controlled a path through an electrical

system. Each letter of the plaintext resulted in a rotor movement, which meant that even

repeated letters within a message were encrypted to different letters of the ciphertext
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through the constantly changing pathways.

In the modern age, cryptography has moved from traditional government and military

applications to the realm of commerce and the general public. Meaningful communication

would be unacceptably constrained without protection of user information and a defined

probability of maintaining security. Currently, security relies on the difficulty of solving

certain mathematical problems, known as one-way functions. These functions should be

efficiently computable by verified users of the scheme. Reversal of the function by an

adversary should, however, be intractable (in practice) without some added information,

usually referred to as a key.

The constant advance of processing power means that existing cryptographic schemes are

ever more susceptible to attack. If a known attack on a scheme becomes realistic, the

difficulty of the mathematical problem must be increased. Unfortunately, this means that

computations required by users of the system also become more expensive. As communi-

cation volume grows the viability of modern systems is becoming increasingly reliant on

the efficient and fast computation of mathematical functions by users of the system.

Singh presents an interesting and engaging overview of the evolution of cryptography in

[4].

1.2 Thesis Aims

Bilinear pairings have been used to construct many protocols with very desirable prop-

erties. An overview of some some such schemes is provided in [5]. Their fast and effi-

cient computation is vital if pairing-based schemes are to be used in real-world scenarios.

Pairings are computed on algebraic curves, known as supersingular elliptic and genus 2

hyperelliptic curves. These curves are defined on finite fields. Pairing algorithms can

be expressed in terms of arithmetic operations on these finite fields and their extensions.
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The Tate pairing has traditionally been the most efficiently computable pairing. It can be

computed relatively quickly by performing an ηT pairing calculation followed by a suitable

exponentiation. In this thesis, this is referred to the ηT method for Tate pairing compu-

tation. However, even with the algorithmic operations available to date, Tate pairing

calculation remains a complex, expensive and time consuming operation.

Custom hardware processors can provide substantial accelerations in pairing computation

times when compared to implementations on general purpose serial processors. They

enable the exploitation of available parallelism in the required operations. Two types of

parallelism are possible in the case of pairings. Firstly, the underlying finite field arithmetic

operations can, in many cases, be performed in terms of parallel operations on a smaller

field. Secondly, hardware units can be designed so that the main computational stages

of the pairing algorithms can be performed in parallel. With careful scheduling, this can

result in a significant reduction in computation time.

A number of factors should be considered when devising a pairing-based scheme. The

system should be created with a desired computation speed and security level in mind.

The area constraints of the target device(s) should also be considered. Each of the curves

has a security multiplier that determines the field size required for a particular level of

security. Elliptic curves of characteristic 2 and 3 have security multipliers of 4 and 6

respectively. Characteristic 2 genus 2 hyperelliptic curves have a security multiplier of 12.

This means that, for a particular security level, the smallest field size can be used in the

genus 2 case. If the required security level increases, the genus 2 implementation will also

scale more efficiently due to the large security multiplier. Pairing computation on genus 2

curves is, however, more complicated than on elliptic curves. This added complexity should

be considered during the designation of a pairing-based system. A quantitative comparison

between the two elliptic cases is not straightforward. Some mathematical attributes of the

characteristic 3 Tate pairing, along with the higher values of the security multipliers, mean

that a smaller finite field size can be used in comparison to the characteristic 2 case. The

implementation of characteristic 3 systems is, however, more expensive than environments

that rely on characteristic 2 computations.
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The hardware implementation of the Tate pairing using the ηT method has not been

published to date. Furthermore, there have been no previous implementations of hardware

processors for any type of pairing on genus 2 hyperelliptic curves. In this work, the

feasibility of accelerators for the Tate pairing using the ηT method is examined in the

two elliptic cases and in the genus 2 case. Efficient hardware units that perform many

of the required operations in parallel are discussed. Pairing processors that use these

units to return a Tate pairing computation in a very low number of clock cycles are

presented. A processor that uses a programmable unit for finite field computation is

also discussed. This processor is flexible and can used in a wide range of environments,

from high speed systems that are relatively unconstrained in terms of area to small, low

power devices. The processors are implemented on reconfigurable devices known as Field

Programmable Gate Arrays (FPGAs). FPGAs contain a large number of lookup tables,

memory and programmable interconnect. They are relatively inexpensive and their ease

of reconfigurability means that they are an ideal target technology on which to implement

these processors. A Very High Speed Integrated Circuit (VHSIC) language is used to

describe the processors. Architectures are defined at the Register Transfer Level (RTL)

using VHSIC Hardware Description Language (VHDL). The processors are designed so

that the finite field size on which the curves are defined can be changed at will. This

means that the processors can be regenerated with ease if the security level of a system

must be changed.

Once an environment and target application have been chosen, curve and pairing selection

are not trivial as many interconnected factors must be considered. This problem has not

yet been well explored in the literature. A custom software design suite has been created

that automatically generates a wide range of hardware architectures according to user

specifications. This suite communicates with the FPGA and enables rapid prototyping and

benchmarking. It can be used to reduce the effort required to create low level instruction

sequences. Verification can also be performed automatically. This means that, once a

pairing-based protocol has been defined, a system designer can examine the suitability of

various processors with various area constraints, desired computation speed and security

levels in mind.
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1.3 Thesis Outline & Contributions

In this section, a thesis outline is provided and the contributions of this work are discussed.

Chapter 2 introduces the background necessary for an understanding of the subject matter

of this research. A brief description of private key and public key systems is provided. The

use of bilinear pairings in cryptography is discussed to provide context for this work. The

theory of finite fields is outlined. The mathematics of elliptic and genus 2 hyperelliptic

curves is presented. Computation of the group operation of these curves is explained.

Security considerations for curve-based systems are also discussed. Finally, some benefits

of the use of elliptic and hyperelliptic curves in cryptography are outlined.

Chapter 3 is concerned with the computation of the Tate and ηT pairings. The ηT pairing

is presented and Tate pairing computation, using the ηT method, discussed. Consider-

ations for the use of pairings in cryptography are outlined. The concepts underpinning

Identity-Based Encryption (IBE) are discussed and the Boneh-Franklin IBE scheme pre-

sented. The methodology used for the hardware implementation of the Tate pairing in this

work is discussed. A design system that has been created for the automatic generation,

implementation, benchmarking and verification of pairing processors is presented. This

can be used to generate processors according to various security, area and speed require-

ments. It can also be used to aid in curve and pairing selection on setup or modification

of a cryptographic scheme.

In Chapter 4, a dedicated processor for pairing computation on elliptic curves of character-

istic 2 is presented. The algorithms and operations required for Tate pairing computation

using the ηT method are discussed. The hardware modules that implement F2m arithmetic

are described. Techniques for the efficient compution of F24m arithmetic are discussed and

efficient extension field hardware architectures presented. Hardware units that perform

the various steps of Tate pairing computation are discussed. These units are designed in

a manner that enables calculations to be performed in parallel during the most expen-
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sive computational loop of the pairing algorithm. Finally, the top level processor that

utilises these architectures to return a fast Tate pairing result is presented. The efficient

scheduling of operations in the processor is also discussed. Results demonstrate that the

processor can return a pairing result in a low number of clock cycles. The subject matter

of this chapter was published in [6], [7] and [8].

The hardware implementation of the genus 2 hyperelliptic curve Tate pairing is discussed

in Chapter 5. A design strategy for the computation of the Tate pairing, using the ηT

method, in this case is outlined. The large extension degree means that care must be

taken to ensure that arithmetic units are not too large or complex. A tower of extensions

is used to reduce arithmetic operations on F212m to operations on F26m . These subfield

operations can be performed either serially or in parallel, depending on their complexity

and resource availability. In practice, dedicated units for each of the computational steps

of the algorithms cannot be used in the genus 2 case as the use of all available parallelism

would result in an extremely large area footprint. Instead, custom hardware units are

presented that share the most costly algorithmic operations. These units are designed to

minimise the impact of resource sharing on computation time while maximising efficiency.

The top level architecture of the pairing processor is presented. Results show that the

genus 2 processor can return a pairing in a similar time to the characteristic 2 elliptic curve

processor. Furthermore, it can return comparable results while utilising fewer resources.

The topics discussed and architectures described in this chapter were published in [9] and

[10].

A flexible processor for pairing computation on elliptic curves of both characteristic 2 and 3

is presented in Chapter 6. At this point in the thesis, characteristic 2 arithmetic has already

been detailed in previous chapters. Characteristic 3 arithmetic is discussed and hardware

modules that implement the required operations are presented. The processor described

in this chapter does not contain any extension field arithmetic units. Instead, several

subfield arithmetic modules operate in parallel. The most costly arithmetic operation is

multiplication. For this reason, the number of multipliers can be varied at will and the

design regenerated automatically using the platform that has been developed. This means

6



that the pairing processor can be implemented on devices with extremely small area and

strict power constraints by limiting the number of multipliers. A design subsystem that

can be used to quickly generate the instruction sequences required to implement pairing

algorithms is also discussed. Results returned show that the flexible processor has a very

high level of efficiency. The topics covered in this chapter were published in [11], [12] and

[13].

In Chapter 7, a review of modern pairing-based cryptography is provided. Several pairings

with features that are attractive for the security requirements of contemporary schemes are

described. Currently known computational and side channel attacks are outlined, along

with countermeasures that can be used to render the attacks infeasible. The software

computation of pairings is discussed. This is an area that has received much attention

in recent years as some suggested systems rely on the efficient computation of pairings

on small devices such as microprocessors. The state of the art of pairing implementation

using dedicated hardware architectures is also discussed. Some interesting modern appli-

cations of pairings are described. Finally, some future work in the area of pairing-based

cryptography is suggested.
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Chapter 2
Background

2.1 Introduction

The concepts required for an understanding of this research are discussed in this chapter.

Private and public key cryptography are described in Section 2.2. An introduction to

cryptography based on curves and pairings is also provided. Cryptographically suitable

curves have coordinates that exist on finite fields. These fields are discussed in Section

2.3. The mathematical theory underpinning hyperelliptic curves is provided in Section

2.4. Some curves are not suitable for cryptographic purposes since they are vulnerable to

practical attacks. Two types of hyperelliptic curves, known as elliptic and genus 2 curves,

can be used securely and are discussed in Section 2.5. Security considerations for curve-

based schemes are outlined in Section 2.6. The merits of hyperelliptic curve cryptography

are also discussed. Finally, a hyperelliptic curve protocol is described in detail to provide

some context to the subject matter of this chapter.
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2.2 Cryptography

This section provides a brief introduction to cryptography. Some terminology is first

defined. The message to be sent is known as the plaintext. The disguised version of the

message, to be sent across an insecure channel, is known as the ciphertext. Encryption is

the means of converting the plaintext to ciphertext, and decryption is the procedure used

to convert it back again. The intended viewers of the plaintext are called the recipients.

Unintended viewers of the message while it is in transit are called eavesdroppers. A key is

a tool that can be used to encrypt or decrypt a message. A cryptosystem is the finite set of

possible plaintexts, possible ciphertexts, possible keys and algorithms for encryption and

decryption. An overview of modern cryptography, the algorithms used, and the practical

implementation of cryptographic systems is available in [14].

2.2.1 Private Key Cryptography

In private key cryptography, a single key is used for both encryption and decryption. The

sender encrypts a message using a key and sends the ciphertext to the recipient. The

recipient then decrypts the ciphertext using the same key. This is known as symmetric

key cryptography. In this case the same key must be made available to both the recipient

and the sender, but must remain hidden from eavesdroppers. An illustration of this type

of system is provided in Figure 2.1.

Eve

Message m
Secret Key k
c=E (m)K

Ac

Bob

Secret Key k
m=D (c)K

Alice

Figure 2.1: Private Key Cryptographic System

Here, Alice uses the encryption algorithm E, along with the secret key k, to encrypt a

message m. This produces the ciphertext c, which is sent across the insecure channel.
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On receipt of c, Bob uses the decryption algorithm D and the secret key to retrieve the

original plaintext.

Private key schemes can be implemented using block ciphers and stream ciphers. Block

ciphers operate on a fixed length of plaintext and produce a ciphertext of the same fixed

size. The Advanced Encryption Standard uses block ciphers [15]. Stream ciphers encrypt

a small segment of the plaintext at a time using a pseudorandom stream of small keys.

These ciphers are suited to applications in which the size of the plaintext is not known in

advance. In practice, block ciphers are regularly used in conjunction with stream ciphers

in private key cryptographic schemes. A good introduction to ciphers is available in [16].

Private key schemes have the capacity for very high data throughput. Key distribution is,

however, a significant problem. Keys cannot be transferred over the insecure channel as, if

intercepted by an adversary, all communication will be compromised. In the recent past,

some keys were sent by physical means such as a private courier. It is clear that this is not

feasible in a modern society in which a large number of connections are established every

second. In systems with a large number of users, key management is also problematic as

a large number of unique keys is required.

2.2.2 Public Key Cryptography

Public key cryptography can help to solve the problems associated with key distribution,

management and authentication. In 1976 Diffie and Hellman proposed a system that

allows users to safely share a secret key over an insecure channel [17]. The shared key can

then be used in a high throughput private key scheme. This is the first published example

of a public key cryptographic scheme.

To aid in the understanding of public key cryptography, consider the case in which Alice

and Bob wish to generate a shared key for communication over an insecure channel. Alice
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and Bob are first each assigned a private key and a public key. Security does not depend on

the inaccessibility of the public keys and they can be made freely available. Alice and Bob

must keep their private keys secret. Let G be a cyclic group of order n with a generating

element g. Alice chooses a random integer 1 ≤ a < n. This is her private key. She then

computes her public key ga. Bob chooses a random integer 1 ≤ b < n. This is his private

key. He then computes his public key gb. After this, Alice retrieves Bob’s public key and

computes (gb)
a
. Bob computes (ga)b. Now both Alice and Bob have computed gab, which

is the value of the shared secret key. An eavesdropper has to solve the Diffie-Hellman

Problem (DHP) to obtain the shared secret key. This is the problem of computing the

value of gab given g, ga and gb. The intractability of this problem relies on the difficulty

of the Discrete Logarithm Problem in the group. In practice, the group order n must be

very large to ensure adequate security.

The scheme is, however, susceptible to a man in the middle attack. An eavesdropper can

tamper with or replace the public keys of Alice and Bob if she intercepts them before the

shared secret key has been generated. She can then pretend to be either party or simply

listen to the conversation even though the parties believe that their communication is

secure. To prevent this, Diffie and Hellman suggested the use of digital signatures. Alice

can sign the message using her own private key and encrypt it using Bob’s public key. Bob

can now be sure that the key was created by Alice and not altered in transit by decrypting

using her public key. A central Public Key Infrastructure (PKI) is usually required. A

PKI is used to generate, manage and store digital certificates. These certificates are tied

to keys so that users can be assured of their validity.

In 1978, Rivest, Shamir and Adleman devised RSA, the first usable public key encryption

scheme [18]. In RSA, public keys are used for encryption and private keys for decryption.

System security relies on the intractability of factoring the product of two large prime

numbers. In 1985, Elgamal proposed an encryption scheme that, instead, relies on the

intractability of the discrete logarithm problem in a finite field Fq, where q is the number of

elements in the field. Sub-exponential attacks can be used against the integer factorisation

problem and the DLP on a finite field. This means that very large key sizes must be used
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to ensure an adequate level of security.

In 1986, Miller [19] and Koblitz [20] suggested that elliptic curves can be used in public

key cryptographic schemes. Security is manifested in the intractability of the DLP in the

group of elliptic curve points with coordinates in Fq. This is a more difficult problem than

in the finite field case and smaller key sizes can, therefore, be used. The group operation

is, however, more complicated. In 1989, Koblitz showed that curves of any genus can be

used [21]. Genus 2 curves are invulnerable to some attacks on elliptic curves and even

smaller key sizes can be used. However, the group operation is more complex than in the

elliptic case.

An introduction to public key cryptography and its infrastructures is provided in [22]. A

comprehensive overview of elliptic curve cryptography is available in [23].

2.2.3 Cryptography Based on Pairings

In 2000, Joux devised a one round tripartite Diffie-Hellman key agreement scheme using

the bilinearity property of pairings [24]. This was the first example of the constructive use

of pairings (previous to this, they had been used for the purposes of cryptographic attack).

Identity-Based Encryption (IBE) schemes are the most well known application of pairings

in cryptography. The concept of IBE was first proposed by Shamir in 1984 [25]. In his

proposal, the generation of a shared secret key is not required before communication can

commence. The identities of users of the scheme can be utilised to send messages securely.

The creation of a fully usable IBE scheme remained an open problem for many years as a

secure implementation method could not be found. In 2001, however, Boneh and Franklin

used the bilinearity and other desirable properties of pairings to construct the first fully

functional IBE system [26]. Public keys are directly linked to the identities of the users of

an IBE scheme (email addresses or even real names can be used as keys). If Alice wishes

to send a message to Bob she encrypts the message using Bob’s identity and some other

system parameters that are available to all users. On receipt of the message Bob decrypts
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the message using his private key. The steps required to perform the Boneh-Franklin IBE

scheme are detailed in Subsection 3.4.2.

For comparative purposes, first consider a conventional public key scheme (which can be

implemented using, for example, RSA or curve-based cryptography). The PKI registers

users of the network. Users generate their own public keys from their private keys. All

public keys must be sent to the PKI to be validated before they can be used. Digital cer-

tificates are tied to validated keys by a Certification Authority (CA). A typical validation

and certification process is illustrated in Figure 2.2 (Network World [1]).

Figure 2.2: Conventional Public Key Validation and Certification Process (Source: Net-

work World [1])

In order to establish trust with Bob, Alice must follow a number of steps. She first requests

the public key of the CA, which is known as the root certificate. On receipt of this, she

generates a certificate request containing her identity information and her public key, signs
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it using the root certificate and sends it to the CA. The CA verifies Alice’s identity and

creates a digital certificate for Alice by binding her identity and public key. The CA then

signs this digital certificate using its own private key and issues the final certificate to Alice,

to be used as her identity certificate. Finally, Alice presents this to Bob, who follows the

digital signature verification process to establish trust in her public key. Once trust has

been established, secure information exchange can be initiated. As the number of users

grows, the key and certificate management system may become increasingly complex. The

resources required to store the keys and certificates can also be costly.

A basic example of an IBE system is illustrated in Figure 2.3 (Wikipedia [2]). All private

keys are generated from a shared master key by the Private Key Generator (PKG). Alice

and Bob first obtain their own private keys from the PKG. The security of this transfer

is paramount. To ensure secrecy, the key transfer can be performed off-line if desired.

To send a message to Bob, Alice generates a public key using Bob’s identity. She then

encrypts and signs the message using her own private key, the public key and parameters

that are available to all users of the system. On receipt of the message, Bob decrypts the

message using Alice’s public key, his own private key, and the publicly available parameters

of the system.

The elimination of the PKI can result in significant savings in terms of resources and

system complexity. Digital certificates are not required to establish public keys. This

removes the necessity for a central public key and management environment. To further

improve the security of an IBE system, the shared master key can be destroyed if no

more users are to be added. The designers of IBE schemes must, however, endeavour to

minimise the impact of the necessity for a secure private key transmission channel. Some

schemes require the generation and communication of private keys only at setup. Private

keys can also be transferred by physical means.

An example of a particularly useful application of IBE is in the area of Wireless Sensor

Networks (WSNs). WSN systems usually consist of a large number of sensor devices, which

communicate with each other to relay information to a central server. Before deployment,
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Figure 2.3: Identity-Based Encryption (Source: Wikipedia [2])

private keys can be transferred by physical means. Once deployed, low power consumption

is vital since the devices may be located in environments from which they are difficult

to retrieve. The devices are usually relatively inexpensive and the highest energy cost is

commonly that of communication. IBC can be used to reduce the number of transmissions

required to establish trust and initiate secure information exchange. An Identity-Based

Non-Interactive Key Distribution Scheme (ID-NIKDS), described by Sakai et al. in [27],

is very suitable for use in WSNs.

Canetti et al. [28] discuss how IBE can be used to construct a simple and efficient public

key encryption scheme that provides security against chosen-cyphertext attacks. Pairings

have also been used in the implementation of non identity-based cryptographic applica-

tions. Several signature schemes with very desirable properties have been proposed and

implemented using pairings. Other applications include threshold schemes, in which pri-

vate information can be distributed among several parties to reduce the impact of the
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failure of a single point in the system. A survey of such schemes is available in [5].

The advantages of ECC and IBE for wireless security are briefly outlined in [29]. A

concise introduction to pairing-based cryptography can be found in the Master’s thesis of

Maas [30]. A detailed treatment on the various aspects of identity-based cryptography is

available in [31].

2.3 Finite Field Theory

The work described in this thesis is based on computations on groups of hyperelliptic curve

elements. The curves are defined on finite fields. This subsection provides an overview of

the mathematics of these fields. A comprehensive resource for the theory of finite fields

is available in [32]. Wong provides an overview of finite fields and their applications to

cryptography in [33].

2.3.1 Groups and Rings

Before finite fields can be discussed, a brief introduction to groups and rings is necessary.

Some definitions are also provided.

Definition 2.3.1. (group) A group is an algebraic structure consisting of a set of ele-

ments together with a binary operation. Given a binary operator ‘+’ (this notation is for

convenience, the operator is not necessarily addition) then the following properties must

be satisfied for all a, b, c ∈ G:

• Closure: If d = a+ b, then d must also be a member of G.

• Associativity: (a+ b) + c = a+ (b+ c).
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• Identity: For each a there exists an element 0 ∈ G such that 0 + a = a+ 0 = a.

• Inverse: For each a ∈ G, there exists some element −a ∈ G such that a+ (−a) =

(−a) + a = 0

Definition 2.3.2. (abelian group) A group G is abelian if, for all a, b ∈ G, then a+b =

b+ a. An abelian group is also known as a commutative group.

Definition 2.3.3. (finite group) A group G is finite if it contains a finite number of

elements.

Definition 2.3.4. (group order) The order of a group G, denoted #G, is the number

of elements in that group.

Definition 2.3.5. (subgroup) A non empty subset G′ of G is a subgroup of G if G′ forms

a group under the same binary operation and inverse element as G.

Definition 2.3.6. (cyclic group, generator, scalar multiplication) A group G is

cyclic if, for all elements a ∈ G, each associated with some integer ka < #G, there exists

a single element g ∈ G such that [ka]a = g. The element g is known as the generator of

the group. The operation [k]a, for any integer k, is known as scalar multiplication and is

performed by adding a to itself k times. All cyclic groups are abelian.

Definition 2.3.7. (order of a group member, torsion group) Consider a group G

and a ∈ G. The order of a is the lowest value of n such that [n]a = 0. The subgroup of

elements with order n in G is known as an n-torsion group, denoted G[n].

Note that the order of a group generator is always equal to the group order.

Consider a group G with binary operator ‘+’ and a group H with binary operator ‘∗’.
These groups can be written as (G,+) and (H, ∗) respectively.

Definition 2.3.8. (group homomorphism) A group homomorphism from (G,+) to

(H, ∗) is a mapping function φ : G→ H such that for all elements a, b ∈ G.

φ(a+ b) = φ(a) ∗ φ(b) (2.1)
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There are various mapping functions.

• Injective function: There will never be more than one element of G mapped to

a single element of H. Note that there may be elements of H that do not have a

corresponding element in G after the mapping.

• Surjective function: Every element of H has one (or more) corresponding ele-

ment(s) in G after the mapping. An element of G may be mapped to more than one

element of H.

• Bijective function: Every element of G is paired exactly with one element of H

and every element of H is paired exactly with one element of G.

These mapping functions give rise to different types of group homomorphism.

1. Group Monomorphism: A homomorphism that is injective. Distinctness on G is

preserved through the mapping.

2. Group Epimorphism: A homomorphism that is surjective. The mapping of ele-

ments from G reaches every element in H.

3. Group Isomorphism: A homomorphism that is bijective. The groups G and H

are identical in operation and differ only in the notation of their elements.

4. Group Endomorphism: This is a homomorphism between G and itself, φ : G→
G.

5. Group Automorphism: This is an endomorphism that is bijective. It is also an

isomorphism. The set of all automorphisms of a group G forms a group known as

the automorphism group of G.

Definition 2.3.9. (ring) A ring R is a set of elements with two binary operators, usually

referred to as addition and multiplication, ‘+’ and ‘∗’. The ring must satisfy the following

properties for all a, b, c ∈ R:
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• Additive associativity: (a+ b) + c = a+ (b+ c)

• Additive commutativity: a+ b = b+ a

• Additive identity: For all a there exists an element 0 ∈ R such that 0+a = a+0 =

a.

• Additive Inverse: For every a, there exists some element −a ∈ R such that a +

(−a) = (−a) + a = 0

• Left and right distributivity: a∗(b+c) = a∗b+a∗c and (b+c)∗a = (b∗a)+(c∗a)

• Multiplicative associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c)

Definition 2.3.10. (commutative ring) A ring R is commutative if its multiplicative

operation is commutative, i.e. a ∗ b = b ∗ a for all a, b ∈ R

An element a ∈ R is invertible if a ∗ a−1 = 1 where a−1 is some other element in R.

Definition 2.3.11. (subring) A ring R′ is a subring of R if R′ is a subset of R and is

a ring under the same addition and multiplication operations and identity elements.

2.3.2 Finite Fields

Definition 2.3.12. (field) A field F is a commutative ring in which all elements, exclud-

ing 0, have a multiplicative inverse.

Definition 2.3.13. (subfield, extension field) A field F ′ is a subfield of F if F ′ is a

subset of F and is a field with respect to the same binary operations and identity elements.

F is called an extension field with respect to F ′. The extension field may be written as

F/F ′ for clarity.

Definition 2.3.14. (finite field) A finite field is a field in which the number of elements

is finite. A finite field is written as Fq, where q is the field order (the number of elements

in the field).
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To satisfy its axioms, the order of a finite field will always have the form q = pm, where p

is a prime and m is a positive integer. The prime p is known as the characteristic of the

field and m is the dimension of the field. Fields with p = 2, 3 and m > 1 are considered

in this research since pairings, when computed on curves that are defined on these fields,

are very suitable for hardware implementation.

Polynomials can be used to represent elements of a finite field. Polynomial representation

has many advantageous features for the computation of finite field arithmetic. A generator

polynomial, denoted f(x), is used to construct the field. This polynomial is of degree m

and has, with the exclusion of constants, no roots in the field. It can be written as

f(x) = xm +
∑m−1

i=0 fix
i, where all fi ∈ Z and fi ∈ {1 − p, p − 1}. The relationship

f(x) = 0 ∈ Fq holds, and is useful for computation of field arithmetic. The generator

polynomial is also known as the irreducible polynomial.

In this work, irreducible polynomials with the lowest number of non-zero coefficients are

used to generate the field in use (in practice, trinomials and pentanomials are always

available). When there is a choice between irreducible polynomials with the same num-

ber of coefficients, the polynomial which has the lowest (m − 1)th coefficient is selected.

This ensures that the hardware resources required to perform finite field arithmetic are

minimised.

Given an element a ∈ Fq, q = pm, the polynomial representation of a in the variable x is

a(x) =
m−1∑
i=0

aix
i = a0 + a1x+ . . . + am−1x

m−1 (2.2)

where all ai ∈ Fp and Fp is the ring of integers modulo p . Note that the degree of the

polynomial, denoted δ(a), has maximum value m− 1.

Addition of two elements a(x), b(x) ∈ Fq with degree δ(a) and δ(b), respectively, is per-

formed coefficient-wise as

a(x) + b(x) =

n∑
i=0

(ai + bi)x
i (2.3)
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where n = max(δ(a), δ(b)). The coefficients are members of Fp and addition is, therefore,

performed modulo p.

Multiplication of the polynomials a(x) and b(x) in a conventional manner may result in a

polynomial with degree larger than m − 1. This polynomial cannot be a member of Fq.

The generator f(x) is used to reduce the result in this case. Multiplication proceeds as

follows.

Consider the polynomials a(x), b(x) ∈ Fq with degrees δ(a) and δ(b), respectively. Con-

ventional polynomial multiplication returns

c′(x) =

δ(a)∑
i=0

δ(b)∑
j=0

(ai.bj)x
i+j . (2.4)

where ai, bj ∈ Fp.

The degree of c′(x) is δ(c′) = δ(a) + δ(b). If δ(c′) is larger than m− 1 then the polynomial

c′(x) cannot be a member of Fq and must be reduced modulo the irreducible polynomial

f(x). Two methods can be employed to perform this reduction:

1. c′(x) is divided by f(x) using regular polynomial division (with subtraction being

performed modulo p). If the remainder of this division, r(x), has δ(r) ≤ m− 1 then

reduction is complete. If this is not the case, then r(x) is repeatedly divided by f(x)

until δ(r) < m. The final value of the remainder r(x) is the multiplicative result and

is a member of Fq.

2. Since f(x) = 0 ∈ Fq, then xm =
∑m−1

i=0 fix
i. This relationship is used to remove the

terms of the composition polynomial that are of degree greater than m− 1.

As an example, consider the field F24 , generated by f = f(x) = x4 + x + 1. Let a =

a(x) = x3 + x2 + 1 represent the element (1101)2 and let b = b(x) = x3 + 1 represent
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(1001)2. Multiplication of a and b begins with the composition stage, which produces the

polynomial c′ = x6 + x5 + x2 + 1. The first reduction method involves dividing c′ by f

until the degree of the remainder is less than 4. Two rounds are required: the first returns

r = x5 + x3 + 1, whilst the second returns r = x3 + x2 + x + 1. Since δ(r) ≤ m − 1

at this point, the value of a.b ∈ Fq is, therefore, given by r, which can also be written

as (1111)2. The second reduction method uses the relationship x4 = x + 1. From this,

x5 = x.x4 = x(x+ 1) = x2 +x. Also, x6 = x.x5 = x(x2 +x) = x3 +x2. The reduced result

is then given by c = x3 + x2 + x2 + x+ x2 + 1 = x3 + x2 + x+ 1.

Notation is required to represent the construction of Fq using the irreducible polynomial

f(x). Let Fp[x] be the ring of all possible polynomials with coefficients in Fp. The field

Fq = Fpm is an m-dimensional extension of Fp. The field Fpm is generated by the degree

m polynomial f(x) ∈ Fp[x]. This is written as

Fq = Fpm ≡ Fp[x]/f(x) where f(x) =
m∑
i=0

fix
i for all fi ∈ Fp and fm 6= 0 (2.5)

Put simply, Fpm is the set of all possible polynomials with coefficients in Fp reduced modulo

f(x).

The field Fq can itself be extended. Let Fq[y] be the ring of all polynomials with coefficients

in Fq. If a k-dimensional extension of Fq is required, another polynomial g(y) that is

irreducible in Fqk is selected and used to generate Fqk . This is written as

Fqk = F(pm)k ≡ Fq[y]/g(y) where g(y) =

k∑
i=0

giy
i for all gi ∈ Fq and gk 6= 0 (2.6)

A series of extensions of the same field is known as a tower of extensions. It is possible

to perform arithmetic on an extension field in terms of arithmetic on one or several of

its subfields if towers are used. These subfield operations can be performed in parallel in

hardware in many cases.

A useful automorphism exists on finite fields and their extensions. This automorphism

can simplify the exponentiation of elements and can be used to reduce the complexity
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of finite field multiplication, as will be seen later in this thesis. Fermat’s little theorem

states that for any integer a and prime p then ap ≡ a mod p. On a prime field Fp this

means that ap = a for every element a of the field. The mapping of a to ap is called the

Frobenius automorphism of the field. It can be written as a mapping F : a → ap or as a

function F (a) = ap. The field is cyclic under this mapping and the Frobenius is said to

fix the field. It is clear that this function respects multiplication on Fp. Given r, s ∈ Fp
then F (rs) = (rs)p = rpsp under the associative rule. The Frobenius also respects the

addition rule. Given F (r + s) = (r + s)p it can be shown (using the binomial theorem)

that (r+ s)p = rp + sp on a prime field and the addition rule is, therefore, satisfied. These

properties also hold for all extensions of Fp.

Now, consider a prime power field Fq = Fpm . The order of Fq is q, so if the field is to be

cyclic then bq = b for all b ∈ Fq. The required mapping in this case is F : b → bq. Since

q = pm, the mapping can be written as F : b→ bp
m

. This can be achieved by performing

m iterations of b → bp. The Frobenius of Fq is known as the m-th order Frobenius and

fixes the field Fp inside Fq, i.e. Fq ≡ Fq/Fp.

Consider a k-dimensional extension of Fq. The field Fqk has order qk so a mapping F :

c → cq
k

is required. Since Fqk is an extension of Fq, this can be written as c → cq
k
. The

mapping on this field can, therefore, be performed using k iterations of the m-th order

Frobenius. This map fixes Fq inside Fqk , i.e. Fqk ≡ Fqk/Fq/Fp. The same properties hold

for all extensions of Fq. These Frobenius mappings, which are relatively easy to perform,

prove very useful for pairing computation, as will be seen in the next chapter.

Some further definitions concerning extension fields are required before hyperelliptic curves

can be introduced.

Definition 2.3.15. (algebraic element) If a field L is an extension of a field K then

an element a ∈ L is algebraic over K if a has a root in some non-zero polynomial with

coefficients in K, i.e. b(a) = 0 for some polynomial b(x) ∈ K.

Definition 2.3.16. (algebraic closure of a field) The algebraic closure of a field K,

denoted K̄, is a field in which every element has a root in a polynomial with coefficients
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in K.

For a finite field with q = pm, the algebraic closure of Fq is the union of all finite fields

with order qn, for all positive integers n.

F̄q =
∞⋃
n=1

Fqn (2.7)

2.4 The Mathematics of Hyperelliptic Curves

Hyperelliptic curves contain additive groups with properties that are advantageous to the

construction of cryptographic protocols. The mathematics of these groups is outlined in

this section. Note that discussion will remain general; the specific cases of elliptic and

genus 2 hyperelliptic curves will not be discussed until Section 2.5. A brief overview of the

mathematics of hyperelliptic curves is provided in [34]. A more comprehensive treatment

of elliptic and hyperelliptic curves and their group arithmetic is available in [35].

2.4.1 Curve Definition

Definition 2.4.1. (hyperelliptic curve) A hyperelliptic curve C on a field K is defined

by

C : y2 + h(x)y = f(x) (2.8)

where (x, y) are members of the algebraic closure K̄, h(x) ∈ K[x] is a polynomial of degree

less than or equal to an integer g and f(x) ∈ K[x] is a monic polynomial of degree 2g+ 1.

The value of g is known as the genus of the curve.

For cryptographic use, the curve should have no singular points. This means that there
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should be no point on C that satisfies both partial derivatives

2y + h(x) = 0 (2.9)

h′(x)y − f ′(x) = 0 (2.10)

where h′(x) = δh(x)
δx and f ′(x) = δf(x)

δx .

A point P on C is represented by an (x, y) pair, where x and y are elements of the algebraic

closure K̄. The set of points, together with a special point at infinity∞, is denoted C(K̄).

For convenience, C(K̄) is written as C.

The opposite of a point P ∈ C with (x, y) ∈ K̄ is given by

−P = (−x,−y − h(x)) (2.11)

Note that if P =∞ then −P =∞.

2.4.2 Divisors

The computations relevant to this research are performed on divisors.

Definition 2.4.2. (divisor) A divisor D is a finite formal sum of points on C such that

D =
∑
P∈C

mpP (2.12)

where mp is an integer and only a finite number of mp are non-zero.

The notation mp is used to describe the number of instances a particular point P exists

in the divisor construction.

Definition 2.4.3. (degree of a divisor) Given a divisor D =
∑

P∈C mpP , the degree

of D is the sum of all values of mP

deg(D) =
∑

mP (2.13)
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Definition 2.4.4. (support of a divisor) The support of a divisor is the set of all points

at which mp 6= 0.

Definition 2.4.5. (degenerate divisor) A divisor with a single point in its support is

known as a degenerate divisor.

The set of all divisors on C, denoted D, forms an abelian group under an addition law,

which is defined as follows: Given two divisors D1 =
∑

P∈C mPP and D2 =
∑

P∈C nPP

then

D1 +D2 =
∑
P∈C

(mP + nP )P (2.14)

The identity element of D is
∑

0P = 0 and the additive inverse of a divisor D =∑
P∈C mpP is −D =

∑
P∈C(−mP )P .

Definition 2.4.6. (greatest common divisor (gcd)) The greatest common divisor of

D1 =
∑

mP
P and D2 =

∑
nP
P is given by

gcd(D1, D2) =
∑

min(mP , nP )P −
∑

min(mP , nP )∞ (2.15)

Note that gcd(D1, D2) will be a divisor of degree 0.

2.4.3 Polynomial and Rational Functions

Definition 2.4.7. (coordinate ring, polynomial function) Given a hyperelliptic curve

C and an algebraic closure K̄, the coordinate ring of C over K̄ is the set of all polynomials

in K̄ reduced modulo C. It is a quotient ring defined as

K̄[C] = K̄[x, y]/(y2 + h(x)y − f(x)) (2.16)

An element of K̄[C] is called a polynomial function of C.
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Definition 2.4.8. (rational function) Given polynomial functions G,H ∈ K̄[C] and

H 6= 0 a rational function R is given by

R = G/H (2.17)

The field of rational functions on C is written as K̄(C).

The somewhat subtle difference between the notation used for rings and field should be

noted. If R is a ring then R[x] denotes the set of polynomials in x with coefficients from

R. If L is a field then L(x) denotes the set of polynomials in x with coefficients from L.

Definition 2.4.9. (uniformising parameter, intersection multiplicity) Let P be a

point on C. Let d be an integer and U, S ∈ K̄(C) such that U(P ) = 0 and S(P ) 6= 0,∞.

Each polynomial G ∈ K̄[C] satisfies the relationship G = UdS at P . The function U is

known as the uniformising parameter of G. The integer d is known as the intersection

multiplicity of G at P and does not depend on the choice of U .

Definition 2.4.10. (order of a polynomial function) Consider a polynomial function

G ∈ K̄[C]. The order of G at a point P is equal to the intersection multiplicity d of G at

P and is given by

ordP (G) = d (2.18)

Definition 2.4.11. (divisor of a polynomial function) The divisor of a polynomial

function G ∈ K̄[C] is given by

div(G) =
∑
P∈C

[ordP (G)]P (2.19)

Definition 2.4.12. (divisor and order of a rational function) Let R = G/H, where

R ∈ K̄(C) and G,H ∈ K̄[C]. The divisor of R is defined as

div(R) =
∑
P∈C

[ordP (R)]P (2.20)

and also satisfies

div(R) = div(G)− div(H) (2.21)

The order of the divisor of a rational function is, therefore, always equal to 0.
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A divisor of a rational function is usually known as a principal divisor, defined formally

as follows.

Definition 2.4.13. (principal divisor) A divisor D is a principal divisor if it is a divisor

of some rational function R ∈ K̄(C). All principal divisors are, therefore, of degree 0. The

set of all principal divisors is written as P.

The set of degree zero divisors is written as D0. The set P forms an important subgroup

of D0.

2.4.4 The Jacobian

The group on which the hyperelliptic curve discrete logarithm problem is constructed is

known as the Jacobian of the curve.

Definition 2.4.14. (Jacobian) The Jacobian of a hyperelliptic curve C is the quotient

group of the degree zero divisors modulo the principal divisors, so that

JC = D0/P (2.22)

The elements of the Jacobian are defined according to an equivalence relation between

degree zero divisors, denoted ∼.

Definition 2.4.15. (equivalent divisors) Consider two divisors D1, D2 ∈ D0 on a

hyperelliptic curve. D1 and D2 are known as equivalent divisors if D1 −D2 is a principal

divisor, i.e.

D1 ∼ D2 if D1 −D2 ∈ P (2.23)

The Jacobian group is partitioned into subsets such that each subset contains divisors

that are related to each other under the equivalence relation. These subsets are known as
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equivalence classes. All of the equivalence classes are cosets with respect to each other.

The Jacobian is an equivalence class group under this partition. The equivalence classes

can be represented using divisors with particular properties.

Definition 2.4.16. (semi-reduced divisor) A semi-reduced divisor is a degree 0 divisor

of form

D =
∑

miP −
∑

mi∞ (2.24)

with the following properties:

1. All mi ≥ 0 and all of the points must be finite.

2. If mi 6= 0 at a point P and P 6= −P then the divisor can contain either P or −P
but not both.

3. If a point P = −P then mi ≤ 1 at that point.

Every divisor in D0 has an equivalent semi-reduced divisor.

Definition 2.4.17. (reduced divisor) A reduced divisor is a semi-reduced divisor that

also satisfies the property
∑
mi ≤ g, where g is the genus of the curve.

Using the Riemann-Roch theorem [36], it can be shown that every equivalence class of the

Jacobian contains exactly one reduced divisor that is unique to that class. Each class can,

therefore, be represented by its own reduced divisor. The Jacobian forms an abelian group

under the addition of these reduced divisors. This additive operation is very important in

the context of curve-based cryptography.

Mumford [37] proposed a method for writing each reduced divisor in terms of two related

polynomials. This representation is convenient for addition on the Jacobian.
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2.4.5 Mumford Notation

From this point forward, discussion will be restricted to curves on finite fields since main-

taining generality would result in additional complexity whilst providing no benefit. The

hyperelliptic curve C : y2 +h(x)y = f(x) of genus g is now defined on a finite field Fq and

has points P = (x, y) with x, y ∈ F̄q. Note that if a hyperelliptic curve is defined over Fq
then it is also defined on all extensions of Fq.

Mumford provides a way to represent reduced divisors as follows.

Definition 2.4.18. (Mumford notation) All reduced divisors D =
∑

mi
Pi −

∑
mi
∞

on a hyperelliptic curve C : y2 + h(x)y = f(x) can be represented by two polynomials u(x)

and v(x) such that

u(x) =
∏
i

(x− xi)mi (2.25)

v(xi) = yi (2.26)

where Pi = (xi, yi). These polynomials must satisfy the following properties:

1. u is monic

2. deg(v) < deg(u) ≤ g

3. u divides v2 + vh− f

A divisor is written as D = [u, v] when using Mumford notation.

Up until now the coordinates of the points have been defined on F̄q. However, F̄q may be

a very large field in comparison to Fq. Fortunately, an automorphism can be used so that

the coordinates can be defined on Fq.
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Definition 2.4.19. (Fq-rational divisor) Consider a divisor D =
∑

mP
P where D ∈

D0. D is said to be defined over Fq if, for all automorphisms σ of F̄q over Fq, then

Dσ =
∑

mP
P σ =

∑
mP

(σ(x), σ(y)) where Dσ = D. D is known as an Fq-rational divisor.

On fields with suitable automorphisms, points with coordinates (x, y) ∈ Fq can be used to

construct reduced divisors on the Jacobian. The Mumford polynomials are considerably

smaller as a result.

An algorithm that uses Mumford notation to perform divisor addition on the Jacobian

was proposed by Cantor in 1989 [36].

2.4.6 Cantor’s Algorithm

Cantor’s algorithm is used to add two reduced divisors on the Jacobian. Elements of the

Jacobian form an abelian group under this operation. The algorithm is performed in two

steps, respectively known as composition and reduction. Given the reduced divisors D1

and D2, a semi-reduced divisor D′ is first calculated such that D′ ∼ D1+D2. The divisor

D′ is then reduced to return D3 = D1 +D2, where D3 is a reduced divisor.

Given a hyperelliptic curve y2 + h(x)y = f(x), the algorithm begins with the composition

step, which is described by Algorithm 1. For convenience, f(x) and h(x) are written as f

and h. Note that steps 1 and 2 correspond to d1 ← gcd(u1, u2) and d← gcd(d1, v1+v2+h)

respectively.

The reduction step is then used to reduce the result and return D3 = D1 +D2. This step

is described by Algorithm 2.
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Algorithm 1 Composition step of Cantor’s algorithm

Input: Reduced divisors D1 = [u1, v1] and D2 = [u2, v2]

Output: Semi-reduced divisor D′ = [u′, v′] such that D′ ∼ D1 +D2

1: d1 ← e1u1 + e2u2

2: d← c1d1 + c2(v1 + v2 + h)

3: s1 ← c1e1, s2 ← c1e2, s3 ← c2

4: u′ ← (u1u2)/(d
2)

5: v′ ←
(
(s1u1v2 + s2u2v1 + s3(v1v2 + f))/d

)
mod u′

Return: [u′, v′]

Algorithm 2 Reduction step of Cantor’s algorithm

Input: Semi-reduced divisor D′ = [u′, v′]

Output: Reduced divisor D3 = [u3, v3]

1: u3 ← (f − v′h− v′2)/u′

2: v3 ← (−h− v′) mod u3

3: if deg(u3) > g then

4: u′ ← u3, v
′ ← v3

5: Go to step 1

6: end if

7: Make u3 monic by dividing it by its leading coefficient

Return: [u3, v3]
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2.5 Elliptic and Genus 2 Hyperelliptic Curves

There is an attack, first described in [38], that can be used to compromise the security of

some systems that use hyperelliptic curves. The time required by this attack decreases as

the genus of the curve is increased. At the time of this research, attacks of this nature were

considered very costly on curves of genus 1 and 2. These curves are used exclusively in

this research for this reason. A more detailed overview of attacks on hyperelliptic curves

is available in Section 2.6. Curves of genus 1 are more commonly known as elliptic curves.

This section discusses these curves and their group operation. The use of elliptic and genus

2 hyperelliptic curves in cryptography are discussed in [39] and [40]. An introduction to

the group operation on elliptic and hyperelliptic curves is provided by Sadanandan in [41].

2.5.1 Elliptic Curves

Definition 2.5.1. (elliptic curve) An elliptic curve on a finite field Fq = Fpm is the set

of points P = (x, y) with x, y ∈ Fq, together with a point at infinity ∞, that satisfy the

equation:

E(Fq) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.27)

where all ai ∈ Fq.

Definition 2.5.2. (opposite of a point) The opposite of a point P = (x, y) is −P =

(x,−y).

Recall from Definition 2.4.17 that members of the Jacobian on a hyperelliptic curve C are

reduced divisors of the form D =
∑
miP −

∑
mi∞, where

∑
mi ≤ g. Since g = 1 for

elliptic curves, reduced divisors only have one point in their support, i.e. D = P − ∞.

Every member of the Jacobian can, therefore, be represented by a distinct point on E(Fq).

Members of E(Fq) form a finite abelian group under the addition of these points. The

identity element of this group is ∞, which exists at (1, 0). This group is isomorphic to
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the Jacobian, which means that it can be used for cryptographic purposes. There exists a

method for adding points on elliptic curves that is more efficient than Cantor’s algorithm.

When used for cryptographic purposes, elliptic curve points are members of E(Fq). The

addition process can, however, be viewed more clearly when the elliptic curve is defined

over the field of real numbers R, as illustrated in Figure 2.4 (G. C. Kessler [3])

Figure 2.4: Elliptic Curve Addition over R (Source: G. C. Kessler [3])

Consider the addition R = P+Q, where P,Q,R ∈ E(R) and P 6= Q. A function describing

a straight line between P and Q is first defined. The line intercepts the curve at a third

point, −R, the value of which can be retrieved by solving for the line function and curve

equation. A vertical line function is then defined that describes a vertical line through

−R. This line intercepts the curve at another point, which is R. This is the final result

R = P +Q. Doubling is performed in a similar manner. The value of S = P + P , where

P, S ∈ E(R) is computed by first defining a function describing a tangent to the curve at

P . This tangent intercepts the curve at a point −S. A vertical line function is defined at

−S. The line function intercepts the curve at S, which is equal to P +P . The addition of
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a point to multiples of itself is known as point scalar multiplication. Doubling of a point

is written as [2]P , while point tripling is written as [3]P , and so forth.

When an elliptic curves is defined on Fq, all arithmetic required by the addition and

doubling operations can be performed on Fq. More details on the elliptic curve group

operation are available in [39].

The security level of systems that employ elliptic and hyperelliptic curves is directly related

to the order of the group in question. This order lies within the Hasse-Weil bound [40].

Definition 2.5.3. (elliptic curve group order, trace of Frobenius) Consider an

elliptic curve E defined on a finite field Fq. The order of E(Fq) is given by

#E(Fq) = q + 1− t (2.28)

where t is known as the trace of the Frobenius of the curve and |t| ≤ 2
√
q.

For groups large enough to be of cryptographic interest, the value of |t| is much smaller

than q so #E(Fq) ≈ q.

Subsets of points of the same order are known as sets of torsion points.

Definition 2.5.4. (set of n-torsion points on an elliptic curve) The set of n-torsion

points on an elliptic curve E is the set of points on the curve for which [n]P =∞, where

n is some positive integer. This set is written as E[n].

Supersingular curves are useful in the context of pairing-based cryptography as pairings

can be computed very efficiently on them.

Definition 2.5.5. (supersingular elliptic curve, ordinary elliptic curve) An ellip-

tic curve E(Fq), where q = pm, is supersingular if there are no points of order p on the

curve, i.e. if E[p] is empty. If this is not the case the curve is known as ordinary. The

trace of Frobenius of a supersingular elliptic curve is always divisible by p.
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2.5.2 Genus 2 Hyperelliptic Curves

As seen in the previous section, a hyperelliptic curve of genus g is described by C :

y2 + h(x)y − f(x) = 0, where h(x) is of degree less than or equal to g and f(x) is monic

and of degree 2g+ 1. This means that in the genus 2 case the degree of h(x) is either 1 or

2 and the degree of f(x) is 5.

Members of the Jacobian on a genus 2 curve are represented by divisors of form D =∑
miP−

∑
mi∞. Using Mumford notation, the divisors can be represented by polynomial

pairs [u, v] where u is monic, deg(v) < deg(u) ≤ 2 and u|(v2 + vh − f) (from Definition

2.4.18). Cantor’s algorithm can be used to perform addition on the Jacobian, as before.

There is, however, a more efficient way to perform the group operation.

Consider the Mumford polynomial pairs [u1, v1] and [u2, v2] corresponding to, respectively,

the reduced divisors D1 and D2 on the Jacobian. Addition can be performed efficiently by

exploiting the relationships between the polynomials. Explicit addition formulae for the

cases where {deg(u1) = 0}, {deg(u1) = 1, deg(u2) = 1}, {deg(u1) = 1, deg(u2) = 2} and

{deg(u1) = 2, deg(u2) = 2} can be derived. Note that the degrees of the v polynomials

are fixed by their relationships to the u polynomials. Harley provides explicit formulae

for odd characteristic genus 2 curves in [42]. Some performance results are published in

[43]. In [44], Lange derives formulae for even characteristic curves. The most common

case, in which {deg(u1) = 2, deg(u2) = 2} requires two inversions, three squarings and

24 multiplications on Fq. This performance is much better than the average number of

operations required by Cantor’s algorithm. Addition formulae do not have to be employed

exclusively. A good compromise is to use the explicit addition formulae for the most

common cases and to employ Cantor’s algorithm otherwise.

In [45], Lange further refines formulae for characteristic 2 and 3 curves using affine, projec-

tive and weighted projective coordinates. Points are represented by (x, y) pairs in an affine

coordinate system. The explicit formulae require multiplications, squarings, additions and
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one inversion. Finite field inversion can be costly in comparison to other field operations.

A projective coordinate system employs (x, y, z) triples. While inversion is not required,

more multiplications must be performed. The extra coordinate also increases the complex-

ity of the group arithmetic. Lange introduces a weighted projective system that provides

a comparably efficient way to perform doubling on the Jacobian. An affine coordinate

system is, however, used in this research. The introduction of a third coordinate is not

justified since inversions can be performed relatively quickly using a dedicated hardware

component.

The Hasse-Weil bound in the genus 2 case states that the order of the Jacobian is restricted

to

(
√
q − 1)4 ≤ #J ≤ (

√
q + 1)4 (2.29)

In practice, this means that #J ≈ q2. Recall that on elliptic curves the Jacobian is of

order q. This means that if a field size of order q is used in the elliptic case then genus 2

curves can be defined on a field of order
√
q, while maintaining the same level of security.

This reduction in the underlying field size results in faster field arithmetic and reduced

storage requirement. The benefit that this provides may, however, be offset by the cost of

a more complicated Jacobian addition in the genus 2 case.

The set of n-torsion divisors on a genus 2 curve can be defined in the same manner as in

the elliptic case.

Definition 2.5.6. (set of n-torsion divisors on genus 2 curves) The set of n-torsion

divisors on the Jacobian, J , of a genus 2 hyperelliptic curve is the set of degree 0 divisors

on J for which [n]D = 0, where n is some positive integer. The set is written as J [n].

Pairings can be calculated very efficiently on certain supersingular genus 2 hyperelliptic

curves.

Definition 2.5.7. (supersingular genus 2 curve) A supersingular genus 2 hyperelliptic
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curve has no divisors of order p, where p is the characteristic of the finite field on which

the curve is defined.

2.6 Hyperelliptic Curves in Cryptography

The cryptographic use of hyperelliptic curves is discussed in this section. Known attacks

on curve-based schemes that use group addition are described. The properties of fields and

curves that should be avoided to prevent the success of these attacks are outlined. The

rationale for the cryptographic use of hyperelliptic curves is also discussed. Finally, the

Elgamal Encryption system [46], when implemented using an elliptic curve, is described

in detail to provide some context to the topics discussed in this chapter. An overview

of curve-based cryptography is available in [39]. An introduction to the security issues

relating to curve-based cryptography is provided by Scholten and Vercauteren in [47].

The Computational Diffie-Hellman Problem (CDH) can be used to construct many schemes

based on finite fields, elliptic curves and hyperelliptic curves.

Definition 2.6.1. (Computational Diffie-Hellman Problem) Consider a group G of

order n with generator g. Let a, b be positive integers smaller than n and ga, gb ∈ G. The

Computational Diffie-Hellman Problem is: given g, ga, gb, find the element h ∈ G such

that h = gab.

The difficulty of the CDH is reliant on the difficulty of the Discrete Logarithm Problem in

the group in question.

Definition 2.6.2. (Discrete Logarithm Problem (DLP)) Consider a group G of

order n with generator g. Let h = ga, where h ∈ G and a is a positive integer smaller

than n. The Discrete Logarithm Problem is the problem of finding the value of a, given g

and h.
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The CDH can be solved if the DLP is solved in the group. It is shown in [48] that the

CDH and the DLP have the same complexity in a group of prime order. They also have

the same complexity in the relevant groups on elliptic and hyperelliptic curves. Attacks on

the CDH come in the form of attacks on the DLP of the group in question. An overview

of the CDH and its intractability is available in [39].

Attacks on the DLP become more difficult as the group order is increased. To provide

adequate security for modern cryptographic applications the size of a finite field must be in

the order of several thousand bits when the DLP is built on the field alone. Computations

on fields of this size are too costly and too slow to be of benefit in the majority of systems.

Attacks on the DLP of groups on elliptic and hyperelliptic curves are, however, more

difficult. This means that a smaller underlying finite field size can be used to provide the

required security level.

2.6.1 Security Considerations

Some good overviews of the subject matter of this subsection can be found in [40], [47],

[30] and [49].

The following terms are used to define the time requirement of an attack on the DLP or

its curve-based extensions:

• Polynomial: The required time is polynomial in the number of digits in the group

order.

• Exponential: The required time is exponential in the number of digits in the group

order.

• Sub-exponential: There is no agreed definition of sub-exponential time. In general

terms, a problem with sub-exponential properties is still considered intractable but
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not as difficult as a problem requiring exponential time.

The Discrete Logarithm Problem (DLP)

Consider a group with an order of n bits that has members g and h such that h = ga. The

most basic attack on the DLP is known as a brute force attack. This involves guessing

values of a until a solution to the problem is found. This attack requires a running time

of O(n) and is, therefore, exponential in nature.

There is a family of generic algorithms that can be used to attack the DLP when imple-

mented on any group. This includes groups defined on curves. One such attack uses the

baby-step giant-step algorithm [50], usually in combination with a lookup table, to perform

a modified brute force attack. Pollard’s rho algorithm [51] returns a result in similar time,

but with a smaller memory requirement. In [52], Shoup proves that all generic attacks

on groups of prime order require a running time of O(
√
n). It should be noted that even

if the order of the group is not prime, the Pohlig-Helman algorithm [53] can be used to

reduce the running time to O(
√
p), where p is the number of digits in the largest prime

factor of the group order. This means that generic attacks are exponential in the number

of digits in the prime order, or in the number of digits in the largest prime factor of the

order. The DLP should therefore be constructed on a group with large prime order or on

a group with an order that has a large prime factor.

The DLP, when implemented on the multiplicative groups of finite fields, is susceptible

to the Index Calculus Algorithm [54]. This algorithm exploits relationships between small

prime members of the field and returns a result in probabilistic sub-exponential time. The

order of the group should be sufficiently large to render this attack infeasible. The brute

force, generic and index calculus attacks mean that multiplicative finite field must be of

very large order.
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The Elliptic Curve Discrete Logarithm Problem (ECDLP)

The ECDLP was independently suggested for cryptographic use by Miller [19] and Koblitz

[20] in 1985.

Definition 2.6.3. (Elliptic Curve Discrete Logarithm Problem(ECDLP)) Con-

sider an elliptic curve E(Fq) containing a point P of order l. Let < P > be the cyclic

subgroup of points generated by P . Let Q = [a]P , where 1 ≤ a < l and Q ∈< P >. The

elliptic curve discrete logarithm problem is the problem of finding the value of a given P

and Q.

The point Q = [a]P is the result of the addition of P to itself a times. This is known as

point scalar multiplication.

The index calculus attack cannot be applied to elliptic curves. This means that a much

smaller field size can be used to provide the same security as systems based on the DLP

alone. There are, however, certain curves that should be avoided since their properties

introduce a susceptibility to other attacks.

Anomalous elliptic curves have a trace of Frobenius that is equal to 1. An anomalous

curve E(Fq), where q = pm, has exactly pm points. In [55], it is shown that, in this case,

the ECDLP can be reduced to the DLP in an additive group on Fp. The DLP in this

group is trivial and can be solved in linear time. All anomalous elliptic curves should be

avoided.

Menezes et al. [56] describe an attack, known as the MOV reduction, that reduces the

ECDLP to the DLP on some extension of the underlying finite field on which the elliptic

curve is defined. The dimension of this extension is known as the embedding degree of the

curve (see Definition 2.6.5 for the definition of embedding degree in the general hyperel-

liptic case, which holds here). The index calculus attack can then be used on the DLP

of the extension field and, if its order is insufficient, a successful attack may be feasible.
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An insignificant subset of elliptic curves have an embedding degree that is small enough

to introduce vulnerability to a MOV reduction. Since it is necessary to randomly select a

curve only during the construction of a system or at the beginning of a particular session,

the MOV reduction is, in general, not a troublesome problem.

Supersingular elliptic curves are vulnerable to MOV reduction since they have a maximum

embedding degree of 6. These curves should not be used in DLP systems unless this

vulnerability is considered. Supersingular curves do, however, have properties that allow

for efficient pairing computation on them. Many novel pairing-based schemes have been

devised that use supersingular curves in combination with other difficult problems. The

calculation of pairings on supersingular curves, and their use in cryptographic schemes, is

discussed in the next chapter.

The Hyperelliptic Curve Discrete Logarithm Problem (HCDLP)

The HCDLP was generalised to groups on hyperelliptic curves by Koblitz in 1989 [21].

Definition 2.6.4. (Hyperelliptic Curve Discrete Logarithm Problem (HCDLP))

Consider a hyperelliptic curve C(Fq) with Jacobian J and D1 ∈ J . Let D2 be a member

of < D1 >, where < D1 > is the cyclic subgroup of divisors in J generated by D1. The

Hyperelliptic Curve Discrete Logarithm Problem is, given D1 and D2, finding the positive

integer a < (#J) such that D2 = [a]D1.

An Index Calculus attack on hyperelliptic curves, faster than Pollard’s rho algorithm when

the genus of the curve is larger than 2, is described by Gaudry et al. in [57]. Curves with

genus larger than 2 should, therefore, be avoided.

The Pohlig-Hellman algorithm can be used to reduce the DLP on the Jacobian to the

DLP on a group with order equal to the largest prime divisor of #J . This means that

#J should be prime, or the largest prime divisor of the group order should be sufficiently
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large, to avoid vulnerability to this attack.

If the largest prime divisor, r, of #J is equal to the characteristic of Fq then the curve is

anomalous and the DLP is trivial in the additive group of Fq, as in the elliptic case.

The MOV reduction was generalised from elliptic curves to hyperelliptic curves of arbitrary

genus by Frey and Rück in [58]. In this case, the Tate pairing is used to perform a reduction

from the HCDLP to the DLP on a k-dimensional extension of the finite field, where k is

the embedding degree of the hyperelliptic curve.

Definition 2.6.5. (embedding degree) Consider a hyperelliptic curve C with a divisor

group of order r on J . The embedding degree of C is the smallest value of k such that

r | (qk − 1).

If the embedding degree is sufficiently small an Index Calculus attack on the DLP in

the multiplicative group F∗
qk

may be possible. Fortunately, very few genus 2 curves have

a value of k that is small enough to be problematic. As in the elliptic case, however,

supersingular hyperelliptic curves have low embedding degree. Genus 2 curves defined on

fields of characteristic 2, for example, have a maximum embedding degree of 12. These

curves are, however, again useful in the implementation of pairing-based cryptography, as

will be seen in the next chapter.

2.6.2 The Benefits of Hyperelliptic Curve Cryptography

The benefits of the cryptographic use of elliptic and genus 2 hyperelliptic curves are

discussed in this subsection. In public-key schemes based on the DLP (and the ECDLP

and the HCDLP) the keys are members of the finite field upon which the problem is

constructed. This means that the keys are the same size as the order of the finite field

in use. The difficulty of the DLP on the multiplicative group of a finite field has the

same complexity as the problem of integer factorisation, which is used by conventional
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public-key schemes such as RSA. This means that, for example, a conventional public-key

scheme with 1024-bit keys corresponds to a DLP scheme with a finite field size with a

1024-bit order.

It was shown in Section 2.5 that, on elliptic curves, the group operation is performed

on the group of points in E(Fq), where #E(Fq) ≈ q. The Index Calculus attack is not

problematic in the elliptic case. This means that a smaller field size can be used to provide

the same level of security as conventional public-key schemes. In the genus 2 case, the

Hasse-Weil bound states that the Jacobian group, on which the HCDLP is constructed,

has order #J ≈ q2. The larger group order means that the curve can be defined on an

even smaller finite field than in the elliptic case if the genus 2 curve is carefully chosen.

In [49], the times required by successful attacks on the DLP, the ECDLP and the HCDLP

are calculated and used to compare the field sizes required for various levels of security.

These are compared with each other and also with the key sizes required by conventional

public-key schemes (such as RSA) in Table 2.1.

Table 2.1: Comparison of key sizes (in bits) required by conventional public-key schemes

and public-key schemes using the DLP, the ECDLP and the HCDLP

Conventional DLP ECDLP HCDLP

1024 1024 174 87

2048 2048 234 117

4096 4096 313 157

8192 8192 417 209

It can be seen that elliptic and genus 2 implementations can provide a large reduction

in key size when compared to conventional schemes, resulting in a reduced bandwidth

requirement. Arithmetic on the smaller fields is less expensive. Furthermore, if an increase

in security level is necessary, the key sizes required by curve-based solutions grow at a

smaller rate than systems based on RSA or the DLP on the multiplicative groups of finite

fields. The genus 2 case holds an added advantage over the elliptic case in this respect.
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As the security level is increased, the key length of a genus 2 implementation increases at

a smaller rate than in the elliptic case.

The advantages of the smaller finite field sizes of the ECDLP and HCDLP are, however,

offset by the more complicated group operations of the elliptic and hyperelliptic curves.

A hardware implementation can provide a very favourable solution to this problem since

many of the group operations can be performed in parallel, if carefully scheduled. The

extension field computations can also be implemented in terms of sub-field operations,

which can be performed in parallel in hardware. This can result in a large reduction in

computation time.

2.6.3 Protocol Example: The Elgamal Encryption Scheme

Many cryptographic systems based on the DLP can be implemented using elliptic and hy-

perelliptic curves. Several of these schemes are discussed in [39]. The Elgamal Encryption

System [46] is an asymmetric public-key encryption scheme. Security is dependent on the

intractability of the CDH in the group on which it is constructed. It was adapted for

implementation on elliptic curves by Koblitz in 1987 [20]. In the following example, the

Elgamal encryption system is implemented on an elliptic curve. It can also be implemented

on the Jacobian of genus 2 hyperelliptic curves.

The following steps must be followed if Alice wishes to securely send a message, denoted

m, to Bob using the Elgamal Encryption System.

Setup

• A suitable elliptic curve, E, defined on a finite field, Fq, is selected. A point P =

(xp, yp), of order n, is chosen as the generator of a cyclic subgroup < P >. The

security of the cryptosystem does not depend on these parameters and they can be
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made available to all users.

• Bob chooses a random positive integer kb, where 1 ≤ kb < n. This is his private key

and is not shared. He then calculates and publishes Q = [kb]P . The point Q is his

public key and is available to Alice.

Encryption

• Alice first selects a random positive integer ka, 1 ≤ ka < n.

• She calculates R = [ka]P and S = [ka]Q, where S = (xs, ys).

• Alice then calculates t = xs.m mod q, where m is the message to be sent.

• Alice sends the ciphertext tuple (R, t) to Bob.

Decryption

• Bob calculates U = [kb]R, where U has coordinates (xu, yu).

• Bob retrieves the message by calculating m = t/xu mod q.

The Elgamal cryptosystem is viable since the calculations required of Alice and Bob are

relatively easy to perform. An eavesdropper would, however, have to solve the ECDLP to

decrypt the message. The ECDLP in this group should sufficiently difficult so that such

an attack is infeasible.
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2.7 Conclusions

The mathematics underpinning curve-based cryptography have been introduced in this

chapter. The theory that is required for an understanding of the subject matter of this

thesis is summarised here for clarity. The computation of arithmetic on finite fields is

particularly important as all operations required for pairing-based cryptography are per-

formed on members of abelian groups on these fields. The group on which the hyperelliptic

curve discrete logarithm problem is based is known as the Jacobian. The set of divisors,

which are finite formal sums of points on the curve, form an abelian group under the ad-

dition law of the Jacobian. These divisors can be represented by a set of two polynomials

using Mumford Notation. Divisors on the Jacobian of elliptic curves have only one point

in their support, which means that the abelian additive group on the Jacobian consists of

points. This significantly reduces the complexity of the group operation. The Jacobian

of genus 2 hyperelliptic curves contains divisors with at most two points in their support,

complicating the group operation. Addition can be performed using Cantor’s algorithm,

explicit formulae, or a combination of the two.

Attacks on the security of schemes that employ these curves have been outlined and the

removal of vulnerabilities through appropriate field and curve selection discussed. It has

been shown that curve-based implementations of cryptographic schemes require smaller

key sizes, when compared to other similar public-key systems. The use of hyperelliptic

curves can also offer several advantages if a cryptographic scheme must be implemented

in a constrained environment, i.e. quicker computation of finite field arithmetic and a

reduced memory requirement. FPGAs are suitable for such an implementation since, if

a change in the security level of the scheme is required, a simple reprogramming can be

performed.

The next chapter introduces the theory of mathematical pairings on hyperelliptic curves

and the rest of this thesis is concerned with their efficient computation. This chapter has

provided a foundation for that work. It must be noted, however, that the hardware to
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be discussed in later chapters can easily be adjusted to implement the more conventional

curve-based schemes that have been described up to this point.
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Chapter 3
The Tate and ηT Pairings

3.1 Introduction

In 1994, bilinear pairings were introduced to cryptography in the form of attacks on the

security of certain curves. The MOV reduction [56] employed the Weil pairing whilst the

Frey-Ruck (FR) attack [58] used the Tate pairing to reduce the DLP on an elliptic or

genus 2 hyperelliptic curve to the DLP on an extension of the finite field on which the

curve is defined. Supersingular curves are particularly vulnerable to these attacks and

their use was avoided for a time. Supersingular curves are, however, suited to schemes

that use pairings in a constructive manner since pairings can be computed very efficiently

on them. The Tate pairing is usually used in cryptographic applications as it can be

computed faster than the Weil pairing (the Weil computation requires two applications of

an algorithm that can itself be used once to compute the Tate pairing).

As discussed in Subsection 2.2.3, the first constructive use of pairings was described by

Joux in 2000 [24]. A one round tripartite key agreement scheme, devised using the bilin-
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earity of pairings, is described. In 2001, Boneh and Franklin [26] devised an IBE scheme

that was made possible by pairings. Since then the research area has garnered much at-

tention and many optimisations for pairing computation have been suggested, the most

important of which are briefly outlined here.

As will be seen in this chapter, pairings are computed by performing finite field operations

within an iterative loop. This is followed by an exponentiation to ensure that a unique

result is returned. The loop is constructed using Miller’s algorithm [19], [59]. In 2002,

Barreto et al. [60] provided efficient algorithms for pairing computation on characteristic

3 elliptic curves. Prior to this, pairings were performed on members of extensions of the

finite fields on which the relevant curves were defined. They show that if one of the pairing

inputs is restricted to the base field, then many computations required during the Miller

loop can be avoided. Galbraith et al. made similar observations in [61]. They also provide

efficient computation methods for arithmetic on characteristic 2 and 3 extension fields.

In 2003, Duursma and Lee [62] described several optimisations for a subset of hyperelliptic

curves with points on Fpm , where p > 2. In 2007, Barreto et al. [63] generalised these op-

timisations to a large number of characteristic 2 and 3 elliptic curves and to characteristic

genus 2 hyperelliptic curves. They define a notation for the use of these optimisations and

show that a bilinear pairing can be computed using a Miller’s loop with half as many iter-

ations as previously required. This method does not return a Tate pairing but has all the

properties required for use in pairing-based cryptosystems. The pairing is known as the

truncated pairing, denoted ηT . It is closely related to the Tate pairing and a conversion

can be performed by exponentiating the ηT result. Tate pairing computation using the

ηT method returned the fastest software result at the time of this research, and the rest

of this thesis discusses its implementation.

It should be noted that this research does not consider pairings on curves that are de-

fined over fields of large prime characteristic. A review of the optimisations to pairing

computation on these curves is, however, provided in Section 7.1.
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The Tate pairing is defined and some relevant properties outlined in Section 3.2. Com-

putation using Miller’s Algorithm is described. Further optimisations to Tate pairing

computation are also discussed. The ηT pairing is introduced in Section 3.3. A discussion

on the use of pairings in cryptography is provided in Section 3.4. The Boneh-Franklin

identity-based encryption scheme [26] is outlined to provide context to the subject matter

of this chapter. The methodology for the hardware implementation of the Tate pairing in

this work is described in Section 3.5. An automated design environment has been created

to facilitate the rapid design and verification of hardware pairing processors and will also

be discussed.

The ηT is an optimisation of methods previously used for Tate pairing calculation. The

properties of certain groups and curves are exploited to return a very fast computation.

Although the pairings are closely related, the use of some optimisations means that the

results returned by the ηT are not the same as those returned by the Tate pairing. An

exponentiation of the ηT result to a Tate pairing value can, however, be performed. A

system that has been created to aid in the design and verification of the processors is also

presented.

The Master’s thesis of Maas [30] and the Ph.D. thesis of Lynn [64] provide good overviews

of pairing-based cryptography. El Mrabet analyses efficient computation methods for

pairing-based cryptography in [65].

The mathematical foundations of the Tate and ηT pairings are discussed in this chapter.

Cryptography based on pairings is also discussed. The steps required to perform the

Boneh Franklin identity-based encryption scheme [26] are described. The methodology

and equipment that have been used for the hardware implementation of the Tate pairing

is described.
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3.2 The Tate Pairing

3.2.1 Definition

Let C be a hyperelliptic curve on Fq and let JC(Fq) be the Jacobian of C. Let n be a large

prime such that n | #JC(Fq). The property gcd(n, q) = 1 must hold to avoid the attack

described by Rück in [66]. Also, n2 must not divide #JC(Fq) so that the Pohlig-Hellman

attack [53] cannot be used. Let k be the smallest integer that satisfies n | qk − 1 (this is

the embedding degree of the curve, as discussed in Section 2.6).

Consider a group containing the n-th multiples of all divisors in JC(Fqk). This group is

written as nJC(Fqk) = {[n]D | D ∈ JC(Fqk)}. The quotient group JC(Fqk)/nJC(Fqk)

forms an equivalence class under an equivalence relation. Members D and D′ are related

under the equivalence D ∼ D′ if (D − D′) ∈ nJC(Fqk). Let JC(Fqk)[n] be the n-torsion

group of divisors in JC(Fqk). Consider a divisor D1 ∈ JC(Fqk)[n]. There exists a function

fn,D1 such that div(fn,D1) = [n]D1. Let D2 ∈ JC(Fqk)/nJC(Fqk).

Definition 3.2.1. (Tate pairing) The Tate pairing is defined as

〈D1, D2〉n = fn,D1(D2) (3.1)

and is a mapping

〈., .〉n : JC(Fqk)[n]× JC(Fqk)/nJC(Fqk)→ F∗qk/(F
∗
qk)n (3.2)

where F∗
qk

is an abelian multiplicative group and F∗
qk
/(F∗

qk
)n is an equivalence class group.

Consider group members a and b, where a, b ∈ F∗
qk

. The element a is equivalent to b only

if a/b ∈ (F∗
qk

)n. This means that a ∼ b if a = bcn for some element c ∈ F ∗
qk

.

Note that the divisors D1 and D2 must be linearly independent so that the pairing result

is non-trivial, i.e. D1 and D2 must have no common points.
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The result of the pairing does not depend on the choice of D2 since the only impact of

its value is in the definition of the representation for the equivalence class. For simplicity,

this means that D2 can be a member of JC(Fqk). With this information, the Tate pairing

is now a mapping

〈., .〉n : JC(Fqk)[n]× JC(Fqk)→ F∗qk/(F
∗
qk)n (3.3)

The Tate pairing does not return a unique value, which is required for cryptographic

purposes. Members of the quotient group F∗
qk
/(F∗

qk
)n are defined up to a multiple of

the n-th power of c ∈ F∗
qk

. Since a unique result is required, the n-th powers must be

eliminated. The relationship cq
k−1 = 1 holds due to the cyclical nature of the multiplicative

group. The multiples can, therefore, be removed by exponentiating the pairing result to

the power (qk − 1)/n. The output of this exponentiation is a unique element of F∗
qk

of

order n. The calculation of the Tate pairing followed by this exponentiation, known as

the final exponentiation, is known as the reduced Tate pairing.

Definition 3.2.2. (reduced Tate pairing) The reduced Tate pairing is defined by

e(D1, D2) = 〈D1, D2〉n(q
k−1)/n = fn,D1(D2)

(qk−1)/n (3.4)

where the unique values returned by the pairing are members of µn = {µn = 1 | µ ∈ F∗
qk
},

which is the group of n-th roots of unity of F∗
qk

.

The reduced Tate pairing satisfies the following useful properties:

• Bilinearity: For any integers s, t

e([s]D1, [t]D2) = e([t]D1, [s]D2) = e(D1, D2)
st (3.5)

• Non-degeneracy: For each divisor D1 ∈ JC(Fqk)[n], where D1 6= 0, there exists a

divisor D2 ∈ JC(Fqk) such that e(D1, D2) 6= 1.

• Compatibility: Let N = sn for any integer s. Then

e(D1, D2) = 〈D1, D2〉n(q
k−1)/n = 〈D1, D2〉N (qk−1)/N (3.6)
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3.2.2 Computation Using Miller’s Algorithm

In the literature, the Tate pairing was first computed using Miller’s algorithm [59, 67].

This algorithm does not return a reduced pairing value and must be followed by a final

exponentiation in cryptographic applications that use it.

Consider the divisors D3 ∈ JC(Fqk) and D4 ∈ JC(Fqk). Let D′5 be the non-reduced

divisor returned by adding D3 and D4 using the Jacobian group law (or point addition in

the elliptic case) and let D5 be the final reduced divisor. If addition is performed using

Cantor’s algorithm, for example, then D′5 is the output of the composition stage and D5

is the output of the reduction stage. A function gD3,D4 always exists such that

div(gD3,D4) = div(cD3,D4)− div(dD3,D4) = D′5 −D5

where c and d are rational functions on the curve.

From Equations (3.1) and (3.3) the Tate pairing is calculated according to 〈D1, D2〉n =

fn,D1(D2), where D1 ∈ JC(Fqk)[n], D2 ∈ JC(Fqk) and fn,D1 is a function such that

div(fn,D1) = [n]D1. For pairing computation it is not necessary to define the function

fn,D1 . The only result that is of importance is the evaluation of fn,D1 at D2. This can be

calculated by defining a series of simpler, intermediate functions arising from the addition

of D1 to multiples of itself and accumulating the evaluations of these functions at D2. The

following relationship is used to define the intermediate functions and forms the basis for

Miller’s algorithm

fi+j,D1 = fi,D1 .fj,D1 .g[i]D1,[j]D1
(3.7)

where g is a function that equals c/d and c and d are the rational functions arising from

the addition process. Note that div(g) = div(c)− div(d) = div(c/d).

Miller’s algorithm takes the form of an iterative loop. A binary double-and-add method can

be used to add multiples of D1 to itself on each iteration. The c and d functions related to

these additions are then defined and evaluated at D2. The accumulating function f ∈ Fqk
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is updated according to Equation (3.7). This process is described by Algorithm 3 in the

general hyperelliptic case.

Algorithm 3 Tate pairing computation using Miller’s algorithm

Input: D1 ∈ JC(Fqk)[n], D2 ∈ JC(Fqk)

Output: 〈D1, D2〉n
1: Initialise: f ← 1, D ← D1

2: Let n =
∑s

i=0 ni2
i, where s is the number of bits in n, ni ∈ {0, 1} and ns = 1.

3: for (i← s− 1, i ≥ 0, i← i− 1) do

4: D ← [2]D and define gD,D during the doubling

5: f ← f2.gD,D(D2)

6: if ni = 1 then

7: D ← D +D1 and define gD,D1 during the addition

8: f ← f.gD,D1(D2)

9: end if

10: end for

Return: f

In the elliptic case addition is performed on the group of points on E(Fqk). Consider the

addition of P and Q, where P,Q ∈ E(Fqk). The intermediate function gP,Q is related to

the lines used in the addition process. The function cP,Q describes the straight line through

P and Q and dP,Q describes the vertical line through P + Q. In the genus 2 case, either

Cantor’s algorithm or explicit formulae can be used to perform the required Jacobian

addition. The rational functions are defined in terms of intermediate divisors, which are

represented by Mumford polynomials. The functions are evaluated at points in the elliptic

case. They are evaluated at divisors in the general genus 2 case. They can, however, be

evaluated at points in certain circumstances (as discussed in the next subsection). These

evaluations can also be incorporated into the addition process to reduce computation time

[68], [69].

Miller’s algorithm can be computationally expensive when working with large groups.

Many additions and doublings are necessary. The multiplication of the accumulating Fqk
element by (c/d) on each iteration requires multiplication and inversion on Fqk , which are
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expensive operations. An implementation using the algorithm described in this subsection

may not be suited to many applications as a sufficiently fast pairing computation may

not be possible. There are, however, several methods that can be used to reduce pairing

computation time.

3.2.3 Optimisations to Tate Pairing Computation

This section describes various optimisations for Tate pairing computation that are relevant

to this research. A more detailed overview of many of the optimisations is available in

[68].

The first input to the pairing can be defined on JC(Fq)[n] rather than JC(Fqk)[n], without

a loss in security [70]. However, if the second input D2 ∈ JC(Fqk) is also a member

of JC(Fq) then the non-degeneracy property of the Tate pairing will not be satisfied. To

ensure that this does not happen a non-Fq-rational endomorphism can be used to generate

the second input. This endomorphism, also known as a distortion map, ψ, exists on all

supersingular curves [71] and proves very beneficial for pairing computation. Using this

function a divisor on JC(Fq) can be mapped to another on JC(Fqk) such that the resultant

divisor cannot be a member of the original field. A pairing that uses a distortion map is

described as modified.

Definition 3.2.3. (modified Tate pairing) Let D1 ∈ JC(Fq)[n] and D2 ∈ JC(Fq). The

modified Tate pairing is given by

〈D1, ψ(D2)〉n = fn,D1(ψ(D2)) (3.8)

The modified pairing, followed by a final exponentiation, is known as the reduced modified

Tate pairing.

Definition 3.2.4. (reduced modified Tate pairing) Let D1 ∈ JC(Fq)[n] and D2 ∈
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JC(Fq). The reduced modified Tate pairing is given by

ê(D1, D2) = 〈D1, ψ(D2)〉(q
k−1)/n

n = fn,D1(ψ(D2))
(qk−1)/n (3.9)

In 2002, Barreto et al. [60] and Galbraith et al. [61] described several optimisations for

Tate pairing computation in the elliptic case. Many of these improvements are based on

similar observations and are discussed in this section.

A division on Fqk is required on every iteration of the loop in Miller’s algorithm. Each

division consists of an extension field inversion followed by a multiplication. Extension

field inversions require many expensive operations and should be avoided when possible.

The divisions can, however, be replaced by multiplications on each loop iteration. The

accumulating function f is first written as a quotient of two functions, f = f1/f2. The new

functions can be independently updated on each iteration of the loop and each accumulated

in the same manner as in Algorithm 3. The function f can then be computed on loop exit

by dividing the final value of f1 by the final value of f2.

Consider a reduced modified Tate pairing 〈P,ψ(Q)〉(q
k−1)/n

n where P ∈ E(Fq)[n] and Q ∈
E(Fq). If a distortion map is available such that the x-coordinate of ψ(Q) is defined

on a sub-field of Fqk , then the operations required to compute the denominators of the

intermediate functions of Miller’s algorithm are not required. The reason for this is that

they are eliminated by the final exponentiation. This means that the vertical line functions

do not need to be evaluated on each loop iteration.

There is a very efficient point tripling operation on curves of characteristic 3. Tripling can

be performed in O(m) steps, whereas a doubling requires O(m2) steps in characteristic

3. The accumulating function can be calculated using a triple and add algorithm to take

advantage of this.

The Hamming weight of n has a direct effect on the number of required operations. If n can

be chosen so that it has low Hamming weight then the number of required point additions
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can be significantly reduced. Note that in this work, standard methods are used to return

sparse Hamming weights. Investigations into possible mathematical optimisations for the

reduction of Hamming weight are beyond the scope of this research.

In 2003, Duursma and Lee [62] published a paper that describes several improvements to

Tate pairing calculation. These new optimisations can be applied to hyperelliptic curves

of form C(Fq) : y2 = xp − x + d, where q = pm and d = ±1. The conditions p ≥ 3,

p ≡ 3 mod 4 and gcd(m, 2p) = 1 must be met. These types of curves have embedding

degree k = 2p. This relationship enables some of the optimisations. Many of the methods

described in the paper hold for p > 3, but the authors concentrate much of their effort on

the characteristic 3 case. Their observations result in a very efficient pairing computation

on these curves. The hardware implementations described in this thesis apply to only

characteristic 2 and 3 curves (partly for this reason) and so higher characteristic cases will

not be considered here. Duursma and Lee show that the Tate pairing can be implemented

on groups of degenerate divisors on genus 2 curves. This means that the pairing can be

computed using point arithmetic, which results in a significant reduction in complexity.

They also suggest that pairing calculation can be performed efficiently if the order pmp+1

is used. This new order has a Hamming weight of 2 in base p, which reduces the number of

operations required within the iterative loop. It is also demonstrated that point addition

is not required on each iteration. Instead, multiplication by the field characteristic p can

be used to construct the pairing. A very efficient function for the multiplication of a point

by p is provided. Frobenius actions can also be employed within the loop, which results

in further savings since these operations are relatively trivial. One would expect that the

larger order would increase the size of the loop from m to mp iterations. The authors

show that this is not the case: a computation using m iterations is possible. The final

exponentiation is also easier to calculate since (qk−1)/n = (p2mp−1)/(pmp+ 1) = pmp−1.

This is performed using Frobenius actions and a division.

The techniques described in this section result in an efficient Tate pairing computation

on a restricted set of curves. These methods can be generalised and further improved, as

seen in the next section.
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3.3 The ηT Pairing

Barreto et al. [63] generalise the techniques of Duursma and Lee to characteristic 2 elliptic

and genus 2 hyperelliptic curves and to a larger number of characteristic 3 elliptic curves.

They define a generalised notation that can be used to describe pairing computation for

each of the cases. They also show that further computational improvements are possible

and express the optimised computations using the same notation. The techniques of

Barreto et al. provide a very efficient means for pairing calculation. The methods do,

however, return a different value to that returned by a more traditional computation of

the Tate pairing. The pairing that is calculated using the new approach is called the

truncated eta pairing, denoted ηT . It is bilinear and non-degenerate and can be used to

form the basis for cryptographic applications in the same manner as the Tate pairing. The

ηT pairing is closely related to the Tate pairing. An ηT result can be converted to a Tate

result using an exponentiation.

Let C be a supersingular elliptic or hyperelliptic curve on Fq, q = pm, with an even

embedding degree k > 1. The curve should be chosen so that it contains a distortion map

ψ that enables the denominator elimination technique. LetN be the order used to compute

the Tate pairing. The value of N can be the order of the Jacobian, a multiple of the order

of the Jacobian, or the order of a prime subgroup of the Jacobian. Let D1, D2 ∈ JC(Fq)

be divisors of order dividing N and let fN,D1 be a function such that div(fN,D1) = [N ]D1.

The modified Tate pairing in this case is given by 〈D1, ψ(D2)〉N = fN,D(ψ(D2)). The ηT

pairing is defined as follows:

Definition 3.3.1. (ηT pairing) For some T ∈ Z the ηT pairing is given by

ηT (D1, D2) = fT,D1(ψ(D2)) (3.10)

The value of T can be chosen so that T < N , i.e. [T ]D1 does not have to be equivalent

to zero. This means that a pairing computation can be achieved using a smaller number

of iterations than would normally be required. A very small set of values of T will return
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a non-degenerate, bilinear pairing. However, a well defined method for the selection of T

can be used. Multiplication of a finite field element by a power of p can be achieved using

an automorphism on the curve. The ηT pairing is constructed so that this automorphism

can be used to reduce computation time.

Barreto et al. provide a theorem that introduces several variables to define a fixed rela-

tionship between the ηT and Tate pairings.

Theorem 3.3.1. Let N ∈ N be the order used to compute the Tate pairing. Let M =

(qk − 1)/N . Let each of T ∈ Z, a ∈ N and L ∈ Z be co-prime to N and let c ∈ Z. The ηT

pairing is related to the Tate pairing by(
〈D1, ψ(D2)〉MN

)L
=
(
ηT (D1, D2)

M
)aTa−1

(3.11)

where:

1. [T ]D1 ≡ γ(D1), where γ is some automorphism of C that is defined over Fq.

2. γ and ψ satisfy the condition

γψq(D2) = ψ(D2) (3.12)

3. T a + 1 = LN

4. T = q + cN

The following general equations are useful for the computation of the ηT pairing.

fT,D1(ψ(D2))
TM = fT,TD1(ψ(D2))

M (3.13)

and

div(fTa,D1) = div(fT
a−1

T,D .fT
a−2

T,TD . . . fTT,Ta−2D.fT,Ta−1D) (3.14)
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The computation and hardware implementation of the Tate pairing using the ηT method

in the characteristic 2 elliptic, the characteristic 2 genus 2 hyperelliptic and in the char-

acteristic 3 elliptic cases are discussed in detail in Chapters 4, 5 and 6 respectively. The

specific relationships between the Tate pairing and the ηT pairing in each of these cases

will be described then.

3.4 Pairings in Cryptography

3.4.1 Security

The pairing-based cryptographic schemes that are relevant to this work rely on the Bilinear

Diffie-Hellman problem (BDH).

Definition 3.4.1. (Bilinear Diffie-Hellman Problem (BDH)) Consider the groups

G1 and G2 of prime order n. Let P be a generator of G1. Let e : G1 × G1 → G2 be

a bilinear, non-degenerate map. Let a, b, c ∈ Z. Given (P, aP, bP, cP ), the BDH is the

problem of finding the value of e(P, P )abc.

Systems that rely on the BDH are only as secure as the CDH (previously discussed in

Section 2.6) in the groups used by the pairing. In the schemes relevant to this work G1

is a group on an elliptic or a genus 2 hyperelliptic curve. This means that security is

reliant on either the ECDLP or the HCDLP in this group. The second group, G2, is the

multiplicative finite field F∗
qk

. The DLP in G2 should be sufficiently difficult to protect

against feasible attacks. All of the attacks on the DLP, the ECDLP and the HCDLP that

were described in Subsection 2.6.1 can be used. This means that, for current security

requirements, qk should have an order of approximately 1024 bits and q should be large

enough so that attacks on the ECDLP or the HCDLP are infeasible in practice.
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3.4.2 Protocol Example: The Boneh-Franklin IBE Scheme

The concept of identity-based encryption and the advantages it provides over conventional

public key schemes has been discussed in Subection 2.2.3. Having introduced the opera-

tions necessary for pairing computation, an example implementation of a Boneh-Franklin

IBE scheme [26] is detailed here in order to illustrate a practical application of pairings in

cryptography. Boneh and Franklin discuss two schemes called BasicIdent and FullIdent.

FullIdent is the more complicated of the two but, unlike BasicIdent, protects against cho-

sen ciphertext attacks. The BasicIdent scheme, when implemented using the ηT pairing,

is discussed here. The Tate pairing can be used in the same manner. An elliptic curve

is used to describe the scheme but a genus 2 curve could be used just as easily. In the

following example, a user Alice wishes to send a message M to Bob. The scheme consists

of four steps.

1. Setup

• Choose an elliptic curve E(Fq) with embedding degree k along with a point P

that generates a cyclic group 〈P 〉 of order N .

• Let ê be a bilinear, non-degenerate, reduced modified pairing that maps two

elements A,B ∈ 〈P 〉 to an element of F∗
qk

such that

ê(A,B) = ηT (A,B)(q
k−1)/N (3.15)

• Select a secret master key s ∈ Z, where s < N . Compute Ppub = [s]P .

• Choose a cryptographic hash function H1 to map a binary string of arbitrary

bit length to an element of 〈P 〉. Choose another hash function H2 that maps

an element of F∗
qk

to a binary string of length t, where t is the maximum bit

length of the message to be sent.

• The system parameters are (q,N, t, 〈P 〉,F∗
qk
, ê, P, Ppub, H1, H2) and are available

to all users.

2. Extract
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• Let ID be Bob’s identifier. The PKG computes QID = H1(ID), where QID ∈
〈P 〉.

• The PKG computes Bpriv = [s]QID using its master key. This is Bob’s private

key and is transferred to him over a secure channel.

3. Encrypt

• Alice calculates QID = H1(ID).

• She then computes g1 = ê(QID, Ppub).

• A random positive integer r < N is generated.

• The message M is incorporated into the ciphertext, C. The ciphertext is com-

puted according to

C = (U, V ) = ([r]P,M ⊕H2(g
r
1))

4. Decrypt

• Bob computes g2 = ê(U,Bpriv) on receipt of the ciphertext C = (U, V ).

• The message M can now be retrieved according to

M = V ⊕H2(g2)

The bilinearity of the pairing enables Bob to retrieve the message. Bob computes V ⊕
H2(g2) = M ⊕ H2(g

r
1) ⊕ H2(g2). This means that M is returned if gr1 and g2 are equal.

This is easily demonstrated:

gr1 = ê(QID, Ppub)
r

= ê(QID, [s]P )r

= ê([s]QID, [r]P )

= ê(Bpriv, U)

= g2
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In order to compromise the system an eavesdropper would have to recover the value of s

from Ppub = [s]P or the value of g1 from gr1. The former requires a solution to the ECDLP

while the latter requires a solution to the DLP in F∗
qk

.

3.5 Methodology and Design System

A justification for the methodology of this work is provided in this section. The equip-

ment used during the research is also described. The design cycle is discussed. A software

system for the efficient generation and analysis of the pairing processors is also presented.

This system reduces the design time required during the architectural definition, imple-

mentation and verification stages.

3.5.1 Justification

The use of dedicated hardware architectures for pairing computation provides several

benefits. Many of the extension field arithmetic operations can be implemented using

subfield units that operate in parallel. Pairing algorithms can also be expressed in terms

of distinct computational stages. Custom hardware units can be designed for the fast

implementation of these stages. The algorithms can be sequenced so that these units have

the ability to operate in parallel.

The goal of this work is to create custom hardware processors that return a Tate pairing

result as quickly as possible while also ensuring that resources are used efficiently. Pro-

cessors are designed in the characteristic 2 and 3 elliptic cases and in the characteristic 2

genus 2 hyperelliptic curve case. The efficient generation of these hardware processors is

vital. It is also important that the implementation platform be inexpensive so that various

architectural solutions can be explored at will. Timing results must also be available as

quickly as possible after each design stage so that modifications can be made, if necessary,
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and the updated architectures quickly re-instantiated. A robust verification procedure is

also necessary to ensure the reliability of the processors.

3.5.2 Equipment

The hardware architectures of this work are implemented on a Field Programmable Gate

Array (FPGA). These devices are relatively inexpensive. Their major advantage is the

ease with which they can be reconfigured. The FPGA used for this work is a Xilinx Virtex-

II Pro FPGA (xc2vp100-6ff1696) [72]. The high level architectural details of this family

of FPGAs is described in [72]. The Virtex-II Pro consists of an array of Configurable

Logic Blocks (CLBs), dedicated Block RAM (BRAM) and programmable interconnect

for routing. Each CLB contains four modules, known as slices. Each slice contains two

4-input function generators, tri-state buffers, carry and arithmetic logic gates and two

multiplexers. The function generators can be configured as two 4-input Lookup Tables

(LUTs), RAM or registers. A switch matrix is used to connect the CLBs with the routing

system of the FPGA. The area metric for a hardware architecture on an FPGA is the

number of slices it uses. The Virtex-II has a capacity of 44,096 slices. The product of the

area required by an implementation and the cycles required for computation is used as an

indication of its efficiency. This is measured in cycles.s. A desired hardware architecture

is described using VHDL, defined at the RTL level. The Xilinx ISE tool (version 8.1) is

then used on a PC to synthesise the VHDL. ISE also determines how the design should

be placed and routed, and creates a bit file that can be used to program the FPGA.

An interface is required between the host PC and the FPGA. The FPGA is mounted

on an Alpha Data PCI Mezzanine Card (ADM-XRC-2 PMC) [73]. This card handles

input/output for the FPGA and provides a user programmable clock and high local bus

speeds. The Alpha Data card is connected to a Celoxica RC2000 PMI-PCI carrier card

[74]. The PC is connected to the RC2000 with a standard PCI connector, which, in turn,

communicates with the Alpha Data card containing the FPGA. A C code Application

Programming Interface (API) is provided by the vendors and handles communication
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between the PC and the FPGA.

A typical design and implementation flow for Xilinx FPGAs using ISE can be summarised

as follows. This flow is discussed in more detail in [75].

1. Design Specification: Architectures that describe the operations to be performed

are designed. These are composed of interconnected units, which should each per-

form a specific, well-defined function.

2. VHDL Definition: Each unit is defined by writing VHDL at the RTL level. All

storage, logic and control systems must be described. Test benches are also defined.

3. Synthesis: The Xilinx ISE tool checks syntax and also analyses the hierarchy of

the design. If the hierarchy is not optimum, new interconnections are created that

provide the same functionality. A netlist, formally describing the usage of specific

components within the CLBs and slices is created. A file can also be added by

the designer at this point that provides timing, implementation and hierarchical

constraints if desired.

4. Implementation: Implementation involves the following steps: translation (merges

the synthesis netlist and constraints into one design file), map (fits design into avail-

able resources on the target device), place and route (places and routes design on

the device, selecting the most desirable interconnect structure) and program file

generation (the creation of a bitstream file).

5. Bitstream Download and FPGA Configuration: The generated bitstream

is downloaded onto the FPGA and it is configured according to the description

provided.

Verification can be performed at various steps during the process. Behavioural verification

can be performed after Step 2. The Modelsim XE analysis tool [76] can be used to rapidly

test for functionality. This step provides an indication of any errors in the RTL code.
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It does not, however, take into account any errors that may be introduced by timing

delays. Post-synthesis and post-mapping simulation can also be useful, although for the

architectures used in this research, they can be relatively time consuming due to the large

areas required. A possible solution is to perform initial verification iterations using small

field sizes.

Post synthesis, mapping and on-FPGA failure may be caused by several issues. These

include incorrect binding, which may be caused by errors introduced by the attempted

optimisations of the synthesis step. This can be solved by modifying the original hierarchy

and interconnectivity of the design, changing the scheduling of operations, or changing the

constraints. Fan-out, caused by loading the output of logical gates with too many inputs

to other digital logic, can also be problematic and may require architectural and constraint

design changes. The ISE tool itself may introduce failure while endeavouring to map the

architecture to the smallest possible number of slices. This type of failure is common

in a target device that that is approaching full occupancy. The Xilinx tools struggle

to efficiently implement the desired architecture and the propagation of signals through

the device may cause issues. A possible solution is to loosen area constraints, to add

constraints that ensure the problem units are mapped so that they are placed near to each

other on the target device, or to reduce the frequency used to clock the device.

3.5.3 Automated Design and Verification Environment

This work necessitates the creation of processors computing three different Tate pairings.

Many iterations of the design cycle are required during the exploration and implementation

stages. The results of each of the iterations must be verified and the processors bench-

marked. Defining hardware architectures at the RTL level can be very time consuming.

There is a significant probability of error as the work is very involved. The implementation

stages usually require a lot of user intervention as various tools must be used. Verification

may require significant effort due to the numerous issues that may cause failure. A software

design program for the pairing processors of this work has been created for these reasons.
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The program is denoted design sys for convenience. The software is written in C++ and

includes Shell scripts that provides a significant level of automation. The object-oriented

nature of this programming language is used extensively so that a designer can use various

features of the system independently or in combination with each other. The final outcome

is a highly automated design and verification environment, which significantly reduces the

time and effort required to prototype a large range of architectures.

The design system contains a class for the software computation of the Tate pairing in

each of the three cases. This is called soft sub sys and contains base classes that define

the required curve, extension fields and the subfield operations. Pairing algorithms are

written in terms of operations that call functions within these classes. The Multiprecision

Integer and Rational Arithmetic C Library (MIRACL) is used to perform some of the

curve and field arithmetic [77].

A class, called vhdl sub sys, has been created to aid in the generation of low level RTL

descriptions of the hardware architectures. Arrays, conditional statements and iterative

loops are used to reduce the repetitive nature of RTL level design. Variables are used to

define field sizes, irreducible polynomials and other properties. This means that VHDL

can easily be regenerated if changes in field and curve definition are required. As will be

seen in later chapters, the architectural parameters of the arithmetic units can also be

manipulated using variables.

The system contains an analysis sub sys in which architectural efficiency can be ex-

plored. The number of hardware clock cycles required for the implementation of oper-

ations through the desired hardware units can be computed in software. Control schemes

and operation sequencing can also be investigated. The redundancy of hardware units can

also be explored and designs altered if they are deemed to be inefficient.

The imp sub sys class is used to oversee the vendor tools, communicate with the FPGA

and to handle verification and benchmarking. The Xilinx synthesis and Modelsim testing

programs are invoked from here. Constraints are provided, mapping tools are called,
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and a bit file is retrieved on completion. The communication API library is incorporated.

This class requests test vectors from soft sub sys and sends them to the FPGA. Results are

retrieved from the processor and compared to those returned by the software computation.

More than one processor can be implemented and tested without user intervention by using

arrays that describe the desired hardware architectural parameters. The corresponding

set of processors are then implemented, verified and benchmarked by the system and

metrics automatically stored for later analysis. This capability is particularly useful for

prototyping.

Finally, the system contains a flexible subclass, called flex sub sys, that provides some extra

functionality for the design and implementation of the flexible Tate pairing processors.

These processors are discussed in Chapter 6 and the flex sub sys class is described in

Subsection 6.4.4.

An example of an automated flow, used to design and verify a Tate pairing processor, is

illustrated in Figure 3.1. It is assumed that the software that performs the pairing algo-

rithm to be implemented has already been written and included in the soft sub sys. The

hierarchy of the system, its connectivity at a high level of abstraction, and the schedul-

ing of operations are defined by a designer using the vhdl sub sys. A file describing the

implementation constraints to be used by the Xilinx tools can also be created. Variables

defining mathematical parameters such as the curve, field size and irreducible polynomial

are defined. Architectural parameters of the finite field arithmetic modules (such as mul-

tiplier digit sizes) are also set here. Test benches can also be written with ease. Variables

defining whether verification is to be performed at various stages of the implementation

process are also set by the user.

The analysis sub sys can be used at this point to explore various architectural and schedul-

ing options. The estimated times required to perform arithmetic operations in hardware

can be investigated. The redundancy of hardware units can be computed to ensure that

area resources are being used efficiently.
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Figure 3.1: Automation of the design cycle using design sys

Once all parameters have been chosen and the architectural connectivity and the schedul-

ing of operations have been defined, VHDL describing the desired hardware processor is

automatically generated by the vhdl sub sys. At this point, the flow enters the imple-
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mentation subsystem imp sub sys. Extensive use is made of Shell scripting in order to

automate tool usage, verification, benchmarking and data storage.

Behavioural verification is first performed. If failure occurs, control is handed back to the

user of the system so that its cause can be investigated. Otherwise, synthesis commences.

Post-synthesis verification is optional, as it can be time-consuming. User access is again

provided if failure occurs. Once the post-synthesis netlist has been generated, the mapping

and place & route steps are performed. On completion, a bitstream is returned by the

Xilinx ISE tool. This file is transferred through the PCI card and programs the FPGA.

On-FPGA verification can be time consuming as, if failure occurs, the full implementation

process must be repeated. To mitigate this, a system user can access the imp sub sys to

change the I/O ports of the FPGA with ease so that intermediate values can be read.

The soft sub sys can be used to provide its corresponding values so that comparisons

can quickly be made and debugging performed efficiently. Verification of newly created

processors is performed by computing 10,000 pairings on the processor using randomly

generated input points. The results returned are compared to the results of software

computations on the same points. Protection against the computation of a result at

infinity does not need to be provided as this is not possible in these pairing-based systems.

It has been noted since the research was performed that, due to the complexity of the

processors created during this work, the successful computation of one pairing is usually

sufficient proof of correct operation as full coverage is provided by the propagation of bits

through the hardware.

Once a design and verification cycle has been completed successfully, the environment

can be used to perform automated implementation and verification of various versions of

the hardware pairing processors. Variables describing the mathematical and architectural

parameters of the processors are stored in arrays within the imp sub sys. The design flow

iterates until all desired hardware processors have been created, verified and benchmarked.

The data outputs of each iteration can also be stored, if desired.
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This environment reduces the difficulties associated with the creation of hardware archi-

tectures that must implement complex operations. It enables a high level of control over

processor generation and verification while significantly reducing the effort required. A

designer is able to spend the majority of available time on hardware specification and

analysis without distraction. The rest of the process is aided by the software system: it

generates the VHDL files, enables rapid analysis, calls the synthesis and programming

tools, initiates hardware computation and handles verification and benchmarking. Similar

design environments were later described in [78], [79] and [80].

This system is an important contribution of this work. Hundreds of thousands of lines of

C++ and Shell code were written to design it. It was carefully developed to be easy to

use, robust, scalable and to significantly reduce the effort required for FPGA design and

verification. The design and verification environment enabled the author of this thesis to

rapidly generate hardware processors for pairing-based cryptography. The environment,

the hardware processors it produced and the results returned were described by the author

of this thesis in [11], [12] and [13].

3.6 Conclusions

The Tate pairing and its efficient computation have been introduced in this chapter. The

ηT pairing has also been discussed in detail. This pairing is closely related to the Tate

pairing but can be computed more quickly in many cases. The ηT pairing is bilinear

and non-degenerate and can be used in the same manner as the Tate in pairing-based

applications. A conversion between pairing results is enabled by an exponentiation. The

computation of the ηT pairing on characteristic 2 and 3 supersingular elliptic curves and

on characteristic 2 genus 2 supersingular curves is particularly efficient. These curves have

embedding degrees of 4, 6 and 12, respectively.

Security is reliant on both the DLP in the abelian additive group on the curve and on
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the DLP in the multiplicative extension field F∗
qk

. This means that curves with larger

embedding degree can provide the necessary level of security using a finite field Fq of

smaller order, when compared to curves with smaller embedding degree. Note that the

order of Fq must still be large enough so that attacks on the additive group on the curve

(i.e. on the ECDLP or HCDLP) are infeasible. The hyperelliptic case offers the highest

embedding degree but the benefit of the smaller underlying finite field size is offset by

a more complex pairing computation. Similarly, the characteristic 3 elliptic curve case

appears to be more attractive than the characteristic 2 case. Implementation of arithmetic

in characteristic 3 is, however, more complicated than in characteristic 2 in both software

and hardware.

This work investigates the hardware implementation of the Tate pairing in all three cases.

The computation of the ηT pairing forms the basis for these implementations. The creation

of dedicated architectures for pairing computation offers many benefits. The complexity

of the required finite and extension field arithmetic and the difficulty of efficient operation

scheduling does, however, present significant design challenges. At the time of this work,

it was not clear if the ηT methods offered a worthwhile advantage over other algorithms

in terms of the hardware computation of the Tate pairing.

A robust design environment, created to reduce the effort required to create and verify

pairing processors and to automate the design cycle, has been discussed in this chapter.

The advantages of its use will be apparent throughout the thesis.

A dedicated hardware architecture for characteristic 2 elliptic curve Tate pairing compu-

tation is presented in Chapter 4. The design of a custom architecture for characteristic

2 genus 2 pairing computation is described in detail in Chapter 5. A flexible processor,

which can implement the Tate pairing on both characteristic 2 and 3 elliptic curves, is

presented in Chapter 6.
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Chapter 4
A Hardware Processor for Tate

Pairing Computation on a

Characteristic 2 Elliptic Curve

4.1 Introduction

The efficient computation of the characteristic 2 Tate pairing using the ηT method in

hardware is discussed in this chapter. Hardware systems enable parallel computation.

In this chapter it is shown that, through slight modification of the pairing algorithms,

many of the required operations can be performed at the same time. Some of the required

extension field arithmetic can also be implemented in terms of parallel F2m operations.

Much of the arithmetic on F2m can, in turn, be performed in terms of operations on F2,

all of which can be performed at the same time. A characteristic 2 elliptic curve pairing

processor that takes advantage of this parallelism and other properties of the Tate pairing

is discussed in this chapter.
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The equations and algorithms required for Tate pairing computation using the ηT methods

are provided in Section 4.2. The hardware implementation of arithmetic on F2m and F24m is

discussed in Sections 4.3 and 4.4, respectively. Dedicated hardware architectures, designed

for the parallel computation of various pairing computation stages, are described in Section

4.5. Finally, the elliptic curve characteristic 2 Tate pairing processor is presented in Section

4.6 and the properties of several implementations are discussed.

4.2 The Characteristic 2 Elliptic Curve ηT and Tate Pairings

The characteristic 2 elliptic curve ηT pairing and its exponentiation to the Tate pairing

is discussed in this section. The Duursma and Lee techniques [62] are first expressed in

terms of the ηT notation presented by Barreto et al. [63]. Computation of the Tate pairing

using an ηT pairing of reduced order, as discussed by Barreto et al., is then discussed in

detail. More detail on much of the subject matter of this section is provided by Barreto

et al. in [63].

Let E(Fq) : y2 + y = x3 + x + b be an elliptic curve defined on Fq = F2m , where b = 0

or 1 and m is odd. This curve has embedding degree k = 4. The order of the curve

is given by #E(F2m) = 2m + 1 + (−1)b2(m+1)/2 if m ≡ (1, 7) mod 8 or #E(F2m) =

2m + 1− (−1)b2(m+1)/2 if m ≡ (3, 5) mod 8.

The basis {1, δ, ε, δε} is used to represent members of F24m , where δ, ε ∈ F24m such that

δ2 = δ + 1 and ε2 = ε + δ. A distortion map providing denominator elimination is given

by ψ(x, y) = (x+ δ2, y + δx+ ε).

Given a point P = (x, y) and a function φ(x, y) = (x+ 1, y+x) then it can be shown that

[2i]P = φi(xp
(2i), yp

(2i)) (4.1)

This means that the expression [q]P = φm(P ) can be used.
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Barreto et al. use Theorem 3.3.1 to relate the Duursma and Lee techniques to computation

of the Tate pairing using the ηT method. In this case, T = q = 2m and N = 22m + 1.

This means that c = 0. The equation T a + 1 = LN must be satisfied, and this is

achieved by setting a = 2 and L = 1. The value of M is given by M = (qk − 1)/N =

(24m − 1)/(22m + 1) = 22m − 1. The relationship between the ηT pairing and the Tate

pairing is given by (
ηT (P,Q)M

)2q
= 〈P,ψ(Q)〉MN (4.2)

Barreto et al. show that the value of T can again be reduced. Using N = #E(F2m) = 2m+

1±2(m+1)/2 then [N ]P =∞ for a point P on E(F2m). The automorphism γ(P ) = [q]P can

be rewritten as γ(P ) = [q−N ]P = [∓2(m+1)/2− 1]P . This means that T = ∓2(m+1)/2− 1

can be used. From Theorem 3.3.1 the expression c = −1 must hold. Setting a = 2 yields

L = 2. The exponent is given by M = (24m − 1)/(2m + 1± 2(m+1)/2) = (2m ∓ 2(m+1)/2 +

1)(22m − 1). The relationship between the pairings in the characteristic 2 elliptic case is

now given by (
ηT (P,Q)M

)T
= 〈P,ψ(Q)〉MN (4.3)

4.2.1 Computation of the ηT Pairing

The ηT pairing is returned according to ηT (P,Q) = fT,P (ψ(Q)), where fT,P is the Miller

function. This function is evaluated and accumulated using the fast point doubling op-

erations available on the curve. From the value of T it is clear that computation re-

quires (m + 1)/2 point doublings and a point addition. A point is doubled according to

straight line and vertical line functions. As discussed previously, the vertical line function

is not required for pairing calculation due to denominator elimination. Consider a point

A = (xA, yA). The straight line function governing the calculation of [2]A is

gA(x, y) = (x2A + 1)(xA + x) + (yA + y) (4.4)

Equations (3.13) and (3.14) can be used to show that the Miller function can be evaluated

76



at ψ(Q) according to

fT,P (ψ(Q)) =

(
(m−1)/2∏
i=0

(
g[2i]P (ψ(Q))

)2(m−1)/2−i
)
.l(ψ(Q) (4.5)

where l(ψ(Q)) is the line function arising from the final addition. Exponentiating to

2(m−1)/2−i on each iteration requires (m−1)/2 F24m squarings. These operations are, how-

ever, not necessary if the Miller function is accumulated differently. Let P ′ = [2(m−1)/2]P .

The value of P ′ can be calculated trivially according to P ′ = φ(m−1)/2(
√
xP ,
√
yP ), where

φ(x, y) = (x+ 1, y + x). The Miller function is now constructed using a point halving op-

eration, which has the same complexity as doubling. Let j = 2(m−1)/2− i. The evaluation

of the Miller function at ψ(Q) is now given by

fT,P (ψ(Q)) = l(ψ(Q)).

(
(m−1)/2∏
j=0

g[2−j ]P ′(ψ(Q))2
j

)
(4.6)

The definitions of the functions of Equation (4.6) are dependent on the value of b describing

the elliptic curve and on the value of m mod 8. The results presented at the end of this

chapter are returned by a hardware implementation on a field with m = 313, which means

that m mod 8 ≡ 1. The irreducible trinomial defining F2313 is x313 +x79 + 1. The middle

coefficient of the trinomial is the smallest of those that can be used to generate a field

of this size. This provides the best performance as the choice minimises the number of

F2 operations required to perform F2m arithmetic. In this work, members of F24m are

represented by degree 3 polynomials generated by the irreducible polynomial x4 + x+ 1.

These fields and irreducible polynomials are the same as those used by Barreto et al. in [63].

It should be noted, however, that the design environment supports the implementation of

processors on any finite field generated by an irreducible polynomial.

The functions required for pairing computation can now be defined. Let t = xP . The line

function describing the final addition is given by

l(ψ(Q)) =
(
t.
(
xP + xQ + 1

)
+ yP + yQ + b

)
+(

t+ xQ + 1
)
x+

(
t+ xQ

)
x2 +

(
0
)
x3

(4.7)
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Now let t = x
(−j)
P + 1 (the brackets around the exponent are used for clarity). The

intermediate functions are computed according to

g[2−j ]P ′(ψ(Q))2
j

=
(
t.
(
x
(−1−j)
P + x

(j)
Q + 1

)
+ y

(−1−j)
P + y

(j)
Q

)
+(

t+ x
(j)
Q + 1

)
x+

(
t+ x

(j)
Q

)
x2 +

(
0
)
x3

(4.8)

The operations required for ηT pairing computation using Equations (4.6), (4.7) and (4.8)

are presented in Algorithm 4. The most computationally expensive operations are required

on Steps 2, 6, 8 and 10. Steps 2 and 6 require an F2m multiplication each, while Steps 8

and 10 require expensive F24m multiplications

Algorithm 4 Computation of ηT (P,Q) on E(F2m) : y2 + y = x3 + x+ b, m mod 8 ≡ 1

Input: P = (xP , yP ), Q = (xQ, yQ), where P,Q ∈ E(F2m)

Output: f = ηT (P,Q), where f ∈ F24m

1: Initialise: t← xP , mill← 1

2: f ← t.(xP + xQ + 1) + yP + yQ + b+ (t+ xQ + 1)x+ (t+ xQ)x2

3: mill← 1

4: for (i← 0, i < (m+ 1)/2, i← i+ 1) do

5: t← xP + 1, xP ←
√
xp, yP ←

√
yP

6: u← t.(xP + xQ + 1) + yP + yQ + (t+ xQ + 1)x+ (t+ xQ)x2

7: xQ ← x2Q, yQ ← y2Q

8: mill← mill.u

9: end for

10: f ← mill.f

Return: f

Some of the computations required within the for loop can be performed in parallel if pairs

of iterations are combined and some additional polynomials are introduced. This takes

advantage of the sparse nature of the polynomials and is known as unrolling the loop.

The operations required to calculate the ηT pairing using this technique are detailed in

Algorithm 5. Note that i is incremented by 2 on each iteration of the new loop. Steps 2, 5,

8 and 14 require an F2m multiplication each. The polynomials u0 and u1 can be calculated

in parallel in hardware. A custom multiplication routine, smul, is used to multiply u0 by u1
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on Step 10. This routine is constructed with a hardware implementation in mind. Many

of the F2m operations that are required during loop iteration can also be performed in

parallel if they are scheduled carefully. Steps 11, 15 and 16 require an F24m multiplication

each. The hardware architectures that have been created to efficiently implement the

operations required by Algorithm 5 are described later in this chapter.

Algorithm 5 Unrolled computation of ηT (P,Q) on E(F2m) : y2 + y = x3 + x + b, m

mod 8 ≡ 1
Input: P = (xP , yP ), Q = (xQ, yQ), where P,Q ∈ E(F2m)

Output: f = ηT (P,Q), where f ∈ F24m

1: Initialise: t← xP , mill← 1

2: f ← t.(xP + xQ + 1) + yP + yQ + b+ (t+ xQ + 1)x+ (t+ xQ)x2

3: for (i← 0, i < (m− 1)/2, i← i+ 2) do

4: t← xP + 1, xP ←
√
xP , yP ←

√
yP

5: u0 ← t.(xP + xQ + 1) + yP + yQ + (t+ xQ + 1)x

6: xQ ← xQ
2, yQ ← yQ

2

7: t← xP + 1, xP ←
√
xP , yP ←

√
yP

8: u1 ← t.(xP + xQ + 1) + yP + yQ + (t+ xQ + 1)x

9: xQ ← xQ
2, yQ ← yQ

2

10: u← smul(u0, u1)

11: mill← mill.u

12: end for

13: t← xP + 1, xP ←
√
xP , yP ←

√
yP

14: u← t.(xP + xQ + 1) + yP + yQ + (t+ xQ + 1)x+ (t+ xQ)x2

15: mill← mill.u

16: f ← mill.f

Return: f

4.2.2 Exponentiation to the Tate Pairing

The extension field element f = ηT (P,Q) returned by Algorithm 5 must be exponentiated

to M = (2m − 2(m+1)/2 + 1)(22m − 1) to provide a unique and useful pairing value. Com-
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putation of the ηT pairing followed by this exponentiation can be used to form the basis

for pairing-based cryptographic applications. In this work, however, ηT (P,Q)M is further

exponentiated to T = 2(m+1)/2 ± 1 so that a Tate pairing value is returned. This means

that the results returned by the processor can be directly compared to other Tate pairing

implementations in the literature. The value of T is 2(m+1)/2+1 in the m mod 8 ≡ 1 case.

The operations required for the exponentiation of ηT (P,Q) to ηT (P,Q)MT = 〈P,ψ(Q)〉MN
are provided in Algorithm 6. The most expensive operations are the F24m multiplications

of Lines 6, 8, 10, 11 and 13 and the F24m inversion of Line 12. Squaring and exponentiation

to q are also required, but these operations are trivial in comparison (recall q = 2m).

Algorithm 6 Exponentiation of ηT (P,Q) to ηT (P,Q)MT = 〈P,ψ(Q)〉MN , m mod 8 ≡ 1

Input: f = ηT (P,Q), where f ∈ F24m

Output: c = ηT (P,Q)MT = 〈P,ψ(Q)〉MN , where c ∈ F24m

1: Initialise: u← f , v ← f , w ← f

2: for (i← 0, i < (m+ 1)/2, i← i+ 1) do

3: u← u.u

4: end for

5: u← uq, v ← vq

6: w ← u.v

7: v ← vq

8: w ← w.v

9: u← u2q, v ← vq

10: c← u.v

11: c← c.f

12: w ← w−1

13: c← c.w

Return: c

The computation of ηT (P,Q) and the exponentiation to MT require many operations on

F2m and F24m . Addition, multiplication, squaring and inversion are required on both fields.

Exponentiation of F24m elements to q is also necessary. The hardware modules used to

implement F2m field operations are described in the next section. The architectures that

perform operations on F24m are then described in Section 4.4.
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4.3 Hardware Implementation of Arithmetic on F2m

The finite field F2m is an m-degree extension of F2. The field F2 has elements 0 and 1 and

all arithmetic is performed modulo 2. The additive and multiplicative operations of F2

are shown in Table 4.1. An element of F2 requires one hardware bit for storage. Addition

is performed using a logical XOR gate. Multiplication is performed using an AND gate.

Note that addition and subtraction yield the same result on F2.

Table 4.1: Addition and Multiplication on F2

a b a+b a.b

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Members of F2m are represented by polynomials with a maximum degree of (m− 1) with

coefficients in F2. An element a ∈ F2m is given by

a(x) =
m−1∑
i=0

aix
i = a0 + a1x+ . . . am−1x

m−1 (4.9)

where all ai ∈ F2. Each member of F2m requires m hardware bits for storage. For

simplicity, a polynomial representation should be assumed from this point and a(x) will

be written as a. As previously discussed in Subsection 2.3.2, the field F2m is generated

by an irreducible polynomial, f , of degree m. Irreducible polynomials are of form f =∑m
i=0 fix

i, where fm = f0 = 1 and all fi ∈ F2. Low weight irreducible polynomials reduce

the complexity of the field arithmetic. Trinomials are used in this work. The efficient

computation of F2m addition, multiplication, squaring and inversion is vital for pairing-

based systems. This section discusses the hardware architectures used to implement these

arithmetic operations.
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4.3.1 F2m Addition

Given a, b, c ∈ F2m , addition of a and b is performed bitwise according to

c = a+ b =
m−1∑
i=0

(ai + bi)x
i (4.10)

All of the F2 coefficient additions can be performed in parallel. A total of m XOR gates

are used to perform addition on F2m and a result is returned in one clock cycle.

4.3.2 F2m Multiplication

An introduction to multiplication on Fpm was provided in Subsection 2.3.2. A multiplica-

tion c = a.b, where a, b, c ∈ F2m , is performed in two stages: composition and reduction.

Given a =
∑m−1

i=0 aix
i and b =

∑m−1
j=0 bjx

j a polynomial z is first computed according to

z =

m−1∑
i=0

m−1∑
j=0

ai.bjx
i+j (4.11)

where z is of degree 2m− 2. This new polynomial is then reduced modulo the irreducible

polynomial f in the second step.

c = z mod f (4.12)

There are several ways to perform F2m multiplication in hardware. Reduction is usually

performed in hardware using the relationship f =
∑m

i=0 fix
i = xm +

∑m−1
i=0 fix

i. An

example of reduction using this method was provided in Subsection 2.3.2. This technique

is implemented using a network of XOR and AND gates. In this work, the VHDL

that describes the reduction networks is automatically generated in software according to

desired field size and irreducible polynomial.
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One general technique forms the basis for reduction and is described first. Consider the

field F2m generated by the irreducible polynomial f =
∑m

i=0 fix
i = xm+

∑m−1
i=0 fix

i. Since

x is a root of the irreducible polynomial then f = 0 ∈ F2m . This means that

xm =
m−1∑
i=0

fix
i (4.13)

This relationship can be used to recursively reduce a composition polynomial by replacing

the terms of higher degree with terms of degree smaller than m. As an example, consider

the field F24 , generated by an irreducible polynomial f = x4+x+1. The relationship x4 =

x+ 1 holds on this field. Let the polynomial a = x3 +x2 + 1 represent the element (1101)2

and let b = x3 + 1 represent (1001)2. The composition stage produces the polynomial

z = x6 + x5 + x2 + 1. This can be reduced by noting that x5 = x.x4 = x(x+ 1) = x2 + x.

Also, x6 = x.x5 = x(x2+x) = x3+x2. Now, z = x3+x2+x2+x+x2+1 = x3+x2+x+1.

Various strategies have been suggested for the efficient hardware implementation of field

multiplication. In bit-serial architectures [81, 82] multiplication is performed according to

c = a.b = (

m−1∑
i=0

aix
i).(

m−1∑
j=0

bjx
j) =

m−1∑
j=0

((bj .ax
j) mod f) (4.14)

This method requires an iterative implementation. In hardware, one bit of the b polynomial

is multiplied by a left-shifted version of the a polynomial on each iteration. The resultant

polynomial is reduced modulo f and accumulated with the results of previous iterations.

The main advantage of an implementation of this type is a relatively small area footprint.

A result is returned after m clock cycles. This cycle cost is, however, too high for the

applications relevant to this research as the field sizes are large.

In bit-parallel architectures [83, 84, 85], parallel multiplications of the a polynomial by

each bit of b are performed. These architectures return a result in one clock cycle. The

area required, however, is prohibitively large for the relevant field sizes.

Digit-serial architectures were proposed by Song and Parhi in [86]. These multipliers offer

a balance between resource usage and the number of clock cycles required to return a
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result. Computations are performed in parallel on D bits of one of the input polynomials.

D is known as the digit size and 1 ≤ D ≤ m. A result is returned in n = (m/D+ θ) clock

cycles, where θ is a small number of cycles required for combinatorial logic and storage.

As D increases, so too does the area required by the architecture. Digit-serial multipliers

are used in this research as they can be used to satisfy different application requirements

by varying the digit size.

Consider the multiplication c = a.b, where a, b, c ∈ F2m . The process begins by separating

b into bit strings of length D. There are n such strings, where n is the value given by

rounding m/D upward to the nearest integer. Let b =
∑m−1

i=0 bix
i. The polynomial is first

rewritten as

b =

n−1∑
j=0

b̃jx
jD = b̃0 + b̃1x

D + b̃2x
2D + . . . b̃n−1x

(n−1)D (4.15)

where all b̃j are digits such that

b̃j =
D−1∑
l=0

bjD+lx
l (4.16)

and all bj ∈ F2.

Multiplication of a by b using the digit-serial method is performed by multiplying the a

polynomial by the digits of b, accumulating the results and reducing modulo f :

c = a.b =
(
a.(

n−1∑
j=0

b̃jx
jD)
)

mod f (4.17)

=
( n−1∑
j=0

a.b̃jx
jD
)

mod f (4.18)

A multiplication a.b̃j is known as a digit-word multiplication (the polynomial a of length

m is known as a word). These multiplications can be performed in one clock cycle in

hardware by multiplying a digit of b by each bit of a simultaneously. These multiplications

are reduced modulo f before accumulation to minimise operational complexity and storage

requirements. Digit-word multiplication can be performed efficiently using matrix-vector
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methods. Consider the multiplication of a =
∑m−1

i=0 aix
i by a digit of b. A composition

polynomial is first computed:

z =

m−1∑
i=0

D−1∑
l=0

ai.bjD+lx
i+l (4.19)

The polynomial z has degree m + D − 2 and its coefficients are members of F2. Let z

be a vector of length m + D − 1 containing the value of the coefficients of z, i.e. zT =

[z0, z1, z2, . . . zm+D−2]. The polynomial a can also be represented by a vector, a, of length

m. An (m+D−1)×m product matrix B can be generated that represents the F2 operations

that are required during the composition stage. The z vector is returned by the matrix-

vector multiplication of B by a. All of the operations are on F2. The product matrix

is used to generate a network of AND and XOR gates that implement the composition

stage in hardware.

The result returned by the composition stage must be reduced modulo f if its degree is

greater than m − 1. This reduction can also be performed using matrix-vector methods.

Let z =
∑u−1

s=0 zsx
s, where u > m − 1 and let z be a vector of length u containing the

coefficients of z. A reduction matrix R, of size m× u, can be created that represents the

F2 additions required for reduction. A network of XOR gates that returns the reduced

value of the digit-word product is generated using this matrix. More information on the

construction and use of these matrices is provided in [86].

The F2m multiplication of a by b can be implemented in hardware according to Equation

(4.18). The degree of the accumulating polynomial increases by D after each digit-word

multiplication. A straightforward implementation would require a relatively large area to

store and reduce the resulting bit strings. If the results of the digit-word composition stages

are, however, shifted left by D bits after computation and immediately reduced modulo

f , then the degree of the accumulating polynomial will not exceed m− 1. Another matrix

can be used to generate the network of XOR gates required to reduce the polynomials of

(m+2D−1) bits returned by digit-word composition and shifting. The equation governing
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F2m multiplication using this method is

c = a.b =
( n−1∑
j=0

(
xjD(a× b̃j)

)
mod f

)
mod f (4.20)

where a × b̃j represents the composition stage of a digit word multiplication a.b̃j . The

operations required for the hardware implementation of Equation (4.20) are presented as

Algorithm 7.

Algorithm 7 F2m Digit-Serial Multiplication

Input: a, b ∈ F2m , where a =
∑m−1

i=0 aix
i, b =

∑n−1
j=0 b̃jx

jD and b̃j =
∑D−1

l=0 bjD+lx
l

Output: c = a.b, where c ∈ F2m

1: Initialise: z(0) ← 0, b(0) ← b

2: for (i← 1, i ≤ n− 1, i← i+ 1) do

3: z(i) ← xD(z(i−1) + b̃
(i−1)
d−1 × a) mod f

4: b(i) ← xDb(i−1)

5: end for

6: c← (z(d−1) + b̃d−1 × a) mod f

Return: c

The hardware architecture used for digit serial multiplication is illustrated in Figure 4.1.

The polynomial a is stored in an m-bit register and b is stored in an m-bit shift register

with a D-bit output. On each iteration, the a polynomial is sent to the multiplication

block with a digit of b and a composition string of size (m + D − 1) bits is calculated.

The worst case propagation delay for this block is 1 AND gate and [log2D − 1] XOR

gates. The lower m bits of the digit-word composition result are then added to the

m-bit accumulation polynomial computed during the previous iteration. The result is

shifted to the left by D bits and enters the reduction block. This unit consists of a

network of XOR gates that is constructed according to the reduction matrix. The worst

case propagation delay of this block is dependent on the field size and the irreducible

polynomial. A low weight irreducible polynomial reduces the complexity and propagation

delay of this network significantly. The output of the reduction block is stored in an m-bit

register. The result c = a.b is available at the output of this register on completion of

the for loop. A Finite State Machine (FSM) provides all of the signals that are required
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to handle the operations. The digit-serial multiplication architecture produces a result in

n = m/D + 2 clock cycles.

Figure 4.1: F2m Digit-Serial Multiplier Architecture

The VHDL for the multiplication architecture is generated in the design environment using

C++ code. Variables are used to represent the field size, irreducible polynomial and digit

size. Multipliers can be created automatically on the input of these parameters. This

means that pairing processors, each containing multipliers with different digit sizes, can

be generated with ease. This enables detailed analysis of the capabilities and resource

requirements of various architectural solutions to pairing computation.
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4.3.3 F2m Squaring

Squaring of an element a ∈ F2m can be achieved using the digit-serial multiplication archi-

tecture. This operation can, however, be performed much more efficiently by employing

the techniques described by Wu in [87]. The use of their methods means that squaring

can be implemented with a purely combinatorial unit.

Consider a =
∑m−1

i=0 aix
i with all ai ∈ F2. Since 0.0 = 0 and 1.1 = 1 on F2m , then

(ai)
2 = ai. This means that a composition polynomial z can be calculated according to

z = (

m−1∑
i=0

aix
i)2 =

m−1∑
i=0

a2ix
2i =

m−1∑
i=0

aix
2i (4.21)

This is performed in hardware by placing a zero between each bit of a, which results in

a bit string of length 2m − 1. This string, which represents the composition polynomial,

is reduced modulo the irreducible polynomial using a network of XOR gates defined by

a reduction matrix. A low weight irreducible polynomial also reduces the complexity of

this network. The VHDL for the squaring unit is generated in software according to the

desired field size and irreducible polynomial. Since squaring requires combinatorial logic

alone a result is returned in one clock cycle.

4.3.4 F2m Inversion

Inversion is typically more expensive than all other operations on F2m . Fermat’s Little

Theorem can be used to perform inversion. An element c = b−1, where b, c ∈ F2m , can be

computed using the relationship b = b2m for all b ∈ F2m . This means that b−1 = b2m−2.

This exponentiation can be performed using a series of squaring and multiplications. A

hardware architecture that uses a generalised version of the Itoh-Tsujii inversion method

[88] is presented in [89]. The computation time required is, however, in the order of m
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multiplications, which means that it is sometimes unsuitable for the relatively large field

sizes used in pairing-based applications.

Inversion can also be performed using the Extended Euclidean Algorithm (EEA). This

is the most efficient method to perform hardware inversion [90]. The EEA is used to

compute the Greatest Common Divisor (GCD) of 2 polynomials a, b ∈ F2m . The EEA

also returns a pair of polynomials w, u ∈ F2m such that GCD(a, b) = wa + ub. The

irreducible polynomial f generating the field is not divisible by any polynomial in F2m ,

which means that

GCD(f, b) = wf + ub = 1 (4.22)

Also, since f = 0 ∈ F2m , then ub = 1 and therefore b−1 = u. This forms the basis

for the EEA-based inversion algorithm of [91], presented in more detail in [90]. The

calculation of the inverse of an element b ∈ F2m using the EEA is described by Algorithm 8.

Operations are performed on the polynomial pairs (r, s) and (u, v), where r, s, u, v ∈ F2m .

On initialisation, (r, s) is set to (b, f) and (u, v) to (1, 0). The for loop is iterated 2m

times. An integer δ is used to track the differences between the degrees of r and s. The

relationships between the polynomial pairs remains the same throughout the loop. By

accumulating the (u, v) polynomials in this manner, the inverse of b is given by the value

of the u polynomial after 2m iterations.

In hardware, the (u, v) polynomial pair can be updated in parallel to (r, s) since they are

computed independently of each other. The inverter described in [90] uses this parallelism

to perform F2m inversion and is used in this work. The architecture contains hardware

units that are known as bit-slices. Each bit-slice is dedicated to updating a specific bit of

a polynomial pair. A chain of RS slices, with each slice containing the same combinatorial

logic, returns the final (r, s) polynomial pair in 2m clock cycles. A chain of UV slices is

also used to return the final value of (u, v) in 2m cycles. An architecture containing a

chain of (m+ 1) RS slices and a parallel chain of m UV slices performs an F2m inversion

in 2m clock cycles.

It would be interesting to investigate whether the area cost of the inverter is justified by
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Algorithm 8 F2m Inversion

Input: b =
∑m−1

i=0 bix
i ∈ F2m

Output: c = b−1, where u ∈ F2m

1: Initialise: r(0) ← b, s(0) ← f, u(0) ← 1, v(0) ← 0, δ(0) ← 0

2: for (i← 1, i ≤ 2m, i← i+ 1) do

3: if r
(i−1)
m = 0 then

4: r(i) ← x(r(i−1))

5: s(i) ← s(i−1)

6: u(i) ← x(u(i−1)) mod f

7: v(i) ← v(i−1)

8: δ(i) ← δ(i−1) + 1

9: else

10: if δ(i−1) = 0 then

11: r(i) ← x(s(i−1) + s
(i−1)
m r(i−1))

12: s(i) ← r(i−1)

13: u(i) ← x(v(i−1) + s
(i−1)
m u(i−1)) mod f

14: v(i) ← u(i−1)

15: δ(i) ← δ(i−1) + 1

16: else

17: r(i) ← r(i−1)

18: s(i) ← x(s(i−1) − s(i−1)m r(i−1))

19: u(i) ← (u(i−1))/x mod f

20: v(i) ← v(i−1) + s
(i−1)
m u(i−1)

21: δ(i) ← δ(i−1) − 1

22: end if

23: end if

24: end for

25: c← u

Return: c
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the reduction in clock cycles required to perform the pairing. The inverter is utilised only

during the exponentiation. Fermat’s Little Theorem can be used to define how many times

the field member to be inverted should be iteratively squared and multiplied with itself to

return a result. The dedicated inversion architecture is also desirable in other curve-based

cryptographic systems.

4.4 Hardware Implementation of Arithmetic on F24m

Extension field addition, multiplication, squaring, inversion and exponentiation to q are re-

quired to perform Tate pairing computation according to Algorithms 5 and 6. This section

describes the hardware architectures that have been used to implement these operations.

An element a ∈ F24m is represented by a degree 3 polynomial of form

a = a0 + a1x+ a2x
2 + a3x

3 (4.23)

where all ai ∈ F2m . The F24m field is generated by the degree 4 irreducible polynomial

p = x4 + x+ 1.

4.4.1 F24m Addition

The addition operation is performed bitwise on each coefficient of the polynomials. Let

a, b, c ∈ F24m . Then

c = a+ b =
3∑
i=0

aix
i +

3∑
i=0

bix
i = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x

2 + (a3 + b3)x
3 (4.24)

Addition on F24m is relatively trivial and can be computed in one clock cycle using a total

of 4m XOR gates.
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4.4.2 F24m Multiplication

Multiplication on F24m is required on each iteration of the for loop of Algorithm 5. Multi-

plication on the extension field is, however, relatively expensive and efforts must be made

to ensure that it is performed as efficiently as possible.

Consider a, b, c ∈ F24m . The extension field multiplication c = a.b can be performed by

multiplying each coefficient of a by each coefficient of b and reducing the resulting com-

position polynomial. This method requires 16 F2m multiplications and nine F2m additions

during the composition stage alone. Karatsuba multiplication [92] can instead be used to

reduce the number of F2m multiplications at the expense of more trivial F2m additions.

Nine F2m multiplications are first performed:

mul0 =a0.b0

mul1 =a1.b1

mul2 =a2.b2

mul3 =a3.b3

mul4 =(a0 + a1).(b0 + b1)

mul5 =(a0 + a2).(b0 + b2)

mul6 =(a1 + a3).(b1 + b3)

mul7 =(a2 + a3).(b2 + b3)

mul8 =(a0 + a1 + a2 + a3).(b0 + b1 + b2 + b3)

Seven partial products are now calculated using these results. This stage requires no
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further F2m multiplications:

γ0 =mul0

γ1 =mul0 +mul1 +mul4

γ2 =mul0 +mul1 +mul2 +mul5

γ3 =mul0 +mul1 +mul2 +mul3 +mul4 +mul5 +mul6 +mul7 +mul8

γ4 =mul1 +mul2 +mul3 +mul6

γ5 =mul2 +mul3 +mul7

γ6 =mul3

These partial products are reduced modulo the irreducible polynomial p = x4 + x + 1.

This can be performed using the matrix reduction techniques described in the previous

section. The irreducible polynomial is, however, fixed in this case. This means that the

following additions can be used to reduce the partial products and return the final result:

c0 =mul0 +mul1 +mul2 +mul3 +mul6

c1 =mul0 +mul4 +mul6 +mul7

c2 =mul0 +mul1 +mul5 +mul7

c3 =mul0 +mul1 +mul2 +mul4 +mul5 +mul6 +mul7 +mul8

A dedicated hardware architecture for extension field multiplication using the Karatsuba

method has been created for this work and is illustrated in Figure 4.2. The unit takes

as input the m-bit coefficients of the input operands. All nine F2m multiplications are

performed in parallel in hardware. The digit-serial architectures described in Subsection

4.3.2 are used to perform F2m multiplication. The F24m additions are nested, when possible,

and a network of 22 adders is used. This architecture returns an F24m multiplication result

in (m/D + 2) clock cycles.
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Figure 4.2: Architecture for F24m Karatsuba multiplication

4.4.3 F24m Squaring

Consider a =
∑3

i=0 aix
i and c =

∑3
i=0 cix

i, where a, c ∈ F24m . The computation c = a2

begins with the composition of an intermediate polynomial z:

z =
3∑
i=0

ai
2x2i = a0

2 + a1
2x2 + a2

2x4 + a3
2x6 (4.25)

This polynomial must now be reduced. The irreducible polynomial has value p = 0 ∈ F24m ,

which means that x4 = x+ 1, x5 = x2 + x and x6 = x3 + x2. Substituting into Equation
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(4.25) gives:

c =(a0
2 + a1

2x2 + a2
2x4 + a3

2x6) mod p (4.26)

=a0
2 + a1

2x2 + a2
2(x+ 1) + a3

2(x3 + x2) (4.27)

=(a0
2 + a2

2) + a2
2x+ (a1

2 + a3
2)x2 + a3

2x3 (4.28)

Squaring on F24m requires four F2m squaring units and two F2m adders. The architecture

that has been designed for the computation of squaring on the extension field is displayed

in Figure 4.3.
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Figure 4.3: Architecture for Squaring on F24m

4.4.4 Exponentiation to q

Consider a ∈ F24m where a =
∑k−1

i=0 aix
i and all ai ∈ F2m . Exponentiation of a to q = 2m

can be implemented with m extension field squaring operations. As a is squared, however,

a pattern emerges that can be used to considerably reduce the number of required field

operations. It can be easily shown that a2
5

is equal to a2
1
, a2

6
is equal to a2

2
and a2

7
is

equal to a2
3
. This sequence continues every four steps. This means that a2

m
is dependent

on the value of m mod 4. The relationships a2
0

= a for m mod 4 = 0, a2
1

= a2 for m
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mod 4 = 1, a2
2

= a2 for m mod 4 = 2 and a2
3

= a3 for m mod 4 = 3 hold. Recall also

that a2
m

i = ai for all ai ∈ F2m . The value of c = aq, where c =
∑k−1

i=0 cix
i is returned

according to Table 4.2.

Table 4.2: Calculation of c = aq, where a, c ∈ F24m for different values of m mod 4

Output m mod 4

0 1 2 3

c0 a0 a0 + a2 a0 + a1 + a2 + a3 a0 + a1

c1 a1 a2 a1 + a3 a2 + a3

c2 a2 a1 + a3 a2 + a3 a1

c3 a3 a3 a3 a3

Exponentiation to q can, therefore, be implemented in hardware using XOR gates and a

result returned in one clock cycle.

4.4.5 F24m Inversion

The final exponentiation, described by Algorithm 6, requires a multiplicative inversion

on F24m . Inversion is the most complex field operation. This subsection describes the

algorithmic and hardware optimisations that can be employed to implement extension

field inversion.

Inversion on any extension field Fnk , where n and k are positive integers, can be performed

using a variant of the EEA. An efficient method for extension field inversion based on the

EEA was presented by Lim and Hwang in [93], in which several Fn inversions are replaced

by less costly Fn multiplications. The field operations required to perform Fnk inversion

are presented in Algorithm 9. The algorithm takes as input a ∈ Fnk and the irreducible

polynomial p generating Fnk and returns b ∈ Fnk such that b = a−1. In order to clarify

the notation, consider line 9. The term gdeg(g).pdeg(p)−1 denotes the Fn multiplication of

the uppermost coefficient of g by the second to uppermost coefficient of p.
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Algorithm 9 Fnk Inversion

Input: a =
∑k−1

i=0 aix
i ∈ Fnk , where ai ∈ Fn, and irreducible polynomial p generating Fnk

Output: b =
∑k−1

i=0 bix
i = a−1 ∈ Fnk , where bi ∈ Fn

1: Initialise: b← 0, c← 1, g ← a

2: while deg(p) 6= 0 do

3: if deg(p) < deg(g) then

4: Swap p with g and b with c

5: end if

6: j ← deg(p)− deg(g)

7: α← gdeg(g)
2

8: β ← pdeg(p).gdeg(g)

9: γ ← gdeg(g).pdeg(p)−1 − pdeg(p).gdeg(g)−1
10: p← α.p− (β.xj + γ.xj−1).g

11: b← α.b− (β.xj + γ.xj−1).c

12: if deg(p)=deg(g) then

13: p← gdeg(p).p− pdeg(p).g
14: b← gdeg(p).b− pdeg(p).c
15: end if

16: end while

17: p0 ← p0
−1

18: b← p0.b

Return: b

The main calculation cost of Algorithm 9 lies in the operations required within the while

loop that begins on Line 2. On each iteration, the variables α, β and γ must be computed

and the values of p and b updated, requiring several Fn field operations, the most costly

of which are the multiplications. If the degree of p is equal to the degree of g at the end

of an iteration, further operations are required. On completion of the loop, p0 ∈ Fn is

inverted and multiplied by b ∈ Fnk . The while loop can be implemented in hardware using

a finite state machine, with the degree of p and the degree of g acting as control lines. The

control scheme would also have to provide a means for implementation of the required if

statements and swap operations.
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An efficient technique that is also more amenable to hardware implementation can be

developed by fixing the extension field in question. The sparse nature of an irreducible

polynomial can result in a dramatic reduction in the number of required operations. The

conditional statements of Algorithm 9 can also be removed and a sequence of field opera-

tions explicitly stated. This simplifies the corresponding hardware control scheme signifi-

cantly.

Table 4.3: Computational steps for F24m Inversion

Var. Init. Step 1 Step 2 Step 3

α - g3
2 p2

2 p1
2

β - g3 g3.p2 g2.p1

γ - g2 g2.p2 + g3.p1 g1.p1 + g2.p0

p4 1 0 0 0

p3 0 0 0 0

p2 0 β.g1 + g2
2 0 0

p1 1 α+ β.g0 + γ.g1 α.g1 + β.p0 + γ.p1 0

p0 1 α+ γ.g0 α.g0 + γ.p0 α.g0 + γ.p0

b3 0 0 0 β.b2

b2 0 0 β.p1 β.b1 + γ.b2

b1 0 β β.p0 + γ.b1 α.c1 + β.b0 + γ.b1

b0 0 γ α+ γ.b0 α.c0 + γ.b0

g3 a3 a3 0 -

g2 a2 a2 p2 -

g1 a1 a1 p1 -

g0 a0 a0 p0 -

c1 0 0 b1 -

c0 1 1 b0 -

In the case of F24m , the while loop is replaced by a sequence of operations that can

be grouped into three computational steps. Table 4.3 demonstrates the F2m operations

required during each step. The p, b, g and c polynomials are initialised before the first
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step. Note that the degree 2 and 3 coefficients of c are omitted since they are not operands

of any operation and, therefore, do not need to be updated. On each step, the values of α,

β and γ are first calculated. The p, b, g and c polynomials are then updated. On the first

computational step, the variables β and γ are initialised and γ is calculated with an F2m

squaring operation. Subsequently, p is calculated, requiring four multiplications and four

additions on F2m . The b polynomial is updated with a simple reassignment. The g and

c polynomials remain unchanged. Note that the degree of p is reduced by 2 during this

step, due to the sparse nature of the irreducible polynomial defining the field. On step

2, the α, β and γ variables are calculated, this time requiring three multiplications, one

squaring and one addition on F2m . The p polynomial is updated, which requires five F2m

multiplications and three additions, and b is updated with four F2m multiplications and

two additions. After this g and c are allocated the values of p and b at the end of Step 1,

respectively. On the third step the α, β and γ variables are updated, requiring three F2m

multiplications, one addition and one squaring. The p polynomial is updated with two

multiplications and one addition on F2m and b is updated with eight multiplications and

four additions. No further steps are necessary as the degree of p has reached 0. The three

steps of Table 4.3 require a total of 29 multiplications, four squarings and 16 additions on

F2m . These operations satisfy the calculations required by the while loop of Algorithm 9.

After this sequence, p0 ∈ F2m is inverted and multiplied by b ∈ F24m . The latter operation

requires four F2m multiplications.

The most costly operations are the multiplications. All other operations can be performed

combinatorially in hardware. A hardware implementation provides an opportunity to

perform many of the 33 F2m multiplications in parallel. The quantity of multipliers re-

turning the most efficient computation was determined through analysis of clock cycle and

area data. It was found that three multipliers, operating in parallel, provide an excellent

solution for the computation of the multiplications.

The scheduling of the 33 multiplicative operations through three multipliers is shown in

Table 4.4 (the data in the table itself points towards increasing redundancy within the

multipliers as the number of units grows). The stage at which the F2m inversion begins is
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Table 4.4: Scheduling of F2m multiplications through three multipliers for F24m inversion

Stage Mult 0 Mult 1 Mult 2 Inv

1 β.g1 β.g0 - -

2 γ.g1 γ.g0 - -

3 g3.p2 g2.p2 g3.p1 -

4 α.g1 β.p0 γ.p1 -

5 γ.g0 γ.p0 β.b1 -

6 β.p0 γ.b1 γ.b0 -

7 p1.g1 g2.p0 - -

8 α.g0 γ.p0 g2.p1 -

9 β.b2 β.b1 γ.b2 inv(p−10 )

10 α.c1 β.b0 γ.b1

11 α.c0 γ.b0 - ret(p−10 )

12 p−10 .b0 p−10 .b1 p−10 .b2 -

13 p−10 .b3 - - -

also noted. Extension field inversion is completed in a total of 13 stages. Stages 1-8 and

12-13 require n = m/D clock cycles each, where D is the digit size of the F2m multipliers.

The F2m inversion of p0 begins at Stage 9. This operation can be performed in parallel

with the multiplications of Stages 9-11. Stage 12 cannot, however, begin until the value of

p−10 is returned by the inverter, which returns a result after 2m clock cycles. This means

that Stages 9-11 require the larger of 3n or 2m clock cycles. All other field operations are

combinatorial. An F2m inverter using three multipliers, therefore, returns a result in 13n

clock cycles if 3n > 2m or in 10n + 2m clock cycles otherwise. The redundancy of the

multipliers is very low. The first multiplier is in use 100% of the time, while the second

and third multipliers are in use 92% and 62% of the time, respectively. All other options

are considerably less efficient.

The techniques discussed in this subsection form the basis of a co-authored publication
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that appeared in [7]. The paper describes the FPGA implementation of the F24m inverter.

The architecture consists of an Arithmetic Logic Unit (ALU), dedicated RAM and an

uncomplicated control system. The ALU contains an F2m inverter, two adders, a squar-

ing unit and three multipliers. The control system sequences the arithmetic operations,

accesses the RAM and sends the m-bit buses representing the F2m elements to the requi-

site logic units. The system also controls the logic units and stores their outputs in the

correct place in memory, when available. The inverter was prototyped on the extension

field F24m , where m = 283, and then used to optimise a Tate pairing processor that was

previously described by Keller et al. in [94]. The inverter leads to a dramatic reduction in

pairing computation time. The minimum Tate pairing computation time, without the use

of the inverter, is 2ms assuming that there are no area constraints and a clock frequency

of 40MHz. The minimum computation time required with the inclusion of the extension

field inverter is 0.69ms if the same parameters are used. The author of this thesis provided

the VHDL and the files necessary to implement the inversion architecture. Help was also

provided during the integration of the architecture with the Tate pairing processor.

Since extension field inversion is only required once during the computation of the Tate

pairing (using the ηT method) the inclusion of three multipliers dedicated to inversion alone

would not be prudent. Fortunately, other multipliers within the processor architecture can

be accessed if care is taken with the routing of buses and the design of top level control

systems. As will be seen in the next section, three parallel F2m multipliers are used to

implement the special multiplication known as smul in Algorithm 5. These multipliers

are not in use during exponentiation. The inverter is placed within an exponentiation unit

that has access to these multipliers. This unit will be discussed in the next section and

the hardware implementation of extension field inversion further clarified.
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4.5 Dedicated Hardware Units for Pairing Computation

Computation of the ηT pairing followed by exponentiation to the Tate pairing, is performed

according to Algorithms 5 and 6, respectively. The most expensive component of these

algorithms is the for loop of the ηT computation. This loop iterates (m+ 1)/4 times and

it is, therefore, paramount that its field operations be performed as efficiently as possible.

The for loop of Algorithm 5 can be described by four computation stages:

1. The calculation of t and the roots and squares of xP , yP , xQ, yQ as calculated on

Steps 4, 6, 7 and 9 of the algorithm, respectively.

2. The calculation of u0 and u1 according to Steps 5 and 8.

3. The computation of u0.u1 on Step 10. This multiplication is performed using a spe-

cial function, called smul, that takes advantage of the structure of the polynomials.

4. The F24m multiplication mill.u on Step 11.

Dedicated hardware units have been designed to ensure a fast computation of these four

stages. An exponentiation unit has also been created for the implementation of the com-

putations required by Algorithm 6. It should also be noted that Steps 14-16 of Algorithm

5 require computations on F2m and F24m , but these operations need only be performed

once and can be implemented by reusing other units. The custom hardware units that

have been created for the characteristic 2 elliptic curve Tate pairing processor described

in this chapter are as follows:

• Precomputation Unit: Many F2m squaring and rooting operations are required

during the for loop. The inclusion of dedicated units for all of these operations

would be wasteful and the control scheme necessary to supply the correct values to

other hardware blocks, when required, would not be trivial. This unit computes
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all required squares and roots before iteration of the for loop. The desired F2m

precomputation values are supplied to the other units, as required.

• Unit for the parallel calculation of u0 and u1: The use of the unrolled for loop

means that u0 and u1 can be calculated at the same time. This unit performs this

parallel calculation efficiently.

• Unit for the calculation of smul(u0, u1): The custom multiplication routine

smul is implemented in this unit and the value of u = smul(u0, u1) returned.

• F24m Multiplication Unit: Themill variable must be updated by means of an F24m

multiplication by u on each iteration. Extension field multiplication is an expensive

operation. A dedicated unit is included in the pairing processor that utilises the

Karatsuba multiplication method. This unit was discussed in Subsection 4.4.2.

• Exponentiation Unit: This unit performs the exponentiation from the ηT to the

Tate pairing according to Algorithm 6.

The most efficient interconnection of these units was carefully studied during the design

phase of the Tate pairing processor. A scheme was created to handle control signals and

data buses and to sequence the required operations. The functional units are considered

individually in this section. Their hierarchy and connectivity at the top level of the

processor will be described in Section 4.6.

4.5.1 Precomputation Unit

Squares of the values of xQ, yQ ∈ F2m must be computed on Lines 6 and 9 of Algorithm

5. Square roots of xP , yP ∈ F2m are required by lines 4, 7 and 13. As seen in Subsection

4.3.3, squaring is relatively trivial in hardware. Square rooting is, however, more costly.

Fortunately, the latter operation is not required if precomputation methods are employed.

In this processor, the values of x2
i

P and y2
i

P , for all 0 < i < m, are computed and stored
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in an indexed memory array before the for loop begins. Since the F2m field is cyclic, the

roots required on each iteration of the loop can be obtained by accessing the squares from

memory in reverse order. The values of x2
i

Q and y2
i

Q are also precomputed before the loop.

As mentioned previously, the u0 and u1 polynomials of Lines 5 and 8 of Algorithm 5 can

be computed in parallel in hardware. This requires some rearranging of the operations

performed on Lines 4-9 and the introduction of some extra variables. As an example,

consider the second iteration of the loop. The operations and variables of Lines 4-9 can

be related to the original pairing input points as follows:

t0 ←x
1
4
P + 1, xP0 ← xP

1
8 , yP0 ← yP

1
8 , xQ0 ← x4Q, yQ0 ← y4Q

t1 ←xP
1
8 + 1, xP1 ← xP

1
16 , yP1 ← yP

1
16 , xQ1 ← xQ

8, yQ1 ← yQ
8

u0 ←(t0.(xP0 + xQ0 + 1) + yP0 + yQ0) + (t0 + xQ0 + 1)x

u1 ←(t1.(xP1 + xQ1 + 1) + yP1 + yQ1) + (t1 + xQ1 + 1)x

The values of xP0 , xP1 , yP0 , yP1 , xQ0 , xQ1 , yQ0 , yQ1 are the powers of the pairing input co-

ordinates that are required on each iteration of the loop. A modular architecture has

been created for precomputation that supplies all of the values that are required during

a parallel computation of u0 and u1. The xP precomputation module is illustrated in

Figure 4.4. This module contains m × m bit dual port block RAM along with an F2m

squaring unit and an m-bit multiplexer. The multiplexer is used at the input of the RAM

to allow storage of either the initial value of xP or the result at the output of the squaring

unit. A control system at the top level of the pairing processor employs a counter to write

the squares to memory. The RAM address connections are controlled by the ind0 and

ind0− 1 buses, the latter of which represents the integer value of ind0 minus the integer

one. The calculation and storage of these squares requires (m + 2) clock cycles. Once

precomputation is complete the for loop can begin. Using appropriate indices, all of the

powers of xP that are required for the parallel computation of u0 and u1 can be supplied

simultaneously on each iteration of the loop.

The top level precomputation unit contains modules for each of the input coordinates and

is illustrated in Figure 4.5. It receives as input the m-bit values of xP , yP , xQ and yQ.
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Figure 4.4: Precomputation module for xP

It is controlled by a pair of index buses and a 1-bit signal. The first index (ind0) is used

to access the RAM within the xP and yP modules and the other (ind1) to access the

RAM within the xQ and yQ modules. The 1-bit signal cont inp mux is used to handle

the multiplexers within each of the precomputation modules. The three control signals

are used to handle both precomputation and the supply of powers of coordinates during

loop iteration. The unit has two 4m-bit output buses. The Dout0 bus supplies the powers

required for the computation of u0, whilst Dout1 supplies the powers for the computation

of u1. This architecture means that all powers are calculated in parallel and are available

after a total of (m+ 2) clock cycles.

4.5.2 Unit for the Computation of u0 and u1

On completion of the precomputation stage, the for loop begins and u0 and u1 must be

computed. On inspection of Algorithm 4, it can be seen that the u polynomial has a

special form before loop unrolling. It can be written as u = c0 + c1x + (c1 + 1)x2, where
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Figure 4.5: Precomputation unit for the characteristic 2 elliptic curve Tate pairing pro-

cessor

all ci ∈ F2m . After the loop has been unrolled u0 and u1 are of the same structure. Let

u0 = a0 + a1x + (a1 + 1)x2 and u1 = b0 + b1x + (b1 + 1)x2, where all ai, bi ∈ F2m . The

coefficients of x2 in u0 and u1 do not need to be computed since they can be trivially

retrieved from a1 and b1 when smul(u0, u1) must be performed. This results in a saving

of 2m-bits of storage and reduces the output bus sizes of the u0 and u1 computation unit

by a total of 2m bits. This is reflected in Lines 5 and 8 of Algorithm 5, in which the x2

coefficients of u0 and u1 are not computed.

The hardware unit that was designed for the parallel computation of u0 and u1 is illus-

trated in Figure 4.6. The required powers of the input coordinates are supplied by the

precomputation unit on a pair of 4m-bit input buses. Two separate but similar branches
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compute u0 and u1 simultaneously. Each branch contains one F2m multiplier and four F2m

adders. An extra m-bit register is required in the upper branch since t0 is dependent on

the value of xP1 from the previous iteration. The operations required to compute u0 and

u1 are very similar to those required to compute the f and u polynomials of Algorithm

5 (Lines 2 and 14). This means that this unit can also be used to calculate f and u.

These polynomials are computed in the upper branch. Some extra 1-bit adders and 1-bit

multiplexers are required since the least significant bits of these polynomials differ to those

of u0. The Dout0 output bus supplies either the lower 2m bits of the u0 polynomial or the

3m-bit f and u polynomials that must be computed outside of the loop. The lower 2m bits

of u1 are produced on Dout1. The hardware unit contains a total of two F2m multipliers,

eight F2m adders, an m-bit register, seven 1-bit adders and two 1-bit multiplexers. The

u0 and u1 polynomials are computed in a total of (m/D+ 2) clock cycles, where m is the

field size and D is the digit size of the multipliers.

Figure 4.6: Unit for the computation of u0 and u1
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4.5.3 Unit for the Computation of smul(u0, u1)

Once computed, the u0 and u1 polynomials must be multiplied together. This can be

performed using degree 2 Karatsuba multiplication, which would require six F2m multi-

plications and a number of additions. A specialised multiplication routine can, however,

be defined that requires fewer multiplications. This routine, called smul(u0, u1), takes

advantage of the special form of u0 and u1.

Consider u0 = a0 + a1x+ (a1 + 1)x2 and u1 = b0 + b1x+ (b1 + 1)x2, where all ai, bi ∈ F2m .

The multiplication u0.u1 proceeds in the usual fashion. A composition polynomial is first

computed:

z = (a0 + a1x+ (a1 + 1)x2).(b0 + b1x+ (b1 + 1)x2)

= a0.b0 + a0.b1x+ a0.(b1 + 1)x2

+ a1.b0x+ a1.b1x
2 + a1.(b1 + 1)x3

+ b0.(a1 + 1)x2 + b1.(a1 + 1)x3 + (a1 + 1).(b1 + 1)x4

= a0.b0 + (a0.b1 + a1.b0)x+ (a0.b1 + a0 + a1.b1 + a1.b0 + b0)x
2

+ (a1 + b1)x
3 + (a1.b1 + a1 + b1 + 1)x4

The z polynomial is now reduced modulo x4 + x+ 1, the irreducible polynomial defining

the extension field. The reduced result is given by:

u0.u1 = (a0.b0 + a1.b1 + a1 + b1 + 1) + (a0.b1 + a1.b0 + a1.b1 + a1 + b1 + 1)x

+ (a0.b1 + a0 + a1.b1 + a1.b0 + b0)x
2 + (a1 + b1)x

3

The smul routine can now be constructed. Let mul0 = (a0.b0), mul1 = (a1.b1) and

mul2 = (a0 + a1).(b0 + b1) = a0.b0 + a0.b1 + a1.b0 + a1.b1. Substituting into the previous

equation and cancelling terms when possible gives the F2m operations required to compute
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u0.u1 = smul(u0, u1):

u0.u1 = (mul0 +mul1 + a1 + b1 + 1)

+ (mul0 +mul2 + a1 + b1 + 1)x

+ (mul0 +mul2 + a0 + b0)x
2

+ (a1 + b1)x
3

DIn0

DIn1

a(0)

b(0)

a(1)

b(1)

mul0

mul2

mul1

a(0)+b(0)

a(1)+b(1)

1

c(2)

c(1)

c(0)

c(3)
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m

2m

X

X

X
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Figure 4.7: Unit for the computation of smul(u0, u1)

The hardware architecture that has been designed for the computation of smul(u0, u1) is

presented in Figure 4.7. The 2m-bit inputs DIn0 and DIn1 are supplied by the (u0, u1)

computation unit and contain the values of a0, a1 and b0, b1 respectively. The F2m mul-

tiplications mul0, mul1 and mul2 are performed in parallel. The unit contains a total of

three F2m multipliers, nine F2m adders and a 1-bit adder. The 4m-bit output bus DOut0

contains the value of smul(u0, u1) after computation. A result is returned in (m/D + 2)

clock cycles, where m is the field size and D is the digit size of the multipliers.
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4.5.4 Exponentiation Unit

The ηT result of Algorithm 5 is followed by an exponentiation to a unique Tate pairing

value. The relationship between the pairings on characteristic 2 elliptic curves was already

defined in Section 4.2 and is given by

ηT (P,Q)MT = 〈P,ψ(Q)〉MN (4.29)

where M = (22m− 1)(2m− 2(m+1)/2 + 1) and T = 2(m+1)/2− 1 in the m mod 8 ≡ 1 case.

Exponentiation to MT is performed according to Algorithm 6. A total of (m+ 1)/2 F24m

squarings, five F24m multiplications, six F24m exponentiations to q = 2m and one F24m

inversion is required. Most of the extension field operations require operands that are not

available until the previous algorithmic step has completed. This means that the algorithm

provides little scope for parallelism. The design of an exponentiation unit containing

large dedicated arithmetic modules would not be resource efficient as far fewer operations

are required in comparison to the ηT computation. Fortunately, the exponentiation is

computed after iteration of the for loop of Algorithm 5. This means that the hardware

units that have been created for the implementation of that loop can be reused. The F24m

multiplications can be performed by sending the input operands to the extension field

multiplication architecture described in Subsection 4.4.2. As seen in Subsection 4.4.5,

the most efficient implementation of extension field inversion arises from the use of three

parallel F2m multipliers. The smul unit contains three multipliers that operate in parallel

and are used to perform the F2m multiplications required for F24m inversion.

The hardware unit that has been designed for the implementation of exponentiation is

presented in Figure 4.8. The unit has two input data buses. The first is Din0, a 3m-bit

bus that is connected to the outputs of the three F2m multipliers of the smul unit. The

second, Din1, is 4m-bits in length and is connected to the output of the F24m multiplication

unit. Arithmetic modules for extension field squaring and powering to q are included and

require only combinatorial logic. These modules are combinatorial in nature and are

inexpensive in terms of area. The unit also contains an F24m inversion module. This
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module does not perform every operation that is required for extension field inversion. It

contains an F2m adder, an F2m squaring unit and an F2m inverter. It also handles Dout2,

the 6m-bit output bus that is used to send operands to the external smul multipliers.

Figure 4.8: Characteristic 2 Elliptic Curve Exponentiation Unit

The extension field variables of Algorithm 6 are stored in dual port 4m-bit RAM. The

first input port is directly connected to the output of the external F24m multiplier. The

arithmetic modules receive their inputs from the second 4m-bit RAM output. The outputs

of the arithmetic modules are each connected to a tri-state buffer. A control signal is

used to select the 4m-bit result to be stored in RAM. The RAM output ports are also

connected to the DOut0 and DOut1 outputs. These 4m-bit buses are sent to the inputs of

the external F24m multiplier. A control system takes as input clk, rst and en exp signals

from the top level processor. This system contains a finite state machine that outputs the

signals that are required to enable reads and writes from and to the RAM and to control

the logic units.

Exponentiation begins when the en exp control signal is set. The ηT pairing result is

located at the output of the F24m multiplier at this time and is immediately stored in

RAM. The (m+1)/2 F24m squarings, required by Line 3 of Algorithm 6, are first performed

and the result stored in RAM. The u and v elements are then powered to q using the F24m

pow(q) module. Their values are then sent to the external F24m multiplier and the control

system waits the correct number of clock cycles for a result. Subsequently v is again sent

through the pow(q) module and w and v are multiplied according to Lines 7 and 8. The
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F24m inversion of w can be performed in parallel with the operations of Lines 9-11. This

means that the extension field inversion can be performed in parallel with the powerings

to q and the two extension field multiplications of Lines 9-11. An F24m multiplication of c

by the result of the inversion is required on Line 13. On completion of this operation the

Tate pairing value is available at the output of the extension field multiplier.

This type of architecture provides a very efficient way to implement exponentiation as use

is made of resource intensive units that would otherwise be redundant.

4.6 The Characteristic 2 Elliptic Curve Pairing Processor

The hardware processor that has been created for accelerated pairing computation in

the characteristic 2 elliptic curve case is presented in Figure 4.9. An ηT computation is

followed by an exponentiation to return a Tate pairing value. The processor receives the

input points P = (xP , yP ) and Q = (xQ, yQ) on the 2m-bit buses DIn0 and DIn1. The

clock and the rst and en control signals are supplied by an external source. The Tate

result 〈P,ψ(Q)〉MN is returned on the 4m-bit DOut0 output bus on completion of pairing

computation.

4.6.1 Operation Scheduling

Field operations are performed in the F24m multiplication unit and the four custom hard-

ware units. These units, discussed as separate systems in Subsection 4.4.2 and in the

previous section, each perform a specific function. The more general motivation behind

the design of the units can now be explained in the context of the top level of the archi-

tecture. The for loop of Algorithm 5 iterates (m−14 − 1) times. Every iteration consists

of three main computational stages: the calculation of u0 and u1, the computation of

u = smul(u0, u1), and the F24m multiplication mill = mill.u. The hardware units each
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Figure 4.9: The Characteristic 2 Elliptic Curve Tate Pairing Processor

complete their assigned computation in (m/D+2) cycles. A small number of clock cycles,

denoted ζ, is also required for register writes and for the propagation of signals. Com-

pletion of the for loop would, therefore, require (m−14 − 1)(3m/D + 2 + ζ) clock cycles

if each iteration were considered in isolation. The processor and its units have, however,

been designed so that the computational stages of different iterations of the loop can be

performed in parallel.

The (u0, u1) computation unit receives its inputs from the precomputation block and does

not rely on results from any previous iteration. Let (u0,1)i=0 be the values of u0 and u1

that are calculated on the first iteration. Once (u0,1)i=0 have been stored in the registers

at its output, the (u0, u1) computation unit can be reset and the computation of (u0,1)i=2

can begin almost immediately. When (u0,1)i=0 are available, the smul unit computes

ui=0 = smul
(
(u0,1)i=0

)
and the result is stored at its output. The smul unit is now reset
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and the computation of ui=2 = smul
(
(u0,1)i=2

)
can begin immediately. This is possible

since the (u0,1)i=2 polynomials have been calculated in parallel with the ui=0 computation.

The value of milli=0 = 1.ui=0 is now computed in the F24m multiplication unit and stored

at its output. The multiplication milli=2 = milli=0.ui=2 can begin immediately after this

since ui=2 has been calculated in parallel with milli=0. Computation proceeds in this

manner until the value of the mill variable at the end of the for loop has been returned.

The calculation of f and u, according to Lines 2 and 14 of Algorithm 5, respectively can

also be performed in parallel with other operations near the end of the for loop. The

scheduling of operations through the hardware units is detailed in Table 4.5.

Table 4.5: Scheduling of the for loop of Algorithm 5 through the Tate pairing processor

(u0, u1) Unit smul Unit F24m Mult. Unit

(u0,1)i=0 ——— ———

(u0,1)i=2 ui=0 = smul
(
(u0,1)i=0

)
———

(u0,1)i=4 ui=2 = smul
(
(u0,1)i=2

)
milli=0 = 1.ui=0

(u0,1)i=6 ui=4 = smul
(
(u0,1)i=4

)
milli=2 = milli=0.ui=2

(u0,1)i=8 ui=6 = smul
(
(u0,1)i=6

)
milli=4 = milli=2.ui=4

(u0,1)i=10 ui=8 = smul
(
(u0,1)i=8

)
milli=6 = milli=4.ui=6

· · ·
· · ·
· · ·

(u0,1)i=m−1
2 −3 ui=m−1

2 −5 = smul
(
(u0,1)i=m−1

2 −5

)
milli=m−1

2 −7 = milli=m−1
2 −9.ui=m−1

2 −7

(u0,1)i=m−1
2 −1 ui=m−1

2 −3 = smul
(
(u0,1)i=m−1

2 −3

)
milli=m−1

2 −5 = milli=m−1
2 −7.ui=m−1

2 −5

f ui=m−1
2 −1 = smul

(
(u0,1)i=m−1

2 −1

)
milli=m−1

2 −1 = milli=m−1
2 −5.ui=m−1

2 −3

u – milli=m−1
2 −1 = milli=m−1

2 −3.ui=m−1
2 −1

A total of (m−14 + 1) steps are required. Each step is completed in (m/D + θ) clock

cycles, where θ is a small number of cycles required for control and for the propagation of

signals through all of the registers and combinatorial logic in the data chain. A further

two F24m multiplications are required by Lines 15 and 16 of Algorithm 5. Precomputation

is performed in (m + 2) clock cycles. This means that an ηT result can be returned in(
m+ 2 + (m−14 + 3)(m/D + θ)

)
clock cycles.
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4.6.2 Architectural Overview

Tate pairing computation begins when rst is toggled and en is set. A control system

containing an FSM outputs all of the signals that are required to manage the arithmetic

and storage units and to handle bus selection.

The 2m-bit pairing input points P and Q are stored in the precomputation block on

initialisation. All squares and square roots are then computed and stored. The control

unit ensures that the required precomputation results are available at the output of the

unit during the for loop.

The u0 and u1 polynomials are computed and stored in two 2m-bit registers at the output

of the (u0, u1) computation unit. The u0 branch of this unit is also used to calculate the

f and u polynomials outside of the loop and an extra m-bit register is required to store

the degree 2 coefficients. The outputs of the u0 and u1 registers are sent to the smul unit.

The result in the m-bit register is combined with the output of the u0 register, padded

and sent to the F24m multiplication unit since f and u must be multiplied by the mill

variable at the end of the algorithm.

The smul unit is used to compute u during the for loop and the result is stored in a 4m-bit

register at its output. It also receives a 6m-bit input bus from the exponentiation unit

as its F2m multipliers are used during extension field inversion. The F2m multiplication

results are sent to the exponentiation unit on a 3m-bit bus.

The F24m multiplication unit returns the product of the two 4m-bit buses at its input.

The result is stored in the 4m-bit mill register at its output and is also sent to the

exponentiation unit. Various F24m multiplications must be performed during Algorithms

5 and 6. Tri-state buffers are used for input selection as the buses are relatively wide at

this location and a multiplexer system would introduce unacceptably large combinatorial

delays. These buffers are also used to minimise resource usage as they are available in
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every FPGA slice. The first multiplication input is selected from either the output of the

mill register or from the upper half of an 8m-bit bus that is sent from the exponentiation

unit. The second input is selected from the (f, u) bus, the u register or from the lower 4m-

bits of the exponentiation bus. This routing and selection system enables the computation

of all extension field multiplications while minimising the required area.

The ηT pairing result is located at the output of the mill unit on completion of all of the

computations required by Algorithm 5. The exponentiation unit is used to perform the

field operations of Algorithm 6. It has access to the three F2m multipliers of the smul

unit and to the F24m multiplier. An internal control system is used to manage the field

operations performed by its own logic modules and by the external multipliers. A 4m-bit

Tate pairing result is produced at the output of the mill register on completion of the

exponentiation.

4.6.3 Results and Comparisons

The characteristic 2 elliptic curve Tate pairing processor was captured in VHDL and

implemented on a Virtex-II Pro FPGA (xc2vp100-6ff1696). This FPGA contains 44,096

slices. The VHDL is generated by the C++ design system and receives input variables such

as field size, irreducible polynomial and F2m multiplier digit size from the user. This means

that the processor can be modified with ease if security, clock cycle or area requirements

change.

Implementations of the processor on an elliptic curve E(F2m), where m = 313, were

used to gather speed and area data. The irreducible polynomial defining the field is

x313 + x79 + 1. The extension field is k × m = 1252 bits in size. The security level

of an application that uses this implementation is roughly equivalent to 1024-bit RSA.

Results for implementations using multiplier digit sizes of 1, 4, 8 and 12 are presented in

Table 4.6. The Area column lists the number of slices required by each version whilst the

Utilisation column lists the percentage of the FPGA that is occupied in each case. The
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Clock Cycles column lists the number of clock cycles required by the processor to compute

ηT (P,Q)MT = 〈P,ψ(Q)〉MN in each case. The AC Product column contains products of

clock cycles and area usage. The AC products are measured in slice.cycles and can be

used as an indication of efficiency.

Table 4.6: Results returned by the characteristic 2 Tate pairing processor for m = 313

D Area Utilisation Clock Cycles AC Product

(Bits) (Slices) (Mslice.cycles)

1 28435 64% 17340 493

4 34675 79% 11165 387

8 41078 93% 6200 255

12 44060 99% 4818 212

The D = 12 case returns a Tate pairing result in 4,818 clock cycles. The AC product in

this case is 212 Mslice.cycles. This is a 17% reduction on the D = 8 case. However, the

D = 8 case provides a much larger reduction of 34% over the D = 4 case. This indicates

that the D = 8 case may be the better option as the extra area required by the D = 12

case may incur a drop in clock frequency that does not compensate for the relatively small

reduction in clock cycles over the D = 8 case. The processors occupy a large percentage

of the FPGA. As utilisation increases, unrelated logic must be packed into slices and some

slices must be used by the Xilinx tool to enable an efficient place and route process. This

can result in a decreased in the maximum clock frequency. It would be interesting to

investigate whether slice usage would decrease on larger FPGAs on which the routing

matrix could be used more efficiently to place and route the design.

Barreto et al. perform a software computation of the η and ηT pairings in [63]. Pairings are

computed on a Pentium IV processor operating at 3 GHz. Results are returned (without

exponentiation to the Tate pairing) in 5.83 ms and 3 ms in the η and ηT cases respectively.

The custom processor described in this chapter provides a significant reduction in pairing

computation time, even for relatively low clock frequencies.
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Results returned by other hardware implementations of characteristic 2 elliptic curve pair-

ing processors are listed in Table 4.7. As discussed previously, the security of pairing-based

systems can be measured in terms of the cost of the index calculus attack in the extension

field. This means that the size of the extension field can be used to compare the security

level returned by different implementations. The implementations of [8] and [95] both use

an extension field of 1132 bits. It should be kept in mind while analysing the results that

this is smaller than the 1252 bits of our implementations.

Table 4.7: Results returned by characteristic 2 elliptic curve pairing implementations in

the literature

Ref. m Alg. Device Arch. D Area Cycles AC

(Bits) (Slices) (MSl.cycles)

[8] 283 BKLS Virtex-II Macro 4 27411 68250 1871

6 29421 55110 1621

Mi. 1 6 4273 240000 1026

Mi. 9 6 15065 120000 1808

[95] 283 η Virtex-II P (PPR) Macro 16 22726 7308 166

32 37803 4392 166

ηT 16 33252 4368 145

In [8], Keller et al. compute the Tate pairing using the BKLS algorithm described in

[60]. Two types of processor, which they call macro and micro, are presented. The macro

processor contains dedicated, hard-wired, logic units for extension field operations. An

implementation on a Virtex-II FPGA with m = 283 and D = 6 returns a Tate pairing

in 55,110 clock cycles. The custom processor provides an 11.4x speed up on this. A

total of 29,421 slices are required, resulting in an AC product of 1621 Mslice.cycles. The

AC product of the processor discussed in this chapter is only 13.1% of this value. The

micro processor does not contain any extension field logic units. A number of F2m logic

units, including digit-serial multipliers, are used. This processor can be implemented with

various quantities of parallel F2m multipliers. An implementation with nine multipliers,

each with a digit size of 6, requires 120,000 clock cycles for computation. The custom

processor is 24.9x faster. The implementation uses 15,065 slices and has an AC product
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of 1,808. The custom processor’s AC product is only 11.7% of this value.

Shu et al. [95] discuss a Tate pairing implementation using the η and ηT methods. This

was published contemporaneously with much of the subject matter of this chapter. They

use a more traditional architecture with a main controller, central memory, interconnec-

tion networks and a central ALU. The ALU contains one extension field multiplier and a

number of subfield arithmetic units. Their results are generated from information returned

by the place and route tools of the Xilinx software, rather than from actual FPGA imple-

mentations. They also use a subfield size of 283 bits in comparison to the 313 bits used

here. These factors make it difficult to perform a direct comparison but a brief analysis

follows. Their processor returns a Tate pairing in 4,368 clock cycles using F2m multipliers

of digit size 16, a speed up of 1.1x in comparison. A total of 33,252 slices are required,

which results in an AC product of 145 Mslice.cycles. This is a 30% reduction in compari-

son to 212 Mslice.cycles. It will be seen in Chapter 6 that the ALU-based processors that

have been designed during this work can return a smaller AC product at these field sizes.

4.7 Conclusions

The computation of the characteristic 2 elliptic curve Tate pairing using the ηT methods

has been discussed in this chapter. Calculation of the ηT pairing, followed by a suitable

exponentiation, returns a Tate result in a very efficient manner.

Hardware architectures for F2m arithmetic have been described. Digit-serial multipliers

are used to perform F2m multiplication since, through modification of their digit size, they

enable a useful speed/area trade-off. Field arithmetic is ideally suited to hardware compu-

tation as many of the operations can be performed in parallel. Hardware architectures and

design methods for the computation of F24m arithmetic have also been presented. Many

of the required operations can be performed in terms of parallel F2m operations. This

provides further motivation for hardware implementation when large finite fields are in
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use. All efforts have been made to design arithmetic modules that return results quickly

while endeavouring to minimise resource usage.

Dedicated hardware units for the computation of the major stages of the pairing algorithms

have been presented. A precomputation unit stores all of the squares and square roots

required by the ηT computation in (m + 2) cycles. Another three units compute the

operations required by the for loop of Algorithm 5. An exponentiation unit controls the

operations required by Algorithm 6. Although implementing distinct stages of the pairing

algorithms, the units have been created with their use and connectivity at the top level

of the processor in mind. An efficient scheduling system has been created that allows

simultaneous use of the units during the for loop of Algorithm 5. This strategy results in

a very fast pairing computation.

An overview of the top level architecture of the pairing processor has also been provided.

The processor utilises a relatively simple control scheme to schedule operations and to store

intermediate variables. Results returned by the processor, when implemented on a Virtex-

II FPGA with various multiplier digit sizes, have been presented. The processor returns

its fastest Tate pairing result in 4,818 clock cycles. The results show that a hardware

implementation of the elliptic curve characteristic 2 Tate pairing can return a result very

quickly and in an efficient manner.

The topics and architectures discussed in this chapter have been published in [6], [7], and

[8].
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Chapter 5
A Processor for the Tate Pairing

on a Genus 2 Hyperelliptic Curve

5.1 Introduction

Algorithms for Tate pairing computation on genus 2 curves are more complex than on

elliptic cures as group addition, doubling and other curve arithmetic are generally more

intricate. Supersingular genus 2 curves also have an embedding degree of k = 12, which

is larger than the k = 4 and k = 6 characteristic 2 and characteristic 3 elliptic cases,

respectively. The degree 12 extension field computations require many more base field

arithmetic operations. These issues provide a barrier against the computation of the Tate

pairing in the genus 2 case. However, Barreto et al. show that the Tate pairing can be

computed efficiently on genus 2 curves using the ηT methods [63]. On another positive

note, the security level of systems that rely on pairings are largely dependent on the

product k × m. This means that m can be 3 and 2 times smaller than in equivalent

characteristic 2 and 3 elliptic curve systems. Implementations on genus 2 curves scale
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better as the value of m increases at a smaller rate as the security level is increased. This

means that a system based on a genus 2 Tate pairing can provide an attractive alternative

to more traditional elliptic curve based systems.

During this work hardware units, dedicated to the fast computation of the various op-

erations required by the genus 2 Tate pairing, have been created. The more complex

extension field computations are reduced to sub-field operations that are calculated in

parallel. An efficient processor has been created that performs a fast genus 2 Tate pairing

computation. This processor is more hybrid in nature than the characteristic 2 elliptic

curve processor as the units share some operations.

Section 5.2 provides an introduction to Tate pairing computation, using the ηT method, on

genus 2 curves. The hardware units that have been designed for the accelerated implemen-

tation of the main stages of pairing computation are discussed in Section 5.3. The genus

2 Tate pairing processor is then presented in Section 5.4, along with some implementation

results.

5.2 The Genus 2 ηT and Tate Pairings

An introduction to Tate pairing computation using the ηT method in the genus 2 case

is provided in this section. More detailed treatments of some of this subject matter are

available in [62], [68] and [63].

Consider the supersingular genus 2 hyperelliptic curve C(Fq) : y2 + y = x5 +x3 +d, where

q = 2m, d = 0 or 1 and m is coprime to 6. This curve has embedding degree k = 12.

Duursma and Lee [62] showed that degenerate divisors of the form D = (P )− (∞) can be

used to compute the Tate pairing on curves of genus greater than 1. Katagi et al. show

that this does not result in a loss of security [96]. The order of the Jacobian, #JC(Fq), is
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given by

22m + (−1)d2(3m+1)/2 + 2m + (−1)d2(m+1)/2 + 1

if m ≡ (1, 7, 17, 23) mod 24, or by

22m − (−1)d2(3m+1)/2 + 2m − (−1)d2(m+1)/2 + 1

if m ≡ (5, 11, 13, 19) mod 24.

The F212m field can be built as a degree 12 extension of F2m using an irreducible polynomial

of degree 12 with coefficients in F2. The extension field can also be constructed as a degree

2 extension of F26m . The F26m field is first generated using an irreducible polynomial of

degree 6. The F26m field is then extended to F212m using an irreducible polynomial of

degree 2. The latter method allows arithmetic on F212m to be expressed in terms of field

operations on F26m . Operations on F26m can then be written in terms of arithmetic on

F2m . This is advantageous from a hardware standpoint as some of the F212m operations

can be implemented using F26m logic units that operate in parallel. The F26m units can

be implemented so that the required F2m arithmetic operations are also performed in

parallel. This greatly simplifies the design process without reducing the attainable level

of parallelism.

Extension fields are commonly generated by irreducible polynomials with coefficients in

F2. There is, however, a well known distortion map on the curve that moves points from

C(F2m) to C(F212m). This mapping can be performed relatively trivially if the degree 2

extension of F26m to F212m is performed using an irreducible polynomial with coefficients

in F26m .

The extension fields are constructed as follows. Let F2m be an m-degree extension of

F2 generated by an irreducible polynomial f . Consider the field F26 generated by the

irreducible polynomial

g = x6 + x5 + x3 + x2 + 1 (5.1)

Let w ∈ F26 be a root of g. Members of F26m can be represented using the polynomial
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basis:

{1, w, w2, w3, w4, w5} (5.2)

For example, an element a ∈ F26m can be written in polynomial form as

a =

5∑
i=0

aiw
i = a0 + a1w + a2w

2 + a3w
3 + a4w

4 + a5w
5 (5.3)

where all ai ∈ F2m . Note that since g = 0 ∈ F26 , then w6 = w5 + w3 + w2 + 1, w7 =

w5 +w4 +w2 +w + 1, w8 = w + 1 etc. These relationships can be used for the reduction

of polynomials to F26m when necessary.

Now, consider the degree 2 extension. Let h be a generator polynomial such that

h = y2 + y + w5 + w3 (5.4)

and let s0 ∈ F12 be a root of h. Members of the field F212m can be represented using the

basis

{1, w, w2, w3, w4, w5, s0, ws0, w
2s0, w

3s0, w
4s0, w

5s0} (5.5)

A member b ∈ F212m can be written as

b =b0 + b1w + b2w
2 + b3w

3 + b4w
4 + b5w

5+

b6s0 + b7ws0 + b8w
2s0 + b9w

3s0 + b10w
4s0 + b11w

5s0
(5.6)

for all bi ∈ F2m , or as

b = u+ s0v (5.7)

where u, v ∈ F26m such that u =
∑5

i=0 uiw
i, v =

∑5
i=0 viw

i and all ui, vi ∈ F2m .

Let s1 = w2 + w4 and s2 = w4 + 1. The distortion map moving a point P = (x, y) from

C(F2m) to C(F212m) is given by

ψ(x, y) = (x+ w, y + s2x
2 + s1x+ s0) (5.8)

This is an inexpensive operation due to the manner in which F212m was constructed.

Substituting for s1 and s2 means that ψ(x, y) can be computed according to

x→ x+ w

y → (y + x2) + xw2 + (x+ x2)w4 + s0
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This mapping can also be expressed using the basis representation:

x→{x, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

y →{y + x2, 0, x, 0, x+ x2, 0, 1, 0, 0, 0, 0, 0}

This requires one squaring and two additions on F2m . Note also that the x-coordinate is

a member of the sub-field F26m , which shows that the denominator elimination technique

used to calculate the ηT pairing applies.

There is a very efficient octupling operation on the curve. Given a degenerate divisor

D = (P )−∞, a multiplication by 8 returns another degenerate divisor [8]D = ([8]P )−(∞),

where

[8]P = (x2
6

+ 1, y2
6

+ x2
7

+ 1) (5.9)

This operation is inexpensive as it relies on squaring elements of F2m , which is a relatively

trivial operation. Let π be the 2-power Frobenius map and φ(x, y) = (x+ 1, y + x2 + 1).

Equation (5.9) can be written as [8]P = φπ6(P ).

Barreto et al. [63] show how the Duursma and Lee computation techniques can be

expressed in the generalised notation of Theorem 3.3.1. The value of T is given by

T = q = 23m. This value means that the octupling formula can be used with ease.

Note that pairing computation requires at most m iterations as octupling and not dou-

bling forms the basis for the calculation of the Miller function. The value of N is given by

N = 26m + 1. From Theorem 3.3.1, this means that the values of the other variables can

be set as c = 0, a = 2 and L = 1. The exponent M is given by M = (qk − 1)/N = 26m−1.

Let D1, D2 ∈ JC(Fq). The relationship between the ηT and Tate pairings is given by(
ηT (D1, D2)

M
)2q

= 〈D1, ψ(D2)〉MN (5.10)

The value of T can be reduced. Let q = 23m and N = #JC(Fq) = 22m± 2(3m+1)/2 + 2m±
2(m+1)/2+1. Condition 1 of Theorem 3.3.1 holds if T = ∓2(3m+1)/2−1. Computation of the

pairing using this value of T requires approximately m/2 iterations using the octupling for-

mula. The resultant value of c is −(2m∓2(m+1)/2+1). If a = 2 is selected, then L = 2m+1∓
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2(m+3)/2+2. The exponentM is given by (212m − 1)/(22m ± 2(3m+1)/2 + 2m ± 2(m+1)/2 + 1).

The relationship between the ηT and Tate pairings is now given by(
ηT (D1, D2)

M
)2T

=
(
〈D1, ψ(D2)〉MN

)L
(5.11)

5.2.1 Computation of the ηT Pairing

The ηT pairing is returned by ηT (D1, D2) = fT,D1(ψ(D2)). If T < 0 then T should be

set to −T and D1 to −D1. This means that T = 2(3m+1)/2 ± 1. The Miller function is

computed according to Equations (3.13) and (3.14). The fast octupling operation is used

during the accumulation of this function. Since the multiplication of a degenerate divisor

by 8 returns another degenerate divisor, computation of the intermediate functions can

be expressed in terms of operations that are performed on the points in the support of

the input divisors. Let D1 = (P ) − (∞) and D2 = (Q) − (∞), where P = (xP , yP ) and

Q = (xQ, yQ). An intermediate function f8,P can be evaluated according to

f8,P (x, y) = (y + b4(x))2(y + b8(x)) (5.12)

where

b4(x) =y4P + (x4P )x+ (x8P + x4P )x2 + x3

b8(x) =(y16P + x16P + x48P + 1) + (x32P + x16P )x+ (x32P + 1)x2

The value of T can be rewritten as T = 23(m−1)/2+2 ± 1 to accommodate the octupling

operation. This means that the Miller function can be computed with (m−1)/2 octuplings,

two point doublings and a final point addition or subtraction. The value of ηT (P,Q) can

now be computed according to

fT,P (ψ(Q)) =

(m−3)/2∏
i=0

f8,[8i]P (ψ(Q))2
(3m−5)/2−3i)

 .l1(ψ(Q))2.l2(ψ(Q)).l3(ψ(Q)) (5.13)

where l1 and l2 are functions arising from final point doublings and l3 corresponds to the

final point addition or subtraction, as appropriate.
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Barreto et al. described several efficient methods for the computation of Equation (5.13)

in [63]. The f8,[8i]P (ψ(Q)) evaluations can be computed without the requirement that

[8i]P be explicitly calculated. The distortion map can also be incorporated into the func-

tions, which further simplifies the calculations. The exponentiations of the intermediate

functions to 2(3m−5)/2−3i can be performed using 2-power Frobenius operations on the

coordinates of P and Q. Using these techniques, the relationship

(m−3)/2∏
i=0

f8,[8i]P (ψ(Q))2
(3m−5)/2−3i)

=

(m−3)/2∏
i=0

α.β (5.14)

holds, where α and β are some members of F212m , defined as follows.

The efficient calculation of α and β requires that powers of squares of the input coordinates

be precomputed. This can be achieved trivially using the 2-power Frobenius map π. The

notation x
(i)
P = x2

i

P is used from this point. On initiation of pairing computation, the

values of x
(i)
P , x

(i)
Q , y

(i)
P , y

(i)
Q for all 0 ≤ i ≤ m− 1 are calculated and stored.

The value of α ∈ F212m is given by

α = a+ bw + cw2 + dw4 + s0 (5.15)

where

a = y
((3m−7−6i)/2)
Q + (x

((3m−1+6i)/2)
P + x

((3m−3+6i)/2)
P ).x

((3m−5−6i)/2)
Q

+ (x
((3m−3+6i)/2)
P + 1 + x

((3m−5−6i)/2)
Q ).x

((3m−7−6i)/2)
Q + y

((3m−3+6i)/2)
P + γ

b = x
((3m−5−6i)/2)
Q + x

((3m−7−6i)/2)
Q

c = x
((3m−5−6i)/2)
Q + x

((3m−3+6i)/2)
P + 1

d = x
((3m−1+6i)/2)
P + x

((3m−3+6i)/2)
P

The value of β ∈ F212m is given by

β = e+ f2w + gw2 + hw4 + s0 (5.16)
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where

e = (x
((3m+1+6i)/2)
P + x

((3m−1+6i)/2)
P ).x

((3m−9−6i)/2)
Q + (x

((3m−1+6i)/2)
P + x

((3m−7−6i)/2)
Q )

.x
((3m+1+6i)/2)
P + y

((3m−1+6i)/2)
P + x

((3m−1+6i)/2)
P + y

((3m−9−6i)/2)
Q + γ

f2 = x
((3m+1+6i)/2)
P + x

((3m−1+6i)/2)
P

g = x
((3m+1+6i)/2)
P + x

((3m−9−6i)/2)
Q + 1

h = x
((3m−7−6i)/2)
Q + x

((3m−9−6i)/2)
Q

Indices that are larger than m are reduced modulo m. The γ variable is set to 1 if i ≡ 1

mod 4 and 0 otherwise.

Let f ′(ψ(Q)) =
∏(m−3)/2
i=0 f8,[8i]P (ψ(Q))2

(3m−5)/2−3i)

. The ηT pairing of Equation (5.13) is

returned by multiplication of f ′(ψ(Q)) by the evaluations of the l1, l2 and l3 functions

at ψ(Q). This can be performed efficiently by analysing the divisors of the functions

and the effect they have on the overall computation. Let D′ be the divisor of f ′, where

D′ = (P ′)− (∞) and P ′ = (xP ′ , yP ′). Let l(x, y) be a function such that

l(x, y) = y + x3 + (x8P ′ + x4P ′)x
2 + (x4P ′)x+ y4P ′ (5.17)

The value of f ′(ψ(Q)).l1(ψ(Q))2.l2(ψ(Q)).l3(ψ(Q)) can be computed by squaring f ′(ψ(Q))

twice and multiplying the result by l(ψ(Q)).

To summarise, the computation of the ηT pairing on the divisors D1 = (P ) − (∞) and

D2 = (Q)− (∞) can be performed according to

ηT (P,Q) =

(
(m−3)/2∏
i=0

α.β

)4

.l(ψ(Q)) (5.18)

where α and β are calculated according to Equations (5.15) and (5.16), respectively, and

l(ψ(Q)) is calculated according to Equation (5.17).

The operations that are required for the computation of ηT (P,Q) using a field size of

m = 103 are listed in Algorithm 10. This is the same field size and algorithm as that used
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Algorithm 10 Computation of ηT (P,Q) in the genus 2 case for m = 103

Input: P = (xP , yP ), Q = (xQ, yQ), where P,Q ∈ JC(F2m)

Output: f = ηT (P,Q), where f ∈ F212m

1: Initialise: f ← 1, γ ← 0

2: for (i← 0, i ≤ m− 1, i← i+ 1) do

3: x1[i]← x2
i

P , y1[i]← y2
i

P , x2[i]← x2
i

Q , y2[i]← y2
i

Q

4: end for

5: for (i← 0, i ≤ (m− 3)/2, i← i+ 1) do

6: . The following indices should be reduced modulo m

7: k1 ← (3m− 9− 6i)/2, k2 ← (k1 + 1), k3 ← (k2 + 1)

8: k4 ← (3m− 3 + 6i)/2, k5 ← (k4 + 1), k6 ← (k5 + 1)

9: . Calculate α← a+ bw + cw2 + dw4 + s0

10: b← x2[k3] + x2[k2]

11: c← x2[k3] + x1[k4] + 1

12: d← x1[k4] + x1[k5]

13: a← d.x2[k3] + c.x2[k2] + y2[k2] + y1[k4] + γ

14: . Calculate β ← e+ f2w + gw2 + hw4 + s0

15: f2 ← x1[k5] + x1[k6]

16: g ← x2[k1] + x1[k6] + 1

17: h← x2[k2] + x2[k1]

18: e← f2.x2[k1] + (x1[k5] + x2[k2]).x1[k6] + y2[k1] + y1[k5] + x1[k5] + γ

19: fcurrent ← cmul(α, β)

20: f ← f.fcurrent

21: end for

22: . Perform the final operations

23: x3 ← x1[m− 3] + 1

24: y3 ← y1[m− 3] + x1[m− 2]

25: t← (y2[0] + x2[1].(1 + x2[0] + x83 + x43) + x43.x2[0] + y43)

26: f ← f4.(t+ (x2[1] + x43)w + (x83 + x43)w
2 + w3 + (x2[1] + x2[0])w4 + s0)

Return: f
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by Barreto et al. in [63]. The resultant extension field size is km = 1, 236. Note that very

minor changes are required to generalise the algorithm to any given field size.

The required powers of squares of the input coordinates are first computed using the

2-power Frobenius map. Once precomputation is complete, the main for loop of the al-

gorithm begins to iterate. Six indices are used to access the precomputed values. The

value of α ∈ F212m is first calculated. This requires six additions and two multiplica-

tions on F2m and two 1-bit additions. The value of β ∈ F212m is also calculated, which

requires eight additions and two multiplications on F2m and two 1-bit additions. Subse-

quently, fcurrent ∈ F212m is computed by multiplying α by β. Due to the sparse nature

of the operands, computing their product requires less computations than a regular F212m

multiplication. A customised routine, denoted cmul, has been created to perform this

multiplication. Finally, the accumulating polynomial f ∈ F212m is multiplied by fcurrent,

which requires a regular multiplication on F212m . The final operations are performed after

loop completion and require two 1-bit additions, eight F2m additions, two F2m multiplica-

tions and a multiplication on F212m .

5.2.2 Exponentiation to the Tate Pairing

The ηT (P,Q) pairing result of Algorithm 10 must be exponentiated to a Tate pairing value.

From Equation (5.11), the relationship between the pairings is given by
(
ηT (D1, D2)

M
)2T

=(
〈D1, ψ(D2)〉MN

)L
. This means that an exponentiation of the ηT pairing result to 2TM

L re-

turns 〈D1, ψ(D2)〉MN . The exponentiation can be performed efficiently by factoring and

cancelling terms when possible. The M term can be factored to give

M = (26m − 1)(2m ∓ 2(m+1)/2 + 1)(23m ∓ 2(3m+1)/2 + 1) (5.19)

The L term can be written as

L = 2(2m ∓ 2(m+1)/2 + 1) (5.20)
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After further cancellation, the exponent is given by

2TM

L
= (26m − 1)(23m ∓ 24m2(m+1)/2 − 1) (5.21)

The operations required to perform the conversion to the Tate pairing are detailed in

Algorithm 11 for m = 103. The exponent is (26m− 1)(23m− 24m2(m+1)/2− 1) in this case.

Exponentiation to the first factor is computed on Lines 2-4. Powering to 26m is performed

using a simple conjugation. This is followed by a multiplication and an inversion on

F212m . The 23m and −24m2(m+1)/2 terms of the second factor are computed on Lines 5-9,

requiring four applications of the Frobenius map and (m + 1)/2 squarings. These terms

are immediately multiplied by z3, the first factor of the exponent. The (−1) term of

the second factor is included last as the inverse of an element that has been powered to

any multiple of (26m − 1) is returned by the conjugate of that element. Exponentiation

requires a total of four Frobenius actions, (m + 1)/2 squarings, two conjugations, three

multiplications and an inversion on F212m .

Algorithm 11 Exponentiation of ηT (P,Q) to 〈P,ψ(Q)〉MN in genus 2, m = 103 case

Input: f = ηT (P,Q), where f ∈ F212m

Output: z = 〈P,ψ(Q)〉MN , where z ∈ F212m

1: z1 ← f

2: z2 ← conj(z1)

3: z1 ← z−11

4: z3 ← z2.z1

5: z4 ← (z3)
23m

6: z5 ← (z4)
2m

7: for (i← 0, i < (m+ 1)/2, i← i+ 1) do

8: z5 ← z5.z5

9: end for

10: z5 ← z5.z3

11: z5 ← conj(z5)

12: z ← z4.z5

Return: z
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The hardware implementation of all operations required to compute a Tate pairing using

Algorithms 10 and 11 are described in the next section.

5.3 Hardware Units for Pairing Computation

Various strategies for fast Tate pairing computation were explored since no hardware

implementations of any genus 2 pairings existed in the literature at the time of design.

An embedding degree of k = 12 means that the extension field arithmetic operations

require many computations on F2m . A direct implementation may, therefore, result in

a prohibitively large area footprint. The F212m/F26m/F2m tower of extensions is again

advantageous as operations on F212m can be expressed in terms of operations on F26m ,

thereby simplifying the design process. Arithmetic on F2m is implemented using the F2m

hardware architectures previously discussed in Section 4.3.

The principal operations required for ηT pairing computation are:

1. The precomputation of the powers of the squares of the input coordinates before the

for loop of Algorithm 10.

2. Calculation of the α and β terms on each iteration of the loop.

3. Computation of fcurrent = cmul(α, β), where cmul is a special routine that performs

the multiplication of α by β in an efficient manner.

4. The F212m multiplication of f by fcurrent.

5. The final operations that are required to return an ηT pairing value.

6. Exponentiation to the Tate pairing according to Algorithm 11.
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The genus 2 Tate pairing processor contains a precomputation unit, a unit for the calcu-

lation of α and β, a dual mode multiplication unit that can perform either cmul(α, β) or

F212m multiplication, and an exponentiation unit. These units are discussed in this section.

The interconnectivity of these units at the upper architectural levels of the processor will

be discussed in Section 5.4.

5.3.1 The Precomputation Unit

The precomputation of (x1[i], y1[i]) = (xP
2i , yP

2i) and (x2[i], y2[i]) = (xQ
2i , yQ

2i) is re-

quired for all 0 ≤ i ≤ m − 1. Precomputation modules have been created that calculate

and store the required powers of squares for each of the input coordinates. Each module

contains m×m bit block RAM for storage, an F2m squarer and a control unit to handle

reads and writes. The xP module is illustrated in Figure 5.1. On initiation of the pairing

computation, write en is set, a counter within the control unit iterates from 0 to m − 1

and the required powers of xP are stored.

On completion of the precomputation stage, the main for loop of Algorithm 10 can pro-

ceed. On each iteration, powers of squares must be read according to the indices defined

on Lines 7 and 8. These indices must be calculated modulo m. Hardware implementation

of modular reduction can be avoided in this case as the indices rely solely on the field size

m and the iterator i. The VHDL for the genus 2 processor is generated by C++ software.

This means that once the variable defining the field size has been defined, the indices that

are required for all values of i can be generated in software and stored as constants in

hardware. The indices are stored in arrays within the control unit. The control system

uses the indices to generate the desired RAM address signals on each iteration and ensures

that the correct powers are supplied.

The full precomputation unit is illustrated in Figure 5.2. It contains a precomputation

module for each of the m-bit input coordinates. The calculations of α and β each require

the availability of 2 x1[i] values, 2 x2[i] values, 1 y1[i] value and 1 y2[i] value on each
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Figure 5.1: Precomputation Module for xP

iteration. For this reason, the xP and xQ modules contain dual port RAM and the yP

and yQ modules contain single port RAM. The precomputation unit has α and β modes,

the selection of which is controlled by the read mode input signal. In the first mode the

m-bit powers required for α are provided while, in the second mode, the m-bit β powers

are provided. The precomputation unit computes and stores all powers of the input

coordinates in (m+ 2) clock cycles and ensures the timely provision of powers during loop

iteration.
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Figure 5.2: Precomputation Unit

5.3.2 Unit for the Calculation of α and β

The values of α, β ∈ F212m are calculated on Lines 9-18 of Algorithm 10. Similarities

between the terms of these variables can be exploited so that resources can be shared.

The unit that has been designed for the calculation of α and β is illustrated in Figure

5.3. It receives six m-bit inputs directly from the precomputation block and a 1-bit

input corresponding to the value of γ. The input values are dependent on the read mode

control signal that is used to set the precomputation block to either α or β mode. The first

F2m multiplier calculates d.x2[k3] in α mode and f2.x2[k1] in β mode. Two multiplexers

are used to select the inputs to the second multiplier as its inputs will be on different

precomputation buses in the different modes. A mode signal, with the same value as

135



read mode, is used on the select line of these multiplexers. The second multiplier calculates

c.x2[k2] when in α mode and (x1[k5] + x2[k2]).x1[k6] when in β mode, the results of which

are added to a third term to produce either a or e, respectively. The b, c, d terms of α and

f2, g, h terms of β require additions alone and are collected from m-bit XOR gates. The

unit contains a total of two 1-bit XOR gates, eight m-bit XOR gates and two m-bit digit

serial multipliers of digit size D. An α or β result is returned in (m/D + 2) clock cycles.
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Figure 5.3: Unit for the calculation of α and β

5.3.3 Unit for Computation of cmul(α, β) and F212m Multiplication

The values of α, β ∈ F212m must be multiplied together on Line 19 of Algorithm 10. This

is performed by building a dedicated routine, cmul(α, β), that takes advantage of the

sparse input polynomials. The resulting element, fcurrent, must then be multiplied by the

accumulating polynomial f , which requires a multiplication on F212m .
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As will be seen in this section, multiplication on F212m requires three multiplications on

F26m and a number of other, less expensive, arithmetic operations. The computation

of cmul(α, β) requires one F26m multiplication and some other, trivial, operations. A

dedicated extension field multiplication unit containing three F26m multiplication modules

would require a prohibitively large area, even with the use of F2m multipliers of low digit

size. Due to the similarities between the arithmetic operations required by cmul and full

F212m multiplication, the design of a unit for the shared computation of both operations

is attractive from an efficiency perspective. Such a unit has been designed, the main

component of which is one F26m multiplier. Other hardware modules are included in this

unit so that both cmul(α, β) and F212m multiplication can be computed using only one

such sub-field multiplier.

In this section, multiplication on F212m is first expressed in terms of arithmetic on F26m .

The operations required by the cmul routine are also discussed. An architecture for fast

F26m multiplication is provided. A dual mode multiplication unit that can perform both

cmul(α, β) and multiplication on F212m efficiently is then presented.

Multiplication on F212m

An efficient technique for multiplication on fields of type F(qn)2 is described in [97]. Using

this method, the composition and reduction stages of F212m multiplication can be per-

formed in one step. Recall from Section 5.2 that the irreducible polynomial defining F26 is

x6+x5+x3+x2+1. Let w ∈ F26 be a root of this polynomial. The irreducible polynomial

defining F212 is y2 + y + w5 + w3. Let s0 ∈ F12 be a root. Then s0
2 + s0 = w5 + w3.

Let a = u1 + s0v1 and b = u2 + s0v2, where a, b ∈ F212m and u1, u2, v1, v2 ∈ F26m . Then

c = a.b, where c ∈ F212m , is given by

c = u3 + s0v3 (5.22)
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and

u3 = u1.u2 + (w5 + w3)(v1.v2)

v3 = (u1 + v1).(u2 + v2) + u1.u2

The multiplication of (w5 + w3) by (v1.v2) can be performed by creating a composition

polynomial and reducing by g. This process does not require multiplication and can be

achieved using F2m addition alone. This means that multiplication on F212m requires three

F26m multiplications, four F26m additions and 13 F2m additions that are required for the

multiplication of (w5 + w3) by (v1.v2).

The Multiplication of α by β

The sparse nature of the α and β polynomials means that computing their product using

a full F212m multiplication would be inefficient. From Algorithm 10, α is given by

α = a+ bw + cw2 + dw4 + s0 (5.23)

where a, b, c, d ∈ F2m . This can be rewritten as α = u1 + s0, where u1 ∈ F26m . Similarly,

β = u2 + s0.

The routine cmul(α, β) = α.β can now be defined. It is computed according to

cmul(α, β) = (u1 + s0).(u2 + s0)

= u1.u2 + s0(u1 + u2) + s20

(5.24)

Recall that s20 + s0 = (w5 + w3). Substituting for s20 gives

cmul(α, β) = u1.u2 + s0(u1 + u2) + s0 + (w5 + w3)

= (u1.u2 + w5 + w3) + s0(u1 + u2 + 1)
(5.25)
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The calculation of the u component, therefore, requires one F26m multiplication and two

1-bit additions. The calculation of the v component requires one F26m addition and one

1-bit addition.

F26m Multiplication

The most expensive operation required by both cmul(α, β) and by F212m multiplication is

multiplication on F26m . The pairing processor contains a dedicated module for fast F26m

multiplication for this reason. The Karatsuba algorithm [92] for polynomial multiplication

can be used to perform multiplication on F26m . This algorithm is advantageous as it

reduces the quantity of required F2m multiplications at the expense of more additions,

which are less expensive.

Consider the multiplication c = a.b, where a, b, c ∈ F26m . Let a =
∑i=5

i=0 aiw
i, b =∑i=5

i=0 biw
i and c = a.b =

∑i=5
i=0 ciw

i, where all ai, bi, ci ∈ F2m . The calculation of c

begins with a composition stage, in which a degree 10 polynomial, c′, is computed. The a

and b polynomials are first separated into lower and upper half polynomials of degree 2:

a = (a0 + a1w + a2w
2) + w3(a3 + a4w + a5w

2)

= Al + w3Ah
(5.26)

b = (b0 + b1w + b2w
2) + w3(b3 + b4w + b5w

2)

= Bl + w3Bh
(5.27)

Three polynomials are then computed according to

P = Al.Bl

Q = (Al +Ah).(Bl +Bh)

R = Ah.Bh

(5.28)

where P =
∑4

i=0 piw
i, Q =

∑4
i=0 qiw

i, R =
∑4

i=0 riw
i and all pi, qi, ri ∈ F2m .
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These degree 2 multiplications can be performed by again separating the inputs into lower

and upper halves. Let a′ =
∑2

i=0 a
′
iw

i, b′ =
∑2

i=0 b
′
iw

i, and d′ =
∑4

i=0 d
′
iw

i where all

a′i, b
′
i, d
′
i ∈ F2m . The degree 4 polynomial d′ = a′.b′ can be computed by first performing

the following six F2m multiplications:

mul0 = a′0.b
′
0 mul1 = a′1.b

′
1 mul2 = a′2.b

′
2

mul3 = (a′0 + a′1)(b
′
0 + b′1) mul4 = (a′1 + a′2)(b

′
1 + b′2) mul5 = (a′0 + a′2)(b

′
0 + b′2)

The coefficients of the degree 4 polynomial d′ is given in vector form by

d′0

d′1

d′2

d′3

d′4


=



mul0

mul3 +mul1 +mul0

mul1 +mul5 +mul0 +mul2

mul4 +mul1 +mul2

mul2


(5.29)

The computation of d′, therefore, requires a total of six F2m multiplications and 13 F2m

additions.

Once calculated, the P , Q and R polynomials of Equation (5.28) can be used to evaluate c′,

the degree 10 composition polynomial of the original F26m multiplication. This polynomial

is given by

c′ =

4∑
i=0

piw
i +

7∑
i=3

(pi−3 + qi−3 + ri−3)w
i +

10∑
i=6

ri−6w
i (5.30)

This composition polynomial must be reduced modulo the irreducible polynomial x6 +

x5 + x3 + x2 + 1. The final, reduced, result c = a.b is returned according to

c0

c1

c2

c3

c4

c5


=



c′0 + c′6 + c′7 + c′8

c′1 + c′7 + c′8 + c′9

c′2 + c′6 + c′7 + c′9 + c′10

c′3 + c′6 + c′10

c′4 + c′7

c′5 + c′6 + c′7


(5.31)
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The degree 2 polynomial multiplication required during the calculation of the P , Q and

R polynomials of Equation (5.28) is the most expensive aspect of F26m multiplication.

A hardware architecture has been created for accelerated degree 2 multiplication and is

illustrated in Figure 5.4. The module contains six digit-serial F2m multipliers and 13 F2m

adders. The multipliers operate in parallel. A degree 2 multiplication result is returned

in (m/D + 2) clock cycles, where D is the digit size of the multipliers.
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Figure 5.4: Module for degree 2 polynomial multiplication using the Karatsuba method

The hardware unit dedicated to the fast implementation of F26m multiplication is illus-

trated in Figure 5.5. The unit receives a pair of 6m-bit signals A and B and returns

C = A.B on a 6m-bit output bus. The architecture contains three degree 2 multiplication

modules so that P , Q and R can be computed in parallel. The F2m additions that are

required at the end of the composition stage and during reduction are combined, since

some cancellations occur and nesting is possible. The unit returns an F26m multiplication

result in (m/D + 4) clock cycles.
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Figure 5.5: The F26m Multiplication Unit

Dual Mode Multiplication Architecture

A hardware architecture has been designed that implements both the cmul routine and

F212m multiplication. This is known as the dual mode multiplication unit and is shown

in Figure 5.6. The unit takes as input two 12m-bit operands and separates each input

into 6m-bit u and v components. The result of a cmul routine or an F212m multiplication

appears on the 12m-bit res output bus on completion.

The most costly arithmetic operation is F26m multiplication. The cmul computation re-

quires one F26m multiplication, while multiplication on F212m requires three. The F26m

multiplier has a relatively large area footprint due to the quantity of parallel F2m multi-

pliers required to ensure a high speed computation. The dual mode multiplier contains

only one F26m multiplier for this reason.

In the first mode of operation, cmul(α, β) is computed according to Equation (5.25). The

6m-bit u components of α and β appear at the u1 and u2 unit inputs. The sel1 line is

set to 0 and u1.u2 is computed by the F26m multiplier. A 1 is added to the w5 and w3
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Figure 5.6: The Dual Mode Multiplier

components of the result before it reaches the multiplexer controlling the bus sent to the u

component of the result. The v component of cmul(α, β) is given by (u1 + u2 + 1), which

can be implemented using two m-bit adders and one 1-bit adder. The sel2 line is set to 1

so that the correct outputs are collected on the u and v output buses.

In the second mode of operation, an F212m multiplication is performed according to Equa-

tion (5.22). Let a = u1 +v1s0, b = u2 +v2s0 and c = a.b = u3 +v3s0, where a, b, c ∈ F212m .

The values of u1, u2, v1, v2 ∈ F26m appear at the input buses before the F212m multipli-

cation c = a.b is initiated. The sel1 line is first set to 0 and the F26m multiplication

u1.u2 performed. Once available, the result is stored in a 6m-bit register at the output

of the F26m multiplier. The sel1 line is then set to 1 and v1.v2 is computed and stored.

Finally, the sel1 line is set to 2 and (u1 + v1).(u2 + v2) is computed and stored. The

value of u3 is given by u1.u2 + (w5 +w3)(v1.v2). The constant multiplication of (w5 +w3)

by (v1.v2) is implemented combinatorially using XOR gates contained within the const

module. The result is added to (u1.u2) using a 6m-bit adder. The value of v3 is given by

(u1 + v1).(u2 + v2) + (u1.u2), which is implemented using a 6m-bit adder. The sel2 line is

set to 0 so that the correct u and v values are collected on the res output bus.
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The dual mode multiplication unit returns a result very quickly while ensuring that re-

sources are used efficiently. The cmul(α, β) routine is performed in (m/D+8) clock cycles,

where D is the digit size of the multipliers. An F212m multiplication result can be returned

in (3m/D + 20) clock cycles.

5.3.4 The Exponentiation Unit

Exponentiation of the ηT result to a Tate pairing value is performed according to Algorithm

11. As discussed in Subsection 5.2.2, exponentiation requires four Frobenius actions,

(m + 1)/2 squarings, two conjugations, three multiplications and one inversion, all of

which are performed on F212m . Multiplication on F212m has already been discussed. The

other operations can be expressed in terms of arithmetic on F26m . These F26m arithmetic

operations are then implemented in the same way as in the F24m case of the previous

chapter.

Let a = u+ s0v, where a ∈ F212m and u, v ∈ F26m . The conjugate, ã, of a is given by

ã = (u+ v) + s0v (5.32)

The value of a2 is computed according to

a2 = u2 + (w5 + w3)v2 + s0v
2 (5.33)

The Frobenius computation depends on the value of m modulo 12. The next section

contains results returned by a pairing processor when implemented using a field size of

m = 103, which means that m mod 12 ≡ 7. The Frobenius map in this case is

aq = uq + (1 + w3 + w5)vq + s0v
q (5.34)

Inversion on F212m can be performed with only one F26m inversion and a number of less
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expensive operations. The computation

e =
(
u.(u+ v) + (w5 + w3)v2

)−1
(5.35)

is first performed, where e ∈ F26m . The inverse of a is then given by

a−1 = (u+ v).e+ s0(v.e) (5.36)

The inversion on F212m , therefore, requires one F26m inversion, three F26m multiplications,

one F26m addition and the 13 F2m additions required for the constant multiplication of v2

by (w5 + w3). The F26m inversion is computed using the Extended Euclidean Algorithm

(previously discussed in Subsection 4.4.5) and requires one F2m inversion and several

multiplications and additions on F2m .

To ensure a fast exponentiation, the pairing processor contains a dedicated exponentiation

unit. This unit contains modules implementing conjugation, squaring and the Frobenius

map. These operations require combinatorial logic alone. The unit also contains an F2m

inverter. The required extension field multiplications are performed by the dual mode

multiplier. The sequence of operations is controlled by a system at the top level of the

pairing processor.

5.4 The Characteristic 2 Genus 2 Tate Pairing Processor

The hardware processor performing a fast genus 2 Tate pairing computation is presented

in Figure 5.7. The processor receives four m-bit input buses on which the xP , yP , xQ, yQ

input coordinates are loaded. The Tate pairing 〈P,ψ(Q)〉MN appears on the 12m-bit result

output bus on computation completion.

The processor contains the precomputation unit, the unit for the calculation of α and β,

the dual mode multiplication unit and the exponentiation unit. Recall that, in the elliptic
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Figure 5.7: The Genus 2 Tate Pairing Processor

curve processor described in the previous chapter, all variables were stored in registers

at the inputs and outputs of the computation units. The genus 2 processor employs a

different storage scheme. In this case, all computation stages of the main for loop in

Algorithm 10 cannot be performed in parallel. The dual mode multiplication unit must

perform both the cmul operation and subsequent F212m multiplication of the result by the

accumulating function f . A central storage system provides the best solution in this case.

Dual port 12m-bit RAM is used instead of registers. The values of α and β, padded to

12m bits, are stored using the DInA RAM input. The RAM outputs are each connected

to both the dual mode multiplication unit and the exponentiation unit. A multiplexer

is used to select the result to be sent to the DInB RAM input on the 12m-bit res bus.

Exponentiation can be performed with ease by performing the required F2m inversion and

combinatorial operations in the exponentiation unit, storing the intermediate variables in

RAM and accessing the dual mode multiplication unit when required. This system also

provides a straightforward solution to the problem of routing large buses at the top level

of the processor.

The control scheme is relatively uncomplicated. The system contains a finite state machine

that outputs all necessary control signals while stepping through the required operations.

These signals are used to handle reading from RAM, to manage the reset and enable

sequences of the arithmetic units and to store results after the correct number of clock

cycles.
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On processor reset, all required powers of squares of the input coordinates are immedi-

ately computed and stored in the precomputation block. The controller then initiates the

operations that are required during the for loop of Algorithm 10. Note that the com-

putation of α and β does not depend on the results from any previous iteration of the

loop as, after precomputation, all input operands are available. On the first iteration the

values of α and β are calculated and stored. The value of fcurrent = cmul(α, β) is then

computed. After this, the F212m multiplication f.fcurrent begins. The values of α and β

that will be required on the second iteration are computed in parallel with this extension

field multiplication. This means that the cmul operation of the second iteration can begin

immediately after the F212m multiplication of the first iteration. This system provides a

saving of 2(m/D + 2) clock cycles on each loop iteration after the first. Recall from Sub-

section 5.3.3 that the cmul operation can be performed in (m/D + 8) clock cycles, while

F212m multiplication requires (3m/D+ 20) clock cycles. This means that each iteration is

completed in (4m/D+ 28 + θ) clock cycles, where θ is a relatively small number of cycles

required by the control system and for reads from and writes to RAM.

On completion of the for loop, the final operations of Algorithm 10 must be performed.

These computations are implemented using both the dual mode multiplier and the com-

binatorial logic within the exponentiation unit. Exponentiation of the ηT value to a Tate

result is then performed according to Algorithm 11. On completion, the Tate pairing value

〈P,ψ(Q)〉MN is available on the 12m-bit result bus at the output of the processor.

5.4.1 Results and Comparisons

The architectures described in this chapter were defined at the VHDL RTL level. The code

was automatically generated by the C++ design system. The processor was implemented

on the Xilinx Virtex-II Pro FPGA (xc2vp100-6ff1696) containing 44,096 slices. This is

the same FPGA on which the characteristic 2 elliptic curve processor was implemented in

the previous chapter. The results in this subsection are for an implementation on the field

F2103 , which has irreducible polynomial x103+x9+1. The extension field is 12×103 = 1236
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bits in size.

The results returned by processor implementations with F2m multipliers of digit size 4, 8,

12 and 16 are presented in Table 5.1. A full Tate pairing 〈P,ψ(Q)〉MN is performed in each

case.

Table 5.1: Results returned by the genus 2 Tate pairing processor for m = 103

D Area Utilisation Clock Cycles AC Product

(Bits) (Slices) (Msl.cycles)

4 21021 48% 10506 221

8 24290 55% 6992 170

12 27182 62% 5805 157

16 30464 69% 5412 165

The D = 16 case returns a Tate pairing in 5,412 clock cycles. This implementation requires

30,464 slices and has an AC product of 165 Mslice.cycles. The D = 12 implementation has

a lower AC product as the extra 3,282 slices required in the D = 16 case results in a saving

of only 393 clock cycles. As the number of cycles required for multiplication decreases,

the impact of the relatively constant number of cycles required for combinatorial logic,

storage and control becomes more significant. Increasing the digit size beyond 16 further

reduces efficiency. It can also result in a reduction in clock frequency. The D = 12 case

is the most attractive option, requiring 27,182 slices and returning a Tate pairing result

in only 5,805 cycles. As in the processor of the previous chapter, it would be interesting

to investigate slice usage on larger FPGAs due to the relatively high occupancy of these

implementations.

Barreto et al. provide the results of a software computation of the genus 2 ηT pairing

in [63]. An ηT pairing is returned in 1.8 ms when computed on a Pentium IV processor

operating at 3 GHz. Note that exponentiation to the Tate pairing is not performed. The

custom hardware processor provides a significant acceleration over this result, even for low

frequencies.
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At the time, there had been no published hardware implementations of any genus 2 pairing.

The results can, however, be compared fairly against those returned by the characteristic 2

elliptic curve processor of the previous chapter. That processor returned its fastest pairing

in 4,818 clock cycles with a corresponding AC product of 212 Mslice.cycles, the lowest of

those implementations. The D = 12 genus 2 processor has a significantly smaller AC

product of 157 Mslice.cycles. Furthermore, the genus 2 D = 12 case outperforms all but

one of the elliptic curve processors. It can, for example, return a pairing in 5,805 cycles

using 27,182 slices. Conversely, the D = 8 elliptic implementation requires a similar 6,200

clock cycles but it is larger by 13,896 slices. The genus 2 implementations are the more

efficient in all cases.

5.5 Conclusions

Computation of the genus 2 Tate pairing using the ηT method has been discussed in this

chapter. The required operations have been separated into distinct stages. The extension

field operations that underpin these stages have been expressed in a manner that makes

them suited to parallel hardware implementation. Custom hardware units that implement

the pairing computation stages rapidly and efficiently have been presented. A genus 2 Tate

pairing processor comprising these units has been implemented on an FPGA and results

presented.

The more complex pairing computation and higher embedding degree previously provided

a barrier to Tate pairing implementation on genus 2 hyperelliptic curves. This work

shows that genus 2 curves offer a viable alternative to elliptic curves for Tate pairing

implementation on hardware platforms. Furthermore, if the security level of a system

based on the Tate pairing must be increased, the field size will grow at a lower rate in the

genus 2 case. This means that a hardware processor accelerating the genus 2 Tate pairing

may become increasingly attractive.
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The topics and architectures discussed in this chapter formed the basis for papers that

were published in [9] and [10].
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Chapter 6
A Design System for Pairing

Computation Using Flexible

Processors

6.1 Introduction

Flexibility is an important aspect of hardware processors that are used in a cryptographic

context. If the security level of an application must be changed, the size of the finite fields

on which the algorithms are implemented must also be changed. It should also be kept in

mind that cryptographic systems must operate in a broad range of environments. A large

server side system may, for example, have to communicate with client side devices that

are much more constrained in terms of area. Speed of pairing computation may be the

most desirable property in the former environment, while a very small footprint may be

required in the latter. The characteristic 2 elliptic and genus 2 processors of the previous

chapters return pairing results in a very low number of clock cycles. Their efficient use
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may, however, require area resources that are not available in some systems.

The computation and hardware implementation of the Tate pairing on characteristic 3

elliptic curves has not been discussed until this point in the thesis. A supersingular char-

acteristic 3 elliptic curve has an embedding degree of 6, larger than the characteristic

2 case of 4. It is generally more difficult to perform attacks on characteristic 3 pairings.

These factors mean that a smaller field size can be used in the characteristic 3 elliptic case.

Hardware is, however, a binary environment and characteristic 3 storage and arithmetic

operations have an area overhead. As an example, Kerins et al. [98] describe a charac-

teristic 3 architecture that implements the Tate pairing using the Duursma Lee methods

on F397 . Their architecture contains several units for computation on F36m . They return

a Tate result in 12,750 clock cycles but estimate a large area footprint of 55,616 slices. A

different approach was taken to the hardware implementation of characteristic 3 pairings

in this work to reduce the required resources.

A flexible architecture for Tate pairing computation has been created. Its architectural

parameters can be varied in a manner that supports both characteristic 2 and 3 Tate

pairing implementation. The aim is to provide implementation solutions for a large range

of environments. The architecture does not contain any units that are dedicated to ex-

tension field arithmetic operations: it contains a variable quantity of subfield modules

alone. A flexible C++ software system has also been created for the efficient generation,

analysis and implementation of these processors. It contains a class for the automatic

generation of instruction sequences according to high level algorithmic descriptions. The

system significantly reduces the level of intervention required by a user when designing

the architectures discussed in this chapter.

A processor with some similar features was presented by Byrne et al. in [99]. Their ar-

chitecture can be selected to contain modules performing arithmetic on F2m , on Fpm for

p ≥ 2, and on Fp, where p is a large prime. However, in each case the quantity of mod-

ules cannot be varied. Implementation results are returned for elliptic curve point scalar

multiplications: pairings are not performed. Although the VHDL for the processor is gen-
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erated in software, the instruction sequences must be defined manually. The large variety

of subfield and extension field operations required for pairing computation means that the

manual creation of instruction sequences would be a significant challenge. It should be

noted that the author of this thesis provided some assistance during the initial stages of

the creation of this system. Subsequently, Byrne et al. discussed side channel attacks (de-

scribed in Subsection 7.2.2) on systems implementing elliptic curve scalar multiplication

and pairings [100], [101].

Characteristic 3 elliptic curve Tate pairing computation using the ηT method has not yet

been introduced and is outlined in Section 6.2. The hardware implementation of arithmetic

on F3 and F3m is discussed in Section 6.3. Arithmetic on F36m is also discussed with regards

to its computation using F3m modules alone. The pairing processor is described in Section

6.4. The design system that has been created to aid in the creation and prototyping of the

processor is also outlined. Characteristic 2 and 3 pairing results returned by the processor

when implemented using various architectural parameters are also presented.

6.2 The Characteristic 3 Elliptic Curve ηT and Tate Pairings

Duursma and Lee provide efficient techniques for the computation of pairings for p ≥ 3

on a small subset of curves in [62]. Barreto et al. generalise these methods in [63] and

show that the size of the computational loop can be halved on supersingular curves of

characteristic 3 using the ηT method. This section provides an overview of Tate pairing

calculation on characteristic 3 elliptic curves using these techniques.

Let E(Fq) : y2 = x3 − x + b be an elliptic curve defined on Fq = F3m , where b = ±1 and

m is not divisible by 6. This curve has embedding degree k = 6. The order of the curve is

#E(F3m) = 3m+1 + b3(m+1)/2 if m ≡ (1, 11) mod 12 or #E(F3m) = 3m+1− b3(m+1)/2 if

m ≡ (5, 7) mod 12. The ηT and Tate pairings of this section are calculated on the points

P = (xP , yP ) and Q = (xQ, yQ), where P,Q ∈ E(Fq).
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A distortion map that allows denominator elimination is available. This map is ψ(x, y) =

(ρ − x, σy) where ρ, σ ∈ F36m such that σ2 = −1 and ρ3 = ρ + b. The relationships

ρ3
2

= ρ+ 2b and ρ3
3

= ρ are useful for pairing computation. A fast tripling formula exists

on the curve. Given a point P = (x, y), then [3]P = (x3, y3) where x3 = (x3)3 − b and

y3 = −(y3)3. Let π be the 3-power Frobenius on Fq and let φ be a function such that

φ(x, y) = (x− b,−y). Then

[3]P = φπ2(x, y) (6.1)

Multiplication of a point by q = 3m is given by [q]P = [3m]P = φmπ2m(x, y) = φm(x, y)

since π2m(x, y) = (x, y). The automorphism on the curve is, therefore, given by γ = φm.

The F36m field is constructed as a degree 3 extension of F32m . The F32m field is generated

by an irreducible polynomial g such that

F32m ≡ F3m [y]/g(y) where g(y) = y2 + 1 (6.2)

The F36m extension is then given by

F36m ≡ F32m [z]/h(z) where h(z) = z3 − z − b (6.3)

The use of this extension and these particular irreducible polynomials means that the

distortion map is simplified and that the complexity of arithmetic on the extension field

is minimised.

Members of F36m can be represented using the basis (1, σ, ρ, σρ, ρ2, σρ2). An element

a ∈ F36m can be written as

a = a0 + a1σ + a2ρ+ a3σρ+ a4ρ
2 + a5σρ

2 (6.4)

where a0, a1, a2, a3, a4, a5 ∈ F3m . A 3-tuple representation can also be used:

a = â0 + â1ρ+ â2ρ
2 (6.5)

where â0 = a0 + a1σ, â1 = a2 + a3σ, â2 = a4 + a5σ and â1, â1, â2 ∈ F32m .
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Duursma and Lee use a group of order N = q3 + 1 to compute the Tate pairing. Barreto

et al. relate this to the ηT pairing using Theorem 3.3.1. In this case, T = q = 3m.

The remaining variables are given by a = 3, L = 1 and c = 0. The value of M is

(qk − 1)/N = (q6 − 1)/(q3 + 1) = q3 − 1. The relationship between the ηT and Tate

pairings is given by (
ηT (P,Q)M

)3q2
= 〈P,ψ(Q)〉MN (6.6)

Further optimisations are possible. Let N = #E(F3m) = 3m+1±3(m+1)/2. Given a point

P ∈ E(Fq) then [N ]P =∞. It has already been established that an automorphism exists

on the curve such that γ(P ) = [q]P . It follows that

γ(P ) = [q]P

= [q]P − [N ]P

= [q −N ]P

= [3m − (3m + 1± 3(m+1)/2)]P

= [∓3(m+1)/2 − 1]P

The ηT pairing can, therefore, be calculated with T = ∓3(m+1)/2 − 1. The remaining

variables can now be selected. Since T = q+cN then c must equal −1. From T a+1 = LN ,

choose a = 3. This means that L = ∓3(m+3)/2. The value of M is given by M =

(36m − 1)/N = (36m − 1)/(3m + 1± 3(m+1)/2) = (33m − 1)(3m + 1)(3m ∓ 3(m+1)/2 + 1). In

this case, the ηT pairing is related to the Tate pairing by(
ηT (P,Q)M

)3T 2

=
(
〈P,ψ(Q)〉MN

)L
(6.7)

The computation of the ηT pairing, followed by the conversion of the result to a Tate

pairing value, are discussed for the remainder of this section.
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6.2.1 Computation of the ηT Pairing

Given the points P,Q ∈ E(F3m), then the ηT pairing is calculated according to ηT (P,Q) =

fT,P (P,ψ(Q)), where fT,P is the Miller function to be evaluated. The intermediate func-

tions are computed using the fast tripling operation and the evaluations at ψ(Q) are

accumulated. For any point A = (xA, yA) on the curve then

gA(x, y) = y3Ay − (x3A − x+ b)2 (6.8)

where div(gA(x, y)) = 3(A) + (−3A)− 4(∞).

If ηT (P,Q) is to be computed and T is negative, then the input point P should be re-

placed by −P and −T should be used for computation. In practice, this means that

T = 3(m+1)/2 + b and −P are used when m ≡ (1, 11) mod 12 whilst T = 3(m+1)/2 − b
and P are used when m ≡ (5, 7) mod 12. From Equations (3.13) and (3.14), the Miller

function can be evaluated according to

fT,P (ψ(Q)) =

(
(m−1)/2∏
i=0

(
g[3i]P (ψ(Q))

)3(m−1)/2−i
)
.l(ψ(Q) (6.9)

where l(ψ(Q)) is the line function arising from the final addition of [3(m+1)/2]P with ±P .

As in the characteristic 2 case, the exponentiations to 3(m−1)/2−i on each iteration can be

avoided if the Miller function is accumulated in a different manner. Let P ′ = [3(m−1)/2]P .

From Equation (6.1), the value of P ′ can be computed on each iteration according to

P ′ = [φ(m−1)/2πm−1]P = φ(m−1)/2(x
1/3
P , y

1/3
P ) (6.10)

The Miller function can now be computed according to

fT,P (ψ(Q)) = l(ψ(Q)).

(
(m−1)/2∏
j=0

g[3−j ]P ′(ψ(Q))3
j

)
(6.11)

The definition of the line function depends on the value of m mod 12. The results at

the end of this chapter are returned by implementations of the Tate pairing processor on
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fields with m = 79 and m = 97. These values return m mod 12 ≡ 7 and m mod 12 ≡ 1,

respectively. In this section, only the line function for the latter case is provided for

simplicity. The former case differs very slightly. Let l(x, y) be the final line function. This

has slope λ = −yP . It can be shown that

l(x, y) = λ(x− xP ) + byP (6.12)

The cube roots that are required for the calculation of P ′ on each iteration can be avoided

by precomputing a set of cubes and accessing them in reverse order. This means that a

cube rooting module is not required in a hardware implementation.

The intermediate functions are calculated using Equation (6.8). For simplicity, the nota-

tion a(i) = a3
i

is used. Now

g[3−j ]P ′(ψ(Q))3
j

= (σy
(−j)
P y

(j)
Q − u

2)− ρu− ρ2 (6.13)

where u = x
(−j)
P + x

(j)
Q + b.

The operations required for the computation of ηT (P,Q) in the m mod 12 ≡ 1 case are

provided in Algorithm 12. Note that the notation used on Line 15 refers to a ceiling

function. The ceiling of a rational number a, denoted dae, is the the least integer that is

greater than or equal to a. The elliptic curve used for this work is y2 = x3 − x− 1, which

means that b = −1. The required cubes of xQ and yQ are first precomputed. The values

calculated in the for loop of Lines 2-4 do not need to be stored. The cubes of the second

loop are stored in reverse order so that cube roots can be accessed with ease. The for loop

that evaluates the intermediate functions g ∈ F36m and accumulates the results begins on

Line 9. The individual components of g are calculated on Lines 10-12. Note that squaring

is not a trivial operation and is performed by multiplication of an element with itself to

avoid the necessity of a subfield squaring module in the pairing processor. A total of one

addition, two negations and two multiplications on F3m are required for the computation

of g. A 1-bit addition is also required. The value of g is multiplied by the accumulating

function f on Line 14 using a special multiplication routine dmul(f, g). This routine takes
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advantage of the sparse nature of the g polynomial to minimise the quantity of required

F3m multiplications. This special multiplication is described in the next section. On

loop exit, the line function is calculated, requiring one addition, two negations and one

multiplication on F3m . A 1-bit addition must also be performed. Finally, the result is

multiplied by the accumulated function f and the value of ηT (P,Q) is returned.

Algorithm 12 Computation of ηT (P,Q) on E(F3m) : y2 = x3 − x− 1, m mod 12 ≡ 1

Input: P = (xP , yP ), Q = (xQ, yQ), where P,Q ∈ E(F3m)

Output: f = ηT (P,Q), where f ∈ F36m

1: Initialise: f ← 1

2: for (i← m− 1, i > (m+ 1)/2, i← i− 1) do

3: xQ ← xQ
3, yQ ← yQ

3

4: end for

5: for (i← (m+ 1)/2, i ≥ 0, i← i− 1) do

6: xQ ← xQ
3, yQ ← yQ

3

7: x′Q[i]← xQ, y′Q[i]← yQ

8: end for

9: for (i← 1, i ≤ (m+ 1)/2, i← i+ 1) do

10: u← xP + x′Q[i] + 1

11: c0 ← −u.u
12: c1 ← −yP .y′Q[i]

13: g ← c0 + (c1)σ + (−u)ρ+ (0)σρ+ (−1)ρ2 + (0)σρ2

14: f ← dmul(f, g)

15: if i < dm+1
2 e then

16: xP ← x3P , yP ← y3P

17: end if

18: end for

19: g ← −yP .(x′Q[i] + xP + 1) + (−y′Q[i])σ + (yP )ρ

20: f ← f.g

Return: f
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6.2.2 Exponentiation to the Tate Pairing

The value of f = ηT (P,Q) must be exponentiated to return a unique Tate pairing result.

Recall from Equation (6.7) that ((ηT (P,Q)M )3T
2

= (〈P,ψ(Q)〉MN )L. This means that the

Tate pairing 〈P,ψ(Q)〉MN can be calculated by raising f to the power M3T 2/L. This

exponentiation can be performed by unrolling the different factors and cancelling when

possible. This process was already discussed in detail in Chapters 4 and 5 and will not be

described in detail in this case.

The exponentiation to M requires ((m+1)/2+1) cubings, 10 multiplications, one squaring,

and an inversion, all performed on the extension field. The squaring is again performed

by multiplication. The trivial 3m-power Frobenius operation must also be performed nine

times. Exponentiation to 3T 2/L is computed by first raising ηT (P,Q)M to the power

3T 2q/L and then applying the (inexpensive) inverse q-power Frobenius map. Another m

cubings, one squaring, three multiplications and three conjugations, all on the extension

field, are required to return the unique Tate pairing value 〈P,ψ(Q)〉MN .

6.3 Implementation of Arithmetic on F3, F3m and F36m

The characteristic 3 arrangement of the processor discussed here contains modules for F3m

addition, subtraction, cubing, inversion and multiplication. Extension field operations are

computed using these modules. The hardware implementation of arithmetic on F3 and

F3m is discussed in this section. The extension field arithmetic operations required by the

Tate pairing are then presented in terms of the necessary subfield operations.
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6.3.1 Hardware Implementation of Arithmetic on F3

The binary nature of FPGAs means that storage and arithmetic operations on the F2 field

is convenient. It contains the elements 0 and 1, each of which can be stored in one bit.

The addition and multiplication operations are performed using one XOR and one AND

gate, respectively. Implementation of the F3 field is more complicated as it contains the

members 0, 1 and 2. These elements require two hardware bits for storage. In this work,

the representations {00, 01} = 0, {10} = 1 and {11} = 2 are used. This mapping system

means that a check if zero operation can be performed by inspecting the most significant

bit of an F3 element.

Addition, subtraction, multiplication and negation must be performed on F3. Fortunately,

FPGAs provide a relatively efficient means for the implementation of these operations.

Input-output maps for each of the 2-bit arithmetic operations can be placed on a pair

of 4-input, 1-output Look Up Tables (LUTs). Negation can be computed by subtraction

from 0 to save area.

6.3.2 Computation and Implementation of Arithmetic on F3m

Tate pairing computation requires addition, subtraction, cubing, multiplication and inver-

sion on F3m . These operations can be implemented in hardware in a similar manner to

that of the F2m field and are briefly discussed here.

Addition is performed coefficient-wise and is implemented on 2m LUTs, each with input-

output maps corresponding to F3 addition. Subtraction requires 2m of the F3 subtraction

LUTs. These operations are combinatorial and a result can be returned in one clock cycle.

Cubing is implemented using the techniques of Bertoni et al. [102]. Cubing is a linear

operation on F3. The F3m input polynomial is first padded with zeros, resulting in a
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composition polynomial of degree (3m − 3). This is then separated into lower, middle

and upper intermediate polynomials, each of degree (m− 1). Let f = xm ± xt ± 1 be the

irreducible polynomial defining F3m . If t < m/3 then the lower intermediate polynomial

does not need to be reduced. This is the case for the implementations of this work. The

middle and upper polynomials can be reduced in one step using combinatorial logic. A

total area of 4m LUTs are required and a result is returned in just one clock cycle.

Multiplication is performed using a characteristic 3 version of the digit-serial multipliers

previously described in Subsection 4.3.2. The multipliers operate on D coefficients of one

of the input polynomials at a time. A result is returned in m/D clock cycles. In the

characteristic 3 case, the input polynomials have twice the number of bits. As before,

a definition of the required subfield operations is generated by product and reduction

matrices that are dependent on the field size and irreducible polynomial. The characteristic

3 digit-serial multipliers require more area than their characteristic 2 counterparts as LUTs

must be used instead of gates. An overview of the characteristic 3 digit-serial multipliers

is available in [102].

Inversion on F3m is computed using a characteristic 3 variant of the extended Euclidean

algorithm. Implementation using this method is discussed in [103]. The F3m inverter

contains two chains of F3 arithmetic modules and some storage and control circuitry. A

result is returned in 2m clock cycles.

6.3.3 Arithmetic on F36m

The ηT pairing of Algorithm 12 requires multiplication of the g polynomial by the ac-

cumulating f polynomial on each iteration of the loop using the dmul(f, g) routine. An

extension field multiplication is also required after loop exit. Exponentiation of the re-

sult to the Tate pairing requires addition, subtraction, multiplication, squaring, cubing,

powering to q (the Frobenius mapping) and conjugation, all on F36m .
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Addition and subtraction are again performed coefficient-wise. Conjugation can be per-

formed by first converting the operand to a pair of F33m elements. This requires addi-

tion and subtraction alone. Extension field squaring is expensive and is performed by

multiplying elements by themselves. The other extension field operations are described

in more detail in this subsection. Note that the equations of this subsection are for a

field with m mod 3 ≡ 1 (as is the case for m = 97) with b = −1 on the elliptic curve

E(F3m) : y2 − x3 − x+ b. These are the parameters used by Barreto et al. in [63]. Minor

changes are required in other cases.

The dmul(f, g) Routine

The multiplication of f by g can be performed by regular extension field multiplication.

This would not, however, exploit the sparse form of g. It is important that this multipli-

cation be performed as efficiently as possible as it is performed on each iteration of the

main for loop.

The intermediate polynomials g have the structure

g = (g0 + g1σ + g2ρ+ (0)σρ+ (−1)ρ2 + (0)σρ2)

Consider f = (f0 +f1σ+f2ρ+f3σρ+f4ρ
2 +f5σρ

2), where f0, f1, f2, f3, f4, f5 ∈ F3m . The

dmul(f, g) routine proceeds with 13 F3m multiplications, all of which can be performed in

parallel, if desired.

mul0 = f0.g0 mul7 = (f0 + f1 + f2 + f3).(g0 + g1 + g2)

mul1 = f1.g1 mul8 = (f0 + f4).(g0 + 2)

mul2 = (f0 + f1).(g0 + g1) mul9 = (f1 + f5).(g1)

mul3 = f2.g2 mul10 = (f0 + f1 + f4 + f5).(g0 + g1 + 2)

mul4 = f3.g2 mul11 = (f2 + f4).(g2 + 2)

mul5 = (f0 + f2).(g0 + g2) mul12 = (f3 + f5).(g2 + 2)

mul6 = (f1 + f3).(g1)

(6.14)
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The final result c = dmul(f, g), where c ∈ F36m , is returned by the following two steps,

which require F3m addition, negation and subtraction alone.

t00r = mul0 −mul1 t00i = mul2 −mul0 −mul1
t11r = mul3 t11i = mul4

t22r = −f4 t22i = −f5
t01r = mul5 −mul6 t01i = mul7 −mul5 −mul6
t02r = mul8 −mul9 t02i = mul10 −mul8 −mul9
t12r = mul11 t12i = mul12

(6.15)

c0 = t00r − t12r + t11r + t22r

c1 = t00i − t12i + t11i + t22i

c2 = t01r − t00r + t11r + t12r + t22r

c3 = t01i − t00i + t11i + t12i + t22i

c4 = t02r − t00r + t11r

c5 = t02i − t00i + t11i

(6.16)

Note that the addition and subtraction of elements of F3m with members of F3 is performed

using F3m modules and are counted as arithmetic on F3m . The dmul(f, g) routine requires

a total of 13 F3m multiplications and 51 F3m additions/subtractions.

F36m Multiplication

Extension field multiplication using Karatsuba methods requires six multiplications on

F32m . Each of these operations require three multiplications on F3m . A total of 18 F3m

multiplications and 72 additions/subtractions are required. Gorla et al. show how ex-

tension field multiplication can be performed using techniques based on the fast Fourier

transform [104]. The fourth roots of unity of F36m are used to reduce the number of

required F32m multiplications to 15. They also show how a discrete Fourier transform
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matrix can be used to devise explicit formulae for extension field multiplication. The first

stage requires 15 multiplications on F3m , all of which can be performed in parallel. Re-

duction is performed after this, requiring some additions and subtractions. A total of 15

multiplications and 90 additions/subtractions on F3m are required. This provides a saving

of three multiplications over the Karatsuba method, at the expense of 18 more trivial

additions/subtractions.

F36m Cubing

The extension field cubing operation uses the 3-tuple representation of Equation (6.5). Let

a = â0+â1ρ+â2ρ
2, where â0 = a0+a1σ, â1 = a2+a3σ, â2 = a4+a5σ and â0, â1, â2 ∈ F32m

and a0, a1, a2, a3, a4, a5 ∈ F3m . First

a3 = â30 + â31ρ
3 + â32ρ

6 (6.17)

From h(z) = z3− z+ 1, the irreducible polynomial generating the extension from F32m to

F36m , the relationships ρ3 = ρ− 1 and ρ6 = ρ2 + ρ+ 1 hold. Now

a3 =â30 + â31(ρ− 1) + â2
3(ρ2 + ρ+ 1)

=(â30 − â31 + â32) + (â31 + â32)ρ+ â32ρ
2

(6.18)

The irreducible polynomial defining F32m is g(y) = y2 + 1. Then σ2 = −1 and therefore

â30 =(a0
3 − σa13)

â31 =(a2
3 − σa33)

â32 =(a4
3 − σa53)

(6.19)

Substituting (6.18) into (6.19) and rearranging gives

a3 =(a0
3 − a23 + a4

3) + (a3
3 − a13 − a53)σ

+ (a2
3 + a4

3)ρ+ (−a33 − a53)σρ

+ (a4
3)ρ2 + (−a53)σρ2

(6.20)
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A cubing on F36m ,therefore, requires two additions, six subtractions and six cubings on

F2m , all of which can be performed using combinatorial logic.

F36m Powering to q

Consider a = â0 + â1ρ+ â2ρ
2, as before. Powering to q begins with the computation

aq =â3
m

0 + â3
m

1 ρ3
m

+ â2
3m(ρ2)

3m

= â3
m

0 + â3
m

1 ρ3 + â2
3mρ6

(6.21)

The equations ρ3 = ρ− 1, ρ6 = ρ2 + ρ+ 1, σ2 = −1 and σ3 = −σ can be derived from the

irreducible polynomials. Now

aq =â3
m

0 + â3
m

1 (ρ− 1) + â3
m

2 (ρ2 + ρ+ 1)

=(â3
m

0 − â3
m

1 + â3
m

2 ) + (â3
m

1 + â3
m

2 )ρ+ â3
m

2 ρ2

=((a3
m

0 − σa3
m

1 )− (a3
m

2 − σa3
m

3 ) + (a3
m

4 − σa3
m

5 ))

+(a3
m

2 − σa3
m

3 + a3
m

4 − σa3
m

5 )ρ+ (a3
m

4 − σa3
m

5 )ρ2

(6.22)

Since aqi = ai for all ai ∈ F3m

aq = (a0 − a2 + a4) + (a3 − a1 − a5)σ

+ (a2 + a4)ρ+ (−a3 − a5)σρ+ a4ρ
2 + (−a5)σρ2

(6.23)

Powering to q is, therefore, trivial and can be performed in two additions and six subtrac-

tions on F3m .

165



F36m Inversion

The techniques described by Kerins et al. are used here to perform F36m inversion [103].

The F36m field is reconstructed as a degree 2 extension of F33m :

F33m ≡ F3m [y]/h(y) where h(y) = y3 − y + 1

F36m ≡ F33m [z]/g(z) where g(z) = z2 + 1
(6.24)

An element a ∈ F36m is written as a = â0 + â1σ where â0 = a0 + a1ρ + a2ρ
2 and â1 =

a3+a4ρ+a5ρ
2 for â0, â1 ∈ F33m . Since σ2 = −1, the inversion can be carried out efficiently

using conjugate methods. A full F36m inversion costs 33 multiplications, four cubings, 67

additions/subtractions and one inversion, all on F3m .

6.4 The Flexible Tate Pairing Processor

The architecture of the flexible Tate pairing processor is discussed in this section. The

processor can compute a Tate pairing on both characteristic 2 and 3 curves. The efficient

sequencing of subfield operations is paramount. A flexible software subsystem that enables

the rapid generation of instruction sequences is described in detail. Processors that can be

used in a large number of applications and environments can also be analysed and created

with ease by using the features of this subsystem in conjunction with the overall design

system discussed in Subsection 3.5.3. Results that are returned by various implementations

of the pairing processor are also presented in this section.
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6.4.1 Architecture

The flexible processor architecture does not contain extension field arithmetic units. An

ALU containing a number of subfield modules that operate in parallel is used instead.

The characteristic 2 ALU contains an F2m adder, squarer, inverter and a number of F2m

multipliers. The characteristic 3 ALU contains one module for each of addition, subtrac-

tion, cubing, inversion and a number of modules for F3m multiplication. As multiplication

is performed so often and is a time consuming operation the system has been designed so

that the number of multipliers in an ALU can be varied with little impact on the overall

architecture. The digit size of the multipliers is also variable.

An example of a characteristic 3 Tate pairing processor, generated by the design system,

is illustrated in Figure 6.1. In this case, the ALU contains k F3m digit-serial multipliers.

The pairing inputs and intermediate variables are stored centrally in dual port 2m-bit

RAM. A pair of 2m-bit buses are sent from the RAM to the ALU and are connected to

the subfield modules. The ALU also contains (k+3) 2m-bit tri-state buffers that select the

module output to be stored. The buff sel control bus handles the buffers. On completion

of the Tate pairing computation the done signal is asserted and the F36m Tate pairing

value is read serially from the first RAM output. Note that the DOut bus is tied to an

output enable control signal so that intermediate values cannot be read from it if pairing

computation halts before completion.

The architecture implementing the Tate pairing in characteristic 2 has a very similar

structure as ease of architectural modification is a fundamental design principle. The

modules within the ALUs perform F2m arithmetic. The data buses are m bits wide and

m-bit RAM is used. The scheduling of operations is also modified to implement the new

pairing.

167



+ -- b
3

b
-1 mul

0
mul
k-1

0 1 2 3 4

douta

dinb

doutb

dina
x , y , x ,yp p q q

addra

e
n

lo
a

d

d
a

ta
 i

n

dout

dout

rs
t

Instructions
state

machine

buff sel buff sel buff sel buff sel buff sel buff sel

2m 2m

2m

2m

Dout

RAM

ROM

COUNTER

e
n

 r
a

m
 a

e
n

 r
a

m
 b

a
d

d
r 

ra
m

 a

a
d

d
r 

ra
m

 b

b
u

ff
 s

e
l

rs
t 

a
ri

th

e
n

 r
a

m
a

e
n

 r
a

m
b

a
d

d
r 

ra
m

a

a
d

d
r 

ra
m

b

rs
t(

0
)

rs
t(

k
)

rs
t(

1
)

Din

clk

rst

2m

ALU

rst

Data Line

CONTROL

d
o

n
e

done

Figure 6.1: Characteristic 3 Tate pairing processor containing k multipliers

6.4.2 Operation Scheduling

Scheduling must be performed with care as a large amount of subfield arithmetic must be

implemented. When possible, addition, subtraction, cubing and squaring are computed

and stored while multiplication and inversion are in progress. Particular care is taken over

the scheduling of operations within the main for loops of the ηT algorithms as these loops

must be iterated many times and require operations that are expensive in terms of clock

cycles.

As an example of the scheduling techniques employed, consider the characteristic 3 ηT

pairing computation of Algorithm 12. The first values of c0 = −u.u and c1 = −yP .y′Q[i]

are computed and stored in RAM before the hardware begins to implement the loop.

After this, the computation f ← dmul(f, g) of the first iteration can begin immediately

as its inputs will be available. The values of c0 and c1 that will be required on the second
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iteration can be computed in parallel with the dmul operation of this first iteration. This

scheduling technique means that 15 F3m multiplications required on each iteration can

be performed in parallel, if desired. The additions required by the dmul routine are also

carefully scheduled so that they are performed while the multipliers are in use.

The quantity of operations required for ηT computation far exceeds that required to per-

form the exponentiation to the Tate pairing value. This conversion should, however, also

be scheduled intelligently as it is more serial in nature and there is less parallelism available

as a result.

6.4.3 Control System

The aim of the control system is to minimise the quantity of clock cycles required to handle

storage and module resets and enables. The hardware units are chosen to reduce the work

that is required of a designer to generate the control signals that are necessary to perform

the pairing. The control unit consists of a counter, a ROM and an FSM. A sequence of

instructions that describe the operations required for Tate pairing computation is loaded

into the ROM. The ROM output is connected to the FSM. At the beginning of a pairing

computation, the FSM resets the counter and then enables it. The counter is then used

to access the instructions consecutively.

Most bit sequences of the ROM instructions are used to handle RAM reads and writes, to

reset and enable the modules within the ALU and to control the tri-state buffers. These

bits pass straight through the FSM module and appear at one of its outputs. A small

number of bits are used to communicate with the FSM. The FSM checks these bits on

every clock cycle and will enter a particular state when required. If, for example, an F3m

multiplication must be performed, an instruction will provide RAM read addresses and

reset and enable signals for the chosen multiplier and indicate to the FSM that a mul mode

state should be entered. This state halts the counter for m/D clock cycles. This means

that the next instruction, which will contain control signals for storage of the result, will
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not be accessed until the multiplication operation has been completed. The counter also

contains a load control bit and a data in bus. When the load bit is asserted the counter

will change its output to the value on the data in bus. An instruction can indicate to the

FSM that it should enter a jump mode and provides the desired counter output value. This

is useful as this means that it is not necessary that the ROM be accessed in a consecutive

fashion. Jumps can be used to return to the beginning of a long sequence of operations

that must be repeated. As an example, a jump is performed at the end of each iteration

of the main for loop of the ηT computation.

This system provides a simple method for the provision of flexibility. It eliminates the

requirement for a large, complicated FSM as its sole purpose is to control the counter.

The FSM does not need to be modified for the implementation of other algorithms. A new

sequence of instructions can be generated and simply loaded into ROM. This versatility

is very important as it means the processors can be used to implement other finite field

based cryptographic operations with ease.

6.4.4 Flexible Design System for Processor Creation and Implementa-

tion

A software design system (design sys) that has been created for software pairing compu-

tation, VHDL generation, hardware implementation, verification and benchmarking was

discussed in Subsection 3.5.3. The software is written in the C++ language. It contains

a class, called flex sub sys, that has not been described up to this point. This provides

added functionality when designing, analysing and implementing the processors described

in this chapter. It is also written in C++. The features of this subsystem are described in

this subsection.

The flexible processors do not contain extension field arithmetic units. This means that

many streams of bits describing F2m or F3m operations must be defined to implement
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a pairing algorithm. These streams must be converted into sequences of instructions.

This can be a very long, tedious process that has an inherently high probability of error.

Furthermore, if errors are made, it is difficult to isolate the problem due to the large

number of operations involved.

The overall design system already contains a class for software pairing computation. This

contains base classes for performing arithmetic on F2m , F24m , F3m , F32m and F36m . Al-

gorithms are computed in software using functions within these classes. An instruction

set generation class has been created that provides similar functionality. This contains a

subfield base class in which sequences of instructions are defined for subfield arithmetic.

An extension field base class has been created in which instruction sequences for extension

field arithmetic can be defined using the instruction sequences within the subfield class. A

full sequence of instructions can then be generated to implement a pairing algorithm that

can be added to the system in a very similar fashion to that of the software computation

case.

The subfield base class contains members of integer type. Variables hold the RAM ad-

dresses of subfield elements. Arithmetic operations are overloaded so that instruction

sequences are automatically generated when they are used. The instructions define the

RAM addresses and provide the necessary control signals. As an example, consider the

class members v, w and z that contain the RAM locations of three subfield variables. Let

v = 10, w = 20 and z = 30. If the operation z = v + w is entered, two instructions are

generated. The first puts addr ram a to 10, addr ram b to 20 and opens the tri-state

buffer at the output of the adder. The next instruction puts the value of 30 on addr ram

b and writes the result to that address. Multiplication is a special case as the number of

modules is variable. The multiplicative operator is overloaded in such a manner that it can

take arrays of class members as operands. For example, consider v = [10, 11, 12, 13, 14],

w = [20, 21, 22, 23, 24] and z = [30, 31, 32, 33, 34] containing the locations of five subfield

elements each. Five multiplications must be performed. The software checks whether this

exceeds the number of multipliers in the processor. If it does, the software minimises the

number of multiplication runs required. If, for example, there are three multipliers, then
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30 = 10 × 20, 31 = 11 × 21 and 32 = 12 × 22 are first performed in parallel and the

remaining multiplications performed on the next run.

The members of the extension field class are k-length arrays of subfield members, where k

is the extension degree of the curve in use. Extension field arithmetic is defined in terms

of operations on members of the subfield class. As an example, let r = [40, 41, 42, 43],

s = [50, 51, 52, 53] and t = [60, 61, 62, 64] be elements of the F24m extension field. If the

command t = r + s is entered, a sequence of instructions is automatically generated that

contains the address and control signals required to implement the four F2m additions

of the members of s and t and to store the result in the RAM addresses defined by t.

Inversion and multiplication are defined in the same manner. The combination of these

classes means that the instruction sequences required for extension field arithmetic do not

have to be written manually: the sequences for the subfield operations have already been

defined and are used.

A designer can now define a desired pairing algorithm in terms of operations on members

of the subfield and extension field classes. Commands can be entered using all of the

functionality of the C++ language. The instruction sequence is then automatically gener-

ated for any desired characteristic, field size, quantity of multipliers and digit size. This

system significantly reduces design cycle time as many algorithms and processors can be

implemented without having to manually update the sequences.

The automatic generation of the instruction sequences within the software system enables

rapid analysis of the clock cycles required by various algorithms when implemented on

a processor. A breakdown of the cost of all operations is available immediately after

algorithmic definition. These costs can be returned for any desired version of the processor.

This means that detailed analysis can be performed within the software system and avoids

the necessity for hardware implementation. This can be very beneficial while exploring

the use of hardware for various applications and environments.

All of the other features of the design system are available when working with the flexible
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processors. VHDL can be automatically generated by the vhdl sub sys class according to

a desired characteristic, field size, digit size and quantity of multipliers. Xilinx tools can

be called, bit files automatically generated and FPGA communication handled within the

imp sub sys. Sets of elliptic curve points can be generated in the soft sys class and au-

tomatically sent to the FPGA. Verification is performed by sending these input points to

the processor and comparing the hardware results to those of the software computations.

Benchmarking and efficiency analysis be performed. If more than one implementation is

required, an array can be used to define the desired architectures and implementation, ver-

ification and benchmarking performed automatically. This makes the system particularly

desirable for the prototyping of these types of architectures.

6.4.5 Results and Comparisons

Various versions of the architecture discussed in this chapter were implemented on the

Xilinx Virtex-II Pro FPGA (xc2vp100-6ff1696). This device contains 44,096 slices.

The results returned by other characteristic 3 elliptic curve pairing implementations in

the literature are for fields with m = 97. For this reason, versions of the flexible processor

were built using several digit sizes and quantities of multipliers on F397 . This field returns

approximately the same level of security as a characteristic 2 field with m = 271. A number

of characteristic 2 processors were also implemented on F2271 so that a direct comparison

could be made. The fast characteristic 2 elliptic curve Tate pairing processor discussed in

Chapter 4 was implemented on the field F2313 . Results returned by the flexible processor

at this field size are also presented in this section so that the two types of processors can

be compared.

The results returned by the flexible processor when implemented on F2271 and F397 are

presented in Tables 6.1 and 6.2, respectively. A full Tate pairing 〈P,ψ(Q)〉MN is performed

in each case. The processors were implemented with multipliers of digit size 4, 8, 12

and 16 in both cases. Larger digit sizes are not used as, with further increases, the
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efficiencies of the resultant processors fall dramatically as the clock cycles required for

control and combinatorial operations are fixed. The quantities of subfield multiplication

modules included in the implementations are shown in the first column. The characteristic

2 processors were built using one, two, three, four, five and seven multipliers. A total of

14 F2m multiplications must be performed during the main iterative loop of the ηT pairing

computation (see Algorithm 5). All of these operations can be performed in parallel if

sufficient resources are available. A processor containing five multipliers requires three

runs to complete these 13 multiplications. A processor with six multipliers needs the same

number of runs and is not constructed for this reason. In the characteristic 3 case, a total

of 15 F3m multiplications are required during loop iteration (Algorithm 12). Processors

with six and seven multipliers do not provide an advantage over a processor containing

five modules and are, therefore, not implemented.

The fastest characteristic 2 processor contains seven multipliers of digit size 16 and returns

a Tate pairing result in 17,347 cycles. A total of 20,591 slices are required, yielding an AC

product of 358 Mslice.cycles. The lowest AC product is 160 Mslice.cycles and is returned

by two versions. The first contains two multipliers of digit size 8 and provides a pairing

result in 30,912 cycles. This implementation requires 5,170 slices. The second contains

two multipliers of digit size 12 and provides a result in 25,110 cycles. This implementation

occupies 6,365 slices. On analysis of the results presented in Table 6.1, it is clear that

the architectures that require a relatively small area can return a Tate pairing value in a

relatively low number of clock cycles.

The fastest characteristic 3 version contains four multipliers of digit size 16. This imple-

mentation returns a Tate pairing result in 16,127 cycles and requires 22,240 slices. Note

that this is not the largest of the implementations. In the {#M = 5, D = 16} and

{#M = 8, D = 16} cases the reduction in multiplicative runs is counteracted by the cost

of the control and storage cycles associated with the extra multipliers. The lowest AC

product is 140 Mslice.cycles. This is provided by an architecture with three multipliers of

digit size 4 and the implementation occupies 6,690 slices. A Tate pairing result is returned

in 20,996 clock cycles. At moderate clock frequencies this provides a substantial reduction
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Characteristic 2, m=271

Digit Size

4 8 12 16

#M Area (slices)

1 3360 3748 4441 5106

2 4389 5170 6365 7716

3 5318 6519 8149 10362

4 6202 7905 10272 12920

5 7131 9146 12114 15632

7 8989 12111 15963 20591

Cycles

1 86508 51072 39870 33947

2 48924 30912 25110 22576

3 37692 24960 21510 18592

4 32616 22272 19800 19173

5 27108 20544 19170 18592

7 23760 18528 17460 17347

AC Product (Mslice.cycles)

1 291 192 178 174

2 215 160 160 175

3 201 163 176 193

4 203 177 204 248

5 194 188 233 291

7 214 225 279 358

Table 6.1: Tate pairing Results for F2271

Characteristic 3, m=97

Digit Size

4 8 12 16

#M Area (slices)

1 4347 4979 6300 7670

2 5366 7016 9821 12639

3 6690 9052 13246 17441

4 7992 11093 16888 22240

5 9336 13147 19071 27049

8 13369 19368 29662 39956

Cycles

1 41249 28437 24155 22010

2 26646 20096 18316 17564

3 20996 17618 16941 16595

4 19794 16573 16436 16127

5 18409 16855 16329 16145

8 17835 16581 16376 16299

AC Product (Mslice.cycles)

1 179 142 152 169

2 143 141 180 222

3 140 159 224 289

4 158 184 278 359

5 172 222 311 437

8 238 321 486 651

Table 6.2: Tate pairing results for F397
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in computation time in comparison to the software result of 2.72 ms provided in [63].

It is useful to examine how changes in architectural parameters affect the AC product.

The AC products of the characteristic 2 processor implementations are plotted against

the number of multipliers employed for digit sizes of 4, 8, 12 and 16 in Figure 6.2. It is

clear that the product increases once the number of multipliers surpasses two in all but

the D = 4 case. This comes about as the proportion of cycles required for control and

storage grows as the number of multiplication runs decreases. Overall, the D = 8 case

provides a high degree of efficiency throughout. The AC products of the characteristic 3

implementations are plotted in the same manner in Figure 6.3. In all but the D = 4 case,

the products grow when the number of multipliers exceeds two. Increases in digit size have

a larger area impact in the characteristic 3 case due to the architecture of the multipliers.

The D = 4 case provides a relatively low product throughout. On examination of Figures

6.2 and 6.3, it is clear that the characteristic 3 version of the processor is the more efficient

in the majority of cases. It can also be seen that, in general, maximal efficiency is returned

by implementations with smaller area footprints.

The characteristic 2 and 3 processor implementations can also be directly compared. Clock

cycles are plotted against area for versions of the processors on F2271 and F397 in Figure

6.4. While both processors perform well, the characteristic 3 implementation returns the

more desirable results in the overwhelming majority of cases. The plot points at which the

lowest AC product occurs in the characteristic 2 and 3 cases are also noted. The design

environment enables the rapid and automatic generation of many versions of the flexible

processor, as demonstrated by the quantity of results returned. Solutions for various

applications can be explored quickly and with minimum effort if desired.

Various versions of the processor were also implemented on an elliptic curve defined on

the field F2313 . This means that a direct comparison with the characteristic 2 elliptic and

genus 2 hyperelliptic processors of Chapters 4 and 5 can be made as those implementa-

tions provide the same security level. The results returned by the flexible processor when

implementing the Tate pairing on F2313 are presented in Table 6.3. The most efficient im-
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Figure 6.2: Processor AC products on F2271

plementation is the {#M = 2, D = 12} case. This has an AC product of 223 Mslice.cycles,

requires 7,120 slices, and returns a Tate pairing result in 31,239 clock cycles.

The AC products of the F2313 implementations are illustrated in Figure 6.5. It is clear

that the most efficient architectures are those with three multipliers or less. As in the

F2271 and F397 cases, the flexible processor is most efficient when a relatively small area

footprint is used.

Comparisons

The performance of the flexible processor is compared with the processors discussed in

Chapters 4 and 5 and with other hardware pairing architectures in the literature in this

subsection. A summary of results is provided in Table 6.4. Note that only the most
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Figure 6.3: Processor AC products on F397

Figure 6.4: Clock cycles versus area for F2271 and F397

efficient implementations results of Chapters 4, 5 and 6 are listed as these processors and

their results have already been discussed in detail.
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#M Area (slices) Cycles AC (Msl.cycles)

Digit Size Digit Size Digit Size

4 8 12 16 4 8 12 16 4 8 12 16

1 3835 4283 4910 5838 112457 65740 50285 42444 432 282 247 248

2 5026 5806 7120 8839 62702 39140 31239 27135 316 228 223 240

3 6185 7232 9329 11858 47936 31160 25721 21708 297 226 240 258

4 7069 8770 11516 14840 41195 27645 23229 22437 292 243 268 333

5 8138 10409 13753 17858 33919 24700 22428 21708 277 258 309 388

7 10276 13543 18111 23723 29104 22040 20470 19926 300 299 371 473

Table 6.3: Implementation results for F2313

Figure 6.5: Processor AC products on F2313

The characteristic 2 implementations of Keller et al. [8] and Shu et al. [95] have already

been compared to the elliptic curve characteristic 2 processor of Chapter 4. The best AC

product of the flexible processor of 160,000 slice.cycles is much lower than the 1,026,000

slice.cycles of the most efficient implementation of Keller et al. Their fastest architecture

returns a pairing in 120,000 cycles and requires 15,065 slices. The flexible processor com-
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Table 6.4: Comparisons with results returned by Tate pairing hardware implementations

in the literature

Ref. m Alg. Device #M D Area Cycles AC

(Bits) (Slices) (kSl.cy)

Characteristic 2 Implementations from the Literature

[8] 283 BKLS V-II Ma. 9 4 27411 68250 1871

Ma. 9 6 29421 55110 1621

Mi. 1 6 4273 240000 1026

Mi. 9 6 15065 120000 1808

[95] 283 η V-II Pro 7+1+1 16,4,8 22726 7308 166

7+1+1 32,8,16 37803 4392 166

ηT 7+1+1 16,4,8 33252 4368 145

Characteristic 3 Implementations from the Literature

[103] 97 BKLS V-II 18+1 1,4 33790 242526 8195

4,4 46590 122610 5712

4,8 50286 112480 5651

DL V-II Pro 18 4 55616 12900 717

[105] 97 DL V-II Pro 1 4 4481 59946 269

89 Kwon V-II Pro 1 4 4481 64602 289

[106] 97 ηT (no exp) V-II Pro – – 1888 32618 61

Implementations From This Thesis

Ch. 4 313 ηT V-II Pro 14 12 44060 4818 212

Ch. 5 103 ηT V-II Pro 20 12 27182 5805 157

Ch. 6 c.2 271 ηT V-II Pro 2 8 5170 30912 160

271 ηT V-II Pro 2 12 6365 25110 160

313 ηT V-II Pro 2 12 7120 31239 223

Ch. 6 c.3 97 ηT V-II Pro 3 4 6690 20996 140

97 ηT V-II Pro 1 8 4979 28437 142

pares well with this, returning the same result in 25,110 cycles while requiring only 6,365

slices in the {#M = 2, D = 12} case. The implementations of Shu et al. have AC products

of 166,000 slice.cycles and 145,000 slice.cycles. Each of their processors returns a result in
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a low number of clock cycles. An implementation employing 33,252 slices computes a Tate

pairing in 4,368 cycles. It may, however, be difficult to substantially reduce the number

of slices required by their architecture. Their processor has an ALU that contains an

F24m multiplication unit and an F2m multiplier. The F24m multiplication unit contains six

subfield multipliers. The ALU also contains an exponentiation subsystem that contains

another two F2m multipliers. Shu et al. use seven multipliers with digit sizes of 16, one

with a digit size of 4 and one with a digit size of 8 to return their best result. These selec-

tions result in a relatively high area footprint and, due to the fixed quantity of multipliers

and the relatively large digit sizes required, it may be difficult to maintain efficiency while

attempting to reduce area. The flexible processor can, when {#M = 2, D = 8}, return

a Tate result in 30,912 cycles using only 5,170 slices. This indicates that it may be more

suited to environments in which a low area footprint is required.

Kerins et al. describe two distinct processors for Tate pairing computation on elliptic

curves of characteristic 3 in [103]. The first implements the BKLS algorithm for Tate

pairing computation discussed in [60]. The architecture contains a general purpose elliptic

curve coprocessor and an F36m multiplier. The coprocessor can be used to perform elliptic

curve point multiplication or to perform the subfield operations required during iteration

of the for loop of the pairing. The F36m unit contains 18 F3m multipliers. The fastest

and most efficient version of this processor has an AC product of 5,651,000 slice.cycles

and returns a result in 112,480 cycles. A total of 50,286 slices are required. Although the

number of clock cycles and slices required are high, an advantage of this architecture is that

it can be used to perform the elliptic curve group operation and Tate pairing computation.

Kerins et al. propose a second processor that could be used to implement the Duursma and

Lee algorithm for Tate pairing computation. Their proposed architecture contains the F36m

multiplication unit, which contains 18 F3m multipliers and some subfield cubing, addition

and negation circuitry. This processor is not implemented but, through calculation, the

authors state that a total of 12,900 cycles would be required to return a pairing with the

use of multipliers with digit sizes of 4. They suggest that such an architecture would

require a high percentage of slice utilisation on a Virtex-II Pro FPGA containing 55,616

slices. This approximation returns an AC product of 717,000 slice.cycles. Factors such as
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the low digit sizes already in use and the fixed number of multipliers would, again, make

it very difficult to reduce area requirement without a substantial increase in clock cycles.

The most efficient characteristic 3 flexible processor architecture has an AC product of

140,000 slice.cycles. This requires only 6,690 slices and returns a result in 20,996 cycles.

The processor of this chapter may, therefore, be more suited to constrained environments

than both of the processor architectures described by Kerins et al.

Grabher and Page present a characteristic 3 Tate pairing processor in [105]. They use

an F3m microprocessor architecture, implemented on an FPGA, connected to a general

purpose serial processor through a Xilinx microblaze core. The FPGA contains storage

registers and an ALU containing one multiplier and a number of other subfield units.

The authors allocate 4,481 FPGA slices to their coprocessor. An implementation of the

Duursma and Lee method returns a pairing in 59,946 cycles. An implementation of the

Kwon algorithm [107] returns a result in 64,602 cycles. This system requires a small

number of slices. An {#M = 1, D = 8} flexible processor can, however, return a pairing

in a much lower 28,437 cycles with only a slightly higher area usage of 4,979 slices. The

implementation of Grabher et al. is also not as versatile as the flexible processor as the

quantity of subfield modules within the ALU is fixed.

Beuchat et al. implement an ηT pairing computation in [106]. This is an extension of their

work described in [108] and [109]. A novel ηT pairing algorithm is proposed. The authors

suggest that the characteristic 3 ηT pairing algorithm described by Barreto et al. in [63]

can be improved upon. They demonstrate that some of the more expensive field operations

required during loop iteration can be replaced with less costly operations by employing

some pre- and post-processing techniques. They also develop a unified arithmetic operator.

This contains an array multiplication architecture and some circuitry to enable resource

sharing for addition, multiplication and cubing. This operator performs all required field

arithmetic. An ηT pairing is returned in 32,618 cycles with an area usage of 1,888 slices.

This is an excellent result, comparing very well with the characteristic 3 implementations

of the flexible processor. The {#M = 3, D = 4} flexible processor returns a result in

a lower 20,996 cycles but requires a larger area of 6,690 slices. Beuchat et al. do not,
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however, perform an exponentiation to a Tate pairing. During this research it was noted

that the number of cycles required by the conversion is significant due to its serial nature

and the large cost of the required extension field operations.

The flexible processor can also be compared with the fast characteristic 2 elliptic and

genus 2 hyperelliptic curve processors of Chapters 4 and 5, respectively. The processor of

Chapter 4 has an AC product of 212,000 slice.cycles, returns a Tate pairing in 4,818 cycles

and requires 44,060 slices. The genus 2 processor has an AC product of 157,000 slice.cycles,

returns a Tate pairing in 5,805 cycles and requires 27,182 slices. The most efficient F2313

flexible processor is ({#M = 2, D = 12}). This has an AC product of 223,000 slice.cycles.

This implementation returns a pairing in a much larger 31,239 cycles but requires only

7,120 slices. It is difficult to substantially reduce the area of the processors of Chapters 4

and 5 due to the fixed quantity of multipliers. Again, the flexible processor is more suited

to a low area environment in comparison to the other processors.

The results of this section indicate that pairing processors with units dedicated to extension

field arithmetic can return a pairing in a very low number of clock cycles but are, due to

their very nature, not suited to environments with stringent area requirements. The most

efficient versions of the flexible processor are those that provide a low area implementation.

6.5 Conclusions

The implementation of the characteristic 3 elliptic curve Tate pairing, computed using the

ηT methods, has been discussed in this chapter.

An overview of the underlying field and curve mathematics has been provided. The pairing

algorithm and techniques for its efficient computation have been described. The hardware

implementation of characteristic 3 arithmetic is not as straightforward as in the binary

case: 2m bits are required to store an element of F3m . Some intermediate mapping is also
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required. A useful representation for characteristic 3 elements in such an environment has

been provided. The operations required to perform F3m and F36m arithmetic have also

been discussed with a hardware target in mind.

Initial exploration indicated that the runtime benefits of extension field units would not

be offset by the resulting high cost resource requirements. A pairing processor with an

ALU that contains subfield units operating in parallel was created instead. This ALU

contains one module for addition, subtraction, cubing and inversion. The quantity of

digit-serial multipliers and their digit sizes can be varied to return a result in a desired

number of clock cycles or to satisfy a particular resource requirement. The ALU can

be programmed to contain either F2m or F3m units, which means that it can be used

to perform both characteristic 2 and 3 Tate pairings. Results are stored in dual port

RAM. The control unit consists of a counter, a ROM unit and an FSM. An instruction

sequence describing the subfield operations required to compute a pairing is flashed to the

ROM. The FSM uses the counter to control access to the ROM. Operations are scheduled

carefully: addition, subtraction and cubing are performed during multiplication, when

possible. The implementation process does not have to be repeated if a different algorithm

is to be implemented: the new set of instructions can simply be flashed to ROM.

A flexible C++ software class has been written to reduce the effort required to produce

desired processors and to define instruction sequences. The sequences required for F2m ,

F24m , F3m and F36m arithmetic and storage are defined in a software library. A user can

then generate an instruction sequence using all of the capabilities and functionality of

high-level software.

The Tate pairing has been computed on the supersingular elliptic curves E(F2271), E(F397)

and E(F2313). Processors with various architectural parameters were implemented on a

Virtex-II Pro FPGA. Results show that the flexible processor is excellently suited to

systems in which area utilisation is a primary concern. A processor with a footprint of

only 5,170 slices returns an E(F2271) pairing in 30,912 clock cycles, while a characteristic

3 version that uses only 9,052 slices returns an E(F397) Tate pairing in 20,996 cycles.
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The processor described in this chapter is an ideal platform on which to perform pairings

when area is at a premium. There is a floor beyond which dedicated, highly parallel,

processors cannot perform efficiently. The flexibility of the processor means that it is suited

to embedded environments in which bandwidth may be costly. Algorithmic modifications

can be performed by sending and remotely flashing an instruction sequence. This avoids

the necessity for transferring a bit file, which is often significantly larger. The processor

can also be programmed to perform both point scalar multiplication and Tate pairing

computation, which is useful for many applications.

The subject matter of this chapter has been published in [11], [12] and [13].
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Chapter 7
Modern Directions in

Pairing-Based Cryptography: A

Review

In this chapter, modern trends and developments in pairing-based cryptography are dis-

cussed. The computation and use of bilinear pairings for cryptographic applications has

received much attention in the literature. A family of secure and efficiently computable

pairings have been introduced. More attacks on pairing-based systems have been sug-

gested and associated countermeasures devised. New optimisation techniques have been

presented. There has been an ongoing investigation into the fast and efficient implemen-

tation of pairings in hardware. Pairings can now be computed very effectively in software

due to advances in the processing power of general purpose sequential processors. The use

of pairings in embedded systems in which area and energy are highly constrained has also

been investigated. Proposals for novel and interesting pairing-based schemes have been

made. The aim of this chapter is to provide an overview of these topics.
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Some modern algorithms for pairing computation are outlined in Section 7.1. Security

considerations for the use of pairings in cryptography are discussed in Section 7.2. An

overview of side channel attacks, an area that has received much attention in recent years,

is also provided. The software computation of pairings is discussed in Section 7.3. Hard-

ware systems for pairing computation are described in 7.4. Some modern applications for

pairings are discussed in Section 7.5. Suggestions for future work in the field are then

provided in Section 7.6.

7.1 Pairings

An elliptic curve E(Fq) is known as pairing-friendly if, for pairing input points of order r,

r ≥ √q, where r|#E(Fq) and k ≤ (log(r)/8). The former condition ensures that the DLP

is sufficiently difficult while the latter enables computability.

In 2005, Barreto and Naehrig showed that pairing-friendly ordinary elliptic curves with

embedding degree 12 can be constructed [110]. These curves are defined on the field Fp,

where p is a prime. They are known as BN or BN-p curves, where p is the value of the

prime. The BN family have curve equation E(Fp) : y2 = x3 + b, where b 6= 0. The number

of rational points, denoted r, is also prime. The high embedding degree makes these curves

very suitable to implementations at the 128-bit security level and above. The prime p, the

group order r and the trace of Frobenius t are parameterised according to:

p(u) =36u4 + 36u3 + 24u2 + 6u+ 1

r(u) =36u4 + 36u3 + 18u2 + 6u+ 1

t(u) =6u2 + 1

(7.1)

for some u ∈ Z that returns prime p and r.

In 2006, Hess et al. introduced the Ate pairing [111]. This simplifies the ηT pairing and

extends the techniques to ordinary elliptic curves. The Ate pairing can be computed effi-
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ciently on elliptic curves that admit twists. Let E and E′ be two elliptic curves defined on

Fq and with embedded degree k. E′ is a degree d twist of E if there exists an isomorphism

ψd : E′ → E defined over Fpd and d is minimal. In Ate pairing computation one of the

inputs is a point on E(Fp) while the other is a point on E′(Fpv), where v = k/d. Hess

et al. show that at high security levels the Ate pairing can provide significant advantages

over the Tate pairing if the curve has certain properties.

The r-Ate pairing was introduced by Lee et al. in 2009 [112]. This is a generalisation

and an improvement of the Ate pairing techniques. A reduced Miller loop length can be

used on some pairing-friendly elliptic curves. It is shown that the r-Ate pairing can be

computed 50% faster than the Ate pairing on certain BN curves.

In 2010, Lubicz and Robert discussed the Tate and Weil pairings on general abelian

varieties [113]. They show that, cryptographically, security is not restricted to the Jacobian

of an algebraic curve. They describe efficient algorithms that use theta functions to perform

pairing computation.

In 2010, Vercauteren presented optimal pairings [114]. A pairing is optimal if it can be

computed in the theoretical minimum number of Miller iterations on the family of curves

on which it is defined. An algorithm that can be used to construct optimal Ate pairings

on all types of pairing-friendly curves is provided. Computation of an optimal Ate pairing

is often written as aopt.

Following these advances, much emphasis has been placed on the computation of the

optimal Ate pairing on BN curves. The high embedding degree (k = 12) means that

BN curves are an ideal candidate for pairing computation. For example, an Ate pairing

that is computed on p = 256 returns 128-bit security while p = 640 returns 192-bit

security. Another benefit is that there is a large quantity of curves within the family.

Some of these curves have properties that can be exploited to return a fast pairing. As

many of the implementations described later in this chapter compute the optimal Ate

pairing on BN curves, the operations required to compute it are discussed briefly here.
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BN curves admit a sextic twist, which means that k/d = 2. Let u be the value defining

the parameters of a BN curve E(Fp). Let ψ : E′ → E be the isomorphism defining the

twist and let πp be the Frobenius automorphism on E such that πp(x, y) = (xp, yp). Let

z = (pk − 1)/r = (p12 − 1)/r. Consider the points P ∈ E(Fp)[r] and Q ∈ E′(Fp2)[r]. The

optimal Ate pairing is computed according to

aopt(P,Q) =
((
fs,Q(P )).

(
g[s]Q,πp(Q)(P )

)
.
(
g[s]Q+πp(Q),−π2(Q)(P )

)) p12−1
r

(7.2)

where fs,Q is the Miller function such that div(fs,Q) = s(Q)− ([s]Q)− (s− 1)(∞) and s

is the pairing loop length given by s = 6u+ 2. A term gQ1,Q2(P ) ∈ Fp12 is the function of

the line through Q1 and Q2, evaluated at P .

The operations required to compute the Ate pairing are listed in Algorithm 13. The value

of fs,Q(P ) is computed during the loop of Lines 7-14. The computations required for

point doubling and addition on the twisted curve and for defining the line functions during

these operations are performed on Fp2 . The E′(Fp2) curve arithmetic can be performed

in either affine or projective coordinates. Projective coordinates are usually used since

inversions are not required during addition and doubling in this system. The line functions

must, however, be evaluated at the point P ∈ E(Fp), which has projective coordinates.

The overhead introduced by the incorporation of two different coordinate systems can be

reduced using explicit formulae [115]. The evaluation of the line functions at P can also be

performed in parallel with some of the operations required by the addition and doubling

operations. The evaluation results are sparse members of Fp12 . This sparseness reduces

the number of extension field operations required during the accumulation step at the end

of the iterative loop.

Good overviews of Ate pairing computation on BN curves are provided in [116] and [117].
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Algorithm 13 Optimal Ate pairing computation on BN curves

Input: P , Q, s, where P ∈ E(Fp)[r], Q ∈ E′(Fp2)[r] and s = 6u+ 2 =
∑log2(s)

i=0 si2
i

Output: f = aopt(P,Q), where f ∈ Fp12
1: Initialise: d1 ← 1

2: T ← [2]Q and evaluate d2 ← gQ,Q(P )

3: if (sblog2(s)−1c = 1) then

4: T ← T +Q and evaluate d1 ← gT,Q(P )

5: end if

6: f ← d1.d2

7: for (i← blog2(s)c − 2, i ≥ 0, i← i− 1) do

8: T ← [2]T and evaluate gT,T (P )

9: f ← f2.gT,T (P )

10: if si = 1 then

11: T ← T +Q and evaluate gT,Q(P )

12: f ← f.gT,Q(P )

13: end if

14: end for

15: Q1 ← πp(Q)

16: Q2 ← π2(Q)

17: if u < 0 then

18: T ← −T
19: f ← fp6

20: end if

21: T ← T +Q1 and evaluate d1 ← gT,Q1(P )

22: T ← T −Q2 and evaluate d2 ← gT,−Q2(P )

23: f ← d1.d2

24: f ← f (p
12−1)/r

Return: f
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7.2 Security

Computational attacks on finite field and curve-based cryptography until the end of 2007

have already been discussed in Subsections 2.6.1 and 3.4.1. In this section, the most

notable modern computational attacks are discussed. Cryptographic systems that are

implemented in insecure locations must be secured against physical attack. This applies to

software processors, to constrained devices such as phones and smart cards and to hardware

architectures. In recent years physical attacks on curve and pairing-based systems have

received a lot of attention. Some of these attacks and their countermeasures are discussed

in this section.

7.2.1 Computational Attacks

The best known computational attacks on the DLP, the ECDLP and the HCDLP until the

end of 2007 were discussed in Subsection 2.6.1. Each of these problems are susceptible to

brute force and generic attacks, such as Pollard’s rho algorithm. In 2013, Joux published a

paper, made available in preprint form, that startled the cryptographic community [118].

He provides a new algorithm to solve the DLP in fields of form Fq2n , where n ≤ q + d

and d is some small integer. The algorithm has heuristic complexity L(1/4 + o(1), c), for

some value of c. Prior to this discovery, the best known attack on the DLP required sub-

exponential time. Joux’s method reduces this to heuristic polynomial time. Barbulescu

et al. [119] then showed that the DLP can be solved in quasi-polynomial time for fields of

type Fqkn , where k ≥ 2, d is a very small integer and n ≤ q + d. Subsequent publications

concentrated on attacking fields with features that enabled the fastest solution to the DLP.

It was not, however, clear whether the new solution methods applied to fields on which

pairings are constructed. In 2014, Granger et al. detailed new techniques for solving

the DLP on some binary fields on which pairing security relies [120]. They apply their

techniques on two finite fields to demonstrate their efficacy. The first is F24.1223 , a field

arising from an elliptic curve implementation with embedding degree 4. They show that
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this field, previously believed to have a 128-bit security level, is in fact only 94.6-bit secure.

They also show that the F212.367 field, applicable to genus 2 pairing implementation, could

be fully broken.

Due to these significant advances, the use of fields of small characteristic for pairing-based

cryptography is currently not recommended. A good overview of the discrete logarithm

problem and its history of attacks was published by Joux et al. in 2014 [121].

7.2.2 Side Channel Attacks

Side channel attacks exploit the leakage of physical information from a device while it

implements a cryptographic computation. Resource constrained platforms, such as smart

cards, are particularly vulnerable to such attacks due to the ease of physical access that an

adversary may have. Some such attacks are passive, which means that they do not interfere

with the operation of the device. In active attacks, an adversary physically tampers with

the device, influences its internal operation and aims to gain some information from the

unintended operations. Such attacks are usually called fault attacks. A fault can be

injected by laser, by electromagnetic pulse or by introducing power variations and clock

glitches [122]. Much of the literature relevant to pairing-based systems concentrates on

attacks against identity-based protocols. The attacks assume that the pairing algorithm

and its result are known to an adversary. Security relies on keeping one of the pairing

input arguments secret. These assumptions are also made in this subsection. Excellent

overviews of side channel attacks on devices implementing pairings are available in [123]

and [124].

In 1996, Kocher et al. were the first to describe how side channel attacks can be used on

cryptographic devices [125]. They discuss a passive attack that analyses the time taken by

private key operations in RSA and Diffie-Hellman protocols in order to return the secret

information on which the security of the protocols rely. In 1999, Kocher et al. showed

how the power dissipated by a device can be be measured and used to efficiently compute
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confidential data [126]. Simple Power Analysis (SPA) and Differential Power Analysis

(DPA) attacks are discussed. SPA involves the analysis of one power consumption trace

in order to gain some information about the instructions performed during computation.

The implementation of some operations may, for example, be conditional on key bits and

intermediate variables. In DPA, the aim is to find a correlation between the data under

manipulation and variations in power consumption. More than one power trace is required.

Statistical functions are used to distinguish minor variations from background noise. It

is shown how SPA and DPA can be used to retrieve secret information from a device

implementing the Data Encryption Standard [127]. They state that susceptibility to SPA

can be reduced by removing conditional branches from algorithms. This can, however,

result in a performance penalty. Kocher et al. suggest various countermeasures against

DPA. These include the balancing of state transitions, the physical shielding of the device,

the deliberate addition of noise and the use of hash functions to render the information

garnered from the leaked information useless.

In 2006, Page and Vercauteren described the first known fault attack on a system employ-

ing pairings [128]. The reduced Tate pairing e(P,Q), computed using the Duursma and

Lee methods, is considered. The point Q is publicly available while security relies on the

secrecy of P . A valid pairing result is first collected by the adversary. The attacker then

injects a fault that changes the number of iterations of the Miller loop. The resultant

pairing value is also collected by the attacker. The secret P can be computed from the

quotient of the two pairing results. The Kwon-BGOS algorithm [107] can be attacked in

a similar manner. Page and Vercauteren suggest that point blinding techniques can be

used to defend against such attacks. The attacks that they describe are only successful

if the adversary has knowledge of one of the input points. Fortunately, the bilinearity of

the pairing provides an efficient solution to this problem. If the operation e(P,Q) must

be performed then, for the random integers a and b, e(a[P ], b[Q]) = e(P,Q)ab is instead

computed. The exponent can be eliminated if values of a and b can be found such that

ab mod l ≡ 1. This countermeasure may, however, be expensive as two extra point scalar

multiplications are needed for every pairing computation.
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Whelan and Scott discussed passive DPA attacks on the Tate, ηT and Ate pairings in the

same year [129]. They show that some hardware architectures implementing finite field

arithmetic may be vulnerable to attacks that use statistical correlation. The type of ex-

pansion and accumulation employed in modular multiplication architectures means that it

is possible to efficiently compute the input operands from substrings of the multiplicative

result. They also show how a square root implementation can leak information about

the operand. These weaknesses can be exploited to extract information about the pairing

input coordinates. Whelan and Scott hypothesise that the Tate and Ate pairings may be

resistant to such attacks if the secret point is the first input. The ηT pairing is, however,

susceptible to the attacks, regardless of the order of its input arguments. A countermea-

sure, in which intermediate results can be multiplied by random subfield elements, can be

used to close this avenue of attack [130]. The final exponentiation eliminates this randomi-

sation. Point blinding can also be employed, but with its inherent extra cost. Whelan

and Scott considered a fault attack on the Weil, Tate and ηT pairings in 2007 [131]. They

assume that an adversary is able to change the sign of one of the input coordinates by

interfering with a single bit. The quotient of the corrupted and correct pairing results can

be used to gain some secret information. The optimal time at which to inject the attack

is on the final iteration of the Miller loop. The computation of the secret is more difficult,

but remains possible, in other cases. This attack is possible on the ηT and Weil pairings.

Whelan and Scott claim that the Tate pairing is not vulnerable to this type of attack due

to its more complex final exponentiation.

In 2009, DPA attacks on the Tate, ηT and Ate pairings, when computed using the Jaco-

bian coordinate system, were presented by El Mrabet et al. [132]. A practical system,

created to demonstrate the feasibility of the attack, is presented. An 8-bit architecture is

synthesised and tested in a simulation environment. It is shown that the restriction of the

secret value to the first pairing input does not provide adequate security. A DPA of one

modular subtraction and one modular multiplication is required for attack. Point blinding

does, however, provide protection. In the same year, El Mrabet extended her previous

work and discussed the vulnerability of pairing implementations that use both affine and

projective coordinates [133]. Miller’s algorithm is attacked by modifying the number of
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loop iterations. This is a generalisation of the fault attack previously described by Page

and Vercauteren [128] and can be performed on the Tate, ηT , Ate and optimal pairings.

A fault is injected into the counter that controls loop iteration. The aim is to gain access

to intermediate values produced by two successive iterations of the loop. Pairing compu-

tations are corrupted until this is achieved. The retrieved values can be used to extract

secret information. A DPA of a modular addition and a modular multiplication is required

to perform this attack. As in the previous case, point blinding provides protection against

this attack.

In 2013, Blomer et al. discussed a DPA attack that exploits the modular addition operation

required during pairing computation. The attack requires analysis of either one modular

addition or one modular multiplication, but not both. A point blinding countermeasure

relevant to these attacks that is slighlty more efficient than that of Page and Vercauteren

[128] is also provided. In the same year, Bae et al. described an attack on Miller’s algorithm

in which a fault is injected into the instruction sequence that controls the operations to be

performed [134]. The fault removes the point addition performed during the final iteration

of the Miller loop by skipping the instruction defining the last if statement. Only one

successful attack of this type is required to enable the efficient computation of the secret.

The corrupted Miller output can be compared to the correct result to retrieve the secret

information. To investigate the practicality of their attack, Bae et al. perform a laser fault

injection on a microchip implementing a simple test algorithm. It should be noted that

this attack assumes that the Miller results can be accessed before the final exponentiation.

Lashermes et al. presented a fault attack on the final exponentiation in the same year [135].

This attack is applicable to pairings with complex exponentiations that were previously

thought to protect them from SCA. In [136], it was suggested that the final exponentiation

on pairing-friendly ordinary curves can be computed efficiently by decomposing it into

three distinct parts. Lashermes et al. show that exponentiation using this technique can

be reversed by injecting three different faults into the final exponentiation. These must

be introduced on three separate implementations of the same pairing.
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7.3 Software Computation of Pairings

Since the beginning of 2008, significant strives have been made in the area of software

pairing computation. Prime field pairing computation is, in particular, very suited to

software implementation as field arithmetic can be performed very efficiently using integer,

floating point and other native operations. The computation of both small characteristic

and prime characteristic pairings on general purpose sequential processors is discussed in

this section. Note that in the case of small characteristic implementations, it is assumed

that the DLP security breach described in Subsection 7.2.1 is not available. It would not

be possible to compare the implementations in terms of their assumed security otherwise.

Pairings can also be computed on highly constrained devices, such as smart cards and

microprocessor systems. Implementation on these devices will be discussed in Section 7.5.

The most notable literature contributions to the software computation of pairings on small

characteristic curves are described in this section. The most significant results of each of

the publications that are discussed are listed in Table 7.1.

In 2008, Hankerson et al. [137] discussed the software computation of pairings on small

characteristic and prime field elliptic curves at the 128-bit security level. This is a detailed

and interesting paper that focuses on the implementation of small characteristic and large

characteristic pairings on general purpose processors using various available features. The

strengths and weaknesses of the 32-bit Intel Pentium 4, the 64-bit AMD Opteron and the

64-bit Intel Core 2 architectures are discussed. The most attractive results are returned

by a C code implementation on the Intel Core 2 processor. In the prime field case, a pair-

ing is performed on a BN curve of 256 bits. Field elements are stored as integers, which

enables the efficient use of a relatively fast 64-bit multiplier for modular arithmetic. An

implementation of a 128-bit secure ηT pairing, computed on E(F21223), is also performed.

In the Intel Core 2 case, Single Instruction, Multiple Data (SIMD) supplementary instruc-

tion sets are employed. These instruction sets are used to decompose an operation into
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Table 7.1: Notable modern contributions to the software computation of pairings. An (a)

after a BN curve definition indicates that curve arithmetic is performed using the affine

coordinate system. All other BN curve implementations are performed using projective

coordinates.

Ref. Year Sec. Curve Alg. Device F. Cycles Time

(Bits) (GHz) (×106) (ms)

Computation on Curves of Small Characteristic

[137] 2008 128 E(F21223) ηT Intel C2 2.4 39 16.25

128 E(F3509) ηT Intel C2 2.4 33 13.75

[138] 2010 128 E(F21223) ηT Intel X 2 17.4 8.7

128 Intel X (x8) 2 3.02 1.51

Computation on Curves of Large Characteristic

[137] 2008 128 BN-256 Ate Intel C2 2.4 15 6.25

r-Ate Intel C2 2.4 10 4.17

[139] 2008 128 BN-256 aopt Intel C2D 2.4 28.45 11.85

Intel C2D (x2) 2.4 14.43 6.01

[115] 2010 128 BN-257 aopt Intel C2D 2.83 4.38 1.54

[116] 2010 128 BN-254 aopt Intel Ci7 2.8 2.33 0.83

[140] 2011 128 BN-254 aopt AMD PII 3 1.57 0.52

[141] 2012 BN-254(a) aopt Intel C2D 2.4 14.21 5.92

164 BN-446(a) 44.3 18.46

192 BN-638(a) 136.5 56.88

[142] 2012 128 BN-254 aopt ARM C-A9 1.2 11.89 9.91

164 BN-446 aopt 1.2 47.46 39.55

192 BN-638 aopt 1.2 119.23 99.36

[143] 2015 128 BN-254 aopt ARM C-A15 1.7 7.89 4.64

128 BN-254 ARM C-A15(N) 1.7 6.09 3.58

164 BN-446 ARM C-A15(N) 1.7 30.07 17.69

192 BN-638 ARM C-A15(N) 1.7 79.84 46.97

sub operations that can be performed in parallel. On the Core 2 processor, the finite field

members can be packed into groups of 128-bit registers using SIMD Within a Register
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(SWAR). The Streaming SIMD Extensions (SSE) platform is then used to perform 128-

bit operations when possible. This is called a vectorised system. The finite field elements

are called vectors, while a string contained in one of the registers is known as a scalar.

A 128-bit secure characteristic 3 pairing, computed on E(F3509), is also performed. This

implementation also uses SIMD, SWAR and SSE. Characteristic 3 addition is written in

assembly language to ensure that the operation is compiled efficiently. As expected, the

prime field pairings provide the best results due to the availability of the 64-bit multiplier

and the high embedding degree of BN curves. The fastest 128-bit secure r-Ate pairing

result is returned in 4.17 ms. Interestingly, this is returned by a non-SSE implementa-

tion. The 128-bit secure characteristic 2 and 3 ηT pairings are returned in 16.25 ms and

13.75 ms, respectively. A significant contribution of this paper is the assertion that a faster

prime field pairing result is returned by a non-SSE instruction set: the organisational and

recombination operations that must be employed are not warranted as efficient use can be

made of the 64-bit multiplier by using an integer representation.

In 2008, Grabher et al. [139] investigated techniques for the software computation of the

optimal Ate pairing. The main focus is on the exploitation of available parallelism using

SIMD, SWAR and SSE features and of the sharing of operations across two processor

cores such as the Intel Core 2 Duo. The problems inherent in the use of SWAR storage

in elliptic curve systems are discussed. Finite field arithmetic often requires operations on

scalars that occupy different positions within their respective vectors. This may require

a large amount of decomposition and recombination, which can be relatively expensive.

Fortunately, the SSE instruction set can efficiently recode a SWAR register to a group of

registers that are of a smaller size. Consider, for example, a 128-bit finite field element.

This can be stored in one 128-bit register or four 32-bit registers. The widths of the

individual registers are known as digit sizes. Grabher et al. show that arithmetic can

be performed efficiently by separating the 128-bit elements into four 32-bit strings. Each

string is stored as the first scalar of a 128-bit vector. The other three registers in each of

the vectors remain empty. This means that 128-bit operations can be performed in terms

of 32-bit strings that are aligned within their respective vectors. This can significantly

reduce carry cost. For evaluation purposes, pairing computations are performed using
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SIMD and non-SIMD instruction sets at the 128-bit security level. In the former case, a

single core must be used and an optimal Ate pairing is returned in a minimum of 11.85 ms.

Interestingly, a single core implementation using a non-SIMD instruction set requires only

9.72 ms. This is due to the natural 64-bit datapath of the Core 2 Duo. If the security level

must be increased, however, the larger operands may mean that the SIMD implementation

will become more attractive. The fastest computation overall is returned by two cores,

operating in parallel, using non-SIMD instruction sets. The OpenMP multiprocessing API

is used to perform Fp12 arithmetic in terms of parallel Fp6 operations and Fp2 operations

in terms of parallel Fp operations. This system provides an optimal Ate result in 14.43

MCycles, which corresponds to 6.01 ms. These results support the assertion of Hankerson

et al. [137] that non-SSE instruction sets can be efficiently employed for prime field pairing

computation. A single core 128-bit r-Ate computation is performed in 10 Mcycles in their

case, while the implementation performed by Grabher et al. requires 44% more clock

cycles, despite the use of twice as many cores and the more efficient optimal Ate pairing

construction.

In 2010, Aranha et al. [138] described techniques for the software computation of the re-

duced characteristic 2 ηT pairing at the 128-bit security level. While the 2008 publication

of Hankerson et al. [137] endeavoured to clarify the cost differences between small char-

acteristic and prime field characteristic pairings on various processors in a general sense,

the purpose of this paper is to perform a high-speed pairing (of small characteristic) using

all available means. The ηT pairing is implemented on a dual quad-core Intel Xeon pro-

cessor. The use of SIMD vector instruction sets for characteristic 2 finite field arithmetic

is explored. Detailed algorithms, written in terms of the SSE instructions required to

implement them, are provided for squaring, multiplication, routing and inversion on F2m .

The use of these algorithms means that inefficiencies that may be introduced by poor

compilation of higher level code are avoided. A useful load balancing technique for multi

core platforms is also presented. A parallel version of the Miller loop of the ηT algorithm,

suitable for multi core implementation, is also developed. A relatively inexpensive pre-

computation reduces dependencies between different iterations of the Miller loop. Distinct

iterations are then performed in parallel on separate cores. A recombination step accumu-
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lates the intermediate functions by extension field multiplication. A pairing computation

is performed on E(F21223) using one core and eight cores of the Intel Xeon device. The

former computation requires 8.7 ms (17.4 Mcycles), while the latter requires 1.51 ms (3.02

Mcycles). The 5.76x speed up demonstrates that the use of multi core processors is desir-

able if the extra cost is affordable. A clock cycle reduction of 55% is achieved in the one

core case in comparison to the 2008 implementation of Hankerson et al. This reduction

can largely be explained by the direct SSE definition of the field operations required for

pairing computation.

In the same year, Naehrig et al. [115] discussed the computation of the optimal Ate pairing

on BN curves. The parameters of the BN curve polynomials (Equation (7.1)) are carefully

selected so that the number of point doubling and addition steps required during the Miller

loop is minimised. It is also shown that some of the line functions required by the original

definition of the optimal Ate pairing are not required and a more efficient algorithm is

provided. Elements of Fp are represented in a polynomial form that dramatically reduces

the number of operations required for multiplication and subsequent modular reduction.

Double-precision floating-point arithmetic is employed (contrary to Hankerson et al. [137],

whereby large integer arithmetic is performed by decomposition to integers and the use

of a 64-bit multiplier). Naehrig et al. store the 12 coefficients of each Fp element in

consecutive places of a double array of size 12. Members of Fp2 are interleaved in double

arrays of size 24. This representation enables the widespread and efficient utilisation of

SIMD operations for parallel extension field arithmetic. Techniques for avoiding overflow

are also discussed. A 128-bit secure optimal Ate pairing is implemented on one core of

an Intel Core 2 Duo processor. A result is returned in 1.54 ms (4.38 MCycles). This is a

clock cycle reduction of 56% in comparison to the cycles required by the implementation

of Hankerson et al. It should, however, be noted that the r-Ate pairing is performed in the

latter case. There is also a restriction on the number of curves on which the optimisations

of Naehrig et al. apply. A publically available and useful library for software computation

using their methods is available at [144].

In 2010, Beuchet et al. [116] presented a useful software library for the computation of the

200



optimal Ate pairing on BN curves at the 126-bit security level. The pairing is computed

using a slightly modified version of the algorithm provided by Naehrig et al. [115]. The

main difference is that Beuchat et al. perform both point addition and subtraction during

Miller loop iteration. The Fp12 field is constructed as a quadratic extension of Fp6 , which

is itself a cubic extension of Fp2 . This is a similar construction method to that employed

in the genus 2 case of Chapter 5. The techniques for extension field arithmetic, previously

described by Hankerson et al. [137], are also employed here. The value of u defining the

BN curve parameters (Equation(7.1)) is selected in order to provide a low hamming weight

Miller loop with sparse arithmetic (in a similar manner to Naehrig et al. [115]). Beuchat

et al. do, however, choose a value of u that also speeds up the final exponentiation, which

is performed using the three step approach of Scott et al. [136]. The computation of

the optimal Ate pairing on software architectures that are more modern than those used

by the publications already discussed in this section ([137], [139], [138] and [115]) is then

described. An unsigned multiplication can be performed in only three clock cycles on a

processor such as an Intel Core i7, a significant reduction in cost compared to the other

processors. Field arithmetic techniques that take advantage of the smaller clock cycle

gap between additive and multiplicative operations are discussed. Algorithms, written in

assembly code, for the implementation of arithmetic on Fp and its extensions are provided.

The software library is prototyped on an Intel Core i7 processor. A 126-bit optimal Ate

pairing is returned in 0.83 ms (2.33 MCycles). This is a significant improvement on the

4.38 MCycles required by the optimal Ate pairing of Naehrig et al.. This is, however,

partly due to the newer architecture and more efficient instruction set, which means that

a meaningful comparison is difficult to make. The main contributions of this publication

are the algorithms that are explicitly created with the small clock cycle gap between

multiplication and addition in mind. The source code of the library is publically available

[145].

In 2011, Aranha et al. [140] discussed the fast computation of the optimal Ate pairing.

The tower construction of Beuchat et al. [116] is employed and it is shown how operations

on the sub and extension fields can be further optimised. In general, an Fpk Karatsuba

multiplication requires k(k+1)/2 reductions modulo p. It is shown that the prime field lazy
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reduction technique, described in [93] and [146], for fields of type Fp2 , can be generalised

to Fpk . The use of lazy reduction reduces the number of required modular reductions

to k. When arithmetic must be performed on the extensions, it is also possible to delay

the reductions required by the associated sub field arithmetic until the results must be

combined. The use of software words that are larger than the data that they hold is also

suggested. The unassigned bits within the words means that a combination of single-

and double-precision arithmetic can be employed. The optimal balance between the two

types of arithmetic is extensively explored in the case of multiplication on the sub and

extension fields. Miller’s algorithm itself is analysed and it is shown that some of the Fp
reductions required after the curve line evaluations can be delayed and merged with other

reductions that are performed during the later Fp2 multiplications. It is also shown that

the final exponentiation can be performed without inversion when the parameter defining

the BN curve is negative. The three stage exponentiation of Scott et al. [136] is employed

and it is shown that inversion on Fp12 can be avoided when BN curve parameter u (from

Equation (7.1)) has a negative value. The optimal Ate pairing is implemented on various

software platforms. In a similar manner to Beuchat et al. [116], algorithms for arithmetic

on Fp2 are written in assembly while higher-level algorithms are written in C code. The

fastest 128-bit secure optimal Ate pairing is returned on an AMD Phenom II processor

in 0.52 ms. The corresponding 1.57 MCycles is significantly lower than the 2.33 MCycles

required by the implementation of Beuchat et al.. It must be noted, however, that the

techniques discussed in their publication form the basis for some of the more significant

optimisations presented in the 2011 publication of Aranha et al. [140]

In 2012, Acar et al. [141] implemented the optimal Ate pairing on three ARM platforms

at several security levels. The main aim is to compare the use of affine and projective

coordinates for curve arithmetic during pairing evaluation in a quantitive manner. The

implementations employ many of the computational techniques described by Lauter et al.

[147]. A scalar multiplication on an elliptic curve using affine coordinates requires inversion

in the field on which it is defined. Lauter et al. use two previously known techniques to

reduce inversion cost. Inversion is moved from the extension field to the base field using the

optimal towering methods of Baktir and Sunar [148]. Schroeppel and Beaver [149] show
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that the number of inversions required during elliptic curve scalar multiplication can be

reduced by performing all point doublings first. The point additions can then be computed

together and the required inversions shared. This reduces the cost difference between field

inversion and multiplication and thus between affine and projective curve arithmetic. Acar

et al. compute separate pairings, each using either projective or affine curve arithmetic.

In the former case, computations are performed using the explicit formulae of Costello et

al. [150]. Optimal Ate pairings are implemented on x86, x86-64 and ARM devices. Acar

et al. state that optimisations that take advantage of the features of specific processors or

instruction sets are not employed. This means that a fair comparison can be made across

the three platforms and portability to other devices is not compromised. Computation is

performed on BN-254, BN-446 and BN-638 curves, which provide security levels of 128

bits, 164 bits and 192 bits, respectively. Results from implementations on an Intel Core 2

Duo processor are discussed here. These are representative of the main results of Acer et al.

Projective coordinate computations return optimal Ate pairings in 6.31 ms and 19.05 ms

at the 128-bit and 164-bit security levels, respectively. The corresponding affine pairings

are computed in 5.92 ms and 18.46 ms, a reduction of 6.2% and 3%, respectively. There

is a more significant difference at the 192-bit security level. A pairing using projective

curve arithmetic is computed in 65.95 ms, while an affine arithmetic pairing is computed

in 56.88 ms. This is a much more significant reduction in computation time (13.8%),

than in the lower security cases. This leads Acar et al. to hypothesise that as security

requirements grow, the use of affine curve arithmetic will become increasingly attractive.

In the same year, Grewal et al. [142] analysed the use of affine and projective curve arith-

metic for the optimal Ate pairing on ARM architectures. New optimisation techniques for

tower field and curve arithmetic are presented. It is shown that the lazy reduction method,

previously discussed by Aranha et al. [140] in the context of projective curve arithmetic

and extension field multiplication, can be used to perform affine curve arithmetic and

extension field inversion. Algorithms, employed during the multiplications of the Miller

loop, exploit the sparse nature of the extension field elements. Two types of sextic twists

that are available on BN curves are also discussed: D-type and M-type. The former is

usually used for pairing computation as the untwisting operation is the more trivial of
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the two. However, if an M-type twist is used and the pairing is computed on the twisted

curve itself, then untwisting can be performed at a very low cost. The two types of twist

evaluate a pairing in a similar time. This increases the number of curves that are suited to

efficient pairing computation. Techniques for efficient curve arithmetic in affine and pro-

jective coordinate systems are also discussed. The methods involve precomputation and

a careful selection of various field operations in order to take advantage of the features of

ARM processors. Optimal Ate pairings are computed on 254-bit, 446-bit and 638-bit BN

curves, returning security levels of 128, 164 and 192 bits, respectively. Implementation is

performed on a Cortex-A9 processor. Custom ARM assembly code for field addition and

multiplication is employed in the 254-bit BN curve case. Techniques include loop unrolling

to remove conditional statements, instruction reordering to maximise pipelining and the

avoidance of memory fetching by employing a maximal number of registers. Without as-

sembly optimisation, 254-bit secure optimal Ate affine and projective arithmetic pairings

are returned in 11.84 ms and 11.24 ms, respectively. The use of assembly code reduces

the affine and projective computation times to 10.57 ms and 9.91 ms, respectively. The

projective computation times are 5% faster in the non-assembly case and 6% faster in the

assembly case. Contrary to the results of Acer et al. [141], there is a negligible difference

in computation time between affine and projective arithmetic at the two higher security

levels. Grewal et al. state that theirs is a fairer comparison as the optimisations in field

and curve arithmetic provide a more level playing field. This claim is agreed with here.

In 2015, Azarderakhsh et al. [143] discussed the implementation of the optimal Ate pairing

on several x86-64 PC and ARM processors. This publication is essentially an implemen-

tation of the optimisations discussed by Grewal et al. [142] in 2012 on more modern

platforms that have features that benefit pairing computation. Optimised ARM assem-

bly code for field multiplication is employed in BN 254-bit and BN-446 cases. Optimised

addition is also performed in the former case. The 128-bit NEON SIMD engine, included

in some modern ARM processors, is also utilised to accelerate computation. Implemen-

tations on a Cortex-A15 demonstrate a considerable acceleration in pairing computation

when the NEON engine is used. In the BN-254 case, which provides 128-bit security, the

employment of NEON reduces pairing computation from 4.64 ms to 3.58 ms, a 23% de-
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crease. In the affine arithmetic case, computation time is reduced from 4.86 ms to 3.85 ms,

a decrease of 21%. On the BN-446 curve, affine and projective curve pairings are returned

in 18.04 ms and 17.69 ms (a 1.9% difference) while on BN-638, results are returned in

47.79 ms and 46.97 ms (a 1.7% difference), respectively. This further shows that an opti-

mal Ate computation using projective coordinates is significantly more attractive in the

BN-254 case (there is a 7% difference), while the gap between the two coordinate systems

becomes relatively insignificant as security increases.

7.4 Hardware Implementation of Pairings

Modern advances in the hardware implementation of pairings are summarised in this

section. The more notable literature contributions to the field are described. Some of

these methods are discussed in terms of their progression from the ideas, concepts and

architectural strategies that are presented in this thesis. It is, however, often difficult to

directly compare hardware implementations in terms of area, speed and AT product as the

various pairing algorithms are computed on devices with different features and at several

security levels. The aim of this section is to give an overview of the main contributions of

each of the discussed publications and to perform fair comparisons when possible.

Small characteristic implementations are discussed in Subsection 7.4.1, while prime char-

acteristic implementations are discussed in Subsection 7.4.2

7.4.1 Hardware Implementation of Pairings on Curves of Small Char-

acteristic

The most notable modern publications describing the hardware computation of pairings

on curves of small characteristic are presented in Table 7.2. The AES security levels listed
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assume that the attack on small characteristic implementations of the DLP (described

in Subsection 7.2.1) is not available as it would not otherwise be possible to compare

implementations.

Table 7.2: Modern contributions to the computation of pairings in hardware on curves

of small characteristic. Area is measured in either slices (Sl) or gates (G). Note that E

represents an elliptic curve while C represents a genus 2 hyperelliptic curve.

Ref. Year Sec. Curve Alg. Device Area F. Cycles Time

(Bits) (MHz) (×103) (µs)

[151] 2009 < 60 E(F2163) BKLS ASIC 27430 G 10.3 515 50,000

28155 G 5.44 272 50,000

[152] 2009 68 E(F2251) BKLS ASIC 329088 G 50 75.15 1503

[153] 2010 66 E(F397) ηT V-II Pro 10897 Sl 147 4.85 33

V-II Pro 10262 Sl 142 9.09 64

ASIC 193765 G 200 9.34 46.7

[154] 2010 128 E(F395.5) ηT V-4 4755 Sl 192 427.6 2227

[155] 2011 97 E(F3239) ηT V-4 66631 Sl 179 2.06 11.5

96 E(F2557) 55156 Sl 149 1.97 13.2

[156] 2011 128 E(F21223) ηT V-4 35458 Sl 168 48048 286

V-6 15167 Sl 250 47500 190

[157] 2012 128 C(F2367) ηT V-4 4518 Sl 220 773.96 3518

[158] 2012 128 E(F21223) ηT V-6 16403 Sl 267 27.23 102

ASIC 524286 G 500 27.3 54.6

[80] 2013 128 E(F21223) ηT V-6 16402 Sl 180 57.6 320

In 2009, Van Herrewege et al. [151] discussed the computation of pairings in constrained

environments. ASIC simulations of the BKLS algorithm on a supersingular curve E(F2163)

are described. The focus of the work is on energy efficiency and not speed. A simple unit

for F2m addition forms the basis for all field operations. Multiplication is achieved by

operand shifting and by performing accumulation through the addition unit. An archi-

tecture containing a memory unit (consisting of registers), a control unit and an F2m

arithmetic core implements Miller’s algorithm. More than one F2m addition unit can be
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included in the arithmetic core if a higher multiplicative throughput is required. The top

level architecture is very similar to that of the flexible processor of Chapter 6. Two ASIC

simulations, each with a pairing computation time of 50 ms, are performed in order to

investigate power consumption and area utilisation. The first employs one addition unit.

A clock frequency of 10.3 MHz is required to return a pairing in the desired time. This

processor has a dynamic power consumption of 98.3 µW. Two addition units are used in

the second simulation. A clock frequency of 5.44 MHz is required. The dynamic power

consumption in this case is 48.5 µW, which is approximately half that of the implementa-

tion using one addition unit. The areas required are 27,430 and 28,155 gates, respectively.

The increase of only 725 gates is more than justified by the reduction in power consump-

tion. Van Herrewege et al. state that their results may be improved upon by investigating

whether the footprint of the FSM can be reduced and by further maximising the efficiency

of register usage within the system. Later publications that concentrate on low power

consumption (such as those discussed in Section 7.5) implement the BN-256 optimal Ate

pairing on 8-, 16- and 32-bit microprocessors. It would be useful to implement the same

pairing using the architecture of Van Herrewege et al. as there is a greater level of architec-

tural flexibility available and, therefore, design freedom available. It may also, perhaps, be

interesting to simulate low-area ASIC implementations of the flexible processor of Chapter

6 at low frequencies in order to investigate power consumption and speed trade-offs.

In 2009, English et al. [152] implemented a characteristic 2 Tate pairing on an ASIC. The

primary design concern is power consumption. A 65 nm CMOS standard cell implementa-

tion of the macro Tate pairing processor described by Keller et al. [8] is performed. Keller

et al. implement the BKLS algorithm on an FPGA using several F24m arithmetic units.

The author of this thesis was involved in the work required to design that processor. The

F24m inversion technique, previously discussed in Subsection 4.4.5, forms the basis for the

extension field inverter used. A description of this inverter was co-published in [7]. The

methods used by English et al. to reduce the power consumption of the ASIC implemen-

tation include the isolation of unused functional units from the data bus, intermediate

operand storage to reduce unnecessary switching and careful clock gating. A processor

performing a Tate pairing computation on E(F2251) requires 329,088 gates. A result is
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returned in 1.5 ms at a frequency of 50 MHz. This implementation consumes 2.63 mW of

dynamic power and 1.23 mW of static power. The use of Network-on-Chip (NoC) Inter-

connect for ASIC implementations of the macro and micro pairing processors of Keller

et al. was later explored by English et al. in 2011 [159]. The architectures have costly

interconnect requirements, in large part due to the 251-bit cross chip data buses. NoCs

can be used to replace these wide buses with a network of routers and short pipelined links.

Network interface modules are used to provide a bridge between the serialised data and

the 251-bit inputs and outputs of the arithmetic units. A result of an arithmetic operation

is, for example, serialised and packetised before it is sent for storage. Results show that

the inclusion of an integrated circuit-switched NoC to the micro architecture results in

relatively large increases in computation time, area and energy although the total power

is reduced. A NoC point-to-point interconnect system for the micro architecture is also

described. In this case, the F2m multiplier and divider are provided with point-to-point

links to the system (there is no general system NoC). Each of the two units has three

links dedicated to the serial transmission of its operands and output. This facilitates the

removal of the large, expensive NoC switch and interfaces. Four variants of the micro

architecture, each with a different link width, are implemented. Results show that point-

to-point interconnect performs significantly better than the integrated switched NoC. The

implementations are also compared to the 2009 ASIC implementation. The throughput

and area results are similar but a 64-bit point-to-point interconnect produces a 70% re-

duction in top level wirelength and a switching power decrease of 96%. There is also a

reduction in congestion, which usually has a positive effect on yield and manufacturabil-

ity. A custom NoC topology for the macro processor is also discussed. A bidirectional

pipelined ring with packetised data circulates the system. The units use point-to-point

links to connect to the ring. However, this configuration incurs significant penalties in

terms of computation time and energy. The use of this NoC does, however, result in a

70% decrease in switching power and a 75% reduction in wirelength. English et al. pro-

vide a very detailed analysis of the utilisation of various methods for NoC interconnect

in the context of the implementations of Keller et al. It would be interesting to extend

this analysis to implementations of the ηT and Ate pairings although the effort involved

may be considerable. The analysis of the micro architecture may, in particular, be very

useful as the flexible architecture can be be easily modified to perform other elliptic curve

208



operations.

Beuchat et al. [153] discussed the implementation of the characteristic 3 elliptic curve ηT

pairing in 2010. Two hardware architectures, each implementing an F397 pairing, are dis-

cussed. Both processors are implemented on FPGA, while an ASIC implementation of one

of the architectures is also described. A modified version of the ηT pairing algorithm, orig-

inally described by Beuchat et al. in [160], is used for computation. This algorithm does

not require cube rooting and thus eliminates the requirement for its associated circuitry.

The first processor contains an ALU that is carefully designed for the fast computation of

the Miller loop. The most costly operation is the sparse F36m multiplication required to

accumulate the Miller variable. Operands are fed through three parallel units that each

contain three F3m multipliers and some registers and multiplexers. The parallel outputs

are fed into another unit that contains another three F3m multipliers and a different config-

uration of registers and multiplexers. These units are embedded in an ALU that contains

combinatorial logic performing the other operations that are required on each iteration of

the loop. The processors of Chapters 4 and 5 aim to reduce the time required by the Miller

loop by performing the major operations of consecutive iterations of the loop in parallel.

Beuchat et al. use a different approach: they use bespoke circuitry that accelerates the

completion of each iteration. This results in a very fast datapath for each iteration of the

loop. Beuchat et al. also discuss a second processor, which they state is very similar to

the flexible processor of Chapter 6. While this is true, the number of multiplication units

is not variable in their system. The ALU contains nine F3m multipliers and one unit for

the F3m addition, subtraction, cubing and accumulation operations. The first processor

is implemented on a Virtex-II Pro FPGA. Using a multiplier digit size of 3, an F397 ηT

result is returned in 33 µs at a frequency of 147 MHz. A total of 10,897 slices are utilised.

At that point in time, this implementation returned the fastest pairing computation in

the literature. The techniques used to create the high throughput ALU had a significant

influence on later publications. As will be seen throughout this section, several other

processors have been created containing ALUs that aim to accelerate separate iterations

of the Miller loop in a similar manner for various characteristics, security levels and pair-

ing algorithms. The second processor returns a result in 64 µs at 142 MHz and requires
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10,262 slices. A 180 nm ASIC implementation of this processor is also presented. This

device contains 193,765 gates and has a power consumption of 671.74 mW at 200 MHz. A

reduced ηT pairing is returned in a very impressive 46.7 µs.

In 2010, Estibals [154] discussed the resource-constrained hardware implementation of a

128-bit secure pairing on characteristic 3 supersingular curves. The curves that are used

are defined on composite extension fields Fqn , where q = 3m and n is a small integer.

This choice is motivated by the availability of many arithmetic optimisations on small

characteristic fields and on small characteristic supersingular curves. The vulnerability

of composite extension field curves to several attacks is considered. The time taken by

all known attacks on all possible supersingular curves with extension degrees that are

large enough to make 128-bit security a possibility are computed. The (assumed) secure

supersingular curve E(Fqn) : y2 = x3 − x − 1 , where q = 397 and n = 5, is used. A

pairing computation on this curve provides 128-bit AES security. The ηT algorithm of

Beuchat et al. [160] is used to perform the pairing. The algorithm must, in this case,

be computed in terms of operations on Fqn . The composite extension degree means that

the arithmetic can be performed efficiently in terms of Fq operations using a tower field

construction. A compact processor implements the Fq computations required to return

the pairing. This is the processor that Beuchat et al. use to perform the final exponenti-

ation of the characteristic 3 ηT pairing in [161]. It contains dual port RAM, a unit that

performs Fq additions and Frobenius operations, and an Fq digit-serial multiplier with

D = 14. Estibals discusses various extension field multiplication techniques in terms of

their suitability to this architecture. It is found that an algorithm described by Cenk and

Özbudak [162] that is based on the Chinese Remainder Theorem is the most efficient. A

Virtex-4 implementation of the 128-bit secure ηT pairing returns a result in 2.23 ms. The

area utilisation is very low, at 4,755 slices. The main contribution of this paper is to show

that the compact implementation of pairings on supersingular curves of composite exten-

sion degree is viable at relatively high security levels. Estibals states that a characteristic

2 implementation may provide even more attractive results due to the binary nature of

hardware. Since only one multiplier is used, the architecture may also become even more

attractive at higher security levels as one would expect that an extra multiplier could be
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efficiently utilised to maintain a practical computation time.

In 2011, Beuchat et al. [155] discussed the fast computation of characteristic 2 and 3

elliptic curve ηT pairings. This is an expansion of the implementation strategy previously

described by Beuchat et al. in [161], which was used to implement a characteristic 3 ηT

pairing in the previous year [153]. A custom, pipelined, Karatsuba multiplier is presented.

The input operands are first split into upper and lower components in the usual manner

and the first stage of a Karatsuba multiplication performed. The more efficient of either

the Karatsuba method or the schoolbook method for polynomial multiplication is used to

perform the next multiplicative stage. This process continues until a full result is returned.

Registers can be inserted between stages and the depth of the pipeline adjusted according

to the complexity of the operations to be performed. The most efficient configuration

for the computation of a characteristic 3 ηT pairing is that with seven pipeline stages.

The characteristic 3 ηT processor also contains multiplexers, registers and combinatorial

logic to handle the irregular datapath to and from the multiplier. On each iteration of

the Miller loop, the sparse F36m multiplication and the computation of the coefficients

for the sparse multiplication of the next iteration are computed in parallel. A scheduling

system that begins an F3m multiplication at each clock cycle is used. The characteristic

2 ηT pairing processor contains an F24m multiplier with five pipeline stages. It has a

different configuration of multiplexers, registers and combinatorial logic to deal with the

irregular datapath. A supplementary processor, presented by Beuchat et al. in [161], is

used to perform the final exponentiation of each pairing. This processor has a very similar

architecture to the flexible processor of Chapter 6. A 97-bit secure characteristic 3 ηT

pairing, computed on E(F3239), is implemented on a Xilinx Virtex-4 and returns a result

in 11.5 µs. The processor has a footprint of 66,631 slices. A 96-bit secure characteristic

2 ηT pairing, computed on E(F2557), is performed in 13.2 µs and occupies 55,156 slices.

This publication is a culmination of the small characteristic design efforts that Beuchat

et al. had presented in the years previous to 2012 (as already discussed in this section).

Their work is an excellent resource if familiarisation with optimisation techniques and

architectural strategies for the hardware implementation of small characteristic pairings

is desired.
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In 2011, Ghosh et al. [156] discussed the implementation of a 128-bit secure ηT pairing.

Computation is performed on the elliptic curve E(F21223). An efficient unit for 1223-bit

multiplication forms the basis for the ηT processor. An F21223 multiplication is first de-

composed into three 612-bit multiplications using the Karatsuba method. Each 612-bit

multiplication is further decomposed into three 306-bit multiplications. A module that

performs 306-bit Karatsuba multiplication in only one clock cycle by continuously decom-

posing the 306-bit operands is discussed. The nine 306-bit multiplications that are required

for 1223-bit multiplication are performed serially and the results recombined using com-

binatorial logic. The 306-bit multiplication module and its associated recomposition logic

is embedded in a 1223-bit multiplication unit containing shift registers and multipexers.

This unit is carefully designed so that input operands are immediately available to the

multiplier when required. A full 1223-bit multiplication is returned in 10 clock cycles.

The adopted strategy is very similar to that utilised to perform F212m multiplication in

the genus 2 processor of Chapter 5. In that case, the F212m multiplication was first de-

composed into three F26m multiplications. An F26m multiplication architecture containing

three degree 2 Karatsuba multipliers, each returning a multiplication result in m/D clock

cycles, was then created. The architecture of Chapter 5 requires m/D + 8 clock cycles

to return an F212m multiplication result (if fully parallel F2m multipliers were used, this

could be reduced to nine clock cycles). The shift register strategy used by Ghosh et al.

could be useful in that context although implementation may be more difficult due to its

dual mode nature (it must also perform the cmul(α, β) routine of Algorithm 10). Ghosh

et al. describe an ηT processor that is tailored to the efficient utilisation of the 1223-bit

multiplication unit. There is a common datapath for the computation of the non-reduced

ηT pairing and for the final exponentiation. A system of registers, multiplexers and F2m

combinatorial logic units provide the 1223-bit multiplication unit with the required inputs.

Control circuitry is used to select between operands for Miller computation and exponen-

tiation. Each iteration of the Miller loop is performed in two steps: the evaluation of the

intermediate function and accumulation by sparse F24m multiplication. The former com-

putation requires only 12 clock cycles, while the latter requires 61 clock cycles. An efficient

method for performing the final exponentiation is also discussed. This requires a total of

98 multiplications on F21223 and some combinatorial operations. The processor is created

in an exemplary fashion: Ghosh et al. endeavour not to waste even the smallest number

212



of clock cycles, in particular during the Miller loop. This is reflected by very fast compu-

tation times. A 128-bit secure implementation on a Virtex-4 FPGA requires 35,458 slices

and returns a reduced ηT pairing in 286 µs. A Virtex-6 implementation requires 15,167

slices and produces a result in 190 µs. Both implementations require approximately the

same number of clock cycles: 47,500 in the former case and 48,048 in the latter case. The

difference in computation time can be explained by a higher achievable clock frequency on

the Virtex-6 device. The area discrepancy is due to the fact that each slice of a Virtex-6

contains four 6-input LUTs, while a Virtex-4 slice contains only two 4-input LUTs.

In 2012, Aranha et al. [157] presented new techniques for the computation of pairings

on supersingular characteristic 2 genus 2 hyperelliptic curves. The embedding degree of

12 is a significant factor in the ability to perform an efficient 128-bit secure pairing. The

optimal pairing technique of Vercauteren [114] is extended to the computation of the ηT

pairing. Aranha et al. call their technique an optimal ηT pairing computation. Two

Miller evaluations are required to compute their pairing. The first has a loop length of

(m− 1)/2 iterations, whilst the second is of length (m+ 1)/2. This provides a 33% saving

over the original ηT computation, which requires (3m+ 1)/2 iterations of the Miller loop.

Detailed costs associated with the optimal genus 2 ηT pairing computation are provided

in terms of operations on F2m . It would, however, have been helpful if the operations

required for an ηT computation using their field and curve construction were provided. The

pairing is implemented in both software and hardware. A 128-bit optimal ηT computation

using degenerate divisors (on the genus 2 curve C(F2367)) returns a result in 0.98 ms (2.44

MCycles) when implemented on an Intel Core i5. For the purposes of comparison, a

regular ηT result is returned in 2.7 ms (6.86 MCycles). The optimal genus 2 pairing is

also computed using general divisors on a Xilinx Virtex-4 FPGA. The exponentiation

coprocessor of Beuchat et al. [155] is used. A result (using a multiplier digit size of 16)

is returned in 3.52 ms with a corresponding area utilisation of 4,518 slices. The same

architecture was previously used by Estibals [154] to compute a 128-bit secure composite

curve pairing (using a digit size of 14) in only 2.23 ms with a similar area requirement of

4,755 slices. Aranha et al. do, however, claim that computation using degenerate divisors

would provide a 2x to 4x acceleration on the same platform.
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In 2012, Adikhari et al. [158] described a hardware architecture for the characteristic

2 elliptic curve ηT pairing at the 128-bit security level. Computation is performed on

E(F21223), the same curve that Ghosh et al. [156] used in their implementation of the

previous year. Adikhari et al. do not, however, use Karatsuba methods for field multipli-

cation. Instead, they use a Toeplitz Matrix Vector Product (TMVP) approach [83]. An

m×m Toeplitz matrix contains F2 elements sk,i, where i ≥ 0, k ≤ m− 1 and satisfies the

property that sk,i = sk−1,i−1 for i ≥ 1 and k ≤ m − 1. Fan and Hasan [163] show that a

Toeplitz matrix can be used to implement field multiplication faster than the Karatsuba

method while maintaining subquadratic space complexity. The matrix used during regular

matrix-vector polynomial multiplication is not of Toeplitz structure, but a conversion can

be achieved by performing some F2 addition, by rearranging elements and by padding when

necessary. The use of the Toeplitz matrix means that a polynomial multiplication can be

performed by recursively splitting the product matrices and performing them in parallel if

desired. An F2m multiplication can, for example, be performed by computing one TMVP

multiplication of size m, three TMVP multiplications of size m/2, or six TMVP multipli-

cations of size m/3. A multiplication unit that uses a three-way split is first discussed. It

contains a fully parallel 408-bit TMVP multiplier that returns a result in one clock cycle.

The six TMVP multiplications are performed sequentially. A multiplication unit that

utilises two recursions of the two-way split is also discussed. This performs 1224-bit mul-

tiplication by computing nine 306-bit TMVPs sequentially. Both units are implemented

on a Virtex-6 FPGA. The multiplier of Ghosh et al. requires 10 cycles per multiplication

and occupies 30,148 LUTs. The two-way split multiplier returns a result in nine clock

cycles and occupies only 19,721 LUTs. This is clearly a more desirable implementation in

terms of both computational speed and area. The three-way split multiplier produces an

overall result in six clock cycles but requires 33,546 LUTs. The processor of Adikhari et al.

consists of three main blocks: a binary arithmetic unit, an input and squaring unit and a

data handling unit. The first block contains some registers, the F21223 multiplication unit

and F21223 addition and squaring units. The second block contains combinatorial logic for

the squaring and square rooting of points during the Miller loop. It also contains registers

that store the results. The third block contains rewiring circuitry and registers that han-

dle the inputs to the first block and that store the intermediate evaluations during Miller

loop implementation. The final exponentiation is also performed using these blocks. The
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processor is synthesised on a Virtex-6 FPGA and on 65nm CMOS ASIC technology. A

Virtex-6 implementation that uses a two-way split multiplier returns a 128-bit secure ηT

pairing in 148 µs and occupies 13,596 slices. A three-way split implementation computes a

pairing in 102 µs and uses 16,403 slices. The latter implementation is the more attractive

of the two due to its lower AT product. These results are a significant improvement on

those of Ghosh et al., who return a 128-bit secure ηT pairing in 190 µs on a Virtex-6. An

ASIC synthesis using the two-way split multiplier returns a result in 80.64 µs and has a

gate count of 472,777. A three-way split implementation produces a value in 54.62 µs and

has a gate count of 524,286. The TMVP multiplication method does seem to provide an

improvement over the Karatsuba method as Adikhari et al. adopt a similar approach to

Ghosh et al. in designing their processor. Synthesis results on FPGA are, however, highly

optimistic in terms of achievable frequency and area utilisation: the complicated mapping

and place and route steps have not yet been performed. FPGA implementation results or,

at the very least, the post place and route metrics provided by the vendor tool (as used

by Ghosh et al.) are required to verify and reliably quantify the results.

In 2013, Cuevas-Farfán et al. [80] discussed the design and implementation of a processor

for characteristic 2 elliptic curve ηT pairing computation. The processor supports on-

the-fly changes in the elliptic curve, the tower field and the distortion map. This is

also the case for the flexible processor of Chapter 6: the ROM sequence can be defined

in terms of these properties and flashed to the FPGA without recompilation. Cuevas-

Farfán et al. first define a 16-bit instruction set for F2m arithmetic, loop control and

jumps. The instructions are then sequenced according to the operations required by

the pairing computation. Significant effort may, however, be required to complete the

instruction sequence generation process as an automated system for sequence generation

(as presented in Chapter 6) is not described. Registers are used for storage of F2m values.

An ALU contains units for F2m addition, multiplication, squaring and square rooting.

The controller contains a ROM on which the sequence of operations is stored. Two

computations are implemented on the curve E(F21223), which returns a 128-bit security

level. The first uses the ηT algorithm discussed by Barreto et al. in [63]. Cuevas-Farfán

et al. state that the second computation is performed using the curve, the tower field
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representation and the field properties discussed in Chapter 4 of this thesis (and published

in [6]). The final exponentiation is also computed using the operations discussed in that

chapter. An implementation of the algorithms and field constructions of Chapter 4 returns

an ηT pairing in 787 µs and requires 50,968 slices when implemented on a Virtex-4 FPGA.

A Virtex-6 implementation requires 320 µs, with an area utilisation of 16,402 slices. A

fair comparison can be made with the 128-bit secure characteristic 2 elliptic curve ηT

implementations of Ghosh et al. [156] and Adikari et al. [158] as they have similar

area requirements on Virtex-6 devices. These publications were previously discussed in

this section. The processor described by Ghosh et al. computes a pairing in 190 µs and

requires 15,167 slices, whilst the processor of Adikari et al. computes a pairing in 102 µs,

requiring 16,403 slices (although the latter are synthesis results). Both processors contain

large units that are custom built for pairing computation: they do not consist of an

ALU containing distinct units for F2m arithmetic alone. This is a useful demonstration of

the assertion made in Chapter 6 that processors with custom architectures are a better

option for fast pairing computation only when a relatively large implementation footprint

is available. It would be useful to implement the dedicated processors of Chapters 4 and 5

on the more modern Virtex-6 devices at the 128-bit security level. As discussed previously,

it is relatively trivial to scale those processors to higher security levels due to the design

strategies used. A comparison between the dedicated characteristic 2 elliptic and genus

2 processors at the 128-bit security level would, in particular, be very interesting as the

underlying field size increases at a smaller rate in the genus 2 case.

In 2015, Chung et al. [164] discussed the fabrication of an ASIC test chip for computation

of the reduced ηT pairing on E(F397). The algorithm of Beuchat et al. [160], which does

not require cube root computation, is used to compute the ηT pairing. Digit-serial multi-

pliers are employed for field multiplication. The sparse F36m multiplication of the Miller

loop is not performed using either Karatsuba multiplication or Lagrange interpolation. As

discussed in Section 6.3.3, Gorla et al. [104] use the latter method to compute a sparse ex-

tension field multiplication with a cost of 15 multiplications and 90 additions/subtractions

on F3m . Chung et al. state that the use of this method would result in the requirement for

a large adder with multiple inputs and an irregular datapath. Contrary to previous pub-

216



lished implementations, they endeavour to reduce the number of combinatorial operations

at the expense of multiplications in order to simplify the datapath of their processor. By

rearranging the formulae, a sparse F36m multiplication is performed in 17 multiplications,

10 cubings and 35 additions, all on F3m . The reduction in the number of required combi-

natorial operations means that the architecture that surrounds their F3m multiplier can be

simplified. Exponentiation is performed using a torus representation [165], the Lagrange

methods of Gorla et al. [104] and Frobenius operations. In total, an exponentiation to

the reduced ηT pairing requires 79 multiplications, 390 cubings and 180 additions, all on

F3m . Chung et al. compare these quantities with those required during the exponenti-

ation to the reduced ηT pairing of Chapter 6 (as published in [11]), which requires 231

multiplications, 304 cubings and 1,321 additions. This is a significant improvement, and it

would be useful to use this method to perform exponentiation on that processor (although

a further exponentiation to the Tate pairing is still required). The pairing accelerator

contains separate coprocessors for the computation of the Miller loop and the final expo-

nentiation. The Miller coprocessor contains an F3m multiplier of digit size 7, a cubing unit

and a 4-input addition unit. A Miller loop iteration is performed in 17 cycles, resulting

in a total count of 17 × (97 + 1)/2 = 833 cycles for ηT computation. Chung et al. aim

to perform the final exponentiation in the same number of cycles. For this reason, the

exponentiation coprocessor contains three digit-serial multipliers of digit size 7, a cubing

unit and an addition unit. The cost of Miller computation and exponentiation is balanced:

the exponentiation of a particular pairing is performed while the Miller loop of the next

pairing is implemented. Timing results are reported by averaging computation times over

a large number of pairing computations. While this is sound practice, this means that

these results cannot be compared to other published implementations in a fair manner as

other results are listed in terms of the time taken by a single Miller loop computation,

serially followed by an exponentiation. This is why the results of Chung et al. are not

included in Table 7.2. Nevertheless, it is useful to list the results. A processor computing

a reduced ηT pairing on E(F397) is fabricated in a 90nm CMOS process. A total of 336,000

gates and two memory blocks of size 0.102mm2 are used. The total chip area is 1.47mm2.

The average power consumption is 78.36 mW at 175 MHz. A pipelined pairing result is

returned in 4.76 µs.

217



7.4.2 Hardware Implementation of Pairings on Curves of Prime Char-

acteristic

The most significant literature contributions to the hardware implementation of prime

characteristic pairings are discussed in this subsection. The results returned by these

implementations are listed in Table 7.3. Note that all implementations provide roughly

the same level of security (126-128 bits). Note also that an effort is made to summarise the

most interesting results reported by each publication: the publications themselves should

be examined in order to view all reported results.

Table 7.3: Modern contributions to the computation of pairings in hardware on curves of

prime characteristic. Area is measured in either slices (Sl) or gates (G). The term DSP

refers to the dedicated Digital Signal Processing units available in some modern FPGAs.

Ref. Year Curve Alg. Dev. Area F. Cycles Time

(MHz) (×103) (µs)

[166] 2008 E(F512) BKLS V-II 33857 Sl 135 217.35 1610

[167] 2009 BN-256 Ate ASIC 164000 G 338 7706 22800

aopt 5340 15800

[168] 2009 BN-256 Ate ASIC 183000 G 204 861 4220

r-Ate 594 2910

[79] 2012 BN-256 Ate V-6 4014 Sl+42DSP 210 336.37 1600

aopt 210 245.43 1170

[169] 2012 BN-258 aopt V-6 5237 Sl+64DSP 230 82.34 358

[170] 2013 BN-256 BKLS V-6 23000 Sl 145 173 11930

Ate 120.6 8320

aopt 82.1 5660

[171] 2014 BN-256 aopt ASIC 116000 G 200 608 3040

In 2008, Barenghi et al. [166] discussed the FPGA implementation of the Tate pairing on

a prime field elliptic curve with an embedding degree of 2. The BKLS algorithm is used to

compute the pairing. The final exponentiation is implemented using the Lucas laddering

technique [172] and by exploiting the unitary norm of the non-reduced pairing value. A
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field size of 512 bits is considered, returning 128-bit security. Modular multiplication is

performed using the Montgomery method [173]. Each operand is first converted to the

Montgomery domain through multiplication by 22s+2 mod p, where s is the size of the

field in bits. Multiplication in the Montgomery domain does not require division by the

modulus, which can be a relatively expensive operation. Conversion of the result from

the Montgomery domain is performed through Montgomery multiplication by 1. This

technique is most efficient when the initial and final conversions do not need to be per-

formed before and after each operation. For this reason, the pairing input coordinates are

moved to the Montgomery domain before computation begins and all arithmetic opera-

tions performed there. Multiplication is implemented using the dedicated 18 × 18 ASIC

multipliers that are available on Virtex-II FPGAs. A single hardware component performs

both modular addition and subtraction. Subtraction is performed by converting the sec-

ond operand to a two’s compliment representation. Three carry-look ahead 512-bit adders

perform modular reduction. A software tool has been created to investigate the schedul-

ing of operations through different combinations of the arithmetic units using a Direct

Acyclic Graph (DAG). VHDL is automatically generated when a particular configuration

is selected. A control system employs an FSM. The architecture of the processor is very

similar to that of the flexible processor of Chapter 6. The chosen configuration contains

one addition unit and four multiplication units. Each unit receives two 512-bit inputs from

memory. Tristate buffers are used to select one output result for write. A Virtex-II imple-

mentation requiring 33,857 slices returns a Tate pairing on the curve E(F512) in 1.61 ms.

Since the software and processor architecture are very similar to those of Chapter 6, it

would be very interesting to explore various scheduling options using a DAG in order to

investigate whether a more efficient implementation of the flexible processor can be found.

In 2009, Kammler et al. [167] explored the use of an Application Specific Instruction

Set Processor (ASIP) for pairing computation. Computation is performed on a Reduced

Instruction Set Computing (RISC) core (simulated using a design tool) that is augmented

with a dedicated Fp hardware unit. The core is a 32-bit five stage pipelined system.

While the core itself contains a 32-bit integer multiplier, its use is not convenient due

to the large word widths required by pairing-based applications. A scalable hardware
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Montgomery multiplier consisting of an array of carry save multipliers is instead designed

and included in the Fp unit. The height of the array defines the critical path delay and

is set so that it has the same value as that of the RISC core. The width can be varied

according to performance and area requirements. A modular addition/subtraction unit

of variable width is also included in the Fp hardware unit. All arithmetic operations are

performed in the Montgomery domain. An application specific instruction set containing

Fp instructions is employed. Operations on extension fields are converted to sequences of

these instructions using software, a similar approach to that used in Chapter 6. A hardware

Memory Access Unit (MAU) is used to facilitate high data throughput throughout the

system. This unit extends the number of ports that can be used to access the RISC core

and organises storage into distinct blocks from which values can be accessed in parallel.

Various configurations of the system are synthesised using a 130 nm CMOS standard cell

library. Ate, optimal Ate and ηT pairings are computed at the 128-bit security level.

Results returned by various multiplication array sizes, addition/subtraction widths and

memory sizes are provided. The fastest optimal Ate computation is performed by a 128×8

multiplier and a 32-bit wide modular addition unit. A result is returned in 15.8 ms on a

system with a footprint of 164,000 gates. The strategy employed by Kammler et al. is

attractive for use in embedded systems: a relatively inexpensive microprocessor could be

used for storage and control, while an Fp arithmetic unit can be designed and connected

to accelerate arithmetic operations alone.

In 2009, Fan et al. [168] showed that if particular BN curve parameters are selected then

modular multiplication on Fp can be performed significantly faster than in the general case.

A BN-256 optimal Ate pairing implementation is discussed. On BN curves, the prime p

is characterised by the polynomial p(u) = 36u4 + 36u3 + 24u2 + 6u + 1 (from Equation

(7.1)). A modular multiplication technique is described that exploits the relationship

p(−1)(u) ≡ 1 mod u. The complexity of the required operations is minimised when u is a

pseudo-Marsenne number of form u = 2l + s for any suitable l ∈ Z and for some integer

s that should be minimised. An algorithm is provided that performs fast Fp modular

multiplication when these properties are satisfied. This is implemented using a unit that

they call a Hybrid Montgomery Multiplier (HMM). The HMM contains one 32× 16, four
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64 × 16 multipliers and units for modular reduction, accumulation and recombination.

The selection of the curve parameters means that multiplication on F256 can be performed

in a total of one 32 × 32, eight 32 × 64 and 16 64 × 64 multiplications are required. A

total of 13 log2(s) × log2(µ) multiplications are also required, where µ is an integer such

that µ < 2k+6 and k is the embedding degree of the curve. The final 13 multiplications

can be performed quickly using shift and add operations when s is small. In comparison,

regular Montgomery multiplication on F256 is much more expensive, requiring 36 64× 64

multiplications. The top level architecture is similar to the flexible processor described

in Chapter 6. It has an ALU containing an adder and the HMM, 64-bit RAM and a

microcontroller that accesses instructions within a ROM. The system is synthesised using

a 130 nm standard cell library. An implementation containing 183,000 gates returns a

BN-256 Ate pairing in 4.22 ms and an r-Ate pairing in 2.91 ms. This is a speed up of

5.4x over the Ate result reported by Kammler et al. [167] in the same year, with an area

increase of only 11.56%. The subset of curves that can be used for pairing computation

using the methods of Fan et al. is, however, very restricted. This may prove problematic

if their attributes are successfully attacked in the future.

In 2012, Fan et al. [79] presented an efficient hardware architecture for the computation

of the Ate and optimal Ate pairings on BN-256 curves with certain properties. The

computation techniques are similar to those previously discussed by Fan et al. in 2009

[168]. Fast modular multiplication is performed when the parameter defining the BN curve

is a pseudo-Mersenne number. In the previous paper, a HMM is described that performs

interleaved multiplication and reduction. In this paper, the multiplication and reduction

steps are separated. A new HMM is presented that performs Fp multiplication on fields

of up to 260 bits in four phases. In Phase 1, one 65 × 32 and four 65 × 65 multipliers

perform polynomial multiplication. A one-round reduction of each of the partial products

is performed in Phase 2. The outputs of this step are always less than 77 bits in size. Phase

3 sees the accumulation of the partial products followed by one polynomial reduction. The

output is a 93-bit polynomial, which is separated and reduced in Phase 4 to return the

final result. The top-level architecture of [168], now containing the new HMM, is reused.

A C++ program schedules the arithmetic operations and converts them to microcode that
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is stored in an instruction ROM. Ate and optimal Ate pairings, defined on suitable 256-

bit BN curves, are computed on a Virtex-6 FPGA. Use is made of the dedicated Digital

Signal Processing (DSP) units available on these FPGAs. A total of 4,014 slices and

42 DSPs are used. 128-bit secure Ate and optimal Ate pairings are returned in 1.6 ms

and 1.17 ms, respectively. This is a dramatic improvement on their previous 183,000 gate

ASIC implementation, which exhibited computation times of 4.22 ms in the former case

and 2.91 ms in the latter case. As is the case with the previous paper, the small number

of curves that are suitable for these methods may prove restrictive.

In 2012, Yao et al. [169] discussed optimal Ate pairing computation using Residue Number

Systems (RNSs). This is a continuation and extension of the work described by Cheung

et al. [174] in the previous year. In an RNS, a set of smaller integers are used to represent

a large integer. An RNS base contains n coprime integer constants, each of which is called

an RNS modulus. Large integer arithmetic can be performed by operating on each of the

moduli in parallel: there are no interdependencies. This facilitates wide scale parallelism.

Modular reduction by the prime p on which the finite field is defined is not performed

in the RNS setting. Instead, Yao et al. employ Montgomery reduction. The number

of required reductions is minimised using the lazy reduction technique [140]. A hardware

processor is presented that can perform optimal Ate pairings on finite field sizes of 260 bits

or less. It contains a micro-coded sequencer and an ALU containing four parallel rowers.

Each rower performs an operation on a particular modulus and contains four 69× 18-bit

signed multipliers and some addition units for reduction and recombination of the results.

Extra addition and accumulation units are also included so that Fp2 operations can be

performed efficiently using the rowers. The processor is implemented on a Xilinx Virtex-6

FPGA containing dedicated DSPs. The 25×18 multipliers within the DSPs are employed.

A total of 64 DSPs are consumed. A processor computing a 126-bit secure optimal Ate

pairing returns a result in 358 µs and occupies 5,237 slices. This is an extremely fast pairing

computation at this security level. This level of acceleration is, in the main, due to the

custom architectures that are designed to efficiently employ the RNS and lazy reduction

techniques. The availability of dedicated DSPs on modern FPGAs also means that the

area requirements of pairing processors can be significantly reduced as the units required
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for multiplication are usually the most expensive in terms of area.

In 2013, Ghosh et al. [170] discussed pairing implementation on a Virtex-6 FPGA. The

vulnerability of the implementation to side channel attacks is considered and some coun-

termeasures discussed. Fp multiplication is performed using a binary double-and-add

algorithm. The result at the end of each iteration of the algorithm is maintained below

the number of bits in p so that a final division can be avoided. The logic blocks of Virtex-6

FPGAs are organised into individual rows of 16 slices (or 32 LUTs) that are connected

by a Fast Carry Chain (FCC). This means that two 32-bit operands can be added ex-

tremely quickly. An addition module that performs fast 256-bit addition using these carry

chains is described. A unified arithmetic unit for addition, multiplication and subtraction

is presented. The unit contains three of the 256-bit addition modules and a module for

Fp doubling (performed with some simple rewiring). Several smaller units are included to

control data flow and storage. The Montgomery ladder technique [175] is used to compute

the double-and-add Blakley algorithm for modular multiplication [176]. A result is re-

turned by the arithmetic unit in 256 clock cycles. A custom Configurable Arithmetic Unit

(CAU) architecture is discussed. Each CAU contains three unified arithmetic units. A

CAU has two modes: it can be used to perform three parallel, independent, Fp arithmetic

operations or a single multiplication on Fp2 . Two CAUs, operating in parallel, are utilised.

A dedicated unit handles the complex data access requirements introduced by the parallel

use of the CAUs. A processor computing 128-bit Tate (using the BKLS algorithm), Ate

and optimal Ate pairings is implemented and occupies 23,000 slices on a Virtex-6 FPGA.

Results are returned in 11.93 ms, 8.32 ms and 5.66 ms, respectively. DPA attacks on the

implementation are also considered. The attack model involves an adversary collecting a

set of random public points and analysing power traces in order to retrieve details about

the Hamming weight of the intermediate data. Very small power variations can be used

to retrieve the values of particular bits during iteration. Ghosh et al. successfully mount

this attack on the FPGA. To counter this attack, they suggest that operations that are

performed on both public and private information at the same time should be removed.

Such operations are performed during computation of the line functions of Miller’s algo-

rithm but can be modified to counter the attack. This does, however, result in a significant

223



increase in computation time. Using the countermeasure, pairings are returned in 182 ms,

108 ms and 32 ms for the Tate, Ate and optimal Ate pairings, respectively. Results are

not returned as quickly as the processors described by Fan et al. in [168] and [79]. This

implementation is, however, not restricted to a subset of BN curves. The architecture of

[169] utilises the DSPs that are available on Virtex-6 FPGAs and returns a pairing in a

much faster 358 µs. It would be interesting to investigate whether the use of DSPs could

improve the results returned by Ghosh et al.

In 2014, Chang et al. [171] discussed the energy-efficient hardware implementation of prime

characteristic pairings on BN curves. The top level architecture of their system is similar

to that of a general purpose sequential processor. It contains a data cache, an instruction

cache, an ALU for prime field computation, a control system and a decoder. While

some other publications discussed in this chapter use scheduling techniques to accelerate

pairing computation, Chang et al. concentrate on maximising resource utilisation. The

ALU contains Arithmetic Units (AUs) that can perform only addition and subtraction,

These are called AAUs. It also contains full AUs, or FAUs, that can perform addition,

subtraction and Montgomery multiplication. The AUs are connected using a register

file. During each computation cycle, an idle AU searches for an instruction for which

the input operands are available. If there is enough space in working memory, the AU

will perform this operation. A more stringent limit is placed on the memory available to

the AAUs in comparison to the FAUs so that multiplicative operations will have higher

priority when they can be performed. A scheduler and compiler are used to generate an

optimised schedule for each of the AUs and to ensure that memory units are efficiently

employed. Through simulation, Chang et al. find that the use of one FAU and two

AAUs delivers the most desirable performance. The pairing processor is hand-coded in

the Verilog language and synthesised on a TSMC 90nm technology. A version that is not

hand-coded is implemented at 130nm. A 200 MHz, 128-bit BN curve optimal Ate pairing

is returned by the 90nm implementation in 3.04 ms. A total of 116,000 gates are required.

Chang et al. define their energy metric in terms of an Area×Time×Cycle (ATC) product.

A value of 353.6 is reported. The 130nm implementation returns a result in 5.88 ms, has a

footprint of 166,000 gates and has an ATC product of 976.2. The only direct comparison
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that can be made is to that of the 130nm results published by Kammler et al. in 2009

[167]. They return an optimal Ate pairing in 15.8 ms on a 338 MHz implementation that

has a footprint of 164,000 gates. This results in an ATC product of 2591.2.

7.5 Modern Applications of Pairings

In the last number of years, several interesting cryptographic schemes and applications

that rely on bilinear pairings have been proposed. Some of these applications and the

computation of pairings on devices that are suitable for their implementation are discussed

in this section.

7.5.1 Attribute-Based Encryption

The use of bilinear pairings in Attribute-Based Encryption (ABE) has garnered much

interest in recent times. In ABE, a user of a system must possess one or more attributes to

be a member of a network and to gain access to particular information within that network.

Cryptography based on ABE is a natural fit for securing confidential information in the

medical field [177], [178]. A patient’s medical information can, for example, be encrypted

so that it can only be accessed by health care professionals that have certain attributes.

The access policy is specified using a Boolean formula. For example, the policy for access

to Patient A’s medical records while staying in Hospital H for a surgical operation may

be defined by:

((employed by H) AND (surgeon OR anaesthesiologist)) OR (Patient A’s general practitioner)

In 2015, Zavattoni et al. [179] published a detailed description of ABE and its associated

computational costs. The techniques used to perform point scalar multiplication, expo-
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nentiation and pairing computation are first discussed. When the point to be multiplied,

P , is not known in advance, the Non-Adjacent Form (NAF) windowing method of [23]

is used in conjunction with the methods that Gallant et al. [180] describe to accelerate

scalar multiplication on BN curves. Consider the scalar multiplication [n]P , where n is

some random integer. Let A be the cost of a point addition and D be the cost of a point

doubling. Then unknown point scalar multiplication is performed at a cost of l
2D+ l

w+1A,

where w is the NAF window size and l is of size that is at most one bit larger than the

bit size of n.

In ABE, an input argument for a scalar multiplication or a pairing is often known in

advance. This is the case when, for example, a particular point is defined at system set up

and rarely changes throughout the operating life of the system. If the point P is known in

advance, a scalar multiplication by a random integer n can be performed using the comb

method [23], which relies heavily on precomputation. This has a relatively large storage

requirement of 2w points but the cost of known point scalar multiplication is d(A + D),

where d = l/w. This is a much lower cost in comparison to the unknown point scalar

multiplication operation.

When pairing computation must be performed and the input arguments are not known in

advance, the optimal Ate pairing computation methods described by Aranha et al. [140]

are used. A Miller loop is computed at a cost of 6785mE + 3022rE , where mE is the cost

of an integer multiplication of two 256-bit integers and rE is the cost of the Montgomery

reduction from the 512-bit result to a 256-bit integer. The final exponentiation costs

3526mE + 1932rE . When one of the inputs to the pairing is known in advance, then

computation time can be reduced by precomputing the line functions and storing their

values prior to pairing computation [181]. Clearly, this is expensive in terms of storage.

When a product of pairings is required, the number of pairing computations can be reduced

at the expense of more scalar multiplications by grouping pairing input arguments. The

techniques of [182] and [130] can also be used to share the accumulating function and

the final exponentiation step. Encryption and decryption require a combination of these

operations.
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Zavattoni et al. implement ABE on an Intel Core i7. For a six attribute implementation,

encryption requires 2.38 MCycles, key generation requires 652 Kcycles, while decryption

requires 4.61 MCycles. Interestingly, the number of cycles required by the pairing opera-

tions is only 57.3% of the overall cost due to the techniques used to reduce the complexity

of pairing computation. This publication provides an excellent overview of ABE and its

associated operations.

7.5.2 Mobile Devices

Until relatively recently, the use of pairing-based cryptography on mobile devices has not

received much attention in the literature as limited processing power rendered implemen-

tation impractical. In 2011, however, De Caro and Iovino [183] presented a compact Java

library, which they call jPBC, computing the operations required by PBC. The library

is a port of the PBC library, written in C, presented by Lynn [64] and publically avail-

able at [184]. Since Java is widely used in the mobile community, jPBC can be installed

on smartphones that use the Android operating system with minimal effort. The jPBC

library supports the six curves available in Lynn’s PBC library. The properties of these

curves, called types A to G, are discussed by Galbraith et al. in [185]. The jPBC library

has a hierarchy of access interfaces, at the top of which is a pairing interface that selects

the pairing to be performed according to the curve that has been selected. In a similar

fashion to PBC and the C++ Miracl library [77], jPBC also has interfaces for various fields

and associated arithmetic on their members. Preprocessing of exponentiation and pairing

operations is performed in jPBC to compensate for the reduction in speed brought about

by the use of Java instead C. This is sometimes possible when operations are performed

on a particular point that does not change after system setup. De Caro and Iovino report

results for a pairing computed on a type A supersingular curve of form y2 = x3 + ax,

where a ∈ Fq. This curve has an embedding degree of 2. A field size of 512 bits is

used. The library is implemented on a Samsung 19000 Galaxy S and on a HTC Desire

HD A9191 smartphone. Both implementations return similar results. On the Samsung

Galaxy, a pairing is returned in 516.6 ms without preprocessing. The preprocessing tech-
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niques provide significant speed up, with a pairing result returned in 253.9 ms. De Caro

and Iovino also show how the library can be used to perform the BLS signature scheme

[186], although no timing results are provided. The creation of a version of the library

that accesses assembly to perform the required operations may, perhaps, provide further

acceleration of the required operations. The jPBC library is publically available at [187].

In 2015, Malina et al. [188] investigated the use of pairing-based cryptography on mobile

phones running the Android operating system. Several optimisations for the implemen-

tation of PBC schemes are discussed. The pairing-based and modular arithmetic opera-

tions are performed using jPBC and the Java Math.BigInteger library. The BBS04 short

signature scheme [189] is implemented. Malina et al. discuss how this scheme can be

performed efficiently in this setting. Pairing precomputation is employed when a pair-

ing must be performed on inputs that do not change after system setup. Bilinearity is

used to reduce the number of pairing computations required when pairings are multiplied.

The product (e(P,Q)T ).(e(P, S)W ) is, for example, computed according to e(P,QT .SW ).

The signature stage requires three pairing computations as precomputation and use of

the bilinearity property are not applicable. The number of pairing computations required

during the verification stage is, however, reduced from five to one. Batch verification [190]

can also be used to reduce the number of required pairing computations. It is possible to

combine a set of verification equations, to perform point exponentiation instead of pairing

exponentiation and to group pairings that must be performed on the same point(s) when

batch verification is utilised. Pairing computation is performed on a type D curve with

an order of 175-bits and an embedding degree of 6. The Java library is implemented on

the Samsung Nexus i9250 and the LG Nexus 5 mobile devices. Without the optimisation

techniques, a BBS04 signature is performed in 10.23 ms on the Nexus 5. The use of the

techniques reduces the time to 2 ms. Essentially, this means that the use of BBS04 for

signing is a practical proposition. However, even if 10 signatures are batch verified, the

average time per verification is 14.275 ms. Malina et al. state that verification should,

therefore, only be implemented in applications where time is not a critical issue.
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7.5.3 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) have a large range of applications. Their use in bat-

tlefield, agricultural and industrial settings is continuously attracting interest. A WSN

is an ad hoc network containing (many) devices, called sensor nodes, that monitor and

periodically send information about the area in which they are embedded to other devices

or to one or more base stations within their range in a territory of interest. This sys-

tem can provide a much more comprehensive record of the territory than the use of one,

usually more expensive and complicated, sensor could. Since a large quantity of nodes is

often required, their cost is of primary concern. For this reason, microprocessors are an

ideal candidate for use in WSN nodes. The nodes may also be embedded in inhospitable

environments: once entrenched, a sensor may be very difficult to retrieve. For this reason,

minimisation of the energy dissipated by the nodes is also of concern as it may not be

possible to change a power source after deployment. The literature results for pairing

implementation in the context of WSNs are listed in Table 7.4.

Table 7.4: Notable modern contributions to the implementation of pairings in the context

of wireless sensor networks.

Ref. Year Sec. Curve Alg. Device F. Cycles Time

(Bits) (MHz) (×106) (ms)

[191] 2011 72 E(F2271) ηT Atmel ATMega128 7.4 14.06 1900

TI MSP430 8 10.4 1270

Intel XScale 13 1.81 140

[192] 2011 72 E(F2283) ηT ASIC - 0.574mm2 200 0.14 0.70

[193] 2012 128 BN-254 aopt TI MSP430 8 79.44 9930

TI MSP430X 67.68 8460

TI PSP430X+GTY 47.76 5970

[194] 2014 128 BN-256 aopt Cort-M0+ 48 47664 993

+ MAC 17952 374

+ h/w 7776 162
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In 2011, Oliveira et al. [191] discussed the use of pairings in wireless sensor networks. In

WSNs, authentication and secure key distribution is particularly difficult as the nodes do

not have the ability to store a large number of keys. An Identity-Based Non-Interactive

Key Distribution Scheme (ID-NIKDS), described by Sakai et al. in [27], can provide a

solution to this problem. In such a scheme, a secret key can be established between two

nodes using their public identities alone: they do not need to communicate with each

other. A secure information exchange can then proceed using a traditional symmetric key

scheme such as AES. As with most other ID-based schemes, each node is provided with

a unique secret key before deployment. The unique keys are generated from one master

key by a trusted authority. Pairing computation is by far the most costly operation in

ID-NIKDS schemes. Oliveira et al. discuss the implementation of pairings on 8-, 16-

and 32-bit RISC processors that are commonly used in sensor networks. The exploration

of finite field implementation using small instruction sets, low memory availability and

a limited number of lookup tables is very interesting. A characteristic 2 ηT pairing is

performed on E(F2271), which provides a 72-bit security level. Results are returned in

1.9 s, 1.27 s and 0.14 s on the 8-, 16- and 32-bit processors, respectively.

In the same year, McCusker and O’Connor [192] presented an IBE system for secure key

distribution and access control in a WSN. A technique is also proposed that reduces the

vulnerability of the system to node capturing. The system employs (ID-NIKDS) [27] and

the Identity-Based Signature (IBS) scheme described by Barreto et al. in [195]. Prior to

deployment, the necessary system parameters and private keys are stored on the sensor

nodes by the Key Generation Centre (KGC). Immediately after deployment, pairs of

neighbouring nodes establish a key. Each device then transmits a small signed message to

all nodes within radio range. A device that can generate a valid signature is allowed to

join the network. Each node then keeps a record of authenticated devices within its own

radio range. If a node is to be added, the KGC broadcasts the identity of the new device

along with a time-stamped signature. The nodes await a small signed message from the

new node and add it to the network if correct. Node removal is performed in a similar

manner. McCusker and O’Connor describe their system in terms of an environmental

monitoring application in which the nodes are static but information is extracted by a
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mobile entity such as a trusted employee carrying a laptop or tablet device. When a reading

is required, a request is relayed between the nodes until the desired device is reached.

Information is then sent back from node to node using AES. Focus is placed on device

area utilisation and energy usage. A Tate pairing using the Duursma and Lee method,

performed on the supersingular elliptic curve E(F2283), is used to explore the viability of the

scheme. An implementation, performed on a 32-bit RISC ARM920T processor, computes

a pairing in 177.1 ms. Symmetric key generation and signature verification require two

Tate pairing computations, an exponentiation and a scalar multiplication. A total of

35.4 mJ and 444.5 ms are required to implement the scheme at 140 MHz. These values

are too high for practical use. McCusker and O’Connor discuss the augmentation of the

system with a hardware unit. Pairing computation is outsourced to this unit. The top level

architecture contains an FSM, an ALU and some registers. An F2m bit-serial multiplier, a

squaring module and a square rooting module are used to perform all necessary operations.

The ALU also contains registers, multiplexers and combinatorial logic that control the

datapaths through which extension field multiplication and inversion are performed. The

hardware unit is interfaced to the ARM device using the Advanced Peripheral Bus (APB)

scheme. A synchroniser is used to manage the two clock domains. The hardware processor

is synthesised on a 65 nm CMOS technology. The ASIC computes a pairing in 698.11 µs,

uses 29.6 µJ per computation and has a footprint of 0.574mm2. However, even with the

significant reduction in pairing computation time, McCusker and O’Connor state that the

scheme is not suited to use in WSNs as a total of 7.26 mJ and 91.7 ms are required to

operate the scheme. They hypothesise that significant improvements could be attained if

elliptic curve scalar multiplication and exponentiation were also accelerated in hardware. A

resultant energy consumption of 80 µJ and a scheme operation time of 1.75 ms is predicted.

If this were the case, it is claimed that this system would be appropriate for WSN use.

In 2012, Gouvêa et al [193] discussed the computation of several curve and pairing-based

cryptographic protocols on platforms that are suited to WSN applications. Implemen-

tation is performed on three 16-bit TI microcontrollers from the MSP430 family. The

first microcontroller, simply called the MSP430, has 12 general-purpose registers and an

instruction set for addition, subtraction and 1-bit shifts. Integer multiplication is per-
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formed using a peripheral hardware multiplier that can be used on all microcontrollers

in the family. The next device is the MSP430X that, in addition to the features of the

MSP430, has an instruction set that enables multiple register read and writes and 4-bit

shifts using a single instruction each. It also has an address space that is extended to 20

bits, has more memory and has faster data-memory transfer. The third implementation is

performed on an MSP430X device that features a dedicated 32 × 32 bit hardware multi-

plier (called an MPY). A 256-bit BN curve optimal Ate pairing computation is performed

on each of the devices. A result is returned in 9.93 s, 8.46 s and 5.97 s on the MSP430, the

MSP430X and the MSP430X+MPY32 devices, respectively. The ID-KDNS [27] scheme

is implemented on each of the microcontrollers. It should be noted that the use of the

IBS scheme for node authentication as suggested by McCusker and O’Connor [192] is not

employed and so only one pairing computation must be performed by each node. On

the MSP430X+MPY32 implementation, a key agreement can be reached in a runtime of

6.13 s on one node and 7.12 s on the other. Note that the slight increase in computation

time in comparison to the pairing is due to relatively inexpensive hashing functions and

other similar operations. Keeping in mind that this is a 128-bit implementation, this is

an excellent result that demonstrates that pairings returning high security levels can be

implemented in a reasonable time on very small devices.

In 2014, Unterluggauer and Wenger [194] discussed the computation of pairings on an

ARM microprocessor augmented with hardware peripherals. Three implementations,

small enough for use in embedded systems, are presented. Arithmetic is performed using

the techniques of Beuchat et al. [116] while pairings are computed using the explicit for-

mulae of Costello et al. [150]. The inversion trick discussed by Aranha et al. [140], the

Fp2 lazy reduction technique described by Beuchet et al. [116] and a variant of the fast

exponentiation technique discussed by Fuentes-Castañeda et al. [196] are also employed.

To counter side channel attacks, all implementations have data-independent runtime, use

randomised projective coordinates, and perform intermediate point verifications. The

first implementation is performed on a processor that is functionally equivalent to the

32-bit Cortex-M0+ microprocessor. This ARM processor has a very low area footprint (a

minimum of 12KGates) and was designed with energy efficiency in mind. This makes it
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extremely suitable for embedded applications. The Cortex-M0+ contains a 32× 32→ 32

multiplier. Since the operands are small relative to the applicable field sizes, multiplication

and reduction would take a relatively large amount of time if this multiplier were used

alone. The second implementation utilises the same processor with an extra multiply-and-

accumulate (MAC) extension module. The use of this module means that the result of

a 32 × 32 → 64 bit multiplication can be stored in three accumulation registers in one

cycle. The third implementation consists of the original microprocessor architecture and a

hardware unit for accelerated field addition, subtraction and Montgomery multiplication.

The hardware unit is synthesised on a low-leakage 130 nm UMC technology. Optimal

Ate pairings are computed at the 128-bit security level. Power and timing information

is collected from the three implementations at a clock frequency of 48 MHz in each case.

The basic microprocessor implementation requires 53,700 gates, consumes 5.8 mW and

computes a pairing in 993 ms. The MAC extension increases the total area to 58,800 gates

and the power to 7.33 mW but reduces the runtime to 374 ms. The implementation that

includes the hardware accelerator requires 57,700 gates and consumes 9.96 mW. It does,

however, decrease the runtime to 162 ms. Energy consumption is a major consideration for

embedded systems. The implementations require 5.76 mJ, 2.74 mJ and 1.61 mJ per pairing

computation, respectively. These are the lowest energy values that have been published

to date. It should also be noted that the area count of each of the implementations is very

low in comparison to most other implementations that have been discussed.

7.6 Future Directions

As seen in this chapter, the software and hardware implementation of pairings attracts

much attention in the modern literature. This is the case due to the continuous suggestion

of new, efficient, techniques for pairing computation and due to improvements in the

processing power and architectural features of hardware and software platforms. It is

highly probable that further optimisations will become available, at least into the near

future, as PBC is a highly vibrant area in which novel applications are continuously
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proposed. This will provide the software and hardware designer with much challenging

work in the years to come.

Many applications of pairings require computation in environments in which it may be

difficult to access or retrieve a device once deployed. As a result, power consumption may

be of primary concern. The careful design of a dedicated hardware processor that targets

the implementation of cryptographic schemes that are suitable for such environments may

prove beneficial. It may be useful to create a software system similar to that of Chap-

ter 6 (in which area/time trade-offs are explored) to examine trade-offs between power

consumption and computation time on various devices and architectures. As seen in the

previous section, the use of PBC in WSNs is attractive due to the power savings that are

provided by identity-based schemes. In 2015, Chen et al. [197] used PBC as a basis to

propose a dynamic key management and authentication system for WSNs. The dynamic

key management capabilities are used to update session keys when required. Pairings are

used to enable the mutual authentication of nodes. Interestingly, the Global Position-

ing System (GPS) is used to define the most efficient route for information transmission

through the network and can be used to intelligently group sensor nodes into clusters that

can be arranged hierarchically. This is an excellent example of a very interesting and

powerful use of pairings and an investigation into the efficient implementation of such a

system may prove worthwhile.

Attribute-based encryption is a continuously evolving area. Many applications of ABE

have yet to be explored. The use of ABE in a WSN setting may be an interesting area

of research. It may be possible to utilise ABE in order to facilitate access control in

different geographical areas or territories. Access to sensing data can also be controlled

if, for example, a particular node is used to sense more than one parameter. This may be

of particular interest as nodes are often placed in insecure locations. Access can also be

readily modified if the location of a node, or nodes, must be changed.

As seen in the previous section, Zavattoni et al. [179] show that the cost of pairing

computation in their ABE implementation is only 57.3% of the overall total. It would
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be interesting to investigate whether a dedicated hardware architecture could be designed

that computes known and unknown point scalar multiplication, known and unknown pair-

ing computation and the products of pairings in an efficient manner. These computations

can be performed by similar arithmetic units in many cases. By combining and schedul-

ing the operations in an intelligent fashion and exploring various design strategies, an

ABE processor with a very high resource utilisation could be created. It may, therefore,

be possible to design a very area-efficient ABE processor that performs encryption and

decryption relatively quickly.

The practical implementation of PBC on highly constrained devices such as smart and SIM

cards may open a very large area for research as pairing-based schemes that were, in most

cases, originally only suitable for implementation on larger processors, could be employed

in an end-to-end fashion. In 2014, Chung et al. [198] discussed the implementation

of pairings on USB tokens. They demonstrated that PBC can be used in a practical

fashion at the 128-bit security level. Much work is, however, required on the efficient

implementation of pairings on highly-constrained devices before the widespread adoption

of PBC will become attractive. This is an area in which much further work is required.

There have been relatively few investigations into the implementation of pairings on mod-

ern smartphones and tablets. Many of these devices have relatively powerful one core, or

multi core, processors that are supplemented with fast memory access, efficient compu-

tation pipelines, wide data bandwidth and other appealing attributes. Such devices may

be exceptional candidates for pairing computation due to the multitude of such features.

Multi core implementation may, for example, mean that arithmetic on sub fields and their

extensions can be performed in parallel. If two pairing computations are required, opera-

tions can also be shared across cores. An instruction-level simulation on an architecture

that is very similar to modern smartphones may be useful as a proof of concept.

An investigation into the development of a pairing-based system on devices produced by

Apple, Inc. may prove very beneficial. The open source Swift programming language [199],

released in 2014, can be used for application development. This language is constructed
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on top of C and Objective-C code and provides support for the operations performed by

these languages. Importantly, object-oriented functionality is also available. The open

source LLVM compiler [200] can be used to convert Swift code into optimised native

instructions on Apple devices that are built on the OS X and iOS operating systems. The

open source nature of the language means that it can be ported to the web successfully.

A good example of this is the IBM, Inc. Kitura web-based framework [201]. This is also

open source and reduces the effort required to develop end-to-end solutions in modern

mobile and internet environments. The development of a mobile phone application using

Swift, in conjunction with a web framework, for secure communication using pairing-based

cryptography could be very valuable.

In 2015, Jacobsen et al. [202] discussed the use of identity-based cryptography in home

area networks. The rapid growth of the Internet of Things means that there is a constant

need for new ways to secure devices that are connected wirelessly. These devices often

have a very low energy capacity. This is an area of interest for pairing-based cryptography

as non-interactive key distribution could provide significant savings in power consumption.

The outsourcing of computation to cloud servers is a rapidly expanding research area. In

2015, Chen et al. [203] proposed an algorithm for the secure outsourcing of point mul-

tiplication, exponentiation and pairing computation to an untrusted cloud server. They

demonstrate that secure identity-based encryption and signature schemes can be imple-

mented using their algorithm. It would be interesting to investigate whether some out-

sourcing could be used to make schemes that rely on pairings feasible on devices that have

a very small area or stringent energy requirements.

7.7 Conclusions

The current state of the art of pairing-based cryptography has been presented in this

chapter. Modern pairing computation techniques have been discussed. Computational
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and side channel attacks on cryptographic systems have also been outlined. Notable soft-

ware and hardware implementations of the Tate, ηT , Ate and optimal Ate pairings have

been described. Although the processors presented in this thesis perform small character-

istic pairings, this does not diminish the contributions of this work. A significant influence

can be seen in much of the literature since 2008. Tower fields are carefully defined with

an efficient hardware implementation in mind. A variety of systems have been designed

in such a fashion that arithmetic operations required on different iterations of the loop

can be performed in parallel. Algorithms for pairing computation on BN curves are struc-

turally similar to those of the ηT pairing: they mainly comprise an expensive Miller loop

that performs many finite field operations. This means that many of the design strategies

discussed in this thesis can still be used. In much of the literature, the sparse nature of

extension field variables has been exploited to reduce the number of subfield operations

that are required to perform arithmetic. At the time of publication, the flexible proces-

sor of Chapter 6 was among the first implementations to demonstrate that pairing-based

cryptography is viable in environments in which area is very restricted. Several subse-

quent implementations have used similar architectures for pairing computation. Software

systems that reduce the effort required for the prototyping of pairing processors have been

used in conjunction with those systems in a similar fashion. These systems often utilise

automatic VHDL conversion and rapid instruction sequence generation techniques.

As a suggested modern application for the work discussed in this thesis, consider an ap-

plication in which a set of sensing units must be embedded in a very large habitat that

consists of several inhospitable territories in which bandwidth is very limited. Once de-

ployed, it may be difficult to retrieve the sensors. Before deployment, the sensing units are

grouped by territory. Each group is associated with one base station device that commu-

nicates with and receives information from its designated nodes. A central server retrieves

the collected data from each of the base stations at intervals. Before deployment, the

sensors and base stations are allocated the keys and system parameters that are required

for secure field communication. In this example, the sensor nodes should be inexpensive

and compute a low-energy pairing due to retrieval difficulties. An architecture similar to

the processor of Chapter 6, configured with a small number of low-digit multipliers and

237



implemented on a low cost FPGA, would be ideal in this case. Computation speed is

more of a consideration on the base station device as it must communicate with each of

its designated sensors and send data to the central server. The base station must also be

provided with more power. A suitable, most likely larger, configuration can be chosen and

implemented on an FPGA (cost may be less of a consideration as only one base station

is required in each territory). The software design system can be used to explore suitable

implementations for the sensors and stations before deployment. The server itself may

comprise an even larger flexible processor. If more speed is required, then a high through-

put architecture similar to those presented in Chapters 4 and 5 can be used to quickly

and securely collect data from the base stations within every territory of the habitat.
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Chapter 8
Conclusions

The thesis is summarised in this section. The contributions of the research are also dis-

cussed.

In Chapter 2, the cryptographic use of elliptic and genus 2 hyperelliptic curves is discussed.

The theory of groups, rings and finite fields is outlined. The mathematics necessary for an

understanding of elliptic and genus 2 hyperelliptic curve cryptography is then explained.

Curve and divisor theory is discussed. The operations necessary to perform scalar mul-

tiplication on these curves are also described. Attacks on the DLP, the ECDLP and the

HCDLP are discussed, along with the measures that should be used to prevent them.

Finally, the benefits of hyperelliptic curve cryptography are outlined.

In Chapter 3, the Tate and ηT pairings are introduced. The optimisations available in the

literature, leading to the definition of the ηT pairing, are discussed. The Tate pairing can

be performed efficiently by computing an ηT pairing, followed by a well-defined exponen-

tiation. Security considerations for the use of pairings in cryptography are also presented.

The Boneh-Franklin IBE scheme is outlined.
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The motivation for the methodology used in this thesis is also discussed in Chapter 3. The

relatively low cost and reconfigurability of FPGAs means that they are an ideal platform

on which to implement the processors discussed in this thesis. Three processors have been

created during this work. Each must be defined using detailed low level RTL VHDL. The

tools used to synthesise, place and route the processors are resource intensive. Verifica-

tion and benchmarking are also time-consuming due to the complexity of the operations

involved. A software system has been designed to address these issues. The software is

written using object-oriented C++. Classes for software pairing computation, RTL VHDL

generation, efficiency analysis, automatic implementation, rapid benchmarking and robust

verification have been created. A program for the automatic generation of instruction sets

according to user-defined algorithms has also been written. This program can be used

in conjunction with the flexible processor of Chapter 6 to implement any algorithm that

relies on finite field operations.

In Chapter 4, a hardware processor for Tate pairing computation on a characteristic 2

elliptic curve is presented. The algorithms and operations required for pairing computation

on such a curve are provided. The computation and implementation of arithmetic on F2m

and F24m is discussed. A generic algorithm for F24m inversion requires many F2m operations

and some conditional statements that can complicate a hardware control system. In

this work, the sparse nature of the irreducible polynomial defining F24m is exploited to

dramatically reduce the number of required operations. Inversion can be performed by

grouping computations into three fixed steps. A total of 33 F2m multiplications, four

squarings, 16 additions and one inversion are necessary. The multiplications are efficiently

scheduled through three multipliers. An F24m inversion result is returned in 13(m/D)

clock cycles if 3(m/D) > 2m or in 10(m/D) + 2m cycles otherwise. A hardware unit

implementing this inversion technique was presented at the 3rd International Conference

on Reconfigurable Computing and FPGAs in 2006 [7]. The inverter was then incorporated

into a characteristic 2 Tate pairing processor architecture implementing the Tate pairing

using the BKLS algorithm. This work was published in a special issue of the Computers

& Engineering Journal in 2007 [8].
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Dedicated hardware units for the fast computation of the main stages of the iterative

loop of the characteristic 2 ηT pairing (Algorithm 5) are also presented in Chapter 4. A

precomputation unit calculates and stores all squares and roots in 2m clock cycles. Units

for the computation of u0 and u1, their sparse multiplication, and F24m multiplication

have also been created. The last three units were designed so that operations required

on different iterations of the loop can be performed in parallel with ease, significantly

reducing the number of cycles required for loop completion. A unit that performs the

final exponentiation is also described. The processor that uses these units to compute a

Tate pairing is then presented. It is implemented on a Virtex-II Pro FPGA. Results show

that it can perform a full Tate pairing in a very low number of clock cycles. The custom

processor was presented at the 2006 IEEE Conference on Field Programmable Technology

[6].

In Chapter 5, the hardware implementation of the genus 2 hyperelliptic curve Tate pairing

is discussed. Genus 2 curves offer an embedding degree of 12, which means that a smaller

subfield can be used than in the elliptic cases. This benefit is, however, offset by a more

complicated pairing construction and the challenges of computation on extensions of high

degree. Algorithms for the Tate pairing, calculated using the ηT method, are provided

in Chapter 5. Tower field constructions that enable fast extension field arithmetic are

also discussed. Hardware units for the accelerated computation of the genus 2 iterative

loop (Algorithm 10) are presented. A precomputation unit is carefully designed to supply

squares and roots when necessary. Two sparse members of F212m must be multiplied. The

F212m result is then multiplied by the accumulating Miller variable on each iteration. A

custom dual mode multiplication unit performs both of these operations quickly while

minimising resource utilisation. The genus 2 processor is implemented on a Virtex-II Pro

FPGA. Results show that a pairing can be computed in the same order of clock cycles as

in the characteristic 2 elliptic case. Furthermore, the genus 2 implementations are more

efficient, returning the lowest AC products. The genus 2 implementation also scales better

with increases in security level due to the high embedding degree. Prior to this work, there

had been no published hardware implementation of a pairing using any type of algorithm

on genus 2 curves. An early, more general purpose, version of the genus 2 processor was

241



presented at the 2006 IEEE Conference on Information Technology: New Generations

[9]. The architectures of the custom hardware units and the final genus 2 processor were

published in The Journal of Systems Architecture in 2007 [10].

In Chapter 6, a flexible processor for characteristic 2 and 3 elliptic curve Tate pairing

computation is presented. During the initial stages of the work, analysis showed that

hardware implementation of parallelised characteristic 3 extension field arithmetic would

lead to an unjustifiable area utilisation. This analysis provided the motivation for the

creation of a processor that employs subfield modules alone. The top level architecture

contains RAM for storage, an ALU, tristate buffers and a control system. The ALU can

be programmed to contain either characteristic 2 or 3 arithmetic modules. The quantity

of multiplication modules and their digit sizes can be varied using the flexible software

design system. The control system contains an FSM, a counter and a ROM. The FSM

handles the counter, which accesses an instruction set contained in the ROM. A C++

class has been written to reduce the instruction set generation effort. An algorithm that

is to be implemented can be defined in terms of subfield and extension field operations

using all of the functionality of C++. The instruction set is then generated automatically

and flashed to ROM. Characteristic 2 and 3 versions of the processor are implemented

on a Xilinx Virtex-II Pro FPGA for various versions of the ALU. Results show that

maximal efficiency is provided when area utilisation is low: implementations with small

footprints can return pairings in relatively low numbers of clock cycles. The primary

focus of the processors of Chapters 4 and 5 and, indeed, those discussed in much of the

literature is fast pairing computation. Those hardware architectures are more fixed in

nature and it can be difficult to maintain performance and efficiency when they must be

scaled down in area. The flexible processor described here is an excellent computation

platform for environments with small area profiles. The features of the software system

and the ease of architectural modification enables the rapid and detailed exploration of

solutions for various applications. The processor is also suited to embedded environments

in which bandwidth is limited. If the algorithm to be implemented must be modified, the

associated instruction set can be generated in a central system (such as a server). This can

be sent to the embedded system in a very small file, along with a control signal indicating
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that the ROM should be updated. This means that a large architectural reprogramming

file does not need to be sent to modify the operations performed by a remote device. A

characteristic 3 version of the flexible processor, performing the reduced ηT pairing without

conversion to the Tate pairing, was presented at the 2007 IEEE conference on Information

Technology: New Generations [11]. An implementation computing the Tate pairing was

published in the International Journal of High Performance Systems Architecture in 2007

[12]. Subsequent to this, the processor was further discussed and characteristic 2 and

3 pairing results published in a chapter of a 2009 IOS Press book titled Identity-Based

Cryptography [13].

In chapter 7, the state of the art of pairing-based cryptography has been presented. Mod-

ern pairing computation techniques, security issues, and developments in software and

hardware implementations have been described. The ideas, design strategies and architec-

tures of this thesis have had an influence on many of these implementations. Many novel

pairing-based applications have been proposed in the literature. The implementations and

suggested use of pairings on such a wide breadth of devices as large, dedicated ASICs, ex-

pensive to low cost FPGAs, general purpose serial processors, microprocessors and even

on USB tokens is a large cause for optimism that PBC will remain a rapid growth area.
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[120] R. Granger, T. Kleinjung, and J. Zumbrägel. Breaking ‘128-bit secure’ supersingular

binary curves. In Advances in Cryptology–CRYPTO 2014, pages 126–145. Springer,

2014.

[121] A. Joux, A. Odlyzko, and C. Pierrot. The past, evolving present, and future of the

discrete logarithm. In Open Problems in Mathematics and Computational Science,

pages 5–36. Springer, 2014.

[122] C. H. Kim and J. J. Quisquater. Faults, injection methods, and fault attacks. Design

& Test of Computers, IEEE, 24(6):544–545, 2007.

[123] M. Joye and M. Tunstall. Fault Analysis in Cryptography, volume 7. Springer, 2012.

[124] N. El Mrabet, J. J. A. Fournier, L. Goubin, and R. Lashermes. A survey of fault

attacks in pairing based cryptography. Cryptography and Communications, 7(1):185–

205, 2015.

[125] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and

other systems. In Advances in Cryptology-CRYPTO’96, pages 104–113. Springer,

1996.

[126] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in

Cryptology-CRYPTO99, pages 388–397. Springer, 1999.

[127] Data Encryption Standard. National bureau of standards. Federal Information

Processing Standards Publication 46.

[128] D. Page and F. Vercauteren. A fault attack on pairing-based cryptography. Com-

puters, IEEE Transactions on, 55(9):1075–1080, 2006.

[129] C. Whelan and M. Scott. Side channel analysis of practical pairing implementations:

Which path is more secure? In Progress in Cryptology-VIETCRYPT 2006, pages

99–114. Springer, 2006.

[130] M. Scott. Computing the Tate pairing. In Topics in Cryptology–CT-RSA 2005,

pages 293–304. Springer, 2005.

257



[131] C. Whelan and M. Scott. The importance of the final exponentiation in pairings

when considering fault attacks. In Pairing-Based Cryptography–Pairing 2007, pages

225–246. Springer, 2007.

[132] N. El Mrabet, M. L. Flottes, and G. Di Natale. A practical differential power analysis

attack against the Miller algorithm. In Research in Microelectronics and Electronics,

2009. PRIME 2009, pages 308–311. IEEE, 2009.

[133] N. El Mrabet. What about vulnerability to a fault attack of the Miller’s algorithm

during an identity based protocol? In Advances in Information Security and Assur-

ance, pages 122–134. Springer, 2009.

[134] K. Bae, S. Moon, and J. Ha. Instruction fault attack on the Miller algorithm in a

pairing-based cryptosystem. In Innovative Mobile and Internet Services in Ubiqui-

tous Computing (IMIS), 2013 Seventh International Conference on, pages 167–174.

IEEE, 2013.

[135] R. Lashermes, J. Fournier, and L. Goubin. Inverting the final exponentiation of

Tate pairings on ordinary elliptic curves using faults. In Cryptographic Hardware

and Embedded Systems-CHES 2013, pages 365–382. Springer, 2013.

[136] M. Scott, N. Benger, M. Charlemagne, L. J. D. Perez, and E. J. Kachisa. On the final

exponentiation for calculating pairings on ordinary elliptic curves. In Pairing-Based

Cryptography–Pairing 2009, pages 78–88. Springer, 2009.

[137] D. Hankerson, A. Menezes, and M. Scott. Software implementation of pairings.

Identity-Based Cryptography, 2:188–206, 2009.
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Hardware accelerator for the Tate pairing in characteristic three based on Karatsuba-

Ofman multipliers. In Cryptographic Hardware and Embedded Systems-CHES 2009,

pages 225–239. Springer, 2009.
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